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ARTICLE

Pancreatic islet chromatin accessibility and
conformation reveals distal enhancer networks of
type 2 diabetes risk
William W. Greenwald1,11, Joshua Chiou 2,11, Jian Yan3,4,11, Yunjiang Qiu 1,3,11, Ning Dai5,11, Allen Wang6,7,

Naoki Nariai6, Anthony Aylward1, Jee Yun Han7, Nikita Kadakia 6, Laura Regue5, Mei-Lin Okino6,

Frauke Drees6, Dana Kramer8, Nicholas Vinckier6, Liliana Minichiello 8,9, David Gorkin 7, Joseph Avruch5,

Kelly A. Frazer6,12, Maike Sander6,10,12, Bing Ren 3,7,10,12 & Kyle J. Gaulton 6,12

Genetic variants affecting pancreatic islet enhancers are central to T2D risk, but the gene

targets of islet enhancer activity are largely unknown. We generate a high-resolution map of

islet chromatin loops using Hi-C assays in three islet samples and use loops to annotate

target genes of islet enhancers defined using ATAC-seq and published ChIP-seq data. We

identify candidate target genes for thousands of islet enhancers, and find that enhancer

looping is correlated with islet-specific gene expression. We fine-map T2D risk variants

affecting islet enhancers, and find that candidate target genes of these variants defined using

chromatin looping and eQTL mapping are enriched in protein transport and secretion path-

ways. At IGF2BP2, a fine-mapped T2D variant reduces islet enhancer activity and IGF2BP2

expression, and conditional inactivation of IGF2BP2 in mouse islets impairs glucose-

stimulated insulin secretion. Our findings provide a resource for studying islet enhancer

function and identifying genes involved in T2D risk.

https://doi.org/10.1038/s41467-019-09975-4 OPEN

1 Bioinformatics and Systems Biology Graduate Program, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 2 Biomedical Sciences Graduate
Program, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 3 Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA 92093, USA.
4Department of Medical Biochemistry and Biophysics, Division of Functional Genomics and Systems Biology, Karolinska Institutet, SE-171 77 Stockholm,
Sweden. 5 Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA. 6 Department of Pediatrics, UC
San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 7 Center for Epigenomics, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 8 European
Molecular Biology Laboratory, Mouse Biology Unit, Via Ramarini 32, 00015 Monterotondo, Italy. 9 Department of Pharmacology, University of Oxford, OX1
3QT Oxford, UK. 10 Department of Cellular and Molecular Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 11These authors
contributed equally: William W. Greenwald, Joshua Chiou, Jian Yan, Yunjiang Qiu, Ning Dai. 12These authors jointly supervised this work: Kelly A. Frazer,
Maike Sander, Bing Ren, Kyle J. Gaulton. Correspondence and requests for materials should be addressed to K.J.G. (email: kgaulton@ucsd.edu)

NATURE COMMUNICATIONS |         (2019) 10:2078 | https://doi.org/10.1038/s41467-019-09975-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4618-0647
http://orcid.org/0000-0002-4618-0647
http://orcid.org/0000-0002-4618-0647
http://orcid.org/0000-0002-4618-0647
http://orcid.org/0000-0002-4618-0647
http://orcid.org/0000-0002-0539-9714
http://orcid.org/0000-0002-0539-9714
http://orcid.org/0000-0002-0539-9714
http://orcid.org/0000-0002-0539-9714
http://orcid.org/0000-0002-0539-9714
http://orcid.org/0000-0002-1884-1671
http://orcid.org/0000-0002-1884-1671
http://orcid.org/0000-0002-1884-1671
http://orcid.org/0000-0002-1884-1671
http://orcid.org/0000-0002-1884-1671
http://orcid.org/0000-0002-4246-4765
http://orcid.org/0000-0002-4246-4765
http://orcid.org/0000-0002-4246-4765
http://orcid.org/0000-0002-4246-4765
http://orcid.org/0000-0002-4246-4765
http://orcid.org/0000-0003-4944-4107
http://orcid.org/0000-0003-4944-4107
http://orcid.org/0000-0003-4944-4107
http://orcid.org/0000-0003-4944-4107
http://orcid.org/0000-0003-4944-4107
http://orcid.org/0000-0002-5435-1127
http://orcid.org/0000-0002-5435-1127
http://orcid.org/0000-0002-5435-1127
http://orcid.org/0000-0002-5435-1127
http://orcid.org/0000-0002-5435-1127
http://orcid.org/0000-0003-1318-7161
http://orcid.org/0000-0003-1318-7161
http://orcid.org/0000-0003-1318-7161
http://orcid.org/0000-0003-1318-7161
http://orcid.org/0000-0003-1318-7161
mailto:kgaulton@ucsd.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Genetic risk of type 2 diabetes (T2D) is largely mediated
through variants affecting enhancer activity in pancreatic
islets1–7. The genes regulated by islet enhancers are largely

unknown, however, impeding discovery of disease-relevant gene
networks and pathways perturbed by risk variants and the
development of novel therapeutic avenues. The spatial organiza-
tion of chromatin plays a critical role in tissue-specific gene
regulation, and recently developed high-throughput techniques,
such as Hi-C enable the characterization of physical relationships
between genomic regions in human tissues genome-wide8–11.
Tissue-specific maps of chromatin conformation can be used to
identify candidate target genes of distal regulatory elements and
inform the molecular mechanisms of disease risk variants9. A
map of chromatin conformation in islets could thus facilitate the
annotation of islet regulatory networks and help elucidate the
molecular mechanisms of T2D risk loci and the gene networks
they affect.

In this study, we generate a high-resolution, genome-wide
map of three-dimensional (3D) chromatin architecture in pan-
creatic islets, and use this map to annotate candidate target genes
of islet enhancers defined using ATAC-seq assays and published
ChIP-seq data. We identify distal candidate target genes for
thousands of islet enhancers, many of which interact over 1 MB,
and find that genes with enhancer interactions correlate with
islet-specific expression. We identify 30 T2D risk signals with
fine-mapped variants in islet enhancers, of which 24 have sig-
nificant allelic imbalance in islet accessible chromatin. Candidate
target genes of these T2D enhancer signals, defined by com-
bining chromatin looping and promoter-proximity with eQTL
mapping, are specifically enriched in protein secretion and
transport pathways. Finally, at the IGF2BP2 locus, we show that
T2D risk alleles reduce islet chromatin accessibility and expres-
sion of target gene IGF2BP2 and that conditional knockout of
IGF2BP2 homolog Imp2 in mouse islets impairs glucose-
stimulated insulin secretion. Altogether our results provide tar-
get genes of islet enhancer activity, through which we link islet
enhancer regulation of protein transport and secretion pathways
to genetic risk of T2D.

Results
Islet chromatin accessibility and 3D chromatin architecture.
We first defined islet accessible chromatin using ATAC-seq12

generated from four pancreatic islet samples (Supplementary
Table 1). We called sites for each sample separately using
MACS213, and merged sites to create a combined set of 105,734
islet accessible chromatin sites. We observed strong correlation in
both accessible chromatin signal and peak calls across samples
(Supplementary Fig. 1a), as well as concordance with peak calls
from the majority of published ATAC-seq data from 19 islet
samples and FACS-sorted beta and alpha cells7,14,15 (Supple-
mentary Fig. 1b, c). We collected previously published ChIP-seq
data of histone modification and transcription factor binding in
primary islets from two studies4,5 and utilized these data to call
chromatin states with ChromHMM16 (Supplementary Fig. 1d).
Accessible chromatin predominantly mapped within active
enhancer (EnhA1) and promoter (TssA) states (Fig. 1a). We
functionally annotated islet accessible chromatin peaks using
chromatin states to define active enhancers and promoters, as
well as other classes of islet accessible chromatin (Supplementary
Data 1). We identified 44,860 active enhancers which, in line with
previous reports4,17, were distal to promoters (Supplementary
Fig. 1e), more tissue-specific (Supplementary Fig. 1f), overlapped
islet transcription factor ChIP-seq sites (Supplementary Fig. 1g),
and preferentially harbored sequence motifs for FOXA, RFX,
NEUROD, and other islet transcription factors (Supplementary

Data 2). These results define active enhancers and other classes of
accessible chromatin in pancreatic islets.

