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Abstract of the Thesis

Adaptation Using System Identification to

Improve Electrolocation

by

Newton Truong

Master of Science in Electrical Engineering

University of California, Los Angeles, 2014

Professor Mani B. Srivastava, Chair

Electrolocation is a method of sensing found in weakly electric fish that utilizes

electrical discharges to sense objects and navigate through their environment.

Inspired by these biological findings, this thesis will describe a modeling and

processing method to emulate an application using this sensing modality. We

approached the problem with System Identification to estimate a non-parametric

model instead of relying on complex physical equations. We will describe how

a Kalman filter and an estimation function uses the model to process incom-

ing sensory information. From our analysis, we show improvements using online

adaptive model over offline training. Finally we will compare experimental results

estimating object distance using linear regression and SVM.
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CHAPTER 1

Introduction

Certain species found in the African rivers, like the African Knifefish, have evolved

special organs to discharge and sense weak electrical signals [Lis51]. There are

multiple biological studies showing a tremendous range of capabilities and so-

phistication using this sensing modality. Gerhard von der Emde tested multiple

species and demonstrated that they can distinguish objects with capacitive prop-

erties [Emd98]. In fact motor control is integrated with electric field sensing in

that weakly electric fish exhibit a series of probing behaviors when approaching

an object [TB79] [TM84]. They can eventually be trained to either approach

or avoid objects [LM58]. Behavior of adaptation and learning have been demon-

strated using this sensing modality and it’s not simply limited to detecting objects.

Electric fishes can use information from their electric organ discharges (EOD) to

orient themselves in complete darkness, navigate through turbid waters of unstruc-

tured environments, and communicate with other weakly electric fishes [Emd99]

[LCG13] [Kra96]. Much of the biological aspects have been studied in the last

century between 1950s to early 2000s. It was not until recent decades that en-

gineers are beginning to develop bio-inspired systems around underwater electric

field sensing.

Almost every application using this sensing method by weakly electric fish have

been replicated with artificial systems to some degree. We are able to mimic charge

sensing capabilities with modern circuit technology, and similarly we can mimic

detection and control behavior using mathematical models and signal processing
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techniques. A common approach from a survey of three different research groups

showed the use of Maxwell’s equations as the basis for a model describing the the

underwater electrical discharges [LCG13] [LJR13] [JKM07]. The resulting mathe-

matical model is parametric and requires many physical parameters like electrical

conductivity of the environment and geometric dimensions of the sensor and tar-

get object. Learning and/or identifying these physical parameters is a major task

and requires complex experiments. Moreover, these parameters change with time,

adding another dimension of complexity to these parametric models. These two

main disadvantages of parametric models, namely 1) identifying parameters and

2) lack of adaptability, limits the usage of such models.

In this thesis, we are going to address some of these limitations by using non-

parametric models, which paves the way to using numerical System Identification

techniques. We are going to demonstrate our processing architecture using the

test scenario of trying to estimate the distance of an object to our sensor.
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CHAPTER 2

System Overview

The objective of this thesis is to explore the use of non-parametric models to

design electrolocation systems. These models are used to estimate the location

of an object based on the output data measured from the underwater sensor. In

our analysis, we show that the flow of charges in the underwater environment can

be modeled as a linear dynamic system of low-dimension. We then show that

this low-dimensional model can adapt to changes in the environment. We will

also show that offline training of the state space model does not provide a good

estimate of the channel. The information garnered from adaptation is not only

essential for model accuracy but also for the rest of the system in order to make

good estimations. This chapter will introduce the three main processing blocks:

1. System Identification Block

2. Kalman Filter Block

3. Estimation Function Block

If the estimated output (calculated using the adaptive model) differs form the

sensor measurements, we blame this difference to the existence of an object in the

surroundings. We then utilize this difference in order to calculate the location of

this object. This intuition lead to the system structure shown in Figure 2.1.
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Figure 2.1: The top and bottom blocks can be separated into two processes that
are not performed concurrently. The Kalman filter and estimation function blocks
are used to detect objects nearby and estimate distance. Variable y(t) is the
observed signal out of the underwater channel. During the modeling phase, the
channel is probed with a pseudo-random binary sequences (PRBS) that is used
to perform System Identification. The state space model matrices are passed to
the Kalman filter and information about system dynamics are passed as features
to the estimation function.

2.1 System Identification

The first objective of our system is to build and adapt a non-parametric model. We

do this through a process called System Identification. We first excite the channel

by transmitting a frequency rich pseudo-random binary signal and simultaneously

record the input and output data. We utilize this time series of input and outputs

to identify a state space model of the form

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

where A, B, and C are matrices describing the dynamics of the system. Then

with a convex solver, we numerically obtain the state space matrices for a series of

different order complexities and estimation errors for further analysis. Typically

one System ID step is not enough because model accuracy degrades over time.

This is why the system has to adapt to the environment from time to time. New

information about the system dynamics is passed to the remaining blocks.
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2.2 Kalman Filter

The Kalman filter block is responsible for utilizing the information about the

dynamics of the charges in the underwater environment in order to detect the

existence of objects. Basically, it measures the deviation between the expected

output (calculated using the model) and the actual sensor measurements. Hence,

it is able to separate the interference of the object from the dynamics of the

transmitted charges.

