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RESEARCH

PredictCBC-2.0: a contralateral breast cancer 
risk prediction model developed and validated 
in ~ 200,000 patients
Daniele Giardiello1,2,3, Maartje J. Hooning4, Michael Hauptmann5, Renske Keeman1, 
B. A. M. Heemskerk‑Gerritsen4, Heiko Becher6, Carl Blomqvist7,8, Stig E. Bojesen9,10,11, Manjeet K. Bolla12, 
Nicola J. Camp13, Kamila Czene14, Peter Devilee15,16, Diana M. Eccles17, Peter A. Fasching18,19, 
Jonine D. Figueroa20,21,22, Henrik Flyger23, Montserrat García‑Closas22, Christopher A. Haiman24, Ute Hamann25, 
John L. Hopper26, Anna Jakubowska27,28, Floor E. Leeuwen29, Annika Lindblom30,31, Jan Lubiński27, 
Sara Margolin32,33, Maria Elena Martinez34,35, Heli Nevanlinna36, Ines Nevelsteen37, Saskia Pelders4, 
Paul D. P. Pharoah12,38, Sabine Siesling39,40, Melissa C. Southey41,42,43, Annemieke H. van der Hout44, 
Liselotte P. van Hest45, Jenny Chang‑Claude46,47, Per Hall14,32, Douglas F. Easton12,38, Ewout W. Steyerberg2,48 and 
Marjanka K. Schmidt1,29* 

Abstract 

Background: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the 
known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow‑up and 
including additional risk factors.

Methods: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 
CBC events occurred over a median follow‑up of 10.2 years. In addition to the previously included risk factors, Pre‑
dictCBC‑2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS‑313), body mass index (BMI), and par‑
ity. Fine and Gray regression was used to fit the model. Calibration and a time‑dependent area under the curve (AUC) 
at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed 
to evaluate the net benefit of PredictCBC‑2.0 and previous PredictCBC models.

Results: The discrimination of PredictCBC‑2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% 
prediction intervals (PI) 0.56–0.74) versus 0.63 (95%PI 0.54–0.71). PredictCBC‑2.0 was well calibrated with an observed/
expected ratio at 10 years of 0.92 (95%PI 0.34–2.54). Decision curve analysis for contralateral preventive mastectomy 
(CPM) showed the potential clinical utility of PredictCBC‑2.0 between thresholds of 4 and 12% 10‑year CBC risk for 
BRCA1/2 mutation carriers and non‑carriers.
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Introduction
Contralateral breast cancer (CBC) is the most com-
mon second primary cancer among women diagnosed 
with first primary invasive breast cancer (BC) [1]. CBC 
accounts for approximately 40–50% of all new second-
ary cancers in women with first primary invasive BC and 
has a potentially less favorable prognosis [2–6]. Worries 
regarding CBC risk have increased the demand for con-
tralateral preventive mastectomy (CPM) [7, 8]. However, 
the impact of CPM on survival is uncertain, especially in 
women with a low risk to develop a CBC [9–13]. Thus, 
improved CBC risk prediction is important in order to 
inform decision-making on surveillance and preven-
tive strategies. Currently, the most important factor for 
decision-making on CPM is the BRCA1/2 mutation sta-
tus [14].

We previously developed and cross-validated two mod-
els using data from 132,756 invasive BC patients with a 
median follow-up of 8.8 years including 4672 CBC events 
[15]. One model (PredictCBC-1A) was developed includ-
ing information about BRCA1/2 mutation status and 
another model (PredictCBC-1B) for the general breast 
cancer population of genetically untested women. Two 
other specific CBC prediction tools are currently avail-
able in the literature: the Manchester formula (part of the 
Manchester guidelines for CPM) and CBCrisk [15–18].

In addition to BRCA1/2 mutations, other genetic risk 
factors for breast cancer are also associated with CBC 
risk. In particular, there is substantial evidence that the 
CHEK2 c.1100delC variant increases the risk of develop-
ing CBC [19, 20]. In addition, polygenic risk scores (PRS) 
of common variants, developed for association with first 
breast cancer, have been shown to predict CBC in the 
general BC population and in BRCA1/2 mutation car-
riers [21–24], particularly the extensively validated 313 
SNP PRS [25]. With regard to the lifestyle and reproduc-
tive factors, there is evidence that body mass index (BMI) 
and parity at or around the time of the first primary inva-
sive BC diagnosis are associated with CBC risk [26].

