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Brain Connectomics is generating an ever-increasing deluge of data, which challenges us

to develop new methods for analyzing and extracting new insights from these data. Connectomic

researchers have focused on connectivity – the pattern of connectivity between neurons. The

strengths of synapses have also been studied by quantifying the sizes of synapses which can

be regulated by learning. During my PhD, I have been developing computational methods

for relating brain structure to function. I have developed tools and algorithms for analyzing

connectomics data sets using Machine learning, statistical inference and Information Theory to

find measures and biomarkers that can be used to probe mechanisms underlying leaning and
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memory in normal and diseased brains. We introduce here a powerful method for analyzing

three-dimensional reconstruction from serial section electron microscopy (3DEM) to measure

synaptic information storage capacity (SISC) and apply it to data following in vivo long-term

potentiation (LTP). Quantifying precision is fundamental to understanding information storage

and retrieval in neural circuits. We quantify this precision with Shannon information theory,

which is a more reliable estimate than prior analyses based on signal detection theory. Spine head

volumes are well correlated with other measures of synaptic weight, thus SISC can be determined

by identifying the non-overlapping clusters of dendritic spine head volumes to determine the

number of distinguishable synaptic weights. SISC analysis of spine head volumes in the stratum

radiatum of hippocampal area CA1 revealed 24 distinguishable states (4.1 bits). In contrast,

spine head volumes in the middle molecular layer of control dentate gyrus occupied only 5

distinguishable states (2 bits). Thus, synapses in different hippocampal regions had significantly

different SISCs. Moreover, these were not fixed properties but increased by 30 min following

induction of LTP in the dentate gyrus to occupy 10 distinguishable states (3 bits), and this

increase lasted for at least 2 hours. We also observed a broader and nearly uniform distribution

of spine head volumes across the increased number of states, suggesting the distribution evolved

towards the theoretical upper bound of SISC following LTP. For dentate granule cells these

findings show that the spine size range was broadened by the interplay among synaptic plasticity

mechanisms. SISC provides a new analytical measure to probe these mechanisms in normal and

diseased brains.
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Introduction

Spines are the protrusions located on the dendrites and have different types based on their

shape (Figure 1). Their structures were hypothesized to have impact on physiological properties

of the synapses located on them ([Ste88], [HS89]). To explore this hypothesis scientists were

challenged with the small size, large number, and highly variable shapes, of these dendrite

protrusions. One of the methods to tackle this problem was to first use light microscopy of

Golgi impregnations to observe the spines and then using single sections of electron microscopy

(EM) to identify some spines (in high resolution) in a sample or to quantify their structural

geometries. Authors in (Harris et al. 1992) introduced a new approach called “the series sample”,

in order to make multiple classes of these spines with regards to their shape and subcellular

composition by viewing them through serial EM sections. Then randomly selected spines from

each classes used for serial reconstruction and measurement in three dimensions. This approach

were utilized and results showed that the doubling in density of synapses (at the adult age in

comparison to postnatal day 15) could mediate the enhance synaptic transmission (Harris et al.

1992). The proposed method “the series sample” made dramatic impact on synaptic physiology

and plasticity.

Studying these dendritic spines is critical to the understanding of neural communication

as they are sites for over 90% of all expiatory synapses that occur in the central nervous system

([Kat94]). For dendritic spines, highly precise determinations of structure and its dimensional

variation are essential for defining a valid concept of function. ([Kat94])

Regarding their functional role, experimental results show that spines function is to pro-

vide biochemical materials that locally control the signaling mechanisms at individual synapses
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([BH08]).

3 dimensional Serial section Electron microscopy is being used to precisely measure the

following features of neuronal components (cellular and sub cellular) and more: dimensions,

count numbers, determining local sub cellular or molecular compositions, or the exact location

of synapses. ([BH08])

Figure 1: Different dendritic spine types. Image from (Harris et al. 1992)

Authors in [HS89] used high resolution electron microscopy and explored relationships

between spine geometry and synaptic efficacy and found the correlation of spine head volume

with post synaptic density, and number of vesicles but not with spine neck length. Moreover,

authors showed in [Mur+01] that inactivity produces increases in neurotransmitter release and

synapse size. They showed structural correlate of change in synaptic strength after hippocampal

synapses in culture were pharmacologically silenced for several days is: An increase in the

size of the synapses, with all synaptic components—active zone, postsynaptic density, and

bouton—becoming larger.

The goal of this dissertation are as follows:

Firstly, by analyzing spine geometry it aims to measure the precision of synaptic plasticity
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in control, at 30 min and 2 hours post In-vivo induction of long term potentiation. Then by

utilizing information theory we defined and calculated the SISC-synaptic information storage

capacity-in rat hippocampus in control and LTP conditions.

Secondly, it aims to develop a set of useful algorithms/tools for the analysis of electron

microscopy data that assist neuroscientits to find mechanisms underlying learning and memory.

In other words we would like to find answers to the following questions with regards to the

dendritic spines from the major input (dentate gyrus) and output (CA1) regions of hippocampal

tri-synaptic loop:

1. What is the precision of synaptic plasticity and if it differs between regions?

2. What is the amount of information being coded/stored in each synaptic weight?

3. How does in vivo induction of LTP affect the information storage capacity of synapses

and the potential precision of synaptic plasticity?

4. How does appearance or lack of sub cellular resources may affect the precision of synaptic

plasticity?

5. Can we have any theory on how brain keep the memories stable despite high variability of

spine geometry?

In the following chapter, I will further explain the major components of our research that

are prerequisites to our results interpretations.

1. What areas of the brain we have made measurements from?

2. What model organism have we picked? Adult rat.

3. What experimental technique we picked? In vivo induction of LTP plus Electron Mi-

croscopy.

4. What is synaptic weight?
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5. What are the major computational fields that we have used in our projects? Statistical

Inference, Information Theory.
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Chapter 1

Neural Communications

Brain is a piece of tissue with the weight of 3 pounds that operate with about 20 watts of

power budget ([Fur12]). One of the major function of the brain is using neuronal networks to

transfer information across the brain. The information processing and sharing across the length

of axons, and processing of the information at the pre and post synaptic sites consume energy.

Brains evolution needed to be very optimal to efficiently use the low power budget. One of the

brain features to satisfy this goal is reducing the size by densely packing 100 billion neurons

with 1014 synapses ([LS03]).

Neural communications can be investigated in different levels. We chose the most

fundamental structure among these levels of investigation: Synapses. (Figure 1.6)

Information sharing (storage, coding, and retrieval) across the brain occurs through the

dynamic adjustment of the site of neuronal connections called synaptic weight. The long lasting

changes in synaptic strength/weight called long term potentiation. Synaptic plasticity is the

central field within neuroscience for studying synapse formation and function.

1.1 Hipocampus

Hippocampus is a part of brain limbic system and is known for its contribution to the

formation of declarative memories and adult Neurogenesis ([Eri+98]). We have analysed spine

head volumes from two major areas within rat’s hippocampus brain: CA1 and dentate gyrus
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Figure 1.1: The levels of investigations in neuroscience Image from: https://cnl.salk.edu/
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(Figure 1.4) were neurogenesis occurs.

Figure 1.2: The human Hippocampus anatomy. Image is illustrated to emphasize on the
similarity between the anatomy of the human hippocampal sub regions with rat. Image from:
https://www.creative-diagnostics.com/

Figure 1.3: The Rat Hippocampus anatomy. Area CA1 and dentate gyrus (DG) were studied in
current thesis. Image from: ([AY11])
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Figure 1.4: The 3D reconstructions of the spine head volumes of the 4 dentate gyrus datasets.
(tissue extracted from Middle Molecular Layer (dentate gyrus)-4 rats)

Figure 1.5: The 3D reconstructions of the spine head volumes of the 5 datasets were performed
with the same protocol as that used for the CA1 dataset in [Bar+15]. Four individuals made hand
tracings from the 2 dimensional electron micrographs and then after alignment the automatic 3D
reconstruction was made. The average measurement error is about 0.01 as shown in the above
figure.
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1.2 3DEM

After setting our hypothesis and scientific question, one of the critical steps is to pick an

experimental method and a model organism that has the potential to respond to our scientific

question.

In this thesis, we used adult rats as the model organism. We analyzed datasets of 3D

reconstruction from serial section electron microscopy (3DEM) from adult long evans rats. We

have analysed 5 datasets from 5 animals.

The study of neuronal structures using electron microscopy started with the early studies

by Edward George Gray ([Gra59]). The high resolution of electron microscopy sections of a

neuropil, a piece of tissue extracted from brain regions containing ensemble of interconnected

neurons, allow investigations of the geometry of neural sub cellular structures.

Kristen M Harris, one of the pioneers of serial section electron microscopy, has reviewed

the history of her journey from light microscopy to electron microscopy (named Synaptic

Odyssey) in [Har20].

The results of the first dense 3D reconstructions in brain tissue ([Mis+10]) showed that

only 20% of axons touching a dendrite actually make a synapse with that dendrite ([Har20]).

Moreover, a comprehensive reviewing of the literature ([Har20]) suggested that dendritic

spines are responsive to upstream degeneration of axons or perisynaptic astroglia, and, instead of

causing any dysfunction, their aberrant structures reflect an effort to maintain function as best as

possible ([Har20]).

Here, we used 3 dimensional dense reconstruction of a neuropil from area CA1 and also

3D reconstructions of 24 dendrites from dentate gyrus (total of 5 rat). We determined that the

average measurement error among 4 investigators who independently measured all of the spine

head volumes in the hippocampal area CA1 dataset (Figure 1.5) was smaller than 10 % and

as calculated in Chapter 2 the aforementioned measurement error is smaller than the intrinsic

variability of the measured spine head volumes of the same dendrite same axon spine pairs. All
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Figure 1.6: 12. “Dendrite with spine. The spine contains a spine apparatus and has a type 1
synapse at its apex. 16. Dendrite with two short spines each with a spine apparatus and a type 1
synaptic contact.” Image from: ([Gra59])
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4 datasets from hippocampal dentate gyrus area were reconstructed using the same protocol

(described in the Methods 4.5 ).

Measuring the dimensions of multiple sample sets of spines from the aforementioned

sub regions and considering their correlation with other measures of synaptic efficacy, allow us

to start utilizing computational techniques from information theory and statistical inference to

probe these datasets in order to find links between structure and function.

1.3 Information Theory

Information theory is the mathematical study of the quantification, storage, and communi-

cation (encoding, transmission, receiver, and decoding Figure 1.7) of information and introduced

by Claude Shannon in 1948 ([Sha48]). Shannon information theory is the basis of modern

communication systems [Cov99; TJC99; TV05] and [Bah+12; Hos+12; Hos19; HK16; HK18;

HK19a; HK19b; HK20; SHT13a; SHT13b; SMT14; SHT13c; Sur+18]

Information theory has been used for the analysis of the spike trains ([BT99]). Particularly,

it has been utilized to quantify how much information a neural response carries about the stimulus.

The extraction of information of response of a stimuli can be done by the analysis of

single-trial population analysis over traditional single-cell studies of trial averaged responses.

In particular, authors in [QP09] have shown how much more knowledge can be extracted using

decoding and information-theory methodologies of whole population data. Moreover, they

showed the information that is ambiguous at the single-cell level analysis can sometimes be

clearly interpreted when considering the whole population. Information theory has been used

for modeling uncertainty in cognitive sciences and information processing. Authors in [Fan14]

proposed an information theory account of cognitive control.

The focus of this dissertation will be on the definition and application of Shannon entropy

and maximal entropy distribution at the synaptic level that has not been explored before.

Shannon Information is a measurable quantity formulated in [Sha48]. It can be defined
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Figure 1.7: Schematic diagram of a communications system. Image from: ([Sha48])

Figure 1.8: “Three main steps for the population analysis of neural recordings. The common
steps for analysing how a population of neurons encodes information about visual inputs are
shown. First, recordings are taken at different sites with implanted electrodes. Second, the
simulated activity of single neurons is extracted from the continuous data using spike-sorting
algorithms. Third, information is inferred from the multiple spike trains with decoding algorithms
(which can predict that the stimulus was an apple), or information theory (which quantifies the
knowledge about the stimulus gained by observing the population response). The population
analysis allows the study of the information carried by the different features of the multiple spike
trains. For example, it can be established whether the information of the apple is given by an
increase in firing (neuron in red), by a particular temporal firing pattern (neuron in green) or by
the simultaneous firing of a subset of neurons (neurons in blue and grey). The vertical dotted
line marks stimulus onset.” Image from: ([QP09])
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as the amount of reduction in a recipient’s uncertainty upon receipt of a message or observation

of an event. For example, when observing a coin toss we are uncertain about the outcome of

this probabilistic event. Is the coin biased or unbiased?. How many flips does one have to make

to measure the amount of bias to some degree of certainty? How much decrease in uncertainty

about the bias is obtained on each successive flip of the coin? If the coin is fair with uniform

distribution:

P(Heads) = P(Tails) = 0.5 (1.1)

then the outcome of each flip will remove the maximum uncertainty and hence carry the

maximum possible information. However, if the coin is highly biased with distribution:

P(Heads) = 0.99,P(Tails) = 0.01 (1.2)

then the outcome of each flip will remove very little uncertainty about the true result of coin

flip experiment and thus carry very little information as we are almost sure that the outcome

of the coin flip is heads most of the time. In this formulation, the amount of information in a

message or an event is inversely proportional to its probability of occurrence. And formally, the

Shannon Information content I of an event or message is defined as the base-2 logarithm of its

reciprocal probability p (it uses the logarithm of base-2 and hence the unit of measure of I is

called a “binary unit”, or “bit” for short.):

I = log2
1
p

(1.3)

The concept of entropy, H, comes from the field of thermodynamics and measures the amount of

uncertainty or disorder, or number of possible states of a system. Shannon entropy is defined as

the average of Shannon information I. The Shannon entropy of a discrete random variable is

defined as follows:
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H(X) = E
[

log2
1

PX(X)

]
= ∑

x∈X
PX(x) log2

1
PX(x)

(1.4)

Hence we can say entropy measures the amount of information of distinguishable states.

