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Abstract Introduction: Comorbidity with metabolic diseases indicates that lipid metabolism plays a role in
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Method: In this study, a total 349 serum lipids were measured in 806 participants enrolled in the Alz-
heimer’s Disease Neuroimaging Initiative Phase 1 cohort and analyzed using lipid-set enrichment sta-
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in early stages of AD, whereas the polyunsaturated lipid metabolism was associated with later stages
of AD. Our study provides several new hypotheses for studying the role of lipid metabolism in AD.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Alzheimer’s disease; Lipidomics; Dyslipidemias; Lipid biochemistry; Mass spectrometry
1. Introduction

Alzheimer’s disease (AD) is often presented with
diabetes comorbidity and a wide range of metabolic
perturbations occurring early in the disease process [1].
APOE-ε4 is by far the strongest single gene variant
contributing to increased AD risk and plays key roles in lipid
transport and metabolism. Presence of the APOE-ε4 variant
is correlated with higher cholesterol levels in the blood [2].
More than twenty additional genes have recently been
implicated in AD with functional roles in lipid-processing,
immune regulation, and phagocytosis. Hence, both
comorbidities and known gene variants support the idea
that metabolic dysfunctions may contribute to AD onset
and progression. Comprehensive biochemical profiling of
biofluids can provide new insights into AD biology and
expand the battery of hypotheses to find new therapeutic
options for AD.

Lipidomics methods using liquid chromatography and
mass spectrometry yield reliable measurements of hundreds
of lipids in biological samples. Liquid chromatography and
mass spectrometry methods have been used in AD studies in
attempts to define possible risk factors [3–7],
diagnostic markers [8], and for highlighting novel drug
targets [9–11]. Perturbations in ceramides and related
sphingomyelin (SM) metabolism [4,7] were noted in many
of these studies pointing toward a possible role of these
lipids in aberrant signaling pathways, membrane
remodeling, and apoptotic cascades during AD
progression. Changes in phosphatidylcholines were
observed in several studies [11–13] pointing to a possible
role for phospholipid metabolism in AD pathogenesis. Yet,
AD risk prediction failed to replicate using a
phosphatidylcholine (PC) biomarker panel [11,14]. Partial
correlation network analysis indicated early AD
biomarker Ab1-42 was associated with PC and SM [11].
These studies support the hypothesis that distinct lipid
biochemical pathways were dysregulated in early and late
phase of AD.

Here, we used LC-MS/MS-based serum lipidomics
analysis measured in the Alzheimer’s Disease Neuro-
imaging Initiative Phase 1 (ADNI1) cohort to define the lipid
coregulatory network of AD phenotypes, a statistical
analysis tool that previously has been successfully used in
the analysis of transcriptomic data [15]. We investigated
correlation of lipid sets with (1) disease diagnosis, (2) CSF
markers of disease Ab1-42, CSF total tau, and (3) cognitive
decline and brain atrophy.
2. Materials and methods

2.1. Study cohort

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by the
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic
resonance imaging, positron emission tomography, other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment, and early AD. For up-to-date
information, see www.adni-info.org.

The ADNI cohort information was downloaded from
the ADNI data repository (http://adni.loni.ucla.edu/),
supplying all the demographic information, neuropsychologi-
cal and clinical assessment data, and diagnostic information
that was previously published [11]. Prior Institutional Review
Board approval was obtained at each participating institution
and written informed consent was obtained for all participants.
Information about the ADNI project is provided on http://
www.adni-info.org/ and the associated publication [16].
2.2. Pathology, clinical and lipidomics data

Untargeted lipidomics, AD diagnosis, CSF biomarkers
including total Tau (t-tau) and amyloid beta (Ab1-42),
cognitive decline (ADAScog13), and brain atrophy repre-
sented by Spatial Pattern of Abnormality for Recognition
of Early Alzheimer’s disease (SPARE-AD) [16] data were
obtained from the ADNI repository (http://www.adni-info.
org/). Generation and quality control of lipidomics data
have been described in the study of Barupal et al [17].
2.3. Detection of sets of coregulated lipids

