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Abstract 

Research on intertemporal choice has suggested that decision 
processes automatically favor immediate rewards. In this 
paper, we use a drift diffusion model to conceptualize and 
empirically investigate the role of these biases. Our model 
permits automatic biases in the response process, automatic 
biases in the evaluation process, as well as differential 
weighting for monetary payoffs and time delays. We fit our 
model to individual-level choice and response time data, and 
find that automatic biases are prevalent in intertemporal 
choice, but that the type, magnitude, and direction of these 
biases vary greatly across individuals. Our results pose new 
challenges for theories of intertemporal choice behavior.  
 

Keyword: drift diffusion model; intertemporal choice; 
computational modelling; automatic bias; dual process theories 

Introduction 
Intertemporal choices, i.e. choices between rewards and 
punishments at different points in time, are often described as 
a product of automatic and controlled processes. Decision 
makers are assumed to be automatically biased to select 
immediate rewards. These biases may or may not be 
circumvented by a control process that monitors the decision 
and coordinates thoughts and actions with internal goals, 
which sometimes support the selection of delayed rewards 
(see e.g. Burks, Carpenter, Goette, & Rustichini, 2009; 
Figner et al., 2010; Hare, Camerer, & Rangel, 2009; 
Loewenstein, O'Donoghue, & Bhatia, 2015; McClure, 
Laibson, Loewenstein, & Cohen, 2004; Peters & Büchel, 
2011; Shamosh et al., 2008). Trade-offs between attribute 
values are assumed to be processed by the control process. 

One approach to testing the predictions of such theories has 
been to examine response time (RT) patterns for different 
types of rewards. If decision makers are automatically biased 
to choose a reward, trials in which that reward is chosen 
should have shorter RTs than corresponding trials in which 
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the alternate reward is chosen (e.g. De Neys & Glumicic, 
2008; Greene, Sommerville, Nystrom, Darley, & Cohen, 
2001; Kahneman, 2011; Rand, Greene, & Nowak, 2012; 
Rubinstein, 2007). In the domain of intertemporal choice, this 
would imply that immediate rewards are chosen faster than 
delayed rewards. However, using just RTs to infer automatic 
biases in intertemporal choices is problematic, as RTs also 
reflect choice difficulty. For example, an observation of 
shorter RTs for immediate rewards could be attributed not to 
the fact that the automatic response is to choose immediate 
rewards, but rather to the fact that such rewards are, on 
average, more attractive than delayed rewards, causing trials 
in which immediate rewards are chosen to be easier (and thus 
quicker) than those in which delayed rewards are chosen (see 
Evans & Stanovich, 2013; Krajbich, Bartling, Hare, & Fehr, 
2015 for a discussion). Indeed, in an analysis of intertemporal 
choice data with controls for option attractiveness, Krajbich 
et al. (2015), found no difference between RTs associated 
with the choice of immediate rewards and delayed rewards. 
This contradicts a number of existing theories and suggests 
that automatic processes may not systematically bias 
preferences in intertemporal choice.  

In the present paper, we test for the existence of automatic 
biases in intertemporal choice, with three novel insights: 1) 
We use the drift diffusion model (DDM) (Ratcliff, 1978; 
Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998), a 
popular mathematical model of binary choice, to 
quantitatively predict RTs controlling for attribute 
differences; 2) The use of the DDM allows us to define the 
term automatic bias precisely (through estimable model 
parameters), and we test for the presence or absence of 
different types of automatic bias; and 3) Unlike previous 
work, which has primarily examined group-level patterns, we 
permit individual differences by allowing different 
participants to have different automatic biases.  
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Drift Diffusion Model 
The DDM and related sequential sampling models (Peters & 
Büchel, 2011; Ratcliff & Smith, 2004; Townsend & Ashby, 
1983), are widely considered to be accurate descriptors of 
both perceptual and preferential choice processes. They have 
also been recently shown to account for key behavioral 
patterns in intertemporal choice (Dai & Busemeyer, 2014; 
Rodriguez, Turner, & McClure, 2014; Rodriguez, Turner, 
Van Zandt, & McClure, 2015). Importantly, these models 
provide a formal theory of both response probability and 
response time, and are potentially able to disentangle attribute 
weights from automatic biases that could be at play in 
intertemporal choice.  