When you have higher information you can distinguish more things from one another. The

entropy of a binary random variable (with probability P) is demonstrated in Figure 1.9. The

highest amount of uncertainty about the outcome of the experiment (Bernoulli distributed binary

random variable) is when P = 0.5 with maximum information entropy of 1 bit.

Figure 1.9: H as a function of probability P for a binary random variable. Image from: ([Cov99])

1.4 Synaptic Plasticity

In the late 19th century, Santiago Ramón y Cajal (an image drawn by Cajal (Figure 1.10))

proposed that memories are stored at synapses and not through the generation of new neurons

(Ramón y Cajal, 1894). Since then, there has been an extensive search for synaptic mechanisms

responsible for learning and memory. In particular, long-term potentiation (LTP) has become a
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standard model for investigating cellular, synaptic, and molecular mechanisms of learning and

memory. Numerous structural consequences have been shown to accompany LTP. For example,

the density and proximity of docked vesicles at the presynaptic active zone area is increased and

may explain the enhanced release probability (Jung et al., 2021). Dendritic spines and the area

of the postsynaptic density (PSD) enlarge at the expense of new spine outgrowth in the mature

hippocampus (Bourne and Harris, 2011; Bell et al., 2014; Harris, 2020). Although synaptic

plasticity is well-established as an experience-dependent mechanism for modifying these and

other synaptic features, the precision of this mechanism is unknown.

Figure 1.10: frundamental circuit of the hippocampus, as drawn by Cajal, DG: dentate gyrus.
Sub: subiculum. EC: entorhinal cortex. Image from: Wikipedia, Hipocampus

The existence of both intrinsic and extrinsic origins of variability and dysfunction of

structural modulation (Kasai et al., 2021) motivates further exploration of the potential precision

with which synaptic strengths can be adjusted. From an information theory perspective, there

can be no information stored without precision – the more precise synaptic plasticity is, more

distinguishable synaptic states are possible and the greater amount of information that can be

stored at the synapses. The synaptic weight is itself the information that is stored at a synapse,
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and this information is retrieved when synaptic transmission subsequently occurs. Note that

synapses are complex dynamical structures and “synaptic weight” is not a single scalar value

but rather is a vector composed of intrinsic functional pre- and postsynaptic variables. These

variables can be modulated by synaptic plasticity. Included in the vector of variables are the

probability of presynaptic vesicular release, number of docked vesicles, number of postsynaptic

receptors, and degree of short-term facilitation/depression, to name but a few. Thus over a series

of test pulses applied to a given synapse, the resulting train of stochastic excitatory postsynaptic

potentials (EPSPs) is expected to vary in amplitude and number of EPSP events from stimulus to

stimulus, and vary in a way that is consistent with the synaptic weight vector (Kandaswamy et

al., 2010; Klyachko et al., 2006).

Several studies have shown that synaptic strength is highly correlated with dendritic spine

head volume (Harvey and Svoboda, 2007; Matsuzaki et al., 2004; Harris, 2020, reviewed papers

in Yang and Lui, 2022). Pairs of dendritic spines on the same dendrite that receive input from

the same axon (SDSA pairs) occur naturally in the brain and are expected to have experienced

the same activation histories (Harris and Sorra, 1998; Kumar et al., 2020). Hence, synaptic

weight precision can be estimated by measuring the difference between the spine head volumes

of SDSA pairs, and this information can then be used to calculate the number of distinguishable

synaptic states in a synaptic pathway.

In previous studies (Bartol et al., 2015, Bromer et al., 2018), signal detection theory was

used to estimate the number of distinguishable synaptic strengths with an assumed signal-to-

noise ratio of 1 across the range of spine head volumes. Signal detection theory determines the

probability of detecting a signal in noise depending on the overlap between the two distributions.

A threshold for the amount of overlap determines the separation between them. In its application

to identify distinguishable synaptic strengths, we chose an overlap threshold of 31%, so that an

ideal observer would correctly assign a given sample to the correct distribution 69% of the time.

Outcomes from these analyses of CA1 pyramidal cell apical dendrites revealed a remarkably high

precision with 26 Gaussian distributions spanning the range of SDSA pairs [Bar+15]. However,
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signal detection theory has limitations. For example, if a single large spine head volume (e.g.,

a 0.55 µm3 spine head found in another dataset, Harris and Stevens, 1989) were added to the

dataset, we would predict 39 distinguishable Gaussians spanning the range, an increase of 50%

in the number of states. In Bartol et al. (2015) there are interval gaps with Gaussian distributions

across a range of spine head volumes without spine head volumes in the reconstructed tissue.

Furthermore, this previous method assumed an arbitrary threshold for the amount of overlap

allowed between the consecutive Gaussians. Finally, the method did not take into account the

actual frequency of spine head volumes in the distinguishable states. We used information theory

to calculate the number of bits of Shannon information stored in synaptic weights to quantify

empirically the synaptic information storage capacity (SISC). Information theory is based on

the distinguishability of messages sent from a transmitter to a receiver. In the case of synaptic

weight, the postsynaptic dendrite or soma is the receiver, which has to distinguish the strengths of

messages coming from discrete synaptic inputs. The distinguishability of the received messages

depends on the precision with which synaptic plasticity sets the strength of individual synapses.

Statistics and information theory allowed us to quantify the precision and information capacity of

the message and how it changes following LTP induction. The analysis of precision in our new

method starts with measuring the coefficient of variation (CV) of SDSA pairs, the same starting

point as in [Bar+15]. The new method, however, performs non-overlapping cluster analysis

to obtain the number of distinguishable categories of spine head volumes in the reconstructed

volume using the precision level estimated from the CV of the SDSA pairs. In the new SISC

analysis, the number of distinct synaptic states defined by the individual clusters converges

toward the true number of states as the number of spine head volumes increases and the true

shape of the distribution is sampled. There are more distinguishable states with greater Shannon

information when the precision is higher. Comparison of the new SISC measurements with the

previous results demonstrates that the new method is more robust to outliers and, importantly,

can reveal gaps and variation in the shape of the distribution. In contrast, with signal detection

theory the gaps were filled in with Gaussians in the absence of any data. SISC was applied to
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synapses in control hippocampal area CA1 that was perfusion-fixed in vivo, and in the dentate

gyrus perfusion-fixed at 30 minutes and 2 hours after the induction of unilateral LTP compared

to the contralateral control hemisphere in vivo. The results revealed robust differences between

the brain regions and across conditions following synaptic plasticity.
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Chapter 2

Exploring The Precision of Real Intelli-
gence at Synapse Resolution

Synapses are the fundamental units of storage of information in neural circuits and their

structure and strength are adjusted through synaptic plasticity. Hence, exploring different aspects

of synaptic plasticity processes in the hippocampus is crucial to understanding mechanisms of

learning and memory, improving artificial intelligence algorithms, and neuromorphic computers.

The scope of this chapter is to explore the precision of synaptic plasticity. Here we measured the

precision of multiple synaptic features (Spine head volume, post synaptic density area, spine neck

diameter, spine neck length and number of docked vesicles). Results show synaptic plasticity is

highly precise and sub cellular resources such as mitochondria may have impact on it.

2.1 Introduction

Synapses between neurons control the flow of information in neural circuits and their

strengths are regulated by experience. While synaptic plasticity is well-established as an

experience-dependent mechanism for modifying spine head volumes and other synaptic features,

the precision of the mechanism is unknown. From an information theory point of view, there can

be no information stored without precision – the more precise synaptic plasticity is, the more

distinguishable synaptic strength states are possible and the greater amount of information that

can be stored at the synapses in a particular neural circuit. Pairs of synapses from the same
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axon on the same dendritic branch (Called same-dendrite same-axon pairs [Bar+15] or joint

synapses on different dendritic branches ([Dor+22]; [Mot+19]) have highly correlated sizes due

to common history of coactivation and consequently have similar spine head volumes, suggesting

that changes in synapse structure are precisely modulated ([Bar+15]; [Kas+15]; [Mot+19];

[Sam+22b]). Joint synapses with up to 7 connections with same pre/post neurons were found

([Mot+19]; [Dor+22]). Studying these pairs can potentially guide us to the measurement of the

precision of synaptic plasticity and the underlying molecular mechanisms.

Until recently the measurement techniques did not have the potential to measure the preci-

sion of synaptic plasticity because the measurement error from the actual sizes of synapses were

much higher than potential synaptic plasticity mechanism error. We analyzed high-resolution

3-dimensional electron microscopy (3DEM) reconstructed spine head volume, post synaptic

density, spine neck diameter, spine neck length and number of docked vesicles in hippocampal

area CA1 in rat (data from [Bar+15]) and measured the precision of synaptic plasticity. Explor-

ing same-dendrite same-axon synapse pairs for measuring precision of synaptic plasticity and

information coding in synapses is foundational to understanding mechanisms of learning and

memory and studying aging and neurodegenerative diseases such as Alzheimer’s disease as well

as improving artificial intelligence algorithms and building neuromorphic computers.

2.1.1 Precision Analysis

Precision is defined as the degree of reproducibility of a measurement and is often

mistaken for accuracy, which is defined as the deviation of the average measurement from a

reference value ( Figure 2.1). The CV shown in equation 4.1 is a statistic that measures the

variations within a sample, defined by the standard deviation (σ ) equation 4.2, normalized by the

mean of the sample (µ), making it a useful metric for measuring precision. Here we used N=2 in

equation 4.2 because we analyzed SDSA pairs.

Quantifying precision of synaptic plasticity is a key factor for discovering the number

of distinguishable states for synaptic weights. First, we determined that the measurement error
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between investigators of the same spine head volumes was smaller than the variability between

the measured spine head volumes of the SDSA spine pairs. Then we could measure the precision

of the 5 post synaptic features (Spine head volume, post synaptic density area, spine neck

diameter, spine neck length and number of docked vesicles) of the SDSA pairs to explore the

precision of synaptic plasticity as these features dynamically are modified during learning and

memory processes. We calculated the CV of all SDSA pairs for each of the 5 features (Figure

2.3). None of the correlations between the CV values and mean of feature’s pair values for

the SDSA pairs were significant (except for the noted weak correlation, Figure 2.3C and D).

These outcomes suggest that the synaptic plasticity based on co-activation history among small

spines is as precise as it is for large spines in control condition. Our statistical analysis on 3D

dimensions of the 5 aforementioned post synaptic features (Figure 2.3) confirmed dendritic spine

head volumes with median CV value of 0.12±0.046 can be used as the surrogate of synaptic

weight/strength as it is also showed by electrophysiology in [SS97] that it is highly correlated

with synaptic strength.

CV =
σ

µ
(2.1)

σ =

√
1

N−1

N

∑
i=1

(xi−µ)2 (2.2)

2.1.2 Role of sub cellular resources on precision of synaptic plasticity

Our results demonstrated that sub cellular resources such as mitochondria can play role

on the adaptation of synaptic plasticity precision. Mitochondria play a significant role on synaptic

transmission through production of ATP, sequestration of calcium and synthesis of glutamate

([Smi+16];[TB17]). Here we investigated potential role of Mitochondria on the correlation of

SDSA pairs head volumes. As illustrated in Figure 2.4A for the SDSA pair that Mitochondria

appeared only in the presynaptic bouton of one of the spines (upper spine synapsed with an axon
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that contains 2 Mitochondria at the presynaptic axonal bouton), CV=0.12. This pair has CV

value that is 1 order of magnitude higher than the CV of the SDSA pair in the Figure 2.4B) that

represents the case of no Mitochondria observed at the presynaptic bouton with the value of

0.016. We checked the existence of Mitochondria at presynaptic axonal bouton of all 10 SDSA

pairs. We found that 5 out of 10 pairs have Mitochondria at presynaptic bouton of only one of

the spines within the pair and showed this scenario with red filled circles in (Figure 2.5). The

average CV value for the imbalance appearance of mitochondria at presynaptic bouton is 0.4

versus 0.1 for the cases that either both spines had mitochondria at presynaptic bouton or none

was observed. Larger datasets from different brain region is needed to confirm our hypothesis on

the role mitochondria on the precision of synaptic plasticity. (In this section, CV is calculated

with equation 1 for the SDSA pair’s spine head volumes only)

2.2 Conclusion

Our analytic method constitutes a new biomarker for synapses that can be used to assess

differences between brain area in different species, between different behavioral conditions and

different brain disorders. Results from the analysis also have important implications for the

precision of the molecular mechanisms underlying learning and memory at synapses. For the

future direction of this research we would like to further explore the impact of the appearance of

mitochondria across rat hippocampal regions [Sam+22b] and cortex [Mot+19].