2.3 Estimation Function

As discussed before, the existence of an object within the proximity of the sensor

results into some mismatch (disturbance) between expectations from the model

and the measurements. This mismatch depends on how far the object is to the

sensor and the governing relation between the mismatch over distance is non-

linear. Therefore, the final step is to make an estimation of the distance based

on the information and the statistics extracted from the Kalman filter and the

features from the model. This thesis will test the estimation accuracy through

the use of linear regression and support vector machines. The machine learning

algorithms will be used to train a linear function and classifier. We then compare

the accuracy of our estimations against the collected ground truth.
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CHAPTER 3

System Identification

In this chapter, we will give details of how to use System Identification algorithms

and techniques to build a linear state space model describing the dynamics of

the electric field in the underwater environment. The last section shows how one

can modify the state space equation with additional variables for the purpose of

tracking disturbances that deviate from the model because of the existence of an

object.

3.1 Describing System Identification

By definition Identification means using only the input and output measurements

to model a dynamic system [LZ06]. A physical parametric model may present a

more complete view of how the system interacts but may be difficult to implement

in an environment where control or detection is needed. This especially true

when the hardware resources are severely limited like autonomous vehicles. What

Identification techniques provide is a way to estimate a non-parametric model

that gives us a relationship between the input and output variations so that we

can use the information in other processing blocks. All the physical interactions

are numerically encapsulated in a few coefficients that can easily be updated if

necessary.
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The System Identification is done in these four generic steps [LZ06]:

1. Input/Output data acquisition

2. Selection of model complexity

3. Estimation of model parameters

4. Validation of model

There are many types of methods and techniques for accomplishing each step.

Different ways have been developed suited to what needs to be identified and

how complex to make the model. To acquire good input/output data, we will

follow the channel excitation method described in Landau’s book Digital Control

Systems [LZ06]. The model equation we will use to approximate the channel is

one that is commonly known in modeling linear systems. The subspace algorithm

for the identification process will be the N4SID algorithm available in MATLAB

as part of the System Identification toolbox. The complexity of the model was

determined through analysis with the other filter blocks to keep a low order system

but still achieve adequate accuracy. The details of this implementation are given

in the subsequent sections.

3.2 Linear State Space Model

In order to follow the system processes and make determinations about normality,

we first have to approximate it as a linear equation. Most linear systems can be

adequately described by the two linear state space equations 3.1.

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.1)

7



The parameter x is a vector that describes the state of the system at time t. Vector

x is not explicitly observed and must be calculated over time. The matrices A,

B, and C are determined using the System ID solver. The size of the matrices

are proportional to the order of the system and large matrices are a disadvantage

because matrix operations do not scale linearly. Therefore it is important to

regulate the model complexity. The vector u is the known input into the channel

and y is the model output.

3.3 Solving State Space Model

We need to probe the channel such that we converge on a numerical solution

that has the highest degree of accuracy. Landau suggests that one standard way

to go about this is to inject a frequency rich input to excite the channel. One

such input is the pseudo-random binary sequences (PRBS), which approximates

discrete-time white noise [LZ06]. Landau also notes that one specific requirement

of the PRBS must be that the maximum duration of one of the pulses must be

longer than the rise time of the signal through the channel. The PRBS used in

our experiment is shown in Figure 3.1

The discharge of the PRBS from the transmitter and the sampling from the re-

ceivers takes place simultaneously. It is controlled through MATLAB’s hardware-

in-the-loop xPC Target system with National Instrument hardware (ADC/DAC),

refer to Figure 6.4. The data is saved and analyzed in MATLAB. The inputs and

outputs are fed into a convex solver, the N4SID algorithm, to find A, B, and C of

the state space model.

The N4SID algorithm is always convergent and is numerically stable. The

algorithm tries to find the projection of input and output data through QR fac-

torization and singular value decomposition [OM94]. It is also an advantage in

terms of processing because the algorithm is non-iterative with all optimization

8



Figure 3.1: Pseudo-Random Binary Sequence used to excite the channel for Sys-
tem Identification.

parts being linear computations [OM94]. The only parameter that is required

besides the data is the order of the system, obtained by examining the singular

values to determine the set with the highest contributions. Fortunately MATLAB

provides a feature that determines the best overall order, which turns out for our

case to be a third order system. This can be confirmed if you examine the singular

values of the A matrix with the top two values significantly higher than the third.

This means that the third singular value has a lesser contribution than the first

two and all other subsequent singular values even less.

To summarize, the input into the model will be the pseudo-random binary

signal and the output will be the estimation of the signal through the channel.

Figure 3.2 has two plots showing the measured ground truth and the estimation

from the model. This figure only shows the estimation for one of the electrodes
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Electrode Mean Error (V) Std (V)
Electrode 1 0.0756 0.0507
Electrode 2 0.0771 0.0522
Electrode 3 0.0760 0.0482

Table 3.1: The table shows the mean error and standard deviation between the
sampled output and model estimate. The calculations are shown for three different
electrodes to show that the distribution of errors are similar across all of them.

but Table 3.1 shows the mean error and standard deviation between the measured

and estimate signals for three electrodes. The errors are much lower than the

magnitude of the output signal, which is about 4 Vpp. These are three electrodes

that are adjacent to each other on the sensor array. The section on Sensor Fusion

explains why our estimation is done three electrodes at a time.

