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Abstract 
Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding 
of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-
seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. 
Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools 
that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found 
surprisingly low agreement across all tools. Only ∼2% of smORFs were called translated by all five tools, and ∼15% by three or more 
tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ∼74% agreement 
across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more 
tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and 
higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing 
multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset 
and the planned downstream characterization experiments of the predicted smORFs. 

Keywords: smORF annotation; Ribo-seq; microprotein; translation 

Introduction 
Early efforts to annotate eukaryotic genomes relied in part on 
applying expected properties of coding regions, such as having 
an AUG start codon in frame with a downstream stop codon, one 
protein-coding region per transcript that is often the longest open 
reading frame (ORF), and a minimum length cutoff of 100 codons 
to identify overlooked coding regions [1]. While effective, there 
remained the possibility that ORFs which do not follow these 
rules can be translated to encode functional proteins. Recent 
advances in genomics, proteomics, and bioinformatics have 
allowed researchers to empirically define protein coding regions 
within genomes with better precision [2–4]. The most striking 
result of these new studies is that thousands of small open 
reading frames (smORFs) containing <100–150 codons, which 
were presumed to be randomly occurring and non-functional, are 

in fact translated into small proteins dubbed microproteins [5–7]. 
These smORFs make up the majority of unannotated ORFs 
and represent an increasingly active area of research. Many 
microproteins have now been shown to be critical in normal 
biological processes and disease [8, 9]. 

One of the primary methods for re-annotation of genomes is 
based on ribosome profiling (Ribo-seq) [10–15]. Ribo-seq involves 
stalling elongating ribosomes in cell or tissue lysates with the 
small molecule inhibitor cycloheximide, followed by digestion 
of polysomes with an RNase and preparation of the ribosome-
protected RNA fragments (RPFs) into next generation sequencing 
libraries [16]. Following sequencing, the resulting reads are pro-
cessed and aligned to the genome to determine the locations of 
the ribosomes in each sample at harvesting. By identifying the 
locations of ribosomes, bioinformatic tools can then be applied
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to infer which ORFs are translated. However, due to the variation 
in Ribo-seq protocols and a variety of different software tools that 
have been developed to analyze translation from Ribo-seq data 
[17], there is no consensus on best practices within the field for 
predicting smORFs. 

For the field to progress further toward functional investigation 
of individual microproteins and exploration of their utility as 
therapeutic targets, confidence in which smORFs are annotated 
as translated is needed. Previously, we showed that differences 
in Ribo-seq data quality can strongly impact which smORFs are 
called translated and that analyzing biological replicate datasets 
is helpful for separating robustly translated smORFs from noise 
[12]. Here, we hypothesized that different software tools for inter-
preting Ribo-seq data can also introduce inconsistencies into 
which smORFs are considered translated due to differences in 
the properties of Ribo-seq data that are considered in scoring, 
how they are weighted, and what statistical methods or classifiers 
are applied. To understand how the choice of software tool can 
influence smORF prediction, we evaluated the performances of 
several popular Ribo-seq-based ORF prediction tools. We found 
that although all tools show high congruence when identifying 
larger annotated ORFs as translated, they show low similarity for 
which unannotated smORFs are predicted to be translated. Analy-
sis of Ribo-seq coverage levels between annotated ORFs and unan-
notated smORFs suggests that the overall lower translation levels 
of smORFs contribute to their noisier translation predictions. In 
addition, we observed large differences between the tools’ abilities 
to predict smORF translation when using lower quality Ribo-seq 
datasets versus high. We also demonstrated that incorporation 
of RNA-seq-derived de novo transcriptome assemblies can add 
a relatively small number of additional unannotated smORFs 
compared to using the GENCODE transcriptome annotation. Alto-
gether, these results highlight the importance of using multiple 
tools to raise confidence in the annotation of individual ORFs for 
functional studies and broaden the pool of potential smORFs to 
test in high-throughput screens. 

Methods 
Ribo-seq data processing and alignment 
Ribo-seq datasets analyzed in this study were generated in 
our previous study [12], and can be downloaded from the 
Gene Expression Omnibus database repository under accession 
number GSE125218. The specific Sequence Read Archive (SRA) 
IDs for the Ribo-seq datasets are as follows: high-resolution HeLa-
S3—SRR8449578, low-resolution HeLa-S3—SRR8449575, harring-
tonin (TI-seq) HeLa-S3—SRR8449585, high-resolution HEK293T— 
SRR8449568, medium-resolution HEK293T—SRR8449567, and 
low-resolution HEK293T—SRR8449566. 

Ribo-seq reads were processed, aligned, and filtered as 
described in detail in Cao et al. [18]. A brief description is included 
here as well. Trimming of 3′ adapter sequences (AGATCGGAA-
GAGCACACGTCT) was carried out using the FASTX-toolkit. Next, 
reads aligning to rRNA and tRNA sequences were filtered out 
using STAR with parameters –outReadsUnmapped Fastx, and 
the remaining reads were subsequently aligned to the GENCODE 
hg38 version 39 genome assembly using STAR with the following 
settings –outFilterMismatchNmax 2 –outFilterMultimapNmax 4 
–chimScoreSeparation 10 –chimScoreMin 20 –chimSegmentMin 
15 –outSAMattributes All –outSAMtype BAM SortedByCoordinate. 
The resulting bam file was filtered for primary alignments using 
samtools with the following parameters –bS –F 0X100. Next, 
multimappers were removed using samtools with the following 

parameters –bq 255. The alignment files used for RiboCode’s 
prepare_transcripts function require the use of the quantMode 
option during STAR alignment. To run RiboCode, reads were 
processed separately using author recommended settings to 
include —outfilterMismatchNmax 2 –outSAMtype BAMSorted-
ByCoordinate –quantMode TranscriptomeSAM Genecounts – 
outFilterMultiMapNmax 1 –outFilterMatchNmin 16 –alignEndsType 
EndToEnd. Histograms of RPF length were generated by sampling 
a million reads and sorting by length from the final alignment file. 
Ribosome A-site metagene plots were created using RibORFv0.1’s 
readDist.pl function and a custom script was used to calculate 
the fraction of in-frame reads. Other tools also have the capability 
to generate metagene plots. To ensure the same set of read 
lengths were used for analysis across the different workflows, 
the same read lengths and offset corrections were used for all 
ORF predictions for each separate library. Ribo-seq coverage was 
visualized by generating bedgraphs using HOMER and uploading 
the bedgraphs to the UCSC Genome Browser. 

