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a b s t r a c t 

Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained 

by the genetic variants discovered so far. Here we extended the Multivariate Omnibus Statistical Test (MOSTest) 

and applied it to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging 

(MRI) cortical measures from N = 35,657 participants in the UK Biobank. We identified 695 loci for cortical surface 

area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology robustly 

replicated in 8,060 children of mixed ethnicity from the Adolescent Brain Cognitive Development (ABCD) Study®. 

This reflects more than 8-fold increase in genetic discovery at no cost to generalizability compared to the com- 

monly used univariate GWAS methods applied to region of interest (ROI) data. Functional follow up including 

gene-based analyses implicated 10% of all protein-coding genes and pointed towards pathways involved in neu- 

rogenesis and cell differentiation. Power analysis indicated that applying the MOSTest to vertex-wise structural 

MRI data triples the effective sample size compared to conventional univariate GWAS approaches. The large boost 

in power obtained with the vertex-wise MOSTest together with pronounced replication rates and highlighted bi- 

ologically meaningful pathways underscores the advantage of multivariate approaches in the context of highly 

distributed polygenic architecture of the human brain. 
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. Introduction 

Variability in brain morphology is highly heritable, with twin stud-

es estimating heritability for global measures at 89% for total surface

rea and 81% for mean cortical thickness ( Panizzon et al., 2009 ) and
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 powerful tool for identifying genetic variants that shape the human
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o be uncovered. The most recent large-scale GWAS of brain MRI data
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 N = 51,665) from the ENIGMA consortium identified 187 and 50 loci

ssociated with global and regional cortical surface area and thickness,

espectively ( Grasby et al., 2020 ). The relatively low yield despite high

eritabilities of brain morphology is likely due to high polygenicity and

mall effect size (discoverability) per locus ( van der Meer et al., 2020 ). 

Both imaging genetics ( van der Meer et al., 2020 ) and gene expres-

ion studies ( Hawrylycz et al., 2015 ) suggest that genetic effects are

istributed across cortical regions, such that variants influencing one

ortical region are also likely to affect other cortical regions. Multivari-

te statistical methods are naturally tailored to model distributed and

leiotropic genetic effects. We recently developed a Multivariate Om-

ibus Statistical Test (MOSTest) ( van der Meer et al., 2020 ) that ag-

regates effects across spatially distributed phenotypes, such as corti-

al thickness, boosting our ability to detect variant-phenotype associa-

ions. We showed that applying MOSTest to cortical morphology region

f interest (ROI) measures in the UK Biobank substantially increased

oci discovery ( van der Meer et al., 2020 ) compared to the commonly

pplied mass univariate approach used by the ENIGMA consortium

 Grasby et al., 2020 ), here referred to as the min-P approach. For each

enetic variant tested for association with multiple phenotypes, min-P

onsiders only the most significant p -value and corrects it for the effec-

ive number of phenotypes analyzed, thus failing to exploit distributed

olygenic architecture across brain regions. In contrast, MOSTest lever-

ges the distributed nature of genetic influences across brain regions

nd allows detection of genetic variants with weak effects in multiple

rain regions. We have shown that the discoverability of GWAS variants

nderlying regional cortical area and thickness depends on the specific

arcellation of cortical regions used, and that parcellations based on ge-

etic correlations from twin studies perform better than genetically un-

nformed schemes ( van der Meer et al., 2020 ). Here we further extend

OSTest method introducing regularization of covariance matrix which

rovides substantial increase of discovery yield as compared to unregu-

arized version we introduced in the previous study ( van der Meer et al.,

020 ). Updated method is applied to vertex-wise measures of cortical

orphology showing that the combined genetic yield (number of loci

iscovered) for cortical area and thickness can be boosted when us-

ng MOSTest (yielding a 4.2-fold and 4.1-fold increase relative to min-P

or cortical area and thickness, respectively), and boosted further when

oving from a region-based approach to a more fine-grained vertex-

ise approach (additional 1.9-fold and 3.0-fold increase for cortical area

nd thickness, respectively) without sacrificing replicability of the find-

ngs in the independent sample. Uncovering the detailed genetic archi-

ecture of cortical area and thickness will provide insight into the under-

ying neurobiology of the human brain, and give a better understand-

ng of brain-related human traits, such as cognition ( Vuoksimaa et al.,

016 ), as well as neurological ( Querbes et al., 2009 ) and psychiatric

iseases ( Rimol et al., 2010 ). 