Defining the target genes of enhancers has been challenging as
they frequently control non-adjacent genes over large genomic
distances through chromatin looping18. To address this, we
created a map of 3D chromatin architecture in pancreatic islets at
sufficient resolution to identify chromatin loops. We performed
genome-wide chromatin conformation capture using in situ Hi-
C8,19 in three islet samples, two of which were sequenced to a
depth of >1 billion reads (Supplementary Table 1). Contact
matrices from islet Hi-C assays were strongly correlated across
samples (Spearman ρ > 0.80) (Supplementary Fig. 2a). We called
chromatin loops at 5, 10, and 25 kb resolution with HICCUPS8

using reads from each sample individually, as well as with reads
pooled from all three samples (Fig. 1b). We merged the resulting
four sets of loop calls where both anchors overlapped at 20 kb
resolution (see Methods) to create a combined set of 11,924 islet
Hi-C loops (Supplementary Data 3). The median distance
between loop anchor midpoints was 255 kb, and nearly 10%
were over 1Mb in size (Supplementary Fig. 2b). This established a
map of chromatin loops in human pancreatic islets.

We next determined the relationship between islet accessible
chromatin and chromatin looping. Islet accessible chromatin
signal was largely localized to islet loop anchors, with the
strongest signal at anchor midpoints (Fig. 1c). Nearly half (48.7%)
of all islet accessible chromatin sites were within 25 kb of an
anchor, and 16.8% directly overlapped an anchor. Sites most
enriched (empirical P < 1.5 × 10−4) for direct overlap with
chromatin loop anchors were those in a CTCF-binding state
(7.5-fold), followed by active promoter (TssA: 3.9-fold; TssFlnk:
3.3-fold), and active enhancer (EnhA1: 2.4-fold) states (Fig. 1d).
We further mapped the relationship between pairs of islet
accessible chromatin sites directly connected by loop anchors
(Supplementary Fig. 2c). The most significantly enriched anchor
interactions were between active enhancer and promoter states
(EnhA1-TssA OR= 1.28, Fisher’s exact P= 1.53 × 10−37;
EnhA1-EnhA1 OR= 1.37, P= 1.87 × 10−38; TssA-TssA OR=
1.42, P= 6.15 × 10−36). We also observed strong enrichment for
interactions between sites within the CTCF-binding state (CTCF-
CTCF OR= 1.16; Fisher’s exact P= 1.1 × 10−17) (Fig. 1e). These
results demonstrate that islet chromatin loops are prominently
enriched for CTCF binding, as well as active promoter and
enhancer regions.

Enhancer loops and islet-specific gene expression. We next used
chromatin loops to annotate candidate relationships between
distal islet enhancers and their potential target genes genome-
wide (see Methods). We identified 6278 islet active enhancers that
mapped directly in a chromatin loop anchor and, of these, 3022
enhancers were in a loop to a gene promoter (Supplementary
Fig. 2d and Supplementary Data 4). Conversely, the promoter
regions of 2028 genes had at least one direct loop to an active
enhancer element (Supplementary Fig. 2e and Supplementary
Data 5). Of these 2028 genes, 952 (47%) had chromatin loops to
multiple active enhancers (Supplementary Fig. 2e). Genes directly
looped to multiple enhancers were enriched for processes related
to transcription factor activity and gene regulation, signaling and
stimulus response, protein transport and insulin signaling (Sup-
plementary Table 2), and also included genes critical for islet
function such as ISL1, FOXA2, NKX6.1, and MAFB (Supple-
mentary Data 5). At many loci enhancers looped to gene pro-
moters over long distances; the average distance between
interacting enhancer and gene promoter pairs was 165 kb, with
13.9% (532) over 500 kb and 3.6% (138) over 1Mb (Fig. 2a). For
example, there were four chromatin loops at the MAFB locus,
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including two direct loops between enhancers and the MAFB
promoter region over 1Mb distal (Fig. 2b). These results define
candidate target genes for thousands of distal enhancer elements
in islets.

We examined the relationship between active enhancer looping
and target gene expression. We compared our map of islet enhancer
candidate target genes defined from islet chromatin loops to gene
expression levels in independent RNA-seq data from pancreatic
islet samples20 and 53 tissues in GTEx release v7 data21. A
significantly higher proportion of genes expressed in islets had at
least one enhancer loop compared to non-islet expressed genes (ln
(TPM) >1; expr= 0.13, non-expr= 0.05, χ2 P < 2.2 × 10−16). Genes
with increasing numbers of enhancer loops had, on average, higher
expression level in islets (Spearman ρ= 0.13, P < 2.2 × 10−16), with
the highest expression among genes with six or more loops
(median= 19.1 TPM) (Fig. 2c). We measured the relative
expression level of genes in islets and 53 GTEx tissues normalized
across tissues (see Methods), and again observed a significant
relationship between enhancer loops and relative islet expression
level (Spearman ρ= 0.084, P < 2.2 × 10−16) (Fig. 2d). In addition,
the number of islet enhancer interactions was a significant predictor
of higher relative gene expression level in islets (linear regression
β= 0.14, P < 2.2 × 10−16) but not of relative expression level in the
53 other tissues (Fig. 2d). We observed similar correlations between
distal enhancers and islet gene expression when considering sites
within a 25 kb region around each loop anchor, suggesting that
these relationships extend beyond anchor boundaries (Supplemen-
tary Fig. 2f, g). These results suggest that distal islet enhancer
chromatin loops are correlated with islet-specific gene expression
patterns.

We next determined the effects of genetic variants in islet
enhancers on target gene regulation. We generated expression

quantitative trait locus (eQTL) data from 230 islet RNA-seq
samples by combining summary statistics from two published
studies through meta-analysis7,20 (see Methods). We identified
variants overlapping classes of islet regulatory elements genome-
wide. We then quantified the eQTL association of these variants
to target genes determined by their proximity to nearby genes and
from chromatin loops (see Methods). As expected, we observed
the strongest eQTL evidence for active promoter and enhancer
variants proximal to genes (TssA: median –log10(P)= 0.64;
EnhA proximal: median –log10(P)= 0.50) (Fig. 2e). For variants
in distal enhancers, we observed significantly stronger evidence
for islet eQTL association with genes in direct loops to the
enhancer relative to non-loop genes (EnhA loop median= 0.35,
EnhA non-loop median= 0.32, Wilcox P= 4.4 × 10−5), even
when matching based on gene distance to the enhancer (EnhA
non-loop matched, Wilcox P= 0.022) (Fig. 2e). We observed
similar eQTL enrichment among enhancer variants looped to
gene promoters when considering sites within 25 kb of a loop
anchor (Supplementary Fig. 2h). These results suggest that
genetic variants in distal islet enhancer elements are preferentially
correlated with the expression level of genes in chromatin loops.

Fine-mapped T2D risk signals affect islet enhancer activity.
Genetic variants in islet regulatory elements are enriched for T2D
risk1,2,4,5. The effects of variants in regulatory elements on T2D
risk in the context of chromatin looping, however, are unknown.
We determined the effects of variants in islet regulatory elements
and chromatin loops on T2D risk using association data of 6.1 M
common (MAF > 0.05) variants from the DIAGRAM consortium
with fgwas and LD-score regression22,23. We observed strongest
enrichment of variants in active regulatory elements, most
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Fig. 1 Chromatin accessibility and conformation in pancreatic islets. a Islet accessible chromatin signal mapped predominantly within active enhancer
(EnhA1) and promoter (TssA) states. b Chromatin looping from in situ Hi-C assays of three pancreatic islet samples at entire chromosome (left), 25MB
(middle) and 2MB (right) resolution on chromosome 7. Black circles on the right panel represent statistically significant loop calls. c Accessible chromatin
signal from four islet samples (ISL1-4) was distributed around chromatin loop anchor midpoints. d Islet chromatin loop anchors were enriched for islet
CTCF-binding sites, as well as active enhancers and active promoters compared to random sites. Values represent fold change, and the error bar is SD.
e Islet chromatin loops were most enriched for interactions between islet active enhancers and active promoter elements, and between CTCF-binding sites
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notably in active enhancers (EnhA1 fgwas ln(enrich)= 3.9, LD-
score Z= 3.1) (Fig. 3a and Supplementary Fig. 3a). The effects of
variants in active enhancer and promoter elements on T2D risk
were more pronounced among those in chromatin loops
(EnhA1 fgwas ln(enrich)= 4.38, LD-score Z= 3.1; TssA fgwas ln
(enrich)= 3.03, LD-score Z= 0.86) (Fig. 3b and Supplementary
Fig. 3a). Conversely, variants in other islet elements such as
flanking promoters and weak enhancers were more enriched
outside of loops (Fig. 3b and Supplementary Fig. 3a). To deter-
mine the inter-dependence of these effects, we jointly modeled
variants in islet regulatory elements on T2D risk, while also
including variants in GENCODE coding exons and UTRs. In a
joint model, we observed enrichment of variants in islet active
enhancer elements (EnhA1 ln(enrich)= 4.04), in addition to
flanking promoters (TssFlnk ln(enrich)= 3.77) and coding exons
(CDS ln(enrich)= 2.34) (Supplementary Fig. 3b). These results
demonstrate genome-wide enrichment of variants in islet active
regulatory elements within chromatin loops for T2D risk.