Tools compared in this study for 
microprotein-coding smORF identification 
RibORFv0.1 
RibORFv0.1 is the oldest tool of those we compared and is the 
tool we have used to annotate microprotein-coding smORFs in 
our previous studies [12, 19]. RibORFv0.1 utilizes a support vector 
machine classifier to select translating ORFs based on the fraction 
of A-site reads aligned to the correct reading frame and the read 
distribution uniformity over the ORF. The model uses canoni-
cal ORFs and off-frame ORFs for positive and negative controls, 
respectively, to train the classifier to predict smORFs. A final P-
value score is determined based on these two properties. The 
authors suggest a score of ≥0.7 as a threshold for translation. 
Importantly, this tool requires the user to provide a list of ORFs 
to be scored and cannot use the Ribo-seq data to help identify 
start and stop sites. ORFs were defined using a custom java script, 
GTFtoFASTA [12]. Using the reference GENCODE transcriptome, 
all three ORFs were parsed to find the most upstream canonical 
ATG start codon and in frame stop. If there is no canonical start 
codon, then the ORF is defined from stop codon to stop codon. 
Running RibORFv0.1 for translation scoring, ORFs were filtered 
with a minimum length cutoff of 18 and minimum read coverage 
cutoff of 10 using the ribORF.pl script. The resulting list of ORFs 
was further filtered with a P-value cutoff of ≥.7, max nucleotide 
length cutoff of 450, and a read coverage cutoff of 10. 

RibORFv1.0 
RibORFv1.0 is an updated version of RibORF which is similar to 
RibORFv0.1, but importantly uses a different strategy for scor-
ing translation. Instead of a support vector machine classifier, 
RibORFv1.0 uses a logistic regression model to determine the P-
value scores. In addition, RibORFv1.0 no longer uses a prescored 
training set of known translated and non-translated ORFs but 
uses the user’s own data to train prediction parameters based 
on predefined positive and negative ORFs. It also parses user 
provided transcriptomes to identify all possible ORFs and thus 
does not require a user provided list. ORF scoring was processed 
by first running the ORFannotate.pl script with default settings. 
After candidate ORFs are generated, ribORF.pl was used to identify 
translated ORFs using default settings, including an ORF or length 
cutoff of 6 and a read length cutoff of 11. As with RibORFv0.1, 
the scored ORF list was filtered with a P-value cutoff of ≥.7 and a 
maximum nucleotide length cutoff of 450.
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Ribo-TISH 
Like other tools, Ribo-TISH can assess ORFs for translation using 
standard Ribo-seq data from samples treated with cycloheximide. 
In addition, it can use translation initiation sequencing (TI-seq) 
data from cells treated with translation initiation inhibitors, e.g. 
harringtonin or lactimidomycin, to identify translated ORFs either 
with TI-seq data alone or in combination with Ribo-seq data. 
For scoring, it uses a non-parametric Wilcoxon rank-sum test for 
its assessment of 3-nt periodicity. Ribo-TISH can also parse user 
provided transcriptomes to identify all possible ORFs and de novo 
annotate the translatome. Ribo-TISH was run with the strategy 
of taking the most distal start codon to stop codon with RPF 
coverage when defining the ORF. The predict function with the 
parameters –longest –altcodons TTG,CTG,GTG –seq –aaseq with a 
P-value threshold of <.05 was used. For Ribo-TISH analysis with 
translation initiation data, the same settings were used with the 
additional –t flag for the harringtonin dataset input. 

RiboCode 
RiboCode is a de novo translatome annotation software that relies 
solely on the 3-nt periodicity pattern. For scoring, RiboCode uses 
a modified Wilcoxon signed rank-sum test to assess whether the 
P-site density for a particular ORF is greater than the densities 
in the alternative reading frames. Like the other modern tools, 
RiboCode parses a user provided transcriptome to identify all 
possible ORFs for scoring. RiboCode also allows the user to input 
non-canonical start codons to use for defining candidate ORFs. 
Detection of translated ORFs was identified using the RiboCode 
function with the settings -l no -s ATG -A CTG,GTG,TTG -g and 
the default P-value cutoff of .05. 

ORFquant 
ORFquant is also able to de novo annotate the translatome. It 
uses a multitaper test to select in-frame signal showing 3-nt 
periodicity, similar to the older RiboTaper tool developed by the 
same author. This tool generates a P-value and a cutoff of 0.05 is 
used to identify translated ORFs. Importantly, ORFquant requires 
the average signal on each covered codon to be >50% in frame 
and only considers AUG start codons. ORFquant was run using the 
authors’ recommended settings. First, a 0.2 bit file and gtf are used 
to create a TxDb and Rdata file using the prepare_annotation_files 
function. Next, the prepare_for_ORFquant function was used to 
process the alignment bam file and text file containing the read 
lengths and cutoff for analysis. Lastly, run_ORFquant was used to 
take the files produced in the previous steps to score ORFs using 
a P-value threshold of .05. 