. Materials and methods 

.1. Samples 

For the primary analysis genotypes, T1 MRI scans, demographic and

linical data were obtained from the UK Biobank under accession num-

er 27412. We selected White British individuals (as derived from both

elf-declared ethnicity and principal component analysis ( Bycroft et al.,

018 )) who had undergone the neuroimaging protocol and had passed

enetic quality control procedures described below. The resulting sam-

le contained 35,657 individuals with a mean age of 64.4 years (stan-

ard deviation 7.5 years), 51.7% female. 

For the replication analysis we used data from the Adoles-

ent Brain Cognitive Development (ABCD) study, with complete ge-

etic data and baseline T1 MRI scans from data release 3.0 (NDA

OI:10.151.54/1519007) that passed the ABCD quality control proce-

ures ( N = 8,060). These children had a mean age of 9.9 years (standard

eviation 0.6 years), 46.9% female. 
2 
.2. Data processing 

Both for the primary and replication analyses T1-weighted structural

RI scans were processed with the FreeSurfer v5.3 standard “recon-

ll ” processing pipeline ( Desikan et al., 2006 ) to generate 1284 non-

moothed vertex-wise measures (ico3 downsampling with the medial

all removed) summarizing cortical surface area and thickness. For

he primary analysis we also generated 68 ROI cortical surface area

nd thickness measures (based on the Desikan-Killiany parcellation).

ll measures were pre-residualized for age, sex, scanner site, a proxy of

urface reconstruction quality (FreeSurfer’s Euler number ( Rosen et al.,

018 )), the first twenty genetic principal components, and a global mea-

ure specific to each set of variables: total cortical surface area and mean

ortical thickness for the regional area and thickness measurements cor-

espondingly. Subsequently, a rank-based inverse normal transforma-

ion was applied to the residualized measures. 

For discovery we used UK Biobank v3 imputed data that have under-

one extensive quality control procedures as described by UK Biobank

enetics team ( Bycroft et al., 2018 ) . In addition, we filtered out individ-

als with genotype missing rate > 10%, variants with genotype missing

ate > 5%, and variants failing Hardy-Weinberg equilibrium at p = 1E-9.

e further removed variants with minor allele frequency below 0.5%,

nd imputation info score below 0.5, leaving 9 million variants. 

For the replication we used ABCD genetic data that were part of

ata release 3.0. The data were genotyped on 646,247 genetic vari-

nts using the Affymetrix smokescreen array ( Baurley et al., 2016 ). Suc-

essful genotype calls were determined based on the recommendation

f Affymetrix Axiom Analysis Suite v5.0, with at least 98% call rates.

urther pre-imputation quality controls included inbreeding check, sex

oncordance check, and cohort level missingness check. Imputation was

erformed using the Michigan Imputation Server ( Das et al., 2016 ) with

rc.r1.1.2016 reference panel, Eagle v2.3 ( Loh et al., 2016 ) phasing

nd multiethnic imputation process. Best guess conversion at a thresh-

ld of 0.9 was used to convert dosage files to plink files using PLINK

 Chang et al., 2015 ). Post-imputation QC criteria were an imputation

uality score greater than 0.9 and a Hardy-Weinberg threshold of 1E-6.

his QC filtering was performed using PLINK ( Chang et al., 2015 ) and

esulted in 13 million variants and 8060 individuals. Genetic ancestry

as estimated using fastStructure ( Raj et al., 2014 ) with four ancestry

actors, an individual was considered of European ancestry if its esti-

ated posterior probability of being European was larger than 0.8. This

esulted in 5060 samples classified as Europeans. There is no overlap

etween discovery and replication samples. 

Variants were tested for association with cortical surface area and

ortical thickness at each vertex and each ROI separately using the

tandard univariate GWAS procedure. Resulting univariate p-values and

ffect sizes were further combined in the MOSTest and min-P analy-

es to identify area- and thickness-associated loci. Replication rates for

OSTest and min-P were assessed based on independent MOSTest and

in-P runs in the ABCD dataset. 

