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ABSTRACT

Cells make decisions through their communication
with other cells and receiving signals from their envi-
ronment. Using single-cell transcriptomics, compu-
tational tools have been developed to infer cell–cell
communication through ligands and receptors. How-
ever, the existing methods only deal with signals sent
by the measured cells in the data, the received sig-
nals from the external system are missing in the in-
ference. Here, we present exFINDER, a method that
identifies such external signals received by the cells
in the single-cell transcriptomics datasets by utiliz-
ing the prior knowledge of signaling pathways. In
particular, exFINDER can uncover external signals
that activate the given target genes, infer the exter-
nal signal-target signaling network (exSigNet), and
perform quantitative analysis on exSigNets. The ap-
plications of exFINDER to scRNA-seq datasets from
different species demonstrate the accuracy and ro-
bustness of identifying external signals, revealing
critical transition-related signaling activities, infer-
ring critical external signals and targets, cluster-
ing signal-target paths, and evaluating relevant bi-
ological events. Overall, exFINDER can be applied
to scRNA-seq data to reveal the external signal-
associated activities and maybe novel cells that send
such signals.

INTRODUCTION

The transformation from a single cell to a multicellular or-
ganism is built upon the development of individual cells, in-
cluding cell proliferation (1), differentiation (2), migration
(3), and death (4). Numerous works have revealed cell deci-
sion is regulated by microenvironmental signals (5,6). Un-
derstanding the cell fate decisions has been a major chal-
lenge (7–10). Recent advance in single-cell transcriptomic
data (scRNA-seq) allows unprecedented resolution in iden-

tifying the diversity of cellular states and uncovering signal-
ing activities in cell lineage decision (11–13).

Cell-cell communication is critical to cell fate deci-
sions and many other biological processes (14–16). Re-
cently, computational methods with different methodolo-
gies and functionalities have been developed in identifying
and quantifying cell–cell communication using scRNA-seq
data. For example, SoptSC (17) infers communication be-
tween individual cells; while many other methods such as
COMUNE (18), SingleCellSignalR (19) and CellChat (20),
infer the cell–cell communication between cell clusters. In
modeling ligand–receptor interactions, CellPhoneDB (21)
and ICELLNET (22) take the multi-subunit structure of lig-
ands and receptors into account, and CellChat (20) consid-
ers not only such structure but also the impact of agonists
and antagonists. For downstream analysis, NicheNet (23)
and scMLnet (24) infer multilayer signaling networks link-
ing ligands and target genes. Those methods have been ap-
plied to many different systems, including diseases, to find
novel signaling molecules (25–27), and their different func-
tionalities have been compared and studied (28,29).

Besides the communication among cells measured in the
collected datasets, the communication between the mea-
sured cells and the external system, which may include the
unmeasured cells (30), extracellular signals (31,32) or in-
duced signals (33), plays important roles in the functions
of those measured cells. For example, the signals (ligands)
from the environment, which are not expressed but received
by the measured cells, induce the epithelial-mesenchymal
transition (EMT) (34), and result in migration, invasion,
EMT of prostate cancer cells (35). However, when infer-
ring cell–cell communication, the current methods only deal
with ligand-regulated signals sent by the measured cells in
the data; that is, the signal must be related to a ligand highly
expressed in the measured cells. As a result, those methods
fail to consider the received ligands from the external system
nor the non-cellular components that can hardly be directly
measured using scRNA-seq. For example, a recent study
(34) has shown that inducers TGFB1, EGF and TNF, not
expressed in the measured cells, can all serve as promotors
during the epithelial-mesenchymal transition (EMT); and
it has been found that Gdf9 increases the reprogramming
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efficiency and the fraction of cells with neural fates (33).
Identifying such external signals and analyzing the corre-
sponding signaling pathways are critical to revealing im-
portant factors in cell fate transitions (34,36,37) and disease
(35,38,39).

Here we develop exFINDER, a method and an open-
source R package to (a) identify external signals that ac-
tivate target genes; (b) infer the signaling pathways link-
ing external signals and target genes and (c) quantitatively
analyze the network. Specifically, we first collect and in-
tegrate multiple complementary data sources containing
ligand-to-target signaling paths based on prior knowledge,
and then infer the ligand–target Gene Regulatory Network
(GRN) starting from the given target genes. Next, based
on the inferred ligand–target GRN, exFINDER identifies
the external signals and infers the external signal-target sig-
naling network (exSigNet) within a given scRNA-seq data
using mass action models. Moreover, exFINDER quan-
titatively analyzes the exSigNet by predicting signaling
strength, calculating the maximal signal flow, clustering dif-
ferent ligand–target signaling paths, quantifying the signal-
ing activities using the activation index (AcI), and evalu-
ating the GO analysis outputs of exSigNet. In addition,
exFINDER provides several intuitive visualization outputs
to interpret exSigNet and quantitative analysis outputs. We
demonstrate the accuracy and robustness of exFINDER
by applying the method to publicly deposited scRNA-seq
datasets of different species, including human, zebrafish,
and mouse.

MATERIALS AND METHODS

The method exFINDER performs three major functions:
(i) inferring ligand–target GRN from the given target
genes based on prior knowledge using exFINDER database
(exFINDER-DB), (ii) identifying external signals and infer-
ring the external signal-target signaling network (exSigNet)
from the ligand–target GRN using scRNA-seq data, (iii)
quantitatively analyzing the exSigNet on its various prop-
erties and visualizing the outputs.

Database integration and inference of ligand–target GRN
based on prior knowledge

A database of signaling pathways from ligands to target
genes is required to find what ligands activate specific target
genes. Here we collect and integrate multiple complemen-
tary data sources to obtain such a database and use it to
infer the ligand–target GRN.