Generating lists of translated unannotated 
smORFs 
Following scoring of translation for all ORFs by each tool, multiple 
filters were applied to generate a list of unannotated smORFs 
called translated for comparisons. First, only smORFs with a mini-
mum length cutoff of 6 codons and maximum length cutoff of 150 
codons were considered. In addition, bedtools intersect was used 
to remove smORFs that had over 90% overlap with CDS regions 
of canonical genes with the following commands, −f 0.9 -v -s. We 
chose to exclude smORFs that overlap fully with annotated ORFs 
in our analysis as they can be difficult to accurately identify by 
Ribo-seq, but all the tools will allow for fully internal smORFs to be 
scored. An additional filter using BLASTP was applied to remove 
potential pseudogenes and potentially missed RefSeq annotated 
microproteins. The settings for running the BLASTP search were

-outfmt 10 -max_target_Seqs 5 -evalue 0.0001, and smORFs with 
BLASTP scores ≥40 were filtered out. 

The smORF lists used for comparisons were standardized 
to include each smORF’s chromosome ID, genomic start and 
stop coordinates, strand information, and amino acid sequence. 
smORFs were considered as exactly overlapping across different 
tools if all these fields matched. For annotated ORFs, matching 
gene names were considered for overlapping across different 
tools. Full lists of all smORFs called translated by each tool and 
their overlaps are available in Supplementary Data 1. 

For the analysis of additional matching smORFs when allowing 
for potential start site or stop site isoforms, the set of smORFs 
called translated by RibORFv0.1, RiboCode, ORFquant, and Ribo-
TISH were each compared individually against the list of smORFs 
called translated by RibORFv1.0, which identified the most 
smORFs in both HeLa-S3 datasets. Comparing smORFs across 
tools can result in one-to-many or many-to-many relationships 
when allowing for start and stop site isoforms, where an example 
smORF could be considered an exact match with one particular 
smORF in RibORFv1.0 but also a start site or stop site match 
with different smORFs. Thus, these analyses were run as one-
way comparisons in which we determine the number of smORFs 
from each tool that are considered matching to any smORF(s) 
in the RibORFv1.0 set when allowing for isoforms. Any smORF 
found to contain either a matching start site, stop site, or both (an 
exact match) with any number of smORFs from RibORFv1.0 was 
counted only once as matching. For categorization of different 
types of matches, any smORF with an exact matching hit in the 
RibORFv1.0 list with the same start site, stop site, and amino acid 
sequence was considered an ‘Exact Match’, and those without 
exact matches were categorized as either ‘Matching Stop Site’ or 
‘Matching Start Site’, with prioritization given to ‘Matching Stop 
Site’ in cases where a smORF has both start and stop site matches 
in the RibORFv1.0 list. 

For generating translation scores for annotated genes, RibORFv0.1 
was run using a separate refFlat containing GENCODE CDS 
regions. For RiboCode, Ribo-TISH, ORFquant, and RibORFv1.0, 
annotated genes that were detected were separated out from 
the final list of ORFs predicted. 

Defining overlapping annotated gene and 
smORFs across tools 
Overlaps of exactly matching annotated genes and smORFs 
called translated by each tool were determined using the 
Multiple List Comparator tool from molbiotools.com. This tool 
was also used to generate two-way Venn diagrams included 
in Supplementary Figs 7 and 8. UpSet plots showing the 
overlap across all five tools were generated using the R package 
UpSetR. 

Ribo-seq read coverage, fraction in-frame, and 
PhyloCSF analysis 
The Ribo-seq read coverage for predicted smORFs identified by 
each tool was quantified alongside the top expressed isoforms 
for annotated genes. Coverage was quantified using HOMER’s 
analyzeRepeats function and normalized by transcripts per 
million. The fraction of reads in-frame for all ORFs was taken from 
RibORFv0.1 output files, which report the percent of A-site reads 
in all three reading frames. Average PhyloCSF scores for the 58-
mammal alignment used with genome build hg38 were extracted 
for all smORFs from the UCSC genome browser’s PhyloCSF 
Track Hub.
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Nanopore long-read library preparation and 
sequencing 
Total RNA was isolated from HeLa-S3 using the QIAGEN RNeasy 
kit. RNA integrity was assessed using TapeStation 4200 (Agilent), 
and RNA samples with RIN > 8 were used for library preparation 
for long read sequencing. Isolated total RNA was used to gener-
ate sequencing library following Oxford Nanopore Technologies 
protocol for cDNA-PCR sequencing kit. About 50 ng of total RNA 
was first reverse transcribed for complementary strand synthesis 
using strand switching primers. cDNA was PCR amplified using 
primers that contain 5′ tags, which enables attachment of rapid 
sequencing adapters. The cDNA library was loaded onto R9.4.1 
flow cells according to Oxford Nanopore Technologies protocol 
and sequenced for 48 h with High accuracy setting on GridION 
system in the Salk NGS core. 

De novo transciptome assembly 
For the long-read RNA-seq datasets generated using the Nanopore 
sequencing platform, reads were processed using the FLAIR 
pipeline. Reads were aligned using FLAIR align module with 
minimap2 and converted to a SAM file in BED12 format. FLAIR 
correct was used to correct misaligned splice sites using the 
GENCODE version 39 annotation. Finally, FLAIR collapse takes the 
high confidence isoforms from the corrected reads to output a gtf. 
Using the StringTie merge option, the FLAIR gtf was merged with 
the GENCODE reference gtf to create a combined non-redundant 
set of transcripts used for downstream analysis. 