Furthermore, quantifying precision of synaptic plasticity is a key factor for discovering the

number of distinguishable states of synapses explored in [Sam+22b]and exploring information

processing at the neuronal network level [SLC16].
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Figure 2.1: Dart precision versus accuracy. Precision concerns the degree of reproducibility of a
process. When a process or system is repeated with the same input the amount of variation in
the output shows the precision level of the process. For accuracy there is a reference frame with
which the average value of measurements is compared. The graphs illustrate a low precision and
low accuracy outcome (top left), low precision and high accuracy (top right; the average of the
positions is almost on the bull’s eye), high precision and low accuracy (bottom left), and high
precision and high accuracy (bottom right).
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Figure 2.2: The spine heads fully captured in the reconstructed volume, displaying the PSD (red),
spine head membrane (yellow), spine neck (black), dendritic shaft (yellow).
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Figure 2.3: (A-E) Same-dendrite same-axon (SDSA) pairs were analyzed for each post synaptic
feature. The regression line, p value and R2 for the CV of n SDSA pairs are shown for each
feature .The gray region is the 95% confidence interval for each regression line. The Y axis is the
CV for each SDSA pair depicted by blue. The X axis shows the mean value of the post synaptic
feature, on a log scale, for each SDSA pair.
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Figure 2.4: The spine heads fully captured in the reconstructed volume, displaying the PSD (red),
spine head membrane (yellow), axon in light green and mitochondria in gray. The left dendrite
represents the SDSA pairs with mitochondria obsreved only in the presynaptic bouton of one
of the spines (upper spine surrounded with 2 Mitochondria at the presynaptic axonal bouton)
with CV=0.12 and the right dendrite represents the case of no mitochondria observed at the
presynaptic bouton with CV=0.016.[Scale cube: 0.125 µm3]
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Figure 2.5: The red filed circles represents the SDSA pairs with mitochondria obsreved only in
the presynaptic bouton of one of the spines and green filed circles for the cases that either both
presynaptic boutons had mitochondria or no mitochondria observed.
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Chapter 2, in full, is a reprint of the material as it appears in:

Samavat, M., Bartol, T.M., Harris, K.M. and Sejnowski, T.J., “Exploring The Precision of Real

Intelligence at Synapse Resolution.”In NeurIPS 2022 Workshop on Memory in Artificial and

Real Intelligence (MemARI) [Sam+22a].
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Chapter 3

Quantifying Shannon Information of the
Synaptic Weight

Synapses between neurons control the the strengths of neuronal communication in neural

circuits and their strengths are in turn dynamically regulated by experience. Because dendritic

spine head volumes are highly correlated with synaptic strength ([Bar+15]; [SS97]), anatomical

reconstructions can probe the distributions of synaptic strengths. Synapses from the same axon

onto the same dendrite (SDSA pairs) have a common history of coactivation and have nearly

the same spine head volumes, suggesting that synapse function precisely modulates structure.

We have applied Shannon information theory to obtain a new analysis of synaptic information

storage capacity (SISC) using non-overlapping clusters of dendritic spine head volumes as a

measure of synaptic strengths with distinct states based on the synaptic precision level calculated

from 10 SDSA pairs. SISC analysis revealed spine head volumes in the stratum radiatum of

hippocampal area CA1 occupied 24 distinct states (4.1 bits). This finding indicates an unexpected

degree of precision that has implications for learning algorithms in artificial neural network

models.

3.1 Introduction

Since the late 19th century that Santiago Ramón y Cajal proposed that memories are

stored at synapses, and not through the generation of new neurons ([Ram94]) there has been an
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extensive search for synaptic mechanisms responsible for learning and memory. While synaptic

plasticity is a known experience-dependent mechanism for modifying these and other synaptic

features, the precision of this mechanism has been unknown. The existence of both intrinsic

and extrinsic origins of variability and dysfunction of structural modulation ([Kas+21]) urges

scientists to further explore the potential precision of synaptic strength adjustments. From an

information theory point of view, without precise synaptic plasticity there could be no information

stored at the synapses of neural circuits. Consequently, no cognitive function could be available

without precise adjustment of synaptic structure during learning and memory.

We hypothesize that synapses are not simple on/off switches in neural circuits but rather

have distinguishable synaptic strength levels due to a high precision for adjustment of synaptic

strength. Here we used information theory to develop a new method using reconstructed dendrites

that quantifies empirically the SISC – the number of bits of Shannon information stored per

synapse. In the new method, the precision analysis is based on the coefficient of variation (CV)

of SDSA pairs, the same starting point as in [Bar+15]. The new method, however, performs non-

overlapping cluster analysis (Algorithm 4) to obtain the number of distinguishable categories (Nc)

of spine head volumes of whole populations of reconstructed spines in CA1 using the precision

level estimated from the CV. The clustering analysis yields the Shannon Information capacity

per synapse in CA1.

3.2 Number of distinguishable categories for synaptic
weight

To introduce and compare the performance of our proposed method, we reanalyzed the

CA1 dataset that was previously analyzed with signal detection theory ([Bar+15]). A total of 288

spine head volumes were fully contained within a 6 × 6 × 5 µm3 CA1 neuropil volume (Figure

3.1A). Signal detection theory revealed 26 distinguishable Gaussian distributions with equal CV

(inset, Figure 3.1B), and assuming an overlap of 31% (Figure 3.1B). This amount of overlap is
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equivalent to assuming a signal-to-noise ratio = 1 and a 69% discrimination threshold common

in psychophysics (Schultz, 2007). Our new clustering method (Algorithms 1) based upon the

median CV of the SDSA pairs (0.12 ± 0.046), without any assumptions regarding the arbitrary

parameter of signal-to-noise ratio, placed the CA1 spine head volumes into 24 distinguishable

categories (Figure 3.1C). The upper left inset contains 3D reconstructions of the smallest and

largest spine head volumes. The largest spine in each cluster is illustrated beneath each bin.

The frequency of spine head volumes in each category reveals that the spine head volumes are

distributed across distinguishable states non-uniformly. The highest frequency occurs in cluster

#10, which contains 36 spine head volumes (Figure 3.1C). Interestingly, there appears to be a

second peak at around cluster 21 consistent with findings in [Dor+19].
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Algorithm 1. Clustering Algorithm
1: function PRECISION CALCULATION( (Same Dendrite Same Axon pairs (SDSA), N pairs

(a,b) of spine head volumes))

2: for a,b ∈ SDSA[i] do

3: cv = σ/µ

4: CV[i]=cv

5: end for

6: return {Median(CV )}

7: end function

8: function CLUSTERING SPINE HEAD VOLUMES(SHV vector)

9: Sort SHV s.t. SHV [i]< SHV [i+1]

10: Listo f shcluster = NULL

11: while Length(SHV ) ̸= 0 do ▷ Here we do the clustering with the median value of SDSA

pairs calculated with the above function.

12: a= SHV[1]

13: for any b ∈ SHV do

14: Cluster=NULL

15: if cv(a,b)< Median(CV ) then

16: Cluster← b

17: end if

18: end for

19: Listo f shcluster[ j]←Cluster

20: SHV = SHV [−Cluster](deleting the spine head volumes stored in cluster j from the

SHV vector)

21: j=j+1

22: end while

return {Listo f shcluster} and Nc = j−1

23: end function
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Figure 3.1: (A) The 288 spine heads fully captured in the reconstructed volume, displaying the
PSD (red) and spine head membrane (yellow). (B) Authors in [Bar+15] using assumptions from
signal detection theory showed that 26 distinguishable Gaussian distributions with equal CV (see
inset) and overlap of 31% can span the range of spine head volumes of SDSA pairs equivalent to
signal to noise ratio of 1 and 69% discrimination threshold common in psychophysics. (C) Our
new clustering algorithm (see Algorithm 1) obtains 24 distinguishable categories of all 288 spine
heads in the dataset based on the median CV value. The histogram of spine head volumes in
log scale is depicted in the panel C inset. The Y axis shows the number of spine head volumes
within each category. The actual spine head volumes of the individual spine heads of a given
category are stacked vertically in sorted order for that category. The 3D object shown below
each category (vertical column) is the actual 3D reconstructed spine head of the largest head
volume in the category. The X axis shows the distinguishable category numbers. All spine head
volumes are rounded to two significant digits.
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3.2.1 Shannon Information Storage Capacity of Synapses (CA1)

Shannon Information is a measurable quantity [Sha48]. It can be defined as the amount

of reduction in a recipient’s uncertainty upon receipt of a message or observation of an event.

For example, when observing a coin toss we are uncertain about the outcome of this probabilistic

event. Is the coin biased or unbiased?. How many flips does one have to make to measure the

amount of bias to some degree of certainty? How much decrease in uncertainty about the bias is

obtained on each successive flip of the coin? If the coin is fair with uniform distribution:

P(Heads) = P(Tails) = 0.5 (3.1)

then the outcome of each flip will remove the maximum uncertainty and hence carry the

maximum possible information. However, if the coin is highly biased with distribution:

P(Heads) = 0.99,P(Tails) = 0.01 (3.2)

then the outcome of each flip will remove very little uncertainty about the true result of coin

flip experiment and thus carry very little information as we are almost sure that the outcome

of the coin flip is heads most of the time. In this formulation, the amount of information in a

message or an event is inversely proportional to its probability of occurrence. And formally, the

Shannon Information content I of an event or message is defined as the base-2 logarithm of its

reciprocal probability p (it uses the logarithm of base-2 and hence the unit of measure of I is

called a “binary unit”, or “bit” for short.):

I = log2
1
p

(3.3)

The concept of entropy, H, comes from the field of thermodynamics and measures the amount of

uncertainty or disorder, or number of possible states of a system. Shannon entropy is defined as
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the average of Shannon information I. The Shannon entropy of a discrete random variable is

defined as follows:

H(X) = E
[

log2
1

PX(X)

]
= ∑

x∈X
PX(x) log2

1
PX(x)

(3.4)

Hence we can say Shannon Information (or entropy) measures the amount of information

of distinguishable states. When you have higher information you can distinguish more things

from one another.

The Shannon information per synapse was calculated from the frequency of spine head

volumes in the distinguishable categories where each category is considered a different message.

Shannon entropy (bits of information) for the hippocampal area CA1 dataset is measured with

the value of 4.1±0.39 bits. Results demonstrate that the synapses are not on/off switches. (For

further detail please see the Synaptic Information Storage Capacity’ section in Appendix)

3.3 Discussion

This paper introduces a new analytical approach for determining SISC that has several

advantages over a prior method published in [Bar+15]. The new method is applied to the same

data in [Bar+15] to compare it with the prior approach. The analyses revealed that synaptic

precision, based on covariance of spine head volume in SDSA pairs, was not altered. The

Shannon information per synapse was calculated from the frequency of spine head volumes in

the distinguishable categories where each category is considered a different message.

1. Authors in [Bar+15] have not used the total 288 spine head volumes for calculating the

number of distinguishable states. If the full range of spine head volumes were used

the total number of Gaussian’s for the 69% threshold (percent correct) with the signal

detection method presented in [Bar+15] would be 33. (Here our clustering method reveals

24 distinguishable synaptic states)
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2. The proposed method in [Bar+15] utilized an arbitrary threshold for the amount of overlap

between consecutive Gaussian’s (31% overlap). No evidence exists for what would be the

right threshold and whether that differs between brain regions.

3. The novel method presented in the current manuscript is robust to outliers. For example, if

we add a large spine head volume with value of 0.55 µm3 (previously found in CA1 in

other data sets) to the 288 spine head volumes of this study, the number of clusters with

our method will be 25 instead of 24. However, the previous method in [Bar+15] reveals 39

distinguishable Gaussian’s spanning the range of the augmented data set.

Comparison of the new SISC measurements with the previous results demonstrates

that the new method is more robust to outliers and, importantly, can reveal gaps and variation

in the shape of the distribution. In contrast, with signal detection theory gaps were filled in

with Gaussians in the absence of any data. The new method provides the opportunity for

neuroscientists to explore various synaptic features such as spine head volume, post synaptic

density area, spine neck diameter, spine neck length and number of docked vesicles among

the distinguishable bins and investigate potential role of sub cellular resources such as spine

apparatus, smooth endoplasmic reticulum, polyribosomes and mitochondria on them.

Moreover, it is worth noting that our new study with empirical data without using any

discrimination threshold other than utilizing the precision level can provide an estimate of the

SNR for synaptic weights. It is approximately 0.51 in hippocampal area CA1 and calculated

using the signal detection theory method presented in [Bar+15] and the setting number of

Gaussian’s to be equal 24. (Larger data sets are needed to have the robust estimation of SNR

across various brain regions.)

Statistical Inference [EH21] is one of the major disciplines that can assist us to further

explore large 3DEM datasets in control [Mot+19], and LTP [Sam+22b] conditions and infer the

underlying mechanisms of learning and memory at synapse resolution.
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3.4 Appendix

3.4.1 Synaptic Information Storage Capacity

Spine morphology has substantial variation across the population and lifetime of synapses.

Hebbian plasticity puts forth a causal relationship and transformation of information from the

presynaptic site to the postsynaptic site by the adjustment of efficacy of synaptic transmission, or

”synaptic weight.” The pattern of synaptic weights in the ensemble of neural circuits allows us to

define both information and the recipient of the message in the context of synaptic plasticity. The

recipient of the message is the neural ensemble or the pattern of synaptic weights that store the

message and read the message during the recall process, which is the reactivation of the synaptic

weights in the memory trace. The amount of information is quantified by the distinguishability

of synaptic weights which comprise the memory trace. Here ”distinguishability” implies that the

precision of synaptic weights play a significant role.