A pairwise Spearman-rank correlation matrix was gener-
ated for lipids using the R function cor.test. The matrix was
converted to a hierarchical treemodel using the hclust function
in R with the ward linkage method. The resulting tree model
was divided into clusters using the tree cutting algorithm
dynamicTreeCut [18]. We used a minimum cluster size of
three and a split depth of four in the tree-cutting method.
2.4. Association modeling

Linear regressionmodels were established for association
of serum lipid abundances and CSF biomarkers and indices
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Table 1

Lipid classes and subclasses in the ADNI serum lipidomics untargeted data

set

Class Subclass Count

Acylcarnitine (AC) Acylcarnitine 9

Free fatty acid (FA) Fatty acid 29

Sterol lipids Cholesterol 1

Cholesteryl ester (CE) 8

Phospholipid Lysophosphatidylcholine (LPC) 22

Lysophosphatidylethanolamine

(LPE)

4

Phosphatidylcholine (PC) 53

Phosphatidylethanolamine (PE) 11

Phosphatidylinositol (PI) 11

Plasmalogen phosphatidylcholine

(p-PC)

28

Plasmalogen

phosphatidylethanolamine (p-PE)

15

Sphingolipid Ceramide (CER) 19

Glucosylceramide (GluCer) 8

Sphingomyelin (SM) 34

Acylglycerols Diacylglycerol (DG) 13

Triacylglycerol (TG) 84

Abbreviation: ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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for cognitive decline and brain atrophy. No confounding
variables were included in the regression models. Logistic
regression models were calculated to associate serum lipids
with AD diagnosis. Lipid abundances were scaled by the
mean subtracting approach. All models were unadjusted to
identify all the lipid coregulatory sets that were associated
specifically with only AD or with AD and other
demographics or confounding factors. Data from all
ADNI1 participants were included in the analysis.

2.5. Lipid-set enrichment analysis

Coregulatory lipid sets detected by the dynamicTreeCut
method [18] were used as an input for cluster enrichment anal-
ysis using the Kolmogorov–Smirnov test as described in the
ChemRICH method [19]. In this test, the distribution of
P-values was assumed to be uniform under a null hypothesis
for a lipid cluster. Raw P-values obtained from the linear and
logistic models were used as input for computing the enrich-
ment statistics by comparing the experimental P-values with
the uniform distribution. Set level P-values were adjusted for
false discovery rate using the Benjamini–Hochberg method.

2.6. Source code

All statistical analyses were performed in R program-
ming language version 3.4.0. The R-script is available at
http://github.com/barupal/ADNI.
3. Results

The main objective of the study was to identify lipid cor-
egulatory modules that were associated with AD diagnosis
and its clinical and pathological features. Coregulation of
lipids can indicate biochemical mechanisms that can be
explored for new therapeutic options for AD. In this
direction, we first computed univariate association models
and obtained raw P-values for each lipid. Next, we identified
lipid coregulatory modules, which were then used as set
definitions for a lipid-set enrichment analysis using the
univariate P-values for lipids.

3.1. Subject cohort and lipidomics details

Supplementary Table 1 summarizes the details for the
806 ADNI participants at the baseline included in the present
study. The baseline ADNI1 serum lipidomics data set
contained 16 different lipid chemical classes summarizing
349 annotated lipids (Table 1). ADNI study collects blood
samples at the fasted state. In our analysis, 737 (91%)
samples were from subjects who were fasting. Few subjects
(9%) donated blood in the nonfasting state. Key findings did
not change by exclusion of these nonfasting samples.