To identify T2D risk signals mapping in islet enhancers, we
used the effects from the joint enrichment model as priors on the
causal evidence (posterior probability of association; PPA) for

variants at both known T2D loci and genome-wide1,2,23

(Supplementary Data 6, see Methods). Among 107 known risk
signals, variants in islet enhancers accounted for almost a third
(29%) of the total probability mass (Fig. 3c). We clustered known
risk signals based on annotations at candidate causal variants (see
Methods) and identified 30 signals where the causal variant was
likely in an islet enhancer (Fig. 3d). The 30 T2D islet enhancer
signals were associated with IGTT-based insulin secretion
phenotypes significantly more than un-annotated signals
(Enh.= 42%, un-annot.= 17%, Chi-square P= 1 × 10−7), sup-
porting a role in islet function24 (see Methods, Fig. 3e). Fine-
mapping including functional priors improved causal variant
resolution at these 30 signals, which on average had 3.5 candidate
variants overlapping an islet enhancer and an ATAC-seq site
from >1 sample (Fig. 3f, Supplementary Data 1, and Supplemen-
tary Data 7). The majority of these enhancers were highly
reproducible (>50% of samples), active in beta and alpha cells, in
low-methylated regions (LMRs), and bound by islet TFs
(Supplementary Data 7). At six signals we resolved a single
causal enhancer variant, for example rs7732130 (PPA= 98%) at
the 5q13 locus near ZBED3/PDE8B (Fig. 3g). Outside of known
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Fig. 2 Islet enhancer regulation of distal target gene expression. a Enhancers looped to gene promoters on average over a 165 kb distance, including >10%
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loci, we identified an additional 127 loci genome-wide where fine-
mapping identified a putative T2D risk variant that overlapped an
islet enhancer and ATAC-seq site from >1 sample (Supplemen-
tary Fig. 3c, Supplementary Data 1, and Supplementary Data 8;
see Methods). These results identify known and putative T2D risk
signals with causal variants in islet enhancers.

We next determined allelic effects of variants at these T2D
signals on islet enhancer activity. We performed allelic imbalance
mapping of enhancer variants using data from 23 islet ATAC-seq
samples (four in this study, and 19 from published studies) and
three islet Hi-C samples (see Methods). At the 30 T2D enhancer
signals, we identified 24 variants with significant allelic imbalance
(binomial test; FDR q < 0.1) in islet accessible chromatin
(median= 1/signal) (Supplementary Data 7). Supporting the
function of these variants, we observed significant evidence for
concordant direction of effect on allelic imbalance in islet
chromatin conformation (binomial P= 0.022) and the majority

(19/24) were predicted to disrupt a TF footprint (Supplementary
Data 7). Among putative T2D loci, we identified 20 additional
variants with significant allelic imbalance (FDR < 0.1) (Supple-
mentary Data 8). T2D variants with significant imbalance
included five with previously reported islet regulatory effects
such as rs11257655 at 10p13 (binomial P= 9.1 × 10−7),
rs11708067 at 3q21 (binomial P= 2.1 × 10−8) and rs10842991
at 12p11 (binomial P= 2.6 × 10−4);14,25 the former two have also
been reported to affect DNA methylation14,26. Among the 19
imbalanced variants not reported previously, rs7732130 at 5p13 is
causal for T2D (PPA= 98%) and the T2D risk (and reference)
allele G increased chromatin accessibility (binomial P= 7.1 × 10−4).
We validated that the risk allele at rs7732130 increased islet
enhancer activity using gene reporter assays in islet cells (t-test
Fwd P= 3.7 × 10−3, Rev P= 6.8 × 10−6) (Fig. 3h). These results
identify T2D risk variants with allelic effects on islet enhancer
activity.

EnhA1

EnhA2

Quies/low

EnhWk

CTCF

<–4 –2 0 2 4

E
nh

an
ce

r

E
nh

an
ce

r

Enhancer

Un-annot

Promoter
Coding

C
od

in
g 

ex
on

Is
le

t E
hn

U
n-

an
no

t

G
en

et
ic

+
 p

rio
rs

+
 p

rio
rs

(E
nh

 o
nl

y)

C
od

in
g 

ex
on

P
ro

m
ot

er

P
ro

m
ot

er

U
T

R

U
T

R

C
T

C
F

C
T

C
F

–4

–4

–2

–2 0

0

2

2

4

Chr5 76,450,000

ZBED3 PDE8B

rs7732130

4

0.5
1000 1.0 10

8

6

4

2

0

rs7732130

Alt Ref Alt Ref
Fwd Rev

0.8

0.6

0.4

0.2

0.0

ATAC-seq
signal

Chromatin
state

70
45.5

3.5

100

10

1

0.4

0.3

0.2

0.1

0.0

%
 A

ss
oc

. w
ith

 IG
T

T
-b

as
ed

in
su

lin
 s

ec
re

tio
n

# 
cr

ed
ib

le
 s

et
 v

ar
ia

nt
s

C
au

sa
l p

ro
ba

bi
lit

y

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

30

25

20

15

10

5

0

TssA

EnhA1

TssFlnk

T2D enrichment

**

**

***

T2D In(enrich) no HiC loop

T
2D

 In
(e

nr
ic

h)
 n

o 
H

iC
 lo

op

%
 o

f t
ot

al
 T

2D
ca

su
al

 p
ro

ba
bi

lit
yTssFlnk

TssA

a b c d

e f g h

Fig. 3 Type 2 diabetes risk signals map in islet enhancers. a Genetic variants in islet active regulatory elements genome-wide were enriched for T2D risk,
with strongest enrichment in active enhancer (EnhA1) elements. Values represent log enrichment and 95% CI, and are colored blue where the 95% CI
does not overlap 0. b The effects of variants in active enhancer (EnhA1) and promoter (TssA) elements on T2D risk were stronger among those in
chromatin loops, whereas other elements were enriched for T2D outside of loops. Values represent log enrichment and 95% CI, and are colored blue
where the 95% CI does not overlap 0. c Over 30% of the total causal probability across 107 known T2D risk signals mapped in islet enhancer elements.
d Clustering of known T2D signals based on islet and coding annotations identified 30 signals with likely causal variants in islet enhancers. e A significantly
higher percentage of T2D islet enhancer signals were associated with IGTT-based insulin secretion phenotypes than un-annotated T2D signals (Chi-square
**P < 0.001). f Number of variants in the 99% credible sets for the 30 T2D islet enhancer signals based on genetic fine-mapping alone (genetic), genetic
fine-mapping, including functional priors (+priors). g T2D causal variant rs7732130 at the 5q13 locus near ZBED3/PDE8B mapped in an islet active
enhancer. h rs7732130 has allelic effects on enhancer activity in the islet cell line MIN6 (N= 3), where the T2D risk allele and reference (ref) G has higher
activity than the alternate (alt) allele A. Values represent mean and SD. T-test **P < 0.001, ***P < 0.0001. Boxplots show the median, and third and first
quartiles. Source data are provided as a source data file
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Candidate targets of T2D variants affecting islet enhancers.
While a large percentage of T2D risk signals affect islet enhancer
activity, the gene targets of these enhancers are unknown. In
order to identify genes affected by T2D risk variants in enhancers,
we used a tiered strategy whereby we first identified candidate
target genes of these enhancers using chromatin looping and
promoter-proximity, and then further prioritized candidate genes
cis-regulated by T2D enhancer variants using eQTL mapping. For
each T2D enhancer signal (from Fig. 3d), we identified candidate
genes based on whether an enhancer variant was within 25 kb of
either a chromatin loop to the gene promoter or the gene pro-
moter itself (see Methods). Based on this definition T2D enhancer
signals had on average 2 candidate target genes (Fig. 4a, b and
Supplementary Table 3), a large reduction in candidates com-
pared to using a 1MB window (median= 18 genes) or topolo-
gically associating domain (TAD) boundaries (median= 7 genes)