Applications of the DDM to preferential choice assume 
that decision makers dynamically and stochastically 
accumulate preferences for the available rewards. The speed 
with which evidence is accumulated is reflected in the drift 
rate, !, which corresponds to the relative preference for one 
reward over the other in the evaluation process. The diffusion 
process continues until one of the decision boundaries, +# or 
−# , is hit. The specific decision boundary to be hit 
determines the chosen reward, and time to hit the boundary 
plus a non-decisional time, %&', corresponds to the response 
time in the trial. Finally, the decision maker may favor one of 
the rewards at time 0 before evaluation begins. We write this 
starting point as z, which is the ratio of the preference at time 
0 to the size of the decision boundary, a. Here !, # and %&' 
can take any positive value, whereas z ranges from -1 to 1.  

We consider intertemporal choice problems that offer 
decision makers a choice between an immediate reward () 
and a delayed reward ('  with some time delay *' . We 
assume that the positive decision boundary (+a) corresponds 
to the choice of the delayed reward and that the negative 
decision boundary (-a) corresponds to the choice of the 
immediate reward. A schematic of the model is presented in 
Figure 1. In this framework, automatic biases2 can be seen to 
influence the decision in two distinct ways. Firstly, it is 
possible for a decision maker to begin the choice process with 
a starting point bias favoring the immediate or delayed 
reward, before seeing the choice options. This is a bias that 
predisposes the decision maker to respond by selecting one 
reward or the other (prior to evaluating the attribute values of 
the two rewards), and thus we will refer to it as an a priori 
response bias (+,). Secondly, it is possible for the drift rate 
to favor one or the other reward, independently of the time 
delays or monetary magnitudes involved in the specific 
choice problem. This is a bias that reflects automatic 
influences on the decision maker’s preferences in the 
evaluation process, and thus we will refer to it as an 
evaluation bias (+- ). In recent work, White & Poldrack, 
(2014) have shown that these two biases can be disassociated 

                                                        
2  Note that by using the word bias, we do not imply that these 
automatic tendencies are irrational. Instead, they capture decision 
components that are insensitive to attribute values (the monetary 
amount or delayed duration). This naming is chosen to be consistent 

through quantitative model fits of the DDM to choice and RT 
data. 

We consider these two biases to be automatic as they have 
an exogenous influence on the decision process, that is, they 
are unaffected by the specific rewards or time delays in the 
choice problem. Of course, the decision maker’s evaluations 
of these rewards and time delays also play a key role in 
choice, and need to be accommodated within the model. 
Recent experimental results have suggested that 
intertemporal preferences can be modeled as a linear function 
of the differences in rewards and time delays in the choice 
problem (González-Vallejo, 2002; Scholten & Read, 2010) 
This direct-difference attribute-wise instantiation has also 
been shown to be successful in accounting for intertemporal 
choice data when implemented in drift diffusion models (Dai 
& Busemeyer, 2014). Following this assumption, the drift 
rate can be written as: !	 = +- 	+ 01,	(('	–	()) + 015*' , 
where 01, and 015  are free parameters that capture attribute 
weights for money and time delay. Unlike the drift rate, 
which is influenced by both the evaluation bias and the choice 
attributes, the starting point is completely determined by the 
response bias, i.e. 6 = +, . Negative values of +,  and +-  
correspond to automatic biases in favor of the immediate 
rewards, whereas positive values correspond to automatic 
biases in favor of the delayed rewards. 