.3. MOSTest analysis 

Consider 𝑁 variants and 𝑀 (pre-residualized) phenotypes. Let 𝑧 𝑖𝑗 
e a z-score from the univariate association test between i th variant

nd j th (residualized) phenotype and 𝑧 𝑇 
𝑖 
= ( 𝑧 𝑖 1 , … , 𝑧 𝑖𝑀 

) be the row vec-

or of z-scores of the i th variant across 𝑀 phenotypes. Let 𝑍 = { 𝑧 𝑖𝑗 } be

he 𝑁 ×𝑀 matrix of z-scores with variants in rows and phenotypes in

olumns. For each variant consider a random permutation of its geno-

ypes and let �̃� = { ̃𝑧 𝑖𝑗 } be the matrix of z-scores from the univariate

ssociation testing between variants with permuted genotypes and phe-

otypes. A given number of random permutations of genotypes are done

or each variant and the resulting permuted genotype vectors are tested

or association with all phenotypes, therefore preserving correlation

tructure between phenotypes. In our discovery analysis we perform 24

andom permutations of genotypes (providing ∼200M z-scores to esti-
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ate distribution under null) to ensure that genome-wide significance

evel (5E-8) is covered with non-parametric distribution. 

Let �̃� = �̃� 

𝑇 �̃� be the 𝑀 ×𝑀 covariance matrix of �̃� , and �̃� = 𝑈𝑆 𝑉 𝑇 

s its singular valued decomposition ( 𝑈 and 𝑉 – orthogonal matrixes,

– diagonal matrix with singular values of �̃� on the diagonal). Since
̃
 is symmetric, 𝑈 = 𝑉 , and singular valued decomposition of �̃� can

e written as �̃� = 𝑉 𝑆 𝑉 𝑇 . Consider the regularized version of the co-

ariance matrix �̃� 𝑟 = 𝑉 𝑆 𝑟 𝑉 
𝑇 , where 𝑆 𝑟 is obtained from 𝑆 by keeping

 largest singular values and replacing the remaining with 𝑟 th largest.

he MOSTest statistics for i th variant (scalar) is then estimated as 𝑥 𝑖 =
 

𝑇 
𝑖 
�̃� 

−1 
𝑟 
𝑧 𝑖 , where regularization parameter 𝑟 is selected separately for cor-

ical area and thickness to maximize the yield of genome-wide signifi-

ant loci. In this study we observed the largest yield for cortical surface

rea with 𝑟 = 10; the optimal choice for cortical thickness was 𝑟 = 20 (Fig-

re S4). The distribution of the test statistics under null ( 𝐶𝐷 𝐹 𝑚𝑜𝑠𝑡 
𝑛𝑢𝑙 𝑙 

) is

pproximated from the observed distribution of the test statistics with

ermuted genotypes, using the empirical distribution in the 99.99 per-

entile and Gamma distribution in the upper tail, where shape and scale

arameters of Gamma distribution are fitted to the observed data. The

-value of the MOSTest test statistic for the i th variant is then obtained

s 𝑝 𝑀𝑂𝑆𝑇 = 𝐶𝐷 𝐹 𝑚𝑜𝑠𝑡 
𝑛𝑢𝑙 𝑙 

( 𝑥 𝑖 ) . 
Of note, compared to the original version of the MOSTest ( van der

eer et al., 2020 ), regularization of the covariance matrix introduced

n this study entails technical updates required for correct calibration

f test statistics distribution under null. For example, analytical approx-

mation of MOSTest test statistics distribution under null with Gamma

istribution applied previously ( van der Meer et al., 2020 ) become in-

alid when covariance matrix is regularized. To handle it correctly here

e use piecewise distribution with empirical distribution in the 99.99

ercentile and Gamma distribution in the upper tail as described above.

While in this study the regularization parameter ( 𝑟 ) is selected to

aximize discovery yield, alternative criteria might be used. For exam-

le, r can be selected to maximize replication rate using nested cross-

alidation procedure. However, we expect this to have only marginal

ffect on the results since both discovery yield (Fig. S4) and replica-

ion rate (Fig. S5) remain similar in the broad range of regularization

arameters. 

.4. min-P analysis 

Similar to the MOSTest analysis, consider 𝑁 variants and 𝑀 pre-

esidualized phenotypes. Let 𝑧 𝑖𝑗 be a z-score from the univariate asso-

iation test between i th variant and j th (residualized) phenotype and

 