3.2. Regression models for individual lipids

We first tested all individual lipids for their association
with both early and late AD pathogenic markers and
cognitive changes (Supplementary Table 2). Raw P-values
from these association models will be used as an input for
the lipid-set enrichment analysis in the following section.
Fig. 1 shows the number of significantly associated lipids
in these regression models. A total of 168 lipids were found
to be significant in at least one regression model (raw
P-value , .05), making it difficult to biologically interpret
them on individual lipid level. Two AD phenotypes showed
strong positive associations with individual serum lipids,
CSF total tau and SPARE-AD. Conversely, three phenotypes
were mostly negatively associated with individual blood
lipids, including the two related phenotypes AD diagnosis
and its major contributor, ADASCog13. Overall, AD
diagnosis was associated with a decline in many lipid levels
which could point to lower metabolic activity in specific
lipid metabolic pathways. When analyzing all individual
lipids that were associated with at least one AD phenotype,
we found a very high specificity of lipid associations with a
particular AD phenotype (Fig. 2 and Supplementary
Table 3). Forty eight percentage of (168/349) of all lipids
were associated with at least one AD phenotype
(Supplementary Table 3). Specifically, for known lipids,
63% of all AD phenotype–associated lipids were specific
to only one phenotype and not shared with others (Fig. 3).
Twenty eight percentages of the detected associations of
known lipids were shared between two phenotypes, driven
by lipids shared between the two related phenotypes
AD diagnosis and its major contributor, ADASCog13, in
addition to lipids shared between total tau and
SPARE-AD. Conversely, Abeta142 showed few shared
lipids. Importantly, there was no identified lipid that
was shared between four phenotypes, and only one
lipid that was associated with all AD-phenotypes

http://github.com/barupal/ADNI


Fig. 1. Coregulated sets of serum lipids in the ADNI lipidomics data set.

Sets were detected by the dynamicTreeCut algorithm (see method). Node

colors show different chemical classes. Abbreviations: FA, fatty acids;

AC, acyl carnitines; PC, phosphatidylcholines; CE, cholesteryl esters;

SM, sphingomyelins; Cer, ceramides; PE, phosphatidylethanolamines;

TG, triacylglycerols; PI, phosphatidylinositols; DG, diacylglycerols; LPC,

lysophosphatidylcholines.
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Fig. 2. Number of significantly different lipids with AD phenotypes in uni-

variate statistics. Directions of beta coefficients in regression models are

given by colors as blue (negative) and red (positive) associations using un-

corrected P , .05 values. Abbreviations: CN, cognitively normal; LMCI,

late mild cognitive impairment; AD, Alzheimer’s disease. DIAG, linear

models for diagnosis; tau, linear model for tau; Ab1-42, linear model for

amyloid beta peptide 42; SPARE-AD, linear model for Spatial Pattern of

Abnormality for Recognition of Early Alzheimer’s disease index; ADAS-

Cog13, Cognitive Subscale of the Alzheimer’s Disease Assessment Scale

index.
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(arachidonyl-lysophosphatidylethanolamine; LPE C20:4).
Many lipids are coregulated by the activity of specific lipases
or other enzymes involved in lipid remodeling. Identifying
commonalities of biochemical mechanisms may lead to
underlying genetic drivers or environmental factors
implicated in AD etiology. Therefore, we next focused on
identifying sets of coregulated lipids associated with AD
pathophysiology rather than interpreting individual lipids.
3.3. Identifying sets of coregulated lipids

Lipid classification often uses chemical structure as the
only criterion. To specify the biochemical relationships be-
tween circulating blood lipids, we instead used correlation
analysis to determine sets of lipids. A pairwise Spearman
correlation matrix followed by hierarchical clustering with
the DynamicTreeCut dendrogram cutting method [18]
yielded a total of 28 coregulated lipid sets in the Alz-
heimer’s Disease Neuroimaging Initiative Phase 1 data
set (Fig. 3). The mean size was 12.5 lipids per set, ranging
from 4 to 28 members. These lipid sets (LM) were
named LM1 to LM28. The average Spearman correlation
coefficient rho across sets was 0.63 with a range of
0.19 , r , 0.82. Fig. 3 and Supplementary Table 2
show that some lipid coregulatory sets were composed
of lipids from the same chemical classes (such as set 17
for free fatty acids, set 1 for triacylglycerides, and set 14
for ceramides) whereas other sets were heterogeneous
(such as set 3 consisting of ceramides and SMs, or set 7
that includes phosphatidylinositols and phosphatidylcho-
lines). Interestingly, several classes of lipids were found
with distinct coregulation within each class. For example,
triacylglycerides were not found as one large group of cor-
egulated species, but clustered in three specific sets, and
similarly, free fatty acids were found in two different
sets, set 9 consisting only of saturated fatty acids and set
17 comprised only of unsaturated fatty acids. Similarly,
other lipid classes were distributed across different sets,
too. For example, phosphatidylcholines were found in
five sets and SMs were coregulated in three sets, indicating
downstream regulation of lipid biochemistry by specific
elongases, desaturases, lipases, and acyl-transferases
within each lipid class (Fig. 2).
3.4. Associating lipid sets with AD phenotypes

