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Abstract. Simple random coverage models, well studied in Euclidean space, can also be defined
on a general compact metric space S. In one specific model, “seeds" arrive as a Poisson process (in
time) at random positions with some distribution θ on S, and create balls whose radius increases
at constant rate. By standardizing rates, the cover time C depends only on θ. The value χ(S) =
minθ EθC is a numerical characteristic of the compact space S, and we give weak general upper and
lower bounds in terms of the covering numbers of S. This suggests a future research program of
improving such general bounds, and estimating χ(S) for familiar examples of compact spaces. We
treat one example, infinite product space [0, 1]∞ with the product topology. On a different theme,
by analogy with the geometric models, and with the discrete coupon collector’s problem and with
cover times for finite Markov chains, one expects a “weak concentration" bound for the distribution
of C to hold under minimal assumptions. We prove this as a simple consequence of a general result
for increasing set-valued Markov processes.

1. Introduction

Analogs of the classical coupon collector’s problem have been extensively studied in several dif-
ferent contexts. One context is geometric: covering by (for instance) random balls in Euclidean
space. See Hall (1988) for now-classical results, and Penrose (2021) for references to recent work,
in this broad area. The particular case of balls makes sense in any metric space, but apparently has
not been studied in that generality. We will briefly discuss the fixed-radius setting (section 2), but
we find it more interesting to examine what we will call the growth model. In this model (section 3),
“seeds" arrive as a Poisson process (in time) at random positions with some distribution θ on a space
S, and create balls whose radius increases at constant rate. We study the cover time, the time C
at which the space is entirely covered. In Euclidean space, this is the growth model underlying the
well-studied Johnson-Mehl tessellation, defined as the partition of Rd into the regions first covered
by the ball emanating from a specific seed. The focus in that literature (see Møller (1992) for an
extensive survey of that model, and Chiu et al. (2013) Chapter 9 for the broad account of random
tessellation models) is on stochastic geometry properties of the cells of the tessellation. As part
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of that literature, the cover time C of a bounded subset of Rd has been studied in detail in Chiu
(1995), and sharp asymptotic results are known. In this article we consider instead the setting of an
arbitrary compact metric space (compactness ensures that the cover time C has finite expectation).
In section 6 we give simple general bounds on mean cover times EθC. These bounds, if applied
to the case of Rd, are much weaker than those known via explicit calculation (see section 5.1).
However our main purpose (section 5) is to observe that, with standardized rates, the “mean cover
time from optimal seed distribution" value χ(S) = minθ EθC is a numerical characteristic of any
compact space S. We give weak general upper and lower bounds on χ(S) in terms of the covering
numbers of S. In section 6 we apply these general bounds to one example, infinite product space
[0, 1]∞ with product topology. Relating χ(S) to other characteristics of S, and estimating χ(S)
sharply for familiar examples of compact spaces, remain interesting and challenging open problems.

1.1. Concentration of cover time distribution. One intuitively expects that the “weak concentration"
property of the coupon collector time Tn (that s.d.(Tn)/ETn → 0 as n → ∞) should extend quite
generally to other cover time contexts, and should hold under minimal assumptions even when
one cannot calculate the expectation explicitly. Indeed this is known to be true in the Markov
chain context (see section 7). We will prove analogous results concerning weak concentration of
the distribution of the cover time C. Part of our motivation is to spotlight two different general
methods (known, but apparently not well known) for showing weak concentration in general settings
without calculating the expectation of the cover time1. In each of sections 2 and 3 we specify a
model (fixed-radius or growing random balls), recall the relevant general method, and show that a
concentration bound is obtained very easily using that method.

Further discussion of models and methodology is deferred to section 7.

2. A concentration bound for covering with fixed radius random balls

Here we indicate how a concentration result for covering, obtainable on Euclidean space in sharp
form by explicit calculation (see Hall (1988)), can be extended to weak bounds in a very general
setting. Take a compact metric space (S, ρ). Let µ be a probability measure on S with full support,
and for r > 0 define

η(r) := inf
s
µ(ball(s, r)) > 0

where ball(s, r) = {s′ : ρ(s, s′) ≤ r}. Write σ1, σ2, . . . for i.i.d. random points of S from distribution
µ. For fixed r0 > 0 consider the random subset

Rn = R(r0)
n := ∪1≤i≤nball(σi, r0).

