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Summary

Chemotaxis allows cells to sense and respond to their environment. In bacteria, stimuli
are detected by arrays of chemoreceptors that relay the signal to a two-component
regulatory system. These arrays take the form of highly stereotyped super-lattices
comprising hexagonally packed trimers-of-receptor-dimers networked by rings of
histidine kinase and coupling proteins. This structure is conserved across chemotactic
bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the
highly cooperative, dynamic nature of the signaling system. The chemotaxis system,
absent in eukaryotes, is also found in archaea, where its structural details remain
uncharacterized. Here we provide evidence that the chemotaxis machinery was not
present in the last archaeal common ancestor, but rather was introduced in one of the
waves of lateral gene transfer that occurred after the branching of Eukaryota but before
the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then
evolved largely vertically in Archaea, with very few subsequent successful lateral gene
transfer events. By electron cryotomography (ECT), we find that the structure of both
membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria
and Archaea, suggesting the fundamental importance of this signaling architecture across

diverse prokaryotic lifestyles.

Introduction
Single-celled organisms rely on signal transduction pathways to sense and
respond to their environments. In Bacteria, one such pathway, the chemotaxis system,

relays information on the chemical environment to the flagellar motor to bias swimming
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direction. Roughly half of all bacteria are chemotactic (Wuichet and Zhulin, 2010). The
chemotaxis system, typified by Escherichia coli, consists of chemoreceptors (methyl-
accepting chemotaxis proteins, or MCPs) networked into cooperative arrays by coupling
protein (CheW) and a two-component signaling kinase (CheA). Adaptation to stimulus is
mediated by methylation and de-methylation of the receptors, performed by a
methyltransferase (CheR) and methylesterase (CheB). CheB is one of the two response
regulators controlled by CheA; the other is CheY, which, when phosphorylated, can bind
to the flagellar motor, inducing a shift in its direction of rotation, and therefore the
swimming behavior of the cell, inducing a “tumble” rather than a “run” (Hazelbauer et
al., 2008).

In Bacteria, the structure of the chemosensory array is universal across all species
imaged to date (Briegel et al., 2009). It is even conserved between membrane-bound and
cytoplasmic arrays (Briegel et al., 2014).

Many archaea also contain chemotaxis genes. Decades of work have shown that
the halophilic archaeon Halobacterium salinarum senses chemical attractants such as
oxygen, as well as light, through a chemosensory system that, as in bacteria, translates
into a change in direction of flagellar rotation. Interestingly, the archaeal flagellum, or
archaellum, is not homologous to that of bacteria (Jarrell and Albers, 2012). Archaeal
chemotaxis systems use an additional protein, CheF, to translate signal from CheY to the
motor (Schlesner et al., 2009).

Evolutionary genomics has revealed that the majority of archaeal chemotaxis
genes are found in Euryarchaeota and exhibit high sequence similarity to those found in

Firmicutes and Thermotogales, suggesting that the system was acquired via lateral gene
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transfer (LGT) (Wuichet and Zhulin, 2010). However, recently sequenced genomes
(Blainey et al., 2011; Spang et al., 2012) from the deeply branching Thaumarchaeota
(Brochier-Armanet et al., 2008) also contain chemotaxis systems, raising the possibility
of a chemotactic Last Archaeal Common Ancestor (LACA).

Here, we apply evolutionary genomics to distinguish between these hypotheses,
and electron cryotomography (ECT) to investigate the structure of archaeal chemotaxis

systems.

Results and Discussion

To identify chemotactic archaea, we selected 240 genomes spanning all major
archaeal branches: Euryarchaeota (178), Crenarchaeota (51), Thaumarchaeota (9),
Korarchaeota (1), and Nanoarchaeota (1). Using the MiST2 database (Ulrich and Zhulin,
2010), we determined that half of these genomes contained chemotaxis systems, defined
as the presence of at least one CheA and one MCP. Chemotactic species all belonged to
one of two archaeal phyla — Euryarchaeota (118) or Thaumarchaeota (2).

Chemotaxis systems are commonly classified on the basis of their signaling
kinase, CheA (Wuichet and Zhulin, 2010). In bacteria, there are more than a dozen such
classes: multiple systems that signal to the flagellum (denoted F), another that signals to
the Type IV pilus (Tfp), and one involved in alternate cellular functions (ACF). To
classify the archaeal chemotaxis systems identified above, we examined the protein
sequences of their associated CheA. There are 139 such CheA genes in the pangenome,
representing only two classes: F1 (134) and ACF (5), consistent with previous work

(Wuichet and Zhulin, 2010). ACF systems are found only in the Methanomicrobiales
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order of Archaea, and, based on sequence similarity (Supplemental Table 1), likely arose
from LGT from Deltaproteobacteria.