These lipid groups served as input for a lipid-set enrich-
ment analysis [19] along with the P-value and beta coeffi-
cient results from the regression models. Overall, 19 of 28
lipid sets were significantly associated with at least one
AD phenotype (Fig. 4, Supplementary Table 3) using the
Kolmogorov-Smirnoff statistical test with false discovery
rate (FDR) corrections. Eight sets were uniquely associated
with only one specific AD phenotype, but only one set was
associated with four phenotypes, set 11, consisting primarily
of ceramides and phosphatidylcholines. Set 11 did not
include polyunsaturated acyl chains with three or more dou-
ble bonds. Six sets were associated with two AD phenotypes
and four sets were correlated with three AD phenotypes, but
no set correlated with all five phenotypes.

More than two-thirds of all associations were positively
correlated between lipid sets and phenotypes, mostly driven



Fig. 3. Number of significantly associated lipids across AD phenotypes.

Uncorrected P , .05 values for five AD phenotypes. Abbreviations:

DIAG, linear models for diagnosis; tau, linear model for tau; ABETA142,

linear model for amyloid beta peptide 42; SPARE-AD, linear model for

Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s dis-

ease index; ADASCog13, Cognitive Subscale of the Alzheimer’s Disease

Assessment Scale index.

Fig. 4. Coregulated sets of lipids significantly associated with AD pheno-

types. Direction of associations is given by red (positive) and blue (negative)

edge colors. Line thickness indicates the significance of associations (see

Supplementary Table 4 for details). Lipid compositions for each set are shown

in Fig. 1 and Supplementary Table 1. Abbreviations: DIAG, linear models for

diagnosis; tau, linear model for tau; ABETA142, linear model for amyloid

beta peptide 42; SPARE-AD, linear model for Spatial Pattern of Abnormality

for Recognition of Early Alzheimer’s disease index; ADASCog13, Cognitive

Subscale of the Alzheimer’s Disease Assessment Scale index.

D.K. Barupal et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 619-627 623
by the t-tau phenotype that also had the highest number of
correlated lipid sets. Conversely, ADASCog13 showed the
highest number of negative associations with lipid sets. We
therefore investigated the individual phenotypes with
respect to the composition of their associated lipid sets.

3.4.1. Lipid sets associated with AD diagnosis
AD diagnosis was significantly associated with seven

distinct lipid sets (Fig. 4) after FDR correction. Specif-
ically, the phenotype was highly significantly negatively
correlated with lipid set 26 and set 4. Both sets comprised
acyl chains with at least one polyunsaturated fatty acyl
chain (PUFA) (see Supplementary Table 2), either eicosa-
pentaenoic acid (EPA), docosahexaenoic acid (DHA), or
arachidonic acid (AA). Set 26 consisted exclusively of tri-
acylglycerides that also contained either EPA or DHA, but
not a single saturated fatty acid. Set 4 was mixed between
different phospholipid head groups, cholesteryl esters and
free fatty acids, indicating that the coregulation mecha-
nisms focused on the modulation and incorporation of
acyl chains irrespective of the lipid class. Set 23 was also
negatively correlated with AD diagnosis and comprised
DHA-containing choline- and ethanolamine-
plasmalogens. Conversely, two other sets of lipids were
positively associated with AD diagnosis, most significantly
for set 5 and set 20, and less significantly with set 11 and
set 12. Set-5 contained coregulated di- and triacylglycerols
with acyl groups that did not contain any PUFA with four
or more double bonds, and only one single lipid with lino-
lenic acid (C18:3). Set-20 was exclusively composed of
unsaturated choline-plasmalogens, but not containing any
EPA or DHA acyl chain.