Our aim was to refit PredictCBC models incorporating 
these additional risk factors. We utilized the same dataset 
but with updated follow-up and added additional studies, 
especially one large study of BRCA1 and BRCA2 muta-
tion carriers. We evaluated the potential improvement in 

prediction performance and utility for clinical decision-
making of the updated models for both BRCA1/2 carri-
ers as the general (non-tested) breast cancer population 
(PredictCBC-2.0).

Material and methods
Study population and available data
We used the data from the same five main sources pre-
viously used for PredictCBC models to develop the 
PredictCBC-2.0 models including updated follow-up 
information, additional patients, and invasive or in  situ 
CBC events [15]. Two studies were additionally included 
from the Breast Cancer Association Consortium (BCAC) 
compared to the version of the BCAC data used to 
develop PredictCBC-1A and PredictCBC-1B models. 
Most of the studies were either population- or hospital-
based series; and most women were of European descent 
(Additional file  1: Data and patient selection and Addi-
tional file  2: Table  S1 and Additional file  1: Table  S2, 
available online). We also additionally included patients 
selected from the Hereditary Breast and Ovarian cancer 
study in the Netherlands (HEBON) [27], a nationwide 
study based on clinical genetic centers. The eligibility 
criteria were the same as previously: briefly, we included 
female patients with invasive first primary BC with no 
sign of distant metastases at diagnosis or prior history of 
any cancer (except for non-melanoma skin cancer) [15]. 
We included women diagnosed after 1990 so that diag-
nostic and treatment procedures were close to modern 
practice while follow-up was sufficient to study CBC inci-
dence. In total, 207,510 women with first primary inva-
sive BC from 23 studies were included. All studies were 
approved by the appropriate ethics and scientific review 
boards. All women provided written informed consent; 
or, for some Dutch cohorts as applicable, the secondary 
use of clinical data was in accordance with Dutch legis-
lation and codes of conduct [28, 29]. Information about 
the sample size for every data source and the total sam-
ple size after eligibility criteria are provided in Table  1. 
The choice of additional predictors in the analyses was 
based on evidence from the literature and the availability 
of predictors in our data sources. In particular, evidence 
from the literature suggests that CHEK2 c.1100delC 
and 313 SNP PRS increased the risk of developing CBC 

Conclusions: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and 
might help tailor clinical decision‑making toward CPM or alternative preventive strategies. Identifying patients who 
benefit from CPM, especially in the general breast cancer population, remains challenging.

Keywords: Contralateral breast cancer, Risk prediction, Contralateral preventive mastectomy, Clinical decision‑
making, Breast cancer genetic predisposition, Breast Cancer Association Consortium, BCAC , Prediction performance, 
BRCA1/2 germline mutation, Polygenic risk score
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[21–24]. In addition, a systematic review of lifestyle and 
reproductive factors suggested that BMI and parity at or 
around the time of the first primary invasive BC diagno-
sis are associated with CBC risk [26]. Details about sam-
ple size per study and about the factors included in the 
analyses, follow-up per dataset, and study design are in 
Additional file 2: Table S1 and Additional file 3: Table S3, 
available online.

Statistical analyses
Primary endpoint and follow‑up
The primary endpoint in the analyses was the incidence 
of invasive or in  situ metachronous CBC. Follow-up 
started 3  months after invasive first primary BC diag-
nosis, to exclude synchronous CBCs, and ended at the 
date of CBC, distant metastasis (but not a loco-regional 
relapse), CPM, or last date of follow-up (due to death, loss 
to follow-up, or end of study), whichever occurred first. 
For 36,553 (17.6%) women, from BCAC and HEBON, 
recruitment or blood sampling for DNA testing occurred 
more than 3 months after diagnosis of the first primary 
BC. For women with the first primary invasive BC, fol-
low-up started at recruitment or at the date of blood 
draw or at DNA test result (left truncation). Patients who 
underwent CPM during the follow-up were censored 
because of negligible CBC risk after a CPM [30]. Missing 

data were multiply imputed by chained equations (MICE) 
to avoid loss of information due to case-wise deletion 
[31–33] (Additional file 1: Multiple imputation of missing 
values, available online).