For the paired-end RNA-seq datasets generated using the 
Illumina sequencing platform, originally generated in Martinez 
et al. [12], fastq files were downloaded from the SRA with 
accession codes found in Table S1 of Supplementary Data 1 
and trimmed of adapter sequences using TrimGalore. Reads 
were aligned using STAR with the options –runMode alignReads 
–sjdbOverhang 100 –runRNGseed 133 –twopassMode Basic – 
outSAMstrandField intronMotif –outfilterINtronMotifs Remove 
Noncanonical –outSAMattributes All. The resulting bam file was 
then sorted using samtools. For each library, StringTie was used to 
assemble transcripts from the sorted bam files using the guided 
assembly option. The assembled transcripts were then merged 
using the StringTie merge option with the GENCODE reference 
transcriptome annotation. The resulting gtf file was used as the 
transcriptome for downstream smORF analysis. GFFCompare was 
used to compare and evaluate the two transcriptome assemblies. 

Results and discussion 
Tools for detecting translated open reading 
frames from Ribo-seq 
We compared five popular tools for analyzing individual ORFs 
for translation using Ribo-seq data, including RibORF version 0.1 
(RibORFv0.1) [10], RibORF version 1.0 (RibORFv1.0) [20], Ribo-TISH 
[21], RiboCode [22], and ORFquant [23]. These tools were published 
between 2015 and 2020 and have been applied frequently to 
identify novel translated ORFs, including smORFs, in the years 
since. In addition, these particular tools were chosen, because 
each tool includes an assessment of the 3 nucleotide (3-nt) peri-
odicity of aligned ribosomal A-site or P-site reads that are in-
frame with a particular ORF to aid in scoring translation. This 
feature is a hallmark of active translation as the ribosome scans 
ORFs translating 3-nt codons from the start codon to the stop 
codon [16]. Higher resolution datasets have a higher percentage 
of reads in-frame with annotated ORFs. However, the statistical 

methods applied for assessing whether the fraction of in-frame 
reads is significant differ widely. For example, RibORFv0.1 utilizes 
a support vector machine approach to classify and score ORFs, 
while RiboCode uses a modified Wilcoxon signed-rank sum test 
to determine the significance in-frame versus out-of-frame read 
enrichment within the tested ORF (Fig. 1A). In addition, whether 
tools allow for ORFs initiating from near-cognate start codons, 
such as CUG, GUG, or UUG, or consider other features such as 
percent ORF coverage, differs among the tools. More details on 
how each tool scores translation are included in the Methods 
section. 

To compare the tools, we developed a standardized workflow 
to take unprocessed Ribo-seq data and generated a filtered list 
of predicted novel smORFs (Fig. 1B). To summarize, 3′-adapter 
sequences are trimmed and reads aligning to rRNA and tRNA 
sequences are filtered out. The remaining reads are mapped to 
the hg38 genome using STAR [24] and the resulting alignment 
file of only uniquely mapped reads is used as the input for each 
tool to score ORFs for translation. Each tool was also given either 
a list of all possible ORFs to score, which we generated from 
the GENCODE comprehensive set of human transcripts, or the 
entire GENCODE transcriptome file for the software to parse into 
ORFs for scoring. The Ribo-seq datasets analyzed in our tool 
comparison were generated in our previous study [12] and include 
low- and high-resolution datasets collected from HeLa-S3 and 
HEK293T cell lines (Supplementary Fig. 1). The high-resolution 
datasets show greater than 70% in-frame RPF read alignment 
with known coding regions across all read lengths retained for 
analysis, while low-resolution data show only ∼50% of in-frame 
RPF reads (Supplementary Fig. 2). These datasets allowed us to 
assess any differences between the tools in handling varying 
quality data and ensure that any observed trends are not cell line 
specific. Following scoring by each tool, smORFs that were found 
to fully overlap within annotated CDS regions were removed. 
These internal smORFs can be difficult to accurately score by 
Ribo-seq as reads aligned to each ORF inherently lower the score 
of the other ORF. The list of remaining unannotated smORFs was 
then used for comparison across tools. 

Comparing predicted translated smORFs across 
tools 
In our previous study, we showed that there was a high overlap 
in the detection of annotated coding regions from Ribo-seq data 
across different resolutions, but that the set of smORFs called 
translated was noisy and showed low overlap across datasets [12]. 
This study only used RibORFv0.1 to analyze smORF translation, 
leaving an open question as to whether the poor overlap was an 
artifact of the software tool or a result of smORF translation being 
generally noisier and more difficult to assess relative to larger 
annotated coding regions. 

To answer this question, we initially examined the high-
resolution HeLa-S3 Ribo-seq data for differences in identifying 
translated ORFs across the different tools. We observed high 
overlap in the number of total annotated genes detected 
across all five tools with 8781 (74.1%) called translated and 
a similar number identified by each tool (Fig. 2A). Pairwise 
comparisons of the number of annotated ORFs found in one 
tool compared to each other tool, as well as the proportion of 
matched ORFs, showed similar performance between all tools 
and that RibORFv0.1 was the least sensitive (Fig. 2B and C). 
Next, we examined the prediction of novel translated smORFs 
from each tool (Fig. 2D, Supplementary Data 1). Compared to 
annotated ORFs, there is little overlap in the total number of
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Figure 1. Workflow of smORF Annotation and Ribo-seq Tool Features; (A) properties of the computational methods compared in this study; (B) workflow 
for processing and filtering of Ribo-seq datasets that were used for ORF identification and comparison of unannotated smORFs called translated by 
each tool. 

smORFs predicted with only 235 (2.3%) found across all tools and 
1549 (15.4%) smORFs found in at least three out of five tools. 
The performance of the tools differentiated into two groups. 
RiboCode, RibORFv0.1, and RibORFv1.0 called 2.3–4.8 times as 
many smORFs translated as ORFquant and Ribo-TISH. Pairwise 
analysis of the number and proportion of matched smORFs 
revealed additional differences between the tools ( Fig. 2E and F). 
First, despite identifying less than half the number of translated 
smORFs as RiboCode and RibORFv1.0, only ∼40% of Ribo-TISH hits 
overlapped with RiboCode and RibORFv1.0. This contrasted with 
ORFquant, which also identified a lower amount of translated 
smORFs (1124) but had 68% and 81% of its calls overlap with those 
of RibORFv1.0 and RiboCode, respectively. In addition, Ribo-TISH 
had the smallest proportion of ORFquant calls matched (30%). 
These data demonstrate that Ribo-TISH is an outlier compared to 
the other tools that identify both a smaller number and a more 
unique set of smORFs as translated. Meanwhile, the majority of 
ORFquant’s hits can be captured by using the tools that predict 
larger numbers of translated smORFs. 