around candidate variants (Fig. 4a). At several loci, loops impli-
cated candidate target genes highly distal (>500 kb) to T2D
enhancer variants. For example, at the 3q27 locus T2D variants
directly looped to the TPRG1 promoter 900 kb distal (Supple-
mentary Fig. 4a), and at the 10p13 locus T2D variants looped to
the OPTN and CCDC3 promoters 840 kb distal (Supplementary
Fig. 4b). In additional examples, T2D enhancer variants at the
11p15 locus near KCNQ1 looped to the CDKN1C promoter as
well as to the INS/IGF2 locus 700 kb distal (Supplementary
Fig. 4c), and T2D enhancer variants at the 10q22 locus near
ZMIZ1 looped to the POLR3A locus 1MB distal (Supplementary
Fig. 4d). These results define candidate target genes of T2D
enhancer signals, including multiple that interact over large
genomic distances.

We next mapped candidate target genes regulated by variants
at T2D enhancer signals using islet eQTL data. At each signal, we
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tested the most likely casual enhancer variant for eQTL
association to each candidate gene correcting for the total
number of candidate genes for that signal (see Methods). For
the resulting genes with eQTL evidence (corrected P < 0.05), we
further confirmed the eQTL and T2D signals did not have distinct
causal variants using Bayesian co-localization (see Methods).
Target genes showed evidence for islet eQTLs with eight known
T2D islet enhancer signals (corrected P < 0.05), including
CAMK1D, ABCB9, C2CD4B, and IGF2BP2 (Table 1 and
Supplementary Table 4). For example, the known T2D variant
rs11257655 mapped in an islet active enhancer element that
looped directly to the CAMK1D promoter and was an islet eQTL
for CAMK1D expression25 (Fig. 4c). At the 127 putative T2D
enhancer signals, we identified 12 additional target genes with
evidence for eQTLs to T2D variants (corrected P < 0.05) such as
FADS1, VEGFA, SNX32, and SCRN2 (Supplementary Table 4).
Among these 21 cis-regulated genes, nearly a third have not been
identified as significant islet eQTLs in previous studies7,17,27.
These results identify candidate target genes, which are cis-
regulated by T2D islet enhancer signals.

We next characterized the biological functions of candidate
genes identified at these T2D enhancer signals. Candidate target
genes were strongly enriched in gene sets related to protein
transport and secretion, potassium ion transport, vesicles and
vesicle membranes, and endoplasmic reticulum (FDR q < 0.2)
(Fig. 4d and Supplementary Table 5). Candidate target genes also
included six genes involved in MODY and other monogenic and
syndromic forms of diabetes (ABCC8, KCNJ11, GCK, INS, GLIS3,
WFS1) (Supplementary Table 3). Conversely, non-target genes
within 1Mb of these same 30 signals were enriched for gene sets
related to stress–response and other processes (FDR q < 0.2),
which may represent regulatory programs activated in other
cellular states (Supplementary Table 5, see Methods). Candidate
genes with islet eQTLs to known and putative T2D enhancer
signals were specifically enriched for genes involved in vesicle-
mediated transport (FDR q < 0.2) (Fig. 4d and Supplementary
Table 5). These results demonstrate that candidate target genes of
T2D enhancer signals are involved in protein transport and
secretion pathways.

Imp2 conditional inactivation affects insulin secretion. At the
3q27 locus, IGF2BP2 is the only candidate target gene based on
T2D variant proximity to the gene promoter and eQTL evidence
(Table 1, Supplementary Fig. 5a and Supplementary Table 4), and
is furthermore the only gene in the entire TAD (Supplementary
Fig. 5a and Supplementary Data 9). We sought to determine the
mechanism of risk variant activity in islets at this locus. Fine-

mapped T2D enhancer variants at 3q27 all mapped within a 6 kb
intronic region proximal to the IGF2BP2 promoter (Supple-
mentary Fig. 5a and Supplementary Data 7). We tested these
candidate enhancer variants for allelic imbalance in islet acces-
sible chromatin (see Methods). We observed significant evidence
(FDR q < 0.1) for allelic imbalance at rs10428126 (binomial
P= .001) where the T2D risk (and alternate) allele C had reduced
accessibility, and no evidence for imbalance among the other
candidate variants at this locus (Supplementary Data 7). This
variant has also been reported as a chromatin accessibility QTL in
islets28. We further validated that the T2D risk allele at
rs10428126 reduced islet enhancer activity using gene reporter
assays in MIN6 cells (t-test P= 1.0 × 10−3) (Supplementary
Fig. 5b). In addition, rs10428126 mapped in a site consistently
active across ATAC-seq samples and in ChIP-seq sites for
NKX2.2 and PDX1, and the risk allele disrupted PDX1 and NKX
motifs (Supplementary Fig. 5c). These results reveal a likely causal
risk variant at IGF2BP2 that reduces chromatin accessibility and
enhancer activity in islets.

As T2D risk alleles at the IGF2BP2 locus are correlated with
reduced islet chromatin accessibility, enhancer activity and
IGF2BP2 expression as well as reduced insulin secretion
phenotypes24, we hypothesized that reduced activity of IGFBP2
would contribute to a diabetic phenotype in islets. We thus
determined the effects of reduced IGF2BP2 (Imp2 in mice) on islet
function using a mouse model. Imp2 is widely expressed in adult
mouse tissues, including fat, muscle, liver, and pancreas29, and in
the pancreas Imp2 expression localized to islets and overlapped
insulin (Fig. 5a). We inactivated Imp2 in mouse beta cells by
recombining the Imp2flox(f) allele with Cre recombinase driven by
the rat insulin 2 promoter (RIP2-Cre) (Supplementary Fig. 6a).
Immunoblot analysis of extracts from isolated Imp2ff/RIP2-Cre
islets confirmed reduced Imp2 abundance compared to Imp2ff

islets (Fig. 5b). Imp2ff/RIP2-Cre mice exhibited no overt phenotype
and gained weight similar to Imp2ff controls on both a normal
chow (NCD) and high-fat diet (HFD) (Supplementary Fig. 6b).

We assessed the effect of Imp2 deficiency in mouse beta cells
on glucose homeostasis. At 10 weeks of age, Imp2ff and Imp2ff/
RIP2-Cre mice on NCD exhibited no difference in blood glucose
and insulin levels. By contrast, blood insulin and C-peptide levels
were reduced in HFD-fed Imp2ff/RIP2-Cre compared to HFD-fed
control mice, whereas blood glucose and glucagon levels were
similar (Fig. 5c). When challenged with an intraperitoneal glucose
injection, HFD-fed, but not NCD-fed, Imp2ff/RIP2-Cre mice
exhibited significantly higher glucose and lower insulin levels
than Imp2ff mice (Fig. 5d, e). Importantly, this was not due to a
difference in insulin sensitivity, as blood glucose levels after an
intraperitoneal insulin injection were similar in Imp2ff and
Imp2ff/RIP2-Cre mice (Supplementary Fig. 6c). These results
indicate that Imp2 deficiency limits the capacity of beta cells to
augment insulin secretion in response to increased insulin
demand.