We call this the fixed-radius model. Consider the cover time

C = C(r0) := min{n : Rn = S} (2.1)

for which compactness easily implies EC <∞. The probability that a given point s is in ball(σi, r0)
equals µ(ball(s, r0)), and so the mean time until point s is covered equals 1/µ(ball(s, r0)), which is at
most 1/η(r0). So to obtain a concentration result for C a natural assumption is that EC � 1/η(r0),
in other words that η(r0)EC is large. Our result below is of that general form, but also involves the
dimension-related quantity d(r) defined as the smallest integer such that

each ball of radius r can be covered by d(r) balls of radius r/2. (2.2)

Proposition 2.1. In the fixed-radius model, for the cover time C at (2.1),

var

(
C

EC

)
≤ κ d(r0)

η(r0/2)EC

1Other than its order of magnitude.
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for the absolute constant κ stated in Proposition 2.2 below.

We will derive Proposition 2.1 from a known general result, discussed as Proposition 2.2 below.

2.1. The random subset cover bound. Here we copy the setup and result directly from Aldous (1991).
Let S0 be a finite set. Let Y be a random subset of S0, whose distribution is arbitrary subject to
the requirement

P(s ∈ Y) > 0 for each s ∈ S0. (2.3)

Let Y1,Y2, . . . be independent random subsets distributed as Y. Let Rn be the range of this process:
Rn = ∪i≤nYi and let Cset be the cover time

Cset := min{n : Rn = S0}.

Note ECset <∞ by (2.3) and finiteness of S0. For any non-random subset B ⊂ S0 let c(B) be the
mean cover time of B:

c(B) := EC(B); C(B) := min{n : Rn ⊇ B}.

Our bound involves the terminal set

T := S0 \ RCset−1

that is the last uncovered portion of S0.

Proposition 2.2 (Aldous (1991) Theorem 1). var
(
Cset
ECset

)
≤ κ Ec(T )

ECset
for an absolute constant κ.

Though stated in Aldous (1991) for a finite state space S0, Proposition 2.2 extends to continuous
space, in particular our compact metric space S, with unchanged proof, except that now we need
to replace assumption (2.3) by the assumption ECset <∞.

A numerical value for κ is not stated in Aldous (1991) but the argument shows

if Ec(T )
ECset

≤ 1/8 then the inequality in Proposition 2.2 holds for κ = 4(1 +
∑

n≥1(n+

1)221−n) = 92.

The alternate case can be handled directly by using the obvious submultiplicativity property of
Cset, that is

P(Cset ≥ t1 + t2) ≤ P(Cset ≥ t1) P(Cset ≥ t2). (2.4)

Because P(Cset/E[Cset] ≥ 2) ≤ 1/2, submultiplicativity implies that Cset/E[Cset] is stochastically
dominated by 2G1/2 whereG1/2 has Geometric(1/2) distribution. It follows that var(Cset/E[Cset]) ≤
E(2G1/2)2 = 6. This implies

if Ec(T )
ECset

≥ 1/8 then the inequality in Proposition 2.2 holds for κ = 6× 8 = 48.

So in fact Proposition 2.2 is known to hold with κ = 92, but apparently no attempt has ever been
made to optimize the constant.

Of course it may be difficult to analyze T , and so one does not expect to obtain sharp bounds
on specific models in this way. But Proposition 2.2 may be useful in obtaining order of magnitude
bounds in general settings. In particular if there is some geometric or metric structure on the set
and if the random subsets Y are small in diameter, then T must be small in diameter, so one needs
only to bound c(B) as a function of the diameter of B. The next section gives a simple illustration
of that method.
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2.2. Proof of Proposition 2.1. In the notation of Proposition 2.2, the terminal set T is such that
T ⊂ ball(s, r0) for some s ∈ S, so

c(T ) ≤ sup
s

EC(ball(s, r0)).