3.4.2. Lipid sets associated with CSFAb1-42
CSF Ab1-42 was significantly associated with four lipid

sets (Fig. 4). Three sets were negatively correlated, set 11,
set 7, and set 8. Set-7 was the only lipid set that contained
phosphatidylinositols, in addition to phosphatidylcholines.
Acyl chains were primarily saturated or mono- and
di-unsaturated. Similarly, set 8 consisted mostly of desatu-
rated acyl groups with less than four double bonds, exclu-
sively found as lysophosphatidylcholines. In the same way,
no PUFA acyl chains were found in set 11, a heterogenous
set of ceramides and choline-plasmalogens. Importantly, the
only positive association of a lipid set with CSF Ab1-42 was
set 26 that was completely made of PUFA triacylglycerides.

3.4.3. Lipid sets associated with CSF tau
CSF total tau correlated with 12 lipid sets, the highest

number of associated lipid sets among all phenotypes
(Fig. 4). All sets except set 1 were positively correlated
with CSF-total tau. Three unique sets were not shared
with other phenotypes. Set-16 was composed of
acylcarnitines with increasing degree of desaturation, and
set 17 was a set of monounsaturated fatty acids. Set-1 was
less significant in comparison with other set associations.
Four sets were shared with brain atrophy, four sets were
shared with AD diagnosis, two sets with Ab and four lipid
sets were shared with cognitive decline. Notably, set 19 was
also associated with brain atrophy and contained mostly
EPA-side chain phosphatidylcholines. Set-3 was composed
of SMs and ceramides that were not associated with
diagnosis or Ab, but instead was also linked with cognitive
decline and SPARE-AD.
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3.4.4. Lipid sets associated with brain atrophy (SPARE-AD)
Brain atrophy was most significantly associated with set

27, 19, 11, and 2 (Fig. 4). Three sets (set 2, set 11, and set
27) were void of PUFA side chains with either phospholipid
or sphingolipid head groups. Conversely, set 19 contained
mostly EPA–side chain phosphatidylcholines and was
further associated with CSF total tau. Similarly, set 21 was
associated with both phenotypes, containing phospholipids
and their lyso-forms with the PUFA acyl chain arachidonic
acid.

3.4.5. Lipid sets associated with cognitive functions
Most of the lipid sets associated with cognitive decline

were also associated with AD diagnosis (Fig. 4). In addition,
it was negatively associated with set set 22 which consisted
of ethanolamine plasmalogens.
4. Discussion

We here focused on associations between blood lipids
and five AD phenotypes guided by known contributions of
lipids and metabolic comorbidities to AD. We systemati-
cally tested both the association of individual lipids and
the association with sets of coregulated lipids. This
approach showed an important advantages over previous
“feature” based lipidomics AD studies [9,20] that did not
focus on specific lipid groups, their side chains, or their
biological regulation. Without clear lipid identification,
feature-based associations miss biological insights and
have a high risk of not being validated in subsequent studies
because each individual lipid may cause more than one
feature in LC/MS based lipidomics [20,21]. Instead we
used the largest published AD lipidomics data set [17] to
date with 349 identified lipids belonging to 13 major lipid
classes, identified by extensive MS/MS fragmentation anal-
ysis [22] and enabling analyses reaching to the level of acyl
chains. A second difference to previous efforts was a focus
on summarizing lipids by statistical coregulation instead of
only relying on univariate analysis or grouping by lipid head
groups. This expansion of classic statistical analysis was
critical to extend from diagnostic biomarkers (that need
correction for multiple testing using FDR adjustments) to
revealing underlying biological mechanisms. The axiom of
univariate analyses, the mutual independence of variables,
is untrue in lipid biology. Moreover, stringent FDR correc-
tions lead to an increased number of false negative results
and compromise the statistical power to investigate the bio-
logical mechanisms and pathways. As lipids are poorly pre-
sented in biochemical pathway databases [19], classic
metabolic pathway enrichment analysis [23] ignores most
detected lipids and is unsuitable for lipidomics. Instead,
Spearman-rank correlation–based matrices yielded specific
clusters of lipids associated with AD phenotypes by using
the robust Kolmogorov–Smirnov test for P-value distribu-
tions. These lipid sets showed very distinct metabolic fea-
tures that we identified as preferential use of specific
polyunsaturated fatty acids that replaced saturated or mono-
unsaturated fatty acids for distinct lipid classes. These
mechanisms of lipid desaturation, elongation, and acyl-
chain remodeling were disturbed in early and later stages
of AD. A minimal overlap among lipid sets was observed
(Fig. 3) with respect to statistical associations with AD phe-
notypes, indicating that quite distinct lipid biochemical pro-
cesses were involved in the early and later stages of AD.
Lipid metabolic pathways associated with the early stage,
in particular, may provide new therapeutic targets to stop
AD progression. MUFA-containing lipids were positively
associated with the brain atrophy and tau accumulation,
whereas PUFA-containing lipids were negatively associated
with AD diagnosis and cognitive decline. Therapeutic stra-
tegies targeting MUFA lipid pathways at the early stages
of AD could therefore be potentially more effective in de-
laying the progression of the disease.
4.1. Lipids linked to the amyloid beta clearance pathway