𝑇 
𝑖 
= ( 𝑧 𝑖 1 , … , 𝑧 𝑖𝑀 

) be the row vector of z-scores of the i th variant across

phenotypes. The min-P statistics for the i th variant is then estimated

s 𝑦 𝑖 = 2Φ( − max 
𝑗=1…𝑀 

( |𝑧 𝑖𝑗 |) ) , where Φ is a cumulative distribution func-

ion of the standard normal distribution. The distribution of the min-P

est statistics under null ( 𝐶𝐷 𝐹 𝑚𝑖𝑛 − 𝑃 
𝑛𝑢𝑙 𝑙 

) is approximated from the observed

istribution of the test statistics with permuted genotypes, using the em-

irical distribution in the 99.99 th percentile and Beta distribution in the

pper tail, where shape parameters of Beta distribution ( 𝛼 and 𝛽) are fit-

ed to the observed data. The p-value of the min-P test statistic for the i th

ariant is then obtained as 𝑝 𝑚𝑖𝑛 − 𝑃 = 𝐶𝐷 𝐹 𝑚𝑖𝑛 − 𝑃 
𝑛𝑢𝑙 𝑙 

( 𝑦 𝑖 ) . It is worth noting that

he permutation-based method used here for multiple testing correction

f the min-P results essentially represents an exact version of commonly

pplied approach using matrix spectral decomposition ( Nyholt, 2004 ;

i and Ji, 2005 ). The latter is not applicable to the MOSTest. There-

ore, to provide more direct comparison of MOSTest with min-P, we use

ermutation-based approach for both methods. 

.5. Locus definition 

Genetic loci were defined based on association summary statistics

roduced with MOSTest and min-P following the protocol implemented

n FUMA ( Watanabe et al., 2017 ) with default parameters. The protocol

an be summarized as the following: 
3 
1. Independent significant genetic variants are identified as variants

with p -value < 5E-8 and linkage disequilibrium (LD) r2 < 0.6 with

each other. 

2. A subset of these independent significant variants with LD r2 < 0.1

are then selected as lead variants. 

3. For each independent significant variant all candidate variants are

identified as variants with LD r2 ≥ 0.6 with the independent signifi-

cant variant. 

4. For a given lead variant the borders of the genomic locus are defined

as min/max positional coordinates over all corresponding candidate

variants. 

5. Loci are then merged if they are separated by less than 250kb. 

Alternatively, to facilitate comparison with the current largest brain

orphology GWAS ( Grasby et al., 2020 ), we also counted genetic loci

pplying locus definition similar to that used by ENIGMA. Briefly, the

ssociation summary statistics produced with either MOSTest or min-P

ere clumped with PLINK ( Chang et al., 2015 ) using p-value thresh-

ld of 5E-8 (–clump-p1) and linkage disequilibrium cutoffs of 1 Mb (–

lump-kb) and r2 < 0.2 (–clump-r2). Obtained clumps of variants were

onsidered as independent genome-wide significant genetic loci. 

.6. MiXeR analysis 

MOSTest and min-P p-values were analyzed with the MiXeR tool

 Frei et al., 2019 ) to estimate the proportion of additive genetic variance

xplained by genome-wide significant SNPs as a function of sample size.

ight censoring (MiXeR option: –z1max 5.45) was applied to mitigate

xtreme effects which may lead to biased estimates. 

.7. Gene-level analysis 

We carried out MAGMA-based gene analyses using default settings,

hich entail the application of a SNP-wide mean model to GWAS sum-

ary statistics, with the use of the 1000 Genomes Phase 3 EUR reference

anel. Gene-set analyses were done in a similar manner, restricting the

ets under investigation to those that are part of the Gene Ontology bio-

ogical processes subset (N = 7343), as listed in the Molecular Signatures

atabase (MsigdB) v7.0. In addition, lead SNPs identified in the vertex-

ise MOSTest analysis were parsed with gene-set enrichment analysis as

mplemented in FUMA GENE2FUNC ( Watanabe et al., 2017 ). In contrast

o MAGMA analysis where genes are prioritized based on proximity, in

his analysis genes were selected combining positional and eQTL (based

n GTEx v8 data) mapping. 

.8. Replication criterion 

Lead variants identified in discovery vertex-wise MOSTest and min-P

nalyses were tested for replication in the ABCD sample. Only variants

hich present in both discovery and replication data were used, result-

ng in 633 variants tested for cortical surface area and 487 variants for

ortical thickness. The variant was considered as replicated if its nomi-

al one-tailed p-value for association in replication cohort was < 0.05. 

. Results 

.1. Genetic loci discovery 

Using the vertex-wise MOSTest ( van der Meer et al., 2020 ), we per-

ormed a multivariate GWAS of cortical morphology, such that the sig-

ificance of each locus was estimated after aggregating its effects across

ll vertices (1284 data points each for thickness and area). This was

onducted separately for cortical surface area and thickness in 35,657

ndividuals from UK Biobank. Measurements from left and right hemi-

pheres were included separately (not averaged). We identified 695 and
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Fig. 1. Manhattan plots for cortical surface area and cortical thickness. 