3.4 Sensor Fusion

We can choose to have one model for each individual electrode or we can have a

single model that tries to estimate the output from a group of electrodes. In this

thesis, we did the latter using three adjacent electrodes to detect targets. The

intuition is that there are correlations between the disturbances in the adjacent

electrodes, although smaller in magnitude, with the strongest disturbance evoked

on the center electrode; the center electrode is the one closest to the object.

Topologically one electrode is in the center and two are on the side at 45 degree

angles relative to the center, refer to Figure 6.3 in the Biomimetic Hardware

chapter. Using a group of three electrodes, we hope to maximize the information

we can sense to improve the model estimation accuracy.

3.5 Modifying the Model to Track Disturbances

The typical use of the Kalman filter is for correction of an otherwise corrupted

measurements due to noise or system dynamics. The model currently described

10



Figure 3.2: The top figure is observed output from the channel and the bottom
figure is the estimate from the state space model using the PRBS input.
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was estimated based on an object-free environment. Hence, the output estimated

by the Kalman filter will try to match the output measured in cases with no

object present in the environment. What we have to do is modify the original

model with a variable that can account for any type of changes in the channel

evoked by objects. When the Kalman filter does a measurement update, it will use

the additional variable along with the state vector x to reduce the error variance

between the estimated signal and sampled output. The modified equation is shown

in 3.2 and the additional variable is vector w(d), which has same dimension as the

number of states in model. Vector w(d) captures the effect on the charges to the

presence of an object in the environment.

x(t+ 1) = Ax(t) +Bu(t) + w(d)

y(t) = Cx(t)
(3.2)

Equation 3.2 must be rewritten so that the structure of the state space equation

structure matches the original form. This is so that we can integrate the model

into our Kalman filter. The derivation is shown below in equations 3.3.

x(t+ 1)

w(d)

 =

A I

0 I

x(t)

w(d)

 +

B
0

u(t)

 y(t)

w(d)

 =
[
C 0

]x(t)

w(d)

 (3.3)

In the state space equation 3.3, the new state vector x now depends on the current

state and the additional vector w(d). Matrix I corresponds to identity matrices.

To reduce the clutter of the equations, we will from now on refer to equations 3.4

for the rest of the thesis.

12



x(t+ 1)

w(d)

 = Ā

x(t)

w(d)

 + B̄u(t)

 y(t)

w(d)

 = C̄

x(t)

w(d)

 (3.4)

The vector w(d) will act as an additional parameter for the Kalman filter to

update, should the estimate from the original model differ from the taken mea-

surements. If we have the original channel with no objects in it, then w(d) will

simply be an unused zero vector. Going forward, we want to invert the information

contained in the subspace vector w(d) into a meaningful value such as distance,

but in order to do that we need another function to do the conversion. We don’t

know the exact parametric equations to do this so we are going to numerically

estimate a function using machine learning.
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CHAPTER 4

Kalman Filter

In this chapter we will talk about about the Kalman filter and how we can use

it to estimate object disturbances in the environment. We will talk specifically

about the time varying Kalman filter and another section will outline how we

normalize and linearize the output values from the filter.

4.1 Using the Kalman filter

Originally developed for navigating through outer space, the Kalman filter is

mainly used to estimate system states that are otherwise difficult to observe

[Sim01]. Typically the Kalman filter will correct whatever undesirable noise or

fluctuations occur in the measurement output. However for our purpose, we want

the part of the measurement output that is corrupted or otherwise deviated from

the expected model. This is why we modified the original state space equation in

the previous chapter. Another attractive feature of the Kalman filter is that it is

implementable on a microcontroller and even possible to run in real time [Sim06].

14



4.2 Time Varying Kalman Filter

The entire time varying Kalman filter was implemented in MATLAB. The algo-

rithm is fairly short and the pseudo-code is shown below. First we begin with

certain intializations:

Q = 1;

R = I;

P = BQB
T

P (4, 4) = 1; P (5, 5) = 1; P (6, 6) = 1;

x0 = 0;

for each sample :

Mk = PkC
T

(CPkC
T

+R)−1

xk = xk +Mk(yk − Cxk)

Pk = (I −MC)Pk

xk+1 = Axk +Buk

Pk+1 = APkA
T

+BB
T

end loop

The matrices A, B, and C are from the estimated state space model that have been

modified, see chapter on System Identification. Matrix Mk is the gain factor that is

calculated before the measurement update equation xk = xk +Mk(yk−Cxk). The

measurement update equation for vector x takes into account the new measured

output y at sample k. The time update equation xk+1 = Axk + Buk makes

an estimation xk+1 based on the current state xk. The measurement and time

update equation for vector x are calculated with each cycle of the loop and modify

15



elements of w(d) in vector x. Enough samples are taken at each probed distance

so that the Kalman filter output stabilizes, primarily the elements of w(d). The

stabilized outputs are then normalized and linearized for the estimation function.

