
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

PYROPE: A LATENCY-INSENSITIVE DIGITAL ARCHITECTURE
TOOLCHAIN

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Haven Blake Skinner

December 2018

The Dissertation of
Haven Blake Skinner is approved:

Professor Jose Renau, Chair

Professor Martine Schlag

Professor Heiner Litz

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Haven Blake Skinner

2018

Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Acknowledgments xi

1 Introduction 1

2 Background 6
2.1 Fluid Pipelines and the Pyrope Project . 7

2.1.1 Fluid Pipelines . 7
2.1.2 Clock Synchronous vs. Fluid Pipeline Architectures 9
2.1.3 Fluid Pipelines vs. Other Latency Insensitive Systems 13
2.1.4 Motivations for the Pyrope Project . 17

2.2 Languages . 18
2.2.1 Hardware Description Languages . 19
2.2.2 The Actor Model . 21
2.2.3 Other Programming Languages . 22

2.3 Fluid Pipelines and Hardware Simulation . 22

3 The Liam Programming Paradigm 26
3.1 Describing Fluid Behavior with Liam . 26

3.1.1 Overview . 26
3.1.2 Liam within a Pyrope Architecture . 27
3.1.3 Inferring Fluid Behavior . 28
3.1.4 Liam-Specific Operators . 30
3.1.5 Catching the Abort with “Try” Blocks 34

3.2 Compiling Liam . 36
3.2.1 Stages and State . 37
3.2.2 Deriving Logic for External State . 39

iii

3.2.3 Deriving Logic for Internal State . 42
3.3 Arrays and Liam . 42

3.3.1 Software Arrays and Hardware Memory Blocks 43
3.3.2 Pyrope Internal Array Representation 45
3.3.3 awr Optimizations . 46

3.4 Conclusion . 49

4 Pipeline Transformations 52
4.1 Pyrope Pipeline Transformations . 54
4.2 Implementation . 56
4.3 Evaluation Setup . 57
4.4 Synthesis . 59
4.5 Simulation . 63
4.6 Verification . 68

4.6.1 A Note on Fluid Induced Bugs . 69

5 Live Programming 71
5.1 Related Work . 77

5.1.1 Live Programming and Hot Reloading 77
5.1.2 Checkpointing and Parallel Replay . 78

5.2 Compiler Support for LiveSim . 79
5.3 Challenges Posed by Pyrope’s Type System 81
5.4 LiveSim . 83

5.4.1 Use Cases . 84
5.4.2 The LiveSim Architecture . 85
5.4.3 LiveParser and LiveCompiler . 92
5.4.4 Fast Reloading . 93
5.4.5 Reloading Rules . 94
5.4.6 Checkpoints and Memory Usage . 96
5.4.7 Checkpoint Consistency Verification 96

5.5 Setup . 97
5.5.1 Benchmarking Architecture . 98
5.5.2 A Note on Compiler Configuration 99

5.6 Evaluation . 99
5.6.1 Hot Reloading . 100
5.6.2 Simulation Efficiency . 102
5.6.3 Checkpointing . 106

5.7 Conclusion . 106

6 Conclusion and Future Work 108
6.1 The Pyrope Language . 109
6.2 The Pyrope Compiler and Toolchain . 110
6.3 Pipeline Transformations . 111

iv

6.4 Final Thoughts . 111

Bibliography 113

v

List of Figures

2.1 A fluid pipeline replaces synchronous registers with fluid registers, which use
valid and stop signals to execute a simple handshake protocol to update its in-
ternal state. 8

2.2 Fluid Registers are used in place of traditional clock-synchronous registers in
Fluid Pipelines. They contain enough internal buffering to allow back pressure
to propagate without dropping data. (Picture credit: R. Possignolo [65]) 8

2.3 The clock-synchronous pipeline is the standard model for developing modern
digital architecture. A side effect of doing so is that the system’s behavior be-
comes closely tied to its timing. 9

2.4 Situations which require the data path to branch often result in code that con-
tains hidden assumptions about the latency between different sections of the
pipeline, which makes the system harder to manipulate in general. 11

2.5 Latency insensitive pipeline transformations allow for adding or removing reg-
ister blocks (Recycling) or moving logic between register blocks (Retiming),
without changing behavior. (Picture credit: R. Possignolo [64]) 12

2.6 The “merge” or “fluid mux” operator selects an input based on which is valid.
This can break sequence-invariance. (Picture credit: R. Possignolo [64]) 16

3.1 The first step to adding fluid behavior to a Pyrope block is to add flags indicating
when an input or output port has been read or written. This figure shows the
flags added to Listing 3.1. 39

3.2 The dataflow graph generated by Listing 3.1. 40
3.3 If the try block does not abort, the state update comes from that block, otherwise

it comes from the else block. 41
3.4 Arrays in Pyrope are either inline if they are updated immediately after being

written, or deferred if they are updated at the end of the cycle. The distinc-
tion is reflected in their respective dataflow graphs; for inline arrays, reads are
dependent on the latest version of the array, while deferred reads are always
dependent on the version present at the beginning of the cycle. 47

3.5 A chain of array_writes requires that all indexes not written be copied unmod-
ified. This can be collapsed to a single array_write. 48

vi

3.6 When a read is dependent on an array_write, that dependency can be moved to
an earlier version of the array as long as the logic to forward an updated value
is implemented. 48

3.7 This corresponds to the case of an array being written to on one branch of an
i f − else block. The result essentially collapses the dataflow logic network
around the values being updated, eliminating unnecessary copying. 49

3.8 This corresponds to the case of an array being written to on one branch of an
i f − else block. The result is similar to Figure 3.7. 50

4.1 Merging two stages together results in the “forward” connections between them
going away while the “back” connections between them are maintained. 55

4.2 Fluid cores are competitive against manually generated Non-Fluid RISC-V cores.
. 60

4.3 The Pico CPU has a CPI of 4, giving it a lower overall performance than the
Cliffs, despite its favorable area/delay stats. This figure also shows that the
performance fluctuations from merging stages is not constant. 61

4.4 This graph normalizes the single core performance of AMD’s Cortex series to
our c6+fwd core in 1-stage form. It shows that the performance deltas between
automatically transformed cores can be similar to well-tuned cores implemented
manually. 63

4.5 Collapsing provides roughly a 3.7x speedup over the default state-of-the-art
baseline simulation. It is also less than 50% slower than Spike, a C emulator. . 64

4.6 Collapsing stages together improves the overall simulation speed, with com-
pounding benefits as more transformations are done. 66

4.7 Decreasing simulation cycle time and CPI are the two primary sources of speedup
for a collapsed pipeline. 70

5.1 The proposed workflow for LiveSim is to allow iterations within a few seconds.
This contrasts with the traditional flow where after a change, there is a lot of
latency in each iteration. With the much faster ERD loop, enabled by LiveSim,
productivity is expected to improve. (Picture credit: R. Possignolo publication
pending . 75

5.2 During the baseline execution, checkpoints are regularly created. Then, dur-
ing the live mode, the code changes are recompiled, reloaded, a checkpoint
is selected, loaded and the execution continues until the cycle before the code
change was inserted. Checkpoints are regularly deleted to avoid too much over-
head. As LiveSim is still in the experimental stages, the numbers associated
with memory usage and checkpoints are largely heuristic. (Picture credit: R.
Possignolo publication pending) . 84

5.3 The LiveSim development environment. 86
5.4 After a code change, it is important to verify the consistency across the check-

points. This can be done in parallel and is easily scalable to a large number of
cores. (Picture credit: R. Possignolo publication pending) 98

vii

5.5 LiveSim can hot reload in less than 2 seconds from small PGAS with 1 node
to large mesh with 256 PGAS multicore (16×16). Even in the case where a
stage was duplicated hunderds of times in the design, the latency required to
update the code for all instances of that stage is dominated by the parsing and
compilation costs, which remain constant. 100

5.6 Even without checkpoints LiveSim has a faster starting (ERD) and a faster for
large PGAS. 103

viii

List of Tables

3.1 Liam adds some new constructs which helps the programmer manage elastic
behavior abstractly. 31

4.1 Cores used in the evaluation. 58

5.1 Pyrope’s data structure is designed to minimize the amount of information
needed to represent the architecture. 81

5.2 LiveSim commands. (Stage/tb)-handle variables refer to the handle column
on Table 5.3. Stage-name variables refer to the corresponding columns in Ta-
bles 5.4 and 5.5. 89

5.3 The Object Library Table contains a listing of all the objects LiveSim could find
in the shared object libraries on its path. 89

5.4 The Pipeline table. Contains a name to pointer reference for each pipeline object
active in the session. 89

5.5 The Stage table. Contains a pointer reference for each stage of each pipeline. . 90
5.6 Update metadata: when LiveCompiler recompiles a pipeline, stage, or test-

bench object it sends a metadata update to LiveSim, shown below. 91
5.7 If the register names do not completely match from version to version, trans-

formation rules are applied to provide a deterministic way to load checkpoints
from the old version to the new one. 94

5.8 The Register Transform History Table lists the changes to an architecture’s reg-
ister topology require to translate the system’s state from one version to the
next. It is structured to allow for branching. 95

5.9 Compilation time for LiveSim and Verilator. Hot Reload can swap a module in
under 2 seconds. Even full compilation with LiveSim is faster than with Verilator.102

5.10 As the architecture grows in size, Verilator’s cache performance degrades sig-
nificantly. 104

ix

Abstract

Pyrope: A Latency-Insensitive Digital Architecture Toolchain

by

Haven Blake Skinner

This paper proposes a new toolchain for digital architecture development which is designed to

leverage Fluid Pipelines, a variant of latency-insensitive (LI) systems developed at the UCSC

Micro-Architecture (MASC) Lab. Prior work on Fluid Pipelines and other LI systems has

shown that they have promising properties which can be leveraged in various ways to aid in

digital architecture design, especially when developing and manipulating large digital architec-

tures, but that there are also challenges when working with this type of system. This paper

presents Pyrope, a toolchain designed for developing Fluid Pipelined digital architectures. The

toolchain includes a custom hardware description language and optimizations for simulation,

synthesis, and verification which leverage Fluid Pipelines. The final section of this document

presents LiveSim, a live development environment built on top of Pyrope, which uses incremen-

tal compilation and hot binary reloading to update simulation results based on code changes in

seconds, even for large architectures.

x

Acknowledgments

I would like to thank my parents, who put me on this path by raising me to value learning, the

sciences, and academic research. Without their love and continuous support this PhD would

not have been possible. I would also like to thank Lourdes, my girlfriend, was also a rock of

support through the most difficult times in my grad school career.

My deepest gratitude also goes out to my advisor, Jose Renau, who provided the

initial vision vision for Pyrope I had the privilege of developing, and who continued to support

the project, and me, even when things were difficult. The same goes for the rest of the students of

the MASC lab, especially Rafael Possignolo who was a close collaborator, and lead researcher

for much of the early work on Fluid Pipelines.

I would finally like to thank the other friends, colleges, teachers, and many others

who’ve influenced and inspired me over the years.

xi

Chapter 1

Introduction

Be careful starting something you may

regret.

Publilius Syrius, Maxims

Over the last several decades we have seen digital architectures scale from a few thou-

sand logic units, to billions. Being able to develop systems of this size and complexity has re-

quired the continued improvement of tools which enable engineers to reason about, implement,

and verify these systems.

Despite all the prior progress, however, the digital architecture design process still has

significant problems, and these problems are becoming more acute as architectures continue to

scale in size and complexity. Hardware design is notorious for using programming languages

such as Verilog and VHDL which have limited abstraction capabilities, for example.

More importantly, the vast majority of modern architectures are designed around a

paradigm called the clock-synchronous pipeline (further discussed in Chapter 2.1.2), which has

1

the side effect of closely integrating the behavior of the system with its timing attributes (max-

imum clock frequency). This forces hardware developers to lock down design decisions such

as the target clock frequency and/or the number of stages early in the design process, making it

difficult to change later.

Another significant source of inefficiency in the hardware design process, which par-

ticularly affects debugging and verification, is the long latency between when a developer makes

a change to the code, and when they can see the result of that change. This is due to both the

time required to recompile the updated architecture, and the fact that bugs often occur after tens

of thousands, hundreds of thousands, or even millions of cycles or more, and thus the simulation

must be rerun to that point to access the results of that change. Sometimes developers test their

systems on FPGAs rather than software simulations since those can run cycles faster, however

FPGAs require more time to recompile since they require additional steps (place-and-route, up-

loading bit file). This paper refers to the time required between making an edit, and seeing the

results, as the edit-run-debug (ERD) latency, that for modern digital architectures can easily

be a half hour or more. Prior research has shown that long time intervals between input and

feedback hinders productivity [31, 41, 57], a fact that is intuitively true to developers as well.

This paper proposes a new digital architecture design flow to address these issues,

based on a variant of Latency Insensitive (LI) systems developed at the UCSC MASC lab:

Fluid Pipelines. Fluid Pipelines, like all latency insensitive systems, are distinct from the tradi-

tional clock-synchronous pipeline commonly used in hardware design in that their behavior is

independent of the latency between any two blocks. At the MASC lab, we have come to believe

2

that this type of design paradigm holds a lot of promise for managing the ever increasing size

and complexity of digital architectures.

In the subsequent chapters I will describe a new toolchain for developing Fluid Pipeline-

based architectures. It is built around the Pyrope programming language, which is designed for

implementing latency insensitive systems, and its compiler, which is designed to leverage them

in a variety of ways. The language and compiler were designed to address various shortcomings

with the current digital architecture design flows.

The specific contributions of the Pyrope project are summarized below.

A major motivation for the Pyrope project was to design a toolchain which could (1)

leverage LI pipeline transformations. Chapter 4 shows how this can leveraged to aid the

simulation, synthesis, and verification process. These optimizations depend on fundamental

differences between Fluid Pipelines and traditional clock-synchronous circuits.

A major challenge with this project is that the Fluid Pipeline paradigm is fundamen-

tally different from the developer perspective as well, as the system must be designed to behave

consistently regardless of the latency between any two sections of the architecture. For the hard-

ware developer, this means implementing LI behavior using simple handshake protocols and/or

message passing queues, which is difficult, error prone, and not very portable. We in the MASC

lab believe that the difficulty in working with these types of systems at the synthesis level is a

major hindrance to their adoption.

To address this, a core part of the Pyrope toolchain is the Pyrope hardware descrip-

tion language, which is built on top of (2) the Liam programming paradigm to implement

3

latency-insensitive behavior implicitly (Chapter 3). Liam, which is an acronym for Latency-

Insensitive Actor-Model is a custom programming paradigm which allows the programmer to

describe LI behavior using the control flow structure of the source code. Though internal use by

myself and other researchers, we found that this made RTL code easier to reason about in gen-

eral, vastly decreased the amount of code which had to be written, without sacrificing control

or tunability. Pyrope also provides a stronger type system than traditional HDLs to decrease the

occurrence of overflow and other sorts of common bugs.

The Pyrope compiler is also designed for speed, to address another problem with

digital architecture development discussed above. In Chapter 5, this thesis shows that for large

architectures, the Pyrope compiler (3) supports incremental compilation and hot reloading

of a simulation binary. I am not aware of any other hardware design flow that supports this.

Incremental compilation and hot reloading allow Pyrope to significantly outperform Verilator

(Chapter 5.6) in both compilation and simulation speed.

Chapter 5 also shows how the Pyrope compiler, along with incremental compilation,

simulation binary hot reloading, and what is referred to as checkpoint transformations (Chap-

ter 5.4.4), can be used to implement a (4) digital architecture live development environment.

This requires implementing the Pyrope compiler into a Software-as-a-Service (SaaS) tool. As

this paper demonstrates, Pyrope’s live development environment is not just for toy designs, but

can scale to even large architectures, such as as mesh of 256 RISC-V processors.

The remainder of this document is organized as follows: Chapter 2 discusses prior

work on latency insensitive systems, fluid pipelines, and the Pyrope programming language.

Chapter 3 focuses on Liam, demonstrating how Pyrope uses it to implement fluid behavior,

4

followed by a detailed discussion of its implementation. Chapter 4 discusses pipeline transfor-

mations, how they are integrated into the compilation flow, and how they can be leveraged to

aid in various parts of the digital architecture design process. Chapter 5 discusses the internal

design of the Pyrope compiler and the LiveSim live development environment. That chapter

also evaluates the viability of LiveSim to provide the response times necessary to deliver a live

development experience, even with large architectures, and also compares the performance of

the Pyrope compiler to Verilator [18], an open-source Verilog compiler widely used in industry

and academia. Finally, Chapter 6 offers some concluding remarks.

5

Chapter 2

Background

The wrath of the gods may be great, but

it certainly is slow.

Decimus Iunius Iuvenalis, Satirae

Since the Pyrope project is an intersection of several research topics, I divide the

background into the following sections: Section 2.1 discusses Fluid Pipelines, a variation of

Latency Insensitive systems on top of which the Pyrope toolchain is built. Section 2.2 discusses

other programming and hardware description languages which influenced Pyrope. Finally, Sec-

tion 2.3 discusses hardware simulation, beginning with some background information on the

challenges in that area, and on how Fluid Pipelines can be used to address them, both in prior

work and in work presented in this paper.

6

2.1 Fluid Pipelines and the Pyrope Project

The goal of the Pyrope project is the build a digital architecture development toolchain

based around Fluid Pipelines, a variation of Latency Insensitive (LI) systems. The project was

inspired by some inherent challenges to developing large system with the traditional model for

digital architecture design: the clock-synchronous pipeline. An in-depth discussion of this can

be found in Section 2.1.2. Prior work on LI systems [36] [51] [45] have suggested that this

model could be a good solution to manage some of those issues. Furthermore, some founda-

tional work conducted at UCSC [63] [64], to which I had the privilege to contribute, shows that

Fluid Pipelines could make better use of pipeline transformations than previous hardware based

LI implementations, adding further value to this model.

The rest of this section is organized as follows: Section 2.1.1 provides an overview of

the Fluid Pipelines model, and shows how it is implemented in synthesis. Section 2.1.2 com-

pares Fluid Pipelines to the standard model for digital architecture design, the clock-synchronous

pipeline. Section 2.1.3 differentiates Fluid Pipelines from other Latency Insensitive systems.

Finally, Section 2.1.4 draws on all this to discuss the motivations for the Pyrope project.

2.1.1 Fluid Pipelines

Fluid Pipelines are a variation of Latency Insensitive systems developed in the MASC

lab at UCSC [63] [64]. They are designed to address many of the challenges in work with

clock-synchronous pipelines, the dominant model for developing digital architecture, discussed

in Section 2.1.2. Fluid Pipelines differ from the clock-synchronous paradigm in that their func-

7

valid
stop

valid
stop

control logic

Figure 2.1: A fluid pipeline replaces synchronous registers with fluid registers, which use valid and stop

signals to execute a simple handshake protocol to update its internal state.

tional behavior is not sensitive to changes in latency between any two points in the pipeline.

This is further discussed in Section 2.1.2.

CLK

CLK

QV

SV

C1DV

SV

CLK

CLK

DS

CLK

CLK
SV

QSQ

CLK

QS

DV

DV

QS

D

Figure 2.2: Fluid Registers are used in place of traditional clock-synchronous registers in Fluid

Pipelines. They contain enough internal buffering to allow back pressure to propagate without drop-

ping data. (Picture credit: R. Possignolo [65])

8

stateless combinational logic

clock-synchronous registers

Figure 2.3: The clock-synchronous pipeline is the standard model for developing modern digital ar-

chitecture. A side effect of doing so is that the system’s behavior becomes closely tied to its timing.

Figure 2.1 shows a Fluid Pipeline. It is made up of combinational logic blocks divided

by fluid registers, which have valid and stop control signals to flag valid data and handle back

pressure. These control signals add LI behavior (waiting for valid data, handling back pressure

without dropping packets) to the architecture.