Database integration based on publicly available sources.
To obtain a signaling network database that comprehen-
sively represents the signaling from ligands to target genes,
we consider three layers of information: ligand–receptor in-
teractions, signal transductions from receptor to transcrip-
tion factors (TFs), and transcription factor–target regula-
tory interactions. For exFINDER database (exFINDER-
DB), we integrate several publicly available databases to
augment the NicheNet database (23) by including (i) the
CellChat database (20) and the IUPHAR database (40)
on ligand–receptor interactions, (ii) the Garcia-Alonso

database (41) on transcription factor–target regulatory in-
teractions. Furthermore, for each signaling path, we label
the sender-receiver pair based on their gene symbols and
label the corresponding sources. The exFINDER-DB is
made available for human, mouse, and zebrafish. Because
exFINDER-DB mines and combines multiple databases
(Supplementary Table S1), naturally it contains more inter-
actions with more different species.

Inference of ligand–target GRN from the given target genes.
We first select a set of genes (denoted as VT) as the tar-
get genes. The target genes in performing exFINDER anal-
ysis need to be part of the measured genes in the data,
and they are selected based on prior knowledge (e.g. other
experimental data), prediction (e.g. differentially expressed
genes), or genes of the user’s interest. Specifically, we ap-
ply exFINDER to infer the transcription factors (VTF ) that
regulate the target genes as well as the receptors (VR) in-
teracting with these transcription factors. Finally, we in-
fer the ligands (VL) that interact with the receptors. All
these inferences are obtained using the exFINDER-DB.
Moreover, for interaction from vi

L (the i th ligand in VL)
to v

j
R, we denote it as ei j

LR, and define ELR as the set of
all inferred ligand–receptor interactions. Similarly, we de-
fine ERTF , and ETFT. Next, we convert these genes and the
signaling paths between them into a directed graph G =
〈V, E〉, where V = VL ∪ VR ∪ VTF ∪ VT is the node set
and E = ELR ∪ ERTF ∪ ETFT is the edge set. This directed
graph G is named as the ligand–target GRN, which is in-
ferred by only using prior knowledge.

Identification of external signals and inference of the external
signal-target signaling network (exSigNet) from the ligand–
target GRN using scRNA-seq data

Once we have the ligand–target GRN and the scRNA-seq
data as inputs, exFINDER can identify the external signals
and infer the signaling paths from the external signals to
target genes using the scRNA-seq data, which are denoted
as the exSigNet. Such analysis takes three steps:

Calculation of the average expression levels for all ligands.
First, we calculate the average expression level of every lig-
and in each cell group. We first calculate the average ex-
pression levels of each gene in every cell population group.
For every cell population group, we remove the genes with
zero average expression and then calculate the 50th per-
centile (42,43) and the 90th percentile (44,45) expression lev-
els. Next, the cutoff levels for ‘lowly expressed’ genes are
chosen to be below the maximal 50th percentile among all
cell groups, and the cutoff levels for ‘highly expressed’ genes
are chosen to be above the minimal 90th percentile of all
cell groups. This method takes into consideration the ex-
pression variation across cell populations as well as cutoff
values with very large differences, providing a natural way
to select the ‘lowly expressed’ and ‘highly expressed’ genes.
Next, we mark those lowly expressed ligands among all cell
groups as potential external signals.

Identification of external signals. Within the ligand–
target GRN, we first select highly expressed transcription
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factors and their linked highly expressed receptors, which
indicate possible signaling activities. For the potential exter-
nal signals that interact with these receptors, their signaling
pathways are inferred based on prior knowledge, and their
downstream genes are highly expressed, which ensures they
are external signals.

Inference of the exSigNet. Based on the above analysis, we
connect the signal pathways from the external signals to the
target genes, and then we convert such network into a di-
rected graph Ĝ = 〈V̂, Ê〉, where V̂ is the set of nodes and
Ê is the set of edges. The exSigNet is denoted by Ĝ, which
is a subgraph of G.

Quantitative analysis of the exSigNets using scRNA-seq data

To better quantify the signaling activities and understand
the functions of the exSigNets, exFINDER predicts the sig-
naling strength and provides several quantitative analysis
options.

a) Prediction of signaling strength within the exSigNet.
First, we calculate the average expression levels of the
receptors, transcription factors, and target genes within
the exSigNet in each cell group. Second, since signaling
activities may not occur in all measured cells, we select
these genes’ maximal average expression levels among
all cell groups to predict the signaling strength. Mean-
while, besides using the maximal average expression level
of all cell groups, users can manually assign or define
specific cell groups in exFINDER if needed. For ex-
ternal signals, we set their expression levels to one to
avoid drastically affecting the prediction. Furthermore,
if users want to check the external signals’ expression
in specific cell groups, which may be measured in other
scRNA-seq data, they can always load the correspond-
ing data and assign the cell groups in exFINDER to cal-
culate the external signals’ expression levels. To predict
the signaling strength of an interaction, we use the mass
action law based on the following model (20):

ŵi j = ŝ i ŝ j

Kh + ŝ i ŝ j
,

where ŝ i and ŝ j represent the expression levels of gene
v̂i and v̂ j in Ĝ, respectively. ŵi j is the predicted sig-
naling strength of the interaction between v̂i and v̂ j

(êi j ). Here Kh is the apparent dissociation constant (or
half-saturation constant), meaning if ŝ i ŝ j = Kh, then
ŵi j = 0.5 reaches the half of the maximal strength. For
simplicity we set its default value to two. By testing the
model with different values of Kh between 1 to 10 us-
ing both synthetic and experimental data (46), we find
although changing the Kh value might affect the ab-
solute levels of the interactions, their relative signaling
strengths remain hardly changed (Supplementary Fig-
ure S1).

b) Calculation of the maximal signal flow between single
external signal-target pairs. After predicting the signal-
ing strength of an exSigNet Ĝ, we next infer how the
exSigNet connects a specific external signal-target pair.