Model development and validation
We used multivariable Fine and Gray regression models 
to account for death and distant metastases as competing 
events [34]. Analyses were stratified by a study to allow 
baseline hazard (sub)distributions to differ across stud-
ies. The assumption of proportional subdistribution haz-
ards was graphically checked using Schoenfeld residuals 
[35]. The resulting subdistribution hazard ratios (sHRs) 
and corresponding 95% confidence intervals (CI) were 
pooled from 5 imputed datasets using Rubin’s rules [33]. 
We re-estimated the coefficients of PredictCBC-1A and 
PredictCBC-1B, and we re-fitted the PredictCBC mod-
els using the extended dataset with updated follow-up 
time. PredictCBC-1A, developed including information 
about BRCA1/2 mutation carrier status, was extended 
by including CHEK2 c.1110delC status, PRS-313, self-
reported BMI, and self-reported parity (hereafter: Pre-
dictCBC-2.0A) [15]. CHEK2 c.1110delC and PRS-313 
were derived from the BCAC database, as published 
previously [25, 36, 37]. We extended PredictCBC-1B, 
developed for genetically untested women, incorporating 

Table 1 Patient characteristics in the different data sources

ABCS: Amsterdam Breast Cancer Study, BCAC  Breast Cancer Association Consortium, BOSOM Breast Cancer Outcome Study of Mutation carriers, EMC Erasmus Medical 
Center, HEBON Hereditary Breast and Ovarian cancer study Netherlands, NCR Netherlands Cancer Registry, PBC primary breast cancer, CBC contralateral breast cancer
* 1433 tested for BRCA1/2 germline mutation after CBC or preventive mastectomy
‡ BCAC is composed of 106 studies worldwide. The 45,034 patients selected for the analysis came from 18 studies

Source of data

ABCS BCAC ‡ BOSOM EMC HEBON NCR

Number of patients 2763 186,594 7105 3483 16,617 160,861

Eligibility criteria, number of patients excluded

 Studies from Asian countries – 7146 – – – –

 Patients of non‑European descent 74 51,328 – – – –

 Patients younger than 18 years old – 4 – – – –

 Year of PBC diagnosis before 1990 – 4014 3126 – 1132 –

 Year of PBC diagnosis missing – 15,435 – – 2 –

 PBC stage 0 123 38 2 – – –

 PBC stage IV 149 1811 104 – 115 7774

 Patients did not undergo surgery 24 1247 43 5 293 9278

Number of eligible patients 2393 105,571 3830 3478 15,075 143,809

No follow‑up or follow‑up less than 3 months 173 15,804 70 88 2382* 3396

Familiar breast cancer studies – 6739 – – – –

Studies with less than 10 CBC events – 37,994 – – – –

Number of patients included in the analysis 
(number of patients with CBC)

2220 (44) 45,034 (1001) 3760 (288) 3390 (221) 12,693 (918) 140,413 (5753)

Total number of patients included in the analysis 
(number of CBC)

207,510 (8225 of which 6828 invasive and 1397 in situ)
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self-reported BMI and parity (hereafter: PredictCBC-
2.0B). Potential nonlinear relations between continu-
ous predictors and CBC risk were investigated using 
restricted cubic splines with three knots.

The validity of the model was investigated by leave-
one-study-out cross-validation [38]. In each validation 
cycle, all studies were analyzed except one, in which the 
validity of the model was evaluated. Since some BCAC 
studies had insufficient CBC events required for reliable 
validation, we used the geographic area as a unit for split-
ting [38–40]. Nineteen out of 23 studies were combined 
in 4 geographic areas (Additional file 1: Table S2, availa-
ble online). A total of 8 units of splitting including 4 geo-
graphic areas and 4 studies were used to cross-validate 
the models.

The performance of the PredictCBC-2.0 was assessed 
by discrimination, i.e., the ability to differentiate between 
patients diagnosed with CBC and those who were not, 
and by calibration, which measures the agreement 
between the actual (observed) risk and CBC risk esti-
mated by the prediction models (predicted). Discrimi-
nation was quantified by time-dependent areas under 
the ROC curve (AUCs) based on Inverse Censoring 
Probability Weighting at 5 and 10 years [41]. The AUCs 
were estimated using the prognostic index which is a/
the combination of the estimated coefficients (betas) 
of PredictCBC models multiplied by the correspond-
ing individual characteristics (i.e., predictors) included 
in the models. Values of AUCs close to 1 indicate good 
discrimination, while values close to 0.5 indicated 
poor discrimination. Calibration was assessed by the 
observed-to-expected (O/E) ratio and calibration plots at 
5 and 10 years [42, 43]. An O/E ratio lower or higher than 
1 indicates that average predictions are too high or low, 
respectively.

To consider heterogeneity among studies, a random-
effect meta-analysis was performed to provide sum-
maries of discrimination and calibration performance. 
The 95% prediction intervals (PI) indicate the likely per-
formance of the model in a new dataset. The summary 
performances of PredictCBC-2.0 and 1.0 models were 
compared to evaluate whether adding the new predic-
tors improved the performance of CBC risk prediction. 
We developed and validated the risk prediction model 
following the Transparent Reporting of a Multivariable 
Prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) statement [44]. Analyses were done in SAS 
(SAS Institute Inc., Cary, NC, USA) and R (version 3.6.1).