The mean time until one of the random centers σ falls in a given ball of radius r0/2 is at most
1/η(r0/2). Note that a ball of radius r0/2 is covered by any ball of radius r0 whose center is in the
former ball. So from the definition of dimension d(r0), for each s there are d(r0) points s1, . . . , sd(r0)

such that ball(s, r0) is covered whenever each of (ball(si, r0/2), 1 ≤ i ≤ d(r0)) contains at least one
of the random centers σ, and so

sup
s

EC(ball(s, r0)) ≤ d(r0)/η(r0/2).

The result follows from Proposition 2.2.

3. The growth model and its concentration bound

Consider as before a compact metric space (S, ρ), a probability measure µ on S, but now introduce
two rates 0 < λ < ∞ and 0 < v < ∞. Write 0 < τ1 < τ2 < . . . for the times of a rate-λ Poisson
process, and write σ1, σ2, . . . for i.i.d. random points of S from distribution µ. The verbal description

seeds arrive at times of a Poisson process at i.i.d. random positions, and then create
balls whose radius grows at rate v

is formalized as the set-valued growth process

X (t) := ∪i:τi≤t ball (σi, v(t− τi)). (3.1)

We study the cover time

C := min{t : X (t) = S}

which is finite because Eτ1 = 1/λ and so

1/λ ≤ EC ≤ 1/λ+ ∆/v (3.2)

where ∆ is the diameter of S. To obtain a concentration bound it is natural to require that EC is
large relative to the maximum expected time to cover any given single point, that is relative to

c∗ := max
s∈S

EC(s); C(s) := min{t : s ∈ X (t)}.

It turns out this is the only requirement.

Proposition 3.1. In the growth model (3.1), var
(
C
EC
)
≤ c∗

EC .

We will derive Proposition 3.1 from a known general result, discussed as Proposition 3.2 below.
Note that the expectation of the number of balls covering v at time t equals

∫ t
0 µ(ball(s, vu)) λdu

and so from the Poisson property

P(C(s) > t) = exp

(
−
∫ t

0
µ(ball(s, vu)) λdu

)
(3.3)

from which we can in principle obtain a formula for EC(s).
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3.1. A monotonicity bound for Markov chains. We will adapt a result from Aldous (2016b). The
setting there is a continuous-time Markov chain (Xt) on a finite state space Σ, where we study the
hitting time

T := inf{t : Xt ∈ Σ0} (3.4)
for a fixed subset Σ0 ⊂ Σ. Assume

h(x) := ExT <∞ for each x ∈ Σ (3.5)

which holds in the finite case under the natural “reachability" condition. Assume also a rather
strong “monotonicity" condition:

h(x′) ≤ h(x) whenever x→ x′ is a possible transition. (3.6)

Proposition 3.2 (Aldous (2016b)). Under conditions (3.5) and (3.6), for any initial state,
var T

ET
≤ max{h(x)− h(x′) : x→ x′ a possible transition}.

Though stated in Aldous (2016b) for a finite state space Σ, the proof of Proposition 3.2 extends to
the continuous space setting by simply replacing sums by integrals. We will write out the argument
for our specific growth model, and then comment on its generality.

For our growth model X (t) at (3.1), the state space is the space of compact subsets x of the
compact metric space S. Write

h(x) = ExC
and observe that the process h(X (t)) is non-increasing. The only discontinuities of h(X (t)) are at
a time τ when a new seed arrives at a point σ, at which time there is a transition x → x ∪ {σ} of
X (t). Consider the martingale

M(t) := E[C|X (t)] = h(X (t ∧ C)) + t ∧ C.
The Doob-Meyer decomposition of M2(t) into a martingale Q(t) and a predictable process a(t) is

M2(t)−M2(0) = Q(t) +

∫ t

0
a(X (u)) du

where
a(x) :=

∫
(h(x)− h(x ∪ {σ})2µ(dσ). (3.7)

Taking expectation at t =∞ gives

var C = E
∫ C

0
a(X (u)) du.