4.3 Implementing Model Adaptation to Kalman Filter

The Kalman filter is not involved in the System Identification step. However the

criteria to initiate a model update is very much dependent on the results of the

Kalman filter. Obviously we want to update the model when there is just the

channel and no other objects near the sensor. As the model becomes less accurate

over time, our ability to make estimates of distance becomes coarser. Luckily

we only need to know in a binary sense whether or not there are objects within

a detectable distance in order to initiate a new round of System Identification.

These decisions can be made based on large changes in the signal, which we assume

has nothing to do with natural environmental dynamics. At a certain point when

we determine it is safe (i.e. no objects present), we can perform our model update

steps. The new information that must be passed to the Kalman filter are the new

system, input, and output matrices A, B, and C.

4.4 Setting up Kalman Filter for Real Time Filtering

Referring back to the Kalman filter code, there are some complicated computa-

tions such as the matrix inversion, which require computations on the order n3,

where n is the order of the matrix [Sim01]. However there is a clever way to im-

plement the filter so that not all the computations are done all at once. Certain

parts of the Kalman filter can be calculated ahead of time, primarily the equa-

tions that do not require the new output measurement yk [Sim06]. This means the

P covariance matrix can be pre-computed and stored after every model update.
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Ideally it would be right after System Identification has taken place, which is not

a critical moment. This shifts the burden away from the microcontroller and onto

the memory unit. How much memory is required depends on the sampling rate

and the time it takes for the Kalman filter to stabilize. This trade off allows us

to use the time varying Kalman filter effectively in a real time fashion.

4.5 Normalize Kalman Filter Outputs

The Kalman filter outputs w(d) are still a time series and not yet suitable as

features for a machine learning algorithm. In this section we are going to go

through the steps of how we normalize the data. To illustrate these steps clearly,

we are going to use one of the experimental data sets collected from the system

using the algorithms described up to this point. The particular data set was

chosen due to the cleanliness of the sampled outputs; in reality, the experimental

data taken are not normally as clean.

At each distance from the target, we transmit a square wave signal for a time

duration much longer than the period of each wave. The reason is to allow the

Kalman filter output w(d) to produce stabilized values. Figure 4.1 shows the time

series data from Kalman filter after it has stabilized. The figure is showing output

data when the sensor is 0.5 inches from an aluminum target. The purpose of

normalization is to have a quantitative measure for each cycle of the square wave.

The reason is that each normalized values is an indicator of the amount of changes

to the original signal evoked by the object nearby. The larger the normalized value

the closer the sensor is to the object. For each set of samples that represent a single

square wave cycle, we calculate the root sum square or the Euclidean distance.

There are multiple stable square wave cycles in a single distance measurement, so

we do an additional averaging of all the stable normalized values.

In Figure 4.2, we show the results from normalizing the data at different dis-
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Figure 4.1: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. The figure shows the Kalman filter output of vector w(d) over
time. The example data is an aluminum target being probed at 0.5 inches away
from the sensor. The figure is only showing the stabilized output from the filter.

tances for a single experiment. As you can see when it comes to disturbances

evoked by an external objects within the channel, Figure 4.2 shows the non-linear

effects quite clearly. In order to proceed further in our analysis, we need to lin-

earize the data so that it maximizes the effectiveness of our estimations. Not

to mention that trying to deal with non-linear data directly is computationally

complex and will be a burden on the processor.
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Figure 4.2: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. The figure shows the processed Kalman filter output normal-
ized into a single value at each probed distance. The data shown in this figure
comprises of a single experimental run where the probe discretely approaches an
aluminum target.
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4.6 Linearized Kalman Filter Outputs

There are many ways you can try to linearize the data from using high order

polynomials to exponential functions. Various equations were tested through trial

and error for effectiveness but the best one is derived from fundamental principles

of Maxwell’s equation. We are going to simplify the equation by just examining

the order of magnitude drop off in field strength over distance, which is the primary

relationship we want linearize. In Henry Herman’s Masters thesis, he derives the

field strength relationship over distance as equation 4.1 [Her13]. What we simply

do is take that relationship and invert the equation to get equation 4.2.

E ∝ 1

r3
(4.1)

d = 3

√
1

w(d)
(4.2)

As you can see in Figure 4.3, the transform using equation 4.2 gives fairly good

linearized data. The leveling of sensor data at farther distances from the object

shows that we are reaching our detection limitations.
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Figure 4.3: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. This is the same data shown in Figure 4.2 but after it has been
linearized by equation 4.2.
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CHAPTER 5

Estimation Function

In this chapter we will go over two machine learning algorithms implemented to

estimate the location of an object given the sensor measurements. We are also

going to go over the set of features selected to help make the distance estimation.

Lastly we will briefly cover some book keeping such as cleaning up data sets and

a randomization of training data.

5.1 Linear Regression

A linear equation was chosen as the estimation function because the transformed

data showed good monotone linear characteristics. The output data is inherently

continuous and having a linear function will allow the system to make interpola-

tions from the measured output during the estimation process. The linear regres-

sion algorithm in MATLAB first uses rank revealing QR factorization to find the

independent columns and then proceeds to compute the Least Square coefficients.