If such a network does not exist, then the maximal signal
flow is zero. Otherwise, we use the Goldberg-Tarjan al-
gorithm (47) to calculate the maximum signal flow from
a given external signal to a given target in order to quan-
tify the overall signaling strength in between. By com-
paring the sum of maximum signal flows from one exter-
nal signal to all target genes (i.e. the total signal outflow),
we predict the critical external signals in exSigNet Ĝ.
Similarly, critical target genes are also predicted based
on the total signal inflows.

c) Clustering of different external signal-target pairs within
the exSigNet Ĝ. Since exSigNet Ĝ may include multi-
ple external signals and target genes, quantifying the
similarities of signaling activities between these exter-
nal signal-target pairs helps analyze the functionalities
of exSigNet Ĝ. Here, we first infer the exSigNets of ev-
ery external signal-target pair from Ĝ, and then build
a strength matrix W presenting the signaling strength
of all the edges of Ĝ. The matrix W has (|V̂L| · |V̂T|)
rows and |Ê| columns. Next, we normalize matrix W (for
noise reduction) and perform k-means clustering for all
external signal-target pairs.

d) Quantification of the signaling activity of the
exSigNet Ĝ using the activation index (AcI). To
quantify the signaling activity of Ĝ, we use the ac-
tivation index (AcI), considering both the signaling
strength and the overall complexity of the network. The
AcI of Ĝ is modeled by:

AcIĜ = |V̂||Ê|
K1+|V̂||Ê| · ŵSR

K2+ŵSR
· ŵRTF

K3+ŵRTF
· ŵTFT

K4+ŵTFT
.

Here |V̂| and |Ê| is the total number of nodes and edges
of Ĝ. Ki (i = 1, 2, 3, 4) are parameters with default
value two. ŵLR, ŵRTF ,and ŵTFT represent the total sig-
naling strength in three layers, respectively.

e) Evaluation of GO analysis outputs of exSigNet Ĝ us-
ing two quantities. To connect the exSigNet Ĝ to the
GO analysis outputs, exFINDER uses two quantities
to measure the GO terms projected to Ĝ. For each GO
term, we identify the GO term-related genes in exSigNet
and denote them as VG O. Then we calculate the propor-
tion of genes involved in this GO term by |VG O |

|VĜ | , and com-
pare the total expression level of these involved genes to

the entire exSigNet using
∑

v∈VG O
|s|

∑
v∈VĜ

|s| , here s is the expres-

sion level of gene v calculated in part (a).

Parameter explanation

In this study, when identifying the differentially ex-
pressed genes, we used the FindMarkers function in Seu-
rat (v4.1.3) and followed the official workflow, using
the Wilcoxon Rank Sum test with min.pct = 0.25 and
logfc.threshold = 0.25. When clustering the external signal-
target pairs within the exSigNet, we used the kmeans func-
tion with 20 random sets and default ‘Hartigan-Wong’ al-
gorithm. When performing GO enrichment analysis, we
used the enrichGO function in clusterProfiler (v4.2.2) with
the default settings (pvalueCutoff = 0.05, pAdjustMethod
=‘BH’ , qvalueCutoff = 0.2, minGSSize = 10, maxGS-
Size = 500). For critical transition analysis using BioTIP,



e58 Nucleic Acids Research, 2023, Vol. 51, No. 10 PAGE 4 OF 16

Table 1. A list of terminologies and concepts used in exFINDER

Concept Definition References

external system unmeasured cells, extracellular signals or induced signals that communicate with
the measured cells

New

external signal ligands that are received by measured cells but come from the external system New
external signal-target signaling
network (exSigNet)

signaling network that starts from external signals to the target genes New

activation index (AcI) index that quantifies the signaling activity of the exSigNet New
maximal signal flow derived from the ‘maximum flow problem’, which is defined as the maximal value

of flow from the source (external signal) to the sink (target gene), and the
signaling strength is regarded as the capacity of the edge

(47)

total signal outflow the sum of maximum signal flows from one external signal to all target genes New
total signal inflow the sum of maximum signal flows from all external signals to one target gene New
critical external signal the external signal with the highest total signal outflow in the exSigNet New
critical target gene the target gene with the highest total signal inflow in the exSigNet New
critical transition (CT) process in which cells shift abruptly from one state to another (80)
critical transition index (Ic) index used to predict the critical transition (59)
critical transition signal (CTS) a small group of genes identified by an existing method (BioTIP) to characterize

regulated stochasticity during semi-stable transition
(60)

we followed the official workflow with default settings. For
determining the cutoff levels of lowly and highly expressed
genes, we calculated the 50th, 75th, and 90th percentiles for
all datasets used in our study (Supplementary Figure S2).
To facilitate better understanding of the method, we sum-
marize the defined terminologies and concepts introduced
in this study as a table (Table 1).

RESULTS

Overview of exFINDER

For the inputs, exFINDER requires gene expression data
from cells, user-assigned cell labels, and user-selected target
genes that may be activated by the sought external signals
(Figure 1A). For example, those genes can be critical genes
in differentiation or maker genes for specified cell groups.
Such information can be obtained using other computa-
tional methods such as Seurat (48–51) or CellChat (20).
During the exFINDER analysis, users may also load addi-
tional cell groups that are specific for external signal identi-
fication. Other relevant analysis, such as marker genes iden-
tification, lineage trajectory and critical transition construc-
tion (Figure 1B), are useful when analyzing external signals
associated with cell fate decision activities, such as differen-
tiation. With the input data, exFINDER performs the tasks
in the following modules:

1. Database integration and inference of ligand–target GRN
from the given target genes. Here we link ligands and
targets by considering the ‘L-R-TF-T’ signaling struc-
ture. We integrated multiple data sources (see Materi-
als and Methods) and obtained the exFINDER database
(exFINDER-DB), which is available for human, mouse,
and zebrafish. With the exFINDER-DB, we next employ
exFINDER to infer all relevant transcription factors, re-
ceptors, and ligands with the ‘L-R-TF-T’ signaling struc-
ture from the given target genes. Then exFINDER con-
verts this network into a directed graph G = 〈V, E〉,
where V is the set of nodes in G that represents the genes,
and E is the set of edges and contains all the inferred sig-
naling paths (Figure 1C, see Materials and Methods).