Discussion
In summary, we defined the genomic location and spatial
orientation of accessible chromatin in pancreatic islets. We
identified putative target genes for thousands of islet distal
enhancers, including those that interacted in chromatin loops
over 1Mb distances. We fine-mapped candidate causal variants in
islet enhancers at 30 known T2D signals, and identified an
average of one enhancer variant per signal with allelic effects on
islet chromatin accessibility. Prioritizing target genes of T2D islet
enhancer signals using islet chromatin loops and promoter-
proximity greatly reduced the number of potential candidates,
and through eQTL mapping we then identified target genes cis-

Table 1 Candidate genes with eQTLs to T2D enhancer
variants

Locus # Candidate
genes

Enhancer
varianta

eQTL genes eQTL P-
valueb

Shared
eQTLc

10p13 3 rs11257655 CAMK1D 1.72E-14 Y
8p11 2 rs508419 NKX6-3 5.59E-10 Y
12q24 13 rs1260294 ABCB9 2.63E-07 Y
3q27 1 rs7646518 IGF2BP2 7.49E-07 Y
2q21 3 rs4954179 ACMSD 5.43E-06 Y
2q21 3 rs4954179 TMEM163 9.69E-05 Y
15q22 6 rs17205526 C2CD4B 0.00088 Y
4q35 1 rs116401167 ACSL1 0.04 Y
5q13 1 rs7732130 PDE8B 0.048 Y

aEnhancer variant with highest PPA per signal listed
badjusted eQTL P < 0.05; P-values reported are uncorrected
cBayesian co-localization probability of shared signals is greater than probability of distinct
signals

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09975-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2078 | https://doi.org/10.1038/s41467-019-09975-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


regulated by T2D enhancer variants. Future studies of chromatin
looping generated across larger numbers of samples will enable a
greater understanding of risk variants effects on looping directly,
as well as correlative relationships with gene expression and other
molecular phenotypes. Furthermore, studies modifying islet
enhancer activity, for example through genome editing, may
provide additional validation of affected target genes in particular
those with more subtle effects.

Target genes of T2D islet enhancer signals were specifically
enriched in protein transport and secretion pathways, and we
validated that reduced activity of IGF2BP2 homolog Imp2 in
mouse islets leads to defects in glucose-stimulated insulin secre-
tion. The mechanism of how IGF2BP2 functions in the islet
cellular context to produce a diabetic phenotype will be of interest
to continued studies. While our results describe gene networks
contributing to T2D in normal islet physiology, mapping changes
in islet chromatin accessibility and architecture in diabetogenic
conditions and disease states will provide additional networks
contributing to T2D. These studies will be further enhanced by
data from experimental screens for regulatory activity and cellular
and animal phenotypes providing more systematic functional
validation. Altogether our results link T2D risk to enhancer
regulation of protein transport and secretion, and highlight the
utility of high-resolution chromatin conformation maps in
revealing the genes and networks underlying genetic risk of
complex disease.

Methods
Islet samples. Five human islet donors were obtained from the Integrated Islet
Distribution Program (IIDP) (Supplementary Table 1). Islet studies had exempt

status from the Institutional Review Board (IRB) of the University of California San
Diego. Islet preparations were enriched and selected using zinc-dithizone staining.

Islet ATAC-seq data generation. We generated ATAC-seq data from four of the
human islet samples based on a previously described protocol12. For Islet samples
ISL_3 and ISL_4, permeabilized nuclei were obtained by resuspending cells in 250
µL Nuclear permeabilization buffer [0.2% IGEPAL-CA630 (I8896, Sigma), 1 mM
DTT (D9779, Sigma), Protease inhibitor (05056489001, Roche), 5% BSA (A7906,
Sigma) in PBS (10010-23, Thermo Fisher Scientific)], and incubating for 10 min on
a rotator at 4 °C. Nuclei were then pelleted by centrifugation for 5 min at 500 x g at
4 °C. The pellet was re-suspended in 25 µL ice-cold Tagmentation Buffer [33 mM
Tris-acetate (pH= 7.8) (BP-152, Thermo Fisher Scientific), 66 mM K-acetate
(P5708, Sigma), 11 mM Mg-acetate (M2545, Sigma), 16% DMF (DX1730, EMD
Millipore) in Molecular biology water (46000-CM, Corning)]. An aliquot was then
taken and counted by hemocytometer to determine nuclei concentration.
Approximately 50,000 nuclei were re-suspended in 20 µL ice-cold Tagmentation
Buffer, and incubated with 1 µL Tagmentation enzyme (FC-121-1030; Illumina) at
37 °C for 30 min with shaking 500 rpm. The tagmentated DNA was purified using
MinElute PCR purification kit (28004, Qiagen). The libraries were amplified using
NEBNext High-Fidelity 2x PCR Master Mix (M0541, NEB) with primer extension
at 72 °C for 5 min, denaturation at 98 °C for 30 s, followed by eight cycles of
denaturation at 98 °C for 10 s, annealing at 63 °C for 30 s and extension at 72 °C for
60 s. Amplified libraries were then purified using MinElute PCR purification kit
(28004, Qiagen), and two size selection steps were performed using SPRIselect bead
(B23317, Beckman Coulter) at 0.55X and 1.5X bead-to-sample volume rations,
respectively. For ISL_1 and ISL_2, frozen nuclear pellets of 50,000 cells were
thawed on ice, re-suspended in 50 μL of transposition reaction mix (2.5 μL of Tn5
transposase in 1x TD buffer (Illumina)) for 30 min at 37 °C in a thermomixer with
gentle shaking. Immediately following transposition, tagmented DNA was purified
using a MinElute Kit (Qiagen) or a DNA Clean and Concentrator-5 kit (Zymo) and
eluted in 10 μL of nuclease-free H2O. Five microliters of the purified sample was
PCR amplified for 12 cycles using KAPA Real-Time Library amplification kit
(KAPA Biosystems) and customized Nextera PCR primers (as in Buenrostro
et al.12). Amplified libraries were purified using AMPure XP (Beckman Coulter)
beads and eluted in 12–15 μL of nuclease-free H2O. Libraries were sequenced on
either an Illumina NextSeq 550 or Illumina HiSeq2500.
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Fig. 5 Loss of Imp2 activity in mouse beta cells impairs glucose-stimulated insulin secretion in diet-induced insulin resistance. a Immunostaining of insulin
and IMP2 in mouse pancreas. Scale bar equals 80 μM. b Expression of IMP2 in islets and other T2D-relevant tissues liver, adipose, muscle, and brain. The
original uncropped images are provided in the source data file. c Blood glucose, insulin, c-peptide, and glucagon level in 10-week-old male mice on high-fat
diet (HFD) (N= 9). Wild-type (black) and Imp2ff/RIP2-Cre (red). d One-gram per kilogram of glucose was administered intraperitoneally after overnight
fasting of 12-week-old Imp2ff (black; N= 10) and Imp2ff/RIP2-Cre (red; N= 10) male mice maintained on normal chow diet (NCD). left= blood glucose;
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09975-4

8 NATURE COMMUNICATIONS |         (2019) 10:2078 | https://doi.org/10.1038/s41467-019-09975-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


For each sample, we trimmed adapter sequences using TrimGalore (https://
github.com/FelixKrueger/TrimGalore). The resulting sequences were aligned to
sex-specific hg19 reference genomes using bwa mem30,31. We filtered reads were to
retain those in proper pairs and with mapping quality score greater than 30. We
then removed duplicate and non-autosomal reads. We called peaks individually for
each sample with MACS213 at a q-value threshold of 0.05 with the following
options “—no-model”, “—shift -100”, “—extsize 200”. We removed peaks that
overlapped genomic regions blacklisted by the ENCODE consortium and merged
the peaks31. In total, we obtained 105,734 merged peaks. To assess concordance
between ATAC-seq experiments, we calculated read coverage for each peak in the
merged set of ATAC-seq peaks, excluding peaks that overlapped blacklisted
genomic regions. We then calculated the Spearman correlation between the read
counts for each sample.

We collected published ATAC-seq data from primary islets and from FACS-
sorted alpha, beta and acinar cells7,14,15. We re-processed raw data and called peaks
for each sample using the same procedure described above. We determined the
overlap in peak calls from the four islet ATAC-seq samples and these published
data using Jaccard index.

Islet Hi-C data generation. We generated Hi-C data from three of the pancreatic
islet samples, two of which also had ATAC-seq data (Supplementary Table 1). In
situ Hi-C was performed using a previously published protocol with modifications
adapted to frozen human tissue19. Briefly, the tissue was cut to fine pieces and
washed with cold PBS. Cross-linking was carried out with 1% formaldehyde
(sigma) in PBS at room temperature (RT) for 10 min and quenched with 125 mM
Glycine (sigma) at RT for 5 min. Nuclei were isolated using a loose-fitting Dounce
homogenizer in hypotonic buffer (20 mM Hepes pH 7.9, 10 mM KCl, 1 mM
EDTA, 10% Glycerol and 1 mM DTT with additional protease inhibitor (Roche)
for 30 strokes and centrifuge at 3500 x g at 4 °C.