The synapse is the unit of information storage in an ensemble of neurons, and if the

precision level of synaptic weights is low then the amount of information that can be stored per

synapse and in the ensemble of the neurons will also be low. Because the spine head volume

is highly correlated with synapse size, the precision of spine head volumes can be used to

measure the distinguishability of the synaptic weights. High precision yields a greater number

of distinguishable categories (i.e. states or clusters) for spine head volumes and hence higher

information storage capacity.
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Algorithm 2. Bootstrap Algorithm for Estimating the Standard Error of Median
Require: n≥ 1

Let X1, . . . ,Xn be some data and θ̂n = t (X1, . . . ,Xn)
For b = 1, . . . ,B
Simulate X∗(b)1 , . . . ,X∗(b)n

iid∼ Fn by sampling with replacement from {X1, . . . ,Xn}
Evaluate θ̂

∗(b)
n = t

(
X∗(b)1 , . . . ,X∗(b)n

)
σ̂

2
n,B =

1
B

B

∑
b=1

(
θ̂
∗(b)
n − 1

B

B

∑
b=1

θ̂
∗(b)
n

)2

Return the bootstrap estimate of standard error of median

σ̂n,B
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Chapter 3-4, in full, is a reprint of the material as it appears in the following publications:

Samavat, M., Bartol, T.M., Harris, K. and Sejnowski, T., “Using Shannon Information to Probe

the Precision of Synaptic Strengths.” In NeurIPS 2022 Workshop on Information-Theoretic

Principles in Cognitive Systems.

Samavat, M., Bartol, T.M., Bromer, C., Bowden, J.B., Hubbard, D.D., Hanka, D.C., Kuwajima,

M., Mendenhall, J.M., Parker, P.H., Abraham, W.C. and Harris, K., “Shannon Information of

Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized.”

In NeurIPS 2022 Workshop on Information-Theoretic Principles in Cognitive Systems.

Samavat, M., Bartol, T.M., Bromer, C., Bowden, J.B., Hubbard, D.D., Hanka, D.C., Kuwajima,

M., Mendenhall, J.M., Parker, P.H., Abraham, W.C. and Harris, K.M., 2022. “Regional and LTP-

Dependent Variation of Synaptic Information Storage Capacity in Rat Hippocampus.” bioRxiv,

pp.2022-08.

dissertation author was the primary investigator and author of these materials. [Sam+a; Sam+22b;

Sam+b]
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Chapter 4

Regional and LTP-Dependent Variation of
Synaptic Information Storage Capacity in
Rat Hippocampus

Connectomics is generating an ever-increasing deluge of data, which challenges us to

develop new methods for analyzing and extracting insights from these data. We introduce here

a powerful method for analyzing three-dimensional reconstruction from serial section electron

microscopy (3DEM) to measure synaptic information storage capacity (SISC) and apply it to

data following in vivo long-term potentiation (LTP). Connectomic researchers have focused on

the pattern of connectivity between neurons. The strengths of synapses have also been studied

by quantifying the sizes of synapses. Importantly, synapses from the same axon onto the same

dendrite have a common history of coactivation, making them a candidate for measuring the

precision of synaptic plasticity based on the similarity of their dimensions. Quantifying precision

is fundamental to understanding information storage and retrieval in neural circuits. We quantify

this precision with Shannon information theory, which is a more reliable estimate than prior

analyses based on signal detection theory because there is no overlap between states and outliers

do not artificially bias the outcome. Spine head volumes are well correlated with other measures

of synaptic weight, thus SISC can be determined by identifying the non-overlapping clusters

of dendritic spine head volumes to determine the number of distinguishable synaptic weights.

SISC analysis of spine head volumes in the stratum radiatum of hippocampal area CA1 revealed
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24 distinguishable states (4.1 bits). In contrast, spine head volumes in the middle molecular

layer of control dentate gyrus occupied only 5 distinguishable states (2 bits). Thus, synapses in

different hippocampal regions had significantly different SISCs. Moreover, these were not fixed

properties but increased by 30 min following induction of LTP in the dentate gyrus to occupy 10

distinguishable states (3 bits), and this increase lasted for at least 2 hours. We also observed a

broader and nearly uniform distribution of spine head volumes across the increased number of

states, suggesting the distribution evolved towards the theoretical upper bound of SISC following

LTP. For dentate granule cells these findings show that the spine size range was broadened by

the interplay among synaptic plasticity mechanisms. SISC provides a new analytical measure to

probe these mechanisms in normal and diseased brains.

4.1 Introduction

In previous studies ([Bar+15], [Bro+18]), signal detection theory was used to estimate

the number of distinguishable synaptic strengths with an assumed signal-to-noise ratio of 1

across the range of spine head volumes. Signal detection theory determines the probability of

detecting a signal in noise depending on the overlap between the two distributions. A threshold

for the amount of overlap determines the separation between them. In its application to identify

distinguishable synaptic strengths, we chose an overlap threshold of 31%, so that an ideal

observer would correctly assign a given sample to the correct distribution 69% of the time.

Outcomes from these analyses of CA1 pyramidal cell apical dendrites revealed a remarkably

high precision with 26 Gaussian distributions spanning the range of SDSA pairs [Bar+15].

However, signal detection theory has limitations. For example, if a single large spine head

volume (e.g., a 0.55 µm3 spine head found in another dataset, [HS89]) were added to the dataset,

we would predict 39 distinguishable Gaussians spanning the range, an increase of 50% in the

number of states. In [Bar+15] there are interval gaps with Gaussian distributions across a range

of spine head volumes without spine head volumes in the reconstructed tissue. Furthermore, this
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previous method assumed an arbitrary threshold for the amount of overlap allowed between the

consecutive Gaussians. Finally, the method did not take into account the actual frequency of spine

head volumes in the distinguishable states. We used information theory to calculate the number

of bits of Shannon information stored in synaptic weights to quantify empirically the synaptic

information storage capacity (SISC). Information theory is based on the distinguishability of

messages sent from a transmitter to a receiver. In the case of synaptic weight, the postsynaptic

dendrite or soma is the receiver, which has to distinguish the strengths of messages coming from

discrete synaptic inputs. The distinguishability of the received messages depends on the precision

with which synaptic plasticity sets the strength of individual synapses. Statistics and information

theory allowed us to quantify the precision and information capacity of the message and how

it changes following LTP induction. The analysis of precision in our new method starts with

measuring the coefficient of variation (CV) of SDSA pairs, the same starting point as in [Bar+15].

The new method, however, performs non-overlapping cluster analysis to obtain the number of

distinguishable categories of spine head volumes in the reconstructed volume using the precision

level estimated from the CV of the SDSA pairs. In the new SISC analysis, the number of distinct

synaptic states defined by the individual clusters converges toward the true number of states as

the number of spine head volumes increases and the true shape of the distribution is sampled.

There are more distinguishable states with greater Shannon information when the precision is

higher. Comparison of the new SISC measurements with the previous results demonstrates that

the new method is more robust to outliers and, importantly, can reveal gaps and variation in the

shape of the distribution. In contrast, with signal detection theory the gaps were filled in with

Gaussians in the absence of any data. SISC was applied to synapses in control hippocampal area

CA1 that was perfusion-fixed in vivo, and in the dentate gyrus perfusion-fixed at 30 minutes and

2 hours after the induction of unilateral LTP compared to the contralateral control hemisphere in

vivo. The results revealed robust differences between the brain regions and across conditions

following synaptic plasticity.
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4.2 Results

4.2.1 Induction of LTP in the Dentate Gyrus

We analyzed datasets of 3D reconstruction from serial section electron microscopy

(3DEM) containing perforant path synapses in the middle molecular layer (MML) of the den-

tate gyrus for inputs arising from the medial entorhinal cortex. Data were collected from the

stimulated hippocampus of two rats at 30 minutes and two rats at 2 hours post-induction of

LTP, with the hippocampus in the opposite hemisphere serving as the control. All experiments

were conducted in the middle of the animals’ waking (dark) period to control for variation due

to the circadian cycle ([BAH12]). Analysis of the 30 min control and LTP datasets using our

previous signal detection method ([Bar+15]) was published in [Bro+18]. Although the stimulus

protocol is known to induce multiple forms of plasticity including LTP, heterosynaptic LTD

([AG83];[BAH12]), and EPSP-spike potentiation ([ABG85]), for simplicity we refer to the stim-

ulated groups as 30 min LTP and 2 hr LTP, as this is what was measured electrophysiologically

on the stimulated pathways. We used previously described methods to induce LTP in the MML

of freely moving rats ([BAH12]). Briefly, stimulating electrodes were surgically implanted in

both the medial and lateral perforant paths of the LTP hemisphere, and an additional stimulating

electrode was implanted in the medial path of the control hemisphere. Field potential recordings

were made using electrodes placed bilaterally in the dentate hilus. Animals were allowed to

recover for two weeks prior to producing LTP or control stimulation during the animals’ dark

(waking) part of the circadian cycle. LTP was induced by 50 trains of unilateral delta-burst

stimulation (DBS) to the medial path electrode and then recorded for either 30 min or 2 hr, timed

from the beginning of the delta-burst stimulation. Relative to the two control hemispheres, the

LTP hemispheres showed an average of 41% potentiation in the MML for the 30 min experiment

(Figure 4.1A, B). In the 2 hr experiment, there was an average of 37% LTP for the two animals

(Figure 4.1C). Serial electron micrographs and 3D reconstructions were prepared from the control

(Figure 4.1D) and 30 min LTP (Figure 4.1E) hemispheres of two animals, and the control (Figure
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4.1F) and 2 hr LTP (Figure 4.1G) hemispheres of the other two animals. Three-dimensional

reconstructions were made for all of the dendritic spines and synapses occurring along three

dendritic segments from each of the control and LTP hemispheres for a total of 24 dendrites and

862 dendritic spines. Axons that were presynaptic to at least 1 of 15 dendritic spines located

along the middle of the dendritic segment were traced to determine whether they made more

than one synapse along the same dendrite, and thus formed SDSA pairs. All 3D reconstructions

and measurements were obtained blind as to condition or animal.
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Figure 4.1: LTP and control responses monitored for 30 min and 2 hours prior to preparation
for 3DEM, and representative dendrites from the control and LTP hemispheres in MML. (A)
Representative waveforms from baseline responses (dotted, pre) superimposed on responses
following delta-burst stimulation (solid, post) in the LTP (red) or control (blue) hemispheres.
(Unique symbols are indicated for each animal and plotted in B and C). (B) Change in fEPSP
slopes relative to baseline stimulation in the LTP (red) or control (blue) hemispheres monitored
for 30 minutes prior to fixation. The average change relative to baseline stimulation in fEPSP
response was 34% and 48% at 30 minutes post-LTP induction and 0% for controls. (C) Change
in fEPSP slopes relative to baseline stimulation in the LTP (red) or control (blue) hemispheres
monitored for 2 hours prior to fixation. The average change in fEPSP slopes relative to baseline
stimulation was 41% and 34% for the LTP (red) and 0% for control (blue) hemispheres. (D-G)
Example electron micrographs (with red arrow in Fig. 1D (first row) pointing to the PSD) and 3D
reconstructions in the control and LTP hemispheres as indicated for each of the 4 animals. (Scale
bars = 0.5 µm.) Bottom row illustrates representative dendrites from control and LTP conditions
in Animals 2 and 4 with segment lengths across the row of 9.25, 10.62, 9.44, and 11.33 µm,
respectively. Axons synapsing on 15 spines along the middle of the dendrite (solid yellow) were
analyzed for presynaptic connectivity. Most of the axons (green) made synapses with just one
dendritic spine, and some axons (white) made synapses with two dendritic spines (blue). Thus
the white axons illustrate the SDSA pairs. The dendritic shaft and spines occurring along the rest
of the reconstructed dendrite are illustrated in translucent yellow. All excitatory synapses are
illustrated in red, and the inhibitory synapses in purple. Scale cube = 1 µm3. Supplementary
Videos 1-4 for 3D illustration of Figs. 4.1D-G are provided.
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4.2.2 Comparison of Spine Sizes of 30 min and 2 hr LTP Conditions to
Control Stimulation

We analyzed the 4 dentate gyrus MML datasets to see how LTP at 30 min and 2 hours post-

induction affected spine head volumes. Figure 4.2 compares the spine head volume histograms

before and after the induction of LTP. Control histograms from the unstimulated hemisphere

(Figure 4.2A,B) are presented above their corresponding LTP histograms (Figure 4.2C,D). The

differences between the LTP and the control histograms revealed increases in the numbers of both

large and small synapses at both time points (Figure 4.2E). These findings suggest potentiation

of stimulated synapses and concurrent depression of presumptive non-stimulated synapses.

However, by 2 hours the peaks and troughs shifted such that the increase in smaller spines was

significantly reduced and the increase in larger spines was significantly consolidated (Figure

4.2F). We designed a statistical test (see methods for details) to test if the observed summed

differences between the frequency of 2 hr LTP and that of 30 min LTP (across equal width bins

on a log scale for spine head volumes) is significant. We found the significance of the observed

differences in Figure 4.2F. The P value = 6×10−4 for the observed bump in Figure 4.2F for

spine head volumes greater than median value (vertical dashed line), and P value = 0.0015

for the observed troughs smaller than median. The same test was performed on all observed

peaks and troughs of the trajectories in Figure 4.2E,F and are significant (PValue < 0.005). This

finding means that by 2 hours the largest synaptic spines were markedly increased in frequency.