The internal design of a fluid register is shown in Figure 2.2. Fluid registers are made

using clock-synchronous registers and other control logic, implementing the equivalent of a two

entry buffer. This provides exactly enough space for the stop signal to propagate backwards

without having to drop data.

2.1.2 Clock Synchronous vs. Fluid Pipeline Architectures

The traditional model for developing digital architecture is the synchronous pipeline,

shown in Figure 2.3. In a synchronous pipeline, behavior is modeled as blocks of stateless

combinational logic divided between clock-synchronous register blocks. This section discusses

9

some fundamental problems the synchronous pipeline design paradigm presents, and how the

Pyrope Project hopes to address those issues with Fluid Pipelines.

One major implication of modeling a digital architecture as a clock-synchronous

pipeline is that the maximum frequency at which the system can be clocked is a function of

the longest propagation delay between any two registers, also referred to as the critical path.

Creating an architecture with a fast clock speed means minimizing the critical path by carefully

dividing the combinational logic between registers.

This adds many difficulties to the development process. First, it is difficult to precisely

know the maximum clock speed of a circuit until after it has been implemented and the code can

be analyzed by a synthesis tool. If the circuit is too slow, the only way to increase the maximum

clock speed is to manually divide and/or redistribute application logic between registers. Not

only is this known to be an open-ended and difficult problem [50, 70], but also makes it hard

to share code between projects with different timing goals, since for systems that can run at a

slower speed, removing registers saves on energy usage.

This type of tuning is critical for implementing modern digital architectures and is

one of the reasons why specialized hardware description languages, which allow developers to

work on the register-transistor level (RTL), are used for this purpose. Although circuits can be

synthesized from more traditional programming languages, a technique referred to as high-level

synthesis, this is rarely used in modern hardware design because the levels of abstraction make

it more difficult to control what is synthesized.

Another issue with clock-synchronous pipelines is that often the clock cycle latency

is what is keeping the system in sync, which makes the entire pipeline more difficult to manip-

10

Figure 2.4: Situations which require the data path to branch often result in code that contains hidden

assumptions about the latency between different sections of the pipeline, which makes the system harder

to manipulate in general.

ulate. In Figure 2.4, adding or removing any block on either of the branches requires adding

or removing and equivalent amount on the other branch or it could risk creating a timing error.

Such architectures often have additional forward or back paths between stages in the pipeline,

which often contain additional hidden assumptions about the clock latency between them. This

is another factor which makes synchronous pipelines harder to work with.

Unlike clock-synchronous pipelines, Fluid Pipelines can more easily manipulated at a

high level as there is no risk of creating timing errors. There is also no issue with stages being in

different timing domains so long as the setup and hold conditions for the hardware components

are not violated. This advantage was a motivation for early work on LI systems which proposed

them as a means for more robust on-chip communication in the face of long wire lengths and

arbitrary variations in latency at interconnects [36].

Another important advantage that Fluid Pipelines have over pipelines designed under

the clock-synchronous paradigm is that Fluid Pipelines can be transformed more aggressively,

as shown in Figure 2.5. This figure shows that fluid registers can be added, removed, or moved

between blocks of combinational logic without regard to the underlying behavior of the system.

11

F1 F2 F1 F2

(a) Recycling

F1 F2 F1 F2

(b) Retiming

Figure 2.5: Latency insensitive pipeline transformations allow for adding or removing register blocks

(Recycling) or moving logic between register blocks (Retiming), without changing behavior. (Picture

credit: R. Possignolo [64])

This is possible because Fluid Pipeline transformations can leverage the fact that since behavior

is independent of the latency between stages, dropping that latency to zero, or in other words

merging two stages, can safely be done without breaking functionality. Likewise, increasing the

latency of a region, by adding more registers, can also be done safely. Cortadella, et. al. refer to

such transformations as “behavior preserving” and “correct-by-construction”, where they were

first proposed [45].

Leveraging transformations on Fluid Pipelines is a major motivation behind the Py-

rope project. Section 2.1.3 shows that Fluid Pipelines differ from other LI systems in a way that

allows developers to make better use of transformations, and Chapter 4 shows how transforma-

tions are integrated into the Pyrope compilation flow.

12

2.1.3 Fluid Pipelines vs. Other Latency Insensitive Systems

Fluid Pipelines are a type of LI system in that their behavior is not sensitive to changes

in latency inside or outside of the architecture. There are a variety of types of LI systems

including hardware implementations [36] [48] [51] [43], and distributed networks such as those

built around TCP/IP. This section makes a distinction between prior hardware LI systems, fluid

pipelines, and distributed networks in that prior hardware implementations provide not just a

LI guarantee, but an even stronger guarantee which this thesis refers to as sequence-invariance.

The fact that Fluid Pipelines provide latency insensitivity but not sequence-invariance allows it

to avoid the performance degradation that other hardware LI systems experience with pipeline

transformations.

Sequence-invariance means that not only is the system latency insensitive, but that

the order of packets through any given point is also invariant with regards to latency. This is a

stronger guarantee than is given by latency-insensitive systems such as TCP/IP networks, since

the latency between routers can affect the path that a packet takes to its destination. The contents

of the packet, however, are generally unaffected.

Early work on LI systems proposed them as a means of providing more robust on-chip

communication [36]. In 2010 Cortadella et al proposed adding elastic buffers, their version of

fluid registers, to clock-synchronous circuits as a means of transforming them while preserv-

ing their behavior [45]. For these applications, guaranteeing sequence-invariance is an implicit

requirement. To accomplish this, in cases where the pipeline branches, each path must remain

balanced by adding elastic buffers on the shorter paths. Furthermore, when dealing with se-

13

quential loops in the pipeline (a loop in the pipeline’s data path, not to be confused by software

program loops) design tools are unable to insert stages in those regions [46]. Combined, these

issues have been shown to degrade overall throughput [34, 37, 51].

Sequence-invariance can also be a useful tool for verification, since if a system can be

shown to have this property, the verification procedure can safely make that assumption. The

Kahn Process Networks (KPN) [52] is the seminal work which formalizes sequence-invariance.

It does this by modeling the nodes of the network as reading from unbounded FIFOs, with only

blocking reads and non-block writes. Programmers are expressly forbidden from executing any

sort of non-blocking read, or in other words, is not allowed to check if data is available on a

port and make a decision based on that. Another way of thinking about this restriction is that

programmers are forbidden from writing code which takes the current network conditions, i.e.

the presence or absence of a packet in the input buffer, into account on any sort of decision it

makes. In doing so, a KPN’s behavior is guaranteed to be independent of those factors. KPNs

have been applied to modeling real time systems [6], high-speed graphics processing [40], and

even circuit design [43].

In the foundational work on Fluid Pipelines we argue for a more lax latency insensi-

tive guarantee, however, as this allows the system to better leverage pipeline transformations.

In “Fluid Pipelines: Elastic Circuitry Meets Out of Order Execution” [63], a paper to which

I was a contributing author but not the primary one, we show that overall throughput can be

improved if the system is allowed to relax the ordering guarantee. In practical terms, this means

that architectures implemented with fluid pipelines must be designed to function properly even

if the arrival order of some packets is changed due to pipeline transformations. Architectures

14

designed on top of a KPN based paradigm can safely assume that the arrival order of pack-

ets will not change. We justify this in another paper to which I contributed: “Fluid Pipelines:

Elastic Circuitry without Throughput Penalty” [64], where we show that removing the ordering

guarantee completely eliminates the throughput degradation observed in earlier work on latency

insensitive pipeline transformations.

This means the Fluid Pipelines implicitly cannot be KPNs, since their ability to fully

leverage pipeline transformations is dependent on allowing packets to reorder themselves.

The distinction between Fluid Pipelines and KPNs is expressed in practical terms by

the Pyrope language, discussed in detail in Chapter 3. Pyrope provides an operator (“?”), which

if applied to an input port will return true if that port is valid (or in other words, that a packet is

present), f alse otherwise. Used with an “if-then-else” block, this gives the developer the ability

to check if that port is valid and act differently depending on the outcome. This is expressly

forbidden in a KPN. An equivalent operator exists for outputs to indicate back pressure (“!”),

which is likewise forbidden.

The distinction between Fluid Pipelines and KPNs is expressed in terms of synthesis

blocks as well. Figure 2.6 shows the merge operator from “Fluid Pipelines: Elastic Circuitry

Meets Out-Of-Order Execution” [63]. This is a combinational logic block with ports for two

data inputs: datai1 and datai2, and one data output: datao. Each port has corresponding valid

and stop control signals. The stop signal is always in the opposite polarity of its corresponding

data port.

This circuit merges the inputs datai1 and datai2 into output datao, giving preference

to datai1, and holding either or both input with the stop signals (Si1 and Si2) until they are used.

15

VI1
SI1

VI2
SI2

VO

SO

dataI1

dataI2

dataO

Figure 2.6: The “merge” or “fluid mux” operator selects an input based on which is valid. This can

break sequence-invariance. (Picture credit: R. Possignolo [64])

More specifically, datao is connected to datai1 if Vi1 is true, datai2 otherwise. Vo is

true if either Vi1 or Vi2 is true. Si1 is asserted if datai1 is valid (Vi1) and if the stop input, So is

asserted (back pressure). Si2 if datai2 is valid and back pressure is present (So), or is Vi1 is true,

since datai1 is given priority.

Despite the complexity added by the fluid control signals, the behavior of this circuit

is rather straight-forward. This circuit violates the KPN protocol nonetheless because it decides

which input to select based on what is valid. This means that its behavior could be affected by

the relative latencies of the input control signals.

Relaxing the ordering guarantee would certainly increase the complexity of the ver-

ification process. Chapter 4.6 proposes a verification technique that leverages Fluid Pipeline

transformations, which could be helpful in alleviating some of the added complexity. In addi-

tion, speaking from anecdotal experience in making Fluid Pipelined processors, I can say that

16

the verification complexity can also be reduced with better architecture design. Fully addressing

the challenge of Fluid Pipeline verification is outside the scope of this paper, however.

Although we are not aware of any other projects strictly targetting hardware synthe-

sis which are based on non-delay-invariant LI systems, Gorilla++ [58] is a programming lan-

guage and toolchain designed for creating custom accelerators targeting streaming input pro-

cessing which does have some similarities. The general flow of Gorilla++ is to compile the

application into a dataflow representation, then leverage a flow similar to HLS to optimize the

dataflow based on available accelerators. Most nodes in Gorilla++ are compatible with the KPN

paradigm, but it also allows for nodes that can reorder packets, but may not change them, allow-

ing it to violate the KPN paradigm for operations such as opportunistic merge. That feature was

added because, as the author notes, many stream processing applications have relaxed ordering

guarantees. Although the application is rather different, there are some interesting parallels.

2.1.4 Motivations for the Pyrope Project

As digital architectures continue to scale in size and complexity, so too will the dif-

ficulties associated with managing such systems under the clock-synchronous pipeline model.

Latency Insensitive systems have many properties that can be helpful in managing large sys-

tems, and Fluid Pipelines expand on that model to implement architectures as a fully distributed

system. The benefits of developing an architecture this way are shown in the foundational work

on Fluid Pipelines [63] [64], demonstrating unrestricted use of pipeline transformations at no

cost to throughput.

17

The early work on Fluid Pipelines also showed challenges in employing this paradigm.

There can be no latency-related assumptions in the application logic, as is common when devel-

oping with clock-synchronous pipelines. More significantly, the valid and stop control signals

must be implemented properly, both as inputs and outputs, for every port. When implement-

ing Fluid Pipelines with Verilog or traditional programming languages such as C, this results

in control logic being mixed in with application logic, in a manner that is difficult to separate

with traditional programming abstraction constructs. Making a mistake in such control logic

can result in unpredictable and difficult to find errors, such as deadlocks and invalid data being

interpreted as valid data.

The goal of the Pyrope project is to bring the advantages of working with Fluid

Pipelines to developers, and help manage the challenges. It employs an Actor-Model based

programming paradigm designed to implement fluid behavior implicitly, allowing the devel-

oper to manipulate the behavior of the system within the bounds of the Fluid Pipeline paradigm,

while sparing them from implementing the logic directly and the bugs associated with it. This

is discussed in Chapter 3. The Pyrope toolchain also provides an interface to specify pipeline

transformations as part of the compilation flow, discussed in Chapter 4.

2.2 Languages

The name “Pyrope” comes from the pyrope stone, which is similar in appearance

to ruby. Pyrope was originally envisioned as bridging the gap between low-level HDLs and

scripting languages using fluid pipelines.

18

Before developing the abort-based paradigm described in Chapter 3 we experimented

with a variety of solutions to the problem of managing LI behavior from Pyrope, some which

were little more than syntax sugar on top of Verilog macros, and others that were inspired by

functional languages, before settling on a paradigm similar to the Actor Model. In addressing

this problem, we had to balance the goal of simplifying the fluid pipeline development process

with the need to still provide full control to the user.

This section discusses other programming and hardware description languages which

are similar to, and/or have influenced Pyrope. I first discuss other HDLs in Section 2.2.1, I

then present a little background on the Actor Model in Section 2.2.2, and finally some other

programming languages we looked to for inspiration in Section 2.2.3.

2.2.1 Hardware Description Languages

By far, the dominant HDL in academia and industry for developing synthesizable

digital architectures is Verilog. It can be thought of as the “assembly of hardware” as it provides

developers with low level control to develop systems at the register-transistor level (RTL).

There have been a variety of projects to create better HDLs. Bluespec [61] could be

considered a functional language. Circuits are inferred based on any number of “rules”, one or

more of which could evaluate depending on the inputs to the module. Bluespec’s paradigm is

perhaps most similar to Pyrope’s out of all the HDLs listed here. Pyrope, however, is designed

for creating Fluid Pipelines, this both restricts the programmer and provides fundamental guar-

antees (further discussed in Chapter 3), while Bluespec is a general purpose HDL. Another key

19

difference is that clock-barriers in Pyrope are implicit, since they can change based on pipeline

transformations, while clock-barriers in Bluespec are explicit.

Chisel [29] is an HDL developed at UC Berkeley and built on top of Scala, providing

a stronger type system better abstraction capabilities than Verilog. PyMTL [59] and PyRTL [39]

are built on top of Python.

Writing RTL code for synthesis is distinct from other types of programming in that

the developer cannot use constructs such as loops and “malloc”-ing from main memory which

cannot be translated directly into combinational logic (transistors) and finite sized storage units

(registers).

Attempts to synthesize circuits from code with more traditional programming con-

structs is generally referred to as “high-level synthesis” (HLS). There are a variety of projects

aimed at doing this [16, 35, 71]. A major limiting factor in these projects’ applicability is the

importance or carefully balancing logic between register blocks in order to achieve a high clock

frequency. This is more difficult when having the tool synthesize something like a loop, which

will require it to infer a state machine to implement that behavior, including multiple registers

and feedback paths.

Although there are similarities between Pyrope and many HLS flows, the key distin-

guishing feature is that HLS includes some sort of automated algorithm to optimize the resulting

system for features such as frequency and area. In contrast, with Pyrope the architecture would

be developed at the RTL level, enabling for high-level, but manual transformation, tuning, and

optimization by leveraging latency insensitivity.

20

Chapter 3 discusses how Pyrope implements LI behavior, which involves inferring

logic. We distinguish this from HLS flows because using Pyrope’s operators, the developer has

low-level control over the inferred logic network. Pyrope does not support high-level constructs

such as open-ended loops.

2.2.2 The Actor Model

Pyrope’s LI paradigm is based on the Actor Model, which is a programming paradigm

first proposed in 1973 [49] as an artificial intelligence computational model. It proposed view-

ing the system as an interaction between actors, which are atomic units that communicate via

message passing. Specifically, actors have the ability to: send a message, update its internal

state, or create new actors.

The Actor Model has served as a concurrency model [1,11,24] and a general platform

for parallel and distributed system programming [8]. It has been used in the backends of various

design and simulation tools [12,21,33] and there are Actor Model libraries available for a variety

of programming languages [1, 11]. The Cal Actor Language [3], is a programming language

built directly on top of the actor model.

We are not aware of any HDL Actor Model libraries, however, or any HDLs which

use the it as part of their design philosophy. We were attracted to it as we saw parallels between

fluid pipelines and heterogeneous concurrent systems where the Actor Model is well suited to

simulate. It also adapts well to an imperative programming style, that we also found appealing.

21

2.2.3 Other Programming Languages

There were other languages we looked at that tackled similar problems, but from

which we ultimately did not draw inspiration on for Pyrope.

Synchronous programming languages like Esterel [6] and Lustre [62] are languages

designed for implementing reactive systems, which are systems that must react to their envi-

ronments within specific time constraints. Esterel, for example, defines modules in terms of

input and output signals which are either “present” or “absent” at any given time, and provides

constructs to do things like wait for signals and emit signals.

These types of languages are more commonly used to implement robust, time-critical

systems such as flight-guidance systems, however we did see an analogy between a language

based around objects with react to signals, and a fluid pipeline of stages that process packets

when they arrive. There has also been prior work on synthesizing hardware with Esterel [42].

We ultimately went with a paradigm that was more similar to widely used general purpose

programming languages such as C and Python.

2.3 Fluid Pipelines and Hardware Simulation

Hardware simulation is the process of implementing a digital architecture, or some

part of a digital architecture, in software. Simulation is an essential tool in digital architecture

design, and also often forms a bottleneck in many parts of the development process. This

section provides some background on hardware simulations and why we in the MASC lab saw

the potential for leveraging Fluid Pipelines to address some of the challenges in this area.

22

Architecture simulation can be broadly divided into two categories: cycle accurate

and non-cycle accurate. Cycle-accurate means that the implementation can reproduce the archi-

tecture’s behavior cycle by cycle. This is not generally possible without being able to represent

the architecture’s entire state, thus a cycle-accurate representation is required to synthesize, or

generate a physical implementation of the system, and likewise an implementation which can

be used for synthesis can be simulated cycle-accurately.

Cycle-accurate implementations of modern architectures are often done at the register-

transistor level (RTL), and the system is generally implemented as a clock-synchronous pipeline.

The exception to this is high-level synthesis (HLS), though this is generally used for fast proto-

typing, as HLS underperforms RTL implementations.

Non-cycle-accurate representations, cannot reproduce the architecture’s behavior cy-

cle by cycle. Examples include ESESC [28] and Gem5 [32], which simulate some part of the

architecture’s behavior, such as the performance of its branch predictor or estimated power us-

age. These types of simulations are better for early design-space exploration, such as studying

the trade-offs of design decisions like the architecture’s cache size, since they can be imple-

mented more quickly than a cycle accurate simulation, and can cover ground more quickly in

long testbenches.

These simulation options present a trade-off that hardware architects are forced to

contend with. Cycle-accurate implementations are required for synthesis, but require more

effort to implement and are slow to simulate. Non-cycle-accurate implementations cannot be

used for synthesis since they do not contain complete information about the system. Likewise,

there is no easy way to extract a non-cycle-accurate simulation from an RTL implementation

23

without significant planning and infrastructure since clock-synchronous RTL implementations

closely tie timing and behavior.

We in the MASC lab felt that Fluid Pipelines could be leveraged to address this trade-

off. As with all LI systems, Fluid Pipelines can be more easily manipulated at a high-level

since their behavior is independent of timing. This would make it easier to isolate different

parts of the architecture and test them in different contexts. Conceptually simple optimizations,

such as replacing a floating point unit with a software floating point operation, is simple in a LI

architecture, but near-impossible in a clock-synchronous pipeline.

Fluid pipelines’ ability to be transformed, changing their timing without changing

their behavior, could be further leveraged to blend cycle-accurate and non-cycle-accurate simu-

lation. Chapter 4 shows how 4 and 5-stage RISC-V CPUs can be transformed into single-stage

CPUs. Compiled to C, these implementations are functionally similar to software emulators;

that chapter also compares their performance against the official RISC-V reference emulator,

which is written in C.