Clinical utility
The clinical utility of the prediction models was evalu-
ated using decision curve analysis (DCA) [45, 46]. A key 
metric DCA is the net benefit, which is the number of 

true-positive classifications (in this example: the number 
of CPMs in patients who would have developed a CBC) 
minus the weighted number of false-positive classifica-
tions (in this example: the number of unnecessary CPMs 
in patients who would not have developed a CBC). The 
false positives are weighted by a factor related to the rela-
tive harm of a missed CBC versus an unnecessary CPM. 
The weighting is derived from the threshold probability 
to develop a CBC using a fixed time horizon (e.g., CBC 
risk at 5 or 10  years) [47]. For example, a threshold of 
10% implies that CPM in 10 patients, of whom one would 
develop CBC if untreated, is acceptable (thus perform-
ing 9 unnecessary CPMs). The net benefit of a prediction 
model is traditionally compared with the strategies of 
treat all or treat none. Since the use of CPM is generally 
only considered among BRCA1/2 mutation carriers, the 
decision curve analysis was reported among BRCA1/2 
mutation carriers and non-carriers separately [48]. 
Among patients not tested for BRCA1/2 germline muta-
tions, we assumed that the decision for CPM is based on 
family history of breast cancer. The net benefits of Pre-
dictCBC-2.0A and PredictCBC-2.0B were compared with 
the net benefit of PredictCBC-1A and 1B, respectively, to 
assess the potential improvement in the clinical utility of 
the updated models.

Results
A total of 207,510 women with invasive first primary 
BC diagnosed between 1990 and 2017, with 8225 CBC 
events (6828 invasive, 1397 in  situ), from 23 studies, 
were used for CBC risk prediction modeling (Additional 
file 2: Table S1, available online). Median follow-up time 
was 10.2 years, and CBC cumulative incidences at 5 and 
10 years were 2.2% and 4.1%, respectively. Details of the 
studies and patient, tumor, and treatment characteris-
tics are provided in Additional file 3: Table S3 (available 
online). The multivariable models with estimates for all 
included factors are given in Table 2.

Most of the factors were independently associated 
with CBC risk, including the new factors incorporated 
in the PredictCBC-2.0 models, i.e., s BMI, parity, CHEK2 
c.1110delC, and PRS-313. There was no evidence against 
log-linear relationships between BMI, parity and PRS-
313 and CBC risk. Nonlinearity between age at first BC 
diagnosis and CBC risk was accounted for with a linear 
spline at age 60  years. The formulae of the PredictCBC 
models are provided in Additional file  1: Formula to 
estimate the contralateral breast cancer risk using Pre-
dictCBC-2.0A and PredictCBC-2.0B (available online). 
To calculate the predicted CBC cumulative incidence, we 
used the event-free baseline probability of the Nether-
lands Cancer Registry (NCR), as previously [15].
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The AUCs at 5 and 10 years of PredictCBC-2.0A were 
higher than of PredictCBC-1A at 5 years: 0.66, 95% pre-
diction interval (PI) 0.55–0.76 versus 0.62 (95%PI 0.51–
0.74); and at 10 years: 0.65 (95%PI 0.56–0.74) versus 0.63 
(95%PI 0.54–0.71) (Figs.  1 and 2, Table  3). The AUCs 
for PredictCBC-2.0B and PredictCBC-1B were both 
0.59 (95%PI: PredictCBC-2.0B: 0.51–0.68; PredictCBC-
1B:0.49–0.69) at 5 years and both 0.58 (95%PI 0.51–0.65) 
at 10 years (Figs. 1 and 2, Table 3).

The O/E ratio at 5 and 10  years across all versions of 
PredictCBC models ranged between 0.90 and 0.92 with 
similar 95%PIs (Figs. 1 and 2, Table 3). Calibration plots 
of PredictCBC-2.0 models are provided in Additional 
file 1: Figs, S1–S4 (available online).