(A) Area, MOSTest, vertex-wise: N = 695 loci. (B) Area, MOSTest, ROI: N = 370 loci. (C) Area, min-P, ROI: N = 88 loci. (D) Thickness, MOSTest, vertex-wise: N = 539 loci. 

(E) Thickness, MOSTest, ROI: N = 181 loci. (F) Thickness, min-P, ROI: N = 44 loci. Black dotted horizontal lines show genome-wide significance threshold ( P = 5E-8). 

Loci; independent genome-wide significant (P < 5E-8). Y-axes are truncated at -log10(P) = 17.2 to highlight the region around genome-wide significance threshold. 

ROI = region of interest. 
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39 loci, respectively, equating to 780 unique loci associated with cor-

ical morphology. Prior to performing the vertex-wise MOSTest anal-

sis, individual cortical area and thickness measures were residual-

zed for age, sex, scanner site, Euler number (proxy of surface recon-

truction quality), the first twenty genetic principal components, and a

articipant-specific global measure (either total area or average thick-

ess). Measurements from left and right hemispheres were not merged.

or comparison, we repeated this procedure aggregating over 68 ROIs

rom the Desikan-Killiany parcellation. This resulted in the discovery of

70 loci for cortical surface area and 181 loci for cortical thickness, such

hat the vertex-wise MOSTest analysis provided a 1.9-fold and 3.0-fold

ncrease in yield over the region-based MOSTest analysis, respectively.

pplying the min-P approach to Desikan-Killiany ROIs resulted in fur-

her reduction in the number of loci discovered (88 for cortical surface

rea; 44 for cortical thickness). This represents a 4.2-fold and 4.1-fold

ecrease compared to the MOSTest ROI-based analysis, and a 7.9-fold

nd 12.3-fold decrease compared to vertex-wise MOSTest analysis, re-

pectively. Manhattan plots are presented in Fig. 1 , with corresponding

-Q plots in Figure S1. 

Additionally, we applied min-P approach to vertex-wise data result-

ng 93 loci for cortical surface area and 63 loci for cortical thickness.

umbers of loci discovered with different approaches are shown in Ta-

le S1. Specific loci discovered in each analysis are listed in Tables S2–

9.To compare the vertex-wise MOSTest results with the most recent

NIGMA GWAS ( Grasby et al., 2020 ), we also applied the ENIGMA-

ased definition of genetic locus. This resulted in 1598 and 1054

nique loci for cortical area and thickness respectively, and a total of

735 unique loci for cortical morphology identified in the vertex-wise

OSTest analysis (Tables S10 and S11). 

.1.1. Replication analysis 

Generalizability of vertex-wise MOSTest and min-P findings was as-

essed in replication analysis using data on 8,060 participants from the

dolescent Brain Cognitive Development (ABCD) Study as described in

he Methods. This analysis revealed comparable replication rates for loci

iscovered with vertex-wise MOSTest and min-P both for cortical sur-

ace area (43% and 55% replicated for vertex-wise MOSTest and min-
4 
, respectively) and cortical thickness (vertex-wise MOSTest 30%, min-

 37%). Therefore, absolute numbers of replicated loci both for corti-

al surface area and thickness were substantially higher for vertex-wise

OSTest than for min-P (Tables S3, S4, S6 and S7). 

Substantial differences in age and ancestry between discovery and

eplication cohorts might reduce replication rates because genetic asso-

iation analyses likely capture some ancestry- and age-specific factors.

or example, it’s unlikely to capture genetic variants affecting degree

f age-related cortical atrophy in the ABCD cohort. These factors might

ave different effect for MOSTest and min-P and thus distort comparison

f replication rates. To alleviate differences between discovery and repli-

ation analyses and make comparison of replication performance more

nbiased, we performed replication analysis restricting ABCD cohort to

ndividuals of European ethnicity ( N = 5,060). The obtained replication

ates for cortical area were 50% and 54% for MOSTest and min-P, re-

pectively, for cortical thickness replication rates were 51% and 34%

or MOSTest and min-P, respectively. Additionally, we estimated repli-

ation rates for a given number of top lead variants (N = 25, 50, 80) iden-

ified in discovery phase. These results for both mixed- and European-

ased replication analyses are presented in Table S13. 