The training of the estimation function is done offline. Once we have the model

coefficients b and c, the estimation equation is simple to compute as shown in 5.1.

d̂ = Xb+ c; (5.1)

Xi = [feature1, feature2, ...]

where matrix X is a column vector comprising of the features needed to compute

22



a distance estimate d̂. In order to solve for b and c, first we collect a large set

of training data. We label the data and record the ground truth distance. The

two primary steps in MATLAB’s implementation of the regression algorithm are

shown in equation 5.2.

[
1 X

]
= QR[

c b
]

= R(QTy)−1
(5.2)

Matrix X in equation 5.2 is the training data and vector y is the corresponding

labeled distances. We are solving for coefficients b and c simultaneously by em-

bedding a column of ones in X. What is not shown is if X has dependent vectors,

then vector b is limited to the rank of the matrix.

5.2 Support Vector Machine

Support Vector Machines was chosen to test the effectiveness of classifying the

data through a different set of criteria. Instead of trying to fit a linear function to

the data, we are going to find the margins that best separate the different classes

of data. In this case, the classes are the discrete distance measurement from 0

to 7 inches at 1 inch increments. We have multiple class labels, however SVM

is built for binary classification. In order to work around this issue, we have to

employ a trick where we perform multi-class classification through a one versus

all grouping. Each discrete distance stated above will have its own set of support

vectors. Test data, separate from training data, will be attempted on each set

of classifiers and a positive hit will indicate a correlation between the test data

and training data at that specific distance. The optimization problem for a single

classifier is shown in equation 5.3 [HCL10].
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min:
w

1

2
wTw

subject to: yj[w
Tφ(xj) + b] ≥ 1

(5.3)

We are trying to solve for a minimum set of weights w. The vector yj are labels

for classification, either 1 or 0, corresponding to each vector xj feature data set.

The function φ is a transformation function to convert data that are not linearly

separable. In our case we are going to use a Gaussian radial basis function, which

is best suited for our data set. The data clusters are based on the distance to the

object, so the best criteria to classify them will be the distribution from the central

mass of those clusters. It would be difficult to use a linear or even a polynomial

function to perform the marginal separation due to the multiple scattered clusters

in the data set. Typically it is better to solve the dual form of the optimization

problem 5.3, which means setting up a Lagrange equation.

L =
1

2
wTw −

∑
j

αj(yj[w
Tφ(xj)− b]− 1) (5.4)

by setting
dLp

dw
= 0 then w =

∑
i

αiyiφ(xi) (5.5)

substitute (5.5) into (5.4) for

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjφ(xi) · φ(xj) +
∑
i

αiyib (5.6)

We can now use the Gaussian radial basis kernel to substitute φ(xi) ·φ(xj) to give

us equation 5.7.

L =
∑
i

αi−
∑
i

∑
j

αiαjyiyjK(xi, xj)

K(xi, xj) = exp(
−‖xi − xj‖2

2σ2
)

(5.7)

Then we optimize equation 5.7 subject to maximizing ai ≥ 0 and minimizing b
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with the constraint
∑

i αiyi = 0 using a quadratic programming algorithm. To

obtain the vector weights w which define the hyperplane of each set of support

vector, we use this previously derived equation: w =
∑

j αjyjφ(xj) and b is found

by inverting the equation with the data points that satisfy yi(w · xi − b) = 1.

Finally the classification computation is defined in 5.8.

classify(x) = sign (
∑
j

αjyjK(xj, x)− b) (5.8)

Before the SVM algorithm is processed and as part of good practice, the data

will be zero mean shifted and scaled to be between [-1,1]. This is to prevent

large numeric values from dominating the classifier because the SVM kernels must

perform an inner product calculation with the feature vectors [HCL10].

5.3 Feature Selection

The parameters that we can choose as features are limited to what we know about

the latest updated model and the output from the Kalman filter. We have to be

careful not to include information that the system cannot practically extract from

the environment through sampling.

Through experimentation and multiple iterations, the following set of param-

eters were found to train the most accurate model. The features from the state

space model include the norm, which is the the root mean square of the im-

pulse response of the dynamic system, and the dampening frequency of largest

real eigenvalue of the system A matrix. Note that these feature calculations are

done on the original state space models without the additional vector w(d). The

features from Kalman filter output include vector w(d) and the variance of its

elements. The features from w(d) and subsequent statistics are extracted after

normalization and linearization.
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There are a total of six feature parameters used for each estimate, as listed

below. However not all of the parameters are calculated in real time. The param-

eters from the model are only computed when a new model is estimated through

online System ID.