We next explored whether these trends would remain 
consistent after analyzing low-resolution HeLa-S3 Ribo-seq data. 
Compared to the analyses using the high-resolution dataset, we 
observed a large drop in the number of annotated genes called 
translated by ORFquant (3525) and Ribo-TISH (5894), resulting in 
only 2104 (19%) in common across all tools (Fig. 3A). Pairwise 
comparisons of the tools showed that both RibORFv1.0 and 
RiboCode identified the most annotated genes as translated 
and captured >90% of those identified in all the other tools 

(Fig. 3B and C). ORFquant was impacted the most by the low-
resolution data, identifying only 3525 annotated genes as 
translated. This is consistent with ORFquant’s requirement to 
have >50% reads in-frame for each codon within an ORF to 
be called translated [23]. These same observations extended 
to smORF prediction. Ribo-TISH and ORFquant were greatly 
affected by the lower resolution when predicting novel smORFs, 
identifying only 13 and 203 smORFs as translated, respectively 
(Fig. 3D, Supplementary Data 1). On the other hand, both versions 
of RibORF and RiboCode called many more smORFs translated 
and had more hits in common with each other than with Ribo-
TISH and ORFquant (Fig. 3E). As observed with the high-resolution 
dataset, ORFquant predictions, though limited, were captured 
relatively well by RibORF and RiboCode (Fig. 3F). 

To confirm these results, we repeated the comparison analysis 
for HEK293T Ribo-seq datasets with varying resolutions. We 
observed a similarly high degree of overlap among all tools for 
annotated genes scored as translated (Supplementary Fig. 3), 
but little overlap for unannotated smORFs called translated 
(Supplementary Fig. 4). We also validated the conclusions that 
ORFquant and Ribo-TISH are less noise tolerant and identify far 
fewer ORFs as translated compared to the other three pipelines 
when using lower resolution datasets. Furthermore, as with the 
HeLa-S3 datasets, both versions of RibORF called more smORFs 
translated than RiboCode when analyzing lower resolution 
datasets. 

We also directly compared both annotated gene and smORF 
predictions across the low- and high-resolution HeLa-S3 datasets.
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Figure 2. Comparison of detected annotated ORFs and predicted smORFs in the high-resolution HeLa-S3 Ribo-seq dataset; (A) UpSet plots showing the 
overlap of annotated genes called translated across the different tools; the total number of annotated genes detected is displayed in the bottom left 
bar graphs next to the names of each tool; (B) heat map showing the pairwise comparison of matching annotated genes between the different tools; (C) 
heat map showing the proportion of annotated genes identified by the tool in the column that are also detected by the tool in the row; (D–F) the same 
plots are shown as in (A–C) for the analysis of unannotated smORFs. 

For annotated genes, only a slightly lower number of genes 
were called translated when using low-resolution versus high-
resolution datasets for both versions of RibORF and RiboCode, 
consistent with our previous study [ 12] (Supplementary Fig. 5A). 
In addition, a large proportion of genes identified in the high-
resolution dataset were also captured when analyzing the low-
resolution dataset with the same tool (between 87% and 91%) 
(Supplementary Fig. 5B). For Ribo-TISH and ORFquant, however, 
the proportion of genes also captured by the low-resolution 
dataset was much lower (between 32% and 53%). This was 
expected given that these tools called far fewer genes translated 
when analyzing the low-resolution dataset. For unannotated 

smORFs, similar trends between the tools were observed. For 
both versions of RibORF and RiboCode, the proportion of smORFs 
called translated using the high-resolution dataset that overlap 
with those detected in the low-resolution dataset was between 
17% and 25% (Supplementary Fig. 5C and D). Although much 
lower than the overlaps for annotated genes, these were still 
higher than what was found for ORFquant, where the proportion 
of smORFs called translated across the different datasets was 
only ∼5%. Moreover, Ribo-TISH only identified three total hits in 
common when comparing low- versus high-resolution datasets. 
These results demonstrate that RibORF and RiboCode can 
more sensitively detect bona fide translated annotated genes
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Figure 3. Comparison of detected annotated ORFs and predicted smORFs in low-resolution HeLa-S3 Ribo-seq dataset; (A) UpSet plots showing the overlap 
of annotated genes called translated across the different tools; the total number of annotated genes detected is displayed in the bottom left bar graphs 
next to the names of each tool; (B) heat map showing the pairwise comparison of matching annotated genes between the different tools; (C) heat map 
showing the proportion of annotated genes identified by the tool in the column that are also detected by the tool in the row; (D–F) the same plots are 
shown as in (A–C) for the analysis of unannotated smORFs. 

from low-resolution datasets than Ribo-TISH and ORFquant, 
and support their effectiveness for identifying at least some 
high-confidence smORFs from lower quality Ribo-seq data. 
Nevertheless, higher resolution data are expected to produce 
more accurate translation calls for all tools. 

