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Many natural and man-made systems, ranging from the nervous system to power and trans-

portation grids to societies, exhibit dynamic behaviors that evolve over a sparse and complex net-

work. This networked aspect raises significant challenges and opportunities for the identification,

analysis, and control of such dynamic behaviors. While some of these challenges emanate from

the networked aspect per se (such as the sparsity of connections between system components and

the interplay between nodal communication and network dynamics), various challenges arise from

the specific application areas (such as privacy concerns in cyber-physical systems or the need for

scalable algorithm designs due to the large size of various biological and engineered networks).
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On the other hand, networked systems provide significant opportunities and allow for performance

and robustness levels that are far beyond reach for centralized systems, with examples ranging from

the Internet (of Things) to the smart grid and the brain. This dissertation aims to address several of

these challenges and harness these opportunities.

The dissertation is divided into three parts. In the first part, we study privacy concerns

whose resolution is vital for the utility of networked cyber-physical systems. We study the problems

of average consensus and convex optimization as two principal distributed computations occurring

over networks and design algorithm with rigorous privacy guarantees that provide a best achiev-

able tradeoff between network utility and privacy. In the second part, we analyze networks with

resource constraints. More specifically, we study three problems of stabilization under communi-

cation (bandwidth and latency) limitations in sensing and actuation, optimal time-varying control

scheduling problem under limited number of actuators and control energy, and the structure iden-

tification problem of under-sensed networks (i.e., networks with latent nodes). Finally in the last

part, we focus on the intersection of networked dynamical systems and neuroscience and draw con-

nections between brain network dynamics and two extensively studied but yet not fully understood

neuro-cognitive phenomena: goal-driven selective attention and neural oscillations. Using a novel

axiomatic approach, we establish these connections in the form of necessary and/or sufficient con-

ditions on the network structure that match the network output trajectories with experimentally

observed brain activity.
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Chapter 1

Introduction

Consider any natural or man-made system of your choice. Most likely, this system is com-

posed of smaller subsystems (or components) and its properties and function can be described, at

one level or another, in terms of the properties and function of its subsystems. By the mere fact

that these components constitute a larger system, they need to be interacting with each other. This

ubiquitous pattern of interacting components (or better, the abstraction of this pattern) is what we

call a network.

My favorite example is the brain. The idea of the brain as a network is more than a century

old and perhaps sounds already familiar, but the precise process of abstracting the brain into a

network is anything but a matter of consensus. The reason is that the definitions of “components"

and “interactions", i.e., the “nodes" and the “edges", are not unique and depend on the particular

properties and function of the brain that one wants to study. We will discuss this in more detail

later, but the same ambiguity and non-uniqueness of network abstractions is present in almost all

real-world systems, from genetic processes to social phenomena to infrastructure systems such as

the power and transportation grids and the internet of things (IoT), to name a few.
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A further source of complexity is time. It is often the case that the nodes of the network

(and therefore the network as a whole) change with time, and this change is the result of the interac-

tions between the nodes and with the environment. In this case, one is often interested in the time

evolution of one (scalar or vector) variable of each node, and thus defines that as the state variable

of that node. This is in fact one of the most important reasons for abstracting a system as a network

as it allows us to break the complexity of its overall dynamics into simpler node-to-node and node-

to-environment interactions. Such systems will be hereafter referred to as networked dynamical

systems (NDS).

A few examples can ground the discussion. Consider again the example of the brain. The

trivial network abstraction defines individual neurons as nodes and the axonal connections between

them as edges. In this case, the state variable of each neuron can be its activity level (voltage

across its membrane), either as a continuous (analogue) or discrete (digital) value. In the case

of a transportation network, one network abstraction considers each terminal as a node with state

variable equal to its passenger population and each route as an edge. Another example is that of

a social network whereby each person may constitute a node, his/her opinion be his/her state, and

the friendships or physical contacts between them form the edges. Finally, in the setting of dis-

tributed computation, the dynamical network often coincides with the physical computer network

and the state variable of each node is often the estimate of the final output of the desired distributed

computation that it updates after each round of communication with its neighbors.

As helpful as dynamical network abstractions are, their analysis poses significant challenges.

These include large network size (number of nodes), poor knowledge of its structure, node hetero-

geneity, nonlinearity, the effects of noise and disturbances, communication and/or computation

resource constraints, privacy and/or security, under-sensing and/or under-actuation, heterogeneity

2



of timescales, and human interactions, to name a few, and arise as one seeks to identify, analyze,

and control NDS. Addressing these challenges is the central theme of this dissertation.

The dissertation is divided into three parts that are focused on different (sets of) challenges.

In Part I (Chapters 3 and 4), we address the privacy challenges that arise when a distributed com-

putation is carried over a dynamical network. Given the various existing forms of distributed com-

putations, we here focus on perhaps the two most fundamental ones, consensus (Chapter 3) and

optimization (Chapter 4), and use the elegant notion of differential privacy from the computer sci-

ence literature to analyze and control the privacy of these networks. Part II (Chapters 5, 6, and 7)

is motivated by another critical challenge pertaining the limitation of resources in NDS. We par-

ticularly address the limitations of communication (Chapter 5), actuation (Chapter 6), and sensing

(Chapter 7) resources in identification and control of NDS. Finally, Part III (Chapters 8 and 9) seeks

to make headway into one of the greatest challenges of our time, i.e., understanding the relationship

between the NDS of the brain and cognition. We start with the analysis of goal-driven selective

attention as one of the most fundamental processes in the brain (Chapter 8), which in turn motivates

the analysis of oscillations brain dynamics (Chapter 9). Chapter 10 will conclude the dissertation

and discuss a few directions for future research.

1.1 Literature Review

The study of networked systems has a long and vast history [28–30] and has roots in var-

ious domains such as computer networks [1–3], neuroscience [4–7], systems and synthetic biol-

ogy [8–11], sociology [12–15], information privacy [16–19], robotics [20–23], and energy sys-

tems [24–27], to name a few. Interestingly, despite the major differences in these domains, there
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are various domain-free properties that network abstractions are designed to capture. These in-

clude, in particular, the complexity (large size, poorly known structure, nonlinearity, etc.) [31, 32]

and the existence of dynamics that evolve over these networks [33–35], both playing central roles

throughout this dissertation.

A central dichotomy in the study of networked systems is between node-oriented (a.k.a.

microscopic) and network-oriented (a.k.a. macroscopic) analysis [36–40]. In the former, the focus

is on the properties, objectives, and limitations of individual nodes (at the same time that their

interactions lead to a certain collective behavior) while the latter is more interested in the emerging

collective behavior and may treat individual nodes as passive and cooperative building blocks or

even dissolve them into densities altogether. A particular scenario where this distinction becomes

critical is the study of privacy in network dynamical systems.

The study of privacy becomes critical when individual entities (nodes) carry private infor-

mation and thus have self-prioritizing concerns which may be in tension with the global perfor-

mance and utility of the networked system [41, 42]. Examples include online user databases (and

the pioneering de-anonymization of the Netflix Prize dataset [43]), the smart grid [44], and smart

transportation management [45,46], to name a few, and are rapidly increasing with the ever expan-

sion of the private and public data acquisition systems of our age. This contrast often leads to some

form of tradeoff between what the group can achieve (and at what computational and other costs)

and how much information each node agrees to disclose. In turn, various notions of privacy and

corresponding privacy-ensuring algorithms have been proposed, including k-anonimity [47] and

its extensions [48], information-theoretic privacy [49], conditions based on observability [50–52],

and differential privacy [53, 54]. The latter has gained significant popularity due to its desirable

characteristics such as mathematically elegant formulation, independence from side information,
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independence to the adversarial algorithms or capabilities, and immunity to post-processing, and

thus will be the basis of our analysis and design of privacy-aware distributed network computations

in Part I.

Another barrier to the global utility of networked dynamical systems even in the absence

of privacy concerns is the resources available for their analysis and control. Resource limitations

are important in almost any engineering system, but become increasingly critical as the size of the

system grows, as is the case in most applications of networked systems. One of the most widely

studied constraints is the sparsity of communication links between nodes in distributed computa-

tions [55, 56]. Of further significant interest have been the limitations on the number of sensors

and actuators in networked control systems, motivating the design of optimal sensor [57–62] and

actuator [62–65] scheduling algorithms, respectively. An independent line of research has also fo-

cused on the communication channels between the nodes and the constraints that realistic channels

impose, including time delays [66–73], bandwidth limitations [74–81], and quantization [82–87].

These limitations motivate Part II of this dissertation.

In addition to raising privacy concerns, the dichotomy between microscopic and macro-

scopic phenomena also complicates network analysis and control. One elegant approach in break-

ing this complexity has been the study of networks at the mesoscopic or subnetwork level as a

middle ground between the two extremes. This can be either implicit in the very definition of the

nodes (i.e., by (re-)defining each node to encompass several microscopic entities and assigning to

it an aggregate state variable) or explicit in the analysis and control of the network in terms of its

smaller subnetworks [88–92], and has been employed in the study of neuronal [7, 93–95], trans-

portation [96–98], social [99–102], epidemic [103–105], and ecological [106–108] networks. In

Part III, we combine the implicit and the explicit approach to break the complexity of one the most
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complex networked dynamical systems –the brain.

1.2 Statement of Contributions

Differentially Private Average Consensus: In Chapter 3, we study the average consensus

problem where a group of agents seek to compute and agree on the average of their local variables

while seeking to keep them differentially private against an adversary with potential access to all

group communications. This privacy requirement also applies to the case where each agent wants

to keep its initial state private against the rest of the group (e.g., due to the possibility of communi-

cation leakages). The main contributions of this work are the characterization and optimization of

the fundamental trade-offs between differential privacy and average consensus.

Our first contribution is the formulation and formal proof of a general impossibility result.

We show that as long as a coordination algorithm is differentially private, it is impossible to guar-

antee the convergence of agents’ states to the average of their initial values, even in distribution.

This result automatically implies the same impossibility result for stronger notions of convergence.

Motivated by it, our second contribution is the design of a linear Laplacian-based consensus algo-

rithm that achieves average consensus in expectation —the most that one can expect. We prove the

almost sure convergence and differential privacy of our algorithm and characterize its accuracy and

convergence rate.

Our final contribution is the computation of the optimal values of the design parameters to

achieve the most accurate consensus possible. Letting the agents fix a (local) desired value of the

privacy requirement, we minimize the variance of the algorithm convergence point as a function

of the noise-to-state gain and the amplitude and decay rate of the noise. We show that the mini-
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mum variance is achieved by the one-shot perturbation of the initial states by Laplace noise. This

result reveals the optimality of one-shot perturbation for static average consensus, previously (but

implicitly) shown in the sense of information-theoretic entropy. Various simulations are presented

to illustrate our results.

Differentially Private Distributed Optimization: In Chapter 4, we consider a group of

agents that seek to minimize the sum of their individual objective functions over a communica-

tion network in a differentially private manner. Our first contribution is to show that coordination

algorithms which rely on perturbing the agents’ messages with noise cannot satisfy the require-

ments of differential privacy if the underlying noiseless dynamics are locally asymptotically stable.

The presence of noise necessary to ensure differential privacy is known to affect the algorithm

accuracy in solving the distributed convex optimization problem. However, this result explains

why message-perturbing strategies incur additional inaccuracies that are present even if no noise is

added.

Our second contribution is motivated by the goal of guaranteeing that the algorithm ac-

curacy is only affected by the presence of noise. We propose a general framework for functional

differential privacy over Hilbert spaces and introduce a novel definition of adjacency using adja-

cency spaces. The latter notion is quite flexible and includes, as a special case, the conventional

bounded-difference notion of adjacency. We carefully specify these adjacency spaces within theL2

space such that the requirement of differential privacy can be satisfied with bounded perturbations.

Our third contribution builds on these results on functional perturbation to design a class

of distributed, differentially private coordination algorithms. We let each agent perturb its own

objective function based on its desired level of privacy, and then the group uses any provably cor-

rect distributed coordination algorithm to optimize the sum of the individual perturbed functions.
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Two challenges arise to successfully apply this strategy: the fact that the perturbed functions might

lose the smoothness and convexity properties of the original functions and the need to characterize

the effect of the added noise on the minimizer of the resulting problem. We address the first chal-

lenge using a cascade of smoothening and projection steps that maintain the differential privacy

of the functional perturbation step. We address the second challenge by explicitly bounding the

absolute expected deviation from the original optimizer using a novel Lipschitz characterization of

the argmin map. By construction, the resulting coordination algorithms satisfy the requirement of

recovering perfect accuracy in the absence of noise. This chapter also includes various simulations

that illustrate our results.

Event-Triggered Stabilization of Delayed Systems: In Chapter 5, we turn to a differ-

ent challenge in the analysis and control of NDS, i.e., the existence of imperfect communication

channels between the network nodes. Our contributions are threefold. First, we design an event-

triggered controller for stabilization of nonlinear systems with arbitrarily large sensing and actu-

ation delays. We employ the method of predictor feedback to compensate for the delay in both

and then co-design the control law and triggering strategy to guarantee the monotonic decay of a

Lyapunov-Krasovskii functional.

Our second contribution involves the closed-loop analysis of the event-triggered law, prov-

ing that the closed-loop system is globally asymptotically stable and the inter-event times are uni-

formly lower bounded (and thus no Zeno behavior may exist). Due to the importance of linear

systems in numerous applications, we briefly discuss the simplifications of the design and analysis

in this case.

Our final contribution pertains to the trade-off between convergence rate and sampling. Our

analysis in this part is limited to linear systems, where closed-form solutions are derivable for
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(exponential) convergence rate and minimum inter-event times. We provide a quantitative account

of the well-known trade-off between sampling and convergence in event-triggered designs and show

how this trade-off can be biased in either direction by tuning a design parameter. Finally, we present

simulations to illustrate the effectiveness of our design and address its numerical implementation.

Time-Varying Control Scheduling (TVCS): In Chapter 6, we address the limitation of

actuation resources in the control of networked dynamical systems. First, we show that 2k-

communicability, a new notion of nodal centrality that we introduce, plays a fundamental role in

TVCS. This notion measures the centrality of each node in the network at different spatial scales.

Throughout this work, the spatial scale (or simply scale) of any notion of centrality is defined as

the maximum topological distance between pairs of nodes that allows them to affect the centrality

of each other, where topological distance between a pair of nodes refers to the minimum number

of edges in the graph of the network that should be traversed to go from one to the other. In par-

ticular, the spatial scale of degree centrality is 1, while the spatial scale of eigenvector centrality

is ∞. Based on the distinction between local and global nodal centralities (i.e., centralities with

small and large spatial scales, respectively), we show that the optimal control node at every time

instance is the node with the largest centrality at the appropriate scale (i.e., the node with the largest

2k-communicability at an appropriate k). Accordingly, our main conclusion is that the benefit of

TVCS is directly related to the scale-heterogeneity of central nodes in the network: the most benefit

is gained in networks where the highest centrality is attained by various nodes at different spatial

scales, while this benefit starts to decay as fewer nodes dominate the network at all scales (i.e.,

scale-homogeneity).

Moreover, we provide an extensive discussion of how the dynamical adjacency matrix of a

network can (and should) be extracted from its static connectivity, a vital step that is often ignored
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in the literature. Indeed, our simulation results show that this step has a significant effect on the

benefit of TVCS, with transmission networks (networks with states that represent physical quanti-

ties transmitted over the network) benefiting significantly more than induction networks (those with

non-physical states that induce state dynamics over the network) from TVCS.

Structure Identification with Latent Nodes: In Chapter 7, we consider a scenario where

one can only directly actuate and measure a subset of the nodes, termed manifest, of a large linear

time-invariant network whose total number of nodes and interaction topology are unknown. The

objective is to identify the manifest transfer function, which is the submatrix corresponding to the

manifest nodes of the transfer function matrix of the entire network. To achieve this, we study the

transfer functions provided by linear autoregressive (AR) models. Our discussion shows how AR

models can be used to effectively distinguish direct interactions between manifest nodes from indi-

rect interactions mediated by latent nodes. Our first contribution shows that, if no inputs act on the

latent nodes, then there exists a class of ARmodels whose transfer functions converge exponentially

in theH∞ norm to the manifest transfer function as the model order increases. We also show that,

if the latent subnetwork is acyclic, then this approximation is exact above a specific model order.

Our second contribution characterizes the properties of using least-squares auto-regressive

estimation to construct the AR model from measured data. We establish that the least-squares ma-

trix estimate converges in probability to the optimal matrix sequence identified in our first contri-

bution, enabling us to determine whether two manifest nodes interact directly or indirectly through

latent nodes. We also show that the least-squares auto-regressive method guarantees an arbitrarily

smallH∞-norm error as the length of data and the model order grow. In fact, once the order of the

AR model candidates exceeds a certain threshold, theH∞-norm error decays exponentially.

Finally, we show that, when the latent subnetwork is acyclic, the method achieves perfect
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identification of the manifest transfer function. Throughout a series of remarks, we also discuss

how our results can be extended to the identification of linear network models of arbitrary order.

Simulations on a directed ring network, Erdős–Rényi random graphs, and real EEG data illustrate

our results.

Hierarchical Selective Recruitment: In Chapter 8, we continue our study of the rela-

tionship between brain network dynamics and cognition, and focus on the particular phenomenon

of goal-driven selective attention (GDSA) as one of the most fundamental processes in the brain

that enable cognition. This chapter contains six main contributions. First, we analyze the internal

dynamics of a single-layer linear-threshold network as a basis for our study of hierarchical struc-

tures. Our results are a combination of previously known results (for which we give simpler proofs)

and novel ones, providing a comprehensive characterization of the dynamical properties of linear-

threshold networks. Specifically, we show that existence and uniqueness of equilibria, asymptotic

stability, and boundedness of trajectories can be characterized using simple algebraic conditions on

the network structure in terms of the class of P-matrices (matrices with positive principal minors),

totally-Hurwitz matrices (those with Hurwitz principal submatrices, shown to be a sub-class of P-

matrices), and Schur-stable matrices, respectively. In addition to forming the basis of HSR, these

results solve some of the long-standing open problems in the characterization of linear-threshold

networks and are of independent interest.

Our second contribution pertains the problem of selective inhibition in a bilayer network

composed of two subnetworks. Motivated by the mechanisms of inhibition in the brain, we study

feedforward and feedback inhibition mechanisms. We provide necessary and sufficient conditions

on the network structure that guarantee selective inhibition of task-irrelevant nodes at the lower-

level while simultaneously guaranteeing various dynamical properties of the resulting (partly in-
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hibited, partly active) subnetwork, including existence and uniqueness of equilibria and asymptotic

stability. Interestingly, under both mechanisms, these conditions require that (i) there exist at least

as many independent inhibitory control inputs as the number of nodes to be inhibited, and (ii) the

(not-inhibited) task-relevant part of the lower-level subnetwork intrinsically satisfies the desired dy-

namical properties. Therefore, when sufficiently many inhibitory control inputs exist, the intrinsic

dynamical properties of the task-relevant part are the sole determiner of the dynamical properties

achievable under feedforward and feedback inhibitory control. This is particularly important for se-

lective inhibition as asymptotic stability underlies it. These results unveil the important role of task-

relevant nodes in constraining the dynamical properties achievable under selective inhibition and

have further implications for the number and centrality of nodes that need to be inhibited in order

for an unstable-in-isolation subnetwork to gain stability through selective inhibition. For subnet-

works that are not stable as a whole, these results provide conditions on the task-relevant/irrelevant

partitioning of the nodes that allow for stabilization using inhibitory control.

Third, we use the timescale separation in hierarchical brain networks and the theory of sin-

gular perturbations to provide an analytic account of top-down recruitment in terms of conditions

on the network structure. These conditions guarantee the stability of the task-relevant part of a (fast)

linear-threshold subnetwork towards a reference trajectory set by a slower subnetwork. This, in par-

ticular, subsumes the standard “modulation” (enhancement) of the activity of task-relevant nodes

(as the most widely observed phenomena in GDSA) but is significantly more general, and can ac-

count for recent, complex observations such as shifts in neuronal receptive fields under GDSA. We

further combine these results with the results of Part I to allow for simultaneous selective inhibition

and top-down recruitment, as observed in GDSA.

Fourth, we extend this combination to hierarchical structures with an arbitrary number of
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layers, as observed in nature, to yield a fully developed HSR framework. Here, we derive an ex-

tension of the stability results in Part I that guarantees GES of a multi-layer multiple timescale

linear-threshold network. This, together with a recursive application of singular perturbation the-

ory, guarantees top-down recruitment of the task-relevant nodes in each layer towards the desired

trajectory set by the layer above.

Fifth, to validate the proposed HSR framework, we provide a detailed case study of GDSA

in real brain networks. Using single-unit recordings from two brain regions of rodents perform-

ing a selective listening task, we provide an in-depth analysis of appropriate choices of neuronal

populations in each brain region as well as the timescales of their dynamics. We propose a novel

hierarchical structure for these populations, tune the parameters of the resulting network to match

its state trajectories with their measured estimates using a novel objective function, and show that

the resulting structure conforms to the theoretical results and requirements of HSRwhile explaining

more than 90% of variability in the data.

As part of our technical approach, our sixth and final contribution is a novel converse Lya-

punov theorem that extends the state of the art on GES for state-dependent switched affine systems.

This result only requires continuity of the vector field and guarantees the existence of an infinitely

smooth quadratically-growing Lyapunov function if the dynamics is GES. Because of independent

interest, we formulate and prove the result for general state-dependent switched affine systems.

Oscillations and Coupling in Brain Networks: Finally Chapter 9 is motivated by the

extension of the results of Chapter 8 (which is based on encoding of sensory information in equi-

librium attractors) to more complex attractors. As a first step, this chapter tackles the long-standing

problem of characterizing oscillatory activity in terms of brain network structure. Our contribu-

tions here are threefold. First, we obtain an exact characterization of existence of limit cycles for
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two-dimensional excitatory-inhibitory network motifs described by bounded linear-threshold dy-

namics (E-I pairs). These two-dimensional motifs serve as models of small brain regions that can

then be connected to model large-scale brain dynamics.

Accordingly, our second contribution is the study of such networks of oscillators with arbi-

trary size and connectivity where each oscillator is itself an E-I pair. We derive exact conditions for

the lack of stable equilibria and show, through extensive simulations, that this condition is indeed

a tight proxy for oscillatory behavior. Finally, using this condition, we study synchronization and

PAC as the two most prominent forms of oscillatory coupling in the brain. We show numerically

that increasing the inter-oscillator connectivity strength has the same (enhancing) effect on both

synchronization and PAC, while increasing frequency mismatch between the oscillators has an op-

posing effect on them (decreasing synchronization, increasing PAC). Together, these analytical and

numerical results provide great insight into the nature of brain oscillations and its relation to the

structure of the underlying networks.
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Chapter 2

Preliminaries

Here, we introduce notational conventions and review basic concepts on graph theory, ma-

trix analysis, probability theory, Hilbert spaces and orthonormal bases, input-to-state stability of

dynamical systems, and dynamical rate models of brain networks. The reader familiar with these

topics may safely skip this chapter.

2.1 Notation

2.1.1 Vectors and Matrices

We use ℝ, ℝ≥0, ℝ≤0, ℝ>0, ℕ, and ℤ≥0 to denote the set of reals, nonnegative reals, nonpos-

itive reals, positive reals, positive integers, and nonnegative integers, respectively. We let ℝℕ and

(ℝn)ℕ denote the space of scalar- and n-vector-valued sequences, respectively. We use bold-faced

letters for vectors and matrices. For a sequence {x(k)}∞k=0 ⊂ ℝℕ, we use the shorthand notation

x̊ = {x(k)}∞k=0, x̊k = {x(j)}kj=0, and {x̊}
k2
k1
= {x(j)}k2j=k1 , with bold-faced counterparts for vector-

valued sequences. If the index of x̊ starts at k = 1, with a slight abuse of notation we also denote
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{x(j)}kj=1 by x̊k (the starting index will be clear from the context). 1n, 0n, 0m×n, and In stand for

the n-vector of all ones, the n-vector of all zeros, the m-by-n zero matrix, and the identity n-by-n

matrix (we omit the subscripts when clear from the context). We let �n =
1
n
1n1Tn . Note that �n is

diagonalizable, has one eigenvalue equal to 1 with eigenspace

ℝ1n ≜ {a1n ∣ a ∈ ℝ},

and all other eigenvalues equal 0.

Given a vector x ∈ ℝn, xi and (x)i refer to its ith component. Given A ∈ ℝn×m, aij and Ai

refer to the (i, j)th entry and ith column, respectively. For block-partitioned x andA, xi, Ai, andAij

refer to the ith block of x, ith block (e.g., row) of A, and (i, j)th block of A, respectively. In block

representation of matrices, ⋆ denotes arbitrary blocks whose value is immaterial to the discussion.

If x and y are vectors, x ≤ y denotes xi ≤ yi for all i. For x ∈ ℝn, Ave(x) = 1
n
1Tn x denotes the

average of its components.

For a vector � ∈ {0, 1}n, we make the convention that � = diag(�) ∈ ℝn×n denotes

the diagonal matrix with the elements of � on its diagonal. Likewise, for two matrices A and B,

diag(A,B) denotes the block-diagonal matrix with A and B on its diagonal. We use ‖ ⋅ ‖p for the

p-norm in both finite and infinite-dimensional normed vector spaces and drop the index for p = 2.

For matrices, ‖A‖max = maxi,j |aij|.

For a matrix A, its trace, element-wise absolute value, determinant, spectral radius, and

eigenvalue with smallest magnitude are denoted by tr(A), |A|, det(A), �(A), and �min(A), respec-

tively, while range(A) denotes the subspace of ℝm spanned by the columns of A. For symmetric

A ∈ ℝn×n,A > 0 (A < 0) denotes thatA is positive (negative) definite. A matrixA ∈ ℝn×n is called
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stable if all its eigenvalues have magnitude strictly less than 1. The singular values of A ∈ ℝm×n

are denoted by �1(A) ≥ �2(A) ≥⋯ ≥ �min{m,n}(A) ≥ 0.

2.1.2 Sets

For a set S, Sc, |S|, So, and S̄ denotes its complement, cardinality, interior, and closure,

respectively. For a function f ∶ X → Y and sets A ⊆ X and B ⊆ Y , we use f (A) = {f (x) ∈

Y |x ∈ A} and f−1(B) = {x ∈ X|f (x) ∈ B}. In general, f (f−1(B)) ⊆ B. For any topological

space X, we denote by (X) the set of Borel subsets of X. We let B(c, r) denote the closed ball

with center c and radius r in Euclidean space and given m ∈ ℝn
>0, [0,m] = [0, m1] ×⋯ × [0, mn].

Throughout the dissertation, measure-theoretic statements refer to the Lebesgue measure which we

denote by �L(⋅). We denote by l2 ⊂ ℝℕ the space of square-summable infinite sequences and by

L2(S) andC2(S) the set of square-integrablemeasurable functions and the set of twice continuously

differentiable functions over a set S, respectively. If {Ek}∞k=1 is a sequence of subsets of Ω such

that Ek ⊆ Ek+1 and E =
⋃

kEk, then we write Ek ↑ E as k → ∞. We say Ek ↓ E as k → ∞ if

Ec
k ↑ E

c as k→ ∞.

In ℝn, a hyper-plane with normal vector n ∈ ℝn passing through x ∈ ℝn is the (n − 1)-

dimensional space {y | nT (x−y) = 0}. A set of n hyperplanes is degenerate [1] if their intersection

is a point or, equivalently, thematrix composed of their normal vectors is nonsingular. A setS ⊆ ℝn

is called

∙ a polytope if it has the form S = {x | Ax ≤ b} for some A ∈ ℝm×n,b ∈ ℝm, m ∈ ℕ,

∙ a cone if cx ∈ S for any x ∈ S and c ∈ ℝ≥0,

∙ a translated cone apexed at y if {x |x + y ∈ S} is a cone,
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∙ convex if (1 − �)x + �y ∈ S for any x, y ∈ S, � ∈ [0, 1],

∙ solid if it has a non-empty interior.

Given a subspace W of a vector space V , W ⟂ denotes the orthogonal complement of W in V .

Given any closed and convex subset  ⊆  of a Hilbert space, we denote by proj the orthogonal

projection operator onto  .

2.1.3 Functions

A function � ∶ [0,∞)→ [0,∞) belongs to class if it is continuous and strictly increasing

and �(0) = 0. A function � belongs to ∞ if � ∈  and limr→∞ �(r) = ∞. Similarly, a function

� ∶ [0,∞) × [0,∞) → [0,∞) belongs to class  if �(⋅, s) belongs to class  for any s ∈ [0,∞)

and �(r, ⋅) is decreasing and lims→∞ �(r, s) = 0 for any r ∈ [0,∞). A mapM ∶ X → Y between

two normed vector spaces is -Lipschitz if there exists � ∈ ∞ such that ‖M(x1) −M(x2)‖ ≤

�(‖x1 − x2‖) for all x1, x2 ∈ X. We use the notation fS = ∇S ⋅ f for the Lie derivative of a

function S ∶ ℝn → ℝ along the trajectories of a vector field f taking values in ℝn. TheH∞-norm

of a discrete transfer function T is ‖T‖∞ ≜ sup−�≤!≤� |T(!)|.

For x ∈ ℝ, [x]+ = max{0, x} and [x]m0 = min{max{x, 0}, m}, which are extended entry-

wise to [x]+ and [x]m0 , respectively. Given t ∈ ℝ and a function f on ℝ, f (t+) ≜ lims→t+ f (s) and

f (t−) ≜ lims→t− f (s). For q ∈ (0, 1), the Euler function is given by '(q) =
∏∞

k=1(1− q
k) > 0. Note

that

lim
k→∞

∞
∏

j=k
(1 − qj) = lim

k→∞

'(q)
∏k−1

j=1 (1 − qj)
= 1.
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2.2 Graph Theory

We present some useful notions on algebraic graph theory following [2]. Let  = (V ,E,A)

denote a weighted undirected graph with vertex set V of cardinality n, edge set E ⊂ V × V , and

symmetric adjacency matrix A ∈ ℝn×n
≥0 . A path from i to j is a sequence of vertices starting from

i and ending in j such that any pair of consecutive vertices is an edge. For k ≥ 1, (Ak)ij gives the

(weighted) number of paths of length k between nodes i and j. The set of neighbors i of i is the

set of nodes j such that (i, j) ∈ E. A graph is connected if for each node there exists a path to

any other node. A regular graph of degree k is a graph where all the vertices have k neighbors. A

strongly regular graph with parameters (n, k, �, �) is a regular graph of n nodes with degree kwhere

any two adjacent vertices have � common neighbors and any pair of non-adjacent vertices have �

neighbors in common. A cone on  is a network with n + 1 nodes where the last one is connected

to all others.

The weighted degree matrix is the diagonal matrix D ∈ ℝn×n with diagonal A1n. The

Laplacian is L = D − A and has the following properties:

∙ L is symmetric and positive semi-definite;

∙ L1n = 0 and 1TnL = 0, i.e., 0 is an eigenvalue of L corresponding to the eigenspace ℝ1n;

∙  is connected if and only if rank(L) = n − 1, so 0 is a simple eigenvalue of L;

∙ All eigenvalues of L belong to [0, 2dmax], where dmax is the largest element of D.

For convenience, we define Lcpt = In −�n.
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2.2.1 Network centrality

We briefly review here three centrality measures with spectral characterizations. Consider

a network of size n represented by the adjacency matrix A.