• w(d) = [w1(d), w2(d), w3(d)] output from Kalman filter

• var(w(d)) variance of kalman filter output

• norm of state space model

• damping frequency of real eigenvalue of state space model

5.4 Cleaning and Folding Data Sets

The data collection process is not by any means clean. There were experiments

where the data set did not follow the expected output. The physical interaction

between the channel and the charges that are causing this behavior is beyond the

scope of this thesis. These data sets that did not show good linearity were removed

to improve the accuracy of the trained estimation functions. Figure 5.1 shows one

of these poor data sets after normalization and linearization. Compared to Figure

4.3, Figure 5.1 is not monotonically increasing and has a clear reduction in sensor

sensitivity. The signal strength at distances near the target object are similar to

ones farther away. The data sets were manually examined and excluded from the

training process.

Even within the curated data, there were some subsets that proved to be better

training data than others. This why we use a technique where multiple subsets

of training data were picked at random to train a model and tested with the data

that was withheld. This helps avoid unknown correlations that might otherwise

overfit the model.
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Figure 5.1: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. The figure shows an example of an experimental run where poor
data sets were collected. The expected trend after normalization and linearization
should have values increasing with distance.
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CHAPTER 6

Biomimetic Hardware

This chapter will outline the biomimetic hardware implementation starting from

the basic unit of the sensing organ. We will compare the functionality between

the biological and the engineered counterparts. The last section will specify the

types of signals we use for modeling and testing. For greater details, refer to

Henry Herman’s Masters thesis, whom built the original hardware for this research

project. [Her13]

6.1 Analog Front End and Sensor Array

The biological system in weakly electric fish that we are trying to emulate has

an organelle that can sink charges. The analog circuitry that best models this

behavior is a current sensing op-amp, in Figure 6.1.

These electroreceptor organs in weakly electric fishes are point contacts on

the skin that are connected to the brain through the peripheral nervous system.

The main cell body is not directly in contact with the outside environment but

instead have short canals that guide the charges to the sensory cell membrane

[Kra96]. The biological process of sensing is a chemical one, with each incoming

charge causing a secretion of neural transmitters. The circuitry used to mimic

this process will be a sense resistor, acting as our ”membrane.” The op-amp will

be the main cell body that amplifies and relays a stronger signal to be processed.

Multiple circuit units were assembled to form a sensing array, in Figure 6.2.
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Figure 6.1: The biological electrorecetor organ (top) and functionally similar cir-
cuit configuration (bottom) [Kra96].

Figure 6.2: PCB with multiple analog front end units [Her13].
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6.2 Sensor Body

The sensor body itself is modeled after the shape of a fish. Geometrically it is long

and tubular with an insulating skin made of neoprene. Weakly electric fishes have

their electroreceptors spread out throughout their bodies but we differ in that all

our receptors are placed together in a circular array at the opposite end from the

transmitter.

Figure 6.3 shows how the fish and our engineered system establishes the poten-

tial field around the body. When we instantiate a discharge, the field is established

from the bottom to the top. The charges will go through the underwater channel

and into the low impedance electrodes. Each electrode is connected to its own op-

amp unit on the PCB in Figure 6.2. Lastly to perform our analysis in MATLAB,

we will have to digitize the signal.
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Figure 6.3: The electric field established by weakly electric fish and sensor body
[Kra96] [Her13].
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Figure 6.4: The xPC target function as both the signal generator and analog
signal digitizer. The signal travels through the underwater channel to the analog
front end (AFE) where it gets amplified before being sampled by the xPC target.
The data is then analyzed through different filtering blocks in MATLAB.

6.3 Digitizer

The simultaneous electrical discharge and sample is done by a National Instrument

and controlled using MATLAB’s xPC Target system. This method of synchronous

discharge and sampling is not unlike the biological functions of the weakly electric

fishes. The tuberous electroreceptors have the ability to both mark units of time

with high sensitivity and detect small changes in amplitude from the fish’s own

electrical organ discharges [Kra96] Figure 6.4 shows the high level overview of the

major blocks talked about in this chapter.
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CHAPTER 7

Experimental Setup

I will briefly go over the mechanisms needed to carry out the experiment of our

test scenario, how they were designed, and the technical specifications. It will fill

in any details not explicitly stated in the previous chapters and provide necessary

context for the results.

7.1 Test Application

There are many applications that this sensing modality can be tested for. We

know that nature already uses it for tracking prey, localizing prey, classifying

objects, and communicating with other fishes [Kra96]. However this thesis will

only cover one application which is estimating the distance of the sensor to the

target. The majority of the system discussed so far from the hardware to the

identification process and Kalman filtering can remain largely unchanged for the

other applications as well. What does differ is the estimation stage where choosing

the right machine learning algorithm and tuning the parameters to provide good

results.

One complete experimental run involves two parts: (1) the System Identi-

fication and (2) collecting target distance data. The experiments are executed

in order, with the second experiment performed minutes after the identification

process. Multiple experimental tests were performed over the course about two

months with semi-regularity.
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Figure 7.1: The gantry and tank environment with the sensor in the center.

7.2 Test Environment

There are two other major pieces of equipment needed to carry out repeated

experiments. One is a sizable tank, which is about 30 by 30 inches, to simulate

the underwater environment and the other is a precise gantry system. The gantry

serves to move the sensor in a two dimensional grid and also provide ground truth

distance measurements. Both of these are shown in the Figure 7.1

7.3 Performing System Identification

When we want to perform System Identification, we want to remove as much of the

effect of the tank walls on the sensor values as possible. Logically the sensor will be
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placed at the center of the tank. The signal used to perform System Identification

was state in the previous chapter to be a pseudo-random binary sequence. The

highest frequency in the transmitted PRBS is 500 Hz and the length of the entire

PRBS signal will last for 0.5 seconds. The amplitude is between 5 and -5 volts.