The martingale property for E[C|X (t)] corresponds to the identity

b(x) :=

∫
(h(x)− h(x ∪ {σ})µ(dσ) = 1 for x 6= S (3.8)

and therefore

EC = E
∫ C

0
b(X (u))du.

So
var C

EC
≤ sup

x

a(x)

b(x)
(3.9)

≤ sup
x,σ

(h(x)− h(x ∪ {σ}). (3.10)

Here (3.10) is the specific result we need for the growth process. But note that the argument works
for essentially any Markov process (Xt) and stopping time T such that, writing h(x) := ExT , the
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process h(Xt) is decreasing. In that general setting we obtain (3.9) for the functions analogous to
a(x) and b(x) at (3.7) and (3.8) associated with the given process.

3.2. Proof of Proposition 3.1. To apply (3.10) to prove Proposition 3.1 it is enough to show that,
for each pair (x, σ),

h(x)− h(x ∪ {σ}) ≤ EC(σ). (3.11)
But this holds by considering the natural coupling (X (t),X ′(t) = X (t) ∪ ball(σ, vt), t ≥ 0) of the
growth processes with X (0) = x,X ′(0) = x∪{σ}. In this coupling, for the time C∗(σ) at which σ is
reached by a ball of X (·) whose seed arrived after time 0, we have (by the triangle inequality on S)
that X (C∗(σ) + t) ⊇ X ′(t), and so the cover times for these two processes differ by at most C∗(σ).
But this C∗(σ) is distributed as C(σ) for the growth process started at the empty set, establishing
(3.11).

4. Cover time bounds for the standardized growth model

Comparing the statements of Propositions 2.1 and 3.1 suggests that the growth model is more
tractable for the study of covering. Intuitively this is because the behavior of the growth model is
“smoother" in that it does not rely on the detailed geometry of the space (S, ρ) at the given distance
r0. In this section we record some simple observations.

We can “standardize" the growth model by choosing time and distance units to make λ = v = 1.
Precisely, from a standardized process X 0(t) on (S, ρ0) we can construct the non-standardized
process as X (t) = X 0(t/λ) on space (S, ρ) where ρ(x, y) = v

λρ
0(x, y). Within this correspondence

we have, for instance,
EC = 1

λEC
0, ∆ = v

λ∆0

enabling all the inequalities stated later in the standardized case to be transferred to the general
case. For instance in Proposition 4.2 below, (b) becomes

∆ = v
λ∆0 ≤ κ1

v
λ(EC0)2 = κ1

v
λ(λEC)2 = κ1vλ(EC)2. (4.1)

We start with a simple relationship between the diameter ∆ and EC, for which we need the following
elementary lemma for metric spaces.

Lemma 4.1. If a connected compact metric space (S, ρ) can be covered by balls of radii (ri, 1 ≤ i ≤
m), then ∆ ≤ 2

∑
i ri.

Proof : It is enough to prove this for open balls; then take the “open ball" result with (ri + ε) and
let ε ↓ 0 to get the “closed ball" result. Write S = ∪1≤i≤mballopen(si, ri). Consider the graph G
on vertices (si, 1 ≤ i ≤ m) where (si, sj) is an edge if and only if the open balls ballopen(si, ri) and
ballopen(sj , rj) have non-empty intersection, in which case ρ(si, sj) ≤ ri + rj . If the graph G is
not connected, then there is a proper subset V ⊂ {si, 1 ≤ i ≤ m} with complement V c such that
∪si∈V ballopen(si, ri) and ∪si∈V cballopen(si, ri) are disjoint, contradicting connectedness of S. So G
is connected, and so for any given pair (sα, sβ) of vertices there is a path in G from sα to sβ , and
so ρ(sα, sβ) ≤ 2

∑
1≤i≤m ri − (rα + rβ). Then for any given pair s′, s′′ in S we can find such sα and

sβ with ρ(s′, sα) ≤ rα and ρ(s′′, sβ) ≤ rβ , establishing the result. �

Proposition 4.2. In the standardized growth model on a space (S, ρ),
(a) EC ≤ 1 + ∆.
(b) If S is connected then ∆ ≤ κ1(EC)2 for an absolute constant κ1.