Accounting for isoform differences in smORF 
predictions 
In our initial comparisons between the tools, we restricted the 
matches to smORFs that have the same genomic coordinates. 
However, given that smORFs can use alternative start codons and
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be spliced like larger ORFs, it is possible that the tools predict 
isoforms of the same smORF. To account for this, we looked 
for any additional smORFs identified by each tool that have the 
same start coordinate but different stop coordinates and vice 
versa using our HeLa-S3 datasets. Each tool was pairwise com-
pared against RibORFv1.0, which predicted the largest number of 
smORFs. For the high-resolution dataset, allowing for stop site 
matches (start site isoforms) resulted in an additional 62 to 272 
smORFs in common, while allowing for start site matches (stop 
site isoforms) resulted in an additional 3 to 39 smORFs in common 
(Fig. 4A, Supplementary Data 2). The high number of start site 
isoforms called by the different tools is expected due to how the 
different pipelines handle AUG versus near cognate start codons, 
as well as ORFs where multiple possible start codons are present. 
For example, we set ORFquant to only consider canonical AUG 
start codons consistent with how its developers used the tool 
[23]. Importantly, the additional smORFs considered matching 
when allowing for start and stop site isoforms did not account 
for the majority of different smORFs called translated between 
tools. For instance, the number of total smORFs called trans-
lated by RiboCode using the high-resolution HeLa-S3 dataset 
increased from 2205 when only considering exact matches to 
2490 when allowing for isoforms. Thus, out of the 4133 smORFs 
called translated by RiboCode (Fig. 2A), 1643 (∼40%) do not match 
any RibORFv1.0 smORF even when considering isoforms. Simi-
lar trends were observed for the other tools when compared to 
RibORFv1.0. For the low-resolution HeLa-S3 dataset, additional 
matching smORFs were found for RibORFv0.1 and RiboCode, but 
very few additional hits were observed for ORFquant and Ribo-
TISH due to the overall lower number of smORFs called translated 
by these tools (Fig. 4B). Furthermore, as with the high-resolution 
dataset, the additional smORFs considered matching when allow-
ing for isoforms did not account for the majority of differences 
between tools. 

Examples of predicted smORF isoforms that have matched 
start or stop coordinates can be observed in the 5′-UTRs of 
CES2 and ANGEL2, respectively (Fig. 4C). Ribo-seq A-site plots, 
which display Ribo-seq reads by reading frame and show 
which individual codons have coverage, show that both CES2 
smORF isoforms are supported by in-frame read coverage 
(Supplementary Fig. 6A). However, it is interesting to note that the 
fraction of reads in-frame for the longer spliced version is lower 
after the splice site, which might explain why this isoform was not 
called by ORFquant. For the ANGEL2 smORFs, A-site plots show 
that both start sites are supported by in-frame Ribo-seq reads 
(Supplementary Fig. 6B). 

Incorporating TI-Seq data into smORF prediction 
To aid in the prediction of novel ORFs, some newer tools like 
Ribo-TISH allow integration of TI-seq. TI-seq is a modified version 
of Ribo-seq that includes a short pretreatment with translation 
initiation inhibitors such as harringtonin or lactimidomycin in 
order to enrich for ribosome coverage on ORF start sites, providing 
additional evidence of their translation [2]. Using matched TI-seq 
HeLa-S3 data from harringtonin treated cells, we compared anno-
tated genes and smORFs called translated when using both the TI-
seq and high-resolution HeLa-S3 datasets to those identified using 
the high-resolution dataset alone. There was a high overlap of 
annotated genes detected (∼73%), though fewer total genes were 
called translated when TI-seq data were included due to the extra 
requirement of having an initiation peak (Supplementary Fig. 7A). 
For smORFs, the overlap between the two analyses was much 

lower (∼10%, Supplementary Fig. 7B, Supplementary Data 3). In 
some instances, the lack of overlap was due to different trans-
lation start sites predicted based on whether TI-seq data were 
incorporated or not. We highlight one example of two smORF 
isoforms on the TXNRD1 transcript, with one smORF starting 
at an AUG start codon that shows enrichment by TI-seq and 
the other starting at an upstream near cognate start codon that 
is predicted when using the high-resolution HeLa-S3 Ribo-seq 
dataset alone (Supplementary Fig. 7C). The accompanying A-site 
plot shows poorer in-frame coverage for the longer non-AUG 
initiated isoform, supporting the shorter AUG-initiated isoform 
called by TI-seq. Although differing start site predictions can 
explain some of the differences, some of the smORFs identified 
by Ribo-seq alone using Ribo-TISH might in fact not be translated 
since they did not show start site enrichment by TI-seq. Ribo-
TISH also predicts unique smORFs found only with the integration 
of initiation site data, such as the smORF within the 5′-UTR of 
the PIGW transcript (Supplementary Fig. 7D). Thus, the inclusion 
of initiation site data can introduce another variable to smORF 
predictions. 