Nuclei were digested using 4-base cutter restriction enzyme MboI (NEB) at 37 °C
overnight (o/n). Digested ends were filled in blunt with dBTP with biotinylated-14-
ATP (Life Technologies) using Klenow DNA polymerase (NEB). Re-ligation was
performed in situ when nucleus was intact using T4 DNA ligase (NEB) at 16 °C for
4 h. The cross-linking was reversed at 68 °C o/n while protein was degraded with
proteinase K treatment (NEB). DNA was purified with phenol-chloroform
extraction and ethanol precipitation, followed by fragmentation to 300–500 bp with
the Covaris S220 ultrasonicator. Ligation products were enriched with Dynabeads
My One T1 Streptavidin beads (Life Technologies). PCR was used to amplify the
enriched DNA for sequencing. HiSeq 4000 sequencer (Illumina) was used to
sequence the library with 2 × 100 bp paired-end reads.

For each sample, reads from paired-end reads were aligned with bwa mem32 as
single-end reads, and then filtered through following steps. First, only five prime
ends were kept for chimeric reads. Second, reads with low mapping quality (<10)
were removed. Third, read ends were then manually paired, and PCR duplicates
were removed using Picard tools (https://github.com/broadinstitute/picard).
Finally, filtered contacts were used to create chromatin contact maps with
Juicebox33.

To determine the consistency in the three Hi-C samples, the contact map from
each sample was first binned to 100 kb. Next, each contact matrix was linearized
into a single vector. Finally, the Spearman correlation between each pair of samples
was measured using the two corresponding linearized vectors. The correlations
were calculated using the command scipy.stats.spearmanr in the scipy for python.

Chromatin loops were identified by using HICCUPS8 at 5, 10, and 25 kb
resolutions with default parameters on the Hi-C maps for each individual sample.
Next, Jaccard index for loop sets across samples were calculated for overlap within
20 kb using pgltools34. The Hi-C data was then pooled across all three samples to
create a single contact map, and loops were called with HICCUPs at the same
resolutions with the same parameters. A single loop set was then created by
unifying the four chromatin loop sets (three from each individual sample, one from
pooled data). Specifically, we identified loops where both anchors were within 20
kb of one another via pgltools34, and retained the loop with the highest resolution;
if multiple loops were found at the highest resolution, loops were kept from the
contact map with the highest overall sequencing depth. For each resulting
chromatin loop in the merged set, we then annotated in which sample(s) the loop
was identified in (Supplementary Data 3). We also called topologically associating
domains (TADs) from the pooled Hi-C data using a previously described
approach10.

Islet ChIP-seq data processing. We obtained previously published data from
ChIP-seq assays of H3K4me1, H3K27ac, H3K4me3, H3K36me3, and CTCF gen-
erated in primary islets and for which there was matching input sequence from the
same sample4–6. For each assay and input, we aligned reads to the human genome
hg19 using bwa35 with a flag to trim reads at a quality threshold of <15. We
converted the alignments to bam format and sorted the bam files. We then
removed duplicate reads, and further filtered reads that had a mapping quality
score below 30. Multiple sequence datasets obtained from the same assay in the
same sample were then pooled.

We defined chromatin states from ChIP-seq data using ChromHMM16 with a
9-state model, as calling larger state numbers did not empirically appear to identify
additional states. We assigned the resulting states names based on patterns

previously described in the NIH Roadmap and ENCODE projects–CTCF (CTCF),
Transcribed (Txn; H3K36me3), Active promoter (TssA; H3K4me3, H3K4me1),
Flanking promoter (TssFlnk; H3K4me3, H3K4me1, H3K27ac), Weak/Poised
Enhancer (EnhWk; H3K4me1), Active Enhancer 1 (EnhA1; H3K27ac, H3K4me1),
Active Enhancer 2 (EnhA2; H3K27ac), and two Quiescent states with low signal,
which we merged together (Quies/low; low signal for all assays).

We then annotated accessible chromatin sites based on overlap with the
chromatin states. If an accessible chromatin site overlapped multiple chromatin
states, we split the site into multiple distinct elements.

Islet chromatin interaction analyses. To determine the normalized tag counts of
ATAC-seq data at loop anchors, loop anchors were converted to a regular BED file
with pgltools34, and HOMER36 was used to find the normalized tag density across
all loop anchors for each ATAC-seq sample. Output from HOMER was normalized
to a maximum height of 1 for each sample to determine the distribution of ATAC-
seq signal within each sample, rather than the relative magnitude coverage dif-
ference between ATAC-seq samples.

To determine the enrichment of each class of islet regulatory elements near
loops, and the types of elements co-localized by loops, we utilized pgltools and
HOMER to integrate the ATAC-seq and Hi-C data. We first created a size matched
null distribution comprised of 7000 permuted regions. Next, for each islet
accessible chromatin state, we identified the proportion of states within 25 kb of a
loop. We determined the fold enrichment of each class over the average calculated
from the null distribution, and determined significance as the number of permuted
counts greater than the observed.

To determine which pairs of islet regulatory elements were in chromatin loops at a
statistically significant level, we compared the distribution of islet regulatory elements
around loop anchors using HOMER. We utilized the “annotateInteractions” function
to obtain logistic regression P-values and odds ratio enrichment estimates for all pairs
of islet regulatory elements.

We defined candidate target genes of islet enhancer elements using Hi-C loops
in the following way. First, we identified all islet active enhancer elements mapping
directly within a Hi-C loop anchor. We then filtered these loops based on whether
the other anchor mapped within a promoter region (−5 kb/+ 2 kb of transcription
start site) for protein-coding or long non-coding genes in GENCODEv2737. For
each active enhancer, we then calculated the number of gene promoter regions
interacting with that enhancer. For each gene promoter region, we calculated the
number of independent interactions containing at least one active enhancer
element. We also defined a broader set of candidate enhancer and gene promoter
interactions by using a 25 kb flanking window around each loop and re-calculating
overlap.

We identified genes in direct loops with multiple (>1) active enhancers and
tested these genes for gene set enrichment using GSEA38, considering only gene
sets with >25 genes at an FDR of 0.2.

Genomic enrichment analyses. We tested for enrichment of variants in each
accessible chromatin class using T2D association data of 1000 Genomes project
variants from the DIAGRAM consortium23. From this meta-analysis, we identified
common variants (with minor allele frequency (MAF) > .05). In total, we retained
6.1 M common variants for testing. For each variant, we then calculated a Bayes
Factor from effect size estimates and standard errors using the approach of
Wakefield39.

We then modeled the effect of variants in each class of islet regulatory elements
on T2D risk using fgwas22. For these analyses, we used a window size (-k) that
resulted in a 1Mb window on average. We first tested for enrichment of variants in
each state individually. We then built a joint model iteratively in the following way.
We first identified the annotation with the highest likelihood. We then added
annotations to the model until the likelihood did not increase further. Using this
model, we introduced a series of penalties from 0 to 0.5 in increments of 0.01 and
fit the model using each penalty, and identified the penalty that gave the highest
cross-validation likelihood. We then finally removed annotations from the model
that further increased the cross-validation likelihood. We considered the resulting
set of annotations and effects to be the optimal joint model.

We also modeled the effect of variants in islet regulatory elements using
stratified LD-score regression40. For these analyses, we extracted variants in
HapMap3 from T2D association data. We then calculated LD scores for variants in
each regulatory element class. Finally, we obtained enrichment estimates using
these LD scores with T2D association data of HapMap3 variants.

Allelic imbalance analyses. We collected a total of 23 islet ATAC-seq datasets by
combining data from four samples in this study with published data from
19 samples7,14. We tested for allelic imbalance at all fine-mapped variants in islet
enhancers at 30 known T2D signals, as well as putative T2D variants in islet
enhancers outside of known loci. We used bwa mem to align paired-end sequence
data, filtered out mitochondrial reads, and removed duplicates using picard
MarkDuplicates. For each dataset, we then applied the WASP pipeline to correct
for reference mapping bias27. To filter out imbalance that could potentially arise
from sequencing errors, we set a filter for each sample to limit allelic imbalance
testing to heterozygous SNPs with at least two reads covering each allele. At the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09975-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2078 | https://doi.org/10.1038/s41467-019-09975-4 | www.nature.com/naturecommunications 9

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/broadinstitute/picard
www.nature.com/naturecommunications
www.nature.com/naturecommunications


IGF2BP2 locus, we first genotyped a curated set of variants at the locus in each
sample using QuASAR with a probability threshold of 0.9941, and then used the
UM Imputation Server to impute genotypes in the HRC reference panel. We then
retained variant genotypes with high imputation quality (r2 > 0.7).