A decrease in the CSFAb1-42 peptide marker is indicating
a poor clearance of the peptide in the brain, leading to its ex-
traneuronal accumulation. In our study, poor clearance was
indicated by negative associations with lipids sets, including
sets that contained phosphatidylinositols, lysoPCs, ceram-
ides and choline-plasmalogens and PUFATGs. The Ab pep-
tide is known to cause mitochondrial dysfunction [24] which
can lead to neurodegeneration via autophagic cascades
[25,26]. The associated lipids, specifically ceramides and
phosphatidylinositols and lysoPCs have been linked with
cell death and may also contribute in the Ab–mediated
toxicity in neurons [27–29]. Higher levels of ceramides
containing oleic acid (C18:1) have been shown to increase
AD risk [4,5]. We validate this finding in our study and
also observed lower levels of phosphoinositols containing
polyunsaturated fatty acids to correlate with poor Ab
clearance. An alternative explanation to our data is an
impaired Ab clearance in the liver [30] that subsequently
leads to dysregulation of lipid metabolism in the liver. Over-
all, our data suggest that these lipid sets can serve as serum
biomarkers for disturbed Ab pathway regulation in brain and
can complement Ab imaging assays.
4.2. Cerebrospinal fluid total tau

CSF tau is a marker for accumulating tau tangles in the
brain tissues, causing neurodegeneration. We found that the
total CSF tau marker was significantly associated with lipid
sets enriched in monounsaturated fatty acids, acylcarnitines,
ceramides, SMs, and EPA-containing phosphatidylcholines.
Increased fatty acids and acylcarnitines are known markers
of impaired fatty acid beta oxidation in mitochondria [31],
specially during metabolic diseases such as diabetes and
obesity [32,33]. We found free fatty acids and
acylcarnitines to be positively correlated with total tau,
supporting the notion of tau mediated neurodegeneration
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and mitochondrial dysfunctions. Mitochondrial impairment
was further evidenced by positive associations of total tau
with sets of ceramides because accumulating ceramides are
known to induce cell death and to increase the AD risk in
normal subjects [5]. Higher ceramide levels were also re-
ported for early-stage AD [34–36]. These findings indicate
that these lipids may be involved in early neurodegenerative
pathways, and their underlying pathways might lead to
candidates for new therapeutic strategies.
4.3. Lipid sets linked with brain atrophy

SPARE-AD is a composite index of brain atrophy and in-
dicates the neurodegeneration magnitude. We found a high
overlap of lipid sets that were associated with both SPARE-
AD and total tau, reinforcing the usability of these serum
lipids as biomarkers for neurodegeneration. These lipid sets
included phosphatidylcholines and sphingolipids that were
enriched in PUFA eicosapentaenoic acid and arachidonic
acid (EPA, AA). These fatty acids are main components of
brain lipids [37,38]. The loss of brain tissue may cause an
increase in levels of serum lipids that include EPA and AA
as acyl groups through lipid remodeling [39,40]. We here
identify lipid pathways associated with tau-mediated brain at-
rophy that eventually contributes to AD.
4.4. AD diagnosis and cognitive decline