To evaluate whether the increase in both small and large spine heads resulted in a balanced total

synaptic input, we performed an unbiased dendritic segment analysis based on the reconstructions

of the intermediate portions of the dendritic segments for all 24 reconstructed dendrites (Figure

4.1D, E, F, G, Animal 2, solid yellow). None of the findings could be explained by changes

in the number of spines or axons per micrometer length of dendrite that were similar between

the control and 30 min and 2 hr LTP dendrites (Figure 4.3A, C). Furthermore, the summed

asymmetric synaptic area across all synapses per micrometer of dendritic length was constant
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across the control and 30 min and 2 hr LTP conditions (Figure 4.3B, D). Thus, the enlargement

of some spines was counterbalanced by shrinking of others, and the summed synaptic input

remained constant along these local stretches of dendrite across time and conditions, consistent

with previously published results in CA1 [BH11]. We repeated this analysis for each rat. The

peaks and troughs of differences between the LTP and the control histograms at both time points

were also significant, confirming the robustness of these findings.
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Figure 4.2: Change relative to control hemispheres in the distribution of spine head volumes
at 30 min and 2 hr after the induction of LTP. (A-D) Frequency distributions of spine head
volumes (on log scale) from control and LTP hemispheres as indicated. (E) Difference between
the frequency of spine head volumes in control and LTP conditions (i.e., LTP - control) at 30
min. (F) Difference between the frequency of spine head volumes in 30 min LTP (C) and 2 hr
LTP (D) conditions. The differences in the summations of the representative frequencies (the
test statistic) in the observed peaks and troughs in both Fig. 2E,F were tested for significance
by hypothesis testing with nonparametric bootstrap (see methods). The vertical dash line is the
median of combined senate gyrus spine head volumes. All observed peaks and troughs in both
Fig. 2E,F were found to be statistically significant (P < 0.005 for all peaks and troughs).
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Figure 4.3: LTP does not change the number of spines, axons, or the summed synaptic area per
unbiased length of dendrite in the dentate gyrus. (A) (C) Bar plot of the number (per micrometer
length of dendrite, mean ± SEM) of spines, axons, and axons participating in SDSA pairs. There
is no significant difference between control (ctrl) and LTP hemispheres for 30 min and 2 hr
except for the SDSA counts. (B) (D) The total asymmetric synapse area (based on the PSD area
per dendrite micrometer), including spines and asymmetric shaft synapses) was not significantly
different between the two LTP conditions relative to control.

4.2.3 Precision Analysis

Precision is defined as the degree of reproducibility of a measurement and is often

mistaken for accuracy, which is defined as the deviation of the average measurement from a
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reference value Figure 2.1. The CV shown in equation (eq) 4.1 is a statistic that measures the

variations within a sample, defined by the standard deviation (σ ) eq 4.2 , normalized by the mean

of the sample (µ), making it a useful metric for measuring precision. Here we used N = 2 in eq

4.2 because we analyzed SDSA pairs.

CV =
σ

µ
(4.1)

σ =

√
1

N−1

N

∑
i=1

(xi−µ)2 (4.2)

Precision is a key factor for discovering the number of distinguishable states for spine

head volumes. To estimate the precision, first we determined that the measurement error among

4 investigators who independently measured all of the spine head volumes in the CA1 dataset

(Figure 4.3A, B) was smaller than the intrinsic variability of the measured spine head volumes

of the SDSA spine pairs. Then we could measure the precision of spine head volumes within

the SDSA pairs to estimate the precision of synaptic plasticity. To do this we calculated the

CV of all SDSA pairs in each of the 5 datasets (Figure 4.3). None of the correlations between

the CV values and mean spine head volumes for the SDSA pairs within each condition were

significant. The CVs among SDSA pairs vary from pair to pair by over an order of magnitude

within datasets for control and 30 min and 2 hr post LTP induction conditions (Figure 4.3), but

with no significant trend from the smallest to the largest spine head volumes. These outcomes

suggest that the synaptic plasticity based on co-activation history among small spines is as

precise as it is for large spines for both control and LTP conditions. It is important to note that the

estimate of precision of synaptic plasticity provided by the SDSA pairs applies to all synapses

in a given brain region. In addition, the difference between the CV of SDSA pairs in CA1 was

much less (Figure 4.3F) than in the combined dentate gyrus datasets, which did not differ from

one another (Figure 4.3F). Thus, the CV of the SDSA pairs did not differ significantly across the

dentate gyrus MML conditions, but did differ significantly between the two hippocampal regions.
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The median CV value establishes the precision level of the sets of SDSA pairs in each of the 5

datasets and is used below for cluster analysis and calculation of the number of distinguishable

synaptic strength levels. The rationale behind using median CV as a constant threshold for

clustering spine head volumes across the range of spine head volumes is our observation that

small spines are as precise as large spines for both control and LTP conditions.
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Figure 4.3: Analysis of synaptic precision based on CV of SDSA pairs across brain regions
and plasticity. (A-E) Same-dendrite same-axon (SDSA) pairs were analyzed from each dataset.
The regression line, P value, and R2 for the CV of n SDSA pairs are shown for each indicated
condition and hippocampal region (The lowest CV of Figure 4.3C, n=18 is treated as an outlier
and removed). The gray region is the 95% confidence interval for each regression line. The Y
axis is the CV for each SDSA pair depicted by blue and red dots in control and LTP conditions,
respectively. The X axis shows the mean value of the spine head volumes, on a log scale, for
each SDSA pair. (F) Summary medians and interquartile ranges (See methods for details) for
the dentate gyrus and CA1 datasets combined (overall Kruskal-Wallis P-value=0.00085) show
there is a statistically significant difference between the CV of the CA1 SDSA pairs and those in
dentate gyrus (asterisks represent significance of the p (∗< 0.05; ∗∗< 0.01)). To test differences
between the control and LTP CVs within the dentate gyrus, the 2 lowest CV values from dentate
gyrus 30 min control and 2 hr control are treated as outliers and removed. The one factor KW
test (on the first four columns) showed no significant difference between the four dentate gyrus
conditions (P=0.16). Interestingly, the p value of the one factor KW test between the CV of the
dentate gyrus control (30 min and 2 hr combined) and LTP (30 min and 2 hr combined) is not
significant (P=0.06), but is a trend that could become significant with more data points. Thus,
the precision level was significantly higher in area CA1 than dentate gyrus, but not significantly
different across the dentate gyrus control and LTP conditions.
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4.2.4 Comparison to Prior Method

Table 4.1: The number of distinguishable states, or categories, (NC) of spine head volumes.
For column 3 and 5 the term (SEM), SEM stands for standard error of median calculated using
algorithm 1. SRF =scale range factor. The errors on the number of distinguishable clusters is
calculated using algorithm 1, 2. For NC Algorithm 1,2 used with re-sampling the spine head
volumes and using median CV of the observed SDSA pairs for clustering threshold.

Dataset Type # of SDSA
pairs

Median CV # of SHVs Scale Range
Factor

# Clusters

CA1 10 0.12±0.046 288 163 24±0.24
Dentate Gyrus
30 min Control

10 0.65±0.12 209 73 5±0.51

Dentate Gyrus
30 min LTP

8 0.37±0.16 188 236 10±0.48

Dentate Gyrus
2 hr Control

18 0.56±0.09 239 110 6±0.24

Dentate Gyrus
2 hr LTP

10 0.41±0.15 226 141 8±0.98

To introduce and compare the performance of our new method, we reanalyzed the CA1

dataset that was previously analyzed with signal detection theory [Bar+15]. A total of 288 spine

head volumes were fully contained within a 6 × 6 × 5 µm3 CA1 neuropil volume (Figure 4.4A).

Signal detection theory revealed 26 distinguishable Gaussian distributions with equal CV of 0.12

± 0.046 (inset, Figure 4.4B) when assuming an overlap of 31% (Figure 4.4B). This amount of

overlap is equivalent to assuming a signal-to-noise ratio = 1 and a 69% discrimination threshold

common in psychophysics (Schultz, 2007). Our new clustering method, based upon the median

CV of the SDSA pairs without any assumptions regarding the signal-to-noise ratio (Algorithms 1

and 2, methods), placed the CA1 spine head volumes into 24 distinguishable categories (Figure

4.4C). The histogram of spine head volumes on a log scale is shown in the inset on panel 4.4C.

The width of the bins was determined by the protocol used for the precision analysis (Figure 4.3),

and is equal to the median CV of the SDSA pairs. Visualizing the data in this way displays the

number of spines observed in each of the distinguishable clusters of spine head volumes and the

vacant spaces across the distribution of sizes. The upper left inset contains 3D reconstructions
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of the smallest and largest spine head volumes. The largest spine in each cluster is illustrated

beneath each bin. The highest frequency occurs in cluster #10, which contains 36 spine head

volumes (Figure 4.4C). Interestingly, there appears to be a second peak at around cluster 21.
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Figure 4.4: (A) The 288 spine heads fully captured in the reconstructed volume, displaying the
PSD (red) and spine head membrane (yellow). (B) Authors in [Bar+15] using assumptions from
signal detection theory showed that 26 distinguishable Gaussian distributions with equal CV (see
inset) and overlap of 31% can span the range of spine head volumes of SDSA pairs equivalent to
signal to noise ratio of 1 and 69% discrimination threshold common in psychophysics. (C) Our
new clustering algorithm (see Algorithm 1) obtains 24 distinguishable categories of all 288 spine
heads in the dataset based on the median CV value. The histogram of spine head volumes in
log scale is depicted in the panel C inset. The Y axis shows the number of spine head volumes
within each category. The actual spine head volumes of the individual spine heads of a given
category are stacked vertically in sorted order for that category. The 3D object shown below
each category (vertical column) is the actual 3D reconstructed spine head of the largest head
volume in the category. The X axis shows the distinguishable category numbers. All spine head
volumes are rounded to two significant digits.
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4.2.5 Number of Distinguishable States in the Dentate Gyrus MML
During Plasticity

It is important to note that under the previous method, as N is increased the scale range

factor (defined as the ratio of largest spine head volume to the smallest spine head volume) will

always increase as the extremes of the distribution are sampled. This outcome will increase the

number of Gaussians that span the range, but will tend to overestimate the true value of NC when

the population is not continuous. However, under the new method, as N is increased there will

be convergence toward the true value of NC because the true shape of discontinuous distributions

are sampled. With the new method we have access to the true frequency of spine head volumes

in the clusters, which allows further calculation of the entropy of the distinguishable synaptic

strength states, the potential number of modes in the distribution, and the gaps in the range of

spine head volumes (bins with no spine head volumes in them). To explore changes in SISC

during synaptic plasticity, we applied the new clustering methods to the four MML datasets

from the dentate gyrus (Figure 4.5). In order to show the frequency of spine head volumes, the

clusters are displayed as histogram bins where each bin is one CV wide. Thus, the CV of spine

head volumes within each bin is less than or equal to the median CV found from the SDSA

pairs analysis of the specific dataset (see Figure 4.3). Each bin starts with the smallest spine

head volume of the representative cluster and ends with a hypothetical spine head volume that is

exactly one CV apart (except for the last bin of each condition that is illustrated with the smallest

and largest observed data points in that cluster to better demonstrate the expansion of range of

sizes after induction of LTP relative to the controls). As one can observe the spine head volumes

enlarged and expanded towards the right hand side of the frequency axis after 30 min and 2

hours post induction of LTP. The 30 min control and 2 hr control rats had 5 and 6 distinguishable

clusters, respectively. Thus, the values of NC for the control cases were similar despite originating

from multiple rats. This closeness between control results validates the repeatability of both

the experimental and the computational procedures. At 30 min and 2 hr post-induction of LTP,
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Table 4.2: Calculating the entropy of synaptic weights based on the calculated frequency of
distinguishable synaptic states.

Dataset
Expectation
valueo f SHV CV of all SHVs

Shannon
EntropyH(P)

MaximumEntropy
H(U)

KL(P∥U) KL(P∥U)/H(U)

DG30 min
Con 0.049±0.0033 1.24±0.077 2.0±0.32 2.32±0.34 0.33±0.1 0.14±0.045

DG30 min
LT P 0.056±0.0061 1.72±0.15 3.0±0.42 3.32±0.42 0.32±0.089 0.096±0.035

DG2hr
Con 0.040±0.0039 1.084±0.081 2.05±0.27 2.59±0.29 0.53±0.10 0.21±0.040

DG2hrLT P 0.060±0.0046 1.41±0.089 2.74±0.41 3.0±0.41 0.26±0.086 0.086±0.038
CA1 0.028±0.0021 0.95±0.065 4.1±0.39 4.6±0.37 0.49±0.068 0.11±0.021

SISC revealed a higher value of NC due to both the expansion of the scale range factor and to the

observable decrease in the CV values (Figure 4.3F; Table 4.1). However, the NC in dentate gyrus

either in control or LTP conditions is significantly less than CA1 (NC=24). This highly significant

difference likely reflects the known differences between area CA1 and dentate gyrus in activation

histories and functions in memory formation ([SKW01]; [Sax+06]; [KRB11]; [LHK16]).
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Figure 4.5: Clustering of spine head volumes in the dentate gyrus datasets. The top panel shows
the 3D reconstruction of the smallest and the largest spine head volumes within each dataset
with their volumes indicated at two significant digits. Clustering algorithm 2 was used, as in Fig.
1C, to show that following LTP there was an increase in NC. Here, categories are illustrated as
histogram bins with bin widths equal to the CV shown in Fig. 4 (except that the last bin of each
condition is illustrated with observed data points). The categories and actual spine head volume
values are shown in Supplementary Fig. 5-8. Blue and red colors indicate Control and LTP
conditions, respectively. For each panel the Y axis shows the counts of spine head volume in the
respective bin divided by total number of spine head volumes in the given dataset and expressed
as a percentage. The X axis shows the spine head volumes in µm3 on a log scale. (A) dentate
gyrus 30 min Control, (B) dentate gyrus 2 hr LTP, (C) dentate gyrus 30 min LTP, (D) dentate
gyrus 2 hr LTP. The rectangular inset on the top of each histogram shows the largest spine head
(on the same scale across panel A-D; scale cube located on panel D inset = 0.125 µm3) and
category number of each category, and aligns with the X axis of the category histogram. For
comparison of each histogram to the shape of a uniform distribution, the dashed line indicates
the theoretical uniform distribution (with maximum entropy and Shannon information) for the
given dataset.
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4.2.6 Shannon Information Storage Capacity of Synapses

The concept of entropy, H, comes from the field of thermodynamics and measures the

amount of uncertainty or disorder, or the number of possible states of a system. Shannon entropy

is defined as the average of Shannon information. Shannon entropy measures the amount of

information in the set of distinguishable states, each of which has a probability of occurrence.