Impact of de novo assembled transcriptome 
annotation on smORF identification 
Analyzing Ribo-seq data for translated smORFs requires the use 
of a transcriptome to create a database of all possible smORFs 
present in a given sample. Although most studies use transcrip-
tomes sourced from reference databases like GENCODE [25] or  
Ensembl [26], de novo assembled transcriptomes can also be 
used. By incorporating de novo transcriptome assemblies, one 
can identify smORFs on transcript isoforms that are otherwise 
missing from these public reference databases. We previously 
used transcriptomes assembled from Illumina-based short read 
RNA-seq data to identify smORFs on cell line specific transcript 
isoforms [12], but use of long-read sequencing technologies may 
aid in the identification of additional smORFs. To evaluate the 
two sequencing methods’ effects on smORF identification, we 
assembled HeLa-S3 transcriptomes from both Nanopore long-
read and Illumina short-read RNA-seq datasets using StringTie 
[27], a more modern assembly tool than what we had used in our 
original study. After assembly, the resulting transcriptome was 
merged with the GENCODE reference to create a comprehensive 
transcriptome that includes additional transcripts identified by 
each RNA-seq strategy. This resulted in an additional 141 tran-
scripts using Illumina RNA-seq data and an additional 1106 tran-
scripts using Nanopore RNA-seq data that were not included in 
the GENCODE transcriptome (Fig. 5A). Using RibORFv0.1 to iden-
tify translated smORFs in the high-resolution HeLa-S3 dataset 
with each de novo assembled transcriptome revealed a high 
degree of overlap (∼89%, Fig. 5B, Supplementary Data 4). However, 
unique predicted translated smORFs were found for each tran-
scriptome, with 241 predicted smORFs found only when using the 
Nanopore assembly and 169 specifically from the Illumina assem-
bly. Using RiboCode for translation calling yielded similar results 
(Supplementary Fig. 8). An example smORF that both RibORFv0.1 
and RiboCode called translated from a transcript specifically 
identified using Nanopore long-read RNA-seq data can be found 
antisense to ADARB2 (Fig. 5C, Supplementary Fig. 6C). These data 
show that incorporating de novo transcriptome assembly into 
smORF prediction workflows can identify additional hits, but the 
overall benefit over using the GENCODE reference transcriptome 
alone is marginal.
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Figure 4. Accounting for smORF isoform variance across the different tools; (A and B) bar plots showing the number of exact smORF matches (left), 
additional start site isoform smORF matches (middle), and additional stop site isoform smORF matches (right) between each tool and RibORFv1.0 when 
analyzing either the high-resolution (A) or low-resolution (B) HeLa-S3 Ribo-seq dataset; (C) bedgraph tracks showing Ribo-seq coverage on the 5′-UTRs 
of CES2 and ANGEL2. In the top track, alternatively spliced smORFs on the positive strand were identified by both ORFquant and RibORFv0.1 with 
matching start sites but different the stop sites; in the bottom track, Ribo-TISH and RibORFv0.1 detect a smORF on the negative strand with the same 
stop location but different canonical start codons. 

Benchmarking the tools with a high confidence 
consensus smORF set 
Comparing predicted translated smORFs across tools showed 
high variability, leading one to question how the tools fare at 

identifying bona fide microprotein-coding smORFs. To address 
this point, we compared the predicted smORFs from each tool 
to a consensus set of 3085 smORFs that were reproducibly 
detected across multiple Ribo-seq-based annotation studies
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Figure 5. De novo transcriptome assembly enables additional smORFs to be called translated; (A) comparison of the Nanopore long read- and Illumina 
short read-based de novo assembled transcriptomes and GENCODE reference using GffCompare; (B) Venn diagram showing the overlap of predicted 
smORFs identified by RibORFv0.1 when using the de novo transcriptome assemblies along either high-resolution (left) or low-resolution (right) HeLa-S3 
Ribo-seq datasets; the total number of annotated genes detected using each assembly is shown in parentheses; (C) bedgraph tracks showing Ribo-seq 
coverage for a smORF on the positive strand located within a region antisense to ADARB2; transcripts present in GENCODE and the de novo transcriptome 
assembles are also shown below. An assembled transcript for this region is only found when using the Nanopore-based de novo assembly. 

using different human samples and computational tools [ 14]. 
These high confidence smORF annotations are publicly available 
through GENCODE. Using the HeLa-S3 datasets, we determined 
the number of smORFs matching the GENCODE smORF set for 
each tool, including any potential start/stop site isoforms. For the 
high-resolution HeLa-S3 dataset, 156 of these high confidence 
GENCODE matching smORFs were predicted by all tools, and 
each tool was able to identify a subset of these smORFs missed 
by the other tools (Fig. 6A, Supplementary Data 5). RibORFv0.1, 
RibORFv1.0, and RiboCode had the highest number of matches, 
consistent with their overall greater number of smORFs called 
translated compared to Ribo-TISH and ORFquant. However, 
ORFquant had the highest proportion of its smORF calls overlap 
with the GENCODE set (Fig. 6B). Similar trends are observed when 
using the low-resolution HeLa-S3 dataset, with the exception that 
Ribo-TISH and ORFquant call far fewer smORFs than the other 
tools when using poorer quality data (Supplementary Fig. 9). Over-
all, these results further demonstrate that RibORF and RiboCode 
are more sensitive than ORFquant, while ORFquant is likely more 

accurate and Ribo-TISH suffers from both lower sensitivity and 
accuracy. 

Translation levels correlate with smORF 
detectability by multiple tools 
Given the high overlap of annotated genes called translated 
across the different tools but low overlap of predicted translated 
smORFs, we wanted to identify properties that influence this 
difference. First, we found that size alone cannot explain why 
smORF translation prediction varies widely between tools, as 
each tool was able to identify a similar number of annotated ORFs 
<100 codons in length when analyzing the high-resolution Ribo-
seq data (Supplementary Fig. 10). Next, we considered potential 
differences in Ribo-seq read coverage between annotated genes 
and smORFs, as the read coverage for a given ORF correlates with 
translation levels and is a critical factor in predicting translation 
for each of these tools. Using the high-resolution HeLa-S3 
dataset, annotated genes called translated showed significantly 
higher read coverage than smORFs in all tools except Ribo-TISH
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Figure 6. Comparison of the GENCODE Phase I high-confidence smORFs identified by each tool in the HeLa-S3 high-resolution dataset; (A) UpSet plot 
showing the overlap of smORFs matching the GENCODE set detected by each tool in the high-resolution HeLa-S3 Ribo-seq dataset; total number of 
smORFs matching the GENCODE set detected by each tool is shown in the bottom left bar graphs next to the names of each tool; for the high-resolution 
HeLa-S3 Ribo-seq dataset, 1797 GENCODE Phase I smORFs had 10 or more reads, representing the maximum possible number of smORFs that the 
tools could potentially call translated; (B) heat map showing the proportion of smORFs identified by each tool that are also included in the GENCODE 
smORF set. 