Chapter 4 also shows how transformations cause some architectural optimizations,

such as branch predictors and forwarding paths, redundant, providing a speed up by simplifying

the system as well, analogous to a non-cycle-accurate simulation.

These optimizations directly allow developers to trade speed for cycle-accuracy, but

using the same code-base, rather than having to implement the system multiple times.

Prior work has also proposed other types of hybrid simulations for which Fluid Pipelines

could also be helpful.

24

SMARTS [74] sampling framework combines a slow, cycle-accurate simulation and

a fast, non-cycle accurate simulation, to provide faster measurements of power-usage and CPI

(cycles-per-instruction) over a long testbench. With Fluid Pipeline Transformations, SMARTS

could be implemented with one code base.

Another project [68] addresses the problem that not only is cycle-accurate simulation

slow, but providing cycle by cycle values of every variable in the simulation is even slower,

even though this is generally needed for effective debugging. The authors propose using a fast

simulation which contains a minimal state representation of the system, taking checkpoints,

then using the checkpoints to do a detailed simulation in parallel. This system could also be

implemented with one code base with Fluid Pipelines.

25

Chapter 3

The Liam Programming Paradigm

You wonder why travel did not improve

you? You had yourself as a companion.

Seneca the Younger, Epistulae Morales

This chapter discusses the Latency-Insensitive Actor-Model (Liam) paradigm, that is

central to how Pyrope is used to create Fluid Pipelines. First, Section 3.1 discusses how Liam

works, and shows how it can be used with code examples. Next, Section 3.2 shows how Liam

is implemented by the Pyrope compiler.

3.1 Describing Fluid Behavior with Liam

3.1.1 Overview

The motivation behind Liam, and what it adds to Pyrope, is shown in Figure 2.1.

We can see that the added difficulty in working with fluid pipelines, or any type of latency

26

insensitive system, is the additional work of implementing logic for the control network to

drive the valid and stop signals (or the equivalent). If one were implementing a fluid pipeline

architecture in Verilog, one would have to implement all of that logic manually. Instead, Liam

provides a paradigm designed to infer that network based on the structure of the code.

The way we manage this is by leveraging the Actor Model, as discussed in Sec-

tion 2.2.2. In the abstract, the Actor Model defines the system in terms of actors who can affect

the state of the system by either updating its internal state or sending messages to each other

(external state). To be clear, this does not refer to a finite, countable, number of states as in a

finite state machine, but an uncountable number of states described by the value of each actor’s

internal memory and the packets in its message passing queue. Liam provides a mechanism to

manage these state transitions in the abstract, and guarantee that they happen atomically. As

an example, if the developer’s intention is that a stage will send a packet and update an inter-

nal counter to reflect that, Pyrope code can be structured to guarantee that either both of those

things will happen, or neither of them will.

The Pyrope compiler compiles Liam behavior into logic networks to drive the valid

and stop control signals of Fluid Registers. Liam is not specific to HDLs however, and could be

adapted by other languages and toolchains.

3.1.2 Liam within a Pyrope Architecture

Pyrope architectures are divided between any number of pipes and stages. Stages

contain logic and have an internal state characterized by their internal registers and their IO

27

ports. Pipes instantiate stages, and can connect the IO ports of stage instances to each other, and

to the pipe’s own IO ports. They have no logic or internal state of their own.

Liam is designed to manage how data-path logic interacts with the control paths and

ultimately the state of the overall system. Thus, it only applies to blocks with logic and state,

referred to as stages, and not with pipes, which have neither.

As of now, all stages in Pyrope are implicitly fluid (although that will change in

future versions). This means that each IO port is actually a fluid port with valid and stop control

signals, and that logic to implement Liam behavior will be inferred for each of them by the

compiler.

3.1.3 Inferring Fluid Behavior

1 mux : : {
2 s as input l o g i c a l
3 a , b as input b i t s : 3 2
4 o as output b i t s : 3 2
5

6 i f s {
7 o = a
8 } e l s e {
9 o = b

10 }
11 }

Listing 3.1: A Pyrope implementation of a simple multiplexer, with two data inputs: a,b, one data
output: o and one select input: s If instantiated as a stage, fluid pipeline control logic will be inferred for
its input and output ports.

28

Listing 3.1 shows an implementation of a simple multiplexer in Pyrope, which routes

the data from one of its input ports to its output port based on a selector input. If this block

is instantiated as a stage in another block, all of its inputs and outputs will be considered fluid

inputs and outputs, which will each implicitly have their own valid and stop control signals.

To describe fluid behavior for this stage, Liam creates the concept of the stage’s state,

which includes the values of the block’s internal registers, the values on its output ports (and

whether or not that output port is valid), and the state of each input port (whether or not the

block is asserting back pressure on that port). The Pyrope paradigm provides rules, or Axioms,

1 (Atomicity), 2 (Abortion), 3 (Consumption), and 4 (Isolation), to describe when and how a

stage’s state is updated.

Axiom 1 (Atomicity) A stage is a block of code that evaluates from the top down. If it com-

pletes without aborting, it updates its state. All outputs written to are valid in the new state. All

registers written to are updated. All inputs read from are consumed.

Axiom 2 (Abortion) A stage aborts when an invalid input is read, or an output with back-

pressure is written.

Axiom 3 (Consumption) All valid inputs are held (back pressure) until they are consumed.

Axiom 4 (Isolation) An aborted stage does not consume any input, generate any valid output,

or make any other changes to its state.

Liam adds the concept of stage aborting as a means of managing state. When an abort

happens in a cycle, no inputs are consumed or outputs are produced. This concept only exists

29

within the programming language, and is based on the control flow structure of the stage. When

synthesized, this behavior is implemented as combinational logic to drive a fluid register’s valid

and stop signals. Implementing Liam in synthesis is further discussed in Section 3.2.

Considering the axioms, if s is valid and equal to 1, the control flow will lead to line

7, otherwise it will lead to line 9. If s is valid and equal to 1, and a is valid, than both those

inputs will be consumed and o will equal a; likewise if s is valid and equal to 0 with regards to

input b.

The mux in Listing 3.1 actually acts more like a switch, as it will it will only consume

one of the data inputs, a and b, each time it produces output. The data input which is not

selected, or “consumed” will be held with the stop signal.

3.1.4 Liam-Specific Operators

The Liam paradigm includes operators designed to allow the programmer to check the

state of an IO port, and make a decision based on that. The Pyrope version of these operators

is shown in Table 3.1. The “Valid Check” and “Stop Check” allow the developer to check if an

input is valid or if an output has back pressure without triggering an abort.

As stated in the Consumption Axiom 3 (Consumption), an input is consumed if it is

read and the stage does not abort that cycle. The “Keep Statement” allows the user to prevent

that, keeping the input on the next cycle as well. Finally the “Consume Statement” does the

opposite, marking an input as read, and triggers an abort if the input is not valid. This is syntax

sugar since the same could be accomplished by just reading the variable and not using the value,

but it improves readability.

30

Table 3.1: Liam adds some new constructs which helps the programmer manage elastic behavior ab-

stractly.

Name Code form Description

Valid Check var? Checks if an input or output is valid

Stop Check var! Checks if an input or output stop flag

is asserted.

Keep Statement keep input Prevents an input from being con-

sumed.

Consume Statement consume input Explicitly consume an input.

Consider that for some application we may want this to act as a “fluid mux”, and not a

“fluid switch”, meaning it should wait for both input ports to have valid values, then output one

and drop the other. A stage with that behavior is shown in Listing 3.2. Pyrope has the syntax

sugar read, that marks a port as having been read on that path. In a non-stage block this line has

no effect. In a stage, however, the two read commands will force an abort unless the unselected

input is also valid, and will cause that port to also be consumed when the state is updated.

By default, variables in Pyrope do not maintain their values across cycles. Those that

do are marked with @. Placing the increment above the “if-else” block implements the desired

behavior because if the stage fails to send a packet it will abort, preventing the increment of

@sent_ctr from going through. Placing the increment at the bottom of the block may be more

intuitive, however.

31

As another example, it may be the case for some application that we would want a

“fluid mux” which would consume the input on the unselected port if it is valid, but ignore

that port otherwise. Listing 3.3 introduces the ? operator which checks if an input port is valid,

without triggering an abort. An equivalent operator exists for output ports: !, which checks for

the presence of back pressure.

1 mux : : {
2 s as input l o g i c a l
3 a , b as input b i t s : 3 2
4 o as output b i t s : 3 2
5

6 @ s e n t _ c t r as b i t s : 3 2
7 @ s e n t _ c t r ++
8

9 i f s {
10 o = a
11 r e a d b
12 } e l s e {
13 o = b
14 r e a d a
15 }
16 }

Listing 3.2: This version of the mux will only produce output once both input ports have a valid value.
The other port is read and discarded. It also maintains an internal count of how many packets it sent.

32

1 mux : : {
2 s as input l o g i c a l
3 a , b as input b i t s : 3 2
4 o as output b i t s : 3 2
5

6 i f s {
7 o = a
8 i f b ? { r e a d b }
9 } e l s e {

10 o = b
11 i f a ? { r e a d a }
12 }
13 }

Listing 3.3: This version will only consume the input on the unselected port if it is
valid, and will ignore that port otherwise.

The three examples 3.1 3.2 3.3 show the general idea behind Pyrope’s abort-based

paradigm. This paradigm allows the developer to manage the fluid aspects of the system, in

other words the presence of valid and invalid data and back pressure, using the control flow

structure of the stage. We found that it came naturally to reason about a stage’s behavior in

sequential terms, such as: “the stage gets to this line and aborts”, or: “it checks for back pressure

here, then continues”, even though we knew that the logic that drives the control signals is

actually evaluated in parallel in the synthesized system.

This also prevents some types of bugs we encountered when manually implementing

fluid pipelines, such as invalid data accidentally being interpreted as valid data or data with back

pressure being overwritten due to small typos in the control logic. Pyrope will not generate a

control network which would act that way, that in our experience made fluid pipelines much

more predictable to work with.

33

These examples also show why a tool which automatically converts a synchronous

circuit like a mux attached into a clock-synchronous register to a latency insensitive system will

never be ideal. The LI system contains additional vectors of control: the concept of valid/in-

valid data and of back pressure/consumption. Those vectors of control must be available to the

developer or their ability to optimize and tune the system will be limited.

3.1.5 Catching the Abort with “Try” Blocks

1 one2two : : {
2 i n p as b i t s : 6 4 input
3 o1 , o2 as b i t s : 6 4 output
4

5 t r y {
6 o1 = i n p
7 } e l s e {
8 o2 = i n p
9 }

10 }

Listing 3.4: This stage will route a valid input from “inp” to the first available output port.

Liam models a stage’s abort as an exception. If it is uncaught, the stage will abort,

however the abort can be avoided if it is triggered inside a “try” block. Listing 3.4 shows a

simple stage that will send its input to the first available output. It does this by first attempting

to read from input inp and write that result to output o1. If that fails either because inp is not

valid or o1 has back pressure, the abort will be caught and the stage will attempt to write inp to

o2.

34

Listing 3.5 shows how the try block can be used to implement a register file with two

read ports and one write port. Note that the decision to put the reads into two separate “try”

blocks, rather than the same one, may require some architectural level consideration. If both

inputs r1addr and r2addr arrive on the same cycle but there’s back pressure on only one output

port, then it’s possible for the results of the reads to appear on very different cycles. Putting

them both in the same “try” block guarantees their read values will be produced on the same

cycle by regfile, if that behavior is desired.

1 r e g f i l e : : {
2 r 1 a d d r as b i t s :WORD input
3 waddr as b i t s :WORD input
4 r1 as b i t s :WORD output
5 @ d a t a as b i t s :WORD c o u n t : 3 2 r e g i s t e r
6

7 t r y {
8 r1 = @ d a t a [r 1 a d d r]
9 }

10

11 t r y {
12 r2 = @ d a t a [r 2 a d d r]
13 }
14

15 t r y {
16 @ d a t a [waddr] = wdata
17 }
18 }

Listing 3.5: The try block allows operations to be isolated, so that their abortion does not affect the rest
of the stage.

Removing the “try” blocks would mean that a read could not happen unless a write

was requested, and vice versa. This is likely not desirable, in fact, there’s a good chance it

35

could cause a deadlock in many processor implementations. No programming language can

prevent the developer from making a mistake, though in my opinion, Pyrope’s paradigm makes

that sort of error easier to recognize and reason about, as opposed to having the control logic

implemented manually in the same design space as the data logic. This is something I was not

able to test experimentally, unfortunately.

The “try” block does not technically add any new functionality, as its behavior could

be implemented with the ? and ! operators. It is useful because it frees the programmer from

having to manually reason about what needs to be checked in a given sub-block to prevent the

entire stage from aborting. This can make it easier to describe behavior such as the regfile in

Listing 3.5, where the desired behavior is for each statement to be tried separately.

3.2 Compiling Liam

Pyrope’s paradigm is designed to describe fluid behavior implicitly based on where

registers and IO ports are read and written to in the control flow structure of the stage. This be-

havior can be compiled into control logic that drives the valid and stop signals of fluid registers.

As stated in Section 3.1.2, this only applies to stages, that have logic and internal state. Pipes

do not have this implicit logic compiled in.

This section is divided into several parts. The first, Section 3.2.1, discusses how

Liam manages state in more detail. Then, Section 3.2.2, discusses deriving logic for the stage’s

external state, in other words its IO ports. Section 3.2.3 discusses deriving logic for a stage’s

internal state, meaning its registers.

36

The final section of this chapter, Section 3.3, discusses some of the challenges Liam

presents when implementing large, internal memory blocks. Conceptually, Liam treats large and

small registers the same. Due to practical challenges of implementing large memory blocks in

synthesized hardware, and Liam’s ability to abort a state change, however, the Pyrope compiler

treats scalar and arrays registers differently, implementing special optimizations for the latter.

3.2.1 Stages and State

A stage’s state is defined as the values of its internal registers (if it has any), along

with the state of each of its IO ports (whether they have valid data and/or are asserting back

pressure). The data at each IO port is also part of the stage’s state if that data is valid. Invalid

data is considered “don’t care”.

For descriptive purposes, this thesis refers to a stage’s registers as its internal state,

and a stage’s IO ports as its external state, as these require different considerations to manage,

as discussed in Section 3.2.2 and 3.2.3, and Section 3.3.

To provide access to the state Liam supports several types of variables, each of which

could exist as scalar values or arrays:

Public: Visible outside the stage, in other words IO ports. Reading and writing to these means

accessing fluid ports which could trigger an abort.

Register: These variables retain their values across cycles, making them implicitly part of the

stage’s internal state.

37

Private: These variables don’t retain their values between cycles. They correspond to combi-

national logic in synthesized hardware.

Within the register variable type, Liam supports two kinds: inline registers and de-

ferred registers. The difference is illustrated by Listings 3.6 and 3.7. It is important to note that

inline versus deferred refers to how registers behave during a cycle. Inline registers act like soft-

ware variables, updating after being assigned to in the control flow, while deferred registers act

like hardware registers, updating on the next cycle. This is discussed in detail in Section 3.3.1.

Both register types behave the same across cycles, in that they both will only commit their

changes if the stage does not abort.

1 @reg1 as i n l i n e
2 @reg1 = 5
3 x = @reg1 # x = 5

Listing 3.6: The value of an inline register is updated after it is written, but that
value will not persist to the next cycle if the stage aborts.

1 @reg1 as d e f e r r e d
2 @reg1 = 5
3 x = @reg1 # x = < p r e v i o u s va lue >

Listing 3.7: Deferred registers are updated at the end of the cycle, assuming the
stage doesn’t abort.

Inline registers require a bit more consideration to implement, especially with regards

to memory blocks as discussed in Section 3.3. The Liam paradigm provides support as one

of the goals of the paradigm was to provide a programming interface that is as intuitive as

38

possible. From a functionality perspective it is not necessary to support both, as any algorithm

written with inline registers could be reworked to use deferred registers. Since Liam is not a

programming language, but a programming paradigm which could be adopted by languages, it

is left to the language designer to decide which parts of Liam to support.

3.2.2 Deriving Logic for External State

sread=true

if s == 0

aread=true

T

bread=true

F

owritten=true owritten=true

o = a o = b

Figure 3.1: The first step to adding fluid behavior to a Pyrope block is to add flags indicating when an

input or output port has been read or written. This figure shows the flags added to Listing 3.1.

Adding fluid behavior is done in several steps. First, flags are added to the control

flow representation to indicate when a given input/output port or register is read or written

(Figure 3.1). When this graph is converted into a dataflow graph, those flags provide us with a

boolean logic network for each input/output port indicating if it is read or written to in this cycle.

This is shown in Figure 3.2. Using the outputs of these logic networks, we can derive an equa-

39

Equation 3.1: A boolean flag indicating whether or not the stage will abort can be set with the equation

below.

abort =(∃input : ¬inputvalid ∧ inputread)∨

(∃out put : out putstop∧out putwritten)

(3.1)

Equation 3.2: A given output is valid if the stage did not abort and it has been written.

out putvalid = ¬abort ∧out putwritten (3.2)

tion for if the stage will abort (Equation 3.1), and equations for the output valid (Equation 3.2)

and input stop (Equation 3.3) control signals for each output and input port respectively.

sread=true

aread breadowritten

s==1

?? ? ?

out

true

T

true

F

true

F

true

T

false

T

false

F

a

F

b

T

Figure 3.2: The dataflow graph generated by Listing 3.1.

Try-else blocks are implemented as shown by Figure 3.3. Both the try and the else

blocks evaluate in parallel, if the try does not abort, the state update comes from that block,

otherwise it comes from the else block.

40

Equation 3.3: A given input asserts its stop flag if it is valid and either the stage aborted, or it was not

read this cycle.

inputstop = inputvalid ∧ (abort ∨¬inputread) (3.3)

try

else

f

t

aborttry

state

aborttry
abortelse abort

statetry

stateelse

Figure 3.3: If the try block does not abort, the state update comes from that block, otherwise it comes

from the else block.

Creating a dataflow representation of the logic based on the control flow represen-

tation is a standard method of converting sequential operations into parallel logic. Dataflow

graphs are particularly useful for register-transistor level (RTL) HDLs since they do not sup-

port loops that cannot be unrolled. The dataflow graph can derive the final value of each variable

in the block as an expression of its data dependencies, with all the expressions being as paral-

lelizable as possible. Thus the control logic Pyrope generates can also be evaluated in parallel

to the data path, excluding only places where the control flow branches (for example, if split by

an i f − then− else block).

41

Equation 3.4: The update equation for a scalar register.

regupdate = regwritten∧¬abort (3.4)

3.2.3 Deriving Logic for Internal State

Reads and writes to a stage’s internal state, also referred to as its registers, will never

cause an abort, however writes to registers are still subject to abort rules, to prevent their state

from going out of sync with the stage’s external state.

The dataflow graph derived for a register will be different depending on if the register

is deferred or inline, as illustrated by Listings 3.7 and 3.6. For array registers that are deferred,

additional logic is required to determine if any of the indexes written to correspond to the value

being read. This is discussed in Section 3.3.

The update logic for a scalar register is shown in Figure 3.4. Writes to scalar registers

are marked with flags so that in the dataflow graph, for each scalar register x, there is a corre-

sponding xwritten. This, along with the abort flag, determine if the register is written this cycle,

or if its old value remains.

3.3 Arrays and Liam

Section 3.2.3 shows how registers are updated, by building a dataflow representation

of the register’s updated value, and adding logic to prevent a write if the stage aborted on that

42

cycle. Section 3.2.1 also discusses how registers can be either inline or deferred, affecting how

they behave when written and read during a cycle.

There are some subtleties when extending this model to include array registers, that

are discussed in this section. Section 3.3.1 describes the differences between C and Verilog

arrays, and the motivation for adding these features to the language. Section 3.3.2 describes how

array operations are represented internally. Finally, Section 3.3.3 discusses the array-specific

optimizations that can be used to eliminate any unnecessary data duplication in the compiled

code, to create a data-minimal implementation of the stage’s behavior for all array registers.