Proof : Part (a) is (3.2). For (b), consider

D(t) := 2
∑
i

(t− τi)+.
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At time t the state Ξ(t) is the union of balls of radii (t− τi)+ and so by Lemma 4.1 we have

∆ ≤ D(C).

We can rewrite D(t) in terms of the Poisson counting process (N(t)) as D(t) = 2
∫ t

0 N(u)du and
then

∆ ≤ ED(C) = 2

∫ ∞
0

E[N(t)1(t≤C)] dt.

Using the Cauchy-Schwarz inequality

∆ ≤ 2

∫ ∞
0

(t2 + t)1/2
√
P(C ≥ t) dt. (4.2)

Breaking the integral at 1 leads to

∆ ≤ 23/2

(
1 +

∫ ∞
0

t
√

P(C ≥ t) dt
)
.

Reusing the submultiplicativity property (2.4) for this cover time C, combined with Markov’s in-
equality P(C ≥ eEC) ≤ e−1, leads to an exponential tail bound

P(C ≥ t) ≤ exp(1− t
eEC ) (4.3)

and so

∆ ≤ 23/2

(
1 + e1/2

∫ ∞
0

t exp(− t
2eEC dt

)
.

The integral equals (2e EC)2, and because EC ≥ 1 from (3.2) we finally find that (b) holds for

κ1 = 23/2(1 + e1/2(2e)2) ≈ 141.

We have not attempted to optimize this constant. �

Continuing with this standardization, consider a sequence of connected compact metric spaces
S = S(n) and probability distributions µ = µ(n). Proposition 3.1 implies that as n→∞

if c∗

EC → 0 then C
EC → 1 in L2. (4.4)

Can we relate the hypothesis c∗/EC → 0 to other aspects of the spaces? Recall that c∗ is in principle
directly calculable from (3.3), whereas determining whether EC is of the same order, or larger order,
than c∗ requires some more detailed knowledge of the space S.

If the diameters ∆(n) are bounded (as n increases) then by Proposition 4.2 the mean cover times
EC(n) are bounded; because P(C(n) > t) ≥ exp(−t) the conclusion (and hence the assumption) of
(4.4) is false. So we need study only the case ∆(n) → ∞. Here is a simple example to show that
the conclusion of (4.4) is not always true.
Example. Take S(n) to be the real line segment [0, n] and µ(n)({0}) = 1− 1/n and µ(n)({n}) =

1/n. One easily sees that
n−1C(n) →d min(1, 1

2(1 + ξ))

where ξ has Exponential(1) distribution.
In an opposite direction, we note a simple upper bound on EC/c∗, that is a lower bound on

c∗/EC, in terms of the covering number

cov(r) := minimum number of radius r balls that cover S . (4.5)

Proposition 4.3. In the standardized growth model,
EC
c∗
≤ min

a>0
[a+ e(e+ log cov(ac∗))].
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Proof : As at (4.3) the submultiplicative property of C(s) implies P(C(s) ≥ t) ≤ exp(1 − t
eEC(s)).

Applying this to the centers (si) of cov(r) covering radius r balls,

P(max
i
C(si) ≥ t) ≤ e cov(r) exp(− t

ec∗ ).

Setting t0 := ec∗ log cov(r),

E[max
i
C(si)] =

∫ ∞
0

P(max
i
C(si) ≥ t) dt ≤ t0 + e · ec∗.

Because C ≤ r + maxiC(si) we have

EC ≤ r + ec∗(e+ log cov(r)).

Setting r = ac∗ gives the stated bound. �

5. The minimum cover time

For the standardized growth model on connected compact (S, ρ), take two points s1, s2 which
are diametrically opposite, that is ρ(s1, s2) = ∆. Then the maximum of EµC over µ equals 1 + ∆,
attained by the measure µ degenerate at s1. But what can we say about the minimum of EµC over
µ? In other words, there is a numerical characteristic of a compact metric space S defined by

χ(S) = min
µ

EµC.