( Supplementary Fig. 11). These same patterns were observed 
when analyzing the low-resolution Ribo-seq dataset using 
RiboCode and both RibORF versions (Supplementary Fig. 12). 
These data suggest that overall higher translation levels are 
likely driving the greater overlap in annotated gene detection 
across the different tools. We therefore hypothesized that smORFs 
that are reproducibly detected across the different tools are also 
more likely to have higher translation levels. Comparing smORFs 
called translated by all five, at least three, and less than three 
tools showed that smORFs detected by more tools are translated 
at significantly higher levels in both high- and low-resolution 
datasets (Supplementary Fig. 13A). These results suggest that 
smORFs are more difficult to detect in part because of their overall 
lower translation levels than larger annotated ORFs. 

Another critical factor for determining translation that all tools 
employed in this study consider is the fraction of in-frame reads 
for ORFs. We therefore compared this property for smORFs called 
translated by all five, at least three, and less than three tools. 
For both the low- and high-resolution datasets, we found that 
smORFs called by at least three tools compared to those identified 
in fewer than three tools have a significantly higher fraction of in-
frame reads (Supplementary Fig. 13B). These data demonstrate 
that smORFs called translated by more tools are not only more 

likely to have higher coverage, but also a greater fraction of in-
frame reads, which is expected for bona fide translation events. 

Most human microprotein-coding smORFs show conservation 
only to other primates or are entirely de novo occurrences in 
our genome [5, 14, 28, 29]. However, there are some examples of 
functionally characterized microproteins that are well conserved 
across mammals [30–34]. Therefore, we next assessed whether 
smORFs detected by multiple tools are not only translated at 
higher levels but also more conserved. Using PhyloCSF [35], a 
computational tool that examines evolutionary signatures that 
are expected for conserved coding regions, we observed no sig-
nificant difference in average scores between smORFs detected 
by three or more tools and those detected by fewer than three 
tools (Supplementary Fig. 13C). Thus, conservation is not a major 
determinant of high confidence smORF detection by Ribo-seq. 
This result is consistent with only 2.4% of the GENCODE Phase 
I smORFs having a positive PhyloCSF score [14]. 

To determine whether these trends are also observed for 
annotated genes, we compared the coverage, fraction of in-
frame reads, and PhyloCSF scores for those called translated 
by all five tools versus those identified by four or fewer tools 
(Supplementary Fig. 14). We observed significantly higher read 
coverage and fraction of in-frame reads, but no difference in
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PhyloCSF scores, for annotated genes called translated by all five 
tools. 

Conclusions 
Ribo-seq has revolutionized our ability to de novo annotate 
translated ORFs. Still, it is only as effective as the bioinformatic 
tools used to interpret the data to accurately identify genuine 
translation events. By comparing several popular tools, we found 
that each can identify a similar set of translated annotated 
genes as intended when high-resolution data are used. When 
attempting to identify unannotated translated smORFs, however, 
the tools vary widely in the number called translated and 
show little overlap. We found a clear split between RibORFv0.1, 
RibORFv1.0, and RiboCode, which consistently predict more 
translated smORFs than ORFquant and Ribo-TISH. Moreover, 
RiboCode and RibORFv1.0 identify a large fraction of the same 
smORFs called by ORFquant, while Ribo-TISH identifies a subset 
of smORFs that is more unique than all the other tools. When 
low-resolution Ribo-seq data are used, ORFquant and Ribo-
TISH are further separated from the other tools, identifying a 
relatively small number smORFs as translated and reflecting 
differences in stringency. When comparing the smORFs predicted 
by each tool with a high confidence set included in GENCODE, we 
found that RiboCode and RibORF had the highest sensitivity but 
ORFquant the highest accuracy. Given these results, we suggest 
that RiboCode and both versions of RibORF are better suited 
for identifying smORFs to test in high-throughput screens like 
CRISPR dropout assays where the aim is to identify large sets 
of functional smORFs. These tools are also good choices when 
only lower quality Ribo-seq data are available, though caution 
must be exercised as lower resolution data will inherently lead to 
noisier calls overall. ORFquant, meanwhile, is an excellent choice 
when attempting to identify confidently translated smORFs with 
AUG start sites from high-resolution data, as when planning 
low-throughput functional characterization studies of encoded 
microproteins. However, if one is interested in studying smORFs 
that initiate from non-AUG start sites, ORFquant is not effective. 
When allowing ORFquant to identify ORFs with non-AUG start 
sites from our high-resolution HeLa-S3 dataset, only ∼0.1% of all 
ORFs called translated were predicted to use near cognate start 
sites (data not shown). Altogether, we suggest that regardless of 
the purpose it is prudent to use multiple Ribo-seq analysis tools 
in addition to analyzing biological replicates to identify the most 
confident microprotein-coding smORFs, particularly for ongoing 
annotation efforts for reference databases. Furthermore, we 
recommend that Ribo-seq read coverage and the fraction of reads 
in-frame be considered in their prioritization for downstream 
studies. Finally, it is our hope that these comparisons, as well as 
those looking at different software tools [36], will be useful to 
the field for developing the next generation of improved Ribo-seq 
interpretation tools. 

Key Points 
• Popular Ribo-seq analysis tools show little overlap in 

which unannotated smORFs are called translated 
• Resolution of Ribo-seq data impacts both number and 

identity of smORFs called translated 
• Higher translation levels and fraction of in-frame reads 

correlate with detection of smORFs by multiple tools 
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