For each sample, we then used a binomial test to assess imbalance at each
heterozygote assuming a null hypothesis where the two alleles were equally likely to
be observed. For each variant, we calculated signed Z-scores from P-values and
combined signed Z-scores across samples with Stouffer’s Z-score method using
sequencing depth to weight statistics from each sample. From the resulting
combined Z-scores, we calculated combined P-values and q-values using the
Benjamini-Hochberg procedure. The q-values were calculated separately for known
T2D signals (using variants in Supplementary Data 7) and the putative T2D signals
(using variants in Supplementary Data 8).

For the set of variants at known and putative T2D signals tested for allelic
imbalance in islet ATAC-seq signal, we further tested these variants for allelic
imbalance in islet Hi-C. We used samtools mpileup to obtain allele counts for each
variant in each sample42, retained variants with at least three reads covering each
allele, and calculated a P-value from the resulting counts using a binomial test. We
then combined P-values for each variant across samples using Fisher’s meta-
analysis. For variants at known loci with significant ATAC-seq imbalance, we
determined the number of variants that had the same direction of effect on allelic
imbalance in islet ATAC-seq and islet Hi-C signal. If there were multiple variants
at a given signal with ATAC-seq imbalance, we retained only the variant with the
highest PPA. We then used a binomial test to assess whether there was significant
directional concordance in ATAC-seq and Hi-C imbalance under an expected
concordance of 50%.

Genomic annotation analyses for TF ChIP-seq. We obtained 13 published islet
transcription factor ChIP-seq datasets4,43 for FOXA2 (2), MAFB (2), NKX2-2 (2),
NKX6-1 (2), and PDX1 (5) and re-processed each experiment with a uniform
processing pipeline. We used bwa aln and bwa samse to align the reads to hg19
with a quality threshold of 15. We then removed duplicate reads with the picard
MarkDuplicates tool. We called peaks with MACS213 using matched input controls
for each experiment after extending reads to a uniform 200 bp length.

Genomic annotation analyses for DNA methylation. We obtained low-
methylated regions (LMRs) and un-methylated regions (UMRs) defined in a
published islet DNA methylation study14. In this study, LMRs were defined as
having methylation ranging from 10–50% and containing fewer than 30 CpG sites.

Genomic annotation analyses for TF footprints. To identify haplotype-aware
motifs within ATAC-seq footprints overlapping accessible chromatin sites, we
searched accessible chromatin sites from four ATAC-seq samples for instances of
motifs from JASPAR, SELEX, ENCODE and de novo motifs identified in our data.
We used vcf2diploid44 (https://github.com/abyzovlab/vcf2diploid) to create
individual-specific diploid genomes by mapping our phased, imputed genotypes
onto hg19 using only SNPs and ignoring indels. Then, we used fimo45 to scan the
personalized genomes for our compiled database of motifs, limiting the sequences
scanned to those derived from islet accessible chromatin. For fimo, we used the
default parameters for P-value threshold (1 × 10−4) and a background GC content
of 40.9% based on hg19.

Using make_cut_matrix from atactk v 0.1.6 (https://github.com/ParkerLab/
atactk) we created cut-site matrices containing the number of Tn5 integrations ±
100 bp around each sequence motif on both the forward and reverse strands. We
then determined the posterior probability that a given motif occurrence was bound
using CENTIPEDE46, and defined footprints using a posterior probability
threshold of 0.99. We merged the resulting footprints with a published set of
pancreatic islet ATAC-seq footprints7.

We further identified variants predicted to disrupt each footprint. We calculated
the entropy score for a variant position in a footprint using the position frequency
matrix (PFM) for each motif. A footprint was considered disrupted if a variant fell
in a conserved position in the motif (defined as entropy <1.0).

Fine-mapping of T2D risk variants. We used the effects from the joint enrich-
ment model as priors on the evidence for variants at 107 known T2D signals using
fine-mapping data from the Metabochip2, GoT2D1 and DIAGRAM 1000 Gen-
omes23 studies. We used data of 49 T2D signals at 39 T2D loci on the Metabochip,
41 additional T2D signals from GoT2D data for T2D loci not on the Metabochip,
and 17 additional T2D signals in DIAGRAM 1000G not in Metabochip or GoT2D.

For each signal, we obtained the enrichment effect of the islet regulatory or
coding annotation overlapping that variant. We calculated a prior probability for
the variant by dividing the effect by the sum of effects across all variants at a signal.
We then multiplied this prior probability by the Bayes Factor for each variant.
From the resulting odds, we calculated a posterior probability that the variant is
causal for T2D risk (PPA) by dividing the odds by the sum of odds across all
variants at the locus.

For each signal, we calculated a cumulative PPA (cPPA) value for islet enhancer
(EnhA1, EnhA2, EnhWk), promoter (TssA, TssFlnk), CTCF-binding site, UTR,
and coding exon (CDS) annotations by summing the PPAs of all variants

overlapping each annotation. We then clustered T2D signals into groups based on
cPPA values using k-means clustering.

We determined the effects of T2D signals in each cluster on glycemic
association data24. We identified 73 T2D signals represented in these data and
cataloged 23 associated at adjusted P < 0.05 with first-phase insulin response, peak
insulin response, AIR, or insulin secretion rate. We calculated the percentage of
signals in each cluster associated with these measures and tested for differences
between clusters using a Chi-square test with a 2 × 2 contingency table segregated
by (1) enhancer signal, or un-annotated signal and (2) associated with insulin
secretion measures, or not associated with insulin secretion measures.

We also performed a binomial test of the number of enhancer signals associated
with insulin secretion measures using the fraction of un-annotated signals
associated with insulin secretion measures as the expected value and found a
similar enrichment (P= 2.4 × 10−3).

For the 30 T2D islet enhancer signals, we calculated 99% credible sets as the set
of candidate variants that explain 99% of the total PPA using genetic fine-mapping
data alone (genetic), and fine-mapping, including priors from the joint genome-
wide enrichment model (+priors).

We then fine-mapped casual variants in putative T2D loci genome-wide. For
variants in each 1MB window across the genome, after excluding any windows
overlapping a known T2D signal, we obtained the effect of the islet annotation
overlapping that variant. We calculated a prior probability for each variant as
described above also including an additional prior on the evidence that the 1MB
window is a T2D locus. We multiplied both prior probabilities by the Bayes Factor
for each variant. From the resulting odds, we calculated the PPA that each variant
is causal for T2D risk. We then considered the 131 windows with at least one islet
enhancer variant with PPA > 0.01 in downstream analyses.

Genomic features analyses. For each class of islet open chromatin, we deter-
mined the overlap with other genomic features.

We identified motifs enriched in sequence underneath each islet accessible
chromatin class. We first extracted genomic sequence for each site using
bedtools47, and masked repetitive sequences. We then identified de novo motifs
enriched in this sequence using DREME48. For each de novo motif, we determined
whether this motif matched a known sequence motif in a custom database of >2500
motifs from ENCODE, JASPAR, and SELEX with tomtom31,49–51.

We determined the overlap of islet accessible chromatin classes with
transcription factor (TF) ChIP-seq data in islets for five proteins4,31. For each islet
chromatin class, we calculated the Jaccard index of overlap with sites for each TF47.
We then determined the overlap of islet accessible chromatin classes with DHS
sites from 384 cell types in the ENCODE project31. We first filtered out DHS sites
from islets, and then for each accessible chromatin site, we calculated the
percentage of ENCODE cell-types the site was active in. We then determined the
median percent overlap across all sites within each accessible chromatin class.

Gene expression analysis. We obtained transcript-per-million (TPM) counts
from RNA-seq data in 53 tissues from the GTEx project release v721. We further
obtained RPKM read counts from RNA-seq data of 118 pancreatic islet samples20,
and converted RPKM to TPM values using the formula TPMi= (RPKMi/sum
(RPKMj) × 106 for gene i and sample j52. We then retained only protein-coding and
long non-coding genes annotated in GENCODEv2737. We calculated the number
of genes expressed in islets (defined as ln(TPM) > 1) and not expressed in islets
with and without at least one reference active enhancer chromatin loop to the
promoter region. We then tested for a significant difference using a Chi-square test
on a 2 × 2 contingency table of genes (1) expressed, or not expressed in islets and
(2) at least one enhancer loop, or no enhancer loop.