The output measurements are sampled at 10 kHz, which produces 5000 samples

for each electrode.

7.4 Collecting Target Distance Data

For our specific application Figure 7.2 shows how the experiment was initiated

and carried out. The aluminum tube will be placed at one end of the tank while

the sensor will start the other end. The sensor will step towards the aluminum

target and at each stop, a simultaneous electrical discharge and sample will be

performed. There are eight electrodes equally spaced on the sensor array. The

three electrodes that will be actively sampling are the ones facing the target. The

angle of the diagonal electrodes are 45 degrees from the center facing electrode.

The signal used to probe the underwater environment is a 500 Hz square wave

signal with amplitudes between 10 and -10 Vpp, transmitted for 0.1 seconds, and

the output measurements are sampled at 10 kHz, which produces 1000 samples

for each electrode.
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Figure 7.2: This figure shows location of aluminum target and the electrode sweep
direction during an experimental run.
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CHAPTER 8

Experimental Results

This chapter will start with examining two different ways of training the non-

parametric model and showing why we need to adapt the model from time to

time to the channel dynamics. We will also show estimation results made from

the function trained through linear regression and the discrete classifier trained

through SVM. Then we are going to compare the pros and cons of the two. The

entire data set consists of 30 experiments which have been collected over two

months. Five of the data sets are withheld for testing, while the rest were used

for training. Each data set contains an experimental run which consists of data

collected at 8 different distances from an aluminum target.

8.1 Training Offline Model

The simplest processing chain we can have is the one shown in Figure 8.1. Here

the linear state space model model will be trained offline using training data. In

a real operating scenario, the training data will have to be collected through a

survey of the environment beforehand. Once the system is trained, the model

will be fixed at runtime. The Kalman filter will update vector w(d) based on a

static model with each new incoming data. One of the experimental data sets

that was chosen as an example is shown in Figures 8.2. These are results from

the Kalman filter that had used the static model and have been been normalized

and linearized.
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Figure 8.1: Static model

Figure 8.2: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. Results of the normalized and linearized Kalman filter output
using the static model.

Already the results of 8.2 do not look intuitively correct. After using the

linearization equation 4.2, the data magnitude should increase with increasing

distance. It seems that a third order state space equation is inadequate to account

for all the subtle changes in the channel dynamics. However moving towards a

higher order may risk running out of computational resources on an embedded

system [Sim01].
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8.2 Training Online Model

Training a model offline with aggregate data is clearly not working. What has to

be done is the model must be updated periodically as shown in Figure 8.3. At

some point, the System Identification takes place to remodel the channel before

collecting the distance data.

Figure 8.3: Adaptive model

Figures 8.4 shows the same data set as in Figure 8.2, but this time, the model

was updated before the distance data was collected in the experimental run.

You can see the improvements garnered from having a fresh model; we now

have the expected relationship with distance. It is because we are using numerical

methods to discover the model that we can perform this update in the environment

without having to change the linear state space equation. The model created in

this instance uses only the latest pseudo-random binary sequence. It also seems

that we don’t need to keep a collection of past data to create a good model,

which saves memory. The trade off is that we have spend computational resources

to monitor channel dynamics and perform updates to the model, which is the

adaptive aspect of this system.
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Figure 8.4: Each color represent an element in vector w(d): w1(d) Blue, w2(d)
Green, w3(d) Red. Results of the normalized and linearized Kalman filter output
using adaptive model.

8.3 Linear Estimation

The results of the estimates using the testing set from the linear function are

shown in Figure 8.5 and Table 8.1. The training and testing sets were randomly

selected multiple times and the best linear model, with an R-squared statistic of

0.7572, was chosen out of the iterations. The estimations look fairly linear with a

slight curve. There is a bias towards an overestimation of the distance except at

7 inches, which is close to our detection limit. The total root mean square error

is about 0.8373 inches.
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Figure 8.5: Each color represents an experimental run where data at different
distances were collected together. Different colors represent experimental runs on
different days that were selected at random out of the total set of experimental
runs. Results are estimations from the linear estimation function.

Distance (inches) 0 1 2 3 4 5 6 7
Test 1 0.487 1.763 2.949 4.043 4.675 5.442 5.545 6.296
Test 2 0.241 1.923 3.160 4.187 5.361 6.318 6.504 6.957
Test 3 -1.169 0.949 2.723 4.681 5.619 5.933 6.204 5.239
Test 4 -0.750 1.022 2.499 3.925 4.667 5.957 6.062 6.554
Test 5 -0.109 1.453 2.614 3.681 4.218 5.376 5.944 6.266

Table 8.1: Table of values from the linear estimation function.

8.4 SVM Classification

To review, we perform a binary classification using a one vs all grouping for each

discrete distance. Sometimes we get multiple positive hits from different classifiers.