Eigenvector centrality [3, 4]: Let vi ∈ ℝ≥0 denote the centrality value of node i ∈  . Eigen-

vector centrality is based on the idea that the influential nodes are the ones that are connected to

other influential nodes. In other words, vi ∝
∑n

j=0 aijvj for all i. This requires the existence of a

constant � > 0 such that �vi =
∑n

j=0 aijvj for all i. In matrix notation, v = [v1 ⋯ vn]T , this be-

comesAv = �v, which is an eigenvalue problem. SinceA is non-negative, by the Perron-Frobenius

Theorem [5, Fact 4.11.4], there always exists a pair (�, v) ∈ ℝ>0 × ℝn
≥0 such that Av = �v. This

vector v is thus defined as the vector of (right) eigenvector centralities. The same argument can be

repeated by reversing the direction of influence flow in the network, leading to the vector of left

eigenvector centralities (i.e., a positive vector u such that uTA = �uT ).

Exponential and resolvent communicability [6, 7]: The communicability of a node measures

its ability to communicate with the rest of the network. Different notions of communicability have

been proposed for complex networks. For a given node i, these include exponential communica-

bility (e�A)ii and the resolvent communicability ((I − �A)−1)ii, respectively, where � > 0. From

the power series expansion of e�A and (I − �A)−1, it follows that the exponential and resolvent

communicabilities count the total number of cycles that pass through node i, weighting the “im-

portance” of cycles of length k by �k∕k! and �k, respectively. Thus, the role of � is to determine

how local/global these measures are: increasing � increases the weights of longer cycles. One can

show [7] that in the extreme cases of � →∞ in the exponential case and � → 1
�max(A)

in the resolvent
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case, both notions result in the same rankings of nodes as eigenvector centrality.

Degree centrality: The degree centrality of node i is the sum of the i-th row (or column) of A

and provides a measure of the immediate influence of node i on its neighbors.

2.3 Matrix Analysis

Here, we define and characterize several matrix classes of interest and their inclusion rela-

tionships. These matrices play a key role in Chapter 8.

Definition 2.3.1. (Matrix classes). A matrix A ∈ ℝn×n (not necessarily symmetric) is

(i) absolutely Schur stable if �(|A|) < 1;

(ii) totally -stable, denoted A ∈ , if there exists P = PT > 0 such that (−I+AT�)P+P(−I+

�A) < 0 for all � = diag(�) and � ∈ {0, 1}n;

(iii) totally Hurwitz, denoted A ∈ , if all the principal submatrices of A are Hurwitz;

(iv) a P-matrix, denoted A ∈  , if all the principal minors of A are positive. □

In working with P-matrices, the principal pivot transform of a matrix plays an important

role. Given

A =
⎡

⎢

⎢

⎢

⎣

A11 A12

A21 A22

⎤

⎥

⎥

⎥

⎦

,
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with nonsingular A22, its principal pivot transform is the matrix

�(A) ≜
⎡

⎢

⎢

⎢

⎣

A11 − A12A−122A21 A12A−122

−A−122A21 A−122

⎤

⎥

⎥

⎥

⎦

.

Note that �(�(A)) = A. The next result formalizes several equivalent characterizations of P-

matrices.

Lemma 2.3.2. (Properties of P-matrices [8, 9]). A ∈ ℝn×n is a P-matrix if and only if any of the

following holds:

(i) A−1 is a P-matrix;

(ii) all real eigenvalues of all the principal submatrices of A are positive;

(iii) for any x ∈ ℝn⧵{0} there is k such that xk(Ax)k>0;

(iv) the principal pivot transform of A is a P-matrix.

The next result states inclusion relationships among the matrix classes in Definition 2.3.1

that will be used in our ensuing discussion.

Lemma 2.3.3. (Inclusions among matrix classes). For A,W ∈ ℝn×n, we have

(i) �(|W|) < 1⇒ −I +W ∈ ;

(ii) ‖W‖ < 1 ⇒W ∈ ;

(iii) W ∈  ⇒ −I +W ∈ ;

(iv) A ∈  ⇒ −A ∈  .
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Proof. (i). From [5, Fact 4.11.19], we have that �(|W�|) < 1 for any principal submatrixW� of

W, which in turn implies �(W�) < 1 by [5, Fact 4.11.17], implying the result.

(ii) It is straightforward to check that P = In satisfies (−I +WT�)P + P(−I + �W) < 0 for

all � = diag(�),� ∈ {0, 1}n.

(iii) Pick an arbitrary � ∈ {0, 1}n and let the permutation � ∈ ℝn×n be such that

��W�T =

⎡

⎢

⎢

⎢

⎣

0 0

Ŵ21 Ŵ22

⎤

⎥

⎥

⎥

⎦

,

where Ŵ22 is the principal submatrix ofW corresponding to �. Then

P(−I + �W) = P�T

⎡

⎢

⎢

⎢

⎣

−I 0

Ŵ21 −I + Ŵ22

⎤

⎥

⎥

⎥

⎦

�

= �T
(

�P�T

⏟⏟⏟
P̂

⎡

⎢

⎢

⎢

⎣

−I 0

Ŵ21 −I + Ŵ22

⎤

⎥

⎥

⎥

⎦

)

�

= �T

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ P̂22(−I + Ŵ22)

⎤

⎥

⎥

⎥

⎦

�,
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where P̂ =
⎡

⎢

⎢

⎢

⎣

P̂11 P̂12

P̂21 P̂22

⎤

⎥

⎥

⎥

⎦

= P̂T > 0. Thus, by assumption,

�T

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22)

⎤

⎥

⎥

⎥

⎦

� < 0

⇒

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22)

⎤

⎥

⎥

⎥

⎦

< 0

⇒ (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22) < 0,

proving that −I + Ŵ22 is Hurwitz. Since � is arbitrary, −I +W is totally Hurwitz.

(iv) The result follows from Lemma 2.3.2(ii).

For a general matrixW, neither of �(|W|) and ‖W‖ is bounded by the other. However, ifW

satisfies theDale’s law (as biological neuronal networks do), i.e., each column is either nonnegative

or nonpositive, thenW = |W|D where D is a diagonal matrix such that |D| = I. Then,

‖W‖ =
√

�(WWT ) =
√

�(|W|DD|W|

T )

=
√

�(|W||W|

T ) = ‖|W|‖ ≥ �(|W|),

showing that, in this case, �(|W|) < 1 is a less restrictive condition. Figure 2.1 depicts a Venn

diagram of the various matrix classes of interest to help visualize their relationships.
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_

Figure 2.1: Inclusion relationships between the matrix classes introduced in Definition 2.3.1 (cf.
Lemma 2.3.3).

2.4 Probability Theory

Here we briefly review basic notions on probability following [10,11]. Consider a probabil-

ity space (Ω,Σ,ℙ). If E, F ∈ Σ are two events with E ⊆ F , then ℙ{E} ≤ ℙ{F }. For simplicity,

we may sometimes denote events of the type Ep = {! ∈ Ω ∣ p(!)} by {p}, where p is a logical

statement on the elements of Ω. Clearly, for two statements p and q,

(p⇒ q)⇒ (ℙ{p} ≤ ℙ{q}) . (2.1)

A random variable is a measurable function X ∶ Ω → ℝ. For any N ∈ ℝ>0 and any random

variable X with finite expected value � and finite nonzero variance �2, Chebyshev’s inequality

states that

ℙ{|X − �| ≥ N�} ≤ 1
N2

. (2.2)
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For a random variableX, letE[X] andFX denote its expectation and cumulative distribution

function, respectively. A sequence of random variables {Xk}k∈ℤ≥0
converges to a random variable

X

∙ almost surely (a.s.) if ℙ{limk→∞Xk = X} = 1;

∙ in mean square if E[X2
k],E[X

2] <∞ for all k ∈ ℤ≥0 and limk→∞ E[(Xk −X)2] = 0;

∙ in probability, denoted plimk→∞Xk = X, if limk→∞ ℙ{|Xk −X| < �} = 1 for any � > 0;

∙ in distribution or weakly if limk→∞ FXk
(x) = FX(x) for any x ∈ ℝ at which FX is continuous.

These definitions are extended to vectors and matrices in an element-wise manner. Almost sure

convergence and convergence in mean square imply convergence in probability, which itself implies

convergence in distribution. Moreover, ifℙ{|Xk| ≤ X̄} = 1 for all k ∈ ℤ≥0 and some fixed random

variable X̄ with E[X̄2] < ∞, then convergence in probability implies mean square convergence,

and if X is a constant, then convergence in distribution implies convergence in probability.

For a, b ∈ ℝ, (a, b) denotes the uniform distribution over [a, b]. The (zero-mean) Laplace

distribution with scale b ∈ ℝ>0 is a continuous distribution with probability density function

(x; b) = 1
2b
e−

|x|
b .

It is clear that (x;b)
(y;b)

≤ e
|x−y|
b . We use � ∼ Lap(b) to denote a random variable � with Laplace

distribution. It is easy to see that if � ∼ Lap(b), |�| has an exponential distribution with rate � = 1
b
.

Similarly, we use the notation � ∼  (�, �2) when � is normally distributed with mean � and

variance �2.
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The error function erf ∶ ℝ → ℝ is defined as

erf(x) ≜ 1
√

� ∫

x

−x
e−t2dt ≥ 1 − e−x2 .

Therefore,ℙ{|�| ≤ r} = erf(r∕
√

2�) if � ∼ (0, �2). Given any random variable � and any convex

function �, Jensen’s inequality states that E[�(�)] ≥ �(E[�]). The opposite inequality holds if � is

concave.

2.5 Hilbert Spaces and Orthonormal Bases

We review some basic facts on Hilbert spaces and refer the reader to [12] for a comprehen-

sive treatment. A Hilbert space  is a complete inner-product space. A set {ek}k∈I ⊂  is an

orthonormal system if ⟨ek, ej⟩ = 0 for k ≠ j and ⟨ek, ek⟩ = ‖ek‖2 = 1 for all k ∈ I . If, in addition,

the set of linear combinations of elements of {ek}k∈I is dense in, then {ek}k∈I is an orthonormal

basis. Here, I might be uncountable: however, if  is separable (i.e., it has a countable dense

subset), then any orthonormal basis is countable. In this case, for any ℎ ∈ ,

ℎ =
∞
∑

k=1
⟨ℎ, ek⟩ek.

We define the coefficient sequence �̊ ∈ ℝℕ by �k = ⟨ℎ, ek⟩ for k ∈ ℕ. Then, �̊ ∈ l2 and, by

Parseval’s identity, ‖ℎ‖ = ‖�̊‖. For ease of notation, we define Φ ∶ l2 →  to be the linear

bijection that maps the coefficient sequence �̊ to ℎ. For an arbitrary D ⊆ ℝd , Lp(D) is a Hilbert

space if and only if p = 2, and the inner product is the integral of the product of functions. Moreover,

L2(D) is separable. In the following (particularly in Chapter 4), we assume is an orthonormal basis
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for L2(D) is chosen and Φ ∶ l2 → L2(D) is the corresponding linear bijection between coefficient

sequences and functions.

2.6 Input-to-State Stability of Dynamical Systems

2.6.1 Discrete-Time Systems

This section briefly describes notions of robustness for discrete-time systems following [13,

14]. Consider a discrete-time dynamical system of the form

x(k + 1) = f (x(k),u(k)), (2.3)

where u ∈ ℝm is a disturbance input and x ∈ ℝn is the state. Given an equilibrium point x∗ ∈ ℝn

of the unforced system (i.e., x∗ = f (x∗, 0)), we say that (2.3) is

(i) 0-input locally asymptotically stable (0-LAS) relative to x∗ if by setting u(k) = 0,∀k, there

exists � > 0 and 
 ∈  such that, for every initial condition x(0) ∈ B(x∗, �), we have for

all k ∈ ℤ≥0,

‖x(k) − x∗‖ ≤ 
(‖x(0) − x∗‖, k);

(ii) locally input-to-state stable (LISS) relative to x∗ if there exist � > 0, 
 ∈ , and � ∈ 

such that, for every initial condition x(0) ∈ B(x∗, �) and every input satisfying ‖ů‖∞ ≤ �,
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we have

‖x(k) − x∗‖ ≤ max{
(‖x(0) − x∗‖, k), �(‖ůk−1‖∞)}, (2.4)

for all k ∈ ℕ. In this case, we refer to � as the robust stability radius of (2.3) relative to x∗;

(iii) globally input-to-state stable (ISS) relative to x∗ if there exists 
 ∈  and � ∈  such that,

for any bounded input ů, any initial condition x(0) ∈ ℝn, and all k ∈ ℤ≥0,

‖x(k) − x∗‖ ≤ max{
(‖x(0) − x∗‖, k), �(‖ůk−1‖∞),

where ‖ůk−1‖∞ = sup{‖u(j)‖ ∣ j = 0,… , k − 1}.

By definition, if the system (2.3) is LISS, then it is also 0-LAS, but the converse is also true,

cf. [14, Theorem 1].

The system (2.3) is said to have a -asymptotic gain if there exists a �a ∈  such that, for

any initial condition x(0) ∈ ℝn,

lim sup
k→∞

‖x(k) − x∗‖ ≤ �a
(

lim sup
k→∞

‖u(k)‖
)

.

If a system is ISS, then it has a-asymptotic gain [13, Lemma 3.8]. The following is a local version

of this result.

Proposition 2.6.1. (Asymptotic gain of LISS systems). Assume system (2.3) is LISS relative to x∗

with associated robust stability radius �. If x(0) ∈ B(x∗, �) and ‖ů‖∞ ≤ min{�−1(�), �} (where
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�−1(�) = ∞ if � is not in the range of �), then

lim sup
k→∞

‖x(k) − x∗‖ ≤ �(lim sup
k→∞

‖u(k)‖).

In particular, x(k)→ x∗ if u(k)→ 0 as k→∞.

Proof. From (2.4), we have

‖x(k) − x∗‖ ≤ max{
(‖x(0) − x∗‖, k), �(‖ů‖∞)}

≤ max{
(�, k), �(‖ů‖∞)}, (2.5)

where we have used x(0) ∈ B(x∗, �). Now, for each k ∈ ℕ, let ů[k] ∈ (ℝn)ℕ be defined by

u[k](l) = u(k + l) for all l ∈ ℤ≥0. If there exists k0 such that ‖ů[k0]‖∞ = 0, then we need to show

that limk→∞ ‖x(k) − x∗‖ = 0. Since 
 ∈ , there exists K ∈ ℤ≥0 such that 
(�, k) ≤ � for all

k ≥ K , and since �(‖ů‖∞) ≤ � as well, it follows from (2.5) that x(k) ∈ B(x∗, �) for all k ≥ K .

Let k = max{k0, K}. Using (2.4), we get

‖x(k) − x∗‖ ≤ 
(‖x(k) − x∗‖, k − k), ∀k > k,

and the result follows. Assume then that no k0 exists such that ‖ů[k0]‖∞ = 0. Let K0 = 0 and,

for each j ∈ ℕ, let Kj be such that 
(�, k − Kj−1) ≤ �(‖ů[Kj−1]‖∞) for all k ≥ Kj (this sequence

is well-defined because 
 ∈ ). Since �(‖ů[Kj−1]‖∞) ≤ �(‖ů‖∞) ≤ �, (2.4) holds if we set the
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“initial" state to x(Kj−1) which implies that ‖x(k) − x∗‖ ≤ �(‖ů[Kj−1]‖∞) for all k ≥ Kj . Therefore,

lim sup
k→∞

‖x(k) − x∗‖ ≤ �(‖ů[Kj ]‖∞), ∀j ∈ ℤ≥0.

The result follows by taking limit of both sides as j →∞.

Finally, any LTI system x(k + 1) = Ax(k) + Bu(k) is ISS if A is stable.

2.6.2 Continuous-Time Systems

Here, we follow [15] to review the definition of input-to-state stability for continuous-time

systems. Consider a nonlinear system of the form

ẋ(t) = f (x(t),u(t)), t ≥ 0, a.e., (2.6)

where f ∶ ℝn×ℝm → ℝn is continuously differentiable, f (0, 0) = 0, and “a.e." (almost everywhere)

denotes the fact that x may not be differentiable on a set of Lebesgue measure zero.

System (2.6) is (globally) input-to-state stable (ISS) if there exist � ∈  and � ∈  such

that for any measurable locally essentially bounded input u ∶ ℝ≥0 → ℝm and any initial condition

x(0) ∈ ℝn, its solution satisfies

‖x(t)‖ ≤ �(‖x(0)‖, t) + �
(

ess supt≥0 ‖u(t)‖
)

,

for all t ≥ 0. For this system, a continuously differentiable function S ∶ ℝn → ℝ≥0 is called an
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ISS-Lyapunov function if there exist �1, �2, 
, � ∈ ∞ such that

�1(‖x‖) ≤ S(x) ≤ �2(‖x‖), ∀x ∈ ℝn (2.7a)

fS(x,u) ≤ −
(‖x‖) + �(‖u‖) ∀(x,u) ∈ ℝn+m. (2.7b)

According to [15, Theorem 1], the system (2.6) is ISS if and only if it admits an ISS-Lyapunov

function.

2.7 Dynamical Rate Models of Brain Networks

Here we briefly review, following [16, §7], the fundamental concepts and assumptions that

underlie the linear-threshold network model used in Part III. In a lumped model, neural circuits are

composed of neurons, each receiving an electrical signal at its dendrites from other neurons and

generating an electrical response to other neurons at its axon. The transmission of activity from

one neuron to another takes place at a synapse, thus the terms pre-synaptic and post-synaptic for

the two neurons, respectively. Both the input and output signals mainly consist of a sequence of

spikes (action-potentials), as shown in Figure 2.2 (top panel), which are modeled as impulse trains

of the form

�(t) =
∑

k
�(t − tk),

where �(⋅) denotes the Dirac delta function. In many brain areas the exact timing {tk} of �(t) seems

essentially random, with the information mainly encoded in its firing rate (number of spikes per

second). Thus, �(t) is modeled as the sample path of an inhomogeneous Poisson point process with
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Figure 2.2: A sample intracellular recording illustrating the spike train used for neuronal commu-
nication (top panel, measured intracellularly [17, 18]) and the corresponding (estimate of) firing
rate (bottom panel).

rate, say, x(t) (cf. Figure 2.2, bottom panel).

Now, consider a pair of pre- and post-synaptic neurons with rates xpre(t) and xpost(t), re-

spectively. As a result of xpre(t), an electrical current Ipost(t) forms in the post-synaptic neuron’s

dendrites and soma (body). Assuming fast synaptic dynamics, Ipost(t) ∝ xpre(t). Let wpost,pre be the

proportionality constant, so Ipost(t) = wpost,prexpre(t). The pre-synaptic neuron is called excitatory if

wpost,pre > 0 and inhibitory if wpost,pre < 0. In other words, excitatory neurons increase the activity

of their out-neighbors while inhibitory neurons decrease it. Notice that this is a property of neurons,

not synapses, so a neuron either excites all its out-neighbors or inhibits them.

If the post-synaptic neuron receives input from multiple neurons, Ipost(t) follows a superpo-

sition law,

Ipost(t) =
∑

j
wpost,jxj(t), (2.8)
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where the sum is taken over its in-neighbors. If Ipost is constant, the post-synaptic rate follows

xpost = F (Ipost), where F is a nonlinear “response function”. Among the two widely used response

functions, namely, sigmoidal and linear-threshold, we use the latter (F (⋅) = [⋅]+ or F (⋅) = [⋅]m0 ) due

to its analytical tractability. Finally, if Ipost(t) is time-varying, xpost(t) “lags" F (Ipost(t)) with a time

constant �, i.e.,

�ẋpost(t) = −xpost(t) + [Ipost(t)]+. (2.9)

Equations (2.8)-(2.9) will be the basis for our network model in Chapters 8 and 9.
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Chapter 3

Differentially Private Average Consensus

The social adoption of new technologies in networked cyberphysical systems relies heavily

on the privacy preservation of individual information. Social networking, the power grid, and

smart transportation are only but a few examples of domains in need of privacy-aware design of

control and coordination strategies. In these scenarios, the ability of a networked system to fuse

information, compute common estimates of unknown quantities, and agree on a common view

of the world is critical. Motivated by these observations, in this chapter we begin our analysis

of differentially private distributed algorithms with the problem of distributed average consensus.

We consider a group of agents who seek to agree on the average of their individual values by

only interchanging information with their neighbors, a problem that has numerous applications in

synchronization, network management, and distributed control/computation/optimization.

In the context of privacy preservation, the notion of differential privacy has gained sig-

nificant popularity due to its rigorous formulation and proven security properties, including re-

silience to post-processing and side information, and independence from the model of the adver-

sary. Roughly speaking, a strategy is differentially private if the information of an agent has no
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significant effect on the aggregate output of the algorithm, and hence its data cannot be inferred by

an adversary from its execution. This chapter is a contribution to the emerging body of research that

studies privacy preservation in cooperative network systems, specifically focused on gaining insight

into the achievable trade-offs between privacy and performance in multi-agent average consensus.

We first establish that a differentially private consensus algorithm cannot guarantee con-

vergence of the agents’ states to the exact average in distribution, which in turn implies the same

impossibility for other stronger notions of convergence. This result motivates our design of a novel

differentially private Laplacian consensus algorithm in which agents linearly perturb their state-

transition and message-generating functions with exponentially decaying Laplace noise. We prove

that our algorithm converges almost surely to an unbiased estimate of the average of agents’ ini-

tial states, compute the exponential mean-square rate of convergence, and formally characterize its

differential privacy properties. We show that the optimal choice of our design parameters (with re-

spect to the variance of the convergence point around the exact average) corresponds to a one-shot

perturbation of initial states and compare our design with various counterparts from the literature.

We end the chapter by numerical simulations that illustrate our results.

3.1 Prior Work

The problem of multi-agent average consensus has been a subject of extensive research in

networked systems and it is impossible to survey here the vast amount of results in the literature.

We provide [1–4] and the references therein as a starting point for the interested reader.

In cyberphysical systems, privacy at the physical layer provides protection beyond the use

of higher-level encryption-based techniques. Information-theoretic approaches to privacy at the
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physical layer have been actively pursued [5,6]. Recently, these ideas have also been utilized in the

context of control [7]. The paper [6] also surveys the more recent game-theoretic approach to the

topic. In computer science, the notion of differential privacy, first introduced in [8,9], and the design

of differentially private mechanisms have been widely studied in the context of privacy preservation

of databases. The work [10] provides a recent comprehensive treatment. A well-known advantage

of differential privacy over other notions of privacy is its immunity to post-processing and side infor-

mation, which makes it particularly well-suited for multi-agent scenarios where agents do not fully

trust each other and/or the communication channels are not fully secure. While secure multi-party

computation also deals with scenarios where no trust exists among agents, the maximum number

of agents that can collude (without the privacy of others being breached) is bounded, whereas using

differential privacy provides immunity against arbitrary collusions [11,12]. As a result, differential

privacy has been adopted by recent works in a number of areas pertaining to networked systems,

such as control [13–15], estimation [16], and optimization [17–19].

Of relevance to our present work, the paper [13] studies the average consensus problem

with differentially privacy guarantees and proposes an adjacency-based distributed algorithm with

decaying Laplace noise and mean-square convergence. The algorithm preserves the differential

privacy of the agents’ initial states but the expected value of its convergence point depends on the

network topology and may not be the exact average, even in expectation. By contrast, the algorithm

proposed in this work enjoys almost sure convergence, asymptotic unbiasedness, and an explicit

characterization of its convergence rate. Our results also allow individual agents to independently

choose their level of privacy.

The problem of privacy-preserving average consensus has also been studied using other

notions of privacy. The work [20] builds on [21] to let agents have the option to add to their first
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set of transmitted messages a zero-sum noise sequence with finite random length, which in turn

allows the coordination algorithm to converge to the exact average of their initial states. As long as

an adversary cannot listen to the transmitted messages of an agent as well as all its neighbors, the

privacy of that agent is preserved, in the sense that different initial conditions may produce the same

transmitted messages. This idea is further developed in [22,23], where agents add an infinitely-long

exponentially-decaying zero-sum sequence of Gaussian noise to their transmitted messages. The

algorithm has guaranteed mean-square convergence to the average of the agents’ initial states and

preserves the privacy of the nodes whose messages and those of their neighbors are not listened to

by the malicious nodes, in the sense that the maximum-likelihood estimate of their initial states has

nonzero variance. Finally, [24] considers the problem of privacy preserving maximum consensus.

3.2 Problem statement

Consider a group of n agents whose interaction topology is described by an undirected

connected graph . The group objective is to compute the average of the agents’ initial states while

preserving the privacy of these values against potential adversaries eavesdropping on all the network

communications. Note that this privacy requirement is the same as the case where each agent wants

to keep its initial state private against the rest of the group due to the possibility of communication

leakages. We next generalize the exposition in [13] to provide a formal presentation of this problem.

The state of each agent i ∈ {1,… , n} is represented by �i ∈ ℝ. The message that agent i shares

with its neighbors about its current state is denoted by xi ∈ ℝ. For convenience, the aggregated

network state and the vector of transmitted messages are denoted by � = (�1,… , �n) ∈ ℝn and

x = (x1,… , xn) ∈ ℝn, respectively. Agents update their states in discrete time according to some
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rule,

�(k + 1) = f (�(k), x(k)), k ∈ ℤ≥0, (3.1)

with initial states �(0) = �0, where the state-transition function f ∶ ℝn × ℝn → ℝn is such that its

ith element depends only on �i and {xj}j∈i∪{i}. The messages are calculated as

x(k) = ℎ(�(k), �(k)), k ∈ ℤ≥0, (3.2)

where ℎ ∶ ℝn × ℝn → ℝn is such that its ith element depends only on �i and �i. For simplicity,

we assume that f and ℎ are continuous. �(k) ∈ ℝn is a vector random variable, with �i(k) being

the noise generated by agent i at time k from an arbitrary distribution. Consequently, �̊ and x̊ are

sequences of vector random variables on the total sample space Ω = (ℝn)ℕ whose elements are

noise sequences �̊. Although one could choose ℎ to only depend on �, corrupting the messages

by noise is necessary to preserve privacy. Given an initial state �0, x̊ is uniquely determined by �̊

according to (3.1)-(3.2). Therefore, the function X�0 ∶ (ℝ
n)ℕ → (ℝn)ℕ such that

X�0(�̊) = x̊

is well defined.

Definition 3.2.1. (Differential privacy). Given � ∈ ℝ>0, the initial network states �(1)0 and �(2)0 are
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�-adjacent if, for some i0 ∈ {1,… , n},

|�(2)0,i − �
(1)
0,i | ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� if i = i0,

0 if i ≠ i0,

(3.3)

for i ∈ {1,… , n}. Given �, � ∈ ℝ≥0, the dynamics (3.1)-(3.2) is �-differentially private if, for any

pair �(1)0 and �(2)0 of �-adjacent initial states and any set  ∈ 
(

(ℝn)ℕ
)

,

ℙ{�̊ ∈ Ω∣X�(1)0
(�̊) ∈ } ≤ e�ℙ{�̊ ∈ Ω ∣ X�(2)0

(�̊) ∈ }. ∙

A final aspect to consider is that, because of the presence of noise, the agents’ states un-

der (3.1) might not converge exactly to their initial average Ave(�0), but to a neighborhood of it.

This is captured by the notion of accuracy.

Definition 3.2.2. (Accuracy). For p ∈ [0, 1] and r ∈ ℝ≥0, the dynamics (3.1)-(3.2) is (p, r)-

accurate if, from any initial state �0, the network state �(k) converges to �∞ ∈ ℝn as k → ∞, with

E[�∞] = Ave(�0)1n and ℙ{‖�∞ − Ave(�0)1n‖ ≤ r} ≥ 1 − p. □

In Definition 3.2.2, the type of convergence of �(k) to �∞ can be any of the four classes

described in Section 2.4. Furthermore, for each notion of convergence, (0, 0)-accuracy is equivalent

to the convergence of �(k) to Ave(�0)1n. We are finally ready to formally state our problem.

Problem 1. (Differentially private average consensus). Design the dynamics (3.1), the inter-agent

messages (3.2), and the distribution of noise sequences �̊ such that asymptotic average consensus is

achieved with (p, r)-accuracy while guaranteeing �-differential privacy for (finite) �, r, and p ∈ ℝ≥0

as small as possible. □
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3.3 Obstructions to Exact Differentially Private Average Con-

sensus

In this section we establish the impossibility of solving Problem 1with (0, 0)-accuracy, even

if considering the weakest notion of convergence.

Proposition 3.3.1 (Impossibility Result). Consider a group of agents executing a distributed algo-

rithm of the form (3.1) with messages generated according to (3.2). Then, for any �, � > 0, agents

cannot simultaneously converge to the average of their initial states in distribution and preserve

�-differential privacy of their initial states.

Proof. We reason by contradiction. Assume there exists an algorithm that achieves convergence

in distribution to the exact average of the network initial state and preserves �-differential privacy

of it. Since the algorithm must preserve the privacy of any pair of �-adjacent initial conditions,

consider a specific pair satisfying

�(2)0,i0 = �
(1)
0,i0
+ �,

for some i0 ∈ {1,… , n} and �(2)0,i = �
(1)
0,i for all i ≠ i0. SinceAve(�0) is fixed (i.e., deterministic), the

convergence of �i(k), i ∈ {1,… , n} to Ave(�0) is also in probability. Thus, for any i ∈ {1,… , n}

and any � > 0, we have limk→∞ ℙ{|�(l)i (k) − Ave(�
(l)
0 )| < �} = 1, for l = 1, 2. Therefore, for any

�′ > 0, there exists k ∈ ℤ≥0 such that for all i ∈ {1,… , n},

ℙ{|�(l)i (k) − Ave(�
(l)
0 )| < �} > 1 − �

′, l = 1, 2. (3.4)
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Now, considering (3.1)-(3.2), it is clear that, for any fixed initial state �0 and any k ∈ ℤ≥0,

x̊k is uniquely determined by �̊k and �̊k is uniquely determined by x̊k. Therefore, the functions

Xk,�0 ,Θk,�0 ∶ ℝ
n(k+1) → ℝn(k+1) such that

Xk,�0(�̊k) = x̊k, Θk,�0(x̊k) = �̊k, (3.5)

are well defined and continuous (due to continuity of f and g). Next, for l = 1, 2, define R(l)k =

X−1
k,�(l)0

(

Θ−1
k,�(l)0

(

 (l)
k

))

, where (l)
k ≜ ℝnk×

(

(l)
)n and(l) ⊂ ℝ is the �-neighborhood ofAve(�(l)0 ).