2. Identification of external signals and inference of the exter-
nal signal-target signaling network (exSigNet) from the
ligand–target GRN using scRNA-seq data. exFINDER
identifies the external signals based on their low or no
expressions in the data and the high expression of their
downstream genes. Then it infers the signaling network
connecting external signals and target genes into a di-
rected graph Ĝ = 〈V̂, Ê〉, which represents the exSigNet
and is also a subgraph of G (Figure 1C, see Materials
and Methods).

3. Quantitative analysis of the exSigNet Ĝ and visualizations.
To predict the signaling strength of each interaction (i.e.
edge) in the exSigNet Ĝ, we calculate the expression level
of the genes (i.e. nodes) in Ĝ and model the signaling
strength via mass action (see Materials and Methods).
exFINDER provides informative and intuitive visualiza-
tions via both customized circle plots and hive plots for
the exSigNet (Figure 1C, D). To uncover the function-
ally related ligand–receptor interactions activated by Ĝ,
we compare the external signal-receptor interactions to a
published database (20). For the functionally related in-
teractions activated by Ĝ, exFINDER infers their own
exSigNets (Figure 1D) and compares their activation in-
dex (AcI) using a bar plot (see Materials and Methods).
To reveal the critical transition-associated signaling, we
next determine the roles of the critical transition signals
(CTSs) in the ‘L-R-TF-T’ signaling structure, a small
group of transcription factors that regulate the transition
of cell states (Table 1). Then we infer their corresponding
ligand–target GRN based on Ĝ using a tree for visual-
ization (Figure 1D). Furthermore, exFINDER performs
a variety of analyses of Ĝ in an unsupervised manner.
First, it predicts the critical external signals and target
genes of Ĝ by their maxima signal outflows and inflows,
respectively (see Materials and Methods); Second, for all
external signal-target pairs, exFINDER infers their own
exSigNets and uses clustering learning to showcase their
similarities (Figure 1D); Third, exFINDER evaluates the
exSigNet Ĝ’s GO analysis outputs by calculating the
proportion of involved genes and their expression levels
(Figure 1D, see Materials and Methods). Overall, these
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Figure 1. Overview of exFINDER. (A) exFINDER requires scRNA-seq data, user-assigned cell cluster labels and user-selected target genes as inputs.
(B) Additional information, such as differentially expressed genes, pseudo time, and critical transition analysis information, can be included for specific
biological problems. (C) exFINDER first infers the ligand–target GRN based on the structure of ligand–receptor–transcriptional factors–target (L–R–
TF–T) from exFINDER-DB. It identifies external signals using the scRNA-seq data and infers their corresponding exSigNet. (D) exFINDER predicts
the signaling strength, visualizes the exSigNet, and quantitatively analyzes the networks through graph theory methods for interpretation of exSigNet,
including identifying critical ligands and target genes, classifying networks between different ligand–target pairs, finding external signal-activated pathways,
uncovering critical transition-related signaling networks, and evaluating GO analysis outputs.
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functionalities allow exFINDER to uncover external sig-
nals, reveal mechanisms in activating the target genes, and
predict novel cell groups.

Benchmarking exFINDER using subsets of cells measured in
the datasets for human and mouse

To benchmark exFINDER, we used subsets of cells in a
dataset to infer ligand–receptor communication receiving
from the rest cells in the dataset. Specifically, we evaluated
its performance on using a subset of the published human
skin scRNA-seq dataset (52) containing four cell groups:
two subpopulations of dendritic cells (cDC2 and LC) and
two subpopulations of fibroblasts cells (FBN1+ FIB and
APOE+ FIB). We first found differentially expressed genes
of each cell group (Supplementary Figure S3A), then per-
formed CellChat analysis to infer cell–cell communication
between these cell groups (Figure 2A, B, Supplementary
Figure S3C, D) and exported the ligands targeting each cell
group.

For each cell group, we employed exFINDER to infer the
ligand–target GRN targeting its top 10 marker genes us-
ing prior knowledge and found the ligands targeting each
cell group. For example, six of the top 10 marker genes of
FBN1+ FIB cells are regulated by nine ligands, including
only one highly expressed in APOE+ FIB cells (APOE),
one comes from both APOE+ FIB and FBN1+ FIB cells
(COL1A1), while others come from the external environ-
ment (Figure 2C, D). Although exFINDER might infer
more ligands than CellChat, including the ones that are
lowly expressed or even unmeasured, we only compared
them to the four groups of ligands inferred by CellChat to
check how many of them were captured by exFINDER. In
this way, we study its capability in inferring ligands pro-
duced by the measured cells. We found that exFINDER suc-
cessfully recovers all CellChat-inferred ligands only using
the exFINDER-DB (Figure 2E, the 5th column), suggest-
ing good coverage and robustness of exFINDER-DB.

Then we tested exFINDER’s capability of identifying ex-
ternal signals. Each cell group was removed from the data
such that they became the ‘external cells’ (i.e. taking the cells
out of the data to make them as unmeasured cells) for the
rest cells in the data. Obviously, CellChat is unable to in-
fer the ligands produced by such ‘external cells’. Taking the
APOE+ FIB cells as an example, APOE is an APOE+ FIB
cell-specific ligand (i.e. only highly expressed in the APOE+

FIB cells) that targets the FBN1+ FIB cells (Figure 2D).
By setting the APOE+ FIB cells to be the ‘external cells’,
CellChat couldn’t find APOE as a ligand. On the other
hand, exFINDER successfully identified APOE as an ex-
ternal signal and inferred the exSigNet (Figure 2F).

Similar analyses were also performed on the other cell
groups. For the cell type-specific ligands, CellChat failed if
the corresponding cell group was missing in the data, while
exFINDER could always identify them as external signals.
In most cases (8 out of 10), exFINDER is able to recover
over 80%, with 40% in the worst case (Figure 2E).