This suggests a research program:
(i) Find general bounds relating χ(S) to other numerical characteristics of S
(ii) Estimate χ(S) for familiar examples of compact spaces.
In this article we make only a modest start on this program, via the general bounds in Propositions
5.1 and 5.3 below, and via analysis of an infinite product space in section 6.

Intuitively, χ(S) should be related to the covering numbers cov(r) at (4.5), and indeed we easily
find upper and lower bounds, as follows. Given r, consider µ uniform on the centers (si, 1 ≤ i ≤
cov(r)) of the covering radius-r balls. Then C ≤ r + τcov(r) where τn is the elementary coupon
collector time with Eτn = n(1 + 1/2 + . . .+ 1/n) ≤ (1 + log n)n. So we have established

Proposition 5.1.
χ(S) ≤ min

r>0
[r + cov(r)(1 + log cov(r))].

For a bound in the opposite direction, observe first that for the Poisson counting process (N(t), 0 ≤
t <∞) of seed arrival times,

Lemma 5.2. If t0 and c0 are such that P(C > c0) + P(N(c0) > t0) < 1 then cov(c0) ≤ t0.

Proof : The assumption implies that the event {C ≤ c0, N(c0) ≤ t0} has non-zero probability; on
that event we have

cov(c0) ≤ N(C) ≤ N(c0) ≤ t0.
�

Applying Lemma 5.2 with c0 = 3EC and t0 = 3c0 gives cov(3EC) ≤ 9EC. This is true for any µ
and so, using monotonicity of r → cov(3r), we have established

Proposition 5.3. In the standardized growth model,

χ(S) ≥ sup{r : cov(3r) > 9r}.
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5.1. Euclidean space. As mentioned in the introduction, the growth process on Rd has been studied
for its role in the construction of the Johnson-Mehl tessellation. Write CL for the cover time of
[0, L]d for the standardized process. In this case, cov(r) = (1 + o(1))cd(L/r)

d for r << L, for a
constant cd. To apply our general results (Propositions 5.1 and 5.3) we want to choose r such that
cov(r) is the same order of magnitude as r, which means we choose r to be of order L

d
d+1 . This

yields asymptotic bounds of the form

(1− o(1))c′dL
d

d+1 ≤ χ(CL) ≤ (1 + o(1))c′′dL
d

d+1 logL as L→∞.
However, in this setting the cover time has been analyzed much more precisely. For µ0 uniform on
[0, L]d, Theorem 4 of Chiu (1995) shows that there are constants ad such that

Eµ0CL ∼ adL
d

d+1 logL as L→∞
and moreover obtains a more refined limit distribution after appropriate rescaling. Intuitively, we
expect that Eµ0CL is very close to the minimum χ(CL) := minµ EµCL but we have not attempted
a proof.

6. An infinite-dimensional example

Here we study the infinite product space S∆ := [0,∆]∞ which, in the product topology, is compact
and metrizable. Write x = (xi, i ≥ 1) for elements of S∆. We will use the metric

ρ(x,y) :=
∑
i≥1

2−i|xi − yi|

for which the diameter of S∆ equals ∆. Write C∆ for the cover time for the standardized growth
model on S∆. In this example the general bounds from section 5 are sufficient to establish the
(logarithmic scale) asymptotic behavior of χ(S∆) := minµ EµC∆ as ∆→∞.

Theorem 6.1. log2
χ(S∆)

∆ ∼ −
√

2 log2 ∆ as ∆→∞.

To start the proof we need upper and lower bounds on cov(r).

Lemma 6.2. On the product space S∆, for m ≥ 2
(a) cov((m+ 2)2−m∆) ≤ 2m(m+1)/2.
(b) cov(2−m∆) ≥ (m− 1)!2(m−1)(m−2)/2 .

Proof : Given ∆ and j ≥ 0, the set

B∆(j) :=

{
∆

2j+1
,

3∆

2j+1
,

5∆

2j+1
, . . . ,

(2j+1 − 1)∆

2j+1

}
consists of 2j elements, and each point in [0,∆] is within distance ∆/2j+1 from the closest point of
B∆(j). Now for m ≥ 1 consider the subset B∆ of S∆ defined by

B∆ := {x = (xi) : xi ∈ B∆(m+ 1− i) for all 1 ≤ i ≤ m, xi = ∆/2 for all i > m}.