3.3.1 Software Arrays and Hardware Memory Blocks

In traditional programming languages, arrays are contiguous blocks of memory that

store any number of the same data-type sequentially. Each element can be accessed by index,

and the semantics of operations on an array elements are generally the same as for a scalar

variable.

Verilog has a feature that is similar to an array, called a memory block. A memory

block declaration is shown in Listing 3.8. The numbers in the first pair of brackets indicate that

each “line” of the memory block is 64-bits long, and the second number indicates that there

will be 512 lines. There are similarities between memory blocks and arrays, as the line width is

analogous to the array type and the line count is analogous to the array length.

1 r e g [6 3 : 0] memory_block [5 1 2] ;

Listing 3.8: A Verilog declaration for a memory block with 512, 64-bit lines. There are similarities
between Verilog memory blocks and software arrays, but they are not interchangeable.

43

Implementing efficient hardware means carefully tuning the combinational logic net-

works between register blocks to minimize propagation delay. As a result, memory blocks in

hardware require at least one clock cycle to read or write, sometimes more.

Another important subtlety when working with hardware memory blocks is that if

there is more than one write, those writes happen in parallel. This means that multiple writes

to the same index is undefined, and is generally considered bad design. This is in contrast to

software arrays where writes happen in sequence and overwriting the same address is generally

not a problem.

Verilog has another feature which provides behavior similar to arrays, called a bus. A

bus is just a group of wires, numbered sequentially. As an example, Verilog provides semantics

to declare a bus of 512 wires (512-bit bus), and reference them in groups of 32, treating each as

a separate “element” of the “array”. Buses do not maintain their value across cycles, however,

a register is required for that.

The subtle differences between software arrays and hardware memory blocks were

important for two reasons. First, because with Pyrope, the goal was to provide the convenience

of software arrays, while still synthesizing good quality hardware. Second, because Pyrope was

designed to compile into both C++, for optimized simulation and live development, and into

Verilog for synthesis. Pyrope’s internal representation had to be compatible with both.

The subtle differences between software arrays and hardware memory blocks were

important for two reasons. First, deferred array registers behave like Verilog memory blocks,

writes to them are modeled as taking place at the end of the cycle in parallel. As in Verilog,

writing to the same location multiple times is undefined. Inline array registers, even when

44

Equation 3.5: The awr operation allows Pyrope to treat writes to array indexes no differently than scalar

variables. Redundant copying can be remove with later optimizations.

awr(a, p0, ...)→ am (3.5)

synthesized, have logic to make them behave as software arrays. If the same index is written to

multiple times, the “last” write to evaluate, from a control flow perspective, is the one that will

go through. This generally requires more logic to implement, but guarantees that the compiled

stage will not have undefined behavior.

3.3.2 Pyrope Internal Array Representation

To represent arrays internally, Pyrope defines a special operation: awr, for “array

write”.

The awr operation takes an array as its first argument, followed by one or more index-

value pairs. It will return a new array that is identical to the first argument, but with the indexes

specified by each pair replaced with the corresponding value.

There is one important constraint placed on the compiler, for each of the pairs passed

into awr: the resulting array should be identical regardless of what order the pairs are written.

This guarantees consistent performance whether the operation will be implemented in sequence

in software, or in parallel in hardware. This constraint is referred to as the awr-write-order-

invariance constraint.

45

1 a r r a y _ e x a m p l e : : {
2 @ a r r [addr1] = d a t a 1
3 y = @ a r r [yaddr]
4 @ a r r [addr2] += d a t a 2
5

6 i f d a t a 3 < 10
7 @ a r r [addr3 +1] = d a t a 3
8 e l s e
9 @ a r r [addr3 −1] = d a t a 3

10

11 z = @ a r r [z a d d r]
12 }

Listing 3.9: Arrays require special consideration when implementing them with Pyrope’s paradigm.

Listing 3.9 shows a Pyrope stage with several array reads and writes. Figure 3.4

shows this block of code compiled into a data flow graph, using awr to represent the array

operations. The same block of code is shown compiled with both an inline and a deferred array

to demonstrate the difference. Considering each awr has only one index-argument pair, it is

trivial to see that the awr-write-order-invariance constraint is maintained.

The following section lists the dataflow optimizations that can be applied to awr nodes

to remove any redundant copying.

3.3.3 awr Optimizations

Figures 3.5, 3.6, 3.7, and 3.8 show the dataflow optimizations that are specific to awr

operations to remove any redundant copying. Additional logic must be inferred to maintain the

awr-write-order-invariance constraint.

46

arr0 (Initial array)

arr1 = awr(arr0, addr1, data1)

arr2 = awr(arr1, addr2, data2) y = arr1[yaddr]

arr3 = awr(arr2, addr3-1, data3) arr4 = awr(arr3, addr3+1, data3)

z = arr5[zaddr]

arr5 = c ? arr3 : arr4

(a) Inline

arr0 (Initial array)

arr1 = awr(arr0, addr1, data1) y = arr0[yaddr] z = arr0[zaddr]

arr2 = awr(arr1, addr2, data2)

arr3 = awr(arr2, addr3-1, data3) arr4 = awr(arr3, addr3+1, data3)

arr5 = c ? arr3 : arr4

(b) Deferred

Figure 3.4: Arrays in Pyrope are either inline if they are updated immediately after being written,

or deferred if they are updated at the end of the cycle. The distinction is reflected in their respective

dataflow graphs; for inline arrays, reads are dependent on the latest version of the array, while deferred

reads are always dependent on the version present at the beginning of the cycle.
47

pairs1 = {index1, value1, ...}

arry = awr(arrx, pairs1) pairs2 = {index2, value2, ...}

arrz = awr(arry, pairs2)

(a) Before

value1a = (index1 == index2) ? value2 : value1

pairs1 = {index1, value1a, ...}

arrz = awr(arrx, pairs1, pairs2)

pairs2 = {index2, value2, ...}

(b) After

Figure 3.5: A chain of array_writes requires that all indexes not written be copied unmodified. This can

be collapsed to a single array_write.

pairs1 = {index1, value1, ...}

arry = awr(arrx, pairs1) pairs2 = {index2, value2, ...}

arrz = awr(arry, pairs2)

a = arrz[i]

(a) Before

pairs1 = {index1, value1, ...}

arry = awr(arrx, pairs1) pairs2 = {index2, value2, ...}

a = (i in pairs2) ? pairs2[i] : arry[i]

(b) After

Figure 3.6: When a read is dependent on an array_write, that dependency can be moved to an earlier

version of the array as long as the logic to forward an updated value is implemented.

These optimizations can be continually applied until all array reads and writes are

dependent on only the original version of the array, along with any number of scalar dataflow

nodes. This achieves the original goal of allowing Pyrope to compile arrays that would be

synthesized properly as memory blocks in hardware.

48

pairs1 = {index1, value1, ...}

arrx = awr(arr, pairs1)

arr : initial array

arrz = (cond) ? arrx : arr

(a) Before

pairs1 = {index1, value2, ...}

arrz = awr(arr, pairs1)

value2 = (cond) ? value1 : arr[index1]

arr : initial array

(b) After

Figure 3.7: This corresponds to the case of an array being written to on one branch of an i f −else block.

The result essentially collapses the dataflow logic network around the values being updated, eliminating

unnecessary copying.

3.4 Conclusion

The Liam paradigm provides a way to add fluid behavior to blocks of code imple-

mented as dataflow logic by adding high-level controls, in the form of Axioms (1 (Atomicity), 2

(Abortion), 3 (Consumption), 4 (Isolation)), to allow programmers to specify atomic updates to

the block’s state. The behavior specified by the Liam paradigm is implemented by the Pyrope

language, by the Pyrope compiler, which implements Liam’s behavior as combinational logic

networks to drive the valid and stop control signals of fluid registers, used in fluid pipelines

(introduced in in Chapter 2.1.2). This requires that the compiler generate additional logic, and

requires special consideration when dealing with large memory blocks.

49

pairs1 = {index1, value1, ...}

arrx = awr(arr, pairs1)

pairs2 = {index2, value2, ...}

arry = awr(arr, pairs2)

arr : initial array

arrz = (cond) ? arrx : arry

(a) Before

pairs1 = {index1, value3, ...}

arrz = awr(arr, pairs1, pairs2)

pairs2 = {index2, value4, ...}

value3 = (cond) ? value1 : arr[index1] value4 = (cond) ? arr[index2] : value2

arr : initial array

(b) After

Figure 3.8: This corresponds to the case of an array being written to on one branch of an i f −else block.

The result is similar to Figure 3.7.

In Chapter 4, I show that this does not add significant hardware costs to the final,

synthesized, systems as: (1) the generated logic is all single bit boolean operations that are

small compared to logic operating on the data that the architecture processes, and (2) can be

evaluated in parallel. Furthermore, (3) when experimenting with this design flow we in the

MASC lab found that much of the generated logic is optimized away by later passes and (4)

much of the logic that is not removed stands in for logic engineers would normally implement

50

by hand, such as “ready” signals that are often used to manage the back pressure problems in

systems when their designers choose to do so on an ad-hoc basis.

We in the MASC Lab have also found that using Liam makes implementing fluid

pipelined architecture much easier, as it requires less lines of code and it’s easier to reason

about the behavior of the system when debugging it. For these reasons, the Liam paradigm is

central to the Pyrope programming language and our Fluid Pipeline design toolchain.

51

Chapter 4

Pipeline Transformations

The monkey is repulsive, he’s too much

like us!

Quintus Ennius, Saturae

This chapter analyzes fluid pipeline transformations in more detail, both the specifics

of implementing them, and how they can be leveraged to aid in the digital architecture design

process.

Section 4.1 discusses how we define transformations in the context of the Pyrope

language and compiler, building on prior work discussed in Section 2.1.2. Section 4.2 discusses

how we implement them as part of the compilation flow.

The remaining sections in this chapter present ways in which fluid pipeline transfor-

mations can be leveraged for simulation, synthesis, and verification, and evaluate each method.

The evaluation framework is discussed in Section 4.3.

52

Section 4.4 focuses on synthesis. This section discusses a fluid pipeline based solution

toward a common problem in digital architecture development: the challenge of sharing code

between projects with different timing targets. The problem comes from the fact that in order to

achieve a fast clock speed, the logic of the architecture must be divided between many registers,

however if a slow clock speed is tolerable, the system can save energy by removing registers.

Section 4.4 shows how pipeline transformations, specifically merging, can be used to remove

registers between stages, transforming four and five stage RISC-V cores into two and three

stage cores. Their synthesis results are compared (area/power, delay, CPI) to manually created

RISC-V cores with similar features.

Section 4.5 looks at using pipeline transformations to speed up simulations. Using

successive merge operations to collapse a pipeline, no matter how long, into a single stage

creates a system that is functionally similar to an emulator. Section 4.5 evaluates the speed up

gained by doing this and compares its overall performance to Spike [14], the official RISC-V

reference emulator programmed in C.

Section 4.5 also looks at using the collapse technique as part of a sampling schema.

Sampling is a simulation technique that uses a fast emulator and a slow, cycle accurate simulator

to allow the simulator to cover more ground while sacrificing as little accuracy as possible [74].

Normally, this requires each implementation of the architecture be coded by hand. With fluid

pipelines, the same RTL implementation could serve both roles.

Finally, Section 4.6 discusses the use of pipeline transformations in verification. In

this verification model, the developer would have two architectures with the same functionally,

but different features, such as a different number of stages, different forwarding paths, or differ-

53

ent branch predictors. There are tools called SAT solvers that can verify if two logic networks

have equivalent functionality, but generally cannot be used in this case because the different

features of those architectures result in different timing properties. However, both architectures

should have identical timing properties and functionality if collapsed into a single stage, barring

the presence of bugs.

4.1 Pyrope Pipeline Transformations

Prior work on fluid pipeline transformations has defined the Recycling and Retiming

transformations, discussed in Section 2.1.2. These allow the user to add/remove fluid regis-

ters and move fluid registers, changing the timing properties of the system without changing

behavior.

A major motivation of the Pyrope project was to integrate these transformations with

the digital architecture design toolchain. Doing so requires creating an interface that the devel-

oper could use to apply transformations as part of the compilation flow. There is still work to

do in this area, since so far, there has been only one transformation, merge, integrated into the

Pyrope compiler. Even so, we have found a variety of applications that work by leveraging just

this one operation. The merge operation is defined in detail in this section.

The Pyrope compiler defines the merge pipeline transformation as an operation be-

tween two instantiated stages. Figure 4.1 shows what this looks like in circuitry.

It is important to note that the merge operation is commutative in terms of behavior,

but not commutative in terms of timing. As shown in Figure 4.1, only the connections in one

54

a
c

b

e

d

(a) pre-merge

e

d

b

a

(b) post-merge

Figure 4.1: Merging two stages together results in the “forward” connections between them going away

while the “back” connections between them are maintained.

direction can be removed (referred to as “forward connections”) while the connections in the

other direction (the “back connections”) must be maintained.

This leads to an important rule with the merge operation: Removing fluid registers

whose data-path travels in the same direction of the pipeline has the effect of decreasing the

pipeline length by one cycle. Removing registers whose data-path goes in the opposite direction

implicitly means maintaining the forward-path registers, and thus does not decrease the pipeline

length.

When integrating with Pyrope source code, this means that the merge operation is de-

fined between two instantiated stages and the connections between them. The same code block

could be instantiated in many different places, connected to its neighbors in different ways,

parameterized differently, and be merged with other instances in different orders. This adds

55

additional challenges from the tool-design standpoint as it makes it difficult for the developer to

reason about the effects of pipeline transformations by just looking at the code.

1 c o r e = merge (F , D)
2 c o r e = merge (core , E)
3 c o r e = merge (core , W)

Listing 4.1: Listing of transformations to collapse a 4-stage pipeline with the stages: F, D, E, W, into a
single stage named core.

Pipeline transformations are specified as a series of operations. As an example, List-

ing 4.1 shows the series of merge operations which could be used to collapse a 4-stage pipeline

with the stage-instances: F (fetch), D (decode), E (execute), and W (write back), into a single

stage-instances named core. Transformations such as these are listed in a configuration file, that

can be referenced by name using the Pyrope compiler’s repipe command line argument. The

compiler-level implementation details are discussed in the Section 4.2.

4.2 Implementation

As discussed in more detail in Chapter 5, the Pyrope compiler’s internal data struc-

tures are designed to minimize duplication for faster performance. A Pyrope architecture is

represented internally in the compiler with the following information:

• Block Table: A name-to-block mapping of blocks containing all logic in the architecture.

56

• Instance Table: An instance-name to block-name mapping of all instances in the system

and which block they instantiate.

• Connections: A list of connections, that are either a connection between stage-instances

or a connection between a stage-instance port and a global IO port.

Applying a merge operation, or any kind of pipeline transformation defined in the

future, requires updating the internal representation to reflect the new pipeline, and rerunning

the type resolution and constant propagation passes to fully optimize the changed topology.

4.3 Evaluation Setup

In our evaluation of this method, we use several 4, 5, and 6-stage RISC-V cores, listed

in Table 4.1. Each has an instruction and data memory and can be compiled into either 32 or 64

bits, supporting the RV32i or RV64i ISA, respectively. The four stage RISC-V Fluid cores have

the topology: fetch, decode, execute, and write-back. The five stage RISC-V Fluid core breaks

the execute stage into two stages, and the six stage core breaks the execute and the write back

stage into two stages. Each RISC-V core includes instruction and data SRAMs.

We compare these against several open-source RISC-V cores freely available. VS-

cale [19] is a 32-bit, 3-stage CPU. PICORV32 [9] is a 4-stage, also 32-bit. RI5CY [13] is a

4-stage 32-bit core that has additional features such as a prefetch buffer. Zero-riscy [20] is a

smaller 2-stage version of RI5CY.

57

Table 4.1: Cores used in the evaluation.

Name Fluid Main Characteristics

c4 Yes 4-stage

c4+fwd Yes 4-stage with forwarding

c5 Yes 5-stage

c5+fwd Yes 5-stage with forwarding

c6+fwd Yes 6-stage with forwarding

Zero-riscy No 2-stage [20]

VScale No 3-stage [19]

PICORV32 No 4-stage [9]

RI5CY No 4-stage [13]

The automatically Fluid transformed cores keep the same original name and add the

generated number of pipeline stages. E.g: c4+fwd 2-stage means that the original c4+fwd Fluid

core was automatically transformed to become a 2 stage pipeline core.

For synthesis, we make sure that all the SRAMs associated for data and instruction are

not included in the synthesis results by excluding those SRAM blocks from the synthesis itself.

When possible we also select configuration parameters to match the Fluid RISC-V cores. For all

the cores, we use a commercial synthesis flow that has topological information during synthesis.

For each core, we select a target frequency 5% under the maximum achievable frequency for

that given core.

58

All the simulation and verification is done in the same machine for benchmarking

reasons. We compile the system on an Arch Linux (October 2017) with GCC 7.2 and the -O2

optimization flag. These are run on an Intel(R) Xeon(R) CPU E3-1275 v3 @ 3.50GHz, with

16 GB RAM. For formal verification, we use YOSYS [73] version 0.7+312 as the SAT solver

interface compiled with Clang 5.0.

4.4 Synthesis

This section shows that fluid pipelines can be used to automatically generate efficient

cores with less pipeline stages than present in code, and to show that Fluid cores are competitive

against existing RISC-V cores.

We do a competitive analysis between all the Fluid cores and several non-Fluid RISC-

V cores. For the Fluid RISC-V cores and the available Non-Fluid RISC-V cores, we perform

synthesis with a commercial tool that has a topographical aware synthesis, and report the time

and area for each core. Figure 4.2 shows the resulting plot with the y-axes showing the normal-

ized area against c5+fwd, and the x-axes showing the delay in nanoseconds.

One observation is that Fluid RISC-V cores have approximately similar delay-area

trade-offs to Non-Fluid RISC-V cores. This is important because it shows that Fluid does not

introduce significant additional design overheads.

This may seem counter-intuitive since Fluid Pipelining means replacing non-fluid

registers with more expensive fluid registers. The effect of fluid registers on area is greatly min-

imized because, for one reason, when a Fluid Pipeline is compiled to Verilog, with application

59

0

0.5

1

1.5

2

2 2.5 3 3.5 4 4.5 5

A
re

a

Delay (ns)

Non-Fluid
Fluid, no transform
Fluid, transformed

c4

c4+fwd

c5+fwd

VScale

Pico

RI5CY

c4+fwd (3 stage)

Zero RI5CY

c4 (3 stage)

c4 (2 stage)

Figure 4.2: Fluid cores are competitive against manually generated Non-Fluid RISC-V cores.

logic that is provably more deterministic, especially with regards to back pressure, synthesis

tools can simplify the logic significantly.

Another important reason is that must of the logic generated by the Pyrope compiler

stands in for logic which would have to implement manually anyways. Pyrope infers valid

checks for inputs to stages like the register file, and execute block; when developing processors

with Verilog, the developer adds this logic manually.

Another important observation is that automatically transformed Fluid cores (c4 2-

stage, c4+fwd 3-stage. . .) consistently save area at the cost of pipeline frequency. This is the

expected result, but even more interesting is that the generated/transformed cores are consistent

with non-Fluid cores such as VScale (3-stage) and Zero-riscy (2-stage) RISC-V cores.

60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 5 6 7 8 9 10

A
re

a

CPI*Delay

Fluid
Pico32

Pico

c4 (2 stage)

c4c4+fwd (3 stage)

c4 (3 stage)

c4+fwd

CPI x Delay

Figure 4.3: The Pico CPU has a CPI of 4, giving it a lower overall performance than the Cliffs, despite

its favorable area/delay stats. This figure also shows that the performance fluctuations from merging

stages is not constant.