In contrast to ACF systems, F1 systems are widespread across Euryarchaeota,
supporting the idea that this system was present in their common ancestor. F1 systems
are also found in Thaumarchaeota, a deeply branched phylum, raising the question of
whether the LACA was chemotactic. To investigate this question, we used a
concatenated alignment of CheA, CheB, and CheR to construct a phylogenetic tree of F1
systems in Bacteria and Archaea. In many genomes, there are multiple copies of these
genes, making it difficult to unambiguously assign them to shared classes. Therefore, we
chose only species that either contained all three genes in the same cluster or contained
only a single copy of each gene of the F1 system. The final dataset contains 203
CheA:CheB:CheR concatenated sequences from 193 organisms: Euryarchaeota (82),
Thaumarcheota (2), Firmicutes (93), Thermotogae (3), Synergistetes (3), Cyanobacteria
(3), Chloroflexi (1), Planctomycetes (1), Actinobacteria (1), Chlorobi (2) and Nitrospirae
(2). The resulting tree is shown in Supplemental Figure 1. We find that the F1
chemotaxis system in Archaea is monophyletic. In general, the topology of our F1
chemotaxis tree recapitulates that of the organismal tree, with two notable exceptions,
highlighted in Figure 1.

First, our results suggest that the F1 chemotaxis system was laterally transferred
from the Euryarchaeota to the Thaumarchaeota sometime between the branching of the
Methanococcales and the Archaeoglobales (Supplemental Figure 2), which rejects the
idea of a chemotactic LACA. Rather, our data suggest that the ancestral archaeal

chemotaxis system was laterally transferred from an ancestor of Bacteria before the
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divergence of the earliest branching bacterial lineages of Firmicutes, Thermotogales and
Synergistetes

Our data also suggest more recent LGT events. We find that the chemotaxis
system of Methanosarcinales appears to be misplaced in the CheA:CheB:CheR tree
(Supplemental Figure 2). Further inspection shows that most Methanosarcinales have a
version of the F1 chemotaxis system more similar to that of Clostridia than to any other
archaeal clade, consistent with a relatively recent LGT, as has been suggested
(Deppenmeier et al., 2002). Some Methanosarcinales (e.g. Methanosarcina mazei,
Methanosarcina acetivorans) appear to have the vertically inherited system, while others
(e.g. Methanococcoides burtonii) have the laterally transferred system.

Given the bacterial source of archaeal chemotaxis systems, we wanted to see
whether their structure was conserved. Electron microscopy of Archaea has lagged
behind that of Bacteria. Many species require complex media, extremes of temperature,
or anaerobic conditions for growth. Halobacteria are relatively easy to culture but require
high salt concentrations that interfere with ECT, and cells often lose structural integrity
upon removal of salt (Trachtenberg et al., 2000). Additionally, many archaeal cells are
too large to allow adequate transmission of electrons. With these constraints in mind, we
selected four archaeal species, representing three diverse orders of Euryarchaeota:
Thermococcales (Thermococcus kodakarensis), Methanomicrobiales (Methanoregula
formicica, Methanosprillum hungatei), and Halobacteriales (Halobacterium salinarum).

By ECT, we observed membrane-bound chemoreceptor arrays in 7. kodakarensis,
M. hungatei, and H. salinarum (Figure 2). The order and packing of the chemoreceptors

was identical to that of bacteria, with 12 nm between the centers of adjacent hexamers of
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trimers-of-MCP-dimers. Interestingly, chemoreceptor arrays may have been observed
previously in EM images of Archaea, but not identified as such. For instance, in M.
hungatei, what are identified as cytoskeletal structures are likely chemoreceptor arrays
(Toso et al., 2011). Similarly, work in M. hungatei and H. salinarum identified a “polar
organelle,” which is likely the chemoreceptor array (Cruden et al., 1989; Metlina, 2004).
The “polar organelle” was first described in (Aqua)Spirillum serpens in 1962 (Murray
and Birch-Andersen, 1963). That study preceded Julius Adler’s seminal 1966 paper on
bacterial chemotaxis, which stimulated much work in the field (Adler, 1966). However,
the “polar organelle” is described as a structure distinct from the chemoreceptor array as
recently as 2001 (Lybarger and Maddock, 2001). Our results, however, lead us to believe
that they are, in fact, the same structure (Supplemental Figure 3).