With more information, it is possible to distinguish more states. The Shannon entropy of a

discrete random variable is defined as follows:

H(X) = E
[

log2
1

PX(X)

]
= ∑

x∈X
PX(x) log2

1
PX(x)

(4.3)

The Shannon information per synapse was calculated from the frequency of spine head

volumes in the distinguishable categories and using equation 4.3 where each category is consid-

ered a different message. Shannon entropy (bits of information) for the 5 datasets are listed in

column four of (Table 4.2). These data demonstrate that the synapses are not on/off switches and

that the induction of LTP increases the information storage capacity of synapses. The maximum

number of bits is calculated as the log2(NC), which sets an upper bound for SISC. We then

compared the spine head volume distributions measured in the control and LTP conditions with

a uniform distribution that is maximal entropy among every discrete distribution for a fixed

number of states.

4.2.7 KL Divergence Analysis

Measurement of the distance between an observed distribution, for example spine head

volume clusters, and a theoretical uniform distribution with the same number of states is known

as the Kullback-Liebler (KL) divergence. A uniform distribution is the maximum entropy

discrete probability distribution when there is no constraint on the distribution except having

the sum of the probabilities equal 1. Formally, the KL divergence between the distribution

of spine head volume clusters (P) and the uniform distribution of states (U) is the difference
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between cross entropy of (P) and (U) and the entropy of (P): [H(P , U) H(P)]. The purpose is to

measure the closeness of the empirical probability distribution of the distinguishable states to the

maximum entropy distribution with the fixed number of states as the only known constraint on

the distribution. When the distribution of synaptic states is close to uniform, the KL divergence

will be low and the Shannon entropy will be nearly maximized. Here we are measuring the

fundamental limits of SISC and not the likely efficient coding occurring at the population level

with the more uniform distinguishable bins. The spine head volume distribution in CA1 is

compared with the uniform distribution with 24 states in Figure 4.6 and quantified in (Table 4.2).

Figure 4.6: CA1 24 distinguishable clusters. The Y axis indicates the frequency of spine head
volumes within each cluster and the X axis indicates the spine head volumes values in the log
scale. The dash rectangular box around the histogram is the frequency of spine head volumes if
the 288 spine head volumes were distributed uniformly among the 24 clusters.
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The maximum entropy and KL divergence were all quite low for all four datasets from the

dentate gyrus and were around 50% lower than for CA1 ((Table 4.2), column 6; Figure 4.6). The

KL divergence for the 30 minute LTP was not different from the control, but the KL divergence

for the 2 hour LTP was less than half of its matched control condition ((Table 4.2), column 4).

This means that the changes in the distribution of spine head volumes that occurred between

30 minutes and 2 hours shifted toward a more nearly uniform distribution having maximum

information due to optimal use of the distinguishable states.

Moreover, we calculated the ratio of the KL divergence values over the maximum value

that KL divergence can possibly have in each case (KL / KLMAX) where KLMAX equals H(U).

The purpose is to measure the ratio of the measured KL divergence value to the maximum value

it could hypothetically have ((Table 4.2), column 7). The lower the ratio, the more efficient is the

usage of distinguishable states for the storage of synaptic strength values across the population

of synapses. There was a 31% increase in efficiency 30 minutes following LTP and an additional

17% increase after 2 hours. These findings imply that LTP moves distributions of spine head

volumes toward maximum information storage limit and maximum efficiency due to optimal use

of the distinguishable states.

4.3 Discussion

This paper introduces a new analytical approach for determining SISC that has several

advantages over our prior approach [Bar+15]. The new method was used on data from area

CA1 to compare it with the prior approach. It was then applied to track SISC changes in the

dentate gyrus at 30 minutes and 2 hours following the induction of LTP. The analyses revealed

that synaptic precision, based on covariance of spine head volume in SDSA pairs, was not

altered during LTP. This finding suggests that as one spine of the pair enlarged (or shrank)

following LTP, the other spine head changed in tandem. Note that SDSA pairs are independent

synapses, but because they are driven by the same input they respond in a similar way and
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arrive at the same size due to the precision of the underlying mechanisms they each possess.

We also found that the number of distinguishable synaptic strengths is increased during LTP by

altering the range and frequency of spine head volumes in the distinguishable clusters. At 30

minutes following induction of LTP, spine head volumes shifted from the middle of the range

both towards smaller and larger sizes. Thus, consistent with findings in CA1 in rat in [BH11]

DBS LTP induction triggered spinogenesis followed by loss of small excitatory synapses and a

subsequent enlargement of the remaining synapses by 2 hr. These data suggest that dendritic

segments of granule cells in the dentate gyrus coordinate their structural plasticity. Coordination

occurs across the complete range of synapses and maintains a homeostatic balance of excitatory

inputs. The mechanism for this coordination could involve local protein synthesis and selective

capture or redistribution of dendritic resources, as were observed in CA1 in rat in [BH11].

We observed an increase in the number of bits from 2.0 bits in the control conditions for

both time points to 3.0 bits after 30 min and 2.7 bits at 2 hr following induction of LTP. These

outcomes were a consequence of two changes to the distribution of spine head sizes. First, there

was an increase in both the larger and smaller spine head volumes, which broadened the size

distributions. In addition, there was a change in the frequency of spine head volumes in each

bin resulting in a more uniform distribution of spine head volumes. These changes brought the

overall distribution of spine head volumes (Figure 4.5 C and D) closer to the optimal distribution

with maximum Shannon information (Table 4.2 column 5). This broadening in the size range

was observed in both the 30 min and the 2 hr difference distributions. As a consequence, the

information storage capacity was increased by around 50% following the LTP induction, an

increase that was preserved between 30 min and 2 hr.

Moreover, there was also evidence for further reorganization of spine head volumes after

30 min. The KL divergence is a measure of the difference between between two distributions;

when applied to the distributions of spine head volumes and the maximal entropy uniform

distribution, the value at 2 hr after LTP induction was half of that of 30 min following LTP

induction relative to their controls, thereby using the range of spine head volume sizes more
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efficiently. This analysis suggests that after learning has taken place, underlying mechanisms

continue to push the distribution of spine head volumes toward a more efficient storage of

information at the population level.

4.3.1 Advantages of the new SISC analysis

There are several advantages to the new SISC method for assessing the storage capacity

of synapses. Signal detection theory [Bar+15] assumed that the width of the Gaussian curves,

based on the CV of the SDSA pairs, were distributed equally along the full range of sampled

spine head volumes, without accounting for gaps in the distribution. Thus, the signal detection

theoretical approach tended to overestimate the true number of distinct synaptic states because

the distribution of the population was assumed to be continuous. In the new SISC analysis,

the number of distinct synaptic states defined by the individual clusters converges toward the

true number of states as the number of spine head volumes increases and the true shape of the

distribution is sampled. A second advantage is that the full population of spine head volumes,

not just the SDSA pairs, are included in the analysis, greatly improving the statistical power

of the estimate. A third advantage is that there are no free parameters in the estimate, unlike

signal detection theory where the degree of overlap of the Gaussians is a free parameter. A fourth

advantage is that the new method is robust to the outliers. The largest spine head volume we

found in an earlier data set ([HS89]) in rat hippocampal area CA1 was 0.55 cubic microns. It

is worth mentioning that by adding this one value to the 288 CA1 spine head volumes would

result in 25 distinguishable clusters, an increment of 1 state using SISC. Using the prior signal

detection approach results in 39 distinguishable Gaussians spanning the range, a 50% increase in

the number of states. The previous method is not robust to outliers. Finally, the new method,

based on information theory, allows access to the frequency of the clusters, making it possible

to compute the entropy of the distinguishable synaptic strengths, the number of modes in the

distribution, and any gaps in the range of functionally distinguishable synaptic strengths. Our

approach can be applied broadly to cluster these and other measures of synaptic efficacy in
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different brain regions and model organisms. Furthermore, the impact of other measures of

synaptic plasticity can now be assessed reliably, such as changes in spine neck dimensions and

pre- or postsynaptic dimensions and composition. In addition, it will be possible to determine

how changes in the location or dimensions of key subcellular components, such as mitochondria,

smooth endoplasmic reticulum, polyribosomes, endosomes, and perisynaptic astroglia, affect

SISC. These opportunities to generalize SISC will surely result in greater understanding about

the role of each component individually, and in concert, in determining normal synaptic weight

and plasticity. Ultimately, the outcomes should give insight into how disrupted synapses result in

cognitive decline during aging or as a consequence of neurological disorders.

4.3.2 Information Theory of Synapses

Information theory has been applied to analysis of spike trains ([DA05]) but has not

been used at the level of synaptic strength. We have shown that the amount of information

represented by synaptic weights in neural circuits can be quantified by the distinguishability

of synaptic weights. Here ”distinguishability” fundamentally depends on the precision of the

synaptic weights. When the precision of synaptic weights is low, the amount of information that

can be stored in the ensemble of the neurons will also be low. Complete absence of precision

implies a random process for setting synaptic weight and no information being stored at synapses.

Because spine head volume is highly correlated with synapse size ([Bar+15]), the precision of

spine head volumes can be used to measure the distinguishability of the synaptic weights. High

precision yields a greater number of distinguishable spine head volume clusters and hence higher

information storage capacity. The number of distinguishable weights is not static but varies with

the history of synaptic plasticity and is different in different parts of the brain. Thus, the amount

of information that a population of synapses can store is not fixed but can be changed.

We made comparisons with the uniform distribution because it is the most conservative

assumption when biological constraints on the spine head volume distribution are not known.

In our mathematical setting when no constraint is applied (except the number of states being
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fixed) the uniform distribution has maximal entropy among every discrete distribution. This

is why the uniform distribution for a fixed number of states is a “lower bound” on optimality

and an upper bound for SISC. For example, we measured the entropy of the observed synaptic

weight distribution in area CA1 based on the probability of the 24 distinguishable states as

having a value of 4.1 bits while the maximal entropy distribution when having 24 states is the

uniform distribution with 4.59 bits of information. We used KL divergence analysis to measure

the closeness of the spine head volume distributions to the maximum entropy distribution. What

is remarkable here is while LTP does not change the number of spines, axons, or the summed

synaptic area per unbiased length of dendrite in the dentate gyrus, the late phase of LTP pushes the

distribution of spine head volumes closer to the upper bound on the maximal entropy distribution.

If biological constraints were found at some point in the future, we could calculate

the maximal entropy distribution under those constraints and measure the distance between

the empirical distribution entropy (e.g., log normal) with the aforementioned maximal entropy

distribution (with optimized parameters under those constraints). We can speculate that under

those conditions the KL divergence would be even smaller. Because no biological constraint

is known, we chose the universal maximal entropy discrete distribution as a reference frame to

compare with and check optimality.

It is worth noting that synaptic activity and hence SISC are highly variable and change

with an animal’s behavior. This manuscript is only concerned with the optimality of information

storage capacity based on the synaptic weight itself as the unit of storage of information. The

question of how optimally synaptic activity is used to store working memories in neural circuits

and how efficiently the synaptic weight is used in those codes is beyond the scope of this

manuscript and is left for future research.

4.3.3 Mechanisms underlying the SISC Increase

Observations of increases and decreases in strength of synaptic potentials following LTP

were determined using electrophysiology measurements. Our SISC analysis suggests that the
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changes in strength are due to increases in larger spines and smaller spine head sizes, which is

consistent with observations based on light microscopy. In addition, we have observed decrease

in CV among SDSA pairs (i.e., higher precision).

It should be noted that the increase in SISC via change in spine size has two principal

contributing mechanisms rooted in broadening the range of spine head volumes. One is the

increase in the largest spine head volumes due to LTP. But an equally important change is the

concurrent and offsetting reduction in spine sizes in other synapses. In area CA1, a homeostatic

mechanism was revealed where induction of LTP with saturating theta burst stimulation enlarged

some synapses by 2 hr post induction, while stalling the outgrowth of small dendritic spines

([BH11]; [Bel+14]). This effect resulted in a stable total summed synaptic weight per unit length

of dendrite. Furthermore, the enlarged spine synapses also stabilized their neighboring smaller

spines into efficient synaptic clusters ([Chi+19]). Thus, future analysis may reveal zones with

high SISC and others with low SISC even along short segments of dendrite. Here we further

elaborate on the effect of LTD on the broadening of sizes. Particularly, concurrently induced

“heterosynaptic” LTD has long been known to occur in the dentate gyrus perforant pathways

([AG83]) including after in vivo 400 Hz DBS as used in the current study ([BAH12]). We have

shown in earlier works that this form of LTD is in fact activity-dependent, implying a reduction

in the threshold such that either constitutive or evoked synaptic activity in the non-tetanized

synapses becomes transiently capable of evoking the LTD ([Abr+07]). [JBA15] showed in

a biophysically realistic compartmental granule cell model that this pattern of results can be

accounted for by a voltage-based spike-timing-dependent plasticity (STDP) rule combined with

a relatively fast Bienenstock-Cooper-Munro (BCM)-like homeostatic metaplasticity rule, all on

a background of ongoing spontaneous activity in the input fibers. These results suggest that,

at least for dentate granule cells, the interplay of STDP and BCM plasticity rules and ongoing

pre- and postsynaptic background activity determines not only the degree of input-specific LTP

elicited by various plasticity-inducing protocols, but also the degree of “associated LTD” in

neighboring non-tetanized inputs, as generated by the ongoing constitutive activity at these
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synapses.