 
 
Figure 1. (a, b & c) Drift diffusion model for intertemporal choices. 
The x-axis represents time and the y-axis represents the preference 
state. The slope of solid lines represents the expected accumulation 
speed, the drift rate v. Each trajectory represents a hypothetical 
accumulation process in a single trial. (-a) corresponds to the choice 
of the immediate reward, and the upper boundary (+a) corresponds 
to the choice of the delayed reward. We assume that automatic 
biases can influence the starting point and/or the drift rate v. A 
response bias shifts the starting point (panel b), and an evaluation 
bias shifts the drift rate (panel c).  

with traditions in intertemporal research, e.g. present bias. The word 
attribute weighting is used to refer to decision components sensitive 
to exact attribute values, manifested in weights for monetary 
amounts and time delays. 
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Experiment 
We wished to test for the presence of automatic response and 
evaluation biases in intertemporal choice. Thus, we 
conducted an incentivized experiment offering individuals 
choices between immediate and delayed rewards. We 
collected choices and RTs for multiple choice problems from 
each participant, which allowed us to fit the DDMs, and infer 
parameters +, and +- , on an individual level.  

Methods 
We designed our experiment to have approximately 50 
participants, which, when combined with extensive within-
participant data provides sufficient power to test our 
hypotheses. 51 subjects (18 females; Mean age = 21.92, SD 
age = 3.57) from a paid psychology experimental participant 
pool eventually took part in the experiment. In each trial, 
participants were presented with two monetary choices, an 
immediate reward, (), that was available on the day of the 
experiment and a delayed reward, (', with some delay, *' . 
Any choice problem of this kind can be uniquely represented 
using three variables: (), *'  and ('/()	(a multiplier for the 
delayed reward). We manipulated all the three factors and 
chose four levels for each factor (based on a separately 

collected pilot dataset), which generated 64 unique choice 
problems. The resulting reward amounts ranged between $3 
and $27.50, and the delay times ranged between 3 and 30 
days. Each choice problem was repeated 10 times for each 
participant. 

The choices were displayed side-by-side, and the position 
of the two rewards (left vs. right) was counterbalanced. There 
was also an automatic time-out after 5 seconds, after which 
the experiment progressed to the subsequent trial. The time 
limit was also determined based on the separate pilot. The 
trials appeared in a randomized order and were separated into 
10 blocks. The experiment was incentivized, and participants 
received a bonus payment either immediately or after a time 
delay, according to their response to one randomly selected 
trial. Participants indicated their choice with key presses, and 
we were able to collect both choice and RT data. 

We also measured our participants’ abilities to exert 
deliberative control using three pre-existing questionnaires: 
1. Barrat Impulsive Scale (BIS-11) (Patton & Stanford, 
1995); 2. Cognitive Reflection Test (CRT) (Frederick, 2005); 
and 3. The Brief Self-Control Scale (BSCS) (Tangney, 
Baumeister, & Boone, 2004). The questionnaires were 
administered after participants completed the intertemporal 
choice task. 

 
 
 
Table 1. Distributions of parameter posterior means across participants for our experiment and for Krajbich et al. (2015). Most participants 
had positive posterior means for w9: and negative posterior means for w9;. However the direction and magnitude of B: and B= varied 
greatly. 
 

Dataset  > ?@ ?A BC@ BCD EFG 

Our experiment 

Mean 1.16 -0.03 -0.29 0.16 -0.020 0.49 
1st	quantile 1.03 -0.15 -1.18 0.10 -0.034 0.40 
Median 1.15 -0.02 -0.42 0.18 -0.013 0.49 

3rd	quantile 1.30 0.10 0.45 0.23 -0.004 0.57 
SD 0.20 0.17 1.18 0.08 0.021 0.12 

 
 
Krajbich et al. (2015) 
 
 

Mean 0.99 0.01 -0.15 0.07 -0.012 0.55 
1st	quantile 0.88 -0.08 -0.60 0.02 -0.016 0.48 
Median 1.03 0.01 -0.22 0.07 -0.013 0.55 

3rd	quantile 1.09 0.08 0.38 0.12 -0.008 0.62 
SD 0.15 0.15 0.93 0.06 0.006 0.11 

 
 
 
 
Table 2. Model comparisons for our experiment and Krajbich et al. (2015): mean and median DICs of the full and constrained models. All 
constrained models have significant larger DICs and thus worse fits than the full model. Eliminating +- (the evaluation bias) increases DICs 
more than eliminating +, (the response bias). 
 