Meanwhile, we also compared the performance on in-
ferring ligands and external signals of exFINDER and
ICELLNET, a computational method to infer ligand–
receptor interactions (22). We first performed ICELLNET

analysis and selected the ligand–receptor pairs with posi-
tive communication probability. For the ligands inferred by
ICELLNET targeting different cell groups, exFINDER al-
ways captures over 80% of them by only using the prior
knowledge (Figure 2E, the 5th column). And in most cases
(12 out of 16), for the ligands that ICELLNET cannot
capture (when the corresponding source cell group was re-
moved), exFINDER is able to recover over 90%, with 33%
in the worst case (Figure 2E).

Moreover, a similar comparison between exFINDER
and CellChat was carried out by using embryonic mouse
skin scRNA-seq dataset (53). We first selected a sub-
set of cells containing four cell groups (Immune, ENDO,
MYL and MELA), then performed CellChat analysis (Sup-
plementary Figure S3B, E–F) and compared with the
exFINDER results. We found that over 85% recovery rate
in capturing CellChat-inferred ligands, and over 65% recov-
ery rate in identifying external signals in most cases (7 out
of 10) (Supplementary Figure S4).

In fact, both CellChat and ICELLNET infer communi-
cation links only based on the expression levels of the lig-
ands and receptors whereas exFINDER ensures the ligand-
related signaling pathway eventually activates the down-
stream marker genes. Such comparison partially shows the
coverage and robustness of exFINDER-DB and good ac-
curacy in identifying external signals by exFINDER.

exFINDER identifies differentiation-associated external sig-
nals during zebrafish neural crest (NC) development

To study exFINDER’s ability in recovering external sig-
nals that affect cell differentiation, we analyze a scRNA-seq
dataset for the cranial NC cells that contribute to zebrafish’s
first pharyngeal arch (PA1) (46). A previous study shows
cells differentiate from early NC cells to pigment cells and
skeletal cells with the presence of transitional cells during
this differentiation process occurring at around 18 hpf (Fig-
ure 3A, Supplementary Figure S5A–C). In this study, only
the NC cells (six subgroups) were analyzed without includ-
ing the non-NC cells (four subgroups) that were measured
(46) (Supplementary Figure S5D). Our CellChat analysis
on all cells suggests strong communications between NC
cells and non-NC cells (Figure 3B, C), indicating that NC
cells may have received external signals produced by the
non-NC cells. Meanwhile, signals from the external envi-
ronment (i.e. not expressed in the measured cells) may also
be received to affect the differentiation.

To find the external signals produced by non-NC cells or
the external environment that may drive differentiation, we
first identified the marker genes of all cell groups and in-
ferred the ligand–target GRN from the top 10 marker genes
of skeletal cells (Supplementary Figure S5E, F). Based on
this ligand–target GRN, exFINDER found that ackr3b is
only highly expressed in the non-NC cells, and linked to
five targeted marker genes (twist1a, phlda3, fibina, foxc1b
and dlx2a) (Figure 3D, E). The external signal ackr3b acti-
vates the target genes through highly expressed downstream
genes (Figure 3D). These findings are consistent with pre-
vious studies showing that ackr3b is expressed in a wide
range of tissues during somitogenesis, including central ner-
vous system and somites (54), along with recent evidence
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Figure 2. Benchmarking exFINDER using human skin data. (A, B) The significant ligand–receptor interactions among four cell populations inferred by
CellChat. Each dot color represents one cell group, and the edge color is the same as the cell group sending the signal. The dot size is proportional to
the population size of the indicated cell group. The edge width is proportional to the indicated number (A) and strength (B) of ligand–receptor pairs. (C)
A schematic of the exFINDER-inferred signaling network targeting FBN1+ FIB cells. (D) Heatmap of the expression level of all inferred signals across
four cell population groups, with ligand APOE identified as an external signal. (E) Heatmap showing the percentages of ligands inferred by CellChat
and ICELLNET as well as captured by exFINDER. The X-axis represents the cell population groups expressing the ligands, and Y-axis represents the
cell population groups receiving the signals. The color bar is the percentages of CellChat (top) and ICELLNET (bottom)-inferred ligands that are also
identified by exFINDER. The 5th column shows the ligand recovery rate of exFINDER only using prior knowledge, and the rest four columns show the
ligand recovery rate of exFINDER using both prior knowledge and the scRNA-seq data. And the grey block indicates no such ligands inferred by CellChat
or ICELLNET. (F) Heatmap of the expression level of the components in the exSigNet built by exFINDER.

on the interactions between ackr3b and cxcl12b (55). Fur-
thermore, signal CABZ01041494.1 (also denoted as c5ar1
based on its Ensembl: ENSDARG00000040319) was found
from the external environment as seen in its exSigNet (Fig-
ure 3F). Based on the exFINDER-DB, its receptors rps19,
which is connected with seven marker genes through nine
TFs, is only activated by CABZ01041494.1. This result is
consistent with a previous study showing the interactions
between C5aR1 and RPS19 in human (56). Furthermore,
the signaling strength of each interaction was predicted, as
seen in the exSigNets plot (Figure 3G, H).