Furthermore, [Yan+08], after simultaneously monitoring EPSPs and dendritic spines

using combined patch-clamp recording and two-photon time-lapse imaging in the same CA1

pyramidal neurons in acute hippocampal slices, showed that the initial expression of LTP and

spine expansion are dissociable, but that there is a high degree of mechanistic overlap between

the stabilization of structural plasticity and LTP. In our results, we showed that the coefficient of

variation of spine head volumes (of the complete sample) of DG 30 min LTP (1.72) increased

40% in comparison to DG 30 min Control (1.24) showing the extent of the expansion of spine

head volumes. The CV value rested at 1.41 for the DG 2 hr LTP which is 30% higher than the

DG 2hr Control (1.084). These mechanisms thus could explain much of the broadening of the

range of sizes which by itself would increase SISC. However, we also observed a consistent

though non-significant decrease in CV of SDSA pairs, and this is a third mechanism that could

contribute to the increase in SISC. As yet we do not have an explanation for the decrease in CV,

and this remains a focus for future research. However, the strong DBS protocol for inducing LTP

may have served to increase the coordinated activation histories of the SDSA pairs, leading to

the CV reduction.

4.3.4 Comparison to Synapses in the Cerebral Cortex

We observed a low median CV ( 0.1) among SDSA pairs in CA1 and a larger median CV

( 0.6) in DG with no significant trend with spine head volume, but a large ( 1 order of magnitude)

variation from pair to pair. Thus our results reveal that CV among SDSA pairs differs across

brain regions. SDSA pairs are a type of ”joint synapse,” but note that joint synapses have a

broader definition — namely, multiple synapses sharing the same pre- and postsynaptic neurons,

not just the same axon and the same dendrite. Joint synapses with up to 7 shared synapses across

the entire neuron have been found in other 3DEM studies ([Dor+19]), ([Mot+19]). A direct

comparison of our study to these other studies is difficult to make due to multiple differences

in experimental design. There are at least 8 major differences between our study and that of
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[Mot+19]: 1) choice of model organism (mouse vs. rat); 2) brain region (somatosensory cortex

of mouse vs. CA1 and DG of rat hippocampus); 3) measurement criterion (ASI vs. spine head

volume); 4) connection type (joint synapses in general vs. SDSA pairs specifically); 5) sample

size (thousands vs. tens); 6) measurement conditions (control only vs. control and LTP); 7)

number of animals (1 vs. 3 in CA1 and 4 in DG); 8) analysis of measurement error (none vs. error

estimation based on 4 independent trials). There are a number of differences in how anatomical

data was analyzed from the hippocampus and the cortex. First, the surface area of the axon-spine

interface (ASI), not spine head volume, was measured in layer 4 of the somatosensory cortex

([Mot+19]). [Mot+19] noted that saturating LTP or LTD could explain the lower CV (higher

level of precision) which they observed among joint synapses with the largest or smallest ASI.

Second, [Mot+19] also observed higher CV among spines with intermediate sized ASI, which

is inconsistent with our findings in Figure 4.3. Perhaps this difference can be attributed to the

possibility that ASI depends on aspects of synaptic function other than synaptic weight. Third, it

is critical to point out that the measurement error needs to be smaller than the estimated synaptic

plasticity precision (CV). [Mot+19] neither explored the precision of synaptic plasticity nor the

measurement error of ASI. Comparison of their study with ours will require further analysis

of their data. Fourth, another important difference between the two studies is the experimental

condition of the animal. [Mot+19] stated in their abstract, “We quantified connectomic imprints

consistent with Hebbian synaptic weight adaptation, which yielded upper bounds for the fraction

of the circuit consistent with saturated long-term potentiation,” assuming that synapses that had

undergone saturated LTP were the synapses with low CV. However, the CVs of synapses in

our CA1 data were equally precise for small spines as for large spines. Finally, comparison

of our results in CA1 and DG revealed that: 1) different brain regions have different levels of

precision and 2) within a region the precision level varies among SDSA pairs by over an order

of magnitude within control and 30 min and 2 hr post LTP induction datasets (4.3), but with

no significant trend from the smallest to the largest spine head volume. In another study of

pyramidal neurons in cortical layer 2/3 ([Dor+19]), spine head volumes were similar among pairs
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that shared the same axon but were on different dendrites from the same cell. The distribution

of spine head volumes in their sample had two broad peaks, suggesting that the populations of

small and large synapses were distinct. Similarly, despite the small numbers, there may be two

distinct peaks in our distribution of spine head volumes in area CA1. The frequency of small

spines is much higher than larger spines. And small spines are generally more transient than the

larger, typically more stable spines ([HS09]). Indeed, in adult hippocampal area CA1, small

spine outgrowth is stalled while synapses on the largest stable spines further enlarge following

LTP ([Bel+14]), which is consistent with our observation of an increase in the frequency of large

spines 2 hours after induction of LTP (Figure 4.2F).

4.4 Conclusion

This paper explored the precision of synaptic plasticity and synaptic information storage

capacity. Our methods and set of algorithms revealed new insights about information storage

capacity at synaptic resolution. Information storage and coding in neural circuits has multiple

substrates over a wide range of spatial and temporal scales. How information is coded and its

potential efficiency depends on how the information is stored. The synaptic weight is itself

the information that is stored, and this information is retrieved by synaptic strength as assayed

with test pulses. Here we measured the efficiency of information storage by analyzing the

number of distinguishable categories for synaptic weights and the rearrangement of the spine

sizes following LTP induction. The interplay of LTP and LTD plasticity rules after induction

of our DBS protocol broadened the spine size range and reduced the CV. Based on comparing

the distributions of synaptic weights and that of a uniform weight distribution (the maximum

entropy distribution), we found that LTP is highly efficient in storing information in synaptic

weights across the distinguishable clusters. The weights continued to evolve over time towards a

more uniform distribution, thereby increasing the number of distinguishable clusters. From the

perspective of information theory, this analysis has revealed a new way that the late phase of LTP
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may be involved in shifting the distribution of spine head volumes to achieve a more efficient

use of coding space in the available synaptic population.

4.5 Methods

For the experiments done for the CA1 dataset, see the materials and methods section

in [Bar+15]. Here we present the details of experiments done for the 30 min and 2 hours post

induction of LTP in 4 rats. Explanations are the modified version of 30 min control and LTP

datasets published in [Bro+18].

4.5.1 Surgery and Electrophysiology (dentate gyrus)

The 30 min dataset was collected from two adult male Long-Evans rats aged 121 and 179

d at the time of LTP induction and perfusion. The 2 hour dataset was collected from two adult

male Long-Evans rats aged 150 and 170 d at the time of LTP induction and perfusion. It is worth

noting that the histograms in Fig. 2A,D and Fig. 2B,E are made for the combined datasets from

the two 30 min datasets for control and LTP conditions, and the two 2 hour datasets for control

and LTP conditions, respectively. The animals were surgically implanted using stereotaxic

coordinates as previously described in [BAH12][CA1] with wire stimulating electrodes placed

separately into the medial and lateral perforant pathways running in the angular bundle in the

LTP hemisphere, and in only the medial perforant pathway in the control hemisphere due to the

limited number of channels in the animal’s head-plug connector and our primary interest in the

medial path data which are described in this paper. Wire field excitatory postsynaptic potential

(fEPSP) recording electrodes were implanted bilaterally in the dentate hilus. Two weeks after

surgery, baseline recording sessions (30 min and 2 hours) commenced, with animals being in

a quiet alert state during the animals’ dark cycle. Test pulse stimuli were administered to each

pathway as constant-current biphasic square-wave pulses (150 µs half-wave duration) at a rate

of 1/30 s, and alternating between the three stimulating electrodes. The test pulse stimulation

intensity was set to evoke medial path waveforms with fEPSP slopes > 3.5mV/ms in association

76



with population spike amplitudes between 2 and 4 mV, at a stimulation current ≤ 500 µA.

Paired-pulse and convergence tests were used to confirm successful stimulating placements in the

MPP and LPP, as previously described in Bowden et al., 2012. On the day of LTP induction, after

stable baseline recordings were achieved, animals received 30 min of test pulses followed by

delta-burst stimulation delivered to the ipsilateral medial perforant path, while the contralateral

hippocampus served as a control. The LTP-inducing delta-burst stimulation protocol consisted

of five trains of 10 pulses (250 µs half-wave duration at the same pulse amplitude as for the test

pulses) delivered at 400 Hz at a 1 Hz interburst frequency, repeated 10 times at 1 min intervals

(Bowden et al., 2012). Test pulse stimulation then resumed until the brains were obtained at 30

min and 2 hours after the onset of delta-burst stimulation. The initial slope of the medial path

fEPSP was measured for each waveform and expressed as a percentage of the average response

during the last 15 min of recording before delta-burst stimulation.

4.5.2 Unbiased Reconstructions and Identification of SDSA Pairs (DG)

Three dendrites of similar caliber were traced through serial sections from each of the

two control and two LTP hemispheres for a total of six dendrites per condition (with a total of

24 dendrites for the 30 min and 2 hr datasets). Dendrite caliber previously has been shown to

scale with dendrite cross-sectional area and microtubule count ([Har+22]). The microtubule

count, which is a more reliable measure of caliber, ranged from 30 to 35 and represents the

average among all dendrites found in the MML of dentate gyrus (53). These dendritic segments

ranged in length from 8.6 to 10.6 µm for the six control dendrites and 9.3 to 10.6 µm for the

six LTP dendrites. Contours were drawn using Reconstruct software on serial images for each

spine head. PSDs were identified by their electron density and presence of closely apposed

presynaptic vesicles. A total of 209 spines were complete along the control dendrites and 188

spines were complete along the LTP dendrites. These were used for the indicated analyses.

The unbiased dendritic segment analysis involved assessing the number of synapses, SDSAs,

and axons interacting with each dendritic segment. Beginning in the center of each of the 12
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dendrites, the presynaptic axons were traced past the nearest neighboring axonal bouton until

they were determined to form synapses with the same dendrite or a different dendrite. Only

the middle portion of the dendrite lengths could be used because only spines in the middle of

the dendrite had presynaptic axons sufficiently complete within the series to determine their

connectivity. In three cases, one axon made synapses with dendritic spines from two different

dendrites in our sample, and these three were included for both dendritic segments. Each of the

12 dendrites was truncated to contain the central 15–20 spine and shaft synapses with known

connectivity. The z-trace tool in Reconstruct was used to obtain the unbiased lengths spanning

the origin of the first included spine to the origin of the first excluded spine (54). The lengths

ranged from 2.8 to 5.9 µm for the six control dendrites and 3.1 to 6.1 µm for the six LTP

dendrites. Then the number per micrometer length of dendrite was computed for spines, axons,

and SDSAs as illustrated in Fig. 1 E and F.

PSD areas were measured in Reconstruct according to the orientation in which they were

sectioned (18). Perfectly cross-sectioned synapses had distinct presynaptic and postsynaptic

membranes, clefts, and docked vesicles, and their areas were calculated by summing the product

of PSD length and section thickness for each section spanned. En face synapses were cut parallel

to the PSD surface, appeared in one section, and were measured as the enclosed area on that

section. Obliquely sectioned PSDs were measured as the sum of the total cross-sectioned areas

and total en face areas without overlap on adjacent sections. Then the synapse areas were

summed along the truncated, unbiased dendritic length to compute values illustrated in Figure

4.3.

4.5.3 Segmentation and Evaluation of Spines (DG)

“Blender, a free, open-source, user-extensible computer graphics tool, was used in con-

junction with 3D models generated in Reconstruct. We enhanced our Python add-on to Blender,

Neuropil Tools (Bartol et al., 2015), with a new Processor Tool to facilitate the processing of

the 3D reconstruction and evaluation of spines. The additions encompassed in Processor Tool
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were as follows: i) The software allows for the selection of traced objects from Reconstruct (.ser)

files by filter, allowing the user to select only desired contour traces (in this case spine head and

PSD contours for three dendrites per series). ii) At the press of a button, the tool generates 3D

representations of selected contours in Blender. This step invokes functions from VolRoverN

(Edwards et al., 2014) from within Blender to generate mesh objects by the addition of triangle

faces between contour traces. iii) Smoothing and evening of the surface of spine objects is

accomplished with GAMer software (fetk.org/codes/gamer/). iv) In a few cases, the formation of

triangles was uneven and required additional manipulation by Blender tools and repeating of step

iii before proceeding to step v. v) Finally, the PSD areas are assigned as metadata (represented

by red triangles) for the reconstructed spine heads.