Despite the fact the PICROV32 and VScale are on the Pareto frontier in Figure 4.2,

that figure does not take into account CPI. Figure 4.3 does, mapping performance against area

for the Cliffs and PICROV32.

An interesting observation is that one of the non Fluid RISC-V core (RI5CY) seems to

have a significant area and frequency overhead. The area overhead is due to the extra prefetcher

available in the model and a multiplier unit that does not exist in the other cores. These two

blocks account for approximately 25% of the RI5CY area. The Zero-RISCY is a 2 stage pipeline

version of the RI5CY; this more area optimized core is very close to the Fluid transformed c4

2-stage core.

Our RI5CY vs Zero-RISCY area synthesis results are consistent with PULP [10] pub-

lished results were the Zero-RISCY has approximately 30% of the RI5CY area. In our case,

61

Zero-RISCY has higher frequency, but in the previously published results, the target frequency

was a conservative 100MHz for both cores. In this work, we always target the maximum

achievable frequency and then decrease the target frequency by 5% to avoid complex timing

overheads. The same methodology is applied to all the cores.

One last interesting observation is that the delay of the c4 does not change going from

three to two stages. This means that the merge from three to two did not change the critical

path. Considering that Retiming (Figure 2.5b) allows developers to change the timing of the

pipeline automatically, the ability to merge and re-balance may prove a useful addition to this

tool.

Besides comparing against RISC-V cores, we also compare a larger 6-stage Fluid

RISC-V core (c6+fwd) and its automatically generated shorter pipeline RISC-V cores against

ARM Cortex-M series.

To understand the automatically transformed results, we compare against the ARM

cores. Figure 4.4 shows the c6+fwd and the automatically transformed 1-stage and 3-stage

performance normalized against the ARM Cortex-M series. The Cortex M7 outperforms the

c6+fwd in 6-stage form, likely because its pipeline is simply more balanced. Nevertheless, as

we collapse the designs the imbalance is not as important, and the performance change between

the collapsed RISC-V and ARM core is lower.

62

0%

50%

100%

150%

200%

250%

6-
st
ag

e
M

7

3-
st
ag

e
M

3

1-
st
ag

e
M

0

c6+fwd
ARM Cortex-M

Figure 4.4: This graph normalizes the single core performance of AMD’s Cortex series to our c6+fwd

core in 1-stage form. It shows that the performance deltas between automatically transformed cores can

be similar to well-tuned cores implemented manually.

4.5 Simulation

For architecture simulations, the merge pipeline transformation has the potential to

provide speedups from two directions. First, merging stages together removes the infrastructure

between them, simplifying the simulation. Second, doing so removes pipeline bubbles, reducing

the cycles-per-instruction (CPI) rate, so the simulation can cover more ground quickly. The cost

of using this optimization is that cycle accuracy is lost.

Figure 4.5 summarizes the overall speed in MIPS for different ways to perform sim-

ulation for a c4+fwd Fluid RISC-V core. While the unmodified c4+fwd core runs close to 2

63

 0

 2

 4

 6

 8

 10

 12

Bas
el
in
e

Flu
id
 E

m
ul
at

or

Spi
ke

Flu
id
 S

am
pl
in
g

Spi
ke

 S
am

pl
in
g

M
IP

S

Figure 4.5: Collapsing provides roughly a 3.7x speedup over the default state-of-the-art baseline simu-

lation. It is also less than 50% slower than Spike, a C emulator.

MIPS (baseline), the fully collapsed c4+fwd core runs over 6 MIPS. We observe a 3.7x speedup

due to Fluid Emulation.

We also compare our system against Spike [14], a C++ emulator provided by Berkeley

as the RISC-V reference model.

As expected, Spike is faster than Fluid Emulation but the difference is less than 2x.

Fluid Emulation is 40% slower than Spike. Though collapsing the pipeline into a single stage

and compiling it in C creates something that is functionally similar to a native emulator: the

emulator is still compiled from unmodified RTL code, as opposed to Spike which was written

directly in C and tuned for speed. This is also using an early version of the Pyrope compiler,

which has not gone through generations of performance tuning as the Spike has.

64

For these results, we ran Spike doing cache warmup. As seen with other emula-

tors [28] doing warmup is around 10x slower than just doing fast emulation. The same ratio

happened with Spike, it can run 10x faster when cache warmup is disabled. It is important to

remember that Fluid Emulation does warmup for all the structures.

Once we have a fast emulation with warmup, we can do statistical sampling. This is

also shown in Figure 4.5. Fluid Sampling combines the Fluid Emulator with a SMARTS [74]

sampling technique. This means that we can achieve detailed performance and power estima-

tions with over 6 MIPS. When CPI is considered, this means that we achieve close to 10MHz

simulation speed with a software only solution without having to build any code besides the

c4+fwd core. If we had combined the results with Spike instead of Fast Emulation, we could

achieve a 60% speedup, but it would require significant code changes to transfer state between

the emulator and detailed core every time that we perform a statistical sample. With current

digital design techniques, the logic for transferring state between the cycle-accurate simulator

and emulator is generally difficult to maintain because it is an interface between two differ-

ent types of systems. With Fluid Emulation this can be done much more easily because both

implementations of the system are built with the same data structures and external interface.

We also compare against Strober [53]. Strober is an FPGA-based sampling scheme

where the design under test runs in an FPGA which has been instrumented to gather statistics.

An emulator only without instrumentation could run at around 50MHz, but the Strober work

shows under 4MIPS speed because of CPI and lower lower FPGA frequency when the code is

instrumented. This is even assuming a very large simulation period to ignore the costly FPGA

65

 0

 1

 2

 3

 4

 5

 6

 7

c4

c4
 3

-s
ta

ge

c4
 2

-s
ta

ge

c4
 c
ol
la
ps

ed

c4
+f

w
d

c4
+f

w
d

3-
st
ag

e

c4
+f

w
d

2-
st
ag

e

c4
+f

w
d

co
lla

ps
ed

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

Figure 4.6: Collapsing stages together improves the overall simulation speed, with compounding bene-

fits as more transformations are done.

compilation process. This means that the 10MHz speed for Fluid Emulation with SMARTS is

competitive against FPGA setups.

Overall, the merge pipeline transformation can be used to significantly improve the

performance of an RTL simulation, at the cost of cycle accuracy. Unlike current digital de-

sign techniques, this can allow developers to create an emulator, and even a sampling-based

simulation, from a single codebase.

4.5.0.1 Simulation Insights

This section analyzes in more detail the speedup gained by merging pipeline stages.

66

Collapsing pipeline stages together improves simulation speed, with the effect com-

pounding on each transformation, as shown in Figure 4.6. The speedup comes primarily from

two sources. First, removing pipeline infrastructure removes work from the simulation, de-

creasing the time required to evaluate each cycle. The speedup is shown in Figure 4.7a. Second,

removing pipeline stages decreases the cycle-per-instruction (CPI) ratio, shown in Figure 4.7b,

which allows the simulation to cover more ground in less cycles.

Figure 4.7a shows that the increase in MHz speed is relatively constant regardless of

which stages are collapsed, while Figure 4.7b shows more variability. This shows that design

decisions made by developers can have an impact on the system, post-transformation.

One thing not shown is that there are different ways to get from, say, a 4-stage core to

a 3-stage. For example, to create a c4 3-stage design, we could collapse the decode and execute

stage, or the execute and the writeback stage. We evaluated both options, and the simulation

speed and/or CPI was fairly similar. In the evaluation, the 3-stage corresponds to the case when

the decode is combined with execute.

As mentioned in Chapter 3, the Pyrope compiler can compile architectures to either

Verilog for synthesis/simulation or C++ for simulation. The C++ target has additional optimiza-

tions, further discussed in Chapter 5, to provide incremental compilation and live programming

support. These benchmarks were taken before those optimizations were added, thus only the

Verilog output target was benchmarked. The optimized, C++ simulation target is benchmarked

in Section 5.6.

67

4.6 Verification

Fluid Formal Verification means collapsing two fluid architectures, generally one

which is the unit-under-test (UUT) and another which is the reference model, into a single

stage, then using a SAT solver to prove equivalence. Unlike most formal verification systems,

we do not implement a single assertion or model checking. Fluid formal verification relies on a

reference model.

When a performance feature like forwarding is added, or when the number of pipeline

stages are changed, we can apply formal verification against the two versions because the re-

sult should not change. If there is a mismatch, our performance enhancement has introduced a

bug. This is useful when the core is still not finished and a formal verification against a refer-

ence model is still known to fail. Such checks are also transitive, which we believe is another

beneficial feature which could be leveraged.

The Fluid RISC-V cores are simple in-order designs where relative completion order

is not important. This means that picking any collapse order yields the same equivalent design.

For more complex cores, to do a formal verification it would be necessary to check equivalence

order for all the possible combinations. For example, if there were a floating point unit with

different pipelines for addition and division, the relative completion speed between the two of

them should not affect the results. This is captured when the collapse happens. If, say, the

addition is collapsed before, it is equivalent to saying that the division is always slower. If the

division is collapsed before, it is the same as saying that addition is always slower. As stated

in Section 2.1.3, fluid pipelines are built on the idea that the ordering of packets in the system

68

does not affect behavior, the results should be the same regardless of how the collapse is done.

It is important to note that Fluid Formal Verification is implicitly making that assumption, by

checking only one collapse ordering against the reference model.

We leave for future work how to formally verify designs where different collapses

generate difference valid results. An example is a multiprocessor where getting one core faster

than other can yield different execution orders but all the orders are valid given a consistency

model.

4.6.1 A Note on Fluid Induced Bugs

Although fluid pipelines should behave independent of latency or ordering, develop-

ers make mistakes, and mistakes with regards to fluid pipeline assumptions can result in difficult

to find bugs, since these bugs may only manifest themselves if the pipeline is transformed in

certain ways.

Fluid Format Verification can be a useful method to find these bugs since it is based

on a provably direct equivalence check. Another informal method which can be used to find

such bugs is the have the fluid flops introduce random delays during the simulation. I believe

there is significant future work in exploring these verification techniques.

69

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

c4

c4
 3

-s
ta

ge

c4
 2

-s
ta

ge

c4
-c

ol
la
ps

ed

c4
+f

w
d

c4
+f

w
d

3-
st
ag

e

c4
+f

w
d

2-
st
ag

e

c4
+f

w
d

co
lla

ps
ed

M
H

z

(a) Removing infrastructure decreases he time required to evaluate each simulation cycle.

 0

 0.5

 1

 1.5

 2

 2.5

 3

c4

c4
 3

-s
ta

ge

c4
 2

-s
ta

ge

c4
-c

ol
la
ps

ed

c4
+f

w
d

c4
+f

w
d

3-
st
ag

e

c4
+f

w
d

2-
st
ag

e

c4
+f

w
d-

co
lla

ps
ed

C
P

I

(b) Merging stages decreases CPI, also yielding performance improvements.

Figure 4.7: Decreasing simulation cycle time and CPI are the two primary sources of speedup for a

collapsed pipeline. 70

Chapter 5

Live Programming

They praise good books, but read bad

ones.

Marcus Valerius Martialis, Epigrammata

The last chapter of this document focuses on LiveSim, a live development environ-

ment for hardware description languages. LiveSim is language independent, though it was built

with the Pyrope language and compiler in mind.

The goal of this section, and of this part of the Pyrope project is to provide tools

to better aid programmers in the debugging/verification process. We do this by addressing a

major source of inefficiency in the debugging/verification flow, that will be referred to as the

edit-run-debug (ERD) loop: the long latency required between making a change of the source

code and seeing that change reflected in the simulation. For modern digital architectures, it is

not uncommon to see compile times of over an hour. Furthermore, as architectures have gotten

71

more complex, simulations have had to get longer to maintain decent coverage, resulting in

hours-long simulations becoming common as well.

The long latencies of ERD loops in modern digital architecture flows is a major hin-

drance to productivity, as it forces developers to use their simulation tools sparingly. Debugging

is inherently an investigative process where hypotheses are created and checked. Studies [22]

show that debugging accounts for over 40% of the verification time, and that its importance

has been increasing in the last few years. Being able to check a hypothesis accelerates the

debugging process.

There have been many attempts to accelerate simulation [30, 44, 67]. However, the

underlying issues remain: 1) designs, in particular for large multi-core systems, are complex,

and 2) to guarantee code coverage, simulations need to be long to account for different sce-

narios. This leads to long compilation times, usually from a hardware description language

(HDL) like Verilog or VHDL, and even longer simulation times. There are other, newer, though

lesser-used HDLs like Chisel [29] and PyMTL [59], that aim to improve design productivity.

Unfortunately, these tend to also increase the compile time by adding another abstraction layer.

Chisel, for example, compiles Chisel to Verilog using the Java Virtual Machine (JVM), that

must then be passed to another tool.

Live programming stands in stark contrast to traditional hardware design flows. With

live programming, developers write the program as it is running and see their code change

immediately, or at least quickly, reflected in the system’s behavior. Prior work has shown that

faster feedback leads to a faster and less frustrating development experience [31, 41, 57], to

many developers this is intuitively true as well. Toward that end there exist many software

72

development tools, like Microsoft Visual Studio [2] and Netbeans [5], that provide live feedback

of changes to the user.

This is mainly possible through a combination of incremental compilation techniques.

Hot binary reload, also referred to as swap or simply Hot Reload, means swapping the binary

after a code change, without stopping execution. This allows the current state of the program to

be maintained across different versions. Checkpointing is another technique used by live com-

pilation flows where a state is saved throughout execution. A checkpoint can then be loaded,

and execution continues from that point, avoiding the need to execute the code from the begin-

ning. This is especially useful for very long input sets, which is often the case in architectural

simulations as well.

For hardware designs, their increasing size and complexity presents additional chal-

lenges for implementing a live development environment. However, incremental techniques

for hardware designs have been proposed [66], with a focus on synthesis. Moreover, hardware

simulations are notoriously slow. Typical industrial flows require tens of minutes just to do a

minimal code change; it is not uncommon for a simulation to take hours to reach a failure point.

The ability to hot reload and/or checkpoint rather than restart would have a huge impact on

feedback times and thus productivity.

There are subtle challenges of creating live simulation for hardware, such as dealing

with adding or removing states to and from the simulation, dealing with corruption of state due

to faulty code patches, and deciding if the checkpoint is consistent or if we should have used

a earlier checkpoint. These all need to be integrated into a solution, and have already been

addressed in other live programming environments.

73

In this section we propose LiveSim, a framework for Live Simulation of hardware

designs. LiveSim leverages incremental compilation, hot reload, checkpointing, and a few extra

techniques to provide live feedback for hardware. When designing LiveSim, we focused on

shortening what we refer to as the edit-run-debug (ERD) loop. This refers to the latency between

when an engineer makes a change in the code, and when the updated results of the simulation

are available. Hardware design flows have long latencies in their ERD loops, which harms

productivity.

LiveSim can significantly speed up the ERD loop, as shown in Figure 5.1. The im-

proved speed comes from two sources. First, incremental compilation: LiveSim can compile

only the parts of the architecture that have changed and patch them into the executable, rather

than rebuilding the entire thing. Second, LiveSim leverages simulation checkpoints to prevent

executing the whole simulation from the beginning. In our evaluation, we show that LiveSim is

able to maintain a latency of under 2 seconds in its ERD loop, even for an architecture contain-

ing 256 RISC-V processing cores.

This paper sets a feedback goal of under two seconds between code change and up-

dated result, even for large-scale architectures. Two seconds is the recommended [41] value to

have a responsive user interaction. We leave as potential future work a user study comparing

productivity impact of various response times.

LiveSim includes the capacity to: (1) hot reload combinational logic and state, and (2)

using the lightweight checkpointer, quickly verify in parallel that the checkpoint’s initial state is

consistent. Item (2) describes a simple algorithm leveraged by LiveSim’s simulator, allowing it

to provide a quick estimate on the updated state of the system after a hot patch, while continuing

74

Edit

Run
(hours)

Failure

x

Start Over

Debug
(minutes)

Compilation
(minutes)

Simulation
(minutes-hours)

(a) Regular Flow

Edit

Debug
(minutes)Ru

n
(<

2s
)

x
. . . .

(b) LiveSim Flow

x

Figure 5.1: The proposed workflow for LiveSim is to allow iterations within a few seconds. This

contrasts with the traditional flow where after a change, there is a lot of latency in each iteration. With

the much faster ERD loop, enabled by LiveSim, productivity is expected to improve. (Picture credit: R.

Possignolo publication pending

to refine that estimate on the backend, hiding as much of the computation as possible from the

user.

To support the goal of updating simulation results within two seconds of a code

change, LiveSim implements a fast compilation technique that includes (3) incremental HDL

parsing and hierarchical partial compilation. LiveSim uses incremental parsing and compilation

to compile changes in the architecture into hot loadable shared libraries, for later patching into

the simulation.

Finally, (4) we develop and prototype a language-neutral Hot Reload for hardware.

Users of hardware simulations would greatly benefit from being able to hot load source code

75

changes rather than having to recompile and rerun the entire program. This paper presents

the first hot reload architecture for digital hardware simulation. We show that the LiveSim

infrastructure is not only able to perform Hot Reload in under 2 seconds, but it is also more

scalable than currently available simulators.

LiveSim is faster in raw simulation speed than Verilator [17], the state-of-the-art open

source simulator for hardware. For instance, when evaluating a 16 node large Partitioned Global

Address Space (PGAS) RISC-V multicore, Verilator has a global speed of 51.4KHz or 704 total

clock cycles (704 = 51.4 ∗ 16). LiveSim, with or without checkpoint overheads, has a global

speed of 93 KHz, or 1488 global clock cycles. Verilator is slightly faster for trivial designs, but

as the design complexity increases, the generated code footprint does as well, and it suffers from

significant instruction cache misses in the host machine. LiveSim does not have such scalability

issues. In fact, with a 256 core PGAS, LiveSim can be Hot Reloaded in under 2 seconds.

The remainder of this chapter is organized as follows.

Section 5.1 disucsses related work specific to LiveSim. Section 5.2 discusses the

Pyrope compiler, focusing on the internal data structures which are designed to improve per-

formance, minimize duplication, and provide support incremental compilation and simulation.

Section 5.3 then adds some commentary on the challenges posed by Pyrope’s type system, that

is still under development.

Section 5.4 moves on to LiveSim, beginning with the intended functionality and imag-

ined use cases (Section 5.4.1), followed by the additional internal architecture (Section 5.4.2),

and finally the incremental compilation and update mechanics (Sections 5.4.3 and 5.4.4).

76

The final part of this chapter evaluates the viability of LiveSim to deliver a live devel-

opment experience. Section 5.5 discusses the setup for this evaluation, with the results provided

in Section 5.6.

Section 5.7 adds some concluding remarks about LiveSim, and the state of hardware

development tools in general.

5.1 Related Work

5.1.1 Live Programming and Hot Reloading

Live programming, also referred to as interactive programming, is the process of de-

veloping a system as it is being run. There are a variety of development environments for soft-

ware programming which provide this type of functionality, with some variation. Development

environments like Visual Studio [2] and NetBeans [5] allow developers to edit the source code

of a program as the program is being executed for debugging. After a code change, the system

is recompiled and the execution continues without the need to restart the debugger. Colt [4] al-

lowed live coding for ActionScript [60]. There are also musical and graphics related live coding

tools which have been used for performance art [47, 72].

LiveSim primarily draws inspiration from debugger-based live programming environ-

ments like Visual Studio or NetBeans, as the simulation of the system can be seen as analogous

to a debugger.

In hardware, there are no approaches for live programming. However, some existing

approaches could be adapted to provide a live environment. Jupyter Notebook [56] is an open-

77

source web application which allows users to create interactive documents which can include

code. Chisel [29], a hardware description language invented at UC Berkeley, allows for inte-

gration in Jupyter as an educational aid. This has similar motivations to our project, the main

goal being to manipulate a system and get fast feedback, which aids the user in understanding

it. Jupyter, and Chisel’s integration to it, are not optimized for large designs, however, severely

limiting its application. Updating even trivial designs that involve only a single stage can take

several seconds.