By (3.4), we have

ℙ(R(l)k ) > 1 − �
′, l = 1, 2. (3.6)

Note that R(1)k is open as it is the continuous pre-image of an open set, so k ≜ Xk,�(1)0

(

R(1)k
)

is

Borel. To reach a contradiction, we define R
′(2)
k = X−1

k,�(2)0
(k) and show that ℙ(R

′(2)
k ) can be made

arbitrarily small by showing that R
′(2)
k ∩ R(2)k = ∅. To do this, note that by the definitions of R

′(2)
k ,

k and R
(1)
k , we have

Θk,�(1)0
(

Xk,�(2)0

(

R
′(2)
k

))

⊆ (1)
k . (3.7)

Recall that in (3.1), f is such that the next state of each agent only depends on its current state and

the messages it receives. Hence, since for all i ≠ i0, �
(2)
0,i = �

(1)
0,i , we have from (3.7) that

Θk,�(2)0
(

Xk,�(2)0

(

R
′(2)
k

))

⊆
(1)

k ,
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where 
(1)

k ≜ ℝnk × ((1))i0−1 × ℝ × ((1))n−i0 is the same as  (1)
k except that the requirement on

�i0(k) (to be close toAve(�
(1)
0 )) is relaxed. Now, sinceΘk,�(2)0

(

Xk,�(2)0

(

R(2)k
))

⊆ (2)
k and, by choosing

� < �
2n
, we get

(1)

k ∩
(2)
k = ∅, we conclude thatΘk,�(2)0

(

Xk,�(2)0

(

R(2)k
))

∩Θk,�(2)0
(

Xk,�(2)0

(

R
′(2)
k

))

= ∅,

which implies R(2)k ∩ R
′(2)
k = ∅, so we get

ℙ(R(2)k ) < �
′, (3.8)

as desired. Now, let  = k × (ℝn)ℕ ∈ 
(

(ℝn)ℕ
)

. For any initial condition �0,

ℙ{�̊|X�0(�̊) ∈ } = ℙ{�̊k|Xk,�0(�̊k) ∈ k}.

Hence, since the algorithm is �-differentially private,

ℙ(R(1)k ) =ℙ{�̊k|Xk,�(1)0
(�̊k) ∈ k} ≤ e�ℙ{�̊k|Xk,�(2)0

(�̊k) ∈ k} = e�ℙ(R
′(2)
k ).

Thus, using (3.6) and (3.8), we have for all �′ > 0,

1 − �′ < e��′ ⇒ 1
1 + e�

< �′,

which is clearly a contradiction because � is a finite number, completing the proof.

Since convergence in distribution is the weakest notion of convergence, Proposition 3.3.1

implies that a differentially private algorithm cannot guarantee any type of convergence to the exact

average. Therefore, in our forthcoming discussion, we relax the exact convergence requirement

and allow for convergence to a random variable that is at least unbiased (i.e., centered at the true
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average).

3.4 Differentially Private Average Consensus Algorithm

Here, we develop a solution to Problem 1. Consider the following linear distributed dynam-

ics,

�(k + 1) = �(k) − ℎLx(k) + S�(k), (3.9)

for k ∈ ℤ≥0, where ℎ < (dmax)−1 is the step size, S is a diagonal matrix with diagonal (s1,… , sn)

and si ∈ (0, 2) for each i ∈ {1,… , n}, and the messages are generated as

x(k) = �(k) + �(k), (3.10)

where the ith component of the noise vector �(k) has the Laplace distribution �i(k) ∼ Lap(bi(k)) at

any time k ∈ ℤ≥0 with

bi(k) = ciqki , ci ∈ ℝ>0, qi ∈ (|si − 1|, 1). (3.11)

Note that (3.9) is a special case of (3.1) (since �(k) = x(k)−�(k)) and (3.10) a special case of (3.2).

Also note that without the term S�(k), the average of the agents’ initial states would be preserved

throughout the evolution.

Remark 3.4.1. (Comparison with the literature). The proposed algorithm (3.9)-(3.11) has simi-

larities and differences with the algorithm proposed in [13] which can be expressed (with a slight
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change of notation in using si instead of �i) as

�(k + 1) = (In − S)�(k) + SD−1Ax(k)

=
[

In − SD−1L
]

�(k) +
[

S − SD−1L
]

�(k).

If each agent selects si = diℎ < 1, then we recover (3.9)-(3.11). As we show later, this partic-

ular choice results in an unbiased convergence point, while in general the expected value of the

convergence point of the algorithm in [13] depends on the graph structure and may not be the true

average. Furthermore, this algorithm is only shown to exhibit mean square convergence of �(k) for

si ∈ (0, 1), while here we provide an explicit expression for the convergence point and establish

convergence in the stronger a.s. sense for larger range of si ∈ (0, 2). As we show later, the inclusion

of si = 1 is critical, as it leads to identifying the optimal algorithm performance. On a different

note, the algorithms in [15] and [22, 23] add a noise sequence to the messages which is correlated

over time – the latter using a different notion of privacy. [15] generate a single noise at time k = 0

and add a scaled version of it to the messages at every time k ≥ 1, leading to an effectively “one-

shot”-type of perturbation. We show in Section 3.4.3 that the one-shot approach is optimal for static

average consensus while sequential perturbation is necessary for dynamic scenarios. □

3.4.1 Convergence Analysis

This section analyzes the asymptotic correctness of the algorithm (3.9)-(3.11) and charac-

terizes its rate of convergence. We start by establishing convergence.

Proposition 3.4.2. (Asymptotic convergence). Consider a network of n agents executing the dis-
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tributed dynamics (3.9)-(3.11). Define the random variable �∞ as

�∞ ≜ Ave(�0) +
n
∑

i=1

si
n

∞
∑

j=0
�i(j). (3.12)

Then, �∞ is well-defined a.s., and the states of all agents converge to �∞ almost surely.

Proof. Note that si ∈ (0, 2) ensures that (|si−1|, 1) is not empty. Substituting (3.10) into (3.9), the

system dynamics is

�(k + 1) = A�(k) + B�(k), (3.13)

with A = In − ℎL and B = S − ℎL. For any � ∈ ℝn, let

�̃ = � − Ave(�)1n = Lcpt� ∈ (ℝ1n)⟂. (3.14)

Multiplying both sides of (3.13) by Lcpt on the left and using the fact that Lcpt and L commute, the

dynamics of �̃ can be expressed as

�̃(k + 1) = (In − ℎL)�̃(k) + Lcpt(S − ℎL)�(k). (3.15)

Notice that (ℝ1n)⟂ is forward invariant under (3.15). Therefore, considering (ℝ1n)⟂ as the state

space for (3.15) and noting that In − ℎL is stable on it, we deduce that (3.15) is ISS. Consequently,

this dynamics has a -asymptotic gain (c.f. Section 2.6), i.e., there exists 
a ∈  such that

lim sup
k→∞

‖�̃(k)‖ ≤ 
a
(

lim sup
k→∞

‖�(k)‖
)

.
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Therefore, limk→∞ �̃(k) ≠ 0 implies limk→∞ ‖�(k)‖ ≠ 0. By definition, the latter means that there

is � > 0 such that for all K ∈ ℕ there exists k ≥ K with ‖�(k)‖ > �. In other words, there exists

a subsequence
{

�(kl)
}

l∈ℕ such that ‖�(kl)‖ > � for all l ∈ ℕ. This, in turn, implies that for all

l ∈ ℕ, ‖�(kl)‖∞ > �∕
√

n, i.e.,

∃il ∈ {1,… , n} with |�il (kl)| >
�
√

n
.

According to (2.1), this chain of implications gives

ℙ{ lim
k→∞

�̃(k) ≠ 0} ≤ ℙ{∀l ∈ ℕ, ∃il s.t. |�il (kl)| >
�
√

n
}

=
∞
∏

l=1
e
− �

√

nbil (kl ) = 0.

The last equality holds because liml→∞ bil (kl) = liml→∞ cilq
kl
il
= 0. Therefore, we conclude

ℙ{ lim
k→∞

�̃(k) = 0} = 1. (3.16)

From (3.14), we see that a.s. convergence of � requires a.s. convergence of Ave(�) as well. Left

multiplying (3.9) by 1Tn , we obtain for all k ∈ ℤ≥0,

1
n
1Tn �(k + 1) =

1
n
1Tn �(k) +

1
n
1Tn S�(k)

= 1
n
1Tn �0 +

1
n

k
∑

j=0

n
∑

i=1
si�i(j),
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which in turn implies

Ave(�(k)) = Ave(�0) +
n
∑

i=1

si
n

k−1
∑

j=0
�i(j). (3.17)

We next prove that Ave(�(k)) converges almost surely to �∞. For the latter to be well-defined

over Ω, we simply set �∞ ≜ Ave(�0) when the series does not converge. Clearly, for any �̊ ∈ Ω

such that
∑∞

j=0 �i(j) converges for all i ∈ {1,… , n}, we have limk→∞Ave(�(k)) = �∞. Hence,

using (2.1),

ℙ{ lim
k→∞

Ave(�(k)) = �∞} ≥
n
∏

i=1
ℙ
{

∞
∑

j=0
�i(j) converges

}

.

Note that, for each i ∈ {1,… , n} and any l ∈ ℕ, if |�i(j)| ≤
1
j2

for all j ≥ l, then
∑∞

j=0 �i(j)

converges. Hence, using (2.1) and the definition of Laplace distribution, we get for all l ∈ ℕ,

ℙ{ lim
k→∞

Ave(�(k)) = �∞} ≥
n
∏

i=1

∞
∏

j=l
ℙ
{

|�i(j)| ≤
1
j2
}

=
n
∏

i=1

∞
∏

j=l

(

1 − e
− 1
ciq
j
i j
2
)

.

For each i ∈ {1,… , n}, because 0 < qi < 1, there exists �i such that 1
ciq

j
i j2

≥ �ij for j ≥ 1.

Therefore, using the Euler function ',

ℙ{ lim
k→∞

Ave(�(k)) = �∞} ≥
n
∏

i=1

'(e−�i)
∏l−1

j=1 (1 − e−�ij)
,
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for all l ∈ ℕ, and hence,

ℙ{ lim
k→∞

Ave(�(k)) = �∞}≥ lim
l→∞

n
∏

i=1

'(e−�i)
l−1
∏

j=1
(1 − e−�ij)

= 1.

This, together with (3.14) and (3.16), implies that ℙ{limk→∞ �(k) = �∞1n} = 1, which completes

the proof.

Remark 3.4.3 (Mean-Square Convergence). From (3.13) and the fact that ‖A‖ = 1, we have

‖�(k)‖ ≤ ‖�0‖ + ‖B‖
k−1
∑

j=0
‖�(j)‖

≤ ‖�0‖ + ‖B‖
∞
∑

j=0
‖�(j)‖ ≜ Z,

for all k ∈ ℤ≥0. It is straightforward to show E[Z2] < ∞, so, using Proposition 3.4.2, �(k) also

converges to �∞1n in mean square. □

Our next aim is to characterize the convergence rate of the distributed dynamics (3.9)-(3.11).

Given the result in Proposition 3.4.2, we define the exponential mean-square convergence rate of

the dynamics (3.9)-(3.11) as

� = lim
k→∞

(

sup
�(0)∈ℝn

E
[

(�(k) − �∞1n)T (�(k) − �∞1n)
]

E
[

(�(0) − �∞1n)T (�(0) − �∞1n)
]

)
1
2k

.

In the absence of noise (�̊ = 0), this definition coincides with the conventional exponential conver-

gence rate of autonomous linear systems, see e.g., [1].

Proposition 3.4.4. (Convergence rate). Under the hypotheses of Proposition 3.4.2, the exponential
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mean-square convergence rate of the distributed dynamics (3.9)-(3.11) is

� = max{q, �} ∈ (0, 1), (3.18)

where q = max
1≤i≤n

qi and � < 1 is the spectral radius of In − ℎL −�n.

Proof. For convenience, we let �̂(k) = �(k) − �∞1n denote the convergence error at k ∈ ℤ≥0 and

�̂0 = �̂(0). Our first goal is to obtain an expression for E
[

�̂(k)T �̂(k)
]

. From (3.12) and the proof of

Proposition 3.4.2, we have

�∞ =
1
n
1Tn �0 +

1
n
1Tn S

∞
∑

j=0
�(j),

almost surely. Then, from (3.13), we have almost surely for all k ∈ ℤ≥0,

�̂(k) = Ak�0 +
k−1
∑

j=0
Ak−1−jB�(j) −�n�0 −�nB

∞
∑

j=0
�(j),

where we have used the fact that �nS = �nB. Next, note that for all k ∈ ℕ,

(A −�n)k =
k
∑

j=0

(

k
j

)

(−�n)k−jAj (3.19)

= Ak +
k−1
∑

j=0

(

k
j

)

(−1)k−j�n = Ak −�n,

where we have used the facts that �n is idempotent and �nAj = �n for any j ∈ ℤ≥0. Let  =

A−�n. Notice that has spectral radius � < 1 and the same eigenvectors as L. Then, using (3.19)
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twice, we have almost surely for all k ∈ ℕ,

�̂(k) = k�0 +
k−2
∑

j=0
k−1−jB�(j) + LcptB�(k − 1) −

∞
∑

j=k
�nS�(j).

By the independence of {�(j)}∞j=0 over time, we have

E
[

�̂(k)T �̂(k)
]

= �T0
2k�0 +

k−2
∑

j=0
E[�(j)TB2k−2−2jB�(j)] + E[�(k − 1)TBL2cptB�(k − 1)]

+
∞
∑

j=k
E[�(j)TS�2

nS�(j)], (3.20)

for all k ∈ ℕ. Next, we upper bound the exponential mean-square convergence rate �. Let c =

max
1≤i≤n

ci and note that for any N ∈ ℝn×n and any j ∈ ℤ≥0,

E[�(j)TNTN�(j)] =
n
∑

i=1
2b2i (j)(N

TN)ii

≤ 2c2q2jtr(NTN) = 2c2q2j‖N‖2F ,

where ‖ ⋅ ‖F denotes the Frobenius norm. Therefore,

E
[

�̂(k)T �̂(k)
]

≤ �T0
2k�0 + 2c

2
k−2
∑

j=0
q2j‖k−1−jB‖2F + 2c

2q2(k−1)‖LcptB‖2F

+ 2c2
∞
∑

j=k
q2j‖�nS‖2F .

Since the Frobenius norm is submultiplicative, ‖N‖2F ≤ n‖N‖2 for any matrix N, and ‖‖ = �,
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we have

E
[

�̂(k)T �̂(k)
]

≤ �T0
2k�0 + C1

k−2
∑

j=0
q2j�

2k−4−2j
+ C2q

2k,

where C1 = 2nc
2
‖B‖2F�

2
and C2 = 2c

2(‖LcptB‖2F∕q
2 + ‖�nS‖2F∕(1 − q

2)) are constants. Note that

for any 0 ≤ j ≤ k − 2, we have q2j�
2k−4−2j

≤ max{q, �}2k−4. Therefore, using the fact that the

supremum of a sum is less than or equal to the sum of suprema, we have

sup
�0∈ℝn

E
[

�̂(k)T �̂(k)
]

E
[

�̂
T
0 �̂0

]

≤ sup
�0∈ℝn

�T0
2k�0

E
[

�̂
T
0 �̂0

]

+ sup
�0∈ℝn

C3(k − 1)max{q, �}2k + C2q
2k

E
[

�̂
T
0 �̂0

]

,

where C3 = C1max{q, �}−4. Let �̃0 = Lcpt�0 be the initial disagreement vector. It is straightfor-

ward to verify that �T0
2k�0 = �̃T0

2k�̃0 and

E
[

�̂
T
0 �̂0

]

= �̃T0 �̃0 +
1
n

n
∑

i=1

2c2i s
2
i

1 − q2i
≜ �̃T0 �̃0 + C4.

Therefore,

sup
�0∈ℝn

E
[

�̂(k)T �̂(k)
]

E
[

�̂
T
0 �̂0

]

≤ sup
�̃0∈(ℝ1n)⟂

�̃T0
2k�̃0

�̃T0 �̃0 + C4
+
C3(k − 1)max{q, �}2k + C2q

2k

inf �̃0∈(ℝ1n)⟂(�̃
T
0 �̃0 + C4)

= �
2k
+ C3C−1

4 (k − 1)max{q, �}
2k + C2C−1

4 q
2k.

By raising the right hand side of the above expression to the power 1∕2k and taking the limit

as k → ∞, the constant/polynomial factors converge to 1 and the terms containing max{q, �}

dominate the sum, proving that � ≤ max{q, �}. Similarly, we can lower bound � as follows.
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From (3.20), we have for all k ∈ ℕ,

E
[

�̂(k)T �̂(k)
]

≥ �T0
2k�0 ⇒ � ≥ lim

k→∞

(

sup
�̃0∈(ℝ1n)⟂

�̃T0
2k�̃0

�̃T0 �̃0 + C4

)1∕2k

= �,

and

E
[

�̂(k)T �̂(k)
]

≥ E[�(k)TS�2
nS�(k)] =

n
∑

i=1
C5iq

2k
i

⇒ � ≥ lim
k→∞

(

sup
�̃0∈(ℝ1n)⟂

∑n
i=1 C5iq

2k
i

�̃T0 �̃0 + C4

)1∕2k

= q,

where C5i = 2c2i (S�
2
nS)ii for all i ∈ {1,… , n}. Therefore, � ≥ max{q, �}, completing the proof.

Note that � is the convergence rate of the noise-free (and non-private) Laplacian-based

average consensus algorithm, while q is the worst-case decay rate of the noise sequence among

the agents. From (3.18), the convergence rate � is the larger of these two values, confirming our

intuition that the slower rate among them is the bottleneck for convergence speed. Also, note that

� depends on the network topology  while q is independent of it.

3.4.2 Accuracy and Differential Privacy

Having established the convergence properties of the algorithm (3.9), here we character-

ize the extent to which our design solves Problem 1 by providing guarantees on its accuracy and

differential privacy. The next result elaborates on the statistical properties of the agreement value.

Corollary 3.4.5 (Accuracy). Under the hypotheses of Proposition 3.4.2, the convergence point �∞
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is an unbiased estimate of Ave(�0) with bounded dispersion,

var
{

�∞
}

= 2
n2

n
∑

i=1

s2i c
2
i

1 − q2i
. (3.21)

As a result, the algorithm (3.9)-(3.11) is
(

p, 1
n

√

2
p

∑n
i=1

s2i c
2
i

1−q2i

)

-accurate for any p ∈ (0, 1).

Proof. Since noises are independent over time and among agents, we deduce from (3.17) that for

any k ∈ ℤ≥0, E{Ave(�(k))} = Ave(�0) and

var{Ave(�(k))} = 2
n2

k
∑

j=0

n
∑

i=1
s2i c

2
i q
2j
i ,

which establishes unbiasedness and bounded dispersion for any time. As k→∞, we get E{�∞} =

Ave(�0) and

var{�∞} =
2
n2

n
∑

i=1

s2i c
2
i

1 − q2i
.

The (p, r)-accuracy follows directly by applying Chebyshev’s inequality (2.2) forN = 1∕
√

p.

Remark 3.4.6. (Comparison with the literature – cont’d). Proposition 3.4.2 and Corollary 3.4.5

establish almost sure convergence, with the expected value of convergence being the average of the

agents’ initial states. In contrast, the results in [13] establish convergence in mean square, and the

expected value of convergence depends on the network topology. In both cases, the accuracy radius

r decreases with the number of agents as O(1∕
√

n). □

The expression for (p, r)-accuracy in Corollary 3.4.5 shows that one cannot obtain the ideal

case of (0, 0)-accuracy, and that r is a decreasing function of p, with r → ∞ as p → 0. This is an
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(undesirable) consequence of the lack of preservation of the average under (3.9) due to the term S�.

In turn, the presence of this expression helps establish the differential privacy of the algorithm with

bounded, asymptotically vanishing noise, as we show next.

Proposition 3.4.7 (Differential Privacy). Under the hypotheses of Proposition 3.4.2, let

�i = �
qi

ci(qi − |si − 1|)
, (3.22)

for each i ∈ {1,… , n}, where � is the adjacency bound in (3.3). Then, the algorithm preserves the

�i-differential privacy of agent i’s initial state for all i ∈ {1,… , n}. Consequently, the algorithm is

�-differential private with � = maxi �i.

Proof. Consider any pair of �-adjacent initial conditions �(1)0 and �(2)0 and an arbitrary set ⊂ (ℝn)ℕ.

For any k ∈ ℤ≥0, let

R(l)k = {�̊k ∈ Ωk ∣ Xk,�(l)0
(�̊k) ∈ k}, l = 1, 2, (3.23)

where Ωk = ℝn(k+1) is the sample space up to time k,Xk,�0 is given in (3.5), and k ⊆ ℝn(k+1) is the

set composed by truncating the elements of  to finite subsequences of length k + 1. Then, by the

continuity of probability [25, Theorem 1.1.1.iv],

ℙ{�̊ ∈ Ω ∣ X�(l)0
(�̊) ∈ } = lim

k→∞∫R(l)k
fn(k+1)(�̊

(l)
k )d�̊

(l)
k , (3.24)
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for l = 1, 2, where fn(k+1) is the n(k + 1)-dimensional joint Laplace pdf given by

fn(k+1)(�̊k) =
n
∏

i=1

k
∏

j=0
(�i(j); bi(j)). (3.25)

Next, we define a bijection betweenR(1)k andR(2)k . Without loss of generality, assume �(2)0,i0 = �
(1)
0,i0
+�1

for some i0 ∈ {1,… , n}, where 0 ≤ �1 ≤ � and �(2)0,i = �
(1)
0,i for all i ≠ i0. Then, for any �̊(1)k ∈ R(1)k ,

define �̊(2)k by

�(2)i (j) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(1)i (j) − (1 − si)
j�1, if i = i0,

�(1)i (j), if i ≠ i0,

for j ∈ {0,… , k}. It is not difficult to see that Xk,�(1)0
(�̊(1)k ) = Xk,�(2)0

(�̊(2)k ), so �̊(2)k ∈ R(2)k . Since the

converse argument is also true, the above defines a bijection. Therefore, for any �̊(2)k ∈ R(2)k there

exists a unique (�̊(1)k ,Δ�̊k) ∈ R
(1)
k ×ℝn(k+1) such that

�̊(2)k = �̊(1)k + Δ�̊k.

Note that Δ�̊k is fixed and does not depend on �̊
(2)
k . Thus, we can use a change of variables to get

ℙ{�̊ ∈ Ω ∣ X�(2)0
(�̊) ∈ } = lim

k→∞∫R(1)k
fn(k+1)(�̊

(1)
k + Δ�̊k)d�̊

(1)
k . (3.26)

Comparing (3.24) for l = 1 with (3.26), we see that both integrals are over R(1)k with different
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integrands. Dividing the integrands for any �̊(1)k ∈ R(1)k yields,

fn(k+1)(�̊
(1)
k )

fn(k+1)(�̊
(1)
k + Δ�̊k)

=

∏n
i=1

∏k
j=0 (�

(1)
i (j); bi(j))

∏n
i=1

∏k
j=0 (�

(1)
i (j) + Δ�i(j); bi(j))

=

∏k
j=0 (�

(1)
i0
(j); bi0(j))

∏k
j=0 (�

(1)
i0
(j) + Δ�i0(j); bi0(j))

≤
k
∏

j=0
e
|
Δ�i0 (j)|
bi0 (j) ≤ e

∑k
j=0

|1−si0 |
j �

ci0 q
j
i0

⇒ fn(k+1)(�̊
(1)
k ) ≤ e

�
ci0

k
∑

j=0

(

|1−si0 |

qi0

)j

fn(k+1)(�̊
(1)
k + Δ�̊k).

Due to (3.11), the geometric series in the exponent of the multiplicative term is convergent. There-

fore, integrating both sides over R(1)k and letting k →∞, we have

ℙ{�̊ ∈ Ω ∣ X�(1)0
(�̊) ∈ } ≤ e

�
qi0

ci0 (qi0−|1−si0 |)ℙ{�̊ ∈ Ω ∣ X�(2)0
(�̊) ∈ },

which establishes the �i0-differential privacy for agent i0. The fact the i0 can be any agent estab-

lishes (3.22), while the last statement follows from Definition 3.2.1.

Since the algorithm (3.9)-(3.11) converges almost surely (cf. Proposition 3.4.2) and is dif-

ferentially private (cf. Proposition 3.4.7), Proposition 3.3.1 implies that it cannot achieve (0, 0)-

accuracy, as noted above when discussing Corollary 3.4.5. The explicit privacy-accuracy trade-off

is given by the relation between var{�∞} and {�i}ni=1, i.e., (c.f. (3.21), (3.22))

var
{

�∞
}

= 2�2

n2

n
∑

i=1

s2i q
2
i

�2i (qi − |si − 1|)2(1 − q2i )
, (3.27)

so var
{

�∞
}

increases as any �i is decreased and vice versa. We optimize this trade-off over

{si, qi}ni=1 in Section 3.4.3 and depict the optimal trade-off curve for a test network in Section 3.5.
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Remark 3.4.8 (Laplacian Noise Distribution). Even though the choice of Laplacian noise in (3.11)

is not the only one that can be made to achieve differential privacy, it is predominant in the litera-

ture [8, 9]. The work [15] shows that Laplacian noise is optimal (among all possible distributions)

in the sense that it minimizes the entropy of the transmitted messages while preserving differential

privacy. □

Remark 3.4.9. (Comparison with the literature – cont’d). Proposition 3.4.7 guarantees the �i-

differential privacy of agent i’s initial state independently of the noise levels chosen by other agents.

Therefore, each agent can choose its own level of privacy, and even opt not to add any noise to its

messages, without affecting the privacy of other agents. In contrast, in [13], agents need to agree

on the level of privacy before executing the algorithm. In both cases, privacy is achieved against an

adversary that can hear everything, independently of how it processes the information. In contrast,

the algorithm in [22, 23] assumes the adversary uses maximum likelihood estimation and only

preserves the privacy of those agents who are sufficiently “far” from it in the graph (an agent is

sufficiently far if the adversary cannot listen to it and all of its neighbors). The latter work uses

a different notion of privacy based on the covariance of the maximum likelihood estimate which

allows for guaranteed exact convergence, in the mean-square sense, to the true average. □

3.4.3 Optimal Noise Selection

In this section, we discuss the effect on the algorithm’s performance of the free parameters

present in our design. Given the trade-off between accuracy and privacy, cf. (3.27), we fix the

privacy levels {�i}ni=1 constant and study the best achievable accuracy of the algorithm as a function

of the remaining free parameters. Each agent i ∈ {1,… , n} gets to select the parameters si, ci, qi
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determining the amount of noise introduced in the dynamics, with the constraint that (si, ci, qi) ∈  ,

where

 = {(s, c, q) ∣ s ∈ (0, 2), c > 0, q ∈ (|s − 1|, 1)}.

Given the characterization of accuracy in Corollary 3.4.5, we consider as cost function the variance

of the agents’ convergence point, i.e., �∞, around Ave(�0), giving

J ({si, ci, qi}ni=1) =
2
n2

n
∑

i=1

s2i c
2
i

1 − q2i
. (3.28)

The next result characterizes its global minimization.

Proposition 3.4.10. (Optimal parameters for variance minimization). For the adjacency bound

� > 0 and privacy levels {�i}ni=1 fixed, the optimal value of the variance of the agents’ convergence

point is

J ∗ = inf
{si,ci,qi}ni=1∈

n
J ({si, ci, qi}ni=1) =

2�2

n2

n
∑

i=1

1
�2i
.

The infimum is not attained over n but approached as

ci = �
qi

�i(qi − |si − 1|)
, si = 1, (3.29)

and qi → 0 for all i ∈ {1,… , n}.

Proof. For each i ∈ {1,… , n}, with the privacy level fixed, the expression (3.29) follows directly
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from (3.22). For convenience, we re-parameterize the noise decaying ratio qi as

�i =
qi − |si − 1|
1 − |si − 1|

∈ (0, 1). (3.30)

Note that qi = �i + (1 − �i)|si − 1|. Substituting (3.29) and (3.30) into (3.28), we obtain (with a

slight abuse of notation, we also use J to denote the resulting function),

J ({si, �i}ni=1) =
2
n2

n
∑

i=1

�2

�2i
�(�i, si),

�(�, s) =
s2(� + (1 − �)|s − 1|)2

�2(1 − |s − 1|)2
[

1 − (� + (1 − �)|s − 1|)2
] .

Therefore, to minimize J , each agent has to independently minimize the same function � of its

local parameters (�i, si) over D = (0, 1) × (0, 2). Figure 3.1 illustrates the graph of this function

over D.

Since D is not compact, the infimum might not be attained, and in fact, this is the case. It

is easy verify that lim�→0 �(�, 1) = 1. Now, for all (�, s) ∈ D, 1 − (� + (1 − �)|s − 1|)2 < 1 so

�(�, s) > �21(�, s), �1(�, s) =
(� + (1 − �)|s − 1|)s

�(1 − |s − 1|)
.

If s ≤ 1, then �1(�, s) = s + 1−s
�
> 1. If s > 1, then �1(�, s) > 1 +

s−1
�(2−s)

> 1. Therefore, for all

(�, s) ∈ D, �(�, s) > 1, which completes the proof.

Given that differential privacy is resilient to post-processing, an alternative design strategy

to preserve the differential privacy of agents’ initial states is to inject noise only at the initial time,

k = 0. From (3.11), the introduction of a one-shot noise by agent i corresponds to qi = 0 which is
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Figure 3.1: Local objective function � of each agent as a function of its parameters. s is the
noise-to-state gain and � is related to the noise decaying ratio. We cap the function values at 7 for
visualization purposes. The function approaches its infimum as � → 0 while s = 1.

not feasible if si ≠ 1. This can also be seen by rewriting (3.9) as

�(k + 1) = (In − S)�(k) + (S − ℎL)x(k),

so if si ≠ 1 for any i, �i(k) directly (not only through xi(0)) depend on �i(0). However, if si = 1,

one can verify using a simplified version of the proof of Proposition 3.4.7 that qi = 0 also preserves

�i-differential privacy of �i(0) with �i =
�
ci
. This results in a cost of

J = 2
n2

n
∑

i=1
c2i =

2�2

n2

n
∑

i=1

1
�2i
= J ∗,

showing that the optimal accuracy is also achieved by one-shot perturbation of the initial state

at time k = 0 and injection of no noise thereafter. A similar conclusion (that one-shot Laplace
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perturbation minimizes the output entropy) can be drawn from [15], albeit this is not explicitly

mentioned therein.

Remark 3.4.11. (Dynamic average consensus). In dynamic average consensus [26–28], agents

seek to compute the average of individual exogenous, time-varying signals (the “static” average

consensus considered here would be a special case corresponding to the exogenous signals being

constant). In such scenarios, it is straightforward to show, using an argument similar to Propo-

sition 3.3.1, that one-shot perturbation would no longer preserve the differential privacy of time-

varying input signals. The reason is that in this case, there is a recurrent flow of information at each

node whose privacy can no longer be preserved with one-shot perturbation. Sequential perturba-

tion as in (3.10)-(3.11) is then necessary and the variance of the noise sequence has to dynamically

depend on the rate of information flow to each node. Although the detailed design of such algo-

rithms is beyond the scope of this work, such an algorithm can be designed following the idea of

the sequential perturbation design of this work and the proof of its privacy in Proposition 3.4.7. To

see this, note that (for S ≠ In) we “tune” the amount of noise injection �i(k) so that the privacy of

(1−si)k�0,i is preserved at each round k ≥ 1, but (1−si)k�0,i is the amount of “retained information”

of �0,i at round k and plays the same role as u(k) in the dynamic average consensus problem. □

3.5 Simulations

In this section, we report simulation results of the distributed dynamics (3.9)-(3.11) on

a network of n = 50 agents. Figure 3.2 shows the random graph used throughout the section,

where edge weights are i.i.d. and each one equals a sum of two i.i.d. Bernoulli random variables

with p = 0.1. The agents’ initial states are also i.i.d. with distribution  (50, 100). As can
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Figure 3.2: Random graph used for simulation.

be seen from (3.21) and (3.22), neither accuracy nor privacy depend on the initial values or the

communication topology (albeit according to (3.18) the convergence rate depends on the latter). In

all the simulations, � = 1 and ci = �qi∕�i(qi − |si − 1|) for all i ∈ {1,… , n}.