The decision curves showed the net benefit for a 
range of harm–benefit thresholds at 10-year CBC risk 
(Fig.  3). We evaluated the potential clinical utility of 
PredictCBC-2A versus PredictCBC-1.0A for decision 

thresholds between 4 and 12% for the 10-year CBC risk 
among BRCA1/2 mutation carriers and non-carriers 
(Figs. 3 and 4, Table 4). For example, if consensus guide-
lines would indicate the acceptability of 1 in 10 patients 
for whom a CPM is recommended developing CBC, a 
risk threshold of 10% may be used to define high- and 
low-risk BRCA1/2 mutation carriers based on the abso-
lute 10-year CBC risk prediction estimated by the mod-
els. Compared with a strategy recommending CPM to 
all BRCA1/2 mutation carriers, PredictCBC-1A avoids 
76.9 net CPMs per 1000 patients (Table 4). An additional 
50.0 CPMs may be avoided using PredictCBC-2.0A com-
pared to PredictCBC-1A. In contrast, almost no non-
BRCA1/2 mutation carriers had predictions above the 
10% threshold (general BC population, Table  4); three 
necessary CPMs per 1000 patients would be indicated 
using PredictCBC-2.0A. Analyses for PredictCBC-1B 
and PredictCBC-2.0B at 10  years suggested a potential 

Table 2 Multivariable subdistribution hazard models for contralateral breast cancer risk

vs. versus, sHR subdistributional hazard ratio, CI confidence interval, PRS polygenic risk score, BC breast cancer, PBC first primary breast cancer, ER estrogen receptor, 
HER2 human epidermal growth factor 2
a age was parameterized as a linear spline with one interior knot at 60 years. For representation purposes, we here provide the sHR for the 75th versus the 25th 
percentile
b PRS standardized by the same standard deviation (SD) used by Mavaddat et al. (SD = 0.61)[25]

Factor (reference) PredictCBC-2.0A PredictCBC-2.0B
sHR (95% CI) sHR (95% CI)

Age at PBC, years (75th vs. 25th quartile: 66 vs. 48) 0.87a (0.83–0.90) 0.82a (0.78–0.85)

Body mass index, kg/m2 (75th vs. 25th quartile: 28.4 vs. 22.7) 1.06 (1.03–1.09) 1.06 (1.03–1.09)

Parity (75th vs. 25th quartile: 3 vs. 1) 0.85 (0.82–0.88) 0.86 (0.83–0.90)

First‑degree family history of BC (yes) 1.17 (1.12–1.23) 1.35 (1.29–1.42)

BRCA  mutation

BRCA1 versus non‑carrier 4.79 (4.43–5.17) –

BRCA2 versus non‑carrier 3.09 (2.72–4.25) –

PRS313
b (75th vs. 25th quartile: ‑0.49 vs. 0.32) 1.35 (1.31–1.39) –

CHEK2 c.1100delC mutation (present) 2.75 (2.85–3.34) –

Nodal status of PBC (positive) 0.99 (0.93–1.05) 0.99 (0.93–1.04)

Tumor size category of PBC, cm

(2,5] versus ≤ 2 0.99 (0.94–1.05) 1.01 (0.96–1.07)

> 5 versus ≤ 2 1.23 (1.10–1.36) 1.22 (1.09–1.36)

Morphology of PBC (lobular including mixed) 1.19 (1.12–1.27) 1.17 (1.10–1.24)

Grade of PBC

Moderately differentiated vs. well differentiated (II vs. I) 0.93 (0.88–0.99) 0.98 (0.93–1.04)

Poorly differentiated vs. well differentiated (III vs. I) 0.85 (0.79–0.91) 0.95 (0.88–1.01)

Chemotherapy (yes) 0.75 (0.70–0.80) 0.75 (0.70–0.80)

Radiotherapy to the breast (yes) 0.93 (0.89–0.98) 0.95 (0.90–0.99)

ER with endocrine therapy

Negative/no versus positive/yes 1.53 (1.43–1.65) 1.78 (1.67–1.90)

Positive/no versus positive/yes 1.95 (1.83–2.07) 1.94 (1.82–2.06)

HER2 with trastuzumab therapy

Negative/no versus positive/yes 1.22 (1.09–1.38) 1.30 (1.15–1.46)

Positive/no versus positive/yes 1.12 (0.97–1.28) 1.14 (1.00–1.31)
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clinical utility between 4 and 6% 10-year CBC risk for 
patients with and without family history (Table  4 and 
Figs. 3 and 4). No remarkable improvement in net ben-
efit was detected using PredictCBC-2.0B compared to 
PredictCBC-1B in decision-making regarding CPM 
(Table 4 and Fig. 3). Decision curves for CBC risk using 
PredictCBC and PredictCBC-2.0 at 5 years and the cor-
responding clinical utility showed similar patterns (Addi-
tional file 1: Figs. S5-S6 and Table S4, available online).

Discussion
We evaluated the potential improvement in CBC risk 
prediction by adding established genetic (CHEK2 
c.1100delC and PRS-313) and lifestyle (BMI and par-
ity) factors to the previous PredictCBC models and used 
additional follow-up information and new studies to pro-
vide more reliable estimates.