Hot reloading is the ability to modify the behavior of a program, by loading and/or

unloading code, without stopping it. Live programming environments often make use of hot

reloading, but hot reloading has other applications as well.

React Native is a Javascript library designed for implementing native applications

with Facebook’s React library, which as of 2017 supports hot reloading [7]. The primary mo-

tivation behind implementing this feature was to improve the development experience, as it

would allow developers to make changes to the code without losing the state of the app they are

debugging. There also exist hot loading libraries for Java [27], and various other languages.

We are not aware of any hot reloading libraries for simulating Verilog or any other

synthesizable HDL.

5.1.2 Checkpointing and Parallel Replay

LiveSim leverages checkpoints in order to provide a live development experience.

Specifically, LiveSim: (1) takes checkpoints at regular intervals, (2) can modify them to reflect

changes the user makes to the source code, and when the user makes a change to the architecture

78

source code, Livesim can (3) replay them in parallel to quickly find the earliest point in the

testbench execution history where the behavior of the new system diverges. We are aware of

no hardware development environment which incorporates these capabilities, however there are

other projects which have implemented similar functionality.

There are a variety of projects [25, 54, 55, 68] which use multi-tiered simulations, a

fast simulator to create checkpoints and a slow simulator which can evaluate them in parallel,

to speed up HDL simulation. One key difference between these projects and LiveSim is that

LiveSim uses only one simulator to generate the checkpoints. The validation step simply checks

whether a pair of checkpoints match, which can be done with a direct memory comparison.

A similar technique has been proposed for approximate computing [75], where a fast

approximation of the application runs and takes checkpoints, while detailed implementations

validate them in parallel. This does have similarities to item (3), though like the fast HDL

simulators listed above, would have to do considerably more work to validate the checkpoint

deltas.

5.2 Compiler Support for LiveSim

The internal architecture of the Pyrope compiler is designed with two goals in mind:

performance and support for incremental compilation/synthesis/simulation.

Pyrope architectures are represented as blocks, which can be either a stage or a pipe.

Besides being designed as a platform for fluid pipeline research and development, Pyrope was

79

also intended to plug into a live development environment, which required it to be fast, and

work both as a stand-alone compilation flow and in an SaaS format.

For this reason, the Pyrope compiler is designed from the ground up to support incre-

mental compilation and hot reloading of simulations. Hot reloading means being able to update

the simulation executable with new code without having to restart it.

To accomplish this, Pyrope builds the architecture into the data structure shown in

Figure 5.1. The architecture is divided into the following components: blocks, which contain

all the logic of the architecture; and instance table, which maps an instance to the block it is

instantiated from; and a list of connections between instances, or between an instance and a

pipeline IO port.

There is an important subtle distinction in that a “block” data structure a Pyrope does

not necessarily map one-to-one with a block in source code. The same block in source could be

instantiated in some places with fluid behavior and in some places without. This would require

each instance to be mapped to different “block” data structures. The Pyrope language is also

still in development and we have been experimenting with programming constructs like poly-

morphism and global type resolution which could further differentiate instances which come

from the same source-block. Section 5.3 discusses challenges of implementing this from the

compiler perspective, and leaves the discussion on Pyrope language semantics to future work.

Pyrope’s internal representation differs significantly from those of other HDL simula-

tion and synthesis tools. Verilator [18], a widely used open source Verilog simulator, compiles

the entire architecture into a single, massive, C++ function. VCS [15] builds and simulates from

a global netlist, which is gate level representation of the architecture. In Chapter 5, we show

80

Table 5.1: Pyrope’s data structure is designed to minimize the amount of information needed to represent

the architecture.

instance-table map[inst→ block-name]

inputs map[name→ inst.port]

outputs map[name→ inst.port]

connections list[{src-inst.port,dst-inst.port}]

blocks map[name→ block]

that Pyrope significantly outperforms Verilator when compiling meshes of RISC-V processors

sized from 1×1 to 16×16. This is because Pyrope’s internal representation grew only by the

number of connections, while Verilator’s grew by the total number of operations.

5.3 Challenges Posed by Pyrope’s Type System

Although Pyrope’s type system is still in development, one aspect of it which is set

in stone is that the type system will support type inference. Likewise, the Pyrope compiler and

LiveSim architecture were designed to take type inference into account.

As stated in Section 5.2, the Pyrope compiler internally represents the architecture as

a mapping a unique block ID to each block, and a mapping of each instance in the architecture

to the block it is created from, using the data structure shown in Table 5.1. This presents

a challenge when dealing with code like in Listing 5.1. During the type resolution process,

81

Pyrope needs to identify that the 32-bit and 64-bit instances of adder need to refer to different

internal blocks.

1 a32 , b32 as b i t s : 3 2 i n p u t
2 o32 as b i t s : 3 2 o u t p u t
3 a64 , b64 as b i t s : 6 4 i n p u t
4 o64 as b i t s : 6 4 o u t p u t
5

6 adde r32 as a d d e r a : a32 b : b32 o : o32
7 adde r64 as a d d e r a : a64 b : b64 o : o64

Listing 5.1: Pyrope allows for global type resolution to enable writing generic blocks. This presents a
challenge when implementing this with regards to Pyrope’s internal representation, shown in Table 5.1.

Implementing the type resolution algorithm correctly requires us to consider how

the Pyrope compiler’s internal representation of the pipeline would affect the process. Like

most type resolution systems, Pyrope’s is dependency based. The compiler looks at both the

operation a node represents and the type properties of its dependencies to determine what the

type of that node should be. When implementing the internal API of the compiler, one thing

we had to take into account is the semantic difference between asking for the dependencies of

an input of an instance versus the input of a block. Asking for the dependency of an input of

an instance should return only the output which drive that instance’s input port. Asking for the

input of a block should return all outputs which drive that port for each instance of the block.

The Pyrope compiler handles cases like Listing 5.1 by identifying cases where in

dependencies of a block’s inputs have irreconcilable types, but the individual instances of that

block do not. The compiler then creates separates blocks for those instances to refer to.

82

5.4 LiveSim

The goal behind LiveSim is to improve the productivity of hardware developers by

providing fast feedback as changes are made to the codebase. To accomplish this it leverages a

backend design for incremental compilation, which we describe in detail in this section.

The framework can be thought of as two conceptual operation modes. The baseline

mode, where compilation and simulation are run regularly for the full code base, and the live

mode, that starts when there is a code change. In the baseline mode, checkpoints are regularly

created to be used during the live mode. An overview of the live mode is depicted in Figure 5.2.

The steps in the live mode are:

• Incremental Compilation, triggered after a code change

• Hot reload of recompiled objects

• Checkpoint selection and reload

• Execution from the checkpoint to the current cycle

• Checkpoint consistency check (done in parallel in the background)

In this section, we first discuss how we envision that LiveSim will be used, then

we discuss the high-level architecture and main components of the simulator. We follow by

giving more details on the compilation infra-structure and reloading both of the object and of

the simulator state. We also discuss how the consistency of the checkpoints is verified after a

change.

83

Simulation Cycles

10k Cycles

Fork

Save Checkpoint

(a) Checkpoint Generation

Simulation Cycles

(b) Checkpoint Loading

(1) C
ode Change

Compila
tio

n(2) Checkpoint Choice

(3) Re-execute

Simulation Cycles

keep 100 latest

(c) Checkpoint Garbage Collection

same number as cores
roughly equally spaced

candidates for deletion next checkpoint

Figure 5.2: During the baseline execution, checkpoints are regularly created. Then, during the live

mode, the code changes are recompiled, reloaded, a checkpoint is selected, loaded and the execution

continues until the cycle before the code change was inserted. Checkpoints are regularly deleted to avoid

too much overhead. As LiveSim is still in the experimental stages, the numbers associated with memory

usage and checkpoints are largely heuristic. (Picture credit: R. Possignolo publication pending)

5.4.1 Use Cases

Although LiveSim requires a sizable amount of infrastructure, we believe its benefits

to digital hardware developers will far outweigh any inconvenience or learning curve. In this

section, we discuss specific use cases which could be helped by leveraging LiveSim.

84

Debugging a single simulation: This is the primary use-case for LiveSim. The developer can

benefit by using fast checkpoint reloading to identify an error, test multiple possible fixes, and

continue debugging without having to fully rebuild and reload the simulation.

Debugging “what if” conditions: Fast reloading can also be leveraged to check “what if”

situations, such as being about to test what would happen should a branch misprediction be

detected on an arbitrary cycle in a simulation.

Regression System: Thus far we have viewed the session history as a linear list of individual

checkpoints, but we are not restricted to this. A regression system could be built on top of

LiveSim which could run a set of testbenches the system and report their result as a batch.

Allow simulations to skip initialization: Restarting a simulation is universally slow. As an

example, starting the BOOM [38] core from reset is especially slow because the processor ini-

tializes a debug monitor. Some companies take great pains to modify their flows to skip some

of the initialization work for their testbenches. With hot reload, parallel checkpoint history ver-

ification, and deterministic register transformations (discussed in Section 5.4.5), this behavior

can come for free.

5.4.2 The LiveSim Architecture

Figure 5.3 shows the high-level block diagram of the LiveSim architecture. The user

interacts with the system both by manipulating the source code of the active project, and by

sending commands to the simulator. As the user manipulates the architecture source code,

LiveSim generates change events which track where the changes were made. At regular in-

tervals, and based on user activity, LiveSim will batch these change events and send them to

85

User Interface

code changes
simulation commands

LiveSim Simulations

source code

checkpoints

Internal DB
LiveParser

LiveCompiler File System

source code
excerpts

metadata

shared object
libraries

source code
change events

Figure 5.3: The LiveSim development environment.

LiveParser (Section 5.4.3). LiveParser determines if these represent changes in behavior, and

which blocks or regions on the source were changed, and sends only those sections to Live-

Compiler (Section 5.4.3), which will compile those blocks into hot-loadable shared object files.

LiveCompiler will also update LiveSim with metadata which describes which parts of the sim-

ulation were updated. LiveSim can then retrieve those objects from the newly created object

files.

Internally, LiveSim also maintains a session, tracking a history of which testbenches

were run and for how many cycles, and takes regular checkpoints throughout. To prevent check-

point creation from being in the simulation critical path, whenever a checkpoint is to be created,

the process is first forked and then the child process creates the checkpoint and halts. Thus

this happens with very minimal interference in the baseline process (see Figure 5.2). Should

86

the simulation be patched, this history will be used to update the results more quickly (Sec-

tion 5.4.4).

5.4.2.1 Internal Objects

The “live” part of the live programming environment refers to the fact that the system,

in our case the simulation, is running as it is being developed. For this reason we don’t view a

simulation or testbench as a procedure which has an entry and exit point, but as an interaction

between objects. At a high level LiveSim works with two types of objects, which are all hot

loadable at runtime from shared libraries:

Stage: A block of logic. A stage has external IO, and could also have internal registers and

memory depending on the source code. A stage can also create and connect to other stages.

Testbench: An operation which can be performed on a stage.

The Unit Under Test (UUT), or pipeline, object is a stage instantiated from a runtime-

linkable shared object library. It is made up of that stage, which on creation may instantiate

any number of additional stages from that, or other, shared object libraries. The testbench

is also loaded from a shared object library, which contains procedures that can be run on a

pipeline for any given number of cycles. Doing so changes the pipeline’s internal state. Such

changes are viewed by LiveSim as operations on the pipeline object, whose history is tracked

and checkpointed as part of the simulation session. This allows those same operations to be

applied again, should the pipeline object be updated due to a change in source code.

87

When the user makes changes to the source code, these are compiled into new shared

object libraries. These new shared libraries can be hot loaded into the simulation and instantiate

new stage or pipeline objects which can be swapped piecemeal into the executable. This allows

the simulation to be quickly patched without needing to be fully recompiled, or even needing to

fully copy the simulation state.

5.4.2.2 Internal Tables

To manage this internally, the simulator must be aware of the stage and testbench

objects it is managing, and have a means to refer to and manipulate them. LiveSim maintains

a path variable, and uses that to track all the object files in the directories it is aware of. At the

beginning of a session, using a standard interface present in all of LiveSim’s shared libraries,

the session can retrieve data structures detailing the stages and testbenches present in those

libraries. It maintains that information in an internal table, called the Object Library Table,

shown in Table 5.3. It also keeps track of pipes, which are stages that are the top level of an

active simulation.

The Object Library Table lists all of the objects that the current session of LiveSim

is aware of. Each pipe, stage, or testbench object found is given an arbitrary name. This name

is mapped to both its source-path: its location in source, and it’s object-path: the path to

the shared object file and the hook within that file which can instantiate this instance (in the

case of a stage), or run the testbench (in the case of a testbench). Using the API described in

Table 5.2, which is bound to a globally available LiveSim context, threads within the LiveSim

environment can create and manipulate these objects.

88

Table 5.2: LiveSim commands. (Stage/tb)-handle variables refer to the handle column on Table 5.3.

Stage-name variables refer to the corresponding columns in Tables 5.4 and 5.5.

Syntax Description

ldLib name, path Load shared library. Add entries to Table 5.3 for all object-paths found

instPipe name, pipe-handle Instantiate a pipe and bind it to “name”

instStage pipe-name, stage-name, stage-handle Instantiate a stage from stage-handle, bind it to pipe-name and stage-name

copyPipe new-name, old-name Copy a pipeline, including its state

run tb-handle, pipe-name, cycles Run a testbench on a pipe for a given number of cycles

chkp pipe-name, path Take a checkpoint of pipe-name and save the state to path

ldch pipe-name, path Load the state from a checkpoint into a pipeline

swapStage pipe-name, stage-name, stage-handle Replace a stage in a given pipeline with a new instance

Table 5.3: The Object Library Table contains a listing of all the objects LiveSim could find in the shared

object libraries on its path.

Handle Type Code-Path Object-Path

pipe0 Pipe /projects/src/toplevel.v#core /livesim/objs/.../libc0.so#core

stage0 Stage /projects/src/adder.v#adder /livesim/objs/.../libc0.so#adder

stage1 Stage /projects/src/sadder.v#sadder /livesim/objs/.../libc0.so#sadder

tb0 Testbench /projects/tests/tb1.cpp /livesim/objs/.../libtb0.so#tb1

Table 5.4: The Pipeline table. Contains a name to pointer reference for each pipeline object active in the

session.

Name Handle Pointer

p0 pipe0 0x...

p1 pipe0 0x...

89

Table 5.5: The Stage table. Contains a pointer reference for each stage of each pipeline.

Pipe Name Stage Name Handle Pointer

p0 s0 stage0 0x...

p0 s1 stage1 0x...

p1 s1 stage1 0x...

Table 5.4 shows the Pipeline Table, which lists the pipeline objects instantiated in

this session, mapped to the names they were bound to. Objects get added to this table with

the instPipe and copyPipe commands. When a pipe is created, it will create stages, which

involve calls to instStage. The newly created stages are saved in the Stage Table, shown in

Table 5.5. Calls to swapStage, which happen when changes to the source code have prompted

LiveCompiler to create new shared object files, causes changes to this table as well.

5.4.2.3 Simulation Updates

The Object Library Table (Table 5.3), Pipeline Table (Table 5.4), and Stage Table

(Table 5.5) make it possible to quickly and automatically update the simulation as the user edits

the source.

LiveCompiler sends metadata to LiveSim to tell it when it has compiled updates to

stage and testbench objects. The metadata takes the form shown in Table 5.6. It contains a

mapping showing where the updated object for a given source path can be found.

90

Table 5.6: Update metadata: when LiveCompiler recompiles a pipeline, stage, or testbench object it

sends a metadata update to LiveSim, shown below.

Source Path Object Path

/projects/src/toplevel.v#core /livesim/objs/.../libc3.so#core

/projects/src/block.v#block /livesim/objs/.../libc4.so#block

Using the Object Library Table, the Pipeline Table, and the Stage Table, LiveSim can

determine which objects need to be updated. If one of those objects is the active simulation

pipeline, this triggers a simulation reload, further discussed in Section 5.4.4.

5.4.2.4 A Note on Implementation

To implement this, it is necessary to divide the architecture into stages, and parse

out the connections between them. In Verilog we have had reasonable performance by just

designating every module instantiation as its own stage. LiveSim could also be configured to

designate only some instances as their own stage by marking them with a configuration file or

a custom comment flag. A potential advantage would be that grouping a larger block of code

into a stage could allow for more optimization within that block.

The compiler must also be modified so that it will build stages as hot loadable li-

braries. Compilers like Verilator, which already output C++ based on templates, could be easily

manipulated to that end. HDLs with non-native backends like Chisel [29] and PyMTL [59],

generally want to run simulations natively for performance reasons, hence why Verilator is gen-

erally used. These languages would need to integrate their compiler into an incremental com-

91

pilation flow which would entail generating compile-able Verilog for parts of an architecture,

regenerating shared object files from those fragments, and patching them into the simulation.

5.4.3 LiveParser and LiveCompiler

Being able to quickly translate changes in code to updated simulation results is the

primary function of a live programming backend. The first step in this flow for LiveSim is the

LiveParser.

The LiveParser does not fully parse the HDL source code, it is only designed to iden-

tify which stage the change in code took place in, and confirm that actual behavior was changed,

not just comments or spacing. LiveParser then extracts those sections of the codebase and sends

only those to LiveCompiler for re-compilation.

For Verilog, recompiling a stage requires recompiling not just the modules that the

stage instantiates, but the instantiation statement itself, in order to retrieve any compile-time pa-

rameters. This may also require recompiling pre-processor directives if the LiveParser indicates

code in those regions have been changed. Other newer HDLs like CHISEL and Pyrope that do

type resolution also allow programmers to make local changes which affect the global state.

LiveParser divides the code into regions based on the module structure, and the loca-

tions of pre-processor directives. Once it has confirmed a behavioral change in a code region,

it must identify every region of the code base that may have been affected by those changes.

For Verilog, if this is just a change within a module, the affected parts of the system are the

instances which instantiate it and those further up in the hierarchy. For pre-processor directives,

92

this could affect any code “below” the affected lines in the source code, thus much more will

have to be recompiled.

When deploying LiveSim for use by developers, compilation should happen on a

different execution thread, or even a different server than the simulation and editor interface

so the user experience is minimally affected by the compilation overhead. The compiler may

end up re-compiling code only to determine that many of those modules were ultimately not

changed. Whenever it compiles a new version of a stage, pipeline, or testbench, it compares

it against a cached copy to determine if this version needs to be swapped into the simulation.

These decisions must take place off of the editor and simulation execution threads.

Some newer HDLs, like Chisel, employ type resolution. Compilation can be sped up

by keeping the old type state in memory, but allowing it to be updated based on new code. This

can significantly reduce the number of resolution cycles needed on subsequent compilations.

5.4.4 Fast Reloading

Once the simulation has been patched with the latest changes, the results to the user

must be updated. The algorithm LiveSim uses is designed to provide a fast estimate of the

updated simulation, and check/refine that estimate in the background, updating if necessary.

The reloading mechanism is also tuned for what we refer to as the “edit-run-debug” loop, where

the developer edits a line of code, runs the simulation, and debugs the result. In other words,

the reload algorithm is tuned to the use case of fixing an error observed in a simulation.

LiveSim first reloads the checkpoint that is closest to 10K cycles before the stopping

point (this parameter is tunable). From the literature we have found on the topic of hardware

93

Table 5.7: If the register names do not completely match from version to version, transformation rules

are applied to provide a deterministic way to load checkpoints from the old version to the new one.