 

Dataset 
 

Full Constrained 
Our experiment Parameter Restriction - +, = 0 +- = 0 01, = 0 015 = 0 

Mean DIC 954.30 973.45 1067.22 1208.71 997.61 
Median DIC 1012.58 1037.82 1159.40 1317.29 1015.32 

Krajbich et al. (2015) 
 

Parameter restriction - +, = 0 +- = 0 01, = 0 015 = 0 
Mean DIC 293.74 298.45 311.07 347.70 348.58 
Median DIC 309.85 309.88 321.16 357.82 383.19 
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Results 
Overview of data. We excluded one participant who admitted 
to have intentionally time-out on many trials, and one 
participant who always chose the immediate reward. Trials 
with RTs less than 0.4s, which accounted for roughly 1% of 
all trials, were also excluded from our analysis. 

Overall, the average probability of choosing the delayed 
reward across participant was 52.1%. This is not statistically 
different from 50% 	(%(48) = 0.45, ` = 0.66) . The 
probability of choosing the delayed reward varied 
significantly across participants, ranging from 1% to 99% 
(ab = 0.33) . 25 out of the 49 participants chose the 
immediate rewards more often than the delayed rewards. 
Likewise, the mean RT was 1.29 seconds. For the 49 
participants, mean RTs ranged from 0.53s to 2.17s (ab =
0.36). 25 out of the 49 participants chose immediate rewards 
quicker than delayed rewards. There are large individual 
differences in choice patterns: some participants chose the 
immediate reward more often and more quickly, whereas 
others chose the delayed reward more often and more 
quickly. Individual-level DDM fits can help determine 
whether these individual differences are a product of varying 
attribute weights, and/or whether they are instead caused by 
diverging automatic biases. 

Model Fits. DDMs were fit to each participant's dataset 
separately using Bayesian parameter estimation implemented 
in a Python package called HDDM (Wiecki, Sofer, & Frank, 
2013).  To fit the models, 50,000 samples were generated for 
each participant, where the first 25,000 were burn-ins, and a 
thinning of 2 was applied. To assess the fit quality, we 
simulated 500 samples from the posterior of the fitted model 
for each participant, and computed the summary statistics 
(probability for choosing the delayed reward and mean RTs 
associated with delayed and immediate rewards) over each 
simulated dataset for each of the participants. The summary 
statistics from the simulated datasets were compared to the 
summary statistics of the observed datasets, and the results 
are shown in Figure 2(a) and 2(b). The correlations between 
the mean simulated statistics and the observed statistics on 
the participant-level were very high for choice probability 
(cdee > 0.99, %(47) = 168.96, ` < 0.001), RTs for delayed 
rewards (cdee = 0.93, %(47) = 17.05, ` < 0.001), and RTs 
for immediate rewards ( cdee = 0.82, %(47) = 9.71, ` <
0.001), suggesting successful model fits.  

Model Parameters. The posterior means of the parameters 
for the 49 participants are summarized in Table 1. 
Unsurprisingly, most participants had positive posterior 
means for 01,  and negative posterior means for 015 , 
indicating a preference for larger rewards with shorter delays 
in the evaluation process. Only one participant had a negative 
posterior mean for 01,  and 7 participants had a positive 
posterior mean for 015 , and none of these were significant as 
assessed by 95% credible intervals for the parameters.  