Figure 3.3 depicts simulations with � = 0.1 ⋅1n and S = sIn while sweeping s over [0.8, 1.2]

with logarithmic step size. For each value of s, we set qi = �i + (1 − �i)|s − 1| with �i = 10−6

for each i ∈ {1,… , n} and repeat the simulation 104 times. For each run, to capture the statistical

properties of the convergence point, the graph topology and initial conditions are the same and

only noise realizations change. Figure 3.3(a) shows the empirical (sample) standard deviation of the

convergence point as a function of s, verifying the optimality of one-shot perturbation. In particular,

notice the sensitivity of the accuracy to s close to s = 1. Figure 3.3(b) shows the ‘settling time’,

defined as the number of rounds until convergence (measured by a tolerance of 10−2), as a function

of s. The fastest convergence is achieved for s = 1, showing that one-shot noise is also optimal in
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the sense of convergence speed. We have observed the same trends as in Figure 3.3 for different

random choices of initial conditions and network topologies. Note that the settling time depends

on both the convergence rate and the initial distance from the convergence point ‖�(0) − �∞1n‖.

The former is constant at � = � = 0.84 for s ∈ [0.8, 1.2]. The latter depends on {ci}ni=1, which in

turn depend on s by (3.29). This explains the trend observed in Figure 3.3(b).
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Figure 3.3: Executions of the algorithm (3.9)-(3.11) for random topology and initial conditions. (a)
shows the empirical (i.e., sample) variance of the convergence point and (b) shows the settling time.
The trend in (a) validates Proposition 3.4.10 while (b) shows the optimality of one-shot perturbation
for convergence speed.

Figure 3.4 depicts the privacy-accuracy trade-off for the proposed algorithm. We have set

S = In, q = 0n, and � = �1n and then swept � logarithmically over [10−2, 102]. In Figure 3.4(a),

the algorithm is run 25 times for each value of the � and the error |�∞ − Ave(�0)| for each run is
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plotted as a circle. In Figure 3.4(b), the sample variance of the convergence point �∞ is shown as a

function of � together with the theoretical value given in Proposition 3.4.10. In both plots, we see

an inversely-proportional relationship between accuracy and privacy, as expected.
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Figure 3.4: The privacy-accuracy trade-off for the proposed algorithm (3.9)-(3.11) for random
topology and initial conditions. (a) shows the norm of the error for 25 different realizations of
the noise and (b) shows the sample variance over 100 noise realizations as well as the theoreti-
cal value provided by Proposition 3.4.10. The trend in both figures conforms with the theoretical
characterization of �∞ given in Corollary 3.4.5.

Figure 3.5 shows the histogram of convergence points for 106 runs of the algorithm with

� = 0.1 ⋅ 1n, S = In and q = 0n (optimal accuracy). The distribution of the convergence point is a

bell-shaped curve with mean exactly at the true average, in accordance with Corollary 3.4.5.

Although the distribution of �∞ is provably non-Gaussian, the central limit theorem, see

e.g., [25], implies that it is very close to Gaussian since the number of agents is large.
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Figure 3.5: Statistical distribution of the convergence point. The sample mean (starred) matches
the true average (green vertical line).

Finally, Figure 3.6 illustrates the convergence rate of the algorithm. Here, for � = 0.1 ⋅ 1n,

S = 0.9In, q = 0.2 ⋅ 1n, and the same topology as in the previous plots, the initial agents states

are randomly selected and the whole algorithm is run 100 times with different noise realizations

�̊, each time until 100 iterations. For each value of initial states and each k ∈ {1,… , 100}, we

empirically approximate the quantity

(

E
[

(�(k) − �∞1n)T (�(k) − �∞1n)
]

E
[

(�(0) − �∞1n)T (�(0) − �∞1n)
]

)1∕2k

by taking the sample mean instead of the expectation in the numerator and denominator. We repeat

this whole process 50 times for different random initial conditions and plot the result, together with

the theoretical value of � (which in this case equals �) given by Proposition 3.4.4. As Figure 3.6

shows, the supremum of the resulting curves converges to � as k→∞, as expected.
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Chapter 4

Differentially Private Distributed

Optimization

In this chapter, we continue our design and analysis of privacy-aware distributed algorithms.

In various application areas of networked dynamical systems, e.g., power networks, manufacturing

systems, and smart transportation, the problem of optimizing the operation of a group of networked

resources is a common and important task, where the individual objective functions associated to

the entities, the estimates of the optimizer, or even the constraints on the optimization might reveal

sensitive information. Our work here is motivated by the goal of synthesizing distributed coordi-

nation algorithms that accurately solve networked optimization problems with privacy guarantees.

We consider a class of distributed convex constrained optimization problems where a group

of agents aim to minimize the sum of individual objective functions while each desires that any

information about its objective function is kept private. We prove the impossibility of achieving

differential privacy using strategies based on perturbing the inter-agent messages with noise when

the underlying noise-free dynamics are asymptotically stable. This justifies our algorithmic solu-
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tion based on the perturbation of individual functions with Laplace noise. To this end, we establish

a general framework for differentially private handling of functional data. We further design post-

processing steps that ensure the perturbed functions regain the smoothness and convexity properties

of the original functions while preserving the differentially private guarantees of the functional per-

turbation step. This methodology allows us to use any distributed coordination algorithm to solve

the optimization problem on the noisy functions. Finally, we explicitly bound the magnitude of the

expected distance between the perturbed and true optimizers which leads to an upper bound on the

privacy-accuracy trade-off curve. We end the chapter with numerical simulations that illustrate our

results.

4.1 Prior Work

Our work builds upon the existing literature of distributed convex optimization and dif-

ferential privacy. In the area of networked systems, an increasing body of research, e.g., [1–6]

and references therein, designs and analyzes algorithms for distributed convex optimization both

in discrete and continuous time as well as in deterministic and stochastic scenarios. While these

works consider an ambitious suite of topics related to convergence and performance under vari-

ous constraints imposed by real-world applications, privacy is an aspect generally absent in their

treatment. The concept of differential privacy [7, 8] was originally proposed for databases of in-

dividual records subject to public queries and has been extended to several areas thereafter. The

recent work [9] provides a comprehensive recent account of this area.

In machine learning, the problem of differentially private optimization has received atten-

tion, see e.g. [10–16], as an intermediate, usually centralized, step for solving other learning or
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statistical tasks. The common paradigm is having the sensitive information correspond to the en-

tries of a finite database of records or training data that usually constitute the parameters of an

additive objective function. Threat models are varied, including releasing to the adversary the

whole sequence of internal states of the optimization process or only the algorithm’s final output.

The work [10] designs a differentially private classifier by perturbing the objective function with a

linear finite-dimensional function (hyper-plane). The work [11] shows that this method works also

in the presence of constraints and non-differentiable regularizers. Although this is sufficient to pre-

serve the privacy of the underlying finite-dimensional parameter set (learning samples), it cannot

keep the whole objective functions private. The work [12] designs a sensitivity-based differentially

private algorithm for regression analysis which, instead of perturbing the optimal weight vector,

perturbs the regression cost function by injecting noise into the coefficients of the quadratic trunca-

tion of its Taylor expansion. This truncation limits the functional space to the (finite-dimensional)

space of quadratic functions. The work [13] proposes the addition of a sample path of a Gaus-

sian random process to the objective function, but does not explore the generalization to arbitrary

dimensions or ensures the smoothness and convexity of the resulting function. In general, the pro-

posed algorithms are not distributed and neither designed for nor capable of preserving the privacy

of infinite-dimensional objective functions. Furthermore, the work in this area does not rigor-

ously study the effect of added noise on the global optimizer or on the smoothness and convexity

properties of the objective functions. In addition to addressing these issues, the present treatment

is applicable to scenarios where the sensitive information consists of objective functions coming

from the (infinite-dimensional) space of L2 functions.

Of more relevance to our work are recent papers [17–19] that study differentially private

distributed optimization problems for multi-agent systems. These papers consider as private infor-
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mation, respectively, the objective functions, the optimization constraints, and the agents’ states.

The underlying commonality is the algorithm design approach based on the idea of message pertur-

bation. This idea consists of adopting a standard distributed optimization algorithm and modifying

it by having agents perturb the messages to their neighbors or a central coordinator with Laplace or

Gaussian noise. This approach has the advantage of working with the original objective functions

and thus is easy to implement. However, for fixed design parameters, the algorithm’s output does

not correspond to the true optimizer in the absence of noise, suggesting the presence of a steady-

state accuracy error. The work [18] addresses this problem by terminating the algorithm after a

finite number of steps, and optimizing this number offline as a function of the desired level of pri-

vacy. Nevertheless, for any fixed level of privacy, there exists an amount of bias in the algorithm’s

output which is not due to the added noise but to the lack of asymptotic stability of the underlying

noiseless dynamics. To address this issue, our approach explores the use of functional perturbation

to achieve differential privacy. The concept of functional differential privacy combines the benefits

of metrics and adjacency relations. The work [20] also employs metrics instead of binary adjacency

relations in the context of differential privacy. This approach has the advantage that the difference

between the probabilities of events corresponding to any pair of data sets is bounded by a func-

tion of the distance between the data sets, eliminating the need for the computation of conservative

sensitivity bounds.

4.2 Problem Statement

Consider a group of n agents whose communication topology is described by a digraph .

Each agent i ∈ {1,… , n} has a local objective function fi ∶ D → ℝ, whereD ⊂ ℝd is convex and
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compact and has nonempty interior. We assume that each fi, i ∈ {1,… , n} is convex and twice

continuously differentiable, and use the shorthand notation F = {fi}ni=1. Consider the following

convex optimization problem

min
x∈D

f (x) ≜
n
∑

i=1
fi(x)

s.t. G(x) ≤ 0,

Ax = b,

where the component functions of G ∶ D → ℝm are convex, A ∈ ℝs×d , and b ∈ ℝs. Denote by

X ⊆ D the feasibility set. The optimization problem can be equivalently written as,

min
x∈X

f (x). (4.1)

We assume that X is a global piece of information known to all agents.

The group objective is to solve the convex optimization problem (4.1) in a distributed and

private way. By distributed, we mean that each agent can only interact with its neighbors in the

graph . Regarding privacy, we consider the case where the function fi (or some of its attributes)

constitute the local and sensitive information known to agent i ∈ {1,… , n} that has to be kept

confidential. Each agent assumes that the adversary has access to all the “external” information

(including all the network communications and all other objective functions). This setting is some-

times called local (differential) privacy in the literature, see e.g., [21]. In order to properly define

privacy, let us first introduce the notion of adjacency. Given any normed vector space ( , ‖ ⋅ ‖)

with  ⊆ L2(D), two sets of functions F , F ′ ⊂ L2(D) are -adjacent if there exists i0 ∈ {1,… , n}
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such that

fi = f ′i , i ≠ i0 and fi0 − f
′
i0
∈  .

The set  is a design choice that we specify later in Section 4.4.2. Moreover, this definition can

be readily extended to the case where  is any subset of another normed vector space ⊆ L2(D).

With this generalization, the conventional bounded-difference notion of adjacency (also used in

Chapter 3) becomes a special case of the definition above, where  is a closed ball around the

origin. We provide next a more general definition of differential privacy for a map.

Definition 4.2.1. (Differential privacy). Let (Ω,Σ,ℙ) be a probability space and consider a random

map

 ∶ L2(D)n × Ω → 

from the function spaceL2(D)n to an arbitrary set . Given � ∈ ℝn
>0, the map is �-differentially

private if, for any two-adjacent sets of functionsF andF ′ that (at most) differ in their i0’th element

and any set  ⊆  , one has

ℙ{! ∈ Ω | (F ′, !) ∈ } ≤ e�i0‖fi0−f
′
i0
‖ℙ{! ∈ Ω | (F ,!) ∈ }. (4.2)

□

Essentially, this notion requires the statistics of the output of to change only (relatively)

slightly if the objective function of one agent changes (and the change is in ), making it hard to
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an “adversary” that observes the output of  to determine this change. In the case of an iterative

asymptotic distributed optimization algorithm, one should think of  as representing the action

(observed by the adversary) of the algorithm on the set of local functions F . In other words, is

the map (parameterized by the initial network condition) that assigns to F the whole sequence of

messages transmitted over the network. In this case, (4.2) has to hold for all allowable values of the

initial conditions. We are ready to formally state the network objective.

Problem 2. (Differentially private distributed optimization). Design a distributed and differen-

tially private optimization algorithm whose guarantee on accuracy improves as the level of privacy

decreases, leading to the exact optimizer of the aggregate objective function in the absence of pri-

vacy. □

The reason for the requirement of recovering the exact optimizer in the absence of privacy

in Problem 2 is the following. It is well-known in the literature of differential privacy that there

always exists a cost for an algorithm to be differentially private, i.e., the algorithm inevitably suffers

a performance loss that increases as the level of privacy increases. This phenomenon is a result of

the noise added in the map, whose variance increases as � decreases. With this requirement on

the noise-free behavior of the algorithm, we aim to make sure that the cause of this performance

loss is only due to the added noise and not to any other factor.

Example 4.2.2. (Linear classification with logistic loss function). We introduce here a supervised

classification problem that will serve to illustrate the discussion along the chapter. Consider a

database of training records composed by the labeled samples {(ai, bi)}Ni=1, where each ai ∈ ℝd

(containing the features of a corresponding object) may belong to one of two possible classes and

bi ∈ {−1, 1} determines to which class it belongs. The goal is to train a classifier with the samples
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so that it can automatically classify future unlabeled samples. For simplicity, we let d = 2 and

assume ai ∈ [0, 1]2 and bi ∈ {−1, 1} are independently and uniformly randomly selected. The aim

is to find the best hyperplane xTa that can separate the two classes. The parameters x defining the

hyperplane can be found by solving the convex problem,

x∗ = argmin
x∈X

N
∑

i=1

(

l(x; ai, bi) +
�
2
‖x‖2

)

, (4.3)

where l ∶ ℝd×ℝd×ℝ → ℝ>0 is the loss function and (�∕2)‖x‖2 is the regularizing term. Since the

objective function is strongly convex, we chooseX large enough so that x∗ is the same as the unique

unconstrained minimizer. Popular choices of l are the logistic loss l(x; ai, bi) = ln(1 + e−biaTi x)

and the hinge loss l(x; ai, bi) = max{0, 1 − biaTi x}. We focus on the logistic loss here due to its

smoothness.

Consider a group of n agents, each one owning a portionNd = N∕n of the training samples,

who seek to collectively solve (4.3) in a distributed fashion, i.e., only through communication with

their neighbors (without a central aggregator). Various iterative algorithms have been proposed in

the literature, cf. [2–6], to address this problem formulation. As an example, [2] proposes to have

each agent i ∈ {1,… , n} start with an initial estimate xi(0) of x∗ and, at each iteration k, update its

estimate as

xi(k + 1) = projX(zi(k) − �k∇fi(zi(k))), (4.4a)

zi(k) =
n
∑

j=1
aijxj(k), (4.4b)

where {aij}nj=1 are the edge weights of the communication graph at node i and �k is the stepsize.
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From (4.4b), one can see that agents only need to share their estimates with their neighbors to run

the algorithm. Under reasonable connectivity assumptions, one can show [2] that xi(k) converges to

x∗ asymptotically if the sequence of stepsizes is square-summable (
∑

k �
2
k <∞) but not summable

(
∑

k �k = ∞). We are interested in endowing distributed coordination algorithms such as this with

privacy guarantees so that their execution does not reveal information about the local objective

functions to the adversary. □

4.3 Rationale for Design Strategy

In this section, we discuss two algorithm design strategies to solve Problem 2 based on

the perturbation of either inter-agent messages or the local objective functions. We point out an

important limitation of the former, and this provides justification for the ensuing design of our

objective-perturbing algorithm based on functional differential privacy.

4.3.1 Limitations of Message-Perturbing Strategies

We use the term message-perturbing strategy to refer to the result of modifying any of the

distributed optimization algorithms available in the literature by adding (Gaussian or Laplace) noise

to the messages agents send to either neighbors or a central aggregator in order to preserve privacy.

A generic message-perturbing distributed algorithm takes the form

x(k + 1) = a(x(k), �(k)),

�(k) = x(k) + �(k),
(4.5)
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where �̊, �̊ ∶ ℤ≥0 → ℝn represent the sequences of messages and perturbations, respectively, and

a ∶ ℝn × ℝn → ℝn depends on the agents’ sensitive information set  with associated optimizer

x∗ . This formulation is quite general and can also encode algorithmic solutions for optimization

problems other than the one in Section 4.2, such as the ones studied in [18,19]). In the problem of

interest here,  = F = {fi}ni=1.

The following result provides conditions on the noise variance that ensure that the noise

vanishes asymptotically almost surely and remains bounded with nonzero probability.

Lemma 4.3.1. (Convergence and boundedness of Laplace and normal random sequences with

decaying variance). Let �̊ be a sequence of independent random variables defined over the sample

space Ω = ℝℕ, with �(k) ∼ Lap(b(k)) or �(k) ∼  (0, b(k)) for all k ∈ ℕ. Given r > 0, consider

the events

E = {�̊ ∈ Ω | lim
k→∞

�(k) = 0},

Fr = {�̊ ∈ Ω | ∀k ∈ ℕ |�(k)| ≤ r}.

If b(k) is O( 1
kp
) for some p > 0, then ℙ(E) = 1 and ℙ(Fr) = ℙ(Fr ∩ E) > 0 for all r > 0.

Proof. First, consider the case where �(k) ∼ Lap(b(k)). By the independence of the random vari-

ables and the fact that |�(k)| is exponentially distributed with rate 1
b(k)

,

ℙ(Fr) =
∞
∏

k=1

(

1 − e−
r
b(k)

)

.
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By assumption, b(k) ≤ c
kp
for all k ∈ ℕ and some p, c > 0. Therefore,

ℙ(Fr) ≥
∞
∏

k=1

(

1 − e−
r
c k

p
)

> 0,

because the series
∑∞

k=1 e
− r
c k

p converges [22, §1.14]. Next, let El,K = {�̊ ∈ Ω | ∀k ≥ K |�(k)| <

�l} where {�l}∞l=1 is a monotonically decreasing sequence that converges to zero as l → ∞ (e.g.,

�l =
1
l
). Note that

E =
∞
⋂

l=1

∞
⋃

K=1
El,K .

El,K ↑
⋃∞

K=1El,K for all l ∈ ℕ as K →∞, and
⋃∞

K=1El,K ↓ E as l → ∞. Therefore,

ℙ(E) = lim
l→∞

lim
K→∞

ℙ(El,K) = lim
l→∞

lim
K→∞

∞
∏

k=K

(

1 − e−
�l
b(k)

)

≥ lim
l→∞

lim
K→∞

∞
∏

k=K

(

1 − e−
�l
c k

p
)

= 1.

Then, ℙ(Fr∩E) = ℙ(Fr)−ℙ(Fr∩Ec) = ℙ(Fr) > 0. For the case of normal distribution of random

variables,

ℙ{|�(k)| ≤ r} = erf
(

r
√

2b(k)

)

≥ 1 − e−
r2
2b(k) ,

and the results follows from the arguments above.

Note that Lemma 4.3.1 also ensures that the probability that the noise simultaneously con-

verges to zero and remains bounded is nonzero. One might expect that Lemma 4.3.1 would hold if

92



b(k) → 0 at any rate. However, this is not true. For instance, if b(k) = 1
log k

, one can show that the

probability that �(k) eventually remains bounded is zero for any bound r ≤ 1, so the probability

that �(k)→ 0 is zero as well.

The following result shows that a message-perturbing algorithm of the form (4.5) cannot

achieve differential privacy if the underlying (noise-free) dynamics are asymptotically stable. For

convenience, we employ the short-hand notation ã(x(k), �(k)) = a(x(k), x(k) + �(k)) to refer

to (4.5).

Proposition 4.3.2. (Impossibility result for 0-LASmessage-perturbing algorithms). Consider the

dynamics (4.5) with either �i(k) ∼ Lap(bi(k)) or �i(k) ∼  (0, bi(k)). If ã is LISS relative to x∗

for two information sets  and ′ with different optimizers x∗ ≠ x∗′ and associated robust stability

radii � and �′, respectively, bi(k) is O(
1
kp
) for all i ∈ {1,… , n} and some p > 0, and at least one of

the following holds,

(i) x∗ is not an equilibrium point of x(k + 1) = ã′(x(k), 0) and ã′ is continuous,

(ii) x∗ belongs to the interior of B(x∗′ , �
′),

then no algorithm of the form (4.5) can preserve the �-differentially privacy of the information set

 for any � > 0.

Proof. Our proof strategy consists of establishing that, if the initial state is close to the equilibrium

of the system for one information set, the state trajectory converges to that equilibriumwith positive

probability but to the equilibrium of the system with the other information set with probability zero.

We then use this fact to rule out differential privacy. For any fixed initial state x0, if either of

�̊ or �̊ is known, the other one can be uniquely determined from (4.5). Therefore, the mapping
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Ξ,x0 ∶ (ℝ
n)ℕ → (ℝn)ℕ such that

Ξ,x0(�̊) = �̊

is well-defined and bijective. Let �, �′ ∈  be as in (2.4) corresponding to ã and ã′ , respectively.

Consider as initial condition x0 = x∗ and define

R =
{

�̊ ∈ Ω | ∀i ∈ {1,… , n}, lim
k→∞

�i(k) = 0 and |�i(k)| ≤ min
{

�−1(�), �
}

, ∀k ∈ ℕ
}

.

By Lemma 4.3.1, we have ℙ(R) > 0. By Proposition 2.6.1, since ‖x0 − x∗‖ = 0 ≤ � and ‖�̊‖∞ ≤

min
{

�−1(�), �
}

for all �̊ ∈ R, the sequence Ξ,x0(�̊) converges to x∗ . Let  = Ξ,x0(R) and

R′ = Ξ−1′,x0() (where we are using the forward and reverse images of sets, respectively). Next, we

show that no �̊′ ∈ R′ converges to 0 under either hypothesis (i) or (ii) of the statement. Under (i),

there exists a neighborhood of (x∗ , 0) ∈ ℝ2n in which the infimum of the absolute value of at least

one of the components of ã′(x, �) is positive, so whenever (x, �) enters this neighborhood, it exits

it in finite time. Therefore, given that any x̊ ∈  converges to x∗ , no �̊
′ ∈ R′ can converge to zero.

Under (ii), there exists a neighborhood of x∗ included in B(x∗′ , �
′). Since Ξ′,x0(�̊

′) → x∗ , there

exists K ∈ ℕ such that Ξ′,x0(�̊
′)(k) belongs to B(x∗′ , �

′) for all k ≥ K . Therefore, if ‖�′(k)‖ ≤

min
{

(�′)−1(�′), �′
}

indefinitely after any point of time, Ξ′,x0(�̊
′)→ x∗′ by Proposition 2.6.1 which

is a contradiction, so �̊′ cannot converge to zero. In both cases, by Lemma 4.3.1,

ℙ(R′) = 0,

which, together with ℙ(R) > 0 and the definition of �-differential privacy, cf. (4.2), implies the
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result.

Note that the hypotheses of Proposition 4.3.2 are mild and easily satisfied in most cases.

In particular, the result holds if the dynamics are continuous and globally asymptotically stable

relative to x∗ for two information sets. The main take-away message of this result is that a globally

asymptotically stable distributed optimization algorithm cannot be made differentially private by

perturbing the inter-agent messages with asymptotically vanishing noise. This observation is at

the core of the design choices made in the literature regarding the use of stepsizes with finite sum

to make the zero-input dynamics not asymptotically stable, thereby causing a steady-state error in

accuracy which is present independently of the amount of noise injected for privacy. For instance,

the algorithmic solution proposed in [17] replaces (4.4b) by zi(k) =
∑n

j=1 aij�j(k), where �j(k) =

xj(k) + �j(k) is the perturbed message received from agent j, and chooses a finite-sum sequence of

stepsizes {�k} in the computation (4.4a), leading to a dynamical system which is not 0-GAS, see

Figure 4.1. Similar observations can be made in the scenario considered in [18], where the agents’

local constraints are the sensitive information (instead of the objective function). This algorithmic

solution uses a constant-variance noise, which would make the dynamics unstable if executed over

an infinite time horizon. This problem is circumvented by having the algorithm terminate after

a finite number of steps, and optimizing this number offline as a function of the desired level of

privacy �.

4.3.2 Algorithm Design via Objective Perturbation

To overcome the limitations of message-perturbing strategies, here we outline an alternative

design strategy to solve Problem 2 based on the perturbation of the agents’ objective functions. The
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Figure 4.1: Privacy-accuracy trade-off for the algorithm proposed in [17] applied to Example 4.2.2
with D = X = [−5, 5]2, n = 10, Nd = 100, and � = 0.01. With that paper’s notation, the
algorithm’s parameters are q = 0.1, p = 0.11, c = 0.5. The stepsize �k = cqk−1 has finite sum. The
circles, dotted line, and solid line illustrate simulation results for 50 executions, their best linear
fit in logarithmic scale, and the upper bound on accuracy provided in [17], respectively. We have
broken the vertical axis to better display the scale of the algorithm output.

basic idea is to have agents independently perturb their objective functions in a differentially pri-

vate way and then have them participate in a distributed optimization algorithm with the perturbed

objective functions instead of their original ones. In the context of Example 4.2.2, this would corre-

spond to leave (4.4b) and the sequence of stepsizes unchanged, and instead use perturbed functions

in the computation (4.4a). The latter in turn automatically adds noise to the estimates shared with

neighbors. The following result, which is a special case of [23, Theorem 1], ensures that the com-

bination with the distributed optimization algorithm does not affect the differential privacy at the

functional level.

Proposition 4.3.3. (Resilience to post-processing). Let  ∶ L2(D)n × Ω → L2(D)n be �-
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differentially private (cf. Definition 4.2.1) and  ∶ L2(D)n →  , where ( ,Σ ) is an arbitrary

measurable space. Then, ◦ ∶ L2(D)n × Ω →  is �-differentially private.

Proof. Consider the �-algebra (L2(D)n) on L2(D)n where  denotes the power set. With the

notation from [23, Theorem 1], the mapM2 = ◦ is a deterministic function of the output of

the mapM1 =. Then, it is easy to verify that, for any S ∈ Σ ,

ℙ(M2(F ) ∈ S |M1(F )) = �S( (M1(F ))),

(with �⋅ the indicator function) is measurable as a function ofM1(F ) (because  and S are trivially

measurable) and defines a probability measure on ( ,Σ ) (associated to a singleton), so it is a

probability kernel. Hence, the conditions of [23, Theorem 1] hold and ◦ is �-differentially

private in the sense of Definition 4.2.1.

Our design strategy based on the perturbation of the individual objective functions requires

solving the following challenges:

(i) establishing a differentially private procedure to perturb the individual objective functions;

(ii) ensuring that the resulting perturbed functions enjoy the smoothness and regularity properties

required by distributed optimization algorithms to converge;

(iii) with (i) and (ii) in place, characterizing the accuracy of the resulting differentially private,

distributed coordination algorithm.

Section 4.4 addresses (i) and Section 4.5 deals with (ii) and (iii).
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4.4 Functional Differential Privacy

We explore here the concept of functional differential privacy to address the challenge (i)

laid out in Section 4.3.2. The generality of this notion makes it amenable for problems where

the sensitive information is a function or some of its attributes (e.g., sample points, optimizers,

derivatives and integrals). For simplicity of exposition and without loss of generality, we limit our

discussion to the privacy of a single function.

4.4.1 Functional Perturbation via Laplace Noise

Let f ∈ L2(D) be a function whose differential privacy has to be preserved. With the

notation of Section 2, we decompose f into its coefficients Φ−1(f ) and perturb this sequence by

adding noise to all of its elements. Specifically, we set

(f, �̊) = Φ
(

Φ−1(f ) + �̊
)

= f + Φ(�̊), (4.6)

where

�k ∼ Lap(bk), (4.7)

for all k ∈ ℕ. Clearly, for �̊ to belong to l2 and for the series Φ(�̊) to converge, the scales {bk}∞k=1

cannot be arbitrary. The next result addresses this issue.

Lemma 4.4.1. (Sufficient condition for boundedness of perturbed functions). If there existsK ∈
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ℕ such that, for some p > 1
2
and s > 1,

bk ≤
1

kp log ks
, ∀k ≥ K, (4.8)

then �̊ defined by (4.7) belongs to l2 with probability one. In particular, if for some p > 1
2
and


 > 0,

bk ≤


kp
, ∀k ∈ ℕ, (4.9)

then �̊ defined by (4.7) belongs to l2 with probability one.

Proof. Equation (4.8) can be equivalently written as e−
1

kpbk ≤ 1
ks
, for k ≥ K . In particular, this

implies that
∑∞

k=1 e
− 1
kpbk is convergent. Therefore [22, §1.14],

∏∞
k=1

(

1− e−
1

kpbk
)

converges (i.e., the

limit exists and is nonzero), so

1 = lim
K→∞

∞
∏

k=K

(

1 − e−
1

kpbk

)

= lim
K→∞

ℙ(EK),

where EK =
{

�̊ ∈ ℝℕ
| ∀k ≥ K, |�k| ≤

1
kp

}

and we have used the fact that |�k| is exponentially

distributed with rate 1
bk
. Since EK ↑

⋃∞
K=1EK as K → ∞, we have

1 = ℙ
(

∞
⋃

K=1
EK

)

= ℙ
{

�̊ ∈ ℝℕ
| ∃K ∈ ℕ s.t. ∀k ≥ K, |�k| ≤

1
kp
}

≤ ℙ{�̊ ∈ l2},
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as stated. If equation (4.9) holds, we define p̄ = 1
2
(p + 1

2
) and equivalently write (4.9) as

bk ≤
1
kp̄



kp−p̄

, ∀k ∈ ℕ.

Since p − p̄ > 0, for any s > 1 there exists K ∈ ℕ such that kp−p̄ ≥ 
 log ks for all k ≥ K , and the

result follows.

Having established conditions on the noise variance under which the map (4.6) is well de-

fined, we next turn our attention to establish its differentially private character.

4.4.2 Differential Privacy of Functional Perturbation

Here we establish the differential privacy of the map (4.6). In order to do so, we first specify

our choice of adjacency space. Given q > 1, consider the weight sequence {kq}∞k=1 and define the

adjacency vector space to be the image of the resulting weighted l2 space under Φ, i.e.,

q = Φ
({

�̊ ∈ ℝℕ
|

∞
∑

k=1
(kq�k)2 <∞

})

. (4.10)

It is not difficult to see that q is a vector space. Moreover,

‖f‖q ≜
(

∞
∑

k=1
(kq�k)2

)
1
2 , with �̊ = Φ−1(f ),

is a norm on q. The next result establishes the differential privacy of the map (4.6) for an appro-

priately chosen noise scale sequence b̊.

Theorem 4.4.2. (Differential privacy of functional perturbation). Given q > 1, 
 > 0 and p ∈
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(

1
2
, q − 1

2

)

, let

bk =


kp
, k ∈ ℕ. (4.11)

Then, the map (4.6) is �-differentially private with

� = 1



√

� (2(q − p)), (4.12)

where � is the Riemann zeta function.

Proof. Note that the map  defined by (4.6) is well defined because (4.11) ensures, by

Lemma 4.4.1, that �̊ belongs to l2 almost surely. Our proof consists of showing that  satis-

fies the definition of differential privacy, cf. Definition 4.2.1. To this effect, consider two functions

f and f ′, with f − f ′ ∈ q, and an arbitrary set  ⊆ L2(D). Let Φ−1
K ∶ L2(D) → ℝK be the map

that returns the first K coefficients of Φ−1(⋅) and

K(�̊K ; b̊K) ≜
K
∏

k=1
(�k; bk).