Scenario Action

Register created Initialize to 0 (or other value)

Register deleted Ignore data from checkpoint

Single Register renamed Map old-name to new-name in the checkpoint

debugging [69] and talking with experts in the area, this distance in cycles between bug and

detection is often not that large, rarely more than a few thousand cycles. LiveSim reloads the

state from that checkpoint and reruns the simulation. This result is reported immediately to the

user as an estimate of the correct, updated simulation result.

The estimate may be inaccurate because the changes to the pipeline or testbench be-

havior which caused the update may also cause the system state to diverge at an earlier point

in the simulation. To check for this we duplicate the newly patched pipeline and/or testbench

and rerun the earlier checkpoints in parallel, to see if the states diverge at an earlier point in the

session history. If so, update the final results as necessary. This allows LiveSim to provide fast

updates to the user and hide as much of the computational effort on the backend as possible.

5.4.5 Reloading Rules

A checkpoint consists of the entire state of the pipeline object. In some cases, when

the user makes changes to the system, they may add, remove, or rename registers, making it

impossible to blindly transfer checkpoints between iterations of the same system.

94

Table 5.8: The Register Transform History Table lists the changes to an architecture’s register topology

require to translate the system’s state from one version to the next. It is structured to allow for branching.

Version Operations Parent

1.1 create newR null

1.2
create newR1

rename someR, newR
1.1

1.3
delete otherR

rename newR1, myR1
1.2

1.3a delete newR 1.2

LiveSim uses standardized rules to enable patched pipelines to deterministically load

checkpoints from previous versions of the system, shown in Table 5.7. Since updates should

happen frequently, ideally once per second as the user types, these cases can handle a large

percent of the update batches without user intervention. If there have been too many changes

between version for LiveSim to unambiguously determine the register mapping between two

checkpoint versions, such as if multiple registers were renamed, then it will make its best guess

based on the similarities of names and types. The user can manually edit the Register Transform

History if the mapping is incorrect.

The Register Transform History maps the transformations applied to the architecture’s

registers in order to translate the checkpoints of one version into those of another. An example

95

of such a history is shown in Table 5.8. The table is designed to support branching so that

developers are not limited to a linear sequence of changes when exploring the design space.

5.4.6 Checkpoints and Memory Usage

The more checkpoints LiveSim has for the unit under test, the more quickly it can

provide updated and verified simulation results as it has more points to work with. Each check-

point requires memory, however, and when the checkpoint memory footprint gets too large it

will be necessary to drop checkpoints as new ones are continually added. The cost of having

checkpoints more sparsely laid out is that LiveSim will have to traverse longer deltas between

them to determine when verifying the new version against the old.

To date, there has not been the opportunity to run a full test of the LiveSim pipeline

to evaluate optimal sizes and allocate/deallocation strategies for LiveSim checkpoints.

5.4.7 Checkpoint Consistency Verification

One thing to note is that after a code change, it is possible that the checkpoints gen-

erated with the old version of the code may be invalid. That could be caused by a divergence in

the execution, i.e., a different condition was triggered somewhere throughout the simulation, or

simply because the logic of the simulator was reworked. In any case, since LiveSim starts the

simulation from a saved checkpoint, it is necessary to make sure that the checkpoint is a valid

state for the given input set of the simulation. This requires re-running the simulation from the

beginning, which is the opposite of what we are trying to achieve.

96

However, this consistency verification can be done from checkpoint to checkpoint,

i.e., it is possible to run the simulation starting from each of the checkpoints prior to the current

cycle, finishing at the next checkpoint,1 and then verify that the states match.

Since each checkpoint is now independent of other results, this operation can be easily

made parallel and can scale to a large number of cores (as many as checkpoints before the

current cycle). In general, if n cores will be used, the best strategy would be to divide the

whole simulation into up to n− 1 parts with roughly the same number of checkpoints in each.

The last core is assigned the reload from the last checkpoint and executes up to the current

simulation cycle. For instance, for 1B cycles in a 4 core, 3 cores will execute roughly 333M

cycles, while the remaining core will execute the cycles from the last checkpoint up to the last

cycle, feeding those results back into the debugging process. Figure 5.4 illustrates how the

consistency verification works. In cases where the checkpoints are not consistent, this approach

allows for identifying at which checkpoint the divergence occurred, which may also be useful

for debugging.

5.5 Setup

In this section, we discuss the evaluation setup for LiveSim, the benchmarks used in

the evaluation, and the infrastructure used for both LiveSim and Verilator [17]. We also dis-

cuss optimization options and how they were selected, since this ended up having an important

impact on the results observed.

1Technically, any checkpoint after the starting checkpoint.

97

Core 0

Checkpoints

Reloaded
Checkpoint

Core 1 Core 2 Core 3

(a) Multicore scheduling

Core n: (3) Halt and verify

(2) Execute
(1) Load Initial

State

(b) Consistemcy Verification Flow

Figure 5.4: After a code change, it is important to verify the consistency across the checkpoints. This

can be done in parallel and is easily scalable to a large number of cores. (Picture credit: R. Possignolo

publication pending)

All evaluations were performed in an Archlinux 4.3.3-3 server, with a Intel i7-6700K,

32GB of ram. We used Verilator version 3.9 [17], and g++ 7.3 for all the simulations.

5.5.1 Benchmarking Architecture

The goal of the LiveSim project is to provide a live development environment which

can scale up to even large digital architectures. To evaluate this, we use a partitioned global

address space (PGAS) of RISC-V cores, in sizes: 1×1, 2×2, 4×4, 8×8, and 16×16.

Each PGAS node is a 5-stage RISC-V RV64i core with 32K internal memory. The

nodes are arranged in a mesh, with each core having a memory address mapped section of the

global address space. The address decides whether the memory operation is local or remote.

98

This architecture resembles Parallella [23] and Celerity [26] which are also a multicores that

don’t employ cache coherence.

The way this architecture was designed, each of the five stages of the RISC-V cores

is placed in a module, which is instantiated by a single top-level parent, which is also its own

module. LiveSim places each of these modules in its own shared library. Thus, all of the PGAS

simulations are made up of seven shared libraries: 5 for the stages, 1 of the top-level which

instantiates them, and 1 for the testbench. These libraries are used to create instances of the

objects they contain, so for the 16×16 PGAS, there will be 6 instances for each of the 256

nodes in the mesh.

5.5.2 A Note on Compiler Configuration

Both LiveSim and Verilator generate C++, all testbenches were compiled with g++

using the same O2 optimization flag.

Verilator was unable to produce a C++ implementation for the 16×16 PGAS even

after 24 hours of runtime. We tried many Verilator options like trying to reduce optimization,

“output-split” manual selection, and even clang instead of g++. In all the cases, we could not

finish the compilation in less than 24 hours.

5.6 Evaluation

The evaluation is divided in three main sections. We start by evaluating the Hot

Reload speed and compilation speed. Then, we proceed to compare LiveSim against Verilator to

99

 0

 400

 800

 1200

 1600

 2000

1x1 2x2 4x4 8x8 16x16

T
im

e
 (

m
s)

Figure 5.5: LiveSim can hot reload in less than 2 seconds from small PGAS with 1 node to large mesh

with 256 PGAS multicore (16×16). Even in the case where a stage was duplicated hunderds of times

in the design, the latency required to update the code for all instances of that stage is dominated by the

parsing and compilation costs, which remain constant.

compare the simulation speed with an without Hot Reload. We conclude by quickly evaluating

the checkpointing overheads.

5.6.1 Hot Reloading

To evaluate the effectiveness of LiveSim hot reload, we introduce bugs found during

development in all the pipeline stages of the design. For each bug, we measure the time from

the moment that the file is saved until the simulator is reloaded with the new code. This includes

parsing, compilation, and reloading state on the simulator.

Figure 5.5 shows the main latency of the ERD loop for each size of the PGAS. 1×1 is

a mesh with a single PGAS core, the 16×16 is a mesh with 256 PGAS. The first observation is

100

that we have an ERD loop of less than 2 seconds in all the cases, even for the 256 PGAS where

256 pipeline stages are reloaded in the ERD loop. This is because the PGAS meshes are made

by replicating the same RISC-V core, making a change to one core necessitates doing a swap

on every core in the mesh.

A second observation is that replacing one or more pipeline stages has a small impact

in the ERD loop, despite the fact that the number of stages being swapped is growing exponen-

tially. This is due to the fact that the latency of the ERD loop is dominated by other parts of the

flow, specifically LiveParser and LiveCompiler, which only happen once regardless of the size

of the mesh.

A third observation is that there is very little variation independent of the bug or

pipeline stage being handled. All these bugs affected a single pipeline stage. Not shown in the

figure, but if two pipeline stages are affected, the time increase is linear.

Since LiveParser only has to do a minimal amount of work, its execution time was

negligible for all benchmarks, less than 20ms.

This is not so surprising considering the process of hot patching a stage in detail.

Once we have the shared library compiled and loaded into memory, a process which only has to

be done once, LiveSim calls a method from the library which creates the new stage object, and

copies the register values from the old one to the new one (taking into account any which have

been added, removed, or renamed). For a single core, the size of all their internal memories

(2×32 KB) and the register file (32×64 bits) comes to under 100 KB. The cost of copying that,

even 256 times, is still eclipsed by other parts of the incremental compilation process.

101

Table 5.9: Compilation time for LiveSim and Verilator. Hot Reload can swap a module in under 2

seconds. Even full compilation with LiveSim is faster than with Verilator.

1×1 2×2 4×4 8×8 16×16

LiveSim Hot Reload 1.5 1.5 1.5 1.6 2

LiveSim Full 4.9 4.7 4.8 15.6 176

Verilator 8 14 63 327 NA

To appreciate the LiveSim Hot Reload speed, we compare it against Verilator which

is used in many HDL flows. Table 5.9 shows the compilation times for LiveSim and Verilator.

As previously stated, LiveSim Hot Reload achieves a ERD of less than 2 seconds. A clean full

compilation with LiveSim is slower. It goes from 4.9 seconds in a trivial single core to 176

seconds for a 256 PGAS. Verilator is always slower compiling, we were not able to compile

the 256 PGAS in Verilator even though we tried clang, different verilator options, and even

removed compile optimizations. In summary, for full compilation LiveSim has a higher starting

overhead to partition the design, but it scales better because it shares code between pipeline

stages.

5.6.2 Simulation Efficiency

LiveSim Hot Reload is very fast at reloading a stage, and it is also fast compiling large

designs from scratch. This section provides insights on the LiveSim simulation speed.

Figure 5.6 shows the overall simulation speed of LiveSim and Verilator when sim-

ulating the PGAS designs of various sizes. The Verilog implementations were obtained by

102

10

20

30

40

50

60

5 10 15 20 25 30 35 40

Verilator 4x4

Verilator 1x1

LiveSim 16x16
LiveSim 4x4

LiveSim 1x1

Hot ReloadS
i
m
u
l
a
t
i
o
n

T
i
m
e

(
s
)

#1M Total Cycles Simulated (Normalized to #cores)

Figure 5.6: Even without checkpoints LiveSim has a faster starting (ERD) and a faster for large PGAS.

compiling the Pyrope PGAS source code to Verilog, and simulating with Verilator. LiveSim

was working directly from Pyrope. In this plot, we benefit Verilator because we assume that we

do not have checkpoints to replay from. In all the cases, we start from the beginning. In reality,

LiveSim only needs to start from the last checkpoint.

The x-axis shows the total number of cycles simulated. In a 4×4 PGAS, it is the wall

clock cycle multiplied by 16. The y-axis shows the time to reach that point in the simulation.

Since LiveSim ERD is less than 2 cycles, all the LiveSim lines start at 2 seconds. The Verilator

lines start at different points depending on the compilation time shown in Table 5.9. The slope

of the lines is defined by the simulation speed. The faster the simulation, the lower the slope.

Table 5.10 includes all the simulation speeds.

LiveSim has a faster starting point for the 4×4 PGAS, Verilator needs 63 seconds to

start while just 2 seconds are needed for LiveSim. LiveSim also has a smaller slope because

it is faster. While Verilator achieves 718 KHz, LiveSim runs at 1223 KHz. This is over 1.7×

speedup. As a result, to run something like 10 million cycles, Verilator needs 257 seconds, and

LiveSim needs 109 seconds. Although Verilator is somewhat faster on the smaller architectures,

103

Table 5.10: As the architecture grows in size, Verilator’s cache performance degrades significantly.

PGAS 1×1 PGAS 2×2 PGAS 4×4 PGAS 8×8 PGAS 16×16

LiveSim Verilator LiveSim Verilator LiveSim Verilator LiveSim Verilator LiveSim Verilator

KHz 1974 2378 1957 2351 1492 823 1223 718 1172 NA

IPC 2.50 2.86 2.47 2.71 1.94 0.96 1.62 0.80 1.24 NA

I$ MPKI 0.25 0.01 0.02 8.45 0.01 20.57 0.01 24.37 0.01 NA

D$ MPKI 0.96 0.01 10.78 0.01 36.42 84.04 39.09 42.99 48.08 NA

BR MPKI 1.54 0.01 1.33 0.01 2.83 0.01 3.62 0.29 4.27 NA

even then it can only outperform LiveSim when a very large number of cycles has been run due

to its longer compile time. For the 1×1 PGAS, Verilator only passes LiveSim after running 76

million cycles. As the design gets more complex, LiveSim gets faster even when no checkpoints

are available.

To understand the simulation speed difference between Verilator and LiveSim we

gathered performance counter statistics. Table 5.10 shows a breakdown of performance statis-

tics for each PGAS size. Here we can see the source of the performance divergence observed

in Figure 5.6. Verilator’s cache performance, particularly for the I-cache, degrades significantly

for the PGAS 4×4 and larger, causing a drop in IPC. For small designs, the Verilator design fits

in the host instruction cache, but as more cores are added, the I$ pressure makes the simulator

very slow.

Although not a technique planned for this work, LiveSim also improves data cache

performance. The LiveSim simulator inserts more “if” statements or other conditional blocks

for muxes than Verilator. The result is an increase in branches and a decrease on cache conflicts.

104

This optimization does not seem to yield benefits for small scale designs because they fit in the

data cache. As the design gets larger, however, branch miss prediction rate increases, but the rate

of increase of data cache Misses Per Thousand Instructions (MPKI) is slower than in Verilator.

The explanation for this trend is due to the difference in LiveSim and Verilator’s

internals. Verilator inlines nearly everything, creating massive C++ functions, while LiveSim

splits the logic into separate shared object libraries shared between stage instances. Verilator’s

architecture is advantageous for small designs, but as the system scales, so does the simulation

executable size which begins to negatively affect performance.

Verilator’s poor I-cache performance is the primary driver in its performance degra-

dation. Inlining the entire system is more efficient for small architectures because of superior

data locality, but once the simulation is large enough to saturate the caches, then that quickly

becomes a bottleneck.

LiveSim has a better performance scalability as a result of the improvements like “if”

insertion and mostly due to instruction cache MPKI reduction. The result is that going from 1

core to 256 (16×16) LiveSim just has a 40% performance degradation. Verilator is not able to

compile such large design, but going from 1 to 64 PGAs has 70% performance degration. As a

reference, LiveSim has just a 25% degradation for this data point.

The result is that LiveSim not only has a 2 second ERD cycle, it also compiles faster

and has faster simulation speeds for large designs.

105

5.6.3 Checkpointing

One interesting characteristic from LiveSim is that it has checkpointing capability. As

such, it can execute many checkpoints in parallel when there is a code change. The evaluation

has ignored the checkpointed capacity because there is no platform to compare against. Even

more complicated is that most of the bugs introduced are triggered early in the replay. If we

had more complicated bugs that require thousands of cycles for being reproduced, we should

be able to evaluate this feature more fairly.

For this evaluation, we do evaluate the overhead of taking checkpoints. The overhead

is dependent on the PGAS, but in all the cases it remains in the 10-20% range. This includes the

checkpoint creation as the simulation runs. Without this overhead, LiveSim would be nearly as

fast as Verilator even for the simple 1×1 PGAS.

To summarize, checkpoints have a 10-20% simulation speed overhead, and that allows

for avoiding the execution or checking in parallel the number of checkpoints for a code change.

If checkpointing is not used it can be disabled. Hot Reload is still available, but the simulation

must run from the beginning.

5.7 Conclusion

This section discusses LiveSim, a live development environment for HDLs built on

top of the Pyrope compiler. LiveSim requires a sizable amount of infrastructure, but as the

evaluation shows it has significant performance benefits compared to traditional flows. More

106

importantly, it allows for incremental compilation and hot reloading, which is not currently

available to hardware developers.

Hardware development is plagued by notoriously long compile and simulation times

which forms a bottleneck to productivity as developers spend much of their time waiting for

feedback. There are a variety of software design tools and libraries which have embraced the

idea that faster feedback is better for developers and have implemented a variety of features

aimed at providing it. We believe its time for hardware design tools to do so as well.

This work LiveSim includes details on how to implement a Hot Reload efficiently. We

also show that current popular tools like Verilator have scalability problems due to instruction

caches. We show that the same techniques used to create libraries for Hot Reloading benefit the

scalability.

The evaluation shows that LiveSim compiles faster than Verilator, and it also has a

faster simulation time for larger designs. Maybe even more important, we demonstrate a 2

second edit-run-debug (ERD) loop even for large scale SoCs.

LiveSim hot reload is a new way to interact with hardware simulators. While current

flows are slow, and require the user to be very careful about the code changes when debugging,

hot reload opens the opportunity to create new ways of thinking. For example, since hot reload

is fast. The designer can insert print statements and replay from any given point with very

low overhead. Similarly, the designer can explore “what if” scenarios much more quickly than

with current tools. Another interesting feature for traditional flows, hot reload allows for hiding

costly initialization. If there is a slow reset and program load in a design, hot reload can start

afterwards.

107

Chapter 6

Conclusion and Future Work

All the world’s a stage, and all men and

women merely players; they have their

exits and their entrances, and one man in

his time plays many parts,

William Shakespeare, As You Like It

The Pyrope project was started with the goal of improving digital architecture de-

velopment tools by leveraging fluid pipelines. Although the project is still ongoing, this paper

focuses on the progress made so far. An initial version of the Pyrope programming language

was developed, which incorporates an Actor Model based paradigm, discussed in Chapter 3

to model fluid behavior implicitly, without sacrificing control. As discussed in Chapter 4, the

Pyrope compiler can implement fluid pipeline transformations as part of the compilation flow.

Though these mechanics are still in their early stages, Chapter 4 also shows several ways they

can be leveraged to aid in the development process. Finally, Chapter 5 shows how the Pyrope

108

compiler can be integrated into a live programming environment, and how incremental compi-

lation and simulation techniques can be used to improve developer productivity. Chapter 5 also

shows that the Pyrope compiler is faster than Verilator [18], and shows how the optimizations

that enable this can be integrated into current HDL design flows.

Nonetheless, the Pyrope project is still in its early stages. I will divide the future

work in this chapter into three different sections: future work on the Pyrope language 6.1, on

the Pyrope compiler and toolchain 6.2, and on pipeline transformations 6.3.

6.1 The Pyrope Language

All the work done thus far was done with a minimal set of language features, we in

the MASC lab refer to that source code as Pyrope-alpha. Besides the Abort paradigm, discussed

in Chapter 3.1, the language had few other features other than basic operators, signed and

unsigned integer types, and functions. In the future, we at the MASC lab would like for Pyrope

to incorporate a lot of modern programming language features that many HDLs lack, such as

class types and polymorphism, built in list and map data-types, and global type inference. We

also envision a more robust type system which can better prevent errors like overflows and

underflows which are a common source of bugs. We believe these can be integrated into the

language without sacrificing performance and control, although the specifics have not all been

fully flushed out.

The Pyrope language also lacks a lot of semantics needed to write testbenches, in-

cluding loops, requiring all testbenches up to this point be written in C++. Although C++

109

testbenches are a useful tool, we believe being able to write testbenches in native Pyrope will

allow developers to better test, and leverage, the fluid nature of such systems.