Cell differentiation often involves transient bifurcation
between stable cell states (57), which may be analyzed us-
ing the concept of critical transition (CT) (Table 1). Previ-
ously computational methods have been developed to pre-
dict and quantify the critical transition and infer the tran-
scription factors that regulate this transition through con-
cepts such as critical transition signals (CTSs) (58–60). To
investigate the capability of exFINDER in identifying CTS
and its connections with external signals, we first used Bi-
oTIP (60) to predict CT using the index of criticality (Ic)
and infer CTS from single-cell transcriptomes data. By
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Figure 3. exFINDER identifies cell differentiation-associated external signals during zebrafish neural crest (NC) development. (A) Schematic of neural
crest cell lineage, showing the cell differentiation process along the timeline (46). (B, C) CellChat analysis for the number and strength of ligand–receptor
interactions between different cell populations. (D) Expression heatmap of the exSigNet associated with the inferred signals produced by non-NC cells
targeting skeletal cell marker genes. (E) Expression levels of inferred signal ackr3b in each cell group. (F) Expression heatmap of the exSigNet associated
with the inferred signals coming from the external environment targeting skeletal cell marker genes. (G, H) Circle plots showing the exSigNets. Node size
is proportional to the gene expression level, and the color bar represents the predicted signaling strength. (I) Index of criticality of different NC cell groups
generated by BioTIP. (J) Critical transition signal-involved exSigNet inferred by exFINDER.
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direct usage of BioTIP, we computed the Ic of each NC cell
group, and found that the transitional cells undergo a criti-
cal transition (Figure 3I), a result consistent with a previous
finding (46). Next, we used exFINDER to infer the con-
nections between the external signals to the top 10 marker
genes of pigment cells and skeletal cells. Three external sig-
nals (igf1, itgb1b2, and gdnfa) are found to activate both
pigment and skeletal cells through two CTSs (tal1 and lmo2,
inferred by BioTIP) (Figure 3J). This study further shows
the capability of exFINDER in identifying external signals
and their connections with critical transition during cell dif-
ferentiation.

exFINDER suggests critical external signals and targets dur-
ing sensory neurogenesis in mouse

Using a mouse data on the early stages of sensory neu-
rogenesis, we show how exFINDER can be utilized to
predict the dominant signal sources and targets based on
their signal inflows and outflows. The scRNA-seq data
for mouse includes the somatosensory neuro-glial progeny
of the trunk at E9.5, E10.5, E11.5, with 10 cell groups
(Supplementary Figure S6A, B) (61). The original study
inferred trajectories containing multiple cell fate decision
points (Supplementary Figure S6C–E). One important fate
choice-related trajectory is from unassigned cell group 3
(UA.3) to mechanoreception and proprioception cells (Fig-
ure 4A), leading to a fate choice between proprioceptor
and mechanoreceptor lineages. Next, we study an unsolved
question: what external signals the differentiating cells may
receive and how they activate the cell differentiation? Since
both mechanoreception and proprioception cells are differ-
entiated from UA.3 cells, we first performed exFINDER
analysis to infer the ligand–target GRN from the top 10
marker genes of the proprioception cells. exFINDER iden-
tified four external signals not expressed in all measured
cells. However, their corresponding exSigNet shows five
marker genes through highly expressed receptors and TFs
in the data whereas these four receptors only interact with
the external signals (Figure 4B-C). Interestingly, the inter-
actions between Pld2 and Arf1, Slurp1 and Chrna4 are sup-
ported by existing studies (62–64).

By comparing the ligand–receptor pairs of the exSigNet
to a published ligand–receptor dataset (20), we found that
part of the exSigNet (the activation from Slurp1 to Chrna4
and Chrnb2) is related to the SLURP pathway, a finding
supported by previous studies (65,66). Then we inferred
the SLURP pathway-related part and compared its activa-
tion level to the exSigNet using the activation index (AcI).
We found that although Slurp1 activates two receptors,
their overall activation levels are only moderately high (Fig-
ure 4D). This can be explained by the observation that
Chrna4 and Chrnb2 only interacted with one TF out of nine
(Figure 4E).

Since an exSigNet usually contains multiple signals and
target genes, comparing the signaling networks between dif-
ferent ligand–target pairs is useful in uncovering underlying
mechanisms. Thus, we classified the signaling networks be-
tween every ligand–target pair based on their structures and
interaction strengths (Figure 4F). Four groups are found.
All Slurp1-related pairs are grouped as one since they all be-

long to the SLURP pathway. Pld2-related pairs are in one
group, since Pld2 only activates Arf1. However, Fpr2 and
Fpr3-related pairs are mixed and clustered into three differ-
ent groups, showing their potential roles for different bio-
logical events.

To quantify and compare the importance of external sig-
nals and target genes, we computed the maximal signal flow
between every ligand–target pair and ranked the external
signals and target genes based on their total signal outflows
and inflows, respectively (Figure 4G). It is found that Fpr2
and Fpr3 have the most signal outflows – critical external
signals (Table 1), while Elovl7 has the most signal inflow
– a critical target. Slurp1 has the smallest signal outflow,
which is consistent with our previous analysis that SLURP
pathway-related signaling network does not have a high ac-
tivation level.

exFINDER can also be used to evaluate the GO anal-
ysis outputs by projecting the top 5 GO terms (with the
least p-values) to the exSigNet. Unlike GO analysis, which
only uses gene symbols to infer the related biological events,
exFINDER compares the GO term-related expression level
and GO term-related genes to the exSigNet (Figure 4H), for
example, showing that regulation of neuron death may be a
critically important event in the exSigNet, although it has
the third least p-value in GO analysis.

exFINDER predicts the roles of external signals and uncovers
transition paths in differentiation

During mouse sensory neurogenesis, besides the differen-
tiation to mechanoreception and proprioception cells, sev-
eral transition trajectories were also identified (61), in-
cluding the one from early neural crust cells (eNCCs) to
late neural crust cells (lNCCs) and then to boundary cap
cells (INCCs/BCCs) (Supplementary Figure S6E), as well
as two main neurogenic branches starting from INCCs
and INCCs/BCCs, respectively (Figure 5A, Supplementary
Figure S6C, D). These two branches both show the transi-
tion from progenitors to post-mitotic newborn neurons and
may intersect through UA.1 cells (Figure 5A). To figure out
which cell group undergoes the stronger transition in the
multiple branches, we first performed BioTIP analysis that
shows INCCs are most likely to be the transition cells (Fig-
ure 5B). This is reasonable because INCCs are in between of
eNCCs and INCCs/BCCs, and the starting point of Branch
A. Then exFINDER identifies that external signals (Fpr2
and Fpr3) interact with one CTS (Mitf) by activating recep-
tor App, and CTS (Mitf) activates the marker genes of both
INCCs, INCCs/BCCs, and UA.1 cells (Figure 5C).