The current clinical recommendations of CPM are 
mostly based on the presence of a pathogenic muta-
tion in BRCA1/2 [49, 50]. This seems a reasonable 
approach according to CBC risk predictions based on the 

PredictCBC models: few non-BRCA1/2 carriers exceed 
a 10% 10-year risk threshold. However, approximately 
40% of BRCA1/2 mutation carriers do not reach this 
threshold either, suggesting that a significant proportion 
of BRCA1/2 carriers might be spared CPM. Additional 
genetic information beyond BRCA1/2 germline mutation 
such as the presence of the CHEK2 c.1110delC variant 
and PRS-313 might improve decision-making.

Currently available CBC models, such as CBCrisk and 
the Manchester formula, show only moderate discrimina-
tion [51]. In addition, the Manchester formula has been 
shown to systematically overestimate CBC risk [51]. The 
BOADICEA model, a well-known risk prediction tool 
to estimate the risk of developing the first primary BC, 
also allows the calculation of CBC risk [52–55]. Although 
BOADICEA includes rare pathogenic variants in moder-
ate- and high-risk BC susceptibility genes (i.e., BRCA1, 
BRCA2, PALB2, ATM and CHEK2, BARD1, RAD51C, 
RAD51D), and PRS-313, it does not incorporate informa-
tion on the systemic treatment of the primary BC, which 
are important predictors of CBC risk [56].

Fig. 1 Analysis of predictive performance of PredictCBC‑2.0A in leave‑one‑study‑out cross‑validation. Discrimination was assessed by a 
time‑dependent AUC at 5 and 10 years (panel A and B, respectively). Calibration accuracy was measured with observed/expected (O/E) ratio at 
5 and 10 years (panel C and D, respectively). The black squares indicate the estimated accuracy of a model built using all remaining studies or 
geographic areas. The black horizontal lines indicate the corresponding 95% confidence intervals of the estimated accuracy (interval whiskers). The 
black diamonds indicate the mean with the corresponding 95% confidence intervals of the predictive accuracy, and the dashed horizontal lines 
indicate the corresponding 95% prediction intervals
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A model for the prediction of recurrence, the INFLU-
ENCE nomogram, was developed to estimate 5-year 
recurrence risk as well as conditional annual risks of 
developing a local or regional recurrence based on 
first BC and treatment characteristics [57]. A more 
recent version (INFLUENCE 2.0) also provides 5-year 

individualized predictions for secondary primary 
breast cancer based on cases older than 50 years at first 
cancer diagnosis from the NCR nationwide cohort irre-
spective of their genetic status or testing status using 
random survival forests [58]. The model provided 
moderate discrimination (AUC at 5 years: 0.67; 95%CI 

Fig. 2 Analysis of predictive performance of PredictCBC‑2.0B in leave‑one‑study‑out cross‑validation. Discrimination was assessed by a 
time‑dependent AUC at 5 and 10 years (panel A and B, respectively). Calibration accuracy was measured with observed/expected (O/E) ratio at 
5 and 10 years (panel C and D, respectively). The black squares indicate the estimated accuracy of a model built using all remaining studies or 
geographic areas. The black horizontal lines indicate the corresponding 95% confidence intervals of the estimated accuracy (interval whiskers). The 
black diamonds indicate the mean with the corresponding 95% confidence intervals of the predictive accuracy, and the dashed horizontal lines 
indicate the corresponding 95% prediction intervals

Table 3 Summary of prediction performance of PredictCBC‑1A, PredictCBC‑1B, PredictCBC‑2.0A, and PredictCBC‑2.0B with the 
corresponding 95% prediction intervals (PI) based on a leave‑one‑study‑out cross‑validation procedure

AUC  area under the curve, CBC contralateral breast cancer, PI prediction interval, O/E observed/expected

CBC risk prediction model Performance measure

Discrimination Calibration

AUC (95% PI) O/E ratio (95% PI)

5-year 10-year 5-year 10-year

PredictCBC‑1A 0.62 (0.51–0.74) 0.63 (0.54–0.71) 0.90 (0.36–2.24) 0.91 (0.34–2.48)

PredictCBC‑2.0A 0.66 (0.55–0.76) 0.65 (0.56–0.74) 0.91 (0.35–2.34) 0.92 (0.34–2.54)

PredictCBC‑1B 0.59 (0.49–0.69) 0.58 (0.51–0.65) 0.91 (0.32–2.55) 0.92 (0.30–2.80)