We also observe cytoplasmic chemoreceptor arrays in M. formicicum (Figure 3).
Again, their structure is strikingly similar to that of bacterial cytoplasmic arrays: two
hexagonally-packed lattices of trimers-of-MCP-dimers, presumably interacting at their
ligand-binding tips, sandwiched between two CheA/CheW baseplates. As observed in
the bacterium Rhodobacter sphaeroides, these arrays frequently curve, exhibiting both
positive and negative curvature in opposing halves of the array (Briegel et al., 2014). The
data from all four species are summarized in Supplemental Table 2.

Both cytoplasmic and membrane-bound arrays exhibited more variation in
subcellular localization than their bacterial counterparts. Rather than clustering tightly at
the cell pole, as in most chemotactic bacteria, archaeal arrays were frequently observed

nearer to mid-cell.
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The F1 chemotaxis system was likely transferred from the last bacterial common
ancestor in one of the waves of LGT that gave rise to the diversification of Euryarchaeota
more than 3.5 billion years ago (Battistuzzi et al., 2004; Nelson-Sathi et al., 2014). It has
been suggested that these influxes of genes allowed metabolic divergence, and it may be
that chemotaxis helped these diversifying organisms find and colonize new niches. That
the transfer occurred after the branching of Eukaryotes from Archaea may explain why
chemotaxis systems are not found in Eukaryota (Koretke et al., 2000). It is currently
believed that there has been much less LGT to eukaryotes than between prokaryotes, and
most of these events happened relatively recently(Keeling and Palmer, 2008). In fact, of
the dozen or so subfamilies of two-component signaling systems, only one is found in
Eukaryota(Wolanin et al., 2002). Bacteria evolved several classes of chemotaxis systems
that were widely exchanged via LGT. In Archaea, by contrast, evolution was largely
vertical, with successful LGT of the F1 chemotaxis system occurring maybe as few as
three times. It is striking that this signaling architecture, developed in Bacteria, should

remain unchanged over billions of years in Archaea adapting to new lifestyles.
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Figure 1. Mapping evolutionary events of the archaeal chemotaxis system onto the
tree of life. Tree of life scheme is as in (Brochier-Armanet et al., 2011). Presence (thick
lines) and absence (thin lines) of the F1 chemotaxis system are marked by black and
white nodes, respectively. Loss events are marked by a bar across the branch. Dashed
arrows denote LGT events of the indicated systems. The Euryarchaeota are shaded in

grey. LUCA: Last Universal Common Ancestor.
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Figure 2. Membrane-bound chemoreceptor arrays in Archaea. T. kodakarensis (A-

D) was grown anaerobically on elemental sulfur as previously described (Atomi et al.,
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2004). M. hungatei (E-F) was grown on hydrogen and carbon dioxide (Toso et al.,
2011). H. salinarum (G) was grown aerobically in complex medium (Oesterhelt and
Krippahl, 1983) at 37°C. H. salinarum cells were fixed with 2.5% glutaraldehyde then
washed into low-salt buffer with 7% PEG-6000. Cells of all strains were mixed with
fiducial markers (Iancu et al., 2007) and plunge-frozen on EM grids (Tivol et al., 2008)
and imaged by ECT (Gan and Jensen, 2012). Images were aligned, CTF corrected, and
reconstructed with IMOD (Kremer et al., 1996). SIRT reconstructions were calculated
using TOMO3D (Agulleiro and Fernandez, 2011), and subvolume averages generated
using PEET (Nicastro et al., 2006). (A, E, and G) show representative side views of
membrane-bound arrays in 7. kodakarensis, M. hungatei, and H. salinarum, respectively.
(B and F) show top views, demonstrating the hexagonal packing of the trimers-of-MCP-
dimers (power spectrum shown in C and subtomogram averages in D and inset). Scale

bars 50 nm (A, B, E, F, G) or 10 nm (D, F inset); power spectrum (C) not to scale.
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204  Figure 3. Cytoplasmic chemoreceptor arrays in M. formicicum. Live cultures of M.
205  formicicum (DSM 22288) were purchased from the DSMZ and frozen on EM grids upon
206  arrival. ECT data collection and image processing was performed as described in Figure

207 2. (A) shows a side view of a cytoplasmic array (white arrows). (B, associated power
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spectrum in C) and (D) show cross-sections through a top view of an array revealing
hexagonal packing of two layers of trimers-of-MCP-dimers, sandwiched between
CheA/CheW baseplates. Scale bars 50 nm (A, D) or 20 nm (B); power spectrum (C) not

to scale.
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Supplemental Information

Structural conservation of chemotaxis machinery across Archaea and Bacteria
Briegel, A., Ortega, D.R., Huang, A., Oikonomou, C.M., Gunsalus, R.P., Jensen, G.J.