.2. Power analysis 

To estimate the proportion of additive genetic variance explained by

enome-wide significant SNPs identified by either vertex-wise MOSTest

r min-P as a function of sample size, we used the MiXeR tool ( Frei et al.,

019 ) ( Fig. 2 ). The horizontal shift of the curve indicates that the effec-

ive sample size of vertex-wise MOSTest is around 3.0-fold that of min-

. We estimate that with the current UK Biobank sample (N = 35,657),

1.6% and 7.0% of the additive genetic variance in cortical surface area

nd thickness, respectively, can be explained by genome-wide signifi-

ant loci from the vertex-wise MOSTest analysis. ( Fig. 2 ). In contrast,

he min-P approach identifies 1.3% and 0.2% of the explained additive

enetic variance for area and thickness, respectively ( Fig. 2 ). The power-

nalysis indicates that 32.2% and 24.0% of the additive genetic variance

n cortical surface area and thickness, respectively, will be discovered

n the full UK Biobank sample of N = 100,000 using the MOSTest vertex-



A.A. Shadrin, T. Kaufmann, D. van der Meer et al. NeuroImage 244 (2021) 118603 

Fig. 2. Estimated percent of additive genetic variance explained by genome-wide significant SNPs as a function of sample size. 

Percentages of genetic variance explained by identified SNPs (p < 5E-8) from multivariate GWAS (MOSTest VW) of area (A) and thickness (B) with current sample 

size ( N = 35,657, vertical dotted line) are shown in parentheses, with MOSTest ROI and min-P ROI for comparison. VW = vertex-wise. ROI = region of interest. 
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ise approach ( Fig. 2 ). Further, the proportion of explained variance

ith the min-P approach in the full UK Biobank sample is estimated to

e lower than the yield of vertex-wise MOSTest in the present sample

ize ( Fig. 2 ). 

.3. Gene-level analysis 

Through gene-level analyses of the vertex-wise MOSTest GWAS us-

ng MAGMA ( de Leeuw et al., 2015 ), we found that 1647 and 1412

enes, out of a total of 19036 protein-coding genes, were significantly

ssociated with area and thickness, respectively (Table S12). We also

erformed competitive gene-set analyses restricted to the Gene Ontology

iological processes category (containing 7343 pathways). This resulted

n 204 and 184 significant (p < 0.05/7343) gene sets associated with area

nd thickness, respectively. The most significantly associated pathways

ere related to neuronal development and cell differentiation, with the

op 10 shown in Fig. 3 . Remarkably similar pathways were highlighted

n gene-set enrichment analyses using FUMA GENE2FUNC. Both for cor-

ical area and cortical thickness, out of top 10 gene sets identified in

AGMA analysis ( Fig. 3 ) 5 gene sets are also within top 10 gene sets

dentified in corresponding FUMA GENE2FUNC analysis (Tables S14,

15). 

For comparison, we also performed the same analyses on the ROI-

ased MOSTest and min-P GWAS summary statistics, resulting in 198

rea and 66 thickness gene sets for ROI-based MOSTest and 60 area and

 thickness gene sets for min-P. As shown in Figs. S2 and S3, the vertex-

ise MOSTest approach led to much greater significance for nearly all

athways identified. Interestingly, the most significant pathways iden-

ified by vertex-wise MOSTest are tightly connected with critical neuro-

iological processes implicated in brain development while top findings

n the min-P analysis are less specific. The distributed effects of identi-

ed variants across different brain regions are also illustrated by brain

aps, highlighting the mixture of effects across the cortex ( Fig. 4 ). 

The strongest association signals identified in our discovery MOSTest

nalyses both for cortical surface area (lead variant: rs34680120, p < 1E-

00) and cortical thickness (lead variant: rs8033007, p < 1E-300) are

ocated on chromosome 15 at 15q14. Univariate vertex-wise associa-

ion signals of the lead variants are presented in Fig. 4 . These lead vari-

nts are in strong linkage disequilibrium with each other (r2 = 0.33) and

ith rs1080066 (r2 = 0.50 and r2 = 0.30 for rs34680120 and rs8033007

espectively), which was reported as the strongest association with corti-

al surface area in large recent GWAS on brain morphology by ENIGMA

onsortium ( Grasby et al., 2020 ). Regional association patterns of our
5 
trongest genetic signals both for cortical area and thickness ( Fig. 4 )

ighlight cortex region around the central sulcus. The region encom-

asses areas responsible for all motor and sensory functions and has

apidly evolved in course of primate evolution, presumably reflecting

he increasing importance of somatosensory and motor integration of

and functions ( Hopkins et al., 2014 ). There is also evidence that this

egion is strongly involved in higher cognitive functions ( Mendoza and

erchant, 2014 ) and may contribute to different psychiatric disorders

 Fujiwara et al., 2007 ; Li et al., 2015 ). Taking together this may suggest

n active ongoing fine-tuning of this brain region in the human species

hich in turn is reflected in observed strong genetic associations alter-

ng brain morphology of the region. 