The cardinality of B∆ equals
∏m
i=1 2m+1−i = 2m(m+1)/2. For each element of S∆, the distance to

the closest element of B∆ is at most
m∑
i=1

2−i∆/2m+2−i +
∞∑

i=m+1

2−i∆/2 = (m+ 2)∆/2m.

This proves part (a). For part (b), define

F (z) := P(
∑
i≥1

2−iUi ≤ z) for i.i.d. U [0, 1] summands Ui.
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Consider the uniform distribution on S∆, that is the distribution ν of i.i.d. Uniform(0,∆) random
variables (Vi, 1 ≤ i <∞). Write c = (∆/2,∆/2, . . .). For r ≤ ∆/2 and any x ∈ S∆,

ν(ball(x, r)) ≤ ν(ball(c, r))

= P

(∑
i

2−i|Vi −∆/2| ≤ r

)

= P

(∑
i

2−i
|Vi −∆/2|

∆/2
≤ 2r

∆

)
= F (2r/∆)

the final equality because |Vi−∆/2|
∆/2 has U(0, 1) distribution. So the entire space S∆ cannot be covered

by fewer than 1/F (2r/∆) balls of radius r, implying

cov(r) ≥ 1/F (2r/∆). (6.1)

We now need to upper bound the function F (z) as z ↓ 0. Consider z = 2−m for m ≥ 1, and note

F (2−m) ≤ P(
m∑
i=1

2−iUi ≤ 2−m). (6.2)

Consider the event Am := {max1≤i≤m 2−iUi ≤ 2−m}, for which

P(Am) =
m∏
i=1

(2i2−m) = 2−m(m−1)/2.

Conditional on Am the sequence (2−iUi/2
−m, 1 ≤ u ≤ m) has i.i.d. U(0, 1) distribution, and by a

textbook exercise (Pitman (1993) Exercise 5.4.18d) the probability that the sum of m such random
variables is less than 1 equals 1/m!. So we obtain the exact formula

P(
m∑
i=1

2−iUi ≤ 2−m) =
2−m(m−1)/2

m!
. (6.3)

From (6.1) we have cov(∆2−m) ≥ 1/F (2−(m−1)) and then (b) follows via (6.2) and (6.3). �

Proof of Theorem 6.1. Proposition 5.1 and Lemma 6.2(a) imply

χ(S∆) ≤ min
m≥1

[a(m) + b(m)], (6.4)

where
a(m) := (m+ 2)∆/2m; b(m) := 2m(m+1)/2(1 + log 2m(m+1)/2).

Choose m(∆) ∼
√

2(1− ε) log2 ∆ for small ε > 0. Then

log2

a(m(∆))

∆
∼ −m(∆); log2

b(m(∆))

∆
∼ −ε log2 ∆

and usingm(∆) in (6.4) is enough to establish the upper limit in Theorem 6.1. Similarly, Proposition
5.3 and Lemma 6.2(b) imply

χ(S∆) ≥ sup
m
{2−m∆/3 : (m− 1)!2(m−1)(m−2)/2 > 3 · 2−m∆}. (6.5)

Choose m(∆) ∼
√

2(1 + ε) log2 ∆ for small ε > 0. Then

log2

(m(∆)− 1)!2(m(∆)−1)(m(∆)−2)/2

∆
∼ ε log2 ∆; log2

3 · 2−m(∆)∆

∆
∼ −m(∆)
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and so the constraint in (6.5) is satisfied for large ∆. Using m(∆) in (6.4) gives

log2

χ(S∆)

∆
≥ −m(∆) for large ∆

establishing the lower limit in Theorem 6.1.