Unlike the weights for reward magnitude and time delays, 
response bias ( +, ) and evaluation bias ( +- ) varied 

substantially across participants. Posterior means of +,  were 
negative for 26 out of 49 participants and positive for 23 out 
of 49 participants. Likewise, posterior means of +-  were 
negative for 32 out of 49 participants and positive for 17 out 
of 49 participants. Overall, 33 participants had a response 
bias that was significantly different from zero, and 45 
participants had an evaluation bias that was significantly 
different from zero, as assessed by 95% credible intervals. 
Figure 3(a) demonstrates how the combination of the two 
biases varied across participants. 

We also fit four constrained models to the individual 
datasets. In each of the constrained models, the effect of one 
key parameter was eliminated, so that one of the following 
constraints was applied: +, = 0, +- = 0, 01, = 0 or 	015 =
0. The mean and median DICs of the full and constrained 
models are summarized in Table 2. Here smaller DICs 
indicate better fits. The DICs of all the constrained models 
were larger than those of the full models (all ` < 0.001, as 
assessed by Wilcoxon matched pairs signed-rank test applied 
across the 49 participants), which showed that all four 
parameters are necessary for describing participants’ choices 
and RTs. The model that eliminated the effect of evaluation 
biases (+- = 0) had a larger DIC, hence a worse fit, than the 
model that eliminated the effect of response biases (+, = 0). 
The median of the difference was 60.40 (j = 	4.69, ` <
0.001), indicating that evaluation biases had a somewhat 
larger role in explaining behavior relative to response biases 
in the full model.  

Survey Data. We also examined how heterogeneity in the 
best-fit parameters related to the survey-based measures of 
impulsivity and control. We used our three questionnaires to 
generate a single composite measure of deliberative control, 
by performing a principle component analysis on the 
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Figure 2. Model fits for our experiment (a & b) and for Krajbich et 
al. (2015; c & d): Plots of observed data versus predicted data of 
each participant. The predicted data were computed from 500 
simulated samples from the posterior distributions. 
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correlations between BIS-11, CRT and BSCS. The first 
principle component (PC1) explained over 61% of the 
variance in our questionnaire datasets. Scores for BIS-11, 
CRT and BSCS all loaded well to PC1, with loadings of -
0.68, 0.38 and 0.63 respectively. This indicated that PC1 
could serve as a suitable measure for deliberative control in 
our analysis. In general, larger PC1 is associated with less 
impulsivity and more deliberative control.		

Overall, PC1 was significantly correlated with the 
probability for choosing the delayed reward ( cdee =
0.36, %(47) = 2.64, ` = 0.011 ). DDM parameters offer a 
potential process-level explanation for this correlation. 
However, we find that out of all the parameters fit to 
participant data, only +-  is significantly correlated with PC1 
(cdee = 0.38, %(47) = 2.85, ` = 0.006). This indicates that 
the predictive power of PC1 in our experiment was most 
likely due to its relationship with the evaluation biases. 	

 

 
 

Figure 3. (a) Response and evaluation biases for all participants in 
our experiment. All participants had either a response bias or an 
evaluation bias with a 95% credible interval not containing 0. 
However, the type, direction and magnitude of the biases varied 
across participants. (b) Response and evaluation biases for all 
participants in Krajbich et al. (2015). 36/43 participants had either a 
response bias or an evaluation bias with a 95% credible interval not 
containing 0. Solid dots indicate posterior means and error bars 
indicate 95% credible intervals in both plots. 

Analysis of Krajbich et al.'s (2015) Data	
We also tested the robustness and generalizability of the 
above results by reanalyzing Krajbich et al.'s (2015) data, 
with the DDM fit on an individual level. This data consists of 
43 participants, each completing 216 binary choices between 
$25 now and some larger amount of money available in the 
future. There was no automatic time-out in their experiment 
design. (see Krajbich et al., 2015 for a detailed description of 
methods, as well as overview of data). The structure of this 
experiment is very similar to ours, and thus we were able to 
directly apply the techniques described in the above section.   