To reduce the number of positive hits we tighten the bounds of the Gaussian radial

basis function to a sigma of 0.5. The test results that still had multiple positive

classifications were usually clustered together by distance. For example, a data

point with the sensor at 6 inches from the target may have a positive classification
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of 6 and 7 inches using SVM. If this is case, we take a simple average among all

the distance values that had a positive hit.

The same test data used in the linear function estimate was also tested on

the SVM classifier. The results of the classification are shown in Figure 8.6 and

Table 8.2 with a total root mean square error of 0.3953 inches. The SVM classifier

applies a hard binning to the values rather than an interpolated result from the

previous linear estimator. The advantage is lower variances in our estimations but

the limitation is we are restricted to pre-selected classification labels.

Figure 8.6: Results of classification from SVM. The same test set was used from
testing the linear estimation in Figure 8.5

.

Distance (inches) 0 1 2 3 4 5 6 7
Test 1 0 1 2 3.5 4.5 5.5 5 7
Test 2 0 1.5 2.5 3.5 4.5 6 6 6.5
Test 3 0 1 2 3 4 5 6 5.5
Test 4 0 1 2 3 4 5.5 5.5 7
Test 5 0 1 2 3 3.5 5 6 6.5

Table 8.2: Table of results from the SVM classifier.
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8.5 Comparing Linear Estimation and SVM Classification

From the analysis in the previous two sections, we see that SVM produces better

results but are the improvements justified in using its algorithm. Table 8.3 shows

the root mean square error at each distance estimation between the linear estima-

tor and the SVM classifier. The root mean square error from the linear estimator

on average is about 0.5 inches higher.

Figure 8.7: The root mean square error of the distance estimation from the SVM
classifier is lower than the linear estimation.

.

Distance (inches) 0 1 2 3 4 5 6 7
RMSE (LE) 0.668 0.573 0.824 1.152 1.041 0.879 0.319 0.931
RMSE (SVM) 0 0.223 0.224 0.316 0.387 0.548 0.224 0.741
∆ 0.668 0.350 0.600 0.836 0.654 0.331 0.095 0.190

Table 8.3: Root mean square error from linear estimation (LE) and SVM classifier
at each discrete distance. The delta of the two RMSEs are shown in the third
column.

Using linear regression has an overall lower computational cost than support vector
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machines. To solve for the coefficients of a linear estimation function, we showed

that two steps are required: QR factorization and the Least Square equation.

Both algorithms are complexity O(n3) where n is the size of the matrix [Sim01]

[Par00]. On the other hand SVM poses a convex optimization problem and the

complexity is dependent on the convex solver. There is a higher possibility of being

able to implement linear regression on a limited resource system if necessary. This

would provide even more adaptability in the environment if the system can update

the coefficients of the linear estimator. As for support vector machines, typically

computations for the training stage are offline and not performed in real time.

If we consider the estimation stage with the linear function or classifier already

trained and deployed for usage, then approaching the problem using linear esti-

mator has only a slight advantage over the SVM classifier. The linear estimator is

a simple inner product between two vectors while the SVM classifier complexity

depends on the kernel that is used. Since we use a Gaussian radial basis function,

there is an additional exponential computation. However this is not constraint

that is difficult to overcome.
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CHAPTER 9

Conclusion

I showed in this thesis a numerical approach using System Identification to model

the charge interaction through an underwater channel, an alternative to using the

loaded physical models. Using the model information in a time varying Kalman

filter, we can make estimations about target distance based on the differences

between the model estimation and the observable data. My initial analysis of

using an offline model showed poor Kalman filter results. In order to remedy this

issue, we adapt our system to the channel by performing a model update before

we take distance measurements. This adaptation method improves the linearity

of the normalized Kalman filter output.

The scenario we used to test our processing chain was estimating the distance

of an aluminum object. The two approaches used to build the estimation function

was the linear regression algorithm, for building a continuous estimation function,

and the support vector machines algorithm, for building a discrete classifier. We

showed that although linear regression worked fairly well, SVM trained a better

estimator with lower root mean square error. Both have their advantages and dis-

advantages in that a trained linear estimation function can make continuous value

estimations through interpolation while SVM can only give discrete estimates.

The advantage of this system approach in this thesis is that we make no

assumptions about the physical properties of the channel nor do we incorporate

simplifications in the geometry of the electrode placement. The proposed state

space model and processing blocks are also implementable in a micro-controller
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of an autonomous vehicle. The work and analysis done in this thesis are in fairly

ideal settings but it is possible, should someone choose, to build an advance robotic

prototype.

9.1 Future Work

This work was targeted at working in an underwater environment, which is in

many ways the most hazardous working environment for autonomous vehicles.

There are still questions that need to be answered such as how well this method

works in a real ocean environment and how often does the model need to adapt

in time and space. Since collecting a good distribution of data and having a

good model is key, what is the best way to have autonomous vehicles collaborate

with each other to lessen the burden of learning and adapting in a big ocean

environment. The methods proposed in this thesis shifts the engineering focus

more towards the application and modularity of each processing blocks makes it

easier to add or remove steps that suits the needs of the scenario.
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