We have

ℙ{f + Φ(�̊) ∈ } = ℙ{�̊ ∈ Φ−1( − f )}

= lim
K→∞∫Φ−1K (−f )

K(�̊K ; b̊K)d�̊K ,

where Φ−1
K ( − f ) denotes the inverse image of the set  − f = {g ∈ L2(D) | g + f ∈ }

and the second equality follows from the continuity of probability [24, Theorem 1.1.1.iv] (since
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Φ−1
K ( − f ) ×ℝℕ ↓ Φ−1( − f ) as K → ∞). Similarly,

ℙ{f ′ + Φ(�̊′) ∈ } = lim
K→∞∫Φ−1K (−f ′)

K(�̊′K ; b̊K)d�̊
′
K .

By linearity of ΦK , we have

Φ−1
K ( − f

′) = Φ−1
K ( − f ) + �̊K ,

where �̊ = Φ−1(f − f ′). Therefore,

ℙ{f ′+Φ(�̊′) ∈ } = lim
K→∞∫Φ−1K (−f )

K(�̊K + �̊K ; b̊K)d�̊K .

Note that

K(�̊K + �̊K ; b̊K)
K(�̊K ; b̊K)

=
K
∏

k=1

(�k + �k; bk)
(�k; bk)

≤ e
∑K
k=1

|�k|
bk .

After multiplying both sides by K(�̊K ; b̊K), integrating over Φ−1
K ( − f ) and letting K → ∞, we

have

ℙ{f ′ + Φ(�̊′) ∈ } ≤ e
∑∞
k=1

|�k|
bk ℙ{f + Φ(�̊) ∈ }.
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Finally, the coefficient of the exponential can be upper bounded using Holder’s inequality with

p = q = 2 as

∞
∑

k=1

|�k|
bk

=
∞
∑

k=1

kq|�k|
kqbk

≤

(

∞
∑

k=1

1
(kqbk)2

)
1
2
(

∞
∑

k=1
(kq�k)2

)
1
2

=

(

∞
∑

k=1

1
(
kq−p)2

)
1
2

‖

‖

f − f ′‖
‖q

= 1



√

� (2(q − p)) ‖
‖

f − f ′‖
‖q

,

which completes the proof.

Remark 4.4.3. (Choice of q). The choice of parameter q affects the trade-off between the size of

the adjacency space q and the noise required to preserve privacy. From (4.10), one can see that

decreasing q makes q larger, which allows for the privacy preservation of a larger collection of

functions. However, as expected, preserving privacy in a larger space requires more noise. From

(12), we see that for a fixed �, 
 will be larger (since p cannot be decreased by the same amount

as q and � is monotonically decreasing), resulting in larger bk and larger noise. We show later in

Theorem VI.2 that the guaranteed upper bound on the expected minimizer deviation also increases

as {qi}ni=1 decrease. □

4.5 Differentially Private Distributed Optimization

In this section, we employ functional differential privacy to solve the differentially private

distributed optimization problem formulated in Section 4.2 for a group of n ∈ ℕ agents. For

convenience, we introduce the shorthand notation 0 = C2(D) ⊂ L2(D) and, for given u > 0,
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0 < � < �,

 = {ℎ ∈ 0 | ‖∇ℎ(x)‖ ≤ u, ∀x ∈ D and �Id ≤ ∇2ℎ(x) ≤ �Id , ∀x ∈ Do},

for twice continuously differentiable functions with bounded gradients and Hessians. In the rest of

the chapter, we assume that the agents’ local objective functions f1,… , fn belong to  .

4.5.1 Smoothness and Regularity of the Perturbed Functions

We address here the challenge (ii) laid out in Section 4.3.2. To exploit the framework of

functional differential privacy for optimization, we need to ensure that the perturbed functions have

the smoothness and regularity properties required by the distributed coordination algorithm. In

general, the output (4.6) might neither be smooth nor convex. We detail next how to address these

problems by defining appropriate maps that, when composed with in (4.6), yield functions with

the desired properties. Proposition 4.3.3 ensures that differential privacy is retained throughout this

procedure.

Ensuring Smoothness

To ensure smoothness, we rely on the fact that 0 is dense in L2(D) and, therefore, given

any function g in L2(D), there exists a smooth function arbitrarily close to it, i.e.,

∀" > 0, ∃ĝs ∈ 0 such that ‖g − ĝs‖ < ".
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Here, " is a design parameter and can be chosen sufficiently small (later, we show how to do this

so that the accuracy of the coordination algorithm is not affected).

Remark 4.5.1. (Smoothening and truncation). A natural choice for the smoothening step, if the

basis functions are smooth (i.e., {ek}∞k=1 ⊂ 0), is truncating the infinite expansion of g. Such trun-

cation is also inevitable in practical implementations due to the impossibility of handling infinite

series. The appropriate truncation order depends on the specific function, the basis set, and the

noise decay rate (p in (4.11)). □

Ensuring Strong Convexity and Bounded Hessian

The next result ensures that the orthogonal projection from 0 onto  is well defined, and

can therefore be used to ensure strong convexity and bounded Hessian of the perturbed functions.

Proposition 4.5.2. (Convexity of  and closedness relative to 0). The set  is convex and closed

as a subset of 0 under the 2-norm.

Proof. The set  is clearly convex because, if ℎ1, ℎ2 ∈  and � ∈ [0, 1], then for all x ∈ Do,

∇2((1 − �)ℎ1(x) + �ℎ2(x)) = (1 − �)∇2ℎ1(x) + �∇2ℎ2(x)

≥ (1 − �)�Id + ��Id = �Id .

Similarly, ∇2((1 − �)ℎ1(x) + �ℎ2(x)) ≤ �Id . Also,

‖∇((1 − �)ℎ1(x) + �ℎ2(x))‖ ≤ (1 − �)‖∇ℎ1(x)‖ + �‖∇ℎ2(x)‖

≤ (1 − �)u + �u ≤ u,
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for all x ∈ D. To establish closedness, let

1 = {ℎ ∈ 0 | �Id ≤ ∇2ℎ(x) ≤ �Id , ∀x ∈ Do},

2 = {ℎ ∈ 0 | ‖∇ℎ(x)‖ ≤ u, ∀x ∈ D}.

Since  = 1 ∩ 2, it is enough to show that 1 and 2 are both closed subsets of 0.

To show that 1 is closed, let {ℎk}∞k=1 be a sequence of functions in 1 such that ℎk
‖⋅‖2
←←←←←←←←←←←←←←→

ℎ ∈ 0. We show that ℎ ∈  . Since ℎk −
�
2
‖x‖2

‖⋅‖2
←←←←←←←←←←←←←←→ ℎ − �

2
‖x‖2 and L2 convergence implies

pointwise convergence of a subsequence almost everywhere, there exists {ℎkl}
∞
l=1 and Y ⊂ D such

that D ⧵ Y has zero (Lebesgue) measure and ℎkl (x) −
�
2
‖x‖2 → ℎ(x) − �

2
‖x‖2 for all x ∈ Y .

It is straightforward to verify that Y is dense in D and therefore Y ∩ Do is dense in Do. Then,

by [25, Theorem 10.8], ℎ− �
2
‖x‖2 is convex onDo, so �Id ≤ ∇2ℎ(x) for all x ∈ Do. Similarly, one

can show that ∇2ℎ(x) ≤ �Id for all x ∈ Do. Therefore, ℎ ∈ 1.

Next, we prove the closedness of 2 by contradiction. Assume that {ℎk}∞k=1 is a sequence

of functions in 2 such that ℎk
‖⋅‖2
←←←←←←←←←←←←←←→ ℎ ∈ 0 but ℎ ∉ 2. Therefore, there exist x0 ∈ Do such that

‖∇ℎ(x0)‖ > u and, by continuity of ∇ℎ, �0 > 0 and �0 > 0 such that

‖∇ℎ(x)‖ ≥ u + �0, ∀x ∈ B(x0, �0) ⊆ D.

Let u0 =
∇ℎ(x0)
‖∇ℎ(x0)‖

. By continuity of ∇ℎ, for all �1 > 0 there exists �1 ∈ (0, �0] such that

∇ℎ(x) ⋅ u0 ≥ (1 − �1)‖∇ℎ(x)‖, ∀x ∈ B(x0, �1).
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As mentioned above, L2 convergence implies pointwise convergence of a subsequence {ℎkl}
∞
l=1

almost everywhere. In turn, this subsequence converges to ℎ almost uniformly, i.e., for all �2 > 0

and all �3 > 0, there exist E ⊂ D and L ∈ ℕ such that �L(E) < �2 and

|ℎkl (x) − ℎ(x)| < �3, ∀x ∈ D ⧵ E and l ≥ L. (4.13)

For ease of notation, let �2 = �1∕2. Using the fundamental theorem of line integrals [26], for all

x ∈ B(x0, �2) ⧵ E,

ℎ(x + �2u0) − ℎ(x) = ∫

x+�2u0

x
∇ℎ ⋅ dr = ∫

x+�2u0

x
∇ℎ ⋅ u0‖dr‖

≥ ∫

x+�2u0

x
(1 − �1)‖∇ℎ‖‖dr‖ ≥ (1 − �1)(u + �0)�2. (4.14)

Similarly, for all x ∈ B(x0, �2) ⧵ E and all l ∈ ℕ,

ℎkl (x + �2u0) − ℎkl (x) = ∫

x+�2u0

x
∇ℎkl ⋅ dr

≤ ∫

x+�2u0

x
‖∇ℎkl‖‖dr‖ ≤ u�2. (4.15)

Putting (4.14), (4.15), and (4.13) together and choosing �3 = �1�2u, we have for all x ∈ B(x0, �2)⧵E

and all l ≥ L,

ℎ(x + �2u0) − ℎkl (x + �2u0) ≥ ℎ(x) − ℎkl (x) + �2(1 − �1)(u + �0) − �2u (4.16)

≥ �2(1 − �1)(u + �0) − �2(1 + �1)u ≜ �4.
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The quantity �4 can be made strictly positive choosing �1 =
�0

4u+3�0
> 0. Let E+ = E + �2u0 and

x1 = x0 + �2u0. Then, (4.16) can be rewritten as

ℎ(x) − ℎkl (x) ≥ �4, ∀x ∈�2(x1) ⧵ E
+ and l ≥ L,

which, by choosing �2 =
1
2
�L(B(x1, �2)), implies

∫�2
(x1)⧵E+

|ℎ(x) − ℎkl (x)|
2dx ≥ �24 ⋅ �L(B(x1, �2) ⧵ E

+)

⇒ ‖ℎ − ℎkl‖ ≥ �4
√

�L(B(x1, �2))∕2 > 0,

contradicting ℎkl
‖⋅‖2
←←←←←←←←←←←←←←→ ℎ, so 2 must be closed.

Given the result in Proposition 4.5.2, the best approximation in  of a function ℎ ∈ 0 is

its unique projection onto  , i.e.,

ℎ̃ = proj(ℎ).

By definition, the projected function has bounded gradient and Hessian.

4.5.2 Algorithm Design and Analysis

We address here the challenge (iii) laid out in Section 4.3.2 and put together the discussion

above to propose a class of differentially private, distributed optimization algorithms that solve

Problem 2. Unlike message-perturbing distributed coordination algorithms, that have agents use

the original objective functions in the computations and rely on perturbing the inter-agent messages
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with appropriately chosen noise, here we propose that agents locally perturb their objective func-

tions and use them in their computations, without adding any additional noise to the inter-agent

messages. Therefore, we require each agent i ∈ {1,… , n} to first compute

f̂i =(fi, �̊i) = fi + Φ(�̊i), (4.17a)

where �̊i is a sequence of Laplace noise generated by i according to (4.7) with the choice (4.11),

then select f̂ si ∈ 0 such that

‖f̂i − f̂ si ‖ < "i, (4.17b)

and finally compute

f̃i = proj(f̂ si ). (4.17c)

After this process, agents participate in any distributed optimization algorithm with the modified

objective functions {f̃i}ni=1. Let

x̃∗ = argmin
x∈X

n
∑

i=1
f̃i and x∗ = argmin

x∈X

n
∑

i=1
fi,

denote, respectively, the output of the distributed algorithm and the optimizer for the original opti-

mization problem (with objective functions {fi}ni=1). The following result establishes the connec-

tion between the algorithm’s accuracy and the design parameters.

Theorem 4.5.3. (Accuracy of a class of distributed, differentially private coordination algo-
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rithm). Consider a group of n agents which perturb their local objective functions according

to (4.17) with Laplace noise (4.7) of variance (4.11), where qi > 1, 
i > 0, and pi ∈
(

1
2
, qi −

1
2

)

for all i ∈ {1,… , n}. Let the agents participate in any distributed coordination algorithm

that asymptotically converges to the optimizer x̃∗ of the perturbed aggregate objective function.

Then, �i-differential privacy of each agent i’s original objective function is preserved with �i =
√

� (2(qi − pi))∕
i and

‖E[x̃∗] − x∗‖ ≤
n
∑

i=1
�n

(


i
√

� (2pi)
)

+ �n("i),

where the function �n ≡ �n�,n� is defined in Proposition 4.A.2.

Proof. Since the distributed algorithm is a post-processing step on the perturbed functions, privacy

preservation of the objective functions follows from Theorem 4.4.2 and Proposition 4.3.3. For

convenience, let Δ = ‖E[x̃∗ − x∗]‖. Note that

Δ ≤ E ‖x̃∗ − x∗‖ = E‖‖
‖

argmin
x∈X

n
∑

i=1
f̃i − argmin

x∈X

n
∑

i=1
fi
‖

‖

‖

.

Since �n�,n� is convex and belongs to class ∞ (so is monotonically increasing), �n is concave and

belongs to class ∞ and so is subadditive. Therefore, using Proposition 4.A.2,

Δ ≤ E
[

�n
(

‖

‖

‖

n
∑

i=1
f̃i −

n
∑

i=1
fi
‖

‖

‖

)]

≤ E
[

�n
(

n
∑

i=1
‖f̃i − fi‖

)]

≤
n
∑

i=1
E
[

�n
(

‖f̃i − fi‖
)]

.
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Then, by the non-expansiveness of projection, we have

Δ ≤
n
∑

i=1
E
[

�n
(

‖f̂ si − fi‖
)]

≤
n
∑

i=1
E
[

�n
(

‖f̂ si − f̂i‖
)

+ �n
(

‖f̂i − fi‖
)]

≤
n
∑

i=1

(

�n("i) + E
[

�n
(

‖�̊i‖
)])

. (4.18)

By invoking Jensen’s inequality twice, for all i ∈ {1,… , n},

E
[

�n(‖�̊i‖)
]

≤ �n
(

E
[

‖�̊i‖
])

= �n
(

E
[

√

‖�̊i‖2
])

≤ �n
(
√

E
[

‖�̊i‖2
]

)

= �n
(
√

∑∞

k=1
b2i,k

)

= �n
(


i
√

� (2pi)
)

. (4.19)

The result follows from (4.18) and (4.19).

The following result describes the trade-off between accuracy and privacy. The proof fol-

lows by direct substitution.

Corollary 4.5.4. (Privacy-accuracy trade-off). Under the hypotheses of Theorem 4.5.3, if pi =
qi
2

in (4.11) for all i, then

‖E[x̃∗] − x∗‖ ≤
n
∑

i=1
�n

(

� (qi)
�i

)

+ �n("i). (4.20)

In Corollary 4.5.4, qi and �i are chosen independently, which in turn determines the value of


i according to (4.12). Also, it is clear from (4.20) that in order for the accuracy of the coordination
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algorithm not to be affected by the smoothening step, each agent i ∈ {1,… , n} has to take the value

of "i sufficiently small so that it is negligible relative to � (2pi)∕�i. In particular, this procedure can

be executed for any arbitrarily large value of �i, so that in case of no privacy requirements at all,

perfect accuracy is recovered, as specified in Problem 2.

Remark 4.5.5. (Accuracy bound for sufficiently large domains). One can obtain a less conser-

vative bound than (4.20) on the accuracy of the proposed class of algorithms if the minimizers of

all the agents’ objective functions are sufficiently far from the boundary of X. This can be made

precise via Corollary 4.A.3. If the aggregate objective function satisfies (4.25) and the amount of

noise is also sufficiently small so that the minimizer of the sum of the perturbed objective functions

satisfies this condition, then invoking Corollary 4.A.3, one can obtain

‖E[x̃∗] − x∗‖ ≤ L
n2

n
∑

i=1

(



2
d+4
i � (2pi)

1
d+4 + "

2
d+4
i

)

= L
n2

n
∑

i=1

[

(

� (qi)
�i

)
2
d+4

+ "
2
d+4
i

]

,

where the equality holds under the assumption that pi =
qi
2
in (4.11) for all i ∈ {1,… , n}. □

4.6 Simulations

In this section, we report simulation results for our algorithm design for Example 4.2.2

with D = X = [−5, 5]2, n = 10, Nd = 100, and � = 0.01. The orthonormal basis of L2(D)

is constructed from the Gram-Schmidt orthogonalization of the Taylor functions and the series

is truncated to the second, sixth, and fourteenth orders, resulting in 15, 28, and 120-dimensional

coefficient spaces, respectively. This truncation also acts as the smoothening step described in Sec-
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tion 4.5.1, where higher truncation orders result in smaller ". We evaluate the projection operator

in (4.17c) by numerically solving the convex optimization problem minf̃i∈ ‖f̃i − f̂
s
i ‖, where f̂

s
i is

the result of the truncation. The parameters of  are given by � = Nd�, � = Nd�+NdrD
√

2+e2rD ,

and u =
√

2Nd(�rD + e2rD) where rD = 5. Rather than implementing any specific distributed co-

ordination algorithm, we use an iterative interior-point algorithm on f̃ and f to find the perturbed

x̃∗ and original x∗ optimizers, respectively (these points correspond to the asymptotic behavior of

any provably correct distributed optimization algorithm with the perturbed and original functions,

respectively).
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Figure 4.2: Privacy-accuracy trade-off curve of the proposed class of distributed, differentially
private algorithms in Section 4.5.2 for Example 4.2.2 (with the same data as Figure 4.1) and different
truncation orders. Left: empirical data and its best piecewise linear fit for 6th-order truncation of the
function expansions, together with the theoretical upper bound of Corollary 4.5.4. Right: piecewise
linear fit of empirical data for 2nd, 6th, and 14th order truncations as well as the theoretical upper
bound. Accuracy improves with the truncation order.

The privacy levels are chosen the same for all agents, i.e., � = �1n, and � is swept logarithmi-

cally over [10−2, 103]. For each i ∈ {1,… , n}, we set qi = 2pi = 1.1 and 
i =
√

� (2(qi − pi))∕�. For
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each value of � and truncation order, the simulations are repeated 20 times to capture the stochastic-

ity of the solutions. Figure 4.2 illustrates the error ‖x̃∗−x∗‖ as a function of � for different truncation

orders, together with the best linear fit of log ‖x̃∗− x∗‖ against log �, and the upper bound obtained

in Corollary 4.5.4. The conservative nature of this upper bound can be explained by noting the

approximations leading to the computation of L in Proposition 4.A.2, suggesting there is room for

refining this bound. Figure 4.2 shows that accuracy keeps improving as the privacy requirement

is relaxed until the "-term (resulting from the smoothening/truncation) dominates the error. This

saturation value can be decreased by increasing the truncation order (which comes at the expense of

more computational complexity), in contrast with the behavior of message-perturbing algorithms,

cf. Figure 4.1. It is important to mention that the respective error values for a fixed � cannot be

compared between Figures 4.1 and 4.2 because, in [17], � is defined as the total exponent in (4.2),

i.e., �i0‖fi0 − f
′
i0
‖ . However, it can be seen that the accuracy in Figure 4.1 is almost indifferent

to the value of � and is in the same order as rD = 5. This is explained by the impossibility result

of Proposition IV.2: since the noise-free algorithm of [17] is not asymptotically stable, depending

on the specific application, its accuracy may not be desirable regardless of the value of �. In con-

trast, the accuracy in Figure 4.2 keeps improving as � is increased (with an appropriate choice of

truncation order).

Appendix
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4.A -Lipschitz Property of the argminMap

Here we establish the Lipschitzness of the argmin map under suitable assumptions. This

is a strong result of independent interest given that argmin is not even continuous for arbitrary

C2 functions. Our accuracy analysis for the proposed class of distributed, differentially private

coordination algorithms in Section 4.5.2 relies on this result. We begin with an auxiliary result

stating a geometric property of balls contained in convex, compact domains.

Lemma 4.A.1. (Minimum portion of balls contained in convex compact domains). AssumeD ⊂

ℝd is convex, compact, and has nonempty interior and let rD > 0 denote its inradius. Then, there

exists �D ∈ (0, 1) such that,

�L(B(x, r) ∩D) ≥ �D�L(B(x, r)),

for any x ∈ D and r ≤ rD.

Proof. LetB(cD, rD) be the inball ofD, i.e., the largest ball contained inD. If this ball is not unique,

we pick one arbitrarily. Since Do ≠ ∅, rD > 0. Let RD be the radius of the largest ball centered at

cD that containsD. SinceD is compact,RD <∞. For any x ∈ D that is on or outside ofB(cD, rD),

let Σ be the intersection of B(cD, rD) and the hyperplane passing through cD and perpendicular to

cD − x. Consider the cone C = conv(Σ ∪ {x}) where conv denotes convex hull. SinceD is convex,

C ⊆ D. Note that C has half angle �x = tan−1
rD

‖x−cD‖
so the solid angle at its apex is

Ω�x =
2�

d−1
2

Γ(d−1
2
) ∫

�x

0
sind−2(�)d�. (4.21)
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Therefore, for any r ≤ rD, the proportion Ω�x
Ωd

of B(x, r) is contained in D where Ωd is the total

d-dimensional solid angle given by

Ωd =
2�

d
2

Γ(d
2
)
.

For any x inside B(cD, rD), the same argument holds with

�x = max
‖x−cD‖≥rD

tan−1
rD

‖x − cD‖
= �
4
.

Therefore, for arbitrary x ∈ D, the statement holds with

�D = minx∈D

Ω�x

Ωd
= 1
Ωd
Ωtan−1(rD∕RD).

We are now ready to establish the -Lipschitzness of the argmin map.

Proposition 4.A.2. (-Lipschitzness of argmin). For any two functions f, g ∈  ,

‖

‖

‖

argmin
x∈X

f − argmin
x∈X

g‖‖
‖

≤ ��,�(‖f − g‖), (4.22)

where ��,� ∈ ∞ is given by

�−1�,�(r) =
�2�

d
2

d2d+3Γ(d
2
)
�D

(

rD
dD

)d

r4�d�,�(r), ∀r ∈ [0,∞),

rD and �D are as in Lemma 4.A.1, dD is the diameter of D, and ��,� ∈ ∞ is defined for all
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r ∈ [0,∞) by

��,�(r) =
�r2

2
√

��r2 + 2(� + �)ur + 4u2
.

Proof. We consider the case where a = argminx∈X f (x) ≠ argminx∈X g(x) = b since the state-

ment is trivial otherwise. Let ma = f (a), mb = g(b), m = ma − mb, ua = ∇f (a), and ub = ∇g(b).

Without loss of generality, assume m ≥ 0. Define,

fl(x) =
�
2
‖x − a‖2 + uTa (x − a) + ma,

gu(x) =
�
2
‖x − b‖2 + uTb (x − b) + mb,

for all x ∈ D. Since f, g ∈  , we can integrate ∇2f ≥ �Id and ∇2g ≤ �Id twice to get,

∀x ∈ D fl(x) ≤ f (x) and g(x) ≤ gu(x). (4.23)

It follows that, for all x ∈ D,

|f (x) − g(x)| ≥ [fl(x) − gu(x)]+ ≥ [fl(x) − gu(x) − m]+,

where [z]+ = max{z, 0} for any z ∈ ℝ. After some computations, one can get

fl(x) − gu(x) − m = −
� − �
2

(

‖x − c‖2 − r2
)

,
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where

c =
�b − �a + ua − ub

� − �
,

r2 =
��‖a − b‖2

(� − �)2
+
‖ua − ub‖2

(� − �)2
+
2(�ua − �ub)T (b − a)

(� − �)2
.

Therefore, the region where fl−gu−m ≥ 0 is B(c, r). Next, we seek to identify a subset inside this

ball where we can determine a strictly positive lower bound of fl−gu that depends on the difference

‖a − b‖. To this effect, note that b ∈ B(c, r), since

r2 − ‖c − b‖2 = �
� − �

‖a − b‖2 + 2
� − �

uTa (b − a),

and, by the convexity of the problem, uTa (b − a) ≥ 0. Let r = r − ‖c − b‖ > 0 be the radius of the

largest ball centered at b and contained in B(c, r). We have,

r2 − ‖c − b‖2 = (r − ‖c − b‖)(r + ‖c − b‖) ≥ �
� − �

‖a − b‖2

⇒ r ≥
�
�−�

‖a − b‖2

r + ‖c − b‖
≥

�
�−�

‖a − b‖2

2r
≥ ��,�(‖a − b‖),

where in the last inequality we have used ‖ua‖, ‖ub‖ ≤ u. Next, note that for all x ∈ B(c, r+‖c−b‖
2

),

fl(x) − gu(x) − m ≥ −� − �
2

(r2 + ‖c − b‖2 + 2r‖c − b‖
4

− r2
)

. (4.24)
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Using the bound 2r‖c − b‖ ≤ r2 + ‖c − b‖2, we get after some simplifications,

(fl − gu)(x) − m ≥ �
4
‖a − b‖2 + 1

2
uTa (b − a) ≥

�
4
‖a − b‖2,

for all x ∈ B(b, r
2
) ⊂ B(c, r+‖c−b‖

2
). Therefore,

‖f − g‖2 = ∫D
|f (x) − g(x)|2dx

≥ ∫D
([fl(x) − gu(x) − m]+)2dx

≥ ∫B(b, r2 )∩D
(fl(x) − gu(x) − m)2dx

≥ �2

16
‖a − b‖4m

(

B(b, r
2
) ∩D

)

≥ �2

16
‖a − b‖4m

(

B(b, ��,� (‖a−b‖)
2

) ∩D
)

.

Now, we invoke Lemma 4.A.1 to lower bound the last term. Note that ��,�(‖a−b‖) ≤ ‖a−b‖ ≤ dD

for all a,b ∈ D. Therefore, rD
dD

��,� (‖a−b‖)
2

≤ min{rD, ��,�(‖a − b‖)∕2}, so by Lemma 4.A.1,

‖f − g‖2 ≥ �2

16
‖a − b‖4m

(

B
(

b,
rD��,�(‖a − b‖

2dD

)

∩D
)

≥ �2

16
‖a − b‖4�D

2�
d
2

dΓ(d
2
)

rdD
2dddD

(��,�(‖a − b‖))d ,

which yields (4.22).

The next result shows that if the minimizers of f and g are sufficiently far from the boundary

ofD, then their gradients need not be uniformly bounded and yet one can obtain a less conservative

characterization of the -Lipschitz property of the argmin map.
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Corollary 4.A.3. (-Lipschitzness of argmin for sufficiently large domains). If f and g belong

to 1 = {ℎ ∈ 0 | �Id ≤ ∇2ℎ(x) ≤ �Id , ∀x ∈ Do} and

argmin
x∈X

f (x), argmin
x∈X

g(x) ∈ B(cD, rD) ∩X
o, (4.25)

where rD =
�−�

�+�+2
√

��
rD and B(cD, rD) ⊂ D, then

‖

‖

‖

argmin
x∈X

f − argmin
x∈X

g‖‖
‖

≤ L‖f − g‖
2
d+4 ,

where

L =
d(d + 2)(d + 4)(� − �)d+2Γ(d∕2)

4(��)d∕2+2�d∕2
.

Proof. The proof follows the same lines as the proof of Proposition 4.A.2 (and we use here the

same notation). Since the minimizers of f and g lie in the interior of X, ua = ub = 0. The main

difference here is that due to (4.25), we have for all x ∈ B(c, r) that

‖x − cD‖ ≤ ‖x − c‖ + ‖c − b‖ + ‖b − cD‖

≤
� +

√

��
� − �

2rD + rD = rD,

so B(c, r) ⊂ D. Therefore, one can integrate (fl− gu−m)2 on the whole B(c, r) instead of its lower

bound (4.24) on the smaller ball B(c, r+‖c−b‖
2

). To explicitly calculate the value of the resulting

integral, one can use the change of variables xi = ci + ry1∕2i , i ∈ {1,… , d} and then use the
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formula

∀ai > −1, ∫Sd
ya11 ⋯ yadd dy =

Γ(a1 + 1)⋯Γ(ad + 1)
Γ(a1 +⋯ + ad + d + 1)

,

where Sd = {y ∈ ℝd
|

∑d
i=1 yi = 1 and yi ≥ 0, i ∈ {1,… , d}}. The result then follows from

straightforward simplifications of the integral.
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Chapter 5

Event-Triggered Stabilization of Delayed

Network Systems

In this chapter, we turn to a different challenge in the analysis and control of network dy-

namical systems, the existence of imperfect communication channels between the network nodes.

We consider a network control system composed of two nodes, a (possibly) nonlinear plant and a

controller, and study the problem of stabilization of the plant using event-triggered control where

time-varying delays can exist in both sensing and actuation.

Event-triggered and self-triggered approaches have recently gained popularity for control-

ling cyberphysical systems. The basic premise is that of abandoning the assumption of continuous

or periodic updating of the control signal and instead adopt an opportunistic perspective that leads to

deliberate, aperiodic updates. The challenge resides in determining precisely when control signals

should be updated to improve efficiency while still guaranteeing convergence. We here expand the

state-of-the-art in opportunistic state-triggered control by designing predictor-based event-triggered

control strategies that stabilize nonlinear systems with known delays in both sensing and actuation
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that can be arbitrarily large and time-varying.

Our proposed strategy seeks to opportunistically minimize the number of control updates

while guaranteeing stabilization and builds on predictor feedback to compensate for arbitrarily large

known time-varying delays. We establish, using a Lyapunov approach, the global asymptotic stabil-

ity of the closed-loop system as long as the open-loop system is globally input-to-state stabilizable in

the absence of time delays and event-triggering. We further prove that the proposed event-triggered

law has inter-event times that are uniformly lower bounded and hence does not exhibit Zeno behav-

ior. For the particular case of a stabilizable linear system, we show global exponential stability of

the closed-loop system and analyze the trade-off between the rate of exponential convergence and

average sampling frequency. We illustrate these results in simulation and also examine the prop-

erties of the proposed event-triggered strategy beyond the class of systems for which stabilization

can be guaranteed.

5.1 Prior Work

There exists a vast literature on both event-triggered control and the control of time-delay

systems. Here, we review the works most closely related to our treatment. Originating from event-

based and discrete-event systems [1, 2], the concept of event-triggered control (i.e., updating the

control signal in an opportunistic fashion) was proposed in [3, 4] and has found its way into the

efficient use of sensing, computing, actuation, and communication resources in networked control

systems, see e.g., [5–8] and references therein.