Since INCCs are most likely to be the transitional cells,
and CTS-involved signaling is likely not specific for INCCs,
we next study how the external signals drive the expres-
sion of INCCs. In addition, signals from the external en-
vironment can be critical during the formation of INCCs
as these cells are sampled early (E10.5). Then we employed
exFINDER to identify external signals that targeted the
top 10 marker genes of INCCs, showing that 7 out of the
top 10 marker genes are activated by three external signals
(Figure 5D). And all the ligand–receptor interactions have
been confirmed in a previous study, such as Pld2-Arf1 (67),
Fgf2-Glg1 (68) and Sele-Glg1 (69). Meanwhile, exFINDER
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Figure 4. exFINDER identifies external signals and predicts critical signal sources and targets during sensory neurogenesis in the mouse. (A) Schematics of
neural crest cell lineage showing cell differentiation from UA.3 cells to the mechanoreception and proprioception cells (61). (B) Expression heatmap of the
exSigNet associated with the inferred external signals targeting the proprioception cell marker genes. (C) Hive plot showing the exSigNet. (D) Activation
index of the full exSigNet and SLURP-related exSigNet. (E) Circle plot showing the SLURP-related exSigNet. (F) Clustering of the signaling network
between different ligand–target pairs. (G) Bar plot of the total signal inflows and outflows of each external signal and target gene, respectively. (H) The
expression and gene proportions of top 5 GO terms projecting to the exSigNet.
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Figure 5. exFINDER suggests roles of external signals in different trajectories and predicts the transition paths during mouse sensory neurogenesis. (A)
Schematics showing two branches and the corresponding cell groups. (B) Bar plot showing the index of criticality of cell groups along two branches
generated by BioTIP. (C) The network inferred by exFINDER showing the critical transition signal-involved exSigNet. (D) Circle plot for the exSigNet
linking external signals and marker genes of INCCs. (E) Bar plot of the total signal inflows and outflows of each external signal and target gene, respectively.
(F) Circle plot showing the exSigNet linking external signals and marker genes of nociceptive cells. (G) Bar plot of the expression levels of the receptors in
different cell groups. (H) The expression and gene proportions of top 5 GO terms projecting to the exSigNet.

inferred a critical external signal Pld2 and marker gene Gas1
based on the signal flow (Figure 5E).

Along Branch A we observe a transition from INCCs to
UA.1 cells and then UA.2 cells (Figure 5A), however, the
transition from UA.1 cells to nociceptive cells may also be
possible, suggesting the external signals that regulate IN-
CCs may also interact with the nociceptive cells. Meanwhile,
a group of early divergent genes along Branch B and their
related TFs were identified in (61) (Supplementary Figure
S6F). So, to investigate this hypothesis, we used exFINDER
to identify the external signals that activate the divergent

genes through their related TFs (Figure 5F). Interestingly,
Ifnar1 is the receptor of 12 subtype Ifna genes, while a pre-
vious study pointed out that the interferons act directly on
nociceptors to produce pain sensitization (70). The compa-
rable expression levels of two receptors (Ifnar1 and Rarg) in
UA.1 cells and INCCs/BCCs showing that Rarg has com-
parable expressions in both two cell groups, support our hy-
pothesis (Figure 5G). These findings suggest multiple ex-
ternal signals are interacting with one receptor, which is
highly expressed in both UA.1 cells and INCCs/BCCs, in-
dicating a potential transition from INCCs to nociceptive
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cells. Last, we applied GO analysis and used exFINDER
to evaluate the top five GO terms (Figure 5H). The results
suggest the top five GO terms with the smallest p-values
also have very similar expression values and gene propor-
tions, indicating that they may have similar significances in
the signaling from external signals to the early divergent
genes.

exFINDER uncovers the externally added inducers, revealing
signaling pathways driving EMT

The epithelial-mesenchymal transition (EMT) is a critical
cell fate transition. In a recent study that uncovered the con-
text specificity of such process (34), a comparative analy-
sis was performed for the EMT response with three differ-
ent added inducers (TGFB1, EGF and TNF) and scRNA-
seq was used to measure expression profiles of four human
datasets (A549, DU145, MCF7 and OVCA420). The study
also compared 12 EMT time course experiments and in-
vestigated the effects of each inducer and the differential
expression of the EMT regulators in all cases. For every
time course dataset, we separated the cells into three groups
based on the treatment (before, on, and off treatment), then
applied exFINDER to all 12 datasets to infer the external
signals targeting the EMT regulators.

In three TGFB1-induced datasets, TGFB1 was found as
one of the external signals and inferred the corresponding
exSigNets (Figure 6A, D, and Supplementary Figure S7).
In the TGFB1-induced MCF7 cells, the TGFB1-associated
signaling network shows that the receptor ITGB1 has a low
expression, although its downstream transcription factors
are still highly expressed (Supplementary Figure S7). Such
differences are likely due to that these transcription factors
are sensitive to the signal from ITGB1, or they are activated
by other signals that are not associated with ITGB1. Mean-
while, in all four TNF-induced datasets, exFINDER suc-
cessfully identified TNF as one of the external signals and
inferred the corresponding exSigNets (Figure 6B, E, and
Supplementary Figure S7), even if it was not measured in
the data (Figure 6B). Our analysis shows CALM1 and TN-
FRSF1A are two receptors that interact with TNF, a result
supported by a recent study (71). In the four EGF-induced
datasets, although its receptors are lowly expressed, the
downstream transcription factors are still highly expressed
(Figure 6C, Supplementary Figure S7). This indicates pos-
sible existence of other external signals that may activate
those transcription factors. Especially in the A549 cells,
EGF only regulated one target gene (Figure 6C), consistent
with the fact that no significant increase in EMT score was
observed in this case. As seen in the exSigNets, four recep-
tors (ITGB1, M6PR, CALM1 and TNFRSF1A) were iden-
tified to interact with the inducers, and the comparison of
their expression levels in different time course experiments
indicates (Figure 6F): (1) ITGB1 having higher expression
with the TGFB1-treatment in three out of four datasets;
(2) No obvious change in expression levels for the EGF-
associated receptor M6PR in the A549 cells; and (3) no ex-
pression increase in the TNF-associated receptors (CALM1
and TNFRSF1A) in the OVCA420 cells. All the findings are
consistent with the change in EMT scores shown in the pre-
vious study (34).