Across all 54 tissues, we filtered out genes not expressed (ln(TPM) > 1) in at
least one tissue. We determined correlation between gene expression level in islets
and enhancer loop number using Spearman’s rho. We annotated each gene with
the number of loops to enhancers in our reference set, and then determined the
correlation between the expression level of the filtered genes with the number of
reference enhancer loops annotated to the gene. We further grouped genes by the
number of chromatin loops to enhancer elements and calculated the median islet
TPM value for each group.

We then determined the relative expression level for each gene in 54 tissues. We
quantile normalized expression values within each tissue, log-transformed the
resulting values and then calculated a Z-score for each gene using the mean and
standard deviation across tissues. We then repeated the above analyses using tissue
Z-scores instead of tissue TPM values. We further created a linear model of gene Z-
scores with chromatin loop number as the predictor using the glm package in R.
Values are reported as the effect size (beta) and standard error from the resulting
model.

Islet expression QTL analysis. We obtained summary statistic eQTL data from
two published studies of 118 and 112 primary pancreatic islet samples20,53. We
then performed inverse sample-size weighted meta-analysis to combine the sum-
mary results for each variant and gene pair using METAL54. We retained only
protein-coding and long non-coding RNA genes as defined by GENCODEv2737,
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only variant and gene pairs tested in both studies, and only variants with minor
allele frequency (MAF) > 0.01.

We extracted eQTL associations for variants in classes of islet accessible
chromatin. To remove potential biases due to linkage disequilibrium, we sorted
variant associations based on P-value and iteratively pruned out variants in LD (r2

> 0.5) with a more significant variant using LD information in European samples
from 1000 Genomes project data. We then extracted pruned eQTL associations for
variants in active promoter elements for genes within 20 kb (TssA), variants in
active enhancer elements for genes within 20 kb (Enh. proximal), variants in active
enhancer elements for genes in chromatin loops (Enh. loop), and variants in active
enhancer elements for genes without a loop (Enh. no-loop). For each set of eQTL
associations, we compared P-value distributions using a two-sided Wilcox rank-
sum test. To remove biases in variant distances to loop and no-loop genes, we
randomly selected variant-gene pairs matched on distance to the distal target set
(Enh. no-loop matched) and re-performed analyses. We also performed these
analyses using enhancer and gene promoter pairs within 25 kb of the loop
boundaries.

Target genes of T2D islet enhancer signals. We defined candidate target genes
of 30 known T2D enhancer signals and 127 putative T2D enhancer windows in the
following way. We identified candidate causal variants at each signal overlapping
islet enhancer elements and considered target genes as those where (a) the
enhancer and promoter region were within 25 kb of a chromatin loop or (b) the
enhancer was within 25 kb proximal to the promoter region.

We next defined alternate sets of target genes of the 30 T2D enhancer signals
based on 1MB windows or TAD boundaries. For 1 MB window definitions, we
identified the highest probability variant for each signal and extracted a +/−1MB
window around the variant position. We then considered gene promoter regions
for protein-coding or long non-coding genes in GENCODEv27 that overlapped
this +/−1MB window the set of target genes. For TAD boundary definitions, we
intersected the merged set of TADs with gene promoter regions to obtain a set of
genes within each TAD. We then intersected the highest probability variant at each
T2D signal with TADs to obtain gene sets in the TAD.

For each enhancer signal with a candidate target gene, we extracted eQTL P-
values for each target gene using the islet enhancer variant with the highest PPA at
the signal. Where the highest probability variant was not present in the eQTL
dataset, we used the next most probable islet enhancer variant. We then
Bonferroni-corrected eQTL P-values for the total number of candidate target genes
at the signal and considered eQTLs significant with a corrected P-value < 0.05.

For genes with significant eQTL evidence we further tested whether T2D and
eQTL signals were co-localized. We obtained the T2D Bayes Factor for each variant
at the signal from fine-mapping data. For significant gene eQTLs at the signal, we
then calculated the Bayes Factor that each variant is an islet eQTL for that gene39.
We compared Bayes Factors for T2D signals and eQTLs for each gene using
Bayesian co-localization55. We considered the prior probability that a variant was
causal for T2D risk or an islet eQTL as 1 × 10−4, and the prior probability that a
variant was causal for both T2D risk and an islet eQTL as 1 × 10−5. We considered
signals as having evidence for co-localization where the probability of a shared
causal variant was higher than the probability of two distinct causal variants.

We tested target genes for gene set enrichment using GSEA38, considering only
gene sets with >25 total genes and at an FDR threshold of 0.2.

Luciferase reporter assays. To test for allelic differences in enhancer activity we
cloned sequences containing alternative or reference alleles of tested variants
upstream of the minimal promoter of firefly luciferase vector pGL4.23 (Promega)
using KpnI and SacI restriction sites.

The primer sequences were:
rs7732130
Forward/left: GATAACGGTACCGCGAAGTGGTCATGGGTAAA
Forward/right: AAGTAGGAGCTCACCATCCCAGCATTTAGTGG
Reverse/left: GATAACGAGCTCGCGAAGTGGTCATGGGTAAA
Reverse/right: AAGTAGGGTACCACCATCCCAGCATTTAGTGG
rs10428126
Forward/left: GATCTCGAGCTCTTCATGAATGCAGGGACAGA
Forward/right: GGTACCGGTACCGCTGCATTGGGTTTTGAAAT
MIN6 beta cells were seeded into 6 (or 12)-well trays at one million cells per

well. At 80% confluency, cells were co-transfected with 400 ng of the experimental
firefly luciferase vector pGL4.23 containing the alt or ref allele in either orientation
or an empty vector and 50 ng of the vector pRL-SV40 (Promega) using the
Lipofectamine 3000 reagent. All transfections were done in triplicate. Cells were
lysed 48 h after transfection and assayed for Firefly and Renilla luciferase activities
using the Dual-Luciferase Reporter system (Promega). Firefly activity was
normalized to Renilla activity and compared to the empty vector and normalized
results were expressed as fold change compared to empty vector control per allele.
Error bars are reported as standard deviation. A two-sided t-test was used to
compare luciferase activity between the two alleles for a given orientation. MIN6
cells were obtained from the Jhala lab, University of California San Diego.

Mouse Imp2 targeting construct and physiological studies. We generated the
Imp2 construct by using a genomic fragment of 12 kb containing Imp2 exons 1 and
2, as well as flanking intron sequences of the murine gene extracted from the RP23-
163F16 BAC clone. The replacement-type targeting construct consisted of 9.4 kb of
Imp2 genomic sequences (4.4 kb in the left homology arm and 5.4 kb in the right
homology arm) (Supplementary Fig. 6a).

We bred mice for experiments by crossing IMP2-loxp mice (Imp2ff) with RIP2-
Cre mice on a C57Bl/6J background. We maintained colonies in a specific
pathogen-free facility with a 12:12 light–dark cycle and fed irradiated chow (Prolab
5P75 Isopro 3000; 5% crude fat; PMI nutrition international) or a HFD (D12492i;
60% kcal fat; Research Diets Inc.). Blood glucose, insulin, C-peptide and glucagon
levels were measured by the Vanderbilt metabolic core. Measurements for Imp2ff

and Imp2ff/RIP2-Cre mice were performed using male mice under basal conditions
(N= 10), upon intraperitoneal glucose injection (N= 9), and upon intraperitoneal
insulin injection (N= 9). A two-sided t-test was used to compare differences in
measurements across genotypes.

All animal procedures were approved by the Institutional Animal Care and Use
Committee of Massachusetts General Hospital and were performed in accordance
with the NIH principles of laboratory animal care.

Data availability
The data in this study are available under accession numbers PRJN527099,
TSTSR043623, and TSTSR081148. The source data underlying Figs. 2a, c–f, 3f, h, 4a,
5b–e, Supplementary Fig. 1a, Supplementary Figs. 1c, 2f–h, 3c, 5b, 6b, c are in the Source
Data File; other data for figures are in supplementary tables and data. All other data are
contained within the article and its supplementary information or upon reasonable
request from the corresponding author.
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