On the other hand, the notion of predictor feedback is a powerful method in dealing with

controlled systems subject to time delay [9–14]. In essence, a predictor feedback controller antic-
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ipates the future evolution of the plant using its forward model and sends the control signal early

enough to compensate for the delay. Here, we pursue a Lyapunov-based analysis of predictor feed-

back following [15]. Given that the numerical implementations of predictor feedback controllers

are particularly challenging [16, 17], we further discuss several methods for the numerical imple-

mentation of our proposed controller and show that a carefully designed “closed-loop” method is

numerically stable and robust to errors in delay compensation.

The joint treatment of time delay and event-triggering is particularly challenging. By its

opportunistic nature, an event-triggered controller keeps the control value unchanged until the plant

is close to instability and then updates the control value according to the current state. Now, if

time delays exist, the controller only has access to some past state of the plant (delayed sensing)

and it takes some time for an updated control action to reach the plant (delayed actuation), jointly

increasing the possibility of the updated control value being already obsoletewhen it is implemented

in the plant, resulting in instability. Therefore, the controller needs to be sufficiently proactive and

update the control value sufficiently ahead of time to maintain closed-loop stability. This makes

the design problem challenging. Delays in actuation and sensing may be due to communication

delays between controller-actuator and controller-sensor pairs, and in that sense, previous work

on the event-triggered control literature that specifically considers delays in the communication

channel deals with a similar problem setup as the one considered here. Several event-triggered

designs consider scenarios where the system dynamics are linear, see, e.g. [18–23]. The inclusion

of nonlinearity, however, makes the problem more challenging. When digital controllers are used

and the delay is smaller than the sampling time, [24, 25] design event-triggered controllers for

the resulting delay-free discretized system. Robust event-triggered stabilizing controllers are also

designed for nonlinear systems with sensing delays in [26] and with both sensing and actuation
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delays in [5, 27].

In all these works, however, a key assumption is that the (maximum) delay is smaller than

the (minimum) inter-transmission time. This assumption (also called the small-delay case) allows

for the treatment of delay as a disturbance and, by construction, can tolerate unknown delays. In

reality, however, (minimum) inter-transmission times can be very small, making this assumption

restrictive. Similar to our preliminary work [28], we take a different perspective here and consider

arbitrarily large delays, with the expected tradeoff in our treatment that the delay can no longer be

unknown. The technical approach is based on using predictors that capture the effect of the delay

on the system to compensate for it. We rigorously analyze the case when the delay is accurately

known and show in simulation that our design is indeed robust to small variations when the delay

is only approximately known. Unlike [28], here we consider imperfect signal transmission with

event-triggering and time-varying delay both in the sensing and actuation. Further, given the well-

known difficulties in the computation of predictor-feedback controllers, we here provide a detailed

discussion of the numerical challenges that arise in the implementation of predictor feedback and

effective solutions to resolve them. Finally, this chapter provides a complete and thorough technical

treatment, including the proofs of all results, which are not available in [28].

5.2 Problem Statement

Consider the nonlinear system (“plant”) with dynamics

ẋ(t) = f (x(t),up(t)), t ≥ 0, a.e., (5.1)
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where f ∶ ℝn × ℝm → ℝn. Our goal is to provide a state-feedback controller ensuring global

asymptotic stability under the following challenges:

(i) Actuation delay: Let u(t) be the control signal generated by the controller. Actuation

delay is modeled as

up(t) = u(�(t)), t ≥ 0, (5.2)

where t − �(t) > 0 is the amount of time that it takes for a control action generated at time �(t)

to reach the plant/actuator. For instance, In the case of a constant actuation delay D, we have

�(t) = t−D. This delay further requires an initial value {u(t) | �(0) ≤ t < 0} on the control input

for (5.1) to be well-defined.

(ii) Sensing delay: We allow the existence of a delay between the sensor and the controller

such that at any time t, the controller may have access to x(s), s ≤  (t) (alternatively, x(t) takes

 −1(t) − t seconds to reach the controller) for some delay function  (t) ≤ t.

(iii) Actuation event-triggering: We aim to design opportunistic event-triggered con-

trollers that do not require continuous updating of the control signals. This is motivated by practical

concerns about the implementability of the controller in real time, and also by considerations about

the efficient use of the available resources (to prevent, for instance, wear-and-tear of the actuator,

or to accommodate bandwidth limitations when sensor, controller, and actuator are not co-located).

We seek to design a controller that updates u(t) only at a sequence of discrete times {tk}∞k=0,

u(t) = u(tk), t ∈ [tk, tk+1), k ≥ 0. (5.3)
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(iv) Sensing event-triggering: We further allow for the possibility that the sensor can

only send an event-triggered sequence of states {x(�l)}∞l=0 to the controller. In this case, we let for

simplicity that �0 = 0, t0 =  −1(0), and u(t) be arbitrarily set in [0, t0) as the controller has not

received any state information yet.

In the sequel, we impose the following assumptions on the system dynamics.

Assumption 5.2.1. (Standing assumptions).

(i) f is continuously differentiable, f (0, 0) = 0, and (5.1) is forward complete (does not exhibit

finite escape time) for all initial conditions and bounded inputs;

(ii) the initial control {u(t) | �(0) ≤ t < 0} is given and continuously differentiable;

(iii) the delay function � is continuously differentiable;

(iv) the delay functions � and  are monotonically increasing so the argument of u(�(t)) and

x( (t)) do not go back in time;

(v) the origin of (5.1) is robustly globally asymptotically stabilizable in the absence of delays and

with continuous sensing and actuation. Formally, there exists a globally Lipschitz feedback

law K ∶ ℝn → ℝm, K(0) = 0, that makes

ẋ(t) = f (x(t), K(x(t)) + w(t)), (5.4)

ISS with respect to the additive input disturbance w;

(vi) the ISS gain function � in (2.7b) satisfies ∫ 1
0

�(r)
r
<∞;
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(vii) the delay function � is known to the controller; on the other hand,  need not be known a

priori or in full, but only a posteriori and at times when state is measured;

(viii) the delay function � and its derivative are bounded, i.e., there exist M0 > 0, M1 ≥ 1, and

0 < m2 ≤ 1 such that

t − �(t) ≤M0 and m2 ≤ �̇(t) ≤M1, ∀t ≥ 0; (5.5)

(ix) the sensing triggering times {�l}∞l=0 are given (determined by the sensor independently of

our design). In particular, the sensor ensures that {tl}l≥0 ∩ [a, b] is finite for any a, b < ∞

(lack of Zeno behavior). □

Assumption 5.2.1(i)-(iv) are standard in predictor-based control of delay systems. Together

with the piecewise-constant form of up, Assumption 5.2.1(i) also ensures existence and uniqueness

of solutions for (5.1). Assumption 5.2.1(v) on the availability of a feedback law in the absence of

event-triggering and delays is also standard in event-triggered control. This allows us to focus on

the challenges that arise by time delays and event-triggered control. Assumption (vi) is satisfied by

�(r) = rc for any c > 0 and thus it is also satisfied by any � ∈  such that �(r) ≤ rc, r ∈ [0, r̄]

for some c, r̄ > 0 (e.g., �(r) = tan−1(r), �(r) = er − 1, or �(r) = log(1 + r)). Further, the a

priori knowledge of � in Assumption 5.2.1(vii) is most realistic in applications where the same

control task is repeatedly executed and thus a data-driven estimate of future � can be computed

using its history. Moreover, note that Assumption 5.2.1(viii) is trivially satisfied for a constant

delay (�(t) = t−D) withM0 = D andM1 = m2 = 1. Finally, Assumption 5.2.1(ix) is imposed for

simplicity and to let us focus on the design of the actuation triggering times. In fact, the values of

131



PlantZOH

�l

 (t)

Controller

�(t)

x(t)

u(tk)

u(�(tk))

tk

x(�l)

x( (�l))

PredictorK(⋅)
x( (�l))p(t)K(p(t))

Figure 5.1: The considered networked control scheme with sensing and actuation delays and event-
triggering (top) and the proposed predictor-based controller (bottom).

{�l} other than �0 are irrelevant theoretically but practically critical for stability, a point we discuss

in detail in Sections 5.3.4 and 5.5.

The resulting networked control scheme is illustrated in Figure 5.1. Our considered problem

is then as follows.

Problem 3. (Event-triggered stabilization under sensing and actuation delay). Design the se-

quence of actuation triggering times1 {tk}∞k=1 and the corresponding control values {u(tk)}
∞
k=0 such

that {tk}k≥0 ∩ [a, b] is finite for any 0 ≤ a ≤ b < ∞ and the closed-loop system (5.1) is glob-

ally asymptotically stable using the piecewise constant control (5.3) and the delayed information

{x(�l)}∞l=0 received, resp., at { 
−1(�l)}∞l=0.

2 □

The requirement that {tk}k≥0 ∩ [a, b] be finite for any 0 ≤ a ≤ b < ∞ ensures the resulting

design is implementable by avoiding finite accumulation points, i.e., Zeno behavior. We propose a

solution to Problem 3 in the next section.
1Recall that t0 =  −1(0) is fixed.
2We require that the control law is causal, i.e., tk and u(tk) depend only on the states {x(�l)} that have reached the

controller by the time tk. While sampling may be modeled as a specific type of delay, we capture it with the prediction
error e(t) (defined later). The values �(t) and  (t) only capture the delays in actuation and sensing, resp.
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5.3 Event-Triggered Design and Analysis

In this section, we propose an event-triggered control policy to solve Problem 3. We start

our analysis with the simpler case where the controller receives state feedback continuously (i.e.,

{x(t)}∞t=0 instead of {x(�l)}∞l=0) without delays (i.e.,  (t) = t), and later extend it to the general

case.

5.3.1 Predictor Feedback Control for Time-Delay Systems

Here we review the continuous-time stabilization of the dynamics (5.1) by means of a

predictor-based feedback control [15]. For convenience, we denote the inverse of � by �(t) =

�−1(t), for all t ≥ 0. The inverse exists since � is strictly monotonically increasing. From (5.5), for

all t ≥ �(0),

�̇(t) ≤M2 ≜ m−12 .

To compensate for the delay, at any time t ≥ �(0), the controller makes the following prediction of

the future state of the plant,

p(t) = x(�(t)) = x([t]+) + ∫

t

�([t]+)
�̇(s)f (p(s),u(s))ds. (5.6)

This integral is computable by the controller since it only requires knowledge of the initial or cur-

rent state of the plant (gathered from the sensors) and the history of u(t) and p(t), both of which

are available to the controller. Nevertheless, for general nonlinear vector fields f , (5.6) may not

have a closed-form solution and it has to be computed using numerical integration methods, cf. Re-
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mark 5.5.1 below. As shown in Figure 5.1, the controller applies the control lawK on the prediction

p in order to compensate for the delay, i.e.,

u(t) = K(p(t)), t ≥ 0. (5.7)

The next result shows convergence for the closed-loop system.

Proposition 5.3.1. (Asymptotic stabilization by predictor feedback [15]). Under Assumption 5.2.1,

the closed-loop system (5.1) under the controller (5.7) is globally asymptotically stable, i.e., there

exists � ∈  such that for any x(0) ∈ ℝn and bounded {u(t)}0t=�(0), for all t ≥ 0,

‖x(t)‖ + sup
�(t)≤�≤t

‖u(�)‖ ≤ �
(

‖x(0)‖ + sup
�(0)≤�≤0

‖u(�)‖, t
)

.

5.3.2 Design of Event-triggered Control Law

Following Section 5.3.1, we let the controller make the prediction p(t) according to (5.6)

for all t ≥ �(0). Since the controller can only update u(t) at discrete times {tk}∞k=0, it uses the

piecewise-constant control (5.3) and assigns the control

u(tk) = K(p(tk)), (5.8)

for all k ≥ 0. In order to design the triggering times {tk}∞k=1, we use Lyapunov stability tools to

determine when the controller has to update u(t) to prevent instability. We define the triggering
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error for all t ≥ �(0) as

e(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p(tk) − p(t) if t ∈ [tk, tk+1) for k ≥ 0,

0 if t ∈ [�(0), t0),

(5.9)

so that u(t) = K(p(t) + e(t)), for t ≥ t0. Let

w(t) = u(t) −K(p(t) + e(t)), t ≥ �(0), (5.10)

where w(t) = 0 for t ≥ t0 but w(t) is in general nonzero for t ∈ [�(0), t0). Computing u(�(t))

from (5.10) and substituting it in (5.1), the closed-loop system can be written as

ẋ(t) = f
(

x(t), K
(

x(t) + e(�(t))
)

+ w(�(t))
)

, (5.11)

for all t ≥ 0. Notice that (5.11) simplifies to [5, Eq. (3)] in the absence of delay (�(t) = t).

Let g(x,w) = f (x, K(x) + w) for all x,w. By Assumption 5.2.1(v), there exists a continuously

differentiable function S ∶ ℝn → ℝ and �1, �2, 
, � ∈ ∞ such that

�1(‖x(t)‖) ≤ S(x(t)) ≤ �2(‖x(t)‖), (5.12)
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and (gS)(x,w) ≤ −
(‖x‖) + �(‖w‖). Therefore, we have

(fS)
(

x(t), K
(

x(t) + e(�(t))
)

+ w(�(t))
)

(5.13)

= (gS)
(

x(t), K
(

x(t)+e(�(t))
)

+w(�(t))−K(x(t))
)

≤−
(‖x(t)‖) + �
(

‖

‖

‖

K
(

x(t)+e(�(t))
)

+w(�(t))−K(x(t))‖‖
‖

)

.

Then, given Assumption 5.2.1(vi), define

V (t) = S(x(t)) + 2
b ∫

2L(t)

0

�(r)
r
dr, (5.14a)

L(t) = sup
t≤�≤�(t)

eb(�−t)‖w(�(�))‖, (5.14b)

and b > 0 is a design parameter. Note that the second term in (5.14a) may only be nonzero for

�(t) ∈ [�(0), t0) since the system is open-loop over this interval (cf. (5.9),(5.10)). The next result

establishes an upper bound on the time derivative of V .

Proposition 5.3.2. (Upper-bounding V̇ (t)). For the system (5.1) under the control defined by (5.3)

and (5.8) and the predictor (5.6), we have

V̇ (t) ≤ −
(‖x(t)‖) − �(2L(t)) + �(2LK‖e(�(t))‖), (5.15)

for all t ≠ t̄ and V (t̄−) ≥ V (t̄+), where LK is the Lipschitz constant of K and t̄ ∈ [0, �(t0)] is the

smallest time such that w(�(t)) = 0 for all t > t̄.
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Proof. Using (5.13), we have

fS(x(t)) ≤−
(‖x(t)‖) + �
(

‖w(�(t))‖+‖K(x(t)+e(�(t)))−K(x(t))‖
)

≤ −
(‖x(t)‖) + �
(

‖w(�(t))‖ + LK‖e(�(t))‖
)

≤ −
(‖x(t)‖) + �(2‖w(�(t))‖) + �(2LK‖e(�(t))‖). (5.16)

Since e−b(t−�)‖w(�(�))‖ is bounded for � ∈ [t, �(t)] and any t ≥ 0 and [t, �(t)] has finite measure,

the sup-norm in (5.14b) equals the limit of the corresponding p-norm as p→∞, i.e.,

L(t) = lim
n→∞

[

∫

�(t)

t
e2nb(�−t)‖w(�(�))‖2nd�

]
1
2n

≜ lim
n→∞

Ln(t).

In fact, it can be shown that this convergence is uniform over [0, t] for any t < t̄. Therefore, since

L̇n(t) = −bLn(t) −
Ln
2n

(

‖w(�(t))‖
Ln

)2n
, ‖w(�(t))‖

Ln
< 1 for t ∈ [0, t] and sufficiently large n and b, and

t ∈ [0, t̄) is arbitrary, it follows from [29, Thm 7.17] that L̇(t) = −bL(t) for t ∈ (0,∞) ⧵ {t̄}.

Combining this and (5.16), we get

V̇ (t) ≤ −
(‖x(t)‖) + �(2‖w(�(t))‖) + �(2LK‖e(�(t))‖) +
2
b
2L̇(t)

�(2L(t))
2L(t)

≤ −
(‖x(t)‖) + �(2‖w(�(t))‖) + �(2LK‖e(�(t))‖) − 2�(2L(t)).

for t ∈ (0,∞) ⧵ {t̄}. Equation (5.15) thus follows since ‖w(�(t))‖ ≤ L(t) (c.f. (5.14b)) and the fact

that � is strictly increasing. Finally, since S(x(t)) is continuous, L(t̄−) ≥ 0, and L(t̄+) = 0, we get

V (t̄−) ≥ V (t̄+).

Proposition 5.3.2 is the basis for our event-trigger design. Formally, we select � ∈ (0, 1)
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and require

�(2LK‖e(�(t))‖) ≤ �
(‖x(t)‖), t ≥ 0,

which can be equivalently written as

‖e(t)‖ ≤
�−1(�
(‖p(t)‖))

2LK
, t ≥ �(0). (5.17)

Notice from (5.9) and the fact t = 0 that (5.17) holds on [�(0), t0]. Equation (5.17) fully specifies

the sequence of times {tk}∞k=1 and its dependence on the actuation delay. For each k, after each

time tk, the controller keeps evaluating (5.17) until it reaches equality. At this time, labeled tk+1,

the controller triggers the next event that sets e(tk+1) = 0 and maintains (5.17). Notice that “larger”


 and “smaller” � (corresponding to “stronger” input-to-state stability in (2.7)) are then more desir-

able, as they are intuitively expected to let the controller update u less often. Our ensuing analysis

shows global asymptotic stability of the closed-loop system and the existence of a uniform lower

bound on the inter-event times.

5.3.3 Convergence Analysis under Event-triggered Law

In this section we show that our event triggered law (5.17) solves Problem 3 by showing, in

the following result, that the inter-event times are uniformly lower bounded (so, in particular, there

is no finite accumulation point in time) and the closed-loop system achieves global asymptotic

stability.

Theorem 5.3.3. (Uniform lower bound for the inter-event times and global asymptotic stability).
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Suppose that the class∞ function  ∶ r↦ 
−1(�(r)∕�) is (locally) Lipschitz. For the system (5.1)

under the control (5.8) and the triggering condition (5.17), the following hold:

(i) there exists �= �(x(0), {u(t)}0t=�(0)) > 0 such that tk+1 − tk ≥ � for all k ≥ 1,

(ii) there exists � ∈  such that for any x(0) ∈ ℝn and bounded {u(t)}0t=�(0), we have for all

t ≥ 0,

‖x(t)‖ + sup
�(t)≤�≤t

‖u(�)‖ ≤ �
(

‖x(0)‖ + sup
�(0)≤�≤0

‖u(�)‖, t
)

. (5.18)

Proof. Let [0, tmax) be the maximal interval of existence of the solutions of the closed-loop system.

The proof involves three steps. First, we prove that (ii) holds for t < tmax. Then, we show that (i)

holds until tmax, and finally that tmax = ∞.

Step 1: From Proposition 5.3.2 and (5.17), we have

V̇ (t) ≤ −(1 − �)
(‖x(t)‖) − �(2L(t))

≤ −
min(‖x(t)‖ + L(t)), t ∈ [0, tmax) ⧵ {t̄},

where 
min(r) = min{(1 − �)
(r), �(2r) for all r ≥ 0, so 
min ∈ . Also, note that

V (t) ≤ �2(‖x(t)‖) + �0(L(t)) ≤ 2�max(‖x(t)‖ + L(t)),

where �max(r) = max{�2(r), �0(r)} and �0(r) =
2
b
∫ 2r
0

�(s)
s
ds for all r ≥ 0. Since �0, �2 ∈ ∞, we

139



have �max ∈ ∞, so �−1max ∈ . Hence,

V̇ (t) ≤ −�min(�−1max(V (t)∕2)) ≜ �(V (t)), t ∈ [0, tmax) ⧵ {t̄},

where � ∈ . Therefore, using the Comparison Principle [30, Lemma 3.4], [30, Lemma 4.4], and

V (t̄−) ≥ V (t̄+), there exists �1 ∈  such that V (t) ≤ �1(V (0), t), t < tmax. Therefore,

‖x(t)‖ + L(t) ≤ �2(‖x(0)‖ + L(0), t), t < tmax,

where �2(r, s) = �−1min(�(2�max(r), s)) for any r, s ≥ 0. Note that �2 ∈ . Since we have

sup
�(t)≤�≤t

‖w(�)‖ ≤ L(t) ≤ ebM0 sup
�(t)≤�≤t

‖w(�)‖,

it then follows that

‖x(t)‖ + sup
�(t)≤�≤t

‖w(�)‖ ≤ �3
(

‖x(0)‖ + sup
�(0)≤�≤0

‖w(�)‖, t
)

,

for all t < tmax, where �3(r, s) = �2(ebM0r, s). This inequality leads to (5.18) using the same steps

as in [15, Lemmas 8.10, 8.11] (the only difference being the multiplicity of inputs).

Step 2: Equation (5.17) can be rewritten as

‖p(t)‖ ≥ 
−1
(�(2LK‖e(t)‖)

�

)

.

From step 1, the prediction p(t) = x(�(t)) and its error e(t) = p(tk) − p(t) are bounded. Therefore,
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there exists L
−1�∕� > 0 such that for all t ≥ 0,


−1
(�(2LK‖e(t)‖)

�

)

≤ 2L
−1�∕�LK‖e(t)‖.

where L
−1�∕� is the Lipschitz constant of  on the compact set that contains {e(t)}tmaxt=0 . Hence, a

sufficient (stronger) condition for (5.17) is

‖p(t)‖ ≥ 2L
−1�∕�LK‖e(t)‖. (5.19)

Note that (5.19) is only for the purpose of analysis and is not executed in place of (5.17). Clearly,

if the inter-event times of (5.19) are lower bounded, so are the inter-event times of (5.17). Let

r(t) = ‖e(t)‖
‖p(t)‖

for any t ≥ 0 (with r(t) = 0 if p(t) = 0). For any k ≥ 0, we have r(tk) = 0 and tk+1 − tk

is greater than or equal to the time that it takes for r(t) to go from 0 to 1
2L
−1�∕�LK

. Note that for any

t ≥ 0,

ṙ = d
dt

‖e‖
‖p‖

= d
dt
(eT e)1∕2

(pTp)1∕2

=
(eT e)−1∕2eT ė(pTp)1∕2 − (pTp)−1∕2pT ṗ(eT e)1∕2

pTp

= −
eT ṗ

‖e‖‖p‖
−
‖e‖pT ṗ
‖p‖3

≤
‖ṗ‖
‖p‖

+
‖e‖‖ṗ‖
‖p‖2

= (1 + r)
‖ṗ‖
‖p‖

,

where the time arguments are dropped for better readability. To upper bound the ratio

‖ṗ(t)‖∕‖p(t)‖, we have from (5.6) that ṗ(t) = �̇(t)f (p(t),u(t)) for all t ≥ �(0). By continuous

differentiability of f (which implies Lipschitz continuity on compacts) and global asymptotic sta-
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bility of the closed loop system, there exists Lf > 0 such that

‖ṗ(t)‖ = ‖�̇(t)f (p(t),u(t))‖ ≤M2‖f (p(t), K(p(t) + e(t)))‖

≤M2Lf‖(p(t), K(p(t) + e(t)))‖

≤M2Lf (‖p(t)‖ + ‖K(p(t) + e(t))‖)

≤M2Lf (‖p(t)‖ + LK‖p(t) + e(t)‖)

≤M2Lf (1 + LK)‖p(t)‖ +M2LfLK‖e(t)‖

⇒ ṙ(t) ≤M2(1 + r(t))(Lf (1 + LK) + LfLK|r(t)|).

Thus, using the Comparison Principle [30, Lemma 3.4], we have tk+1 − tk ≥ �, k ≥ 0 where � is

the time that it takes for the solution of

ṙ =M2(1 + r)(Lf (1 + LK) + LfLKr), (5.20)

to go from 0 to 1
2L
−1�∕�LK

.

Step 3: Since all system trajectories are bounded and tk
k→∞
←←←←←←←←←←←←←←←←←←→ ∞, we have tmax = ∞,

completing the proof.

A particular corollary of Theorem 5.3.3 is that the proposed event-triggered law does not

suffer from Zeno behavior, i.e., tk accumulating to a finite point tmax. Also, note that the lower

bound � in general depends on the initial conditions x(0) and {u(t)}0t=�(0) through the Lipschitz

constant L
−1�∕�.

142



5.3.4 Delayed and Event-Triggered Sensing

So far, we have not considered any delays in the availability of the sensing information about

the plant state, which we consider next. Our treatment here shows that the above event-triggered

controller with the same triggering condition (5.17), and with slight adjustments in the employed

control and predictor signals, globally asymptotically stabilizes the plant while maintaining the

same lower bound on the inter-event times.

To address the general scenario in Problem 3, let

l̄ = l̄(t) = max{l ≥ 0 | �l ≤  (t)},

be the index of the last plant state available at the controller at time t. Then, the best estimate of

x(�(t)) available to the controller, namely,

p(t) = x(�l̄) +∫

t

�(�l̄)
�̇(s)f (p(s),u(s))ds, t ≥  −1(0), (5.21)

is used as the prediction signal in place of (5.6)3. Since p(t) is not available before  −1(0), the

control signal (5.3), (5.8) is updated as

u(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

K(p(tk)) if t ∈ [tk, tk+1), k ≥ 0,

0 if t ∈ [0, t0),

(5.22)

where the first event time is now t0 =  −1(0). We next provide the same guarantees as Theo-

3This only requires the controller to know  (�l) for every received state (not the full function  ), which is realized
by having a time-stamp for x(�l).
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rem 5.3.3.

Theorem 5.3.4. Consider the plant dynamics (5.1) driven by the predictor-based event-triggered

controller (5.22)with the predictor (5.21) and triggering condition (5.17). Under Assumption 5.2.1,

the closed-loop system is globally asymptotically stable, namely, there exists � ∈  such

that (5.18) holds for all x(0) ∈ ℝn, continuously differentiable {u(t)}0t=�(0), and t ≥ 0. Furthermore,

there exists �= �(x(0), {u(t)}0t=�(0)) > 0 such that tk+1 − tk ≥ � for all k ≥ 0.

Proof. For simplicity, let U (t) = sup�(t)≤�≤t ‖u(t)‖. Since the open-loop system exhibits no finite

escape time behavior, the state remains bounded during the initial period [0, t0]. Hence, for any

x(0) and any {u(t)}0t=�(0) there exists Ξ > 0 such that ‖x(t)‖ ≤ Ξ for t ∈ [0, t0]. Without loss of

generality, Ξ can be chosen to be a class  function of ‖x(0)‖ + U (0). Thus,

‖x(t)‖+U (t) ≤ Ξ(‖x(0)‖ + U (0)) + U (0) (5.23)

≤
[

Ξ(‖x(0)‖ + U (0)) + U (0)
]

e−(t−t0), t ∈ [0, t0].

As soon as the controller receives x(0) at t0, it can estimate the state x(t) by simulating the dynam-

ics (5.1), i.e.,

x(t) = x(0) + ∫

t

0
f (x(s),u(�(s)))ds. (5.24)

This estimation is updated whenever a new state x(�l) arrives and used to compute the predic-

tor (5.6), which combined with (5.24) takes the form (5.21). Since the controller now has access

to the same prediction signal p(t) as before, the same Lyapunov analysis as above holds for [t0,∞).
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Therefore, let �̂ ∈  be such that (5.18) holds for t ≥ t0. By (5.23),

‖x(t)‖ + U (t) ≤ �̂
(

Ξ(‖x(0)‖ + U (0)) + U (0), t − t0
)

t ≥ t0.

Therefore, (5.18) holds by choosing �(r, t) = max
{

�̂
(

Ξ(r) + r, t − t0
)

,
[

Ξ(r) + r
]

e−(t−t0)
}

. Finally,

since the triggering condition (5.17) has not changed, tk+1 − tk ≥ �, k ≥ 0 for the same � > 0 as in

Theorem 5.3.3.

Remark 5.3.5. (Separation of sensing and actuation delays). It is a standard practice in the liter-

ature to combine the sensing and actuation delays into a single quantity, i.e., “networked induced

delays". This is in fact the basis of the predictor design in equation (23). However, in our treatment,

it is beneficial to keep the two delays distinct since their sources are often physically distinct and

the assumptions on the sensing delay  are significantly weaker than on the actuator delay � (cf.

Assumption 5.2.1). □

Remark 5.3.6. (Practical importance of feedback). While the controller can theoretically discard

{x(�l)}∞l=1 and rely on x(0) for estimating the state at all future times, closing the loop using the

most recent state value x(�l̄) is in practice critical for preventing the estimator (5.24) from drift-

ing due to noise and un-modeled dynamics, even when the system dynamics are perfectly known.

This is apparent, for instance, in Example 5.5.2 shown later, where facing the errors caused by the

numerical approximation of the prediction signal. □
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5.4 The Linear Case

In this section, we show how the general treatment of Section 5.3 is specialized and simpli-

fied if the dynamics (5.1) is linear, i.e, when we have

ẋ(t) = Ax(t) + Bu(�(t)), t ≥ 0, (5.25)

subject to initial conditions x(0) ∈ ℝn and bounded {u(t)}0t=�(0). For simplicity, we restrict our

attention to the perfect sensing case, as the generalization to sensing channels with time delay

does not change the controller or stability guarantees (cf. Theorem 5.3.4). Assuming that the

pair (A,B) is stabilizable, we can use pole placement to find a linear feedback law K that satisfies

Assumption 5.2.1(v). Moreover, p(t) can be explicitly solved from (5.6) to obtain

p(t) = eA(�(t)−[t]+)x([t]+) + ∫

t

�([t]+)
�̇(s)eA(�(t)−�(s))Bu(s)ds, (5.26)

for all t ≥ �(0) and the closed-loop system takes the form

ẋ(t) = (A + BK)x(t) + Bw(�(t)) + BKe(�(t)).

Furthermore, given an arbitraryQ = QT > 0, the continuously differentiable functionS ∶ ℝn → ℝ

is S(x) = xTPx, where P = PT > 0 is the unique solution to the Lyapunov equation (A+BK)TP+

P(A + BK) = −Q. Clearly, (5.12) holds with �1(r) = �min(P)r2 and �2(r) = �max(P)r2. To

146



show (5.13), notice that using Young’s inequality [31],

fS(x(t)) = − x(t)TQx(t) + 2x(t)TPB(w(�(t)) +Ke(�(t))),

so (5.13) holds with 
(r) = 1
2
�min(Q)r2 and �(r) =

2‖PB‖2

�min(Q)
r2. In this case, the trigger (5.17) takes

the simpler form

‖e(t)‖ ≤
�min(Q)

√

�
4‖PB‖‖K‖

‖p(t)‖. (5.27)

In addition to the simplifications, we show next that the closed-loop system is globally exponentially

stable in the linear case.

5.4.1 Exponential Stabilization under Event-triggered Control

We next show that, in the linear case, we obtain the stronger feature of global exponential

stability, though this requires a slightly different Lyapunov-Krasovskii functional.

Theorem 5.4.1. (Exponential stability of the linear case). The system (5.25) subject to the

piecewise-constant closed-loop control u(t) = Kp(tk), t ∈ [tk, tk+1), with p(t) given in (5.26) and

{tk}∞k=1 determined according to (5.27) satisfies

‖x(t)‖2 + ∫

t

�(t)
‖u(�)‖2d� ≤ Ce−�t

(

‖x(0)‖2 + ∫

0

�(0)
‖u(�)‖2d�

)

,

for some C > 0, � = (2−�)�min(Q)
4�max(P)

, and all t ≥ 0.