Previous publications reported that lower levels of PUFA
in AD subjects across multiple lipid classes, along with
higher levels of monounsaturated lipids [4,8,9,41–45]. We
found numerous, very significant associations of omega-3
and omega-6 containing complex lipids with AD diagnosis
and cognitive functions. Our analysis is consistent with these
results as shown by AD-associated lipids in set 4, set 20, and
set 23 (Fig. 4).We here specify that themajor difference is not
related to total levels ofmono- or polyunsaturated fatty acids,
but the extent at which these fatty acids are incorporated into
different complex lipids. Clear differences in circulating
PUFA phospholipid and PUFA triacylglycerol levels in AD
subjects in comparison with normal subjects were observed,
likely due to dysregulation of biosynthesis in liver. Here, sub-
strate preference of MGAT and DGAT enzymes in the liver
may play an important role, but the exact specificities of acyl-
transferase enzymes (and their corresponding lipase en-
zymes) are not well studied. Levels of anti-inflammatory
plasmalogens [46], important lipids for brain membrane
functions [44,47], were decreased in AD patients in
comparison with cognitively normal subjects. Lower levels
of plasmalogens have been linked to AD [44]. However, in
clinical trials, EPA and DHA supplementation do not
improve the cognitive function of AD subjects [48]. Nutri-
tional intervention trials such as the European LipiDiDiet
have failed to show any cognitive improvement in AD sub-
jects. A broad-spectrum effect of fish oil supplements on
additional lipid pathways may explain the failure of this trial
and warrants further lipidomics studies for serum specimens
of this trial’s participants. It was observed that the incorpora-
tion of omega-6 fatty acids was increased in AD subjects.
These fatty acids arewell-known precursors to proinflamma-
tory molecules such as leukotrienes. Further studies are
needed to test if postmortem brain tissues of AD subjects
show similar disruption in fatty acid incorporation and if
these patterns correlate with AD severity or other AD pheno-
types.

Coregulatory lipid sets and their associations with AD
biomarkers will be further tested in reference to a range of
covariates including age, BMI, sex, race, diet, and comorbid-
ities in larger cohorts and diverse population settings.
5. Conclusions

Using coregulated sets of lipids enabled us to find signif-
icant associations of lipids with AD that led to biochemical
mechanisms. Across the spectrum of AD progression, path-
ways were dysregulated that pointed to lipid desaturation,
elongation and remodeling. These pathways provide new
targets as well candidate biomarkers for the population
screening for AD prevention. Future studies are needed to
tease out the roles of genetic variations, drug, and diet the
metabolism of MUFA and PUFAs and their complex lipids
and their roles in AD.
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RESEARCH IN CONTEXT

1. Systematic review: Genes such as APOE-ε4 as well
as comorbidity with metabolic diseases such as
type 2 diabetes support the concept that lipid meta-
bolism is critical in the etiology of Alzheimer’s dis-
ease (AD). Yet, current understanding of altered
lipid biochemistry in AD remains sparse with respect
to both brain metabolism and the relationship to
circulating lipids.

2. Interpretation: Sets of blood lipids were associated
with CSFAD biomarkers and with clinical diagnosis
of AD or mild cognitive impairment. Our study pro-
vides several new hypotheses for studying the role of
lipid metabolism in AD.

3. Future directions: The association of specific blood
lipids with AD phenotypes raises new hypotheses
to be tested in a subsequent analyses and studies.
(A) The coregulation of human blood lipids in tria-
cylglycerol and phospholipids classes needs to be
tested and replicated with respect to universality or
specificity for age-dependent cohorts. (B) The re-
modeling of acyl chains needs to be studied in rela-
tion to genetic variants and environmental factors.
(C) Specifically, the impact of dietary supplements
and drugs on sets of coregulated lipids and their as-
sociations with AD phenotypes must be investigated.
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