Supplemental Figure 1. CheA:CheB:CheR phylogenetic tree of the F1 chemotaxis
system in Bacteria (black) and Archaea (color). Thaumarchaeota are in blue and
Euryarchaeota are in red. Bold font indicates the F1 system in Methanosarcinales
resulting from secondary LGT. All CheA, CheB, and CheR genes from the MiST2
database (Ulrich and Zhulin, 2010) were downloaded and classified into chemotaxis
classes using HMMER3 (Eddy, 2011) and HMM provided by the authors (Wuichet and
Zhulin, 2010). Of those, 193 CheA, CheB, and CheR homologs from genomes
containing unambiguously interacting CheA, CheB, and CheR genes from F1 systems
were independently aligned using the E-INS-I algorithm from the MAFFT v7.182
package (Marucci et al., 2014). The resultant alignments were then concatenated.
RAxML (Stamatakis, 2014) was used to produce 1,000 rapid bootstrapped trees using an
LG + I'y + I evolutionary model, which were then searched for the best-scoring maximum
likelihood trees. Bootstrap values were calculated using the 100 best scoring trees and
are shown above nodes (values indicate the number of trees, out of 100, that placed the
node as shown). Leaf names represent a description of the system: A|B|C—-D —E,
where A is the MiST ID of the genome, B is the order, C is the sequence tag (two letter
genus and species codes plus MiST ID), D is the locus of the respective CheA, and E is
the chemotaxis system (F1). Scale bar indicates average number of substitutions per site.
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329

330  Supplemental Figure 2. Compressed form of Supplemental Figure 1 emphasizing later
331 LGT events. Color scheme as in Supplemental Figure 1: Bacteria are in black,

332 Thaumarchaeota in blue, and Euryarchaeota in red. F1 systems resulting from secondary
333  LGT in Methanosarcinales are in bold.
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339  Supplemental Figure 3. Comparison of the chemoreceptor array (left, white arrows)
340  and polar organelle (right, white arrow, PM denotes Polar Membrane) in Campylobacter
341  jejuni. Scale bars 100 nm. Right panel from (Brock and Murray, 1988).
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Supplemental Table 1. Sequence similarity of ACF chemotaxis systems in

Methanomicrobiales.

Best BLAST hit of the CheA from ACF systems present in Archaea excluding hits to
themselves. The sequences were subject to BLAST (Camacho et al., 2009) similarity
search against two custom databases built from archaeal and bacterial genomes in MiST.

Best hit in Bacteria

Organism Locus Organism locus E-value
Methanospirillum hungatei  Mhun_0494 | Desulfomonile tiedjei Desti_0040 1E-155
Methanoregula formicicum  Metfor_1885 | Desulfomonile tiedjei Desti_0040 3E-172
Methanosphaerula
palustris Mpal_1329 Desulfomonile tiedjei Desti_0040 0.0
Methanospirillum hungatei Mhun_0989 | Syntrophus aciditrophicus SYN_00431 4E-167
Methanoculleus marisnigri  Memar_0238 | Chthoniobacter flavus CfE428DRAFT_6501 6E-150
Best hit in Archaea
Organism Locus Organism locus E-value
Methanospirillum hungatei Mhun_0494 | Pyrococcus yayanosii PYCH_15450 2E-070
Methanoregula formicicum  Metfor_1885 | Pyrococcus yayanosii PYCH_15450 2E-066
Methanosphaerula Methanocaldococcus
palustris Mpal_1329 infernus Metin_0774 5E-066
Methanospirillum hungatei Mhun_0989 | Archaeoglobus profundus Arcpr_1374 3E-064
Methanoculleus marisnigri Memar_0238 | Pyrococcus sp. Py04 0537 3E-071
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Supplemental Table 2. Summary of archaeal species imaged by ECT in the current
study.
Observed Membrane- Distance Distance
Location MCP from Cytoplasmic
Cell Bound between
Isolated . Genes Membrane Arrays?
Diameter* Arrays? Baseplates
to Baseplate
Halobacteriales
Halobacterium Salted | 554 800 nm 18 Yes 35 nm No
salinarum fish
Methanomicrobiales
Brewery
Methanoregula effluent 1345 460 nm 6 No Yes 27 nm
formicica treatment
sludge
Methanospirz:llum Sewage 350-400 nm 27 Yes 32 nm No
hungatei sludge
Thermococcales
Thermococcus
Solfatara 1-1.5 pm 5 Yes 30 nm No

kodakarensis

*Cell diameter measured between inner membranes
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