. Discussion 

Applying the vertex-wise MOSTest method, we identified 695 loci for

ortical surface area and 539 for cortical thickness, in total 780 unique

enetic loci associated with cortical morphology, greatly replicated in

ndependent sample with substantially different ethnical and age com-

osition. This reflects an approximate 8-fold increase in discovery with

o penalty on replication rate compared to the commonly applied uni-

ariate GWAS methods. Our study highlights the greatly improved yield

btained with the vertex-wise multivariate approach compared to con-

entional region-based univariate GWAS approach, which stems from

ighly distributed nature of brain morphology phenotypes, represent-

ng continuous maps per individual. The present results support the hy-

othesis that the genetic determinants of variability in brain morphol-

gy are extensively shared across multiple regions ( van der Meer et al.,

020 ). Our findings further underscore the complex molecular mecha-

isms shaping the human brain, which we show are largely related to

eurodevelopmental processes. 

Our gene-level analyses indicated that, with the current sample size,

0% of all protein-coding genes were significantly associated with brain

orphology (either cortical area or thickness). Gene-set analyses for

oth area and thickness confirmed involvement of pathways recently

eported by ENIGMA ( Grasby et al., 2020 ), but with greater statistical

ignificance. We additionally found strong evidence for the involvement

f several genetic pathways regulating neuronal development and dif-

erentiation that were not identified by the min-P approach, implicat-

ng key biological processes regulating human surface area expansion

nd increases in thickness. This also corroborates the strong statisti-

al signals and suggests that we are capturing true biological mecha-

isms that were missed by previous methodologies. These novel find-
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Fig. 3. Gene-set analyses with MAGMA. 

Results from the gene-set analysis based on multivariate GWAS on area (A) and thickness (B). Ten most significant Gene Ontology sets ( N = 7,343) in the vertex-wise 

MOSTest analysis are listed on the y-axis, in comparison with MOSTest ROI and min-P ROI. Corresponding uncorrected -log10( p -values) are shown on the x-axis. P- 

values were obtained using MAGMA analysis as implemented in FUMA. Vertical dotted line shows Bonferroni correction threshold ( p = 0.05/7343). VW = vertex-wise. 

ROI = region of interest. 

Fig. 4. Lateral view of the cortex, depicting the color-coded vertex-wise z-values for the top genetic loci identified in the discovery vertex-wise MOSTest analysis. 

(A): top lead variant (rs34680120, chr15:39664000, effect direction of C allele is shown, frequency of C allele = 0.94) associated with cortical surface area in discovery 

(top) and replication (bottom) samples. (B): top lead variant (rs8033007, chr15:39619661, effect direction of G allele is shown, frequency of G allele = 0.91) associated 

with cortical thickness in discovery (top) and replication (bottom) samples. 
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ngs of neurobiological underpinnings associated with brain morphol-

gy provide a framework for follow-up experimental studies to iden-

ify the complex polygenic mechanisms involved in human brain de-

elopment ( Silbereis et al., 2016 ). Further, the findings implicating

euronal development and cell differentiation can facilitate experimen-

al studies to gain better insight into the pathobiological mechanisms

f brain-related diseases including psychiatric disorders ( Sullivan and

eschwind, 2019 ), where we need to understand the role of polygenic

echanisms ( Gandal and Geschwind, 2021 ). 