This assignment is performed based on the overlap of PSD and spine head contours

(described above) in 3D space. Dendritic spines were segmented as previously described

[Bar+15] using the Neuropil Tools analyzer tool. We chose to measure spine volumes because at

present they can be more accurately measured than other correlated metrics, synaptic area and

vesicle number ([Bar+15]). The edges of the synaptic contact areas are less precisely determined

in oblique sections, and vesicles can be buried within the depth of a section or span two sections

and hence are less reliably scored. The selection of spine head from spine neck and from spine

neck to dendritic shaft were made using the same standardized criterion as before (visually

identified as halfway along the concave arc as the head narrows to form the neck). Spines were

excluded if they were clipped by the edge of the image dataset. To ensure the accuracy of the

measurements, segmentation of the spine head volume was performed four times (twice each by

two people) and averaged. A further check was added at this step, whereby spine heads with a

CV ≥ 0.02 for all four measurements were visually evaluated by an expert, and any discrepancy

in the segmentation was corrected. Interestingly, the only spines with a CV larger than 0.02 were

in the LTP condition. We believe this occurs because the spines undergoing LTP are likely to be

in transition at the 30 min time point, and as such the delineation between spine head and spine

neck is more difficult to distinguish. In the two control condition series, further evaluation by an
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expert was performed, and adjustments were made accordingly”([Bro+18])) see (Fig. 2 and Fig.

S4 in ([Bro+18])).

4.5.4 Statistical Analysis

Statistical analysis and plots were generated using Python 3.4 with NumPy, SciPy, and

Matplotlib. Fig. 4 is made by R programming packages as follows: ggplot2, ggpubr, scales,

xlsx, ggpmisc. In order to show the empirical distribution of spine head volumes for the 4

dentate gyrus datasets, we illustrated the 4 dentate gyrus spine head volume histograms in Fig. 2.

For panel A-D the Y axis shows the frequency of spine head volumes within each of the bins

and the X axis shows the bins start and end points. To get the bins’ start and end points, the

range of the 4 datasets were divided into 11 equal width bins (identical bins for all 4 dentate

gyrus datasets) in logarithmic scale (Fig. 2 panel A-D). We designed a statistical test based

on nonparametric bootstrap hypothesis testing to see if the observed peaks and troughs of the

trajectories in Fig. 2E,F are significant. To generate each of the 10,000 bootstrap samples

we resampled the combined 4 DG dataset (n=862) with replacement and extracted DG 30 min

control (n=209) and LTP (n=188) along with DG 2 hr control (n=239) and LTP (n=226). For each

of the bootstrap samples we calculated the test statistic (summation of differences of frequencies)

for all peaks and troughs. The p-value is calculated as the ratio of number of cases that the test

statistics was as extreme as the observed peaks and troughs of the empirical data over 10,000.

The list of test statistics and p-values are shown in the following table.

For the precision analysis we used the coefficient of variation (equation 4.1) as a metric

to show the precision level by calculating the ratio of standard deviation over the mean of N joint

synapses. Here N is 2 but can take higher values as up to 7 have been detected in previous studies.

Since this is a sample from the unknown population of joint synapses we used the corrected

standard deviation formula with 1/(N-1) factor. The coefficient of determination, denoted R2,

was used in Figure 4.3 panel A-E to show the proportion of the variation in the dependent

variable (CV) that is predictable from the independent variable (spine head volumes). One factor
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Table 4.3: P value of the observed peaks and troughs in Figure 4.2
E,F. A=freq DG 30min Control, B=freq DG 30min LTP, C=freq DG 2hr LTP,
D=freq DG 2hr Control. e.g. sum(D - B): It means we have first subtracted the fre-
quencies of the 30 min LTP histogram from that of 2 hr LTP for each represented bin and then
summed the differences (the other statistics are defined in the same way). Note: the P value 0 in
row 3 means in the 10,000 bootstrap samples there were no cases with summation of differences
being as extreme as the observed value.

statistics
Observedvalue
( f orSHV < median) P-Value

Observedvalue( f or
SHV > median) P-Value

sum(D−B) −15.59% 0.0015 16.12% 0.0006
sum(D−C−B+A) −28.6% 0 29.12% 0
sum(D−C) −13.14% 0.0025 13.15% 0.0021
sum(B−A) 15.45% 0.0011 15.98% 0.0008
sum(C−A) 13% 0.0029 −13% 0.0025

Kruskal-Wallis (KW) test was in 4.3F to check for a significant difference between the 4 dentate

gyrus SDSA datasets and the CA1 dataset. Lognormal transform of data was performed on

skewed distributions (Figure 4.2A-F. 4.3A-E. Fig. 5 B and C. Figure 4.5A-D.) Boxplots in 4.3F

are made as follows: The lower and upper hinges correspond to the first and third quartiles

(the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value

no further than 1.5 * IQR from the hinge (where IQR is the interquartile range, or distance

between the first and third quartiles). Bootstrapping was done by combining algorithms 3 and 4

to calculate the standard errors as explained below in the sections Standard error of Median and

Clustering Algorithm. The standard errors of the entropy, efficiency constant, maximum entropy

for uniform distribution, and KL divergence (4.2 2 column 2-7) are all calculated similarly

using the bootstrapping technique explained in algorithm 3. (See (Efron et al., 2021) for further

information regarding bootstrapping for the calculation of standard error.)

4.5.5 Standard error of Median

The standard error of median for the precision levels of each of the 5 datasets’ SDSA

pairs is calculated with Algorithm 1 as follows. The idea is to generate 1000 bootstrap samples

of length n, each sampled from the n SDSA pairs with replacement, to estimate the standard
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error of median for the n SDSA pairs (Table 4.1, column 3). The standard error of median of

spine head volumes follows the same procedure using Algorithm 1.

Algorithm 3. Bootstrap Algorithm for Estimating the Standard Error of Median
Require: n≥ 1

Let X1, . . . ,Xn be some data and θ̂n = t (X1, . . . ,Xn)
For b = 1, . . . ,B
Simulate X∗(b)1 , . . . ,X∗(b)n

iid∼ Fn by sampling with replacement from {X1, . . . ,Xn}
Evaluate θ̂

∗(b)
n = t

(
X∗(b)1 , . . . ,X∗(b)n

)
σ̂

2
n,B =

1
B

B

∑
b=1

(
θ̂
∗(b)
n − 1

B

B

∑
b=1

θ̂
∗(b)
n

)2

Return the bootstrap estimate of standard error of median

σ̂n,B

4.5.6 Clustering Algorithm

To construct the clusters, spine head volumes are sorted from smallest to the largest. The

first value (smallest value) is selected and the CV of that value and the remaining head volumes

are calculated in a pairwise manner. The head volumes for which the calculated CV is below the

threshold (the median value of the SDSA pairs CV) are assigned to the first category and deleted

from the pool of N spine head volumes. This procedure is repeated until the CV exceeds the

median SDSA pairs CV and a new category is formed. New categories are formed until all the

remaining spine head volumes are assigned to a category and the original vector of spine head

volumes is empty (see Algorithm 4 for details). It is guaranteed that the coefficient of variation

between each random pair within each category is less than the threshold value measured from

the reconstructed tissue SDSA pairs. All spine head volumes are rounded to two significant

digits for the display.
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Algorithm 4. Clustering Algorithm
1: function PRECISION CALCULATION( (Same Dendrite Same Axon pairs (SDSA), N pairs

(a,b) of spine head volumes))

2: for a,b ∈ SDSA[i] do

3: cv = σ/µ

4: CV[i]=cv

5: end for

6: return {Median(CV )}

7: end function

8: function CLUSTERING SPINE HEAD VOLUMES(SHV vector)

9: Sort SHV s.t. SHV [i]< SHV [i+1]

10: Listo f shcluster = NULL

11: while Length(SHV ) ̸= 0 do ▷ Here we do the clustering with the median value of SDSA

pairs calculated with the above function.

12: a= SHV[1]

13: for any b ∈ SHV do

14: Cluster=NULL

15: if cv(a,b)< Median(CV ) then

16: Cluster← b

17: end if

18: end for

19: Listo f shcluster[ j]←Cluster

20: SHV = SHV [−Cluster](deleting the spine head volumes stored in cluster j from the

SHV vector)

21: j=j+1

22: end while

return {Listo f shcluster} and Nc = j−1

23: end function
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For each panel in Figure 4.5, the Y axis shows the percentage of spine head volume

counts in the respective bin. The area under each plot is normalized to 1 for a fair comparison.

The X axis shows the spine head volumes inµm3 on the log scale. The width of each bin is

exactly the median value of the set of CV values for each condition calculated in Figure 4.3

(Example: for bin-1 panel-1 [x1,x2], CV (x1,x2) = 0.65, where x1 is the smallest spine head

volume in dentate gyrus 30 min control dataset and x2 is a larger hypothetical head volume that

has a CV of 0.65 with x1). The height of bin 1 is the number of spine head volumes in that range

normalized to the total number of spine head volumes in that dataset (Example: for Figure 4.5A

for dentate gyrus 30 min control it is 236). (A) dentate gyrus 30 min control. (B) dentate gyrus

2hr LTP. (C) dentate gyrus 30 min LTP. (D) dentate gyrus 2hr LTP.

4.5.7 Information and Entropy in Synaptic Plasticity

“The fundamental problem of communication is that of reproducing at one point either

exactly or approximately a message selected at another point. Frequently the messages have

meaning; that is they refer to or are correlated according to some system with certain physical or

conceptual entities. These semantic aspects of communication are irrelevant to the engineering

problem. The significant aspect is that the actual message is one selected from a set of possible

messages. The system must be designed to operate for each possible selection, not just the one

which will actually be chosen since this is unknown at the time of design.” (Shannon, 1948)

Shannon’s information theory is the rigorous basis for a new method to quantify empir-

ically SISC; that is, the number of bits of Shannon entropy stored per synapse. For this new

method, only the precision as measured by the coefficient of variation (CV) of SDSA pairs, illus-

trated in 4.3, was borrowed from [Bar+15]. The new method performs non-overlapping cluster

analysis (4.3 and 4.4) using Algorithm 2, to obtain the number of distinguishable categories of

spine head volumes from the CV measured across the reconstructed dendrites.

The Shannon information per synapse is calculated by using the frequency of spine head

volumes in the distinguishable categories where each category is a different message for the
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calculation of Shannon information. The maximum number of bits is calculated as the log2(NC)

where NC is the number of categories which set an upper bound for the SISC.

When calculating the amount of entropy per synapse, the random variable is the synapse

size and the number of distinguishable synaptic states is the realization of a random variable for

the occurrence of each state. The probability of the occurrences of each state is calculated by the

fraction of the number of spine head volumes in each of the clusters over the total number of

spine head volumes in the reconstructed volume.

The information coding efficiency at synapses is measured by Kullback-Leibler (KL)

divergence to quantify the difference between two probability distributions, one from the cate-

gories of spine head volumes and the other from a corresponding uniform distribution with the

same number of categories.

4.5.8 Synaptic Information Storage Capacity

Spine morphology has substantial variation across the population and lifetime of synapses.

Hebbian plasticity puts forth a causal relationship and transformation of information from the

presynaptic site to the postsynaptic site by the adjustment of efficacy of synaptic transmission, or

”synaptic weight.” The pattern of synaptic weights in the ensemble of neural circuits allows us to

define both information and the recipient of the message in the context of synaptic plasticity. The

recipient of the message is the neural ensemble or the pattern of synaptic weights that store the

message and read the message during the recall process, which is the reactivation of the synaptic

weights in the memory trace. The amount of information is quantified by the distinguishability

of synaptic weights which comprise the memory trace. Here ”distinguishability” implies that the

precision of synaptic weights play a significant role.

The synapse is the unit of information storage in an ensemble of neurons, and if the

precision level of synaptic weights is low then the amount of information that can be stored per

synapse and in the ensemble of the neurons will also be low. Because the spine head volume

is highly correlated with synapse size, the precision of spine head volumes can be used to
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measure the distinguishability of the synaptic weights. High precision yields a greater number

of distinguishable categories (i.e., states or clusters) for spine head volumes and hence higher

information storage capacity.

Chapter 3-4, in full, is a reprint of the material as it appears in the following publications:

Samavat, M., Bartol, T.M., Harris, K. and Sejnowski, T., “Using Shannon Information to Probe

the Precision of Synaptic Strengths.” In NeurIPS 2022 Workshop on Information-Theoretic

Principles in Cognitive Systems.

Samavat, M., Bartol, T.M., Bromer, C., Bowden, J.B., Hubbard, D.D., Hanka, D.C., Kuwajima,

M., Mendenhall, J.M., Parker, P.H., Abraham, W.C. and Harris, K., “Shannon Information of

Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized.”

In NeurIPS 2022 Workshop on Information-Theoretic Principles in Cognitive Systems.

Samavat, M., Bartol, T.M., Bromer, C., Bowden, J.B., Hubbard, D.D., Hanka, D.C., Kuwajima,

M., Mendenhall, J.M., Parker, P.H., Abraham, W.C. and Harris, K.M., 2022. “Regional and LTP-

Dependent Variation of Synaptic Information Storage Capacity in Rat Hippocampus.” bioRxiv,

pp.2022-08.

dissertation author was the primary investigator and author of these materials.
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Figure 4.7: The clustering of 209 spine head volumes of two rats in control conditions (30 min
data). To analyze synapses in the whole reconstructed cube, the 209 spine head volumes are
clustered into 5 distinguishable categories based on the median value CV calculated from 10
SDSA pairs detected in the reconstructed cube. Median value of 10 CVs calculated from analysis
illustrated in inset in panel B with the value of 0.65. The Y axis shows the number of spine head
volumes within each category. The 3D object below each category (vertical column) is the actual
3D reconstructed spine head volume of the largest head volume in the category. The X axis
shows the distinguishable categories number.
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Figure 4.8: The clustering of 188 spine head volumes of two rats in LTP conditions (30 min
data).
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Figure 4.9: The clustering of 239 spine head volumes of two rats in control conditions (2 hr
data).

89



Figure 4.10: The clustering of 226 spine head volumes of two rats in LTP conditions (2 hr data).
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