DISCUSSION

Here we have presented a new computational method to
identify external signals in cell communication, infer their
associated signaling networks and quantitatively analyze
their downstream genes using scRNAseq data and prior
knowledge. Central to this method is the exSigNet which
contains: (1) signaling paths that link the external signals
and target genes, and (2) the edge weight representing the
predicted signaling strength. By applying exFINDER to re-
cently published datasets, and with comparison to the other
methods, our method was shown to be able to identify ex-
ternal signals consistent with the existing knowledge. It is
worth noting that the utilization of exFINDER databases
and scRNA-seq data provides cross-validation from both
biological and statistical approaches, allowing robustness of
the method. To our knowledge, exFINDER is the first com-
putational method that can systematically identify external
signals in cell communication, infer and quantitatively ana-
lyze the networks that connect the signals and downstream
genes.

An R package has been developed with a user-friendly
toolkit for inferring, analyzing and visualizing external sig-
nals and the exSigNet based on any given scRNA-seq data.
Different visualization outputs are provided, including cus-
tomized circle plot and hive plot to present the structure
of the exSigNet, the expression level of involved genes,
and predicted signaling strength within the network. Mean-
while, exFINDER also allows easy exploration, download,
and update of the built-in databases for different animal
species. Any new progress in classifying cell groups and in-
ferring trajectories (e.g. Monocle (10,72,73)) from scRNA-
seq data can be easily included in the preprocessing steps
to further improve accuracy and robustness of exFINDER.
The flexibility of using different sub-modules and the inter-
operability in exFINDER allow users to take advantage of
various utilizes in the package.

During the exFINDER analysis, the mass-action law,
which has been widely used in estimating protein and
mRNA activity levels (20,74), plays an important role
in quantifying the signaling strength and activation level.
While the Hill function is a plausible approximation for
modeling the nonlinearity of protein interactions, estimat-
ing the biologically reasonable ranges of the parameters
(e.g. Hill function coefficient and dissociation constant) re-
mains challenging.

The external signal inference for complex heterogeneous
data remains a major challenge due to the lack of ground
truth (14,75). For some cases, because the cell lineage and
cell population groups are not well studied, the inference
of ligand–receptor interactions by cofactors, including ago-
nist and antagonist, becomes difficult. One way for improve-
ment is to include potential bidirectional interactions be-
tween certain genes when the ligand interaction structures
(e.g. with multiple subunits).

Another possible improvement is to utilize the CITE-
seq data, which contains the Antibody-Derived Tag (ADT)
data for selected proteins, to identify the genes with ADT.
To study this point, we analyzed a dataset of 8617 cord
blood mononuclear cells (CBMCs) produced with CITE-
seq ((76), GSE100866) using exFINDER which contains
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Figure 6. exFINDER uncovers the externally added inducers, revealing signaling pathways driving EMT. (A–C) Expression heatmaps of the exSigNets
associated with the inferred external signals targeting the EMT regulators under different inducer-treatments in the A549 cells. (D, E) Circle plots showing
the TGFB1-related and TNF-related exSigNets under the corresponding inducer-treatment in the A549 cells. (F) Box plots of the inferred receptors in
different human cell types under different inducer-treatments, solid bar represents the median and the black dot represents the average.
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the antibody-derived tag (ADT) data of 10 genes. A previ-
ous study has identified 15 cell population groups and their
corresponding marker genes (https://broadinstitute.github.
io/2020 scWorkshop/cite-seq.html, Supplementary Figure
S8A). To perform exFINDER analysis, we first set the NK
cells as the target cells and employed exFINDER to infer
the external signals targeting its top 10 marker genes. Al-
though six external signals (PRL, PIK3CB, MDK, PTN,
FPR2, and PLD2) were identified, none of them was part
of the 10 ADT-measured proteins (Supplementary Fig-
ure S8B, C). This is likely because the number of ADT-
measured proteins is very small (only 10 proteins in this
dataset), especially compared to the number of measured
genes in RNA sequencing. In addition, we set the CD14+

Mono and CD16+ Mono cells to be the external cells and
used exFINDER to infer the external signals expressed by
them targeting the top 10 marker genes of NK cells. CD34
was identified as the external signal targeting two marker
genes GZMB and PRF1 (Supplementary Figure S8D, E).
However, according to the ADT data, CD34 is highly ex-
pressed in several cell population groups including CD14+

Mono cells (Supplementary Figure S8F). These results sug-
gest using CITE-seq with sufficient ADT data can further
improve the inference accuracy.

In all, with the advances in different single-cell omics
techniques and the development of computational methods,
exFINDER may be combined with other data modular-
ity and methods. For example, the directed dynamic infor-
mation provided by RNA velocity (77) and cell transition
paths inferred by MuTrans (78) can potentially be used in
exFINDER to investigate the critical external signals that
drive the cell fate transitions. The spatial omics technolo-
gies, such as spatial-CITE-seq (79), may be used to scruti-
nize the external signals coming from different spatial loca-
tions or directions, and the signaling strength based on ex-
pression levels can be finetuned by spatial distances between
cells for more accurate inference constrained by spatial
ranges of diffusive ligands. It is also useful to integrate more
prior knowledge of spatial signaling into exFINDER-DB,
enabling identification of the distance-dependent exSigNet
using spatial transcriptomics data.
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