Twin studies have suggested the largely independent nature of cor-

ical surface area and thickness ( Panizzon et al., 2009 ). The genetic cor-

elation between them estimated using linkage disequilibrium score re-

ression (LDSR) is rg = -0.32 (p = 6.5E-12) ( Grasby et al., 2020 ). Here we

dentify the specific loci involved and show that these cortical pheno-

ypes share a large proportion of genomic loci. Out of a total of 695 loci

or cortical area and 539 loci for cortical thickness, 454 loci (58.2% of

he total number of unique loci) were overlapping. These findings illus-

rate how measures of genetic correlation fail to fully capture the extent
6 
o which the genetic influences of two phenotypes are interrelated. LDSR

nd twin analyses depend on the consistency of effect directions across

henotypes. In contrast, the analysis performed here consider non-null

oci as overlapping if they are both significant and in linkage disequilib-

ium, regardless of effect directions. Overlapping genetic architecture

cross brain regions despite the absence of strong genetic correlations

re therefore plausible due to common molecular toolkits involved in

eurodevelopment across brain regions ( Stiles and Jernigan, 2010 ). This

s in line with Allen Brain Atlas maps of the adult human brain, showing

egions with high similarity in gene expression between cortical struc-

ures consistent with the notion that the basic architecture across the en-

ire cortex is similar or “canonical ” ( Hawrylycz et al., 2012 ). This may

lso explain the shared genetic architecture observed for many brain-

elated traits and disorders ( Watanabe et al., 2019 ; Smeland et al., 2019 ;

ross-Disorder Group of the Psychiatric Genomics Consortium. Elec-

ronic address, p.m.h.e., and Cross-Disorder Group of the Psychiatric

enomics, C 2019 ). Accounting for the distributed signal across the cor-
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ex ( Fig. 4 ) in a multivariate framework allowed us to boost power for

iscovery compared to traditional univariate approaches, such as min-P.

Compared to the current largest brain morphology GWAS

 N = 51,665) ( Grasby et al., 2020 ), analyzing parcellation-free, vertex-

ise data with MOSTest increased the yield of significant loci 4-fold

or cortical surface area and 11-fold for cortical thickness, despite the

ower sample size in our study ( N = 35K). Of note, while being generally

onsistent, our protocol differs in a few aspects from the previous

WAS ( Grasby et al., 2020 ), where global measures were included in

he principal analysis, data for cortical regions were averaged across

ight and left hemispheres, and the definition of genetic loci was less

onservative. Using the Desikan-Killiany parcellation approximately

.0 times more variants were identified for cortical surface area than

or cortical thickness both with the min-P and the MOSTest (Table

1). In contrast, there were 1.3 times more loci for area compared to

hickness when using the MOSTest for parcellation-free vertex-wise

ata. (Table S1). The observed difference in loci yield may be due to

iffering degrees of mismatch between parcellation schemes and actual

rchitecture of the phenotypes. This seems to be particularly relevant

or thickness, where variant effects obtained from an ROI parcellation

cheme may be underestimated compared to the vertex-wise approach.

his result may explain why parcellation schemes better reflecting the

enetic architecture of the cortex improve detectability in imaging

enetics studies ( van der Meer et al., 2020 ). It is also worth noting that

moothing of the vertex-wise data results in substantial decrease of loci

ield (Figure S4). This might indicate that there is valid information in

he fine spatial structure, which is getting removed when smoothing

s applied. It’s therefore tempting to apply the method to the data

ith higher resolution (up to voxel-wise). The latter might become

easible with more advanced implementation of the method, which we

urrently work on. 

The boost in statistical power using the multivariate vertex-wise ap-

roach is equivalent to a more than three-fold increase in effective sam-

le size for both area and thickness ( Fig. 2 ). Our analysis suggests that

he substantial gain in power provided by vertex-wise MOSTest is pro-

ected to explain approximately 32.2% and 24.0% of the additive ge-

etic variance for cortical surface area and thickness, respectively, upon

ompletion of UK Biobank’s target neuroimaging sample ( N = 100,000)

 Miller et al., 2016 ) ( Fig. 2 ). It is possible that multivariate approaches

ill also boost discovery of genetic associations with other human phe-

otypes that exhibit shared signal between traits. 

To conclude, by deploying new vertex-wise MOSTest approach we

ave identified 780 unique loci associated with human brain morphol-

gy, highlighting its distributed polygenic architecture, and provid-

ng the foundation for functional follow-up experiments. The code im-

lementing vertex-vise MOSTest approach is made freely available on

itHub. While our primary analysis is focused on UK Biobank, pro-

ounced replication rates in demographically distinct ABCD cohort sug-

est high potential for generalizability of presented statistical frame-

ork. Flexibility of this approach allows its seamless incorporation into

arge-scale meta-analyses like ENIGMA ( Thompson et al., 2020 ), offer-

ng unique opportunities for major advances in our understanding of the

enetic determinants of brain morphology. 
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