PredictCBC‑2.0B 0.59 (0.51–0.68) 0.58 (0.51–0.65) 0.91 (0.31–2.63) 0.92 (0.30–2.87)
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0.65–0.68) using internal validation. In our compa-
rable population- and hospital-based Dutch series, 
EMC and NCR, the AUCs at 5  years of PredictCBC-
1A were 0.69 (95%CI 0.64–0.73) and 0.66 (95%CI 
0.65–0.67), and of PredictCBC-2.0A 0.71 (95%CI 
0.66–0.75) and 0.68 (95%CI 0.66–0.69), respectively. 
Moreover, INFLUENCE 2.0 is only relevant to the gen-
eral population, while PredictCBC can also be used in 
the clinical genetic setting. Notably, we demonstrated 
that decision-making about preventive strategies in 
clinical practice is unlikely to improve without genetic 
information.

Our work has some limitations: firstly, some women 
included in the Dutch studies (providing specific infor-
mation on family history, BRCA  mutation or CPM) were 
also present in our selection of the NCR population, as 
described previously [15]. Privacy and coding issues pre-
vented linkage at the individual patient level, but based 
on the hospitals from which the studies were recruited, 
and the age and period criteria used, we calculated a 
maximum potential overlap of 9%. Secondly, important 
predictors such as family history, BRCA1/2 and CHEK2 
c.1110delC status, and PRS-313, were only available in a 
subset of the women, although the multiple imputation 

Fig. 3 Decision curve analysis at 10 years for the contralateral breast cancer risk (CBC) models (PredictCBC‑1.0 and PredictCBC‑2.0 models) 
including BRCA  mutation information. A The decision curve to determine the net benefit of the estimated 10‑year predicted CBC cumulative 
incidence for patients without a BRCA1/2 gene mutation using PredictCBC‑1A (dotted black line) and PredictCBC‑2.0A (dashed black line) compared 
to not treating any patients with contralateral preventive mastectomy (CPM) (black solid line). B The decision curve to determine the net benefit of 
the estimated 10‑year predicted CBC cumulative incidence for BRCA1/2 mutation carriers using PredictCBC‑1A (dotted black line), PredictCBC‑2.0A 
(dashed black line) versus treating (or at least counseling) all patients (gray solid line). C The decision curve to determine the net benefit of the 
estimated 10‑year predicted CBC cumulative incidence for patients without (first degree) family history using PredictCBC‑1B (dotted black line), 
PredictCBC‑2.0B (dashed black line) compared to not treating any patients with CPM (black solid line). D The decision curve to determine the net 
benefit of the estimated 10‑year predicted CBC cumulative incidence for patients with (first degree) family history using PredictCBC‑1B (dotted 
black line), PredictCBC‑2.0B (dashed black line) versus treating (or at least counseling) all patients (gray solid line). The y‑axis measures net benefit, 
which is calculated by summing the benefits (true positives, i.e., patients with a CBC who needed a CPM) and subtracting the harms (false positives, 
i.e., patients with CPM who do not need it). The latter are weighted by a factor related to the relative harm of a non‑prevented CBC versus an 
unnecessary CPM. The factor is derived from the threshold probability to develop a CBC at 10 years at which a patient would opt for CPM (e.g., 10%). 
The x‑axis represents the threshold probability. Using a threshold probability of 10% implicitly means that CPM in 10 patients of whom one would 
develop a CBC if untreated is acceptable (9 unnecessary CPMs, harm‑to‑benefit ratio 1:9)
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approach should lead to consistent estimates [59–61]. 
Detailed information about family history of breast can-
cer would have been useful to improve CBC risk pre-
diction, especially among patients with a mutation in 

BRCA1/2 or CHEK2. Nonetheless, we considerably 
increased the number of patients with BRCA1/2 muta-
tion status and family history information compared 
to our previous publication (40,343 vs. 7704 and 53,399 

Fig. 4 Density distribution of 10‑year predicted contralateral breast cancer using PredictCBC version 2 models. A Density distribution of 10‑year 
predicted contralateral breast cancer absolute risk using PredictCBC‑2.0A within non‑carriers (area with black solid lines) and BRCA1/2 mutation 
carriers (area with black dashed lines). B Density distribution of 10‑year predicted contralateral breast cancer absolute risk using PredictCBC‑2.0B 
within patients without (first degree) family history (area with black solid lines) and patients with (first degree) family history (area with black dashed 
lines)
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vs. 30,541 patients with available BRCA  mutation status 
and family history information, respectively), and added 
CHEK2 c.1110delC, which is a founder mutation present 
in approximately 0.5–1.6% of individuals of Northern and 
Eastern European descent and explains the large majority 
of carriers of CHEK2 protein truncating variants in these 
populations [19, 62]. Further validation will be required 
to investigate how well PredictCBC models predict risk 
in other populations. In particular, the model was devel-
oped in patients of European ancestry and further evalua-
tion and adaptation will be needed to extend PredictCBC 
models to non-European populations, including Asia [63, 
64]. Future research might also include comparisons of 
machine learning (ML) methods with classical statistical 
regression models [65, 66].