We found that the DDMs described the observed choices 
and RTs quite well, with very high correlations between the 
mean simulated statistics and the observed choice 
probabilities (cdee > 0.99, %(41) = 96.08, ` < 0.001), RTs 
associated with the delayed reward (cdee = 0.87, %(41) =
11.46, ` < 0.001), and RTs associated with the immediate 
reward ( cdee = 0.98, %(41) = 30.96, ` < 0.001 ). The 

relationship between the model simulated data and the 
observed data is shown in Figure 2(c) and 2(d).  

The posterior means of the parameters recovered for each 
of the 43 participants are summarized in Table 1. Again, a 
majority of participants (37 out of 43) had 01, > 0  and 
015 < 0 when evaluating their parameter posterior means. 
Only 5 participants had a negative 01, and one participant 
had a positive 015 , and none of these were significant as 
assessed by 95% credible intervals. In contrast, the two 
automatic biases varied greatly across participants. The 
posterior means of +,  were negative for 21 out of 43 
participants and +-  were negative for 24 out of 43 
participants. Overall, 16 participants had a response bias that 
was significantly different from zero, and 33 participants had 
an evaluation bias that was significantly different from zero, 
as assessed by 95% credible intervals. Figure 3(b) illustrates 
the direction and magnitude of the two biases across 
participants.  

As in the prior section, we fit four constrained models to 
the individual-level data. The mean and median DICs of the 
full and constrained models are summarized in Table 2. The 
DICs of all the constrained models were larger than those of 
the full models (all ` < 0.02  as assessed by Wilcoxon 
matched pairs signed-rank test applied across the 49 
participants), which showed that all four parameters are 
necessary for describing participant behavior. The model that 
eliminated the effect of evaluation biases had a larger DIC 
(worse fit) than the model that eliminated the effect of 
response biases. The median of the difference was 7.74 (j =
	3.06, ` = 0.002) , again indicating that overall the 
evaluation biases had a more important role in explaining 
choice outcome variations than the response biases.  

Discussion 
We used the drift diffusion model (DDM), fit on an individual 
level, to formally examine whether automatic biases play a 
role in intertemporal choices. The use of the DDM allowed 
us to distinguish between an automatic response bias and an 
automatic evaluation bias, while also controlling for attribute 
weights for monetary payoffs and time delays. In both novel 
experimental data as well as existing data from Krajbich et 
al. (2015), we found that most participants demonstrated 
automatic biases when making intertemporal choices. 
However, the type, direction and magnitude of these biases 
varied across participants. Additionally, model comparison 
suggested that the evaluation bias played a larger explanatory 
role than the response bias. The magnitude of the evaluation 
bias displayed by participants was also significantly 
correlated with survey-based measures of deliberative 
control.   

Our results illustrate the value of quantitative model fitting 
for studying automatic biases in preferential choice. Such 
approaches are not only able to rigorously describe choice 
and RT data, they are also useful for formally representing 
the decision process, and thus conceptualizing the effect of 
different types of automatic biases on the decision process. 
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This way, our results resolve an outstanding theoretical 
question regarding automatic biases in intertemporal choice. 

Our results also highlight the need for individual-level 
analysis. Previous studies have shown that different people 
assign different weights to monetary amounts and time 
durations when comparing immediate vs. delayed rewards. 
Our study further indicates that different people are likely to 
vary in terms of the type and direction of their automatic 
biases as well. By fitting our models to each participant’s data 
separately we were able to pick up important differences 
across our participants, which would have been obscured in 
group-level analysis. In our study, some participants display 
automatic biases towards the rewards that are available 
sooner, as predicted by existing dual process theories of 
intertemporal choice. However, contradicting these theories, 
many other participants display biases in favor of rewards 
with larger monetary amounts, despite their associated 
delays. Admittedly, these biases could be due to the choice of 
stimuli and experimental context. Further studies should test 
how these individual-level biases generalize to natural 
environments.  
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