6.2 The Pyrope Compiler and Toolchain

There is still a lot of work to be done in bringing many of the ideas discussed in this

paper from proof-of-concept to reality.

A new version of the Pyrope compiler is being developed on top of MASC’s LGraph

Infrastructure, which is a fast, scalable, serializable graph backend which is designed for digital

architecture development. We are also working toward to goal of bringing a fully functional

LiveSim server online, and also hope to implement it as a collaborative development platform

as well.

Once up and running, we will need to run user studies and partner with companies

in industry as we continue fine tune the toolchain. LiveSim has the potential to change the

general workflow of architecture debugging/verification. Parallel checkpoint verification and

checkpoint version transformations, discussed in Section 5.4.4, properly leveraged, could mean

that developers will rarely have to run a simulation from the beginning. Combined with incre-

mental compilation could allow developers to experiment with “what-ifs”, leaning more heavily

on their tools.

Finally, on the long term we hope to integrate Pyrope, through LGraph to LLVM,

connecting it with a much larger developer ecosystem.

110

6.3 Pipeline Transformations

Research thus far has only focused on the merge operation, though LI literature de-

fines more transformations, including a split operation and recycling and retiming which al-

low for logic to be moved between stages without changing changing the number of register

blocks. A long term goal for the Pyrope project is a system which can leverage a wide variety

of pipeline transformations to allow developers to fine tune the timing behavior of the system

without changing the source code. Doing so could be a real game changer, as we believe, espe-

cially as architectures continue to grow in size. On the long-term one of the tools we envision

creating is one which could full leverage merge and split (to increase and decrease the stage

count), and recycling and retiming (to move logic between stages), to create a more balanced

pipeline in an automated flow than could be done by hand.

Fluid Formal Verification, discussed in Section 4.6, has only briefly been studied, and

has not been published off of. Future work could look at leveraging it to allow variations of the

same architecture, or different versions of the same architecture to be verified against each other

formally with little additional developer effort. We believe both that there is a lot to explore in

this area, and that doing so will be important to addressing the additional verification challenges

discussed in Section 2.1.3.

6.4 Final Thoughts

The Pyrope Project proposes a radically different design flow than the traditional

approach to digital architecture development, but we believe these differences address inherent

111

issues with the current digital design flow. Pyrope is designed to leverage fluid pipelines and

its unique programming paradigm to allow a higher level of control of architectures, without

leaving the RTL level, or sacrificing control and tunability.

Although our focus remains on micro-architectures, we believe Pyrope’s paradigm

could be applicable to other areas, such as networking and Internet-of-Things (IoT) architec-

tures. In many ways, fluid pipelines can be described as a synthesizable, distributed system. I

personally believe, on the long term, this model can serve as a way to more closely integrate

hardware and software development in general.

112

Bibliography

[1] Akka: A concurrency framework for java and scala. http://akka.io/. Accessed: 2017-

05-25.

[2] C++ gets squiggles! https://blogs.msdn.microsoft.com/vcblog/2009/06/01/

c-gets-squiggles/. Accessed: 2018-04-06.

[3] Cal actor language homepage. https://ptolemy.berkeley.edu/projects/embedded/

caltrop/language.html. Accessed: 2018-05-19.

[4] Colt - code orchestra livecoding tool. https://en.wikipedia.org/wiki/COLT_

(software). Accessed: 2018-04-06.

[5] Compileonsave - netbeans wiki. https://wiki.netbeans.org/CompileOnSave. Ac-

cessed: 2018-04-06.

[6] The esterel programming language. http://www-sop.inria.fr/meije/esterel/

esterel-eng.html. Accessed: 2017-05-08.

[7] Introducing hot reloading - react native. https://facebook.github.io/react-native/blog/

2016/03/24/introducing-hot-reloading.html. Accessed: 2018-04-06.

113

http://akka.io/
https://blogs.msdn.microsoft.com/vcblog/2009/06/01/c-gets-squiggles/
https://blogs.msdn.microsoft.com/vcblog/2009/06/01/c-gets-squiggles/
https://ptolemy.berkeley.edu/projects/embedded/caltrop/language.html
https://ptolemy.berkeley.edu/projects/embedded/caltrop/language.html
https://en.wikipedia.org/wiki/COLT_(software)
https://en.wikipedia.org/wiki/COLT_(software)
https://wiki.netbeans.org/CompileOnSave
http://www-sop.inria.fr/meije/esterel/esterel-eng.html
http://www-sop.inria.fr/meije/esterel/esterel-eng.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html

[8] Orbit: a framework for writing distributed systems using virtual actors. https://github.

com/orbit/orbit/wiki. Accessed: 2017-04-22.

[9] Picorv32: A size optimized risc-v cpu. https://github.com/cliffordwolf/picorv32. Ac-

cessed: 2017-05-25.

[10] Pulp platform: Parallel ultra low-power platform. http://www.pulp-platform.org/. Ac-

cessed: 2017-11-20.

[11] Pulsar, a python concurrency framework. http://quantmind.github.io/pulsar/. Ac-

cessed: 2017-04-22.

[12] Pykka: A python implementation of the actor model. http://ptolemy.eecs.berkeley.

edu/. Accessed: 2017-05-25.

[13] Ri5cy: A small, 4-stage risc-v core. https://github.com/pulp-platform/riscv. Ac-

cessed: 2017-11-20.

[14] Spike: An open-source risc-v emulator. https://github.com/riscv/riscv-isa-sim. Ac-

cessed: 2017-11-19.

[15] Synopsys vcs simulator. https://www.synopsys.com/verification/simulation/vcs.

html. Accessed: 2018-05-19.

[16] System-c homepage. http://www.accellera.org/downloads/standards/systemc. Ac-

cessed: 2018-05-19.

114

https://github.com/orbit/orbit/wiki
https://github.com/orbit/orbit/wiki
https://github.com/cliffordwolf/picorv32
http://www.pulp-platform.org/
http://quantmind.github.io/pulsar/
http://ptolemy.eecs.berkeley.edu/
http://ptolemy.eecs.berkeley.edu/
https://github.com/pulp-platform/riscv
https://github.com/riscv/riscv-isa-sim
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
http://www.accellera.org/downloads/standards/systemc

[17] Verilator 3.9, open source tool for verilog hdl simulation. Online Webpage. https://

www.veripool.org/wiki/verilator.

[18] Verilator: A fast and free verilog hdl simulator. https://www.veripool.org/wiki/

verilator. Accessed: 2017-11-20.

[19] Vscale. https://github.com/ucb-bar/vscale. Accessed: 2017-4-4.

[20] Zero-riscy: A small, 2-stage core derived from ri5cy. https://github.com/

pulp-platform/zero-riscy. Accessed: 2017-11-20.

[21] Labview actor framework “white paper”. https://forums.ni.com/ni/attachments/ni/7301/130/1/Using2011.

[22] The 2016 Wilson Research Group Functional Verification Study, 2016.

[23] Adapteva Inc. Parallella-1.x reference manual, 2014.

[24] Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(01):1–72, 1997.

[25] Tariq B. Ahmad and Maciej J. Ciesielski. Fast sta prediction-based gate-level timing sim-

ulation. 2014 Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014.

[26] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul Gao,

Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao, et al. Celerity: An open-source RISC-V

tiered accelerator fabric. In A Symposium on High Performance Chips (Hot Chips 29),

Aug. 2017.

115

https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://github.com/ucb-bar/vscale
https://github.com/pulp-platform/zero-riscy
https://github.com/pulp-platform/zero-riscy

[27] Saleh Alhazbi and Aman Jantan. Multi-level mediator-based technique for classes hot

swapping in java applications. In Information and Communication Technologies, 2006.

ICTTA’06. 2nd, volume 2, pages 2889–2892. IEEE, 2006.

[28] Ehsan K. Ardestani and Jose Renau. ESESC: A fast multicore simulator using time-

based sampling. In High Performance Computer Architecture, Proceedings of the IEEE

19th International Symposium on, HPCA’13, pages 448–459, Washington, DC, USA, Feb.

2013. IEEE Computer Society.

[29] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas

Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in a

scala embedded language. In Design Automation Conference, Proceedings of the 49th

Annual, DAC ’12, pages 1216–1225, New York, NY, USA, Jun. 2012. ACM.

[30] Somnath Banerjee and Tushar Gupta. Optimized simulation acceleration with partial test-

bench evaluation. In 2014 15th International Microprocessor Test and Verification Work-

shop, pages 22–27, Dec 2014.

[31] Raymond E. Barber and Henry C. Lucas Jr. System response time operator productivity,

and job satisfaction. Communications of the ACM, 26(11):972–986, 1983.

[32] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A.

Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

116

[33] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin,

Stavros Tripakis, and Michael Wetter. Determinate composition of fmus for co-simulation.

13th International Conference on Embedded Software (EMSOFT), 2013.

[34] Dmitry E. Bufistov, Jordi Cortadella, Marc Galceran-Oms, Jorge Julvez, and Mike

Kishinevsky. Retiming and recycling for elastic systems with early evaluation. In Design

Automation Conference, Proceedings of the 46th ACM/IEEE, DAC’09, pages 288–291.

IEEE, Jul. 2009.

[35] Andrew Butterfield and Jim Woodcock. A “hardware compiler” semantics for handel-c.

Electronic Notes in Theoretical Computer Science, 2006.

[36] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L. Sangiovanni-

Vincentelli. A methodology for correct-by-construction latency-insensitive design. In

Computer-Aided Design, Digest of Technical Papers of the IEEE/ACM International Con-

ference on, ICCAD’99, pages 309–315. IEEE, Nov. 1999.

[37] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Performance analysis and opti-

mization of latency insensitive systems. In Design Automation Conference, Proceedings

of the 37th, DAC’00, pages 361–367, New York, NY, USA, Jun. 2000. ACM.

[38] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste

Asanović. Boom v2: an open-source out-of-order risc-v core. Technical Report

UCB/EECS-2017-157, EECS Department, University of California, Berkeley, Sep 2017.

117

[39] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMahan, and

Timothy Sherwood. A pythonic approach for rapid hardware prototyping and instrumen-

tation. In Field Programmable Logic and Applications (FPL), 2017 27th International

Conference on, pages 1–7. IEEE, 2017.

[40] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and

Marc Pouzet. N-synchronous kahn networks: A relaxed model of synchrony for real-time

systems. Symposium on Principles of Programming Languages, 2006.

[41] Jim Dabrowski and Ethan V. Munson. 40 years of searching for the best computer system

response time. Interacting with Computers, 23(5):555–564, 2011.

[42] Stephen A Edwards. High-level synthesis from the synchronous language esterel. In

IWLS, pages 401–406. Citeseer, 2002.

[43] Stephen A. Edwards, Richard Townsend, and Martha A. Kim. Compositional dataflow

circuits. Conference of Formal Methods and Models of Codesign (MEMOCODE), 2017.

[44] Adrian Evans, Allan Silburt, Gary Vrckovnik, Thane Brown, Mario Dufresne, Geoffrey

Hall, Tung Ho, and Ying Liu. Functional verification of large asics. In Proceedings of the

35th Annual Design Automation Conference, DAC ’98, pages 650–655, New York, NY,

USA, 1998. ACM.

[45] M. Galceran-Oms, J. Cortadella, and M. Kishinevsky. Symbolic performance analysis

of elastic systems. In Computer-Aided Design (ICCAD), 2010 IEEE/ACM International

Conference on, pages 778 –785, Nov. 2010.

118

[46] Ilya Ganusov, Henri Fraisse, Aaron Ng, Rafael Possignolo, and Sabya Das. Automated

extra pipeline analysis of applications mapped to xilinx ultrascale+ fpgas. Field Pro-

grammable Logic and Applications (FPL), 2016 26th International Conference on, 2016.

[47] Dave Griffiths and Gabor Papp. Fluxus programming environment. http://www.pawfal.

org/fluxus/.

[48] T.S. et. al. Harris. Techniques for li-bdn synthesis for hybrid micro-architectural simula-

tion. ICCD’11, October 2011.

[49] Carl Hewitt, Peter Biship, and Steiger. A universal modular actor formalism for artificial

intelligence. Proceedings of the 3rd international joint conference on Artificial intelli-

gence, 1973.

[50] Syed Iqbal, Mitul Soni, and Gourav Kapoor. Timing closure in multi-level partitioned

socs. https://www.eetimes.com/document.asp?doc_id=1274615. Accessed: 2018-

05-20.

[51] Jorge Julvez, Jordi Cortadella, and Mike Kishinevsky. Performance analysis of concurrent

systems with early evaluation. In Computer-Aided Design, Proceedings of the IEEE/ACM

International Conference on, ICCAD’06, pages 448–455, New York, NY, USA, Nov.

2006. ACM.

[52] Gilles Kahn. The semantics of a simple language for parallel processing. Information

Processing, 1974.

119

http://www.pawfal.org/fluxus/
http://www.pawfal.org/fluxus/
https://www.eetimes.com/document.asp?doc_id=1274615

[53] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yunsup

Lee, Jonathan Bachrach, and Krste Asanović. Strober: Fast and accurate sample-based

energy simulation for arbitrary RTL. In Computer Architecture, Proceedings of the 43rd

International Symposium on, ISCA’16, pages 128–139, Piscataway, NJ, USA, Jun. 2016.

IEEE Press.

[54] Dusung Kim, Maciej Ciesielski, Kyuho Shim, and Seiyang Yang. Temporal parallel sim-

ulation: A fast gate-level hdl simulation using higher level models. In 2011 Design, Au-

tomation Test in Europe, 2011.

[55] Dusung Kim, Maciej Ciesielski, and Seiyang Yang. Multes: Multilevel temporal-parallel

event-driven simulation. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 2013.

[56] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias

Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain

Corlay, et al. Jupyter notebooks-a publishing format for reproducible computational work-

flows. In ELPUB, pages 87–90, 2016.

[57] Geoffry N. Lambert. A comparative study of system response time on program developer

productivity. IBM Systems Journal, 23(1):36–43, 1984.

[58] Maysam Lavasani. Generating Irregular Data-Stream Accelerators (thesis). PhD thesis,

University of Texas at Austin, 2015.

120

[59] Derek Lockhart, Gary Zibrat, and Christopher Batten. Pymtl: A unified framework for

vertically integrated computer architecture research. In Microarchitecture (MICRO), 2014

47th Annual IEEE/ACM International Symposium on, pages 280–292. IEEE, 2014.

[60] Colin Moock. Essential ActionScript 3.0: ActionScript 3.0 Programming Fundamentals.

" O’Reilly Media, Inc.", 2007.

[61] Rishiyur Nikhil. Bluespec system verilog: efficient, correct RTL from high level specifica-

tions. Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings.

Second ACM and IEEE International Conference on, pages 69–70, Jun. 2004.

[62] Daniel Pilaud, N Halbwachs, and JA Plaice. Lustre: A declarative language for pro-

gramming synchronous systems. In Proceedings of the 14th Annual ACM Symposium on

Principles of Programming Languages (14th POPL 1987). ACM, New York, NY, volume

178, page 188, 1987.

[63] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. FluidPipelines:

Elastic circuitry meets out-of-order execution. In Computer Design, Proceedings of the

34th International Conference on, ICCD’16, pages 233–240, Washington, DC, USA, Oct.

2016. IEEE Computer Society.

[64] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. FluidPipelines:

Elastic circuitry without throughput penalty. In Logic Synthesis, Proceedings of the Inter-

national Workshop on, IWLS’16, Jun. 2016.

121

[65] Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Automated

pipeline transformations with Fluid Pipelines. In Reis Andre and Drechsler Rolf, editors,

Advanced Logic Synthesis, pages 125–150. Springer, Cham, Switzerland, 2018.

[66] Rafael T. Possignolo and Jose Renau. LiveSynth: Towards an interactive synthesis flow.

In Design Automation Conference, Proceedings of the 53rd, DAC’17, pages 74:1–74:6,

New York, NY, USA, Jun. 2017. ACM.

[67] Hao Qian and Yangdong Deng. Accelerating rtl simulation with gpus. In 2011 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 687–693, Nov

2011.

[68] Kyuho Shim, Youngrae Cho, Namdo Kim, Hyuncheol Baik, Kyungkuk Kim, Dusung

Kim, Jaebum Kim, Byeongun Min, Kyumyung Choi, Maciej Ciesielski, and Seiyang

Yang. A fast two-pass hdl simulation with on-demand dump. In 2008 Asia and South

Pacific Design Automation Conference, 2008.

[69] Sangeetha Sudhakrishnan, Liyang Su, and Jose Renau. Processor verification with hw-

bughunt. In ISQED ’08: Proceedings of the 9th international symposium on Quality

Electronic Design, pages 224–229, Washington, DC, USA, Mar. 2008. IEEE Computer

Society.

[70] Angela Sutton and Jeff Garrison. How to achieve timing-closure in high-end fpgas. https:

//www.eetimes.com/document.asp?doc_id=1274615. Accessed: 2018-05-20.

122

https://www.eetimes.com/document.asp?doc_id=1274615
https://www.eetimes.com/document.asp?doc_id=1274615

[71] Jose I. Villar, Jorge Juan, Manual J. Bellido, Julian Viejo, David Guerrero, and J. De-

caluwe. Python as a hardware description language: A case study. In 2011 VII Southern

Conference on Programmable Logic (SPL), pages 117–122, April 2011.

[72] Ge Wang and Perry R. Cook. Chuck: A concurrent, on-the-fly, audio programming lan-

guage. Proceedings of the International Computer Music Conference (ICMC), 2003.

[73] Clifford Wolf. Yosys open SYnthesis suite. http://www.clifford.at/yosys/, 2016. On-

line; accessed on 8 November 2018.

[74] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. SMARTS:

accelerating microarchitecture simulation via rigorous statistical sampling. In Computer

Architecture, 2003. Proceedings. 30th Annual International Symposium on, pages 84–95.

IEEE, 2003.

[75] Craig Zilles and Gurindar Sohi. Master/slave speculative parallelization. 35th Interna-

tional Symposium on Micro-Architecture (MICRO), 2002.

123

http://www.clifford.at/yosys/

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	Fluid Pipelines and the Pyrope Project
	Fluid Pipelines
	Clock Synchronous vs. Fluid Pipeline Architectures
	Fluid Pipelines vs. Other Latency Insensitive Systems
	Motivations for the Pyrope Project

	Languages
	Hardware Description Languages
	The Actor Model
	Other Programming Languages

	Fluid Pipelines and Hardware Simulation

	The Liam Programming Paradigm
	Describing Fluid Behavior with Liam
	Overview
	Liam within a Pyrope Architecture
	Inferring Fluid Behavior
	Liam-Specific Operators
	Catching the Abort with ``Try'' Blocks

	Compiling Liam
	Stages and State
	Deriving Logic for External State
	Deriving Logic for Internal State

	Arrays and Liam
	Software Arrays and Hardware Memory Blocks
	Pyrope Internal Array Representation
	awr Optimizations

	Conclusion

	Pipeline Transformations
	Pyrope Pipeline Transformations
	Implementation
	Evaluation Setup
	Synthesis
	Simulation
	Verification
	A Note on Fluid Induced Bugs

	Live Programming
	Related Work
	Live Programming and Hot Reloading
	Checkpointing and Parallel Replay

	Compiler Support for LiveSim
	Challenges Posed by Pyrope's Type System
	LiveSim
	Use Cases
	The LiveSim Architecture
	LiveParser and LiveCompiler
	Fast Reloading
	Reloading Rules
	Checkpoints and Memory Usage
	Checkpoint Consistency Verification

	Setup
	Benchmarking Architecture
	A Note on Compiler Configuration

	Evaluation
	Hot Reloading
	Simulation Efficiency
	Checkpointing

	Conclusion

	Conclusion and Future Work
	The Pyrope Language
	The Pyrope Compiler and Toolchain
	Pipeline Transformations
	Final Thoughts

	Bibliography