The prediction models may be further improved by 
including additional risk factors. In particular, rare 
mutations in other breast cancer susceptibility genes, 
such as ATM and PALB2, are also likely to be associ-
ated with an increased risk of CBC [22, 67, 68]. The 

discrimination provided by the PRS will also improve as 
more SNPs are added [69, 70]. Prediction performance 
might also be improved by adding breast density and 
other risk factors (e.g., additional lifestyle and repro-
ductive factors such as alcohol use, age at primiparity, 
age at menopause) modeled dynamically in a time-
dependent fashion [71]. Finally, we wish to emphasize 
that adequate presentation (e.g., with online tools) of 
the risk estimates is crucial for effective communica-
tion about CBC risk during doctor–patient consulta-
tions [72, 73].

Conclusions
In conclusion, we present an updated version of a previ-
ously proposed contralateral breast cancer risk model 
(PredictCBC) including additional information on 
breast cancer genetic variants beyond BRCA1/2, life-
style and reproductive factors. PredictCBC-2.0, avail-
able online  at  [74], is based on longer follow-up from a 
wide range of new European-descent population and 

Table 4 Clinical utility of the 10‑year contralateral breast cancer risk prediction models (PredictCBC‑1A with PredictCBC‑2.0A and 
PredictCBC‑1B with PredictCBC‑2.0B)

For PredictCBC versions 1A and 2.0A, at the same probability threshold, the net benefit is exemplified in BRCA1/2 mutation carriers (for avoiding unnecessary CPM) 
and non-carriers (performing necessary CPM). For PredictCBC versions 1B and 2.0B, at the same probability threshold, the net benefit is exemplified in patients with 
family history (for avoiding unnecessary CPM) and patients without family history (performing necessary CPM)

CPM contralateral preventive mastectomy
* The number of unnecessary contralateral mastectomies needed to detect one necessary CPM is calculated by: (1 − pt)/pt

PredictCBC‑1A and PredictCBC‑2.0A

Probability 
threshold 
pt (%)

Unnecessary 
CPMs needed 
to detect one 
necessary CPM*

BRCA1/2 mutation carriers Non-carriers

Net benefit 
versus treat all 
patients with 
CPM (per 1000)

Avoided 
unnecessary 
CPMs per 1000 
patients using 
PredictCBC-1A

Additional 
avoided 
unnecessary 
CPMs per 1000 
patients using 
PredictCBC-2.0A

Net benefit 
versus treat 
none (per 1000)

Performed 
necessary 
CPMs per 1000 
patients using 
PredictCBC-1A

Additional 
performed 
necessary CPMs 
per 1000 patients 
using PredictCBC-
2.0A

4 24 0.1 0.3 1.9 4.8 115.7 15.3

6 15.7 No benefit 0.0 20.0 0.6 9.3 22.9

8 11.5 3.5 40.6 52.0 No benefit 0.0 9.0

10 9.0 8.5 76.9 50.2 No benefit 0.0 3.4

12 7.3 22.4 164.0 15.0 No benefit 0.0 1.1

PredictCBC‑1B and PredictCBC‑2.0B

Probability 
threshold 
pt (%)

Unnecessary 
CPMs needed 
to detect one 
necessary CPM*

Family history No family history

Net benefit 
versus treat all 
patients with 
CPM (per 1000)

Avoided 
unnecessary 
CPMs per 1000 
patients using 
PredictCBC-1B

Additional 
avoided 
unnecessary 
CPMs per 1000 
patients using 
PredictCBC-2.0B

Net benefit 
versus treat 
none (per 1000)

Performed 
necessary 
CPMs per 1000 
patients using 
PredictCBC-1B

Additional 
performed 
necessary CPMs 
per 1000 patients 
using PredictCBC-
2.0B

4 24 3.4 80.8 5.9 5.4 130.4 0.0

5 19 9.4 177.9 0.0 2.4 46.5 0.1

6 15.7 15.9 248.7 4.0 0.5 7.1 7.5
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hospital-based studies, with reasonable calibration. 
PredictCBC-2.0 may be used to tailor clinical decision-
making toward CPM or alternative preventive strategies, 
especially when genetic information is available.
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