Proof. For t ≥ 0, let L(t) = ∫ �(t)
t eb(�−t)w(�(�))2d�. One can see that L̇(t) = −w(�(t))2 − bL(t),
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t ≥ 0. Define V (t) = x(t)TPx(t) + 4‖PB‖2

�min(Q)
L(t). Therefore, using (5.27),

V̇ (t) = −x(t)TQx(t) + 2x(t)TPBw(�(t)) − 4‖PB‖
2b

�min(Q)
L(t)

+ 2x(t)TPBKe(�(t)) − 4‖PB‖
2

�min(Q)
w(�(t))2

≤ −2 − �
4

�min(Q)‖x(t)‖2 −
4‖PB‖2b
�min(Q)

L(t) ≤ −�V (t),

where � = min
{ (2−�)�min(Q)

4�max(P)
, b
}

= (2−�)�min(Q)
4�max(P)

if b is chosen sufficiently large. Hence, by the Com-

parison Principle [30, Lemma 3.4], we have V (t) ≤ e−�tV (0), t ≥ 0. Let W (t) = ‖x(t)‖2 +

∫ t
�(t) ‖u(�)‖

2d�. From [15, Eq.(6-70),(6-88)], c1W (t) ≤ V (t) ≤ c2W (t), for some c1, c2 > 0 and all

t ≥ 0. Hence, the result follows with C = c2∕c1.

From Theorem 5.4.1, the convergence rate � depends both on the ratio �min(Q)
�max(P)

and the pa-

rameter �. The former can be increased by placing the eigenvalues of A + BK at larger negative

values, though large eigenvalues result in noise amplification. Decreasing �, however, comes at the

cost of faster control updates, a trade-off we study next.

5.4.2 Optimizing the Sampling-Convergence Trade-off

In this section, we analyze the trade-off between sampling and convergence speed in our

proposed event-triggered scheme. In general, it is clear from the Lyapunov analysis of Section 5.3

that more updates (smaller �) hasten the decay of V (t) and help the convergence. This trade-off

becomes clearer in the linear case since explicit expressions are derivable for convergence rate and

minimum inter-event times. To this end, we define two objective functions and formulate the trade-

off as a multi-objective optimization. Let � be the time that it takes for the solution of (5.20) to go
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from 0 to 1
2L
−1�∕�LK

. As shown in Section 5.3.3, the inter-event times are lower bounded by �, so it

can be used to roughly measure the cost of implementing the control scheme. Let

a =M2LfLK , c =M2Lf (1 + LK), R = 1
2L
−1�∕�LK

,

where Lf =
√

2(‖A‖ + ‖B‖), LK = ‖K‖, and L
−1�∕� =
2‖PB‖

�min(Q)
√

�
. Then, the solution of (5.20)

with initial condition r(0) = 0 is given by r(t) = ceat−cect

aect−ceat
. Solving r(�) = R for � gives � =

ln c+Ra
c+Rc

a−c
.

The objective is to maximize � and � by tuning the optimization variables � andQ. For simplicity,

let � = �2 and Q = qIn where �, q > 0. Then,

�(�) = 1
a − c

ln
c + �

‖P1B‖‖K‖
a

c + �
‖P1B‖‖K‖

c
, �(�) = 2 − �2

4�max(P1)
,

where P1 = q−1P is the solution of the Lyapunov equation (A + BK)TP1 + P1(A + BK) = −In.

Figure 5.2(a) depicts � and � as functions of � and illustrates the sampling-convergence trade-off.

To balance these two objectives, we define the aggregate objective function as a convex

combination of � and �, i.e.,

J (�) = ��(�) + (1 − �)�(�),

where � ∈ [0, 1] determines the (subjective) relative importance of convergence rate and sampling.

Notice that due to the difference between the (physical) units of � and �, one might multiply either

one by a unifying constant, but we are not doing this as it leads to an equivalent optimization

problem with a different �. It is straightforward to verify that J is strongly convex and its unique

maximizer is given by the positive real solution of c3�3 + c2�2 + c1� + c0 = 0 where c3 = a(1 − �),
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Figure 5.2: Sampling-convergence trade-off for event-triggered control of linear systems. (Left),
values of the lower bound of the inter-event times (�) and exponential rate of convergence (�)
for different values of the optimization parameter � for a third-order unstable linear system with
M2 = 1. (Right), the unique maximizer �∗ of the aggregate objective function J (�) for different
values of the weighting factor �. As � goes from 0 to 1, more weight is given to the maximization
of �, which increases �∗.

c2 = (a + c)‖P1B‖‖K‖(1 − �), c1 = c‖P1B‖2‖K‖2(1 − �), and c0 = −2�max(P1)‖P1B‖‖K‖�.

Figure 5.2(b) illustrates the optimizer of the aggregate objective function J (�) for different values

of the weighting factor �.

5.5 Simulations

Here we illustrate the performance of our event-triggered predictor-based design. Exam-

ple 5.5.2 is a two-dimensional nonlinear system that satisfies all the hypotheses required to en-

sure global asymptotic convergence of the closed-loop system. Example 5.5.3 is a different two-

dimensional nonlinear system which instead does not, but for which we observe convergence in

simulation. We start by discussing some numerical challenges that arise because of the particular

hybrid nature of our design, along with our approach to tackle them.

Remark 5.5.1. (Numerical implementation of event-triggered control law). The main challenge
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in the numerical simulation of the proposed event-trigger law is the computation of the prediction

signal p(t) = x(�(t)). To this end, at least three methods can be used, as follows:line(i) Open-

loop: One can solve ṗ(t) = �̇(t)f (p(t),u(t)) directly starting from p(�(0)) = x(0). The closed-loop

system takes the form of a hybrid system (see, e.g., [32] for an introduction to hybrid systems) with

flow map

ẋ(t) = f (x(t),u(�(t))), t ≥ 0, (5.28a)

ṗ(t) = �̇(t)f (p(t),u(t)), t ≥ �(0), (5.28b)

ṗtk(t) = 0, t ≥ t0, (5.28c)

u(t) = K(ptk(t)), t ≥ t0, (5.28d)

jump map ptk([tk]+) = p([tk]+), jump set D =
{

(x,p,ptk) | ‖ptk − p‖ =
�−1(�
(‖p‖))

2LK

}

, and flow set

C = ℝ3n ⧵D. This formulation is computationally efficient but, if the original system is unstable, it

is prone to numerical instabilities. The reason, suggesting the name “open-loop”, is that the (p,ptk)-

subsystem is completely decoupled from the x-subsystem. Therefore, as stated in Remark 5.3.6,

if any mismatch occurs between x(t) and p(�(t)) due to numerical errors, the x-subsystem tends

to become unstable, and this is not “seen” by the (p,ptk)-subsystem. (ii) Semi-closed-loop: One

can add a feedback path from the x-subsystem to the (p,ptk) subsystem by computing p directly

from (5.21) every time a new state value arrives (i.e., at every  −1(�l)). This requires a numeri-

cal integration of f (p(s),u(s)) over the “history” of (p,u) from �(�l̄) to t. This method is more

computationally expensive but improves the numerical robustness. However, since we are still in-

tegrating over the history of p, any mismatch in the prediction takes more time to die out, which

may not be tolerable for an unstable system. (iii) Closed-loop: To further increase robustness, one
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can solve the differential form in (5.28b) rather than the integral form in (5.21) every time a new

state value arrives (i.e., at every  −1(�l)) from �(�l̄) to t with “initial” condition p(�(�l̄)) = x(�l̄).

This method is as computationally expensive as (ii) but is considerably more robust. This is there-

fore the recommended method for the numerical implementation of the proposed predictor-based

controller and used below in Examples 5.5.2 and 5.5.3. □

Example 5.5.2. (Compliant nonlinear system). Consider the 2-dimensional system given by

f (x, u) =
⎡

⎢

⎢

⎢

⎣

x1 + x2

tanh(x1) + x2 + u

⎤

⎥

⎥

⎥

⎦

, �(t) = t −
(t − 5)2 + 2
2(t − 5)2 + 2

,

�l = lΔ� , l ≥ 0,  (t) = t −D ,

where Δ� and D are constants. This system satisfies Assumption 5.2.1 with the feedback law

K(x) = −6x1 − 5x2 − tanh(x1), S(x) = xTPx, and

Lf =

√

2
√

17 + 10
2

, LK =
√

74, (M1, m2) = 1 ±
3
√

3
16

,

M0 = 1, 
(r) =
�min(Q)
2

r2, �(r) =
2‖PB‖2
�min(Q)

r2,

where P = PT > 0 is the solution of (A+Bk)TP+P(A+Bk) = −Q forA = [1 1; 0 1], B = [0; 1],

k = [−6 − 5], and arbitrary Q = QT > 0 (we use Q = I). A sample simulation result of this

system is depicted in Figure 5.3(a). It is to be noted that for this example, (5.17) simplifies to

‖e(t)‖ ≤ �‖p(t)‖ with � = 0.022, but the closed-loop system remains stable when increasing �

about until 0.8 (Figure 5.3(b)).

While Theorem 5.3.3 guarantees the global asymptotic stability of the continuous-time sys-
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tem, discretization accuracy/error plays an important role in its digital implementation. It is with

this in mind that one should interpret Figure 5.3(c), where depending on the discretization scheme

and the stepsize employed, the numerical approximation errors in computing the prediction signal,

cf. Remark 5.5.1, make the evolution of the Lyapunov function V not monotonically decreasing

(whereas we know from Theorem 5.3.3 that it is monotonically decreasing for the continuous-time

system). We see that, at least for this example, the effect on the evolution of V is sensitive to both

the order of discretization and the stepsize (ℎ), and benefits more from decreasing the latter.

Stability is also critically dependent on the sensing sampling rate 1∕Δ� , as noted in Re-

mark 5.3.6. We can also see from Figure 5.3(c) that the decay of V clearly deteriorates for large Δ�

(insufficient sampling) due to (in this example only discretization) noise but can bemademonotonic

for sufficiently small Δ� . To visualize this effect on stability more systematically, we varied Δ� and

D and computed ‖x(25)‖ as a measure of asymptotic stability. The average result is depicted in

Figure 5.3(d) for 10 random initial conditions, showing that unlike our theoretical expectation, large

Δ� and/or D result in instability even in the absence of noise because of the numerical error that

degrades the estimation (5.24) over time (c.f. Remark 5.5.1). Nevertheless, taking the delays and

sampling into account while designing the controller using the predictor-based scheme (5.8) sig-

nificantly increases the robustness of the closed-loop system relative to a design that is oblivious to

delays and sampling. As shown in [33], the asymptotic stability of the latter can only be guaranteed

for this example without actuation delays and event-triggering if Δ� +D ≤ 7.1×10−3 (given that,

using the notation therein, we have c1 = 25, c2 = 29∕9, c3 = 772), which is more than two orders

of magnitude more conservative than the empirical bound shown in Figure 5.3(d).

Finally, we have investigated the robustness of the closed-loop system to external distur-

bances (which are not theoretically included in our analysis but inevitably exist in practice). In
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an event-triggered system, disturbances may lead to instability and/or Zeno behavior, cf. [27].

However, as shown in Figure 5.3(e-f), neither instability nor Zeno behavior occurs when adding

(any strength of) the disturbance here, highlighting the practical relevance of the proposed event-

triggered scheme. □

Example 5.5.3. (Non-compliant nonlinear system). Here, we consider an example that violates

several of our assumptions. Let

f (x, u) = (A + ΔA)x + Bu + Ex31, E = [0 1]T ,

t − �(t) = D + a sin(t), �l = lΔ� ,  (t) = t −
1 − e−t
2

,

where A and B are as in Example 5.5.2. The nominal delay D and nominal coefficient matrix A

are known but their perturbations a sin(t) and ΔA are not (the controller assumes �(t) = t − D

and f (x, u) = Ax + Bu + Ex31). We generate the elements of ΔA independently from  (0, �2A).

Furthermore, in our simulation, the actual time that it takes for a sensor message x(�l) to reach the

controller is not the nominal delay  −1(�l) − �l but a random variable D 
l , where

E[D 
l ] =  

−1(�l) − �l, Var(D 
l ) = � > 0.

This serves to illustrate how the delay function  (and similarly �), though being continuous and

deterministic in our treatment, can be used to compensate for (in addition to physical sensor lag)

computation and communication delays that are discrete and stochastic in nature4.

Moreover, K(x) = −6x1 − 5x2 − x31 makes the closed-loop system ISS but is not globally

4Since the triggering times �l are themselves random and vary from execution to execution, the function  is
defined for all t even though only the discrete sequence { −1(�l)} is relevant for each execution.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Simulation results of the compliant system in Example 5.5.2. Unless otherwise stated,
we use x(0) = (1, 1), � = 0.5, b = 10, Δ� = 2, D = 1, and Euler discretization with ℎ = 10−3. (a)
Sample trajectories. The dotted portion of p(t) corresponds to the times [�(0),  −1(0)) and is plotted
only for illustration purposes (not used by the controller). (b) The event-frequency and average of
‖x(50)‖ over 100 random initial conditions as a function of �̄. (c) The effect of discretization
and state sampling on stability. While stepsize ℎ and sampling rate 1∕Δ� have a strong impact
on stability (blue and red curves, respectively), the effect of discretization order is less significant
(green curve, 4th order Runge-Kutta). (d) Heat map of the average of ‖x(25)‖ over 10 random
initial conditions drawn from standard normal distribution. The red line shows an approximate
border of stability. (e-f) Numerical verification of the robustness of the proposed event-triggered
controller to additive disturbances for the system of Example 5.5.2. Here, we augment (5.1) such
that ẋ = f (x, up) + d where d is zero-mean, white, and Gaussian. (e) The estimate of the ultimate
bound of state (maxi=1,2 lim supt→∞ ‖xi(t)‖) for varying standard deviation of d1 and d2 (which are
equal and denoted by std(d)) . The value of the ultimate bound depends on sampling delay and
frequency, but the state always remained bounded for bounded disturbances and the best linear fit
always has a slope ≃ 1, a behavior akin to globally input-to-state stable linear systems. (f) The
inter-event times {tk+1 − tk}k≥0 for std(d) = 1. We highlight that unlike [34], the minimum inter-
event time is lower bounded by � given in Theorem 5.3.3 irrespective of the existence or strength
of disturbance (as long as Δ� > �). This is due to the fact that sensing only occurs at discrete time
instances {�l}, making the controller oblivious to disturbance over each Δ� period. This may in
principle lead to instability (‖x‖ →∞) but we see from (e) that, at least here, this is not the case.
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Figure 5.4: Simulation of the non-compliant system in Example 5.5.3. We have used x(0) = (1, 1),
� = 0.5, b = 10, a = 0.01, D = 0.2, Δ� = 1, � = 0.1, � = �A = 0.02, triggering condition
‖e(t)‖ ≤ 0.5‖p(t)‖, and Euler discretization of the continuous-time dynamics with ℎ = 10−2.

Lipschitz, and the zero-input system exhibits finite escape time. The simulation results of this

example are illustrated in Figure 5.4. It can be seen that although V is significantly non-monotonic,

the event-triggered controller is able to stabilize the system. While a thorough investigation of the

stability of the resulting stochastic dynamical system reaches far beyond our theoretical guarantees,

this example suggests that the proposed controller is robust to small violations of its assumptions

and is thus applicable to a wider class of systems than those satisfying Assumption 5.2.1. □
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Chapter 6

Time-Varying Control Scheduling in

Complex Dynamical Networks

The ability to control network dynamics in various application domains is not only a theo-

retically challenging problem but also a barrier to fundamental breakthroughs across science and

engineering. In this chapter, we focus our attention to the limitation of actuation resources in the

control of networked dynamical systems (the dual analysis would apply to limitations of sensing

resources). While multiple studies have addressed various aspects of this problem, several fun-

damental questions remain unanswered, including to what extent the capability of controlling a

different set of nodes over time can improve network controllability. Most of the existing studies

and practical control methods limit their focus to time-invariant control schedules (TICS). This is

both due to their simplicity and the fact that the benefits of time-varying control schedules (TVCS)

have remained largely uncharacterized.

We consider networks with linear and discrete-time dynamics and analyze the role of net-

work structure in TVCS. First, we show that TVCS can significantly enhance network controllability
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over TICS both in small and large networks. Through the analysis of a scale-dependent notion of

nodal centrality, we then show that optimal TVCS involves the actuation of the most central nodes

at appropriate spatial scales at all times. Consequently, it is the scale-heterogeneity of the central

nodes in a network that determine whether, and to what extent, TVCS outperforms conventional

policies based on TICS. Here, scale-heterogeneity of a network refers to how diverse the central

nodes of the network are at different spatial (local vs. global) scales. Several analytical results and

case studies support and illustrate this relationship.

6.1 Prior Work

Controllability of a dynamical network (i.e., a network that supports the temporal evolution

of a well-defined set of nodal states) is classically defined as the possibility of steering its state

arbitrarily around the state space through the application of external inputs to (i.e., actuation of)

certain control nodes [1]. This raises a fundamental question: how does the choice of control nodes

affect network controllability? Hereafter, we refer to this as the control scheduling problem [2–4].

Notice that in this classical setting, attention is only paid to the possibility of arbitrarily steering the

network state, but not to the difficulty and energy cost of doing so. This has motivated the intro-

duction of several controllability metrics to quantify the required effort in the control scheduling

problem [5–9]. While a comprehensive solution has remained elusive, these works have collec-

tively revealed the role of several factors in the control scheduling problem such as the network

size and structure [6], nodal dynamics [3] and centralities [2, 7], the number of control nodes [6],

and the choice of controllability metric [8]. This problem has also close connections with the op-

timal sensor scheduling problem, see, e.g. [10–13] and the references therein.
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The majority of the above literature, however, implicitly relies on the assumption of time-

invariant control schedules (TICS), namely, that the control node(s) is fixed over time. Depending

on the specific network structure, this assumption may come at the expense of a significant limi-

tation on its controllability, especially for large-scale systems where distant nodes inevitably exist

relative to any control node. Intuitively, the possibility of time-varying control schedules (TVCS),

namely, the ability to control different nodes at different times, allows for targeted interventions at

different network locations and can ultimately decrease the control effort to accomplish a desired

task. On the other hand, from a practical standpoint, the implementation of TVCS requires the

ability to geographically relocate actuators or the presence of actuation mechanisms at different,

ideally all, network nodes, and more sophisticated control policies. This leads to a critical trade-off

between the benefits of TVCS and its implementation costs which has not received enough, if any,

attention in the literature.

The significant potential of time-varying schedules for control (and also sensing, which

has a dual interpretation to control) has led to the design of (sub)optimal sensor [14, 15] and con-

trol [16,17] scheduling algorithms in recent years. While constituting a notable leap forward and the

benchmark for the methods developed in this chapter, these works are oblivious to the fundamental

question of whether, and to what extent, TVCS provides an improvement in network controllability

compared to TICS. Our previous work [18] has studied the former question (i.e., whether TVCS

provides any improvement over TICS) in the case of undirected networks, but did not consider

directed networks or, more importantly, addressed the latter question of how large the relative im-

provement in network controllability is. Given the trade-off between benefits and costs of TVCS,

a clear answer to this question is vital for the practical application of TVCS in real-world complex

networks.
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In this chapter, we address these two questions in the context of discrete-time linear dynam-

ics evolving over directed networks. Since the implementation costs of TVCS are greatly domain-

specific and do not follow any common pattern of dependence on the control schedule, we here

provide an in-depth analysis of the benefits of TVCS. This provides the necessary information for

comparison with the costs of implementing TVCS in any specific application in order to decide

between TICS and TVCS.

6.2 Problem Statement

We consider a network of n nodes that communicate over a graph  = ( ,  ,A) that is in

general weighted and directed (see Appendix 6.A for methods of obtainingA from network connec-

tivity structure). Each node i has a state value xi ∈ ℝ that evolves over time through the interaction

of node i with its neighbors in  and an external control u. Assuming that these interactions are

linear and time-invariant, we have

x(k + 1) = Ax(k) + b(k)u(k), k ∈ {0,… , K − 1}, (6.1)

where x = (x1,… , xn) ∈ ℝn is the network state, u(k) ∈ ℝ is the control input, b(k) ∈ ℝn is the

time-varying input vector, and K is the time horizon. For simplicity of exposition, we consider

only one control input at a time, but the discussion is generalizable to multi-input networks (cf.

Appendix 6.E). Define

�k ∈ , (6.2)

163



to be the index of the node to which the control signal u(k) is applied at time k. Then, b(k) is equal

to the �k’th column of the identity matrix. For the sake of simplicity, we here assume that all the

network nodes are actuatable, so �k ∈  . If a subset of nodes are latent, (i.e., not actuatable),

further challenges arise and thus we postpone the analysis of this case to Section 6.3.4.

The dynamical network (6.1) is controllable if its state can be steered from arbitrary x(0) =

x0 to arbitrary x(K) = xf using the control input {u(k)}K−1k=0 or, equivalently, if the controllability

Gramian

K =
K−1
∑

k=0
Akb(K−1−k)b(K−1−k)T (AT )k, (6.3)

is nonsingular [19]. In general, the eigenvalues ofK determine how large the unit-energy reach-

ability set (the set of states xf that can be reached from the origin x0 = 0 using controls with

unit energy) is (cf. Appendix 6.B for derivation). Therefore, various measures of controllability

based on the eigenvalues of K have been proposed, most notably tr(K), tr(
−1
K )

−1, det(K),

�min(K). Each metric has its own benefits and limitations, on which we elaborate more in the

following.

Assume, for now, that f (K) ≥ 0 is any of the aforementioned controllability measures.

In optimal control scheduling, we seek to choose the control nodes {�k}K−1k=0 (or, equivalently,

{b(k)}K−1k=0 ) optimally. The conventional approach in the literature [2–9] is to assume a constant
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control node, thus called the time-invariant control scheduling (TICS) problem:

TICS: max
�0,…,�K−1∈

f (K) (6.4a)

s.t. �0 =⋯ = �K−1 (6.4b)

The main advantage of TICS is its simplicity, from theoretical, computational, and implementation

perspectives. However, this simplicity comes at a possibly significant cost in terms of network

controllability, compared to the case where the control nodes {�k}K−1k=0 are independently chosen,

namely,

TVCS: max
�0,…,�K−1∈

f (K). (6.5)

This approach, namely, time-varying control scheduling (TVCS), is at least as good as TICS, but

has the potential to improve network controllability significantly. Figure 6.1(a-b) illustrates a small

network of n = 5 nodes together with the optimal values of equations (6.4) and (6.5) and the relative

advantage of TVCS over TICS, defined as

� =
fTV
max − f

TI
max

fTI
max

. (6.6)

Three observations are worth highlighting. First, the value of � is extremely dependent on the

choice of controllability measure f , and different choices lead to orders of magnitude change in � .

Second, the relative advantage of TVCS over TICS is significant for all choices of the controllability

measure, with the minimum improvement of � = 35% for the choice of f (⋅) = tr(⋅). The fact that
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f (⋅) = tr(⋅) results in the smallest value of � relative to other measures is consistently observed

in synthetic and real-world networks, and stems from the fact that tr(K) has the smallest sen-

sitivity (greatest robustness) to the choice of control schedule. Finally, even with optimal TVCS,

�min(K) is orders of magnitude less than 1, indicating the inevitable existence of very hard-to-

reach directions in the state space. This shows that efficient controllability cannot be maintained in

all directions in the state space even using TVCS and even in very small networks with control over

1∕5 = 20% of the nodes. Except for tr(K), all the measures rely heavily on this least-controllable

direction, while tr(K) trades this off for improved controllability in the most efficient directions

in the state space. See Appendix 6.B for further discussion of this tradeoff.

Despite the significant increase in size and complexity, the same core principles outlined

above apply to controllability of real-world networks. The large size of these networks, how-

ever, imposes new constraints on the choice of the controllability measure f that make the use of

f (⋅) = �min(⋅), tr((⋅)−1)−1, and det(⋅) numerically infeasible and theoretically over-conservative, as

discussed in detail in Appendix 6.B. As a result, we resort to the particular choice of controllability

measure

f (K) = tr(K), (6.7)

for networks beyond n ≃ 15. Since this measure has the smallest sensitivity to the choice of {�k}K−1k=0

(Figure 6.1(b)), we expect any network that benefits from TVCS using the choice of equation (6.7)

to also benefit from it using other Gramian-based measures (while the converse is not necessarily

true, i.e., there are networks that significantly benefit from TVCS using other measures but show

no benefit in terms of tr(K)). Figure 6.1(c) illustrates an air transportation network among the
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busiest airports in the United States, comprising of n = 500 nodes. Using (6.7), we see � ≃ 20%

improvement in controllability, verifying our expectation about the benefits of TVCS.

In spite of this potential benefit, TVCS has usually higher computational and implementa-

tion costs. These include the higher computational cost of computing the optimal TVCS, and that

of installing an actuator at several (ideally all) nodes of the network. Further, not all networks ben-

efit from TVCS alike. A simple directed chain network with the same size as that of Figure 6.1(a)

gains absolutely no benefit from TVCS, independently of the choice of f (Figure 6.1(d-e)). Sim-

ilarly, � = 0 is also observed in larger, complex networks, indicating that the optimal TVCS and

the optimal TICS are the same (Figure 6.1(f)).

These observations collectively raise a fundamental question that constitutes the main prob-

lem studied in this chapter. Before formally stating the problem, we need a definition for ease of

reference.

Definition 6.2.1. (Class  and  networks). Consider a dynamical network described by (6.1) and

the measure � introduced in (6.6). We say that the network belongs to class  if it has � > 0 and

we say it belongs to class  otherwise (� = 0). □

In words, class  networks are those that benefit from TVCS and class  networks are those

that do not. Our main problem of interest is then as follows.

Problem 4. Given the set of all dynamical networks described by dynamics of the form (6.1), char-

acterize the sets  and  in terms of the network structure A and develop efficient and easy-to-

interpret methods for distinguishing between them. □
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(a)

f (⋅) fTI
max fTV

max �
tr(⋅) 2.00 2.70 0.35

tr((⋅)−1)−1 1.26×10−7 8.22×10−4 6.5×103
det(⋅) 9.90×10−11 7.42×10−10 6.49
�min(⋅) 1.27×10−7 1.10×10−4 8.7×102

(b)
(c)

(d)

f (⋅) fTI
max f

TV
max �

tr(⋅) 5 5 0
tr((⋅)−1)−1 0.2 0.2 0
det(⋅) 1 1 0
�min(⋅) 1 1 0

(e)
(f)

Figure 6.1: Advantage of TVCS in dynamic networks. (a) A small example network of n = 5
nodes. The thickness of each edge (i, j) illustrates its weight aij . (b)The optimal values of TICS and
TVCS (equations (6.4) and (6.5), respectively) and the relative TVCS advantage (equation (6.6)) for
the network in (a). (c)An air transportation network among the busiest airports in the United States
(see ’air500’ in Table 6.1 for details). The network is undirected, and the dynamical adjacency ma-
trix A is computed from static connectivity using the transmission method (cf. Appendix 6.A).
This is an example of a network that significantly benefits from TVCS with � ≃ 20%. (d) A small
example network of the same size as (a) but with no benefit from TVCS. (e) The optimal values of
TICS and TVCS (equations (6.4) and (6.5), respectively) and the relative TVCS advantage (equa-
tion (6.6)) for the network in (d). We see that the network does not benefit fromTVCS independently
of the choice of controllability metric. (f) A social network of students at the University of Califor-
nia, Irvine (see ’UCI Forum’ in Table 6.1 for details). Similar to (c), the network is undirected and
the adjacency matrix is computed using the transmission method. This network, however, does not
benefit from TVCS (� = 0). In (c) and (f), the controllability measure of equation (6.7) is used due
to the large size of the network. In both cases, the color intensity and size of nodes represent their
values of Ri(1) and Ri(K − 1), respectively (K = 10). While there is a close correlation between
nodal size and color intensity in (f) (i.e., the darkest nodes are also the largest), this is not the case
in (c), which is the root cause for the difference in their �-values. The interested reader can find
comprehensive discussions of the network control problem for air transportation in [20–23], social
opinion in [24–28], and social epidemic dynamics in [29–34] and references therein.
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In the following, we restrict our attention to the choice of controllability measure in equa-

tion (6.7) due to its applicability to all network sizes and carry a thorough analysis of its properties

in order to address Problem 4.

6.3 Main Results

In this section, we present our main results regarding Problem 4. First, we introduce a new

notion of communicability that is pivotal to the solution of Problem 4. Then, we present our results

regarding the characterization of class  and  networks and, finally, study the case of networks

with latent nodes declared earlier.

6.3.1 2k-Communicability and Scale-Heterogeneity

Consider the TVCS problem in equation (6.5) with f (⋅) = tr(⋅). Using the definition of the

controllability Gramian in (6.3) and the invariance property of trace under cyclic permutations, we

can write

tr(K) =
K−1
∑

k=0
b(K−1−k)T (Ak)TAkb(K−1−k).

Therefore,

max
�0,…,�K−1

tr(K) =
K−1
∑

k=0
max
�K−1−k

b(K−1−k)T (Ak)TAkb(K−1−k),

where each term b(K−1−k)T (Ak)TAkb(K−1−k) is the �K−1−k’th diagonal entry of (Ak)TAk (cf.

equation (6.2)). Therefore, the optimization in (6.5) boils down to finding the largest diagonal
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element of (Ak)TAk and applying u(K−1−k) to this node. On the other hand, for the TICS problem

in (6.4) we have

tr(K) = bT
(

K−1
∑

k=0
(Ak)TAk

)

b,

so one has to instead find the largest diagonal entry of
∑K−1

k=0 (A
k)TAk and apply all the control

inputs u(0),… , u(K − 1) to this same node, which is clearly sub-optimal with respect to TVCS.

This discussion motivates the following definition.

Definition 6.3.1. (2k-communicability). Given the network dynamics (6.1), the 2k-

communicability of a node i ∈ is defined as

Ri(k) = ((Ak)TAk)ii, i ∈ , k ≥ 0. (6.8)

□

Figure 6.2(a-b) illustrates the evolution ofRi(k) as a function of k for all i ∈ for a sample

network of n = 20 nodes.

Perhaps the most salient property of 2k-communicability is the extent to which it relies on

the local interactions among the nodes. Recall, cf. [35], that for any k, the (i, j) entry of Ak equals

the total number of paths of length k from node i to j (if the graph is weighted, each path counts as

its weight, equal to the product of the weights of its edges). From equation (6.8), we see that Ri(k)

equals the sum of the squares of the total (weighted) number of paths of length k ending in node i.

In other words, Ri(k) only depends on connections of node i with its k-hop out-neighbors, and is

independent of the rest of the network. Therefore, Ri(k) is a local notion of centrality for small k
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and it incorporates more global information as k grows. In particular, as shown in Appendix 6.C,

Ri(k) is closely related to

∙ the out-degree centrality of node i for k = 1;

∙ the left eigenvector centrality of node i for k →∞.

This scaling property of 2k-communicability is illustrated in Figure 6.2(a-d) for an example network

of n = 100 nodes. Accordingly, we take the left eigenvector centrality squared as the definition of

Ri(∞) in the sequel.