7. Discussion

7.1. Open problems for the general growth model.

• Are there easily checkable conditions to ensure that c∗/EC is small, so that Proposition 3.1
is informative?
• Can one improve the general upper and lower bounds on χ(S) in section 5? In particular,
can χ(S) be more sharply related to some measure of entropy of the metric space S (see e.g.
Leinster and Roff (2021) for possible notions of entropy)?
• On a general compact metric space there is no canonical definition of the uniform distri-
bution, but any definition of entropy (as above) can be used to define uniform as maximal
entropy. Analogously, one motivation for considering χ(S) is that the minimizing distribu-
tion gives a certain, explicitly probabilistic, definition that may serve as proxy for uniform
is some senses.
• Estimate χ(S) for specific spaces, in some asymptotic sense analogous to our section 6
estimate for S∆. As well as other classical compact spaces familiar from analysis, one
can consider a finite graph with edge lengths, with the metric of shortest route length.
Moreover there are random metric spaces of contemporary interest in probability, such as the
“mean-field model of distance" (Aldous and Steele (2004)), the Brownian CRT (Goldschmidt
(2020)), or the Brownian map (Le Gall (2013)).
• For µ attaining the minimum minµ EµC, do we always have weak concentration? That is,
is there a function ψ(∆) ↓ 0 as ∆ ↑ ∞ such that on every connected compact metric space,
for the standardized growth model,

varµ

(
C

EµC

)
≤ ψ(∆)

for the minimizing µ?
• Is there an effective algorithmic procedure for finding a minimizing µ? This seems loosely
similar to the well-studied k-median problem discussed in Charikar et al. (2002).
• If S is a compact group, with a metric invariant under the group action, then is the uniform
(Haar) measure the minimizing measure?

Regarding the final problem above, it can be shown that, on the circle of integer circumference
L, for the fixed-radius model with r = 1/2, the mean cover time for seed distribution µ uniform
on L evenly-spaced points is smaller than that for µ uniform on the circle (the discrete analog is
noted in Falgas-Ravry et al. (2020) Example 4.1). We do not know if this type of example is a
counter-example in the growth model; if so, replace by an asymptotic (∆→∞) conjecture.

7.2. Models for spread of information. The growth model can be regarded as an extremely simplistic
model for the spread of information or the spread of an epidemic, a field with a huge literature
studying models on graphs or Euclidean space: for instance Draief and Massoulié (2010); Kiss et al.
(2017); Riley et al. (2015). A related growth model in two dimensions, where seeds arrive (instead
of as a constant-rate process) as a Poisson process whose rate is the current occupied area, is studied
in Aldous (2013) and Chatterjee and Durrett (2011).



766 David J. Aldous

7.3. Other uses of the two general bounds. We have used two general methods – the random subset
cover bound (Proposition 2.2) and the monotonicity bound (Proposition 3.2) – which are in principle
applicable in very general covering-like contexts to establish weak concentration bounds in general
settings without calculating the expectation of the covering time. We provide some history of these
methods below, and speculate that there may be other applications not yet explored.
The random subset cover bound, Proposition 2.2, for general i.i.d. random subsets of a set,

was given in Aldous (1991) as part of the proof of a weak concentration bound for the Markov
chain cover time CMC . In the Markov chain context, the i.i.d. subsets arise as excursions from
a given state. In the result, the essential condition is that the maximum mean hitting time to
any single state is o(ECMC). In that sense the bound is closely analogous to the bounds in this
article. In the 30 years since Aldous (1991), study of random walk cover times has entered a more
sophisticated phase based on the Ding et al. (2012) discovery of its connection with Gaussian free
fields and Talagrand’s theory of majorizing measures. In contrast, the program of using general
results for i.i.d. random subsets as part of analysis of specific contexts within covering seems not
to have been developed until the recent work of Falgas-Ravry et al. (2020). That paper discusses
known results in combinatorial settings, develops new general results and applies them to several
topics: connectivity in random graphs; covering a square with random discs; covering the edges of
a graph by spanning trees, and matroids by bases; and random k-SAT.
The monotonicity bound, Proposition 3.2, was given in Aldous (2016b) as a tool for estab-

lishing weak concentration for first passage percolation times on general graphs. It was also used
in Aldous (2016a) for weak concentration of the time of emergence of the giant component in bond
percolation on general graphs. Both contexts involve hitting time of an increasing set-valued Markov
process, as does our application in section 3.2.
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