The scaling property of 2k-communicability also plays an important role in Problem 4. For

ease of reference, let

r(k) ∈

denote the index of the node that has the largest Ri(k). Then, according to the discussion above,

�∗k = r(K − 1 − k), (6.9)

which forms the core connection between 2k-communicability and TVCS. From this, we see that

the optimal TVCS involves the application of u(0) to the node r(K − 1) with the highest global

centrality and gradually moving the control node until we apply u(K − 2) to the node r(1) with the

highest local centrality (the control node at time K − 1 is arbitrary as Ri(0) = 1 for all i). The

intuition behind this procedure is simple. At k = 0, the control input has enough time to propagate

through the network, which is why the highest globally-central node should be controlled. As we

reach the control horizon K , the control input has only a few time steps to disseminate through
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(a)

(b)

(c) (d)

(e) (f)

Figure 6.2: 2k-communicability of dynamical networks. (a) An example network of n = 20 nodes
for illustration of the dependence on k of nodal 2k-communicabilities. The thickness of the edges
is proportional to their weights. (b) The evolution of the functions {Ri(k)}ni=1. Although these
functions are originally only defined over integer values of k, we have extended their domain to
real numbers for better illustration of their crossings and oscillatory behavior. Oscillatory behavior
only arises when A has complex-valued eigenvalues (otherwise, Ri(k) is strictly convex). (c) An
example network of n = 100 nodes for illustration of the scaling property of 2k-communicability.
The node whose 2k-communicabilities are to be computed (i.e., “node i”) is depicted in red. (d-f)
The 2-, 4-, and 14-communicability of the node depicted in red, as determined by its 1-, 2-, and
7-hop incoming paths. We see that Ri(1) only depends on the immediate (out-)neighbors of i, but
as k grows, Ri(k) encodes more global information.

the network, hence the optimality of locally-central nodes. This further motivates our definition of

scale-heterogeneity, as follows.

Definition 6.3.2. (Scale-heterogeneity of dynamical networks). Consider the network dynam-

ics (6.1) subject to the TVCS problem (6.5) with 2k-communicability as defined in Definition 6.3.1.

The network is called scale-homogeneous if r(1) = r(2) =⋯ = r(∞) and scale-heterogeneous oth-

erwise. Accordingly, themore varied {r(k)}∞k=1 and {Rr(k)(k)}∞k=1 are, themore scale-heterogeneous
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the network is. □

Based on this definition, we see that the scale-heterogeneity is the main factor in the benefit

of TVCS over TICS. In fact, scale-homogeneous and scale-heterogenous networks are the same

as class  and  networks, respectively, due to (6.9). Further, note that the degree of scale-

heterogeneity provides a geometric and qualitative characterization of the amount of benefit TVCS

has over TICS and distinguishes between networks in  that only marginally benefit from TVCS

and those the benefit significantly (while 2k-communicability is a more quantitative notion used

for computational assignment of networks to class  or ).

It follows immediately from Definition 6.3.2 that determining the scale-heterogeneity of

a network requires computation of all {r(k)}∞k=1 which is infeasible. Next, we seek simple and

computationally efficient conditions to be used as a proxy for scale-heterogeneity.

6.3.2 Identifying Class  Networks

In this section we discuss a sufficient condition for scale-heterogeneity that, when satisfied,

ensures that a network belongs to class  . This condition, given next, relies on the fact that r(1)

and r(∞) are particularly important elements of {r(k)}∞k=1 in determining scale-heterogeneity. The

proof of this theorem is given in Appendix 6.G.

Theorem 6.3.3. (Class  networks). Consider the TVCS problem (6.5) for the network dynam-

ics (6.1). Assume that the adjacency matrix A is irreducible, aperiodic, and diagonalizable. If

argmax
i∈

Ri(1) ∩ argmax
i∈

Ri(∞) = ∅,
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then the network belongs to class  for sufficiently large K . □

The condition of A being irreducible is equivalent to the network being strongly connected,

and thus not restrictive. Likewise, A being aperiodic is not restrictive as it requires that there exists

no integer number greater than 1 that divides the length of every cycle in the network (satisfied,

in particular, if any self-loops exist). Finally, A is almost always diagonalizable in the Lebesgue

sense, i.e., the set of non-diagonalizable A has Lebesgue measure zero.

Consider again the networks of Figure 6.1(c and f). Here, the color intensity of each node

indicates its value Ri(1) while its size corresponds to its value Ri(K − 1). Clearly, the first few

largest and darkest nodes are distinct in Figure 6.1(c), while there is a close correlation between

nodal size and darkness in Figure 6.1(f), illustrating the root cause of their difference in benefiting

from TVCS.

If a network has r(0) = r(K − 1), it is still possible that the network belongs to class  . In

fact, about half of the networks with r(0) = r(K − 1) still belong to  (Figure 6.3(a)). However,

these networks have a value of � of no more than 3% on average, and in turn this value quickly

decreases with the dominance of the node r(0) over the rest of the network nodes (Figure 6.3(b)).

This is a strong indication that, for most practical purposes, the test based on 2k-communicability is

a valid indicator of whether a network benefits from TVCS. Furthermore, in the case of undirected

networks, it is possible to analytically prove that a network belongs to class  (� = 0) if certain

conditions based on the eigen-decomposition of the adjacency matrix A are satisfied, as shown

next.
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(a) (b)

Benefit from TVCS

Thm.
6.3.4

r(0) ≠ r(K−1)
(Thm. 6.3.3)

 
Dynamical Networks

(c)

Figure 6.3: The role of 2k-communicability in distinguishing between networks of class  (� >
0) and  (� = 0). (a) The proportion of random networks in  and . A total of 105 random
connectivity matrices were generated with logarithmically-uniform n in [101, 103], uniform sparsity
p in [0, 1], and uniform pairwise connectivity weight in [0, 1], and then transformed to adjacency
matricesA using the transmissionmethod (cf. Appendix 6.A). A time-horizon ofK = 10 is used for
all networks. While more than 80% of all networks belong to class  , this number drops to less than
50% among networks with r(1) = r(K−1) (i.e., networks where the same node has the greatest local
and global centralities). (b) The �-value of the same networks as in (a) that have r(1) = r(K−1) as
a function of the dominance of the node r(0). For the node r(0), its dominance (over the rest of the
network) is a measure of how distinctlyRr(0)(1) andRr(0)(K−1) are larger thanRi(1) andRi(K−1),
respectively, for i ≠ r(0) (cf. Appendix 6.D). Each gray square represents one randomly generated
network, so the darkness of each area represents the probability of observing random networks with
that value of (dominance, �). A rapid decay of � with dominance is clear, such that networks with
positive dominance have very low probability of having � > 0. (c) A Venn diagram illustrating the
decomposition of dynamical networks based on the extent to which they benefit from TVCS. The
color gradient is a depiction of this extent, as measured by � (equation (6.6)), where darker areas
correspond to higher � . As shown in (a) and (b), the class of networks for which r(0) ≠ r(K − 1)
is only a subset of  but provides a good approximation for it.

6.3.3 Identifying Class  Networks

Complementary to Section 6.3.2, here we discuss some necessary conditions for scale-

heterogeneity based on the eigen-structure of the network that characterize subsets of . Let

A = V�VT be the eigen-decomposition of A, where V = [vij]n×n and � = diag(�1,… , �n) is

the diagonal matrix of eigenvalues with |�1| ≥ |�2| ≥ ⋯ ≥ |�n|. Further, let W = [wij]n×n be

the doubly stochastic matrix such that wij = v2ij for all i, j ∈ {1,… , n}. The next result, proven in

Appendix 6.G, characterizes three undirected sub-classes of .
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Theorem 6.3.4. (Class  networks). Consider the TVCS problem (6.5) for the network dynam-

ics (6.1). Assume that the network is undirected (i.e., A = AT ) and that, without loss of generality,

the node with the largest eigenvector centrality is labeled as node 1. If any of the following condi-

tions holds:

(i) 1−w11
w11

≤ |�1|−|�2|
|�1|−|�n|

,

(ii) w11 +w12 = 1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and 1 ∈

argmaxiRi(1),

then,

1 ∈ argmax
1≤i≤n

Ri(k), ∀k ∈ {0,… , K − 1}, (6.10)

i.e., selecting the node with the largest eigenvector centrality at every time step is the solution

to (6.5). □

The conditions in Theorem 6.3.4 are based on the eigen-decomposition of the network ad-

jacency matrix A and thus abstract. However, these conditions can be interpreted as follows:

(i) Condition (i) holds for networks where there is a sufficiently distinct central node, in the sense

of eigenvector centrality, and the network dynamics is dominated by the largest eigenvalue.

An extreme case of such networks is a totally disconnected network where W = I and the

highest authority is the node with the largest self-loop.
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(ii) Condition (ii) holds for networks where the eigenvector centrality of all nodes is determined

by the weight of the link to the most eigenvector-central node. To see this, note that we have

w1j = 0 for j ≥ 3, implying v1j = 0, j ≥ 3. Since the rows of V are orthogonal, we deduce

vi2 = �vi1 for all i ≥ 2, where � = −v11∕v12 is constant. Using A = V�VT , we have

a1i = �1v11vi1 + �2v12vi2 = (v11�1 + �v12�2)vi1,

so vi1 ∝ a1i for all i ≥ 2. Examples of such networks are star networks with no (or small-

weight) self-loops (cf. Proposition 6.F.3).

(iii) Regarding condition (iii), the most well-known families of networks with three distinct eigen-

values are the complete bipartite networks and connected strongly regular networks. More-

over, cones on (n, k, �, �)-strongly regular graphs satisfying �min(A)(�min(A) − k) = n are

also known to have three distinct eigenvalues [36]. The other condition 1 ∈ argmaxiRi(1)

holds when the node with the largest eigenvector centrality (i.e., r(∞)) has also the largest 2-

communicability. The simplest example of a network with these properties is the star network

(with no or equal self-loops).

The general abstraction from these cases is that a network belongs to class  if it contains

a sufficiently distinct central node, which reinforces our main conclusion that  is the class of

networks with multiple scale-heterogeneous central nodes. The inclusion relationships between

the various classes of networks introduced in this section are summarized in Figure 6.3(c).

While Theorem 6.3.4 is only applicable to undirected networks, it has a straightforward ex-

tension to normal networks (i.e., directed networks with normalA). Using the same proof technique
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as in Theorem 6.3.4, it can be shown that the exact same results hold if one replaces the eigenvalues

and eigenvectors with singular values and singular vectors of A. Interestingly in this case, Ri(∞)

coincides with HITS hub/authority centrality of node i squared [37].

6.3.4 Networks with Latent Nodes

As mentioned in Section 6.2, in many real-world applications of TVCS not all the nodes are

available/accessible for control. In this case, we call a node manifest if it can be actuated and latent

if it cannot. The natural solution would then be to choose the control nodes optimally among the

manifest nodes. If the adjacency matrixA of the network is fixed and given, this is the best solution.

However, there are cases whereA itself can be changed, at least among the manifest nodes. We call

such a change of structure an (edge) manipulation. Edge manipulations are primarily possible in

man-made (power, transportation, etc.) networks, since the edges are originally engineered, but are

also becoming increasingly feasible in biological networks due to advances in bioengineering, see,

e.g., [38,39] for brain and [40,41] for gene networks. When manipulation is possible in a network

with latent nodes, another solution to TVCS is to manipulate the network among the manifest nodes

such that the optimal control nodes (when computedwithout any restrictions on control scheduling)

lie among the manifest nodes for all time. The following result provides a guarantee that this is

always possible, provided that the manipulation is sufficiently strong and not acyclic.

Theorem 6.3.5. (Network manipulation and TVCS in networks with latent nodes). Consider the

optimal node selection problem (6.5) over a time horizon K . Given a network of n nodes with

adjacency matrix A0 ∈ ℝn×n, let E ∈ ℝn×n be a nonnegative matrix of the form
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E =
[ ⋆ 0

0 0

]

}

n1
}

n−n1

{

n1 {

n−n1

,

corresponding to the manifest subnetwork involving the first n1 < n nodes (this is without loss of

generality, since nodes can be renumbered) and consider the dynamic network described by (6.1)

with adjacency matrix A = A0+�E, where � > 0. Then, if E is not acyclic, there exists � > 0 such

that for � > �,

r(k) ∈ {1,… , n1}, (6.11)

for all k ∈ {0,… , K − 1}. Furthermore, if A0 and E are symmetric (the corresponding networks

are undirected), �̄ can be found in closed form and (6.11) holds for all k ≥ 1. □

Both requirements of Theorem 6.3.5 (that �E is sufficiently strong and acyclic) have clear

interpretations. First, depending on how large the size of themanifest subnetwork is and how central

its nodes already are (pre-manipulation), larger manipulation may be necessary to turn them into

central nodes at various scales (i.e., r(k) for k = {0,… , K − 1}). Second, for the manifest nodes

to become central at arbitrarily global scales (i.e., r(k) for k ∼ K → ∞), the manipulation must

contain paths of arbitrarily long lengths, which are absent in acyclic networks.

According to Theorem 6.3.5, manipulation of the manifest subnetwork is effective even

when themanifest nodes are among the least central nodes of the network (before themanipulation).

In this case, as we increase � from 0, the manifest nodes usually first turn into the most locally-
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central nodes (� ≱ �̄ yet), and then also into globally-central nodes (� > �̄). The following

example illustrates this phenomenon in a simple star network where the center node is latent and

the peripheral nodes are manifest.

Example 6.3.6. (Undirected star networks with varying self-loop weights). Consider an undi-

rected uniform star network given by

A0 =
⎡

⎢

⎢

⎢

⎣

lpIn−1 acp1n−1

acp1Tn−1 lc

⎤

⎥

⎥

⎥

⎦

,

where 1n−1 denotes the (n − 1)-dimensional vector of all ones and the positive constants lc, lp, and

acp are the central self-loop weight, peripheral self-loop weight, and the link weight between the

center node and any peripheral node, respectively. The 2k-communicabilities of this network are

computed analytically in Proposition 6.F.3 (nodes are re-labeled here for conformity with Theo-

rem 6.3.5). It follows from (6.25) that for any i ∈ {1,… , n − 1},

Rn(1) − Ri(1) = l2c − l
2
p + (n − 2)a

2
cp. (6.12)

Therefore, if lp ≤ lc, then Rn(k) > Ri(k) for all k ≥ 1, i.e., the center node is the optimal control

node at all times. However, when lc < lp, the network can exhibit different behaviors. From (6.25),

we can also see that

lim
k→∞

Rn(k) > lim
k→∞

Ri(k)⇔ �1 − lp > acp. (6.13)

Define lp =
√

l2c + (n − 2)a2cp and lp = lc + (n − 2)acp. Using (6.12)-(6.13) and after some compu-
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tations, one can see that
r(k) = n for all k, if lp ≤ lp,

r(1) = {1,… , n − 1} but r(k) = n for large enough k, if lp < lp < lp,

r(k) = {1,… , n − 1} for all k, if lp ≥ lp.
In other words, when the manipulation is weak, the (latent) center node is the optimal control

node at all times. As the manipulation gains strength, scale-heterogeneity emerges, making the

(manifest) peripheral nodes the optimal control node at local scales while the center node remains

still the optimal control node at global scales. Finally, when the manipulation is strong enough,

scale-heterogeneity vanishes, leaving the (manifest) peripheral nodes as the optimal control nodes

at all scales. Notice that with the terminology of Theorem 6.3.5,

E =
⎡

⎢

⎢

⎢

⎣

In−1 0

0 0

⎤

⎥

⎥

⎥

⎦

, n1 = n − 1, � = lp, and � = lp. ∙

A fair concern, however, exists regarding the minimum size of the manipulation needed to

make the TVCS all-manifest. If this is excessively high, the prescribed approach may be infeasible

in practice. Nevertheless, among networks of various size and structure, random manipulations

with norm of about 10% of the norm of A are on average sufficient (Figure 6.4). Here, we see

that the largest manipulations are needed for manifest subnetworks of about 10% the total size of

the network. This is because when the size of the manifest subnetwork is extremely small, manip-

ulations are focused on this small subset of nodes and thus more efficient, while with extremely

large manifest subnetworks, the majority of the nodes are accessible for control and there is little

restriction on the TVCS.

Finally, Figure 6.4 also shows the comparison, in terms of controllability, of the

manipulation-based approach against the alternative approach of selecting an optimal TVCS with
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the additional constraint that control nodes must be manifest (without any manipulation of the

dynamics), which results in a sub-optimal all-manifest TVCS. For the comparison to be fair, we

normalize each network by its spectral radius (largest magnitude of its eigenvalues), and then com-

pare the optimal value of their TVCS (equation (6.5)). We see that the amount of relative advantage

produced by manifest subnetwork manipulation is comparable to the relative size of the manipula-

tion, except for medium-sized manifest subnetworks (5 ∼ 20% of nodes), where the manipulation

advantage is about two times its size.

Figure 6.4: Manipulation of manifest subnetworks in order to obtain an all-manifest optimal TVCS.
The horizontal axis represents the percentage of manifest nodes in the network. In red, we show
the minimum size of manipulation needed for the optimal TVCS to only include manifest nodes,
relative to the size of the initial adjacency matrix (both measured by induced matrix 2-norm). In
blue, we depict the optimal (i.e., maximal) value of tr(K) for the case where the minimal manifest
manipulation is applied, relative to the maximal value of tr(K) subject to the constraint that all
the control nodes are manifest (the former is with manipulation and without constraints on the
control nodes, while the latter has no manipulation but control node constraints). Results are for 103
random networks of logarithmically-uniform sizes in [101, 103] but otherwise similar to Figure 6.3.
Markers (circles/squares) represent average values and error bars represent standard error of the
mean (s.e.m). In both cases, the overall adjacency matrix is normalized by its spectral radius for
fairness of comparison. We see that medium-sized manifest subnetworks (5 ∼ 20%) are the hardest
yet most fruitful to manipulate.
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Figure 6.5: Simple networks with closed-form 2k-communicabilities. (a)A line network, (b) a ring
network, and (c) a star network. All networks are undirected and have homogeneous edge weights
a. The 2k-communicabilities of these networks are analytically computed (cf. Appendix 6.F),
concluding that all networks belong to class , with the optimal control node depicted in red in
each case (the optimal control node is arbitrary in a ring network due to its symmetry).

6.4 Case Study: TVCS in Synthetic and Real Networks

Here, we discuss the benefits of TVCS and its relation to network structure for several exam-

ples of synthetic and real networks. We start with the classical deterministic examples of undirected

line, ring, and star networks (Figure 6.5). Due to their simple structure, the 2k-communicabilities

of these networks can be analytically computed in closed form (cf. Appendix 6.F). Using these

results, it follows that for the line and star networks, the optimal control node is always the center

node (or any of the two center nodes if a line has even number of nodes), while the optimal control

node is arbitrary in a ring network. Notice that in all cases, it is the homogeneity of these networks

that results in a single node having the greatest centrality at all scales (cf. Example 6.3.6 for non-

homogeneous star networks that have scale-heterogeneous central nodes and thus belong to class

).

Next, we analyze the role of TVCS in three classes of probabilistic complex networks that

are widely used to capture the behavior of various dynamical networks. These include the Erdös-

Rényi (ER) random networks, Barabási-Albert (BA) scale-free networks, and Watts-Strogatz (WS)

small-world networks. Each network has its own characteristic properties, and these properties
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lead to different behaviors under TVCS. The average �-values of these networks are computed

for various values of n and network parameters (Figure 6.6). For ER networks, � is in general

small, and decays with n. This is because ER networks, especially when n is large, are extremely

homogeneous. This homogeneity is further increased during the transmission method, leading to a

network matrix A that is extremely insensitive to the choice of control nodes.

The connectivity structure of BA networks, in contrast, is extremely inhomogeneous, with

one (sometimes 2) highly central nodes and a hierarchy down to peripheral leafs. As one would

expect, this implies a small �-value since the center node has the highest centrality at all scales

(Figure 6.8). However, when the connectivity matrix is transformed to A using the transmission

method, the incoming links to all nodes are made uniform (adding up to 1). This in turns make

the centrality levels of all the nodes comparable, leading to high �-values observed (notice that the

underlying connectivity structures are still highly inhomogeneous, distinguishing them from the

homogeneous ER networks). Notice that as the growth rate ma is increased, smaller networks tend

towards complete graphs and high � values shift to larger n.

As our last class of probabilistic networks, WS networks have the broadest range of size-

parameter values with significant � . As one would expect, � is low near � = 0, 1, corresponding

to regular ring lattice and ER networks, respectively. For � ∼ 0.2, there is a sufficiently high prob-

ability of having multiple nodes that are close to many rewired links (increasing their centrality),

yet there is a low probability that these nodes, and the nodes close to them, are rewired all alike,

resulting in heterogeneous central nodes and high �-values. This heterogeneity is increased with n

as larger networks have more possibilities of rewiring every edge.

Finally, we used the tools and concepts introduced so far to analyze TVCS in several real-

world dynamical networks (Table 6.1). These networks are chosen from a wide range of application
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(a) (b) (c)

Figure 6.6: The average �-value for (a) ER, (b) BA, and (c)WS probabilistic networks. The hori-
zontal axis determines the size of the network n in all cases, while the vertical axis determines the
values of the corresponding parameters for each network: edge probability p for ER, growth (link
attachment) rate ma for BA, and rewiring probability � for WS. After constructing the unweighted
connectivity according to each algorithm (ER, BA, or WS), standard uniformly random weights are
assigned to each edge, which is then converted toA using transmission method (cf. Appendix 6.A).
For each value of n and network parameter over a coarse mesh (∼ 100 points), 100 networks are
generated and the average of their �-value is computed, which is then smoothly interpolated over
a fine mesh (MATLAB csaps).

domains, from neuronal networks to transportation and social networks. According to the type of

dynamics evolving over each network, we have used either the transmission or induction method

to obtain its dynamical adjacency matrix from its static connectivity (the “C → A" column, cf.

Appendix 6.A).

We have computed the �-value for each network using a variable time horizon K ≤ 50,

with the results ranging from 0 to more than 30% for different networks. These large variations

even within each category signify both the potential benefits of TVCS and the possibility of its

redundancy, a contrast that has been pivotal to our discussion. In particular, four facts about these

results worth highlighting. (i) As measured by tr(K), the majority of networks tested do not

benefit from TVCS, but a few do so significantly. (ii) Despite coming from various domains, the

networks that do significantly benefit from TVCS share scale-heterogeneity as their common qual-

itative property (cf. Section 6.3.1). (iii) Networks with inductive C → A transformation benefit
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significantly less from TVCS than those with transmission C → A transformation. (iv) Signifi-

cantly higher values of � are expected for all networks if using �min(K) or similar measures for

controllability, cf. Appendix 6.B.

In the last column, we have also indicated whether the most local and most global central

nodes coincide in each network. Recall that this is a sufficient but not necessary condition for a

network to be in class  (Theorem 6.3.3 and Figure 6.3). Though only sufficient, this simple metric

can correctly classify class members of  from  among these networks, except for the WesternUS

power network, for which r(0) = r(K − 1) only marginally holds (the dominance of r(0) is 0) (cf.

Figure 6.3(b)).

6.5 Discussion

A striking finding that defied our expectations is the effect of network dynamics, beyond its

raw connectivity structure, on TVCS. Here, we differentiated between the raw connectivity struc-

ture of a network (obtained using specific field knowledge and measure the relative strength of

nodal connections) and its dynamical adjacency matrix which determines the evolution of network

state over time. Depending on the nature of network state, we proposed two methods, transmission

and induction, for obtaining the dynamical adjacency matrix from static connectivity. The effects

of these methods, however, is noteworthy on the benefits of TVCS, even though the underlying

network connectivity is the same (Table 6.1 and Figure 6.8). While the transmission method sig-

nificantly enhances the merit of TVCS, the induction method depresses it (both compared to raw

connectivity). We believe the reason for the former is the additional homogeneity that the transmis-

sionmethod introduces among the nodes, while the latter is due to the conversion from continuous to
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Table 6.1: Characteristics of the real-world networks studied. For each network, we have reported
the number of nodes n, number of edges || (with each bidirectional edge counted twice), whether
the network is directed, the method used for obtaining dynamical adjacency matrix A from static
connectivityC (A→ C), the � value (equation (6.6)), and whether the most local and global central
nodes coincide (r(0) = r(K−1)). Since the value of � is a function ofK , we have chosen the value
of K ≤ 50 that has the largest � for each network. Detailed descriptions of these datasets are
provided in Appendix 6.H.

Category Name n |E| Directed C→ A �(%) r(0) =
r(K − 1)

Dominance of
r(0) (×10−3)

ref.

Neuronal BCTNet fMRI 638 37250 N T 1.8 N N/A [42]
Cocomac 58 1078 Y T 5.5 N N/A [43]
BCTNet Cat 95 2126 Y T 1.9 N N/A [42]
C. elegans 306 2345 Y T 0 Y 0 [44]

Transportation air500 500 5960 N T 22.4 N N/A [45]
airUS 1858 28236 Y T 0 Y 0 [46]
airGlobal 7976 30501 Y T 0 Y 0 [46]
Chicago 1467 2596 N T 0 Y 0 [47, 48]

Gene Regulatory E. coli 4053 127544 N T 0 Y 0 [49]

PPI Yeast 2361 13828 N T 0 Y 0 [50]
Stelzl 1706 6207 Y T 0 Y 0 [51]
Figeys 2239 6452 Y T 0 Y 0 [52]
Vidal 3133 12875 N T 0 Y 0 [53]

Power WesternUS 4941 13188 N T 33.7 Y 0 [44]

Food Florida 128 2106 Y T 34.6 N N/A [54]
LRL 183 2494 Y T 27.3 N N/A [55]

Social Facebook group 4039 176468 N I 0.4 N N/A [56]
E-mail 1005 25571 Y I 0 Y 40.5 [57, 58]
Southern Women 18 278 N I 0 Y 1.6 [59]
UCI P2P 1899 20296 Y I 0 Y 5.5 [60]
UCI Forum 899 142760 N I 0 Y 2.8 [61]
Freeman’s EIES 48 830 Y I 0 Y 1.4 [62]
Dolphins 62 318 N I 0 Y 0.7 [63]

Trust Physicians 241 1098 Y I 8.8 N N/A [64]
Org. Consult Advice 46 879 Y I 0 Y 0.1 [65]
Org. Consult Value 46 858 Y I 0 Y 1.2 [65]
Org. R&D Advice 77 2228 Y I 6 × 10−3 N N/A [65]
Org. R&D Aware 77 2326 Y I 0 Y 0.3 [65]
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discrete-time dynamics, which enables long-distance connections even over small sampling times

(due to the fact that interactions occur over infinitesimal intervals in continuous time) (cf. Sec-

tion 6.A and Figure 6.7). These results suggest that controllability of network dynamics is not only

a function of its structural connectivity, but also greatly relies on the type of dynamics evolving

over the network, an aspect that has received little attention in the existing literature and warrants

future research.

Our discussion so far applies to networks with and without self-loops alike. However, it

follows from the results in Section 6.3 that self-loops play an important role in TVCS. This is

because (i) the self-loop of each node directly adds to its 2k-communicability for all k, and (ii)

the self-loop of each node also contributes indirectly to the 2k-communicability of its neighbors

less than k − 1 hops away. As a result, the self-loop of any node has the largest effect on its own

2k-communicability for all k, but also a lesser effect on the 2k communicability of all other nodes

in the network. This latter effect becomes smaller and limited to higher k for more distant nodes.

A clear demonstration of the effects of self-loops can be seen in Example 6.3.6, where as the self-

loops of the peripheral nodes get stronger, they gradually become the central nodes in the network,

first at local scales (small k) and eventually at all scales.

Further, the focus of our discussion has so far been on single input networks where one node

is controlled at a time, in order to enhance the simplicity and clarity of concepts. Nevertheless, our

results have straightforward generalizations to multiple-input networks (cf. Appendix 6.E). If m

denotes the number of control inputs, the optimal TVCS involves applying these control inputs to

the m nodes with the highest centralities at the appropriate scale at every time instance (i.e., the m

nodes with the largestRi(K−1−k) have to be controlled at every time instance k). It is clear that the

additional flexibility due to the additional inputs makes  larger, i.e., more networks have � > 0.
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Nevertheless, this additional flexibility also makes TICS significantly more efficient. Therefore, it

is not immediately clear whether this enlargement of  also entails larger � for networks with the

same size and sparsity. In fact, increasing m reduces average � for all the classes of ER, BA, and

WS networks (Figure 6.9), suggesting that the additional flexibility is more advantageous for TICS

than TVCS.

Regardless of the number of inputs (1 or more), an important implicit assumption of TVCS

is that this number is limited, i.e., no more than m nodes can be controlled at every time instance.

This may at first seem over-conservative since TVCS requires, by its essence, the installation of

actuators at all (or many) nodes of the network. Therefore, one might wonder why limit the control

to only m nodes at every time instance when all the nodes are ready for actuation. The answer lies

within the practical limitations of actuators. For ideal actuators, distributing the control energy

over as many nodes as possible is indeed optimal. However, this is not possible in many scenar-

ios, including when (i) actuators exhibit nonlinear dead-zone behaviors, so that each one requires

a sizable activation energy. In many applications ranging from distributed industrial processes to

opinion dynamics in social networks, nodes cannot be actuated with arbitrarily small amounts of

control energy. If Emin is the minimum activation energy of any actuator, at least mEmin is required

for actuation ofm nodes at a time. Thus, whenEmin is sizable and n is large, simultaneous actuation

of all nodes (m = n) requires a significant amount of control energy which is often infeasible (notice

that the dead-zone behavior of actuators does not violate the linearity assumption in (6.1) as one can

replace uwith v = �(u), where � denotes dead-zone nonlinearity); (ii) actuators are geographically

disperse so that precise coordination becomes difficult or time-consuming. A familiar example of

this is the social opinion dynamics in pre-election times during political campaigns, where rallies

and speeches by candidates act as control inputs to the network. Even though all nodes may be
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actuatable, at most one node can be actuated at every time; (iii) simultaneous control of proximal

nodes results in actuator interference. This is the case in many biological networks. In neuronal

networks, for instance, common control technologies such as TMS do not allow for simultaneous

actuation of all cortical areas due, in part, to electromagnetic interference between multiple sources

of actuation (note that TVCS is still possible by installation and sequential activation of multiple

coils at different locations); and when (iv) actuators are controlled via communication channels

with limited capacity, so that only a small number of devices can be simultaneously operated. This

may be the case in industrial applications where large numbers of geographically distributed ac-

tuators are remotely (and centrally) controlled over shared communication channels with limited

bandwidth. In all these scenarios, TVCS has the potential to significantly enhance network con-

trollability, conditioned on the scale-heterogeneity of the central nodes in the network.

Although the dynamics of all real networks have some degrees of nonlinearity, the analysis

of linear(ized) dynamics is a standard first step in analysis of dynamical properties of complex

networks [2–9,14–17]. This is mainly due to the fact that stability and controllability of linearized

dynamics of a nonlinear network implies the same properties locally for the original nonlinear

dynamics, making linear dynamics a powerful tool in analyzing many dynamical properties that

are in general intractable for nonlinear dynamics. The local validity of linearization, however, is a

main limitation of this work, particularly in networks where the change of state is significant relative

to the size of the domain over which the linearization is valid. For these networks, whether the

nonlinearity enhances or decreases the benefits TVCS with respect to its linearization is in general

dependent on the type of nonlinearity. However, for saturation nonlinearities, being perhaps the

most widespread, we expect TVCS to be more beneficial than linear counterparts. This is because

in TICS all the control input is injected through a fixed node, requiring the state of that node to

190



potentially undergo large over- and undershoots in order to convey sufficient input to the rest of the

network. Saturation clearly prevents this from happening, further limiting the scope of TICS. The

generalization of this work to nonlinear dynamics with saturation and linear time-varying dynamics

(namely, A(k) instead of A in equation (6.1)) is a warranted next step for future exploration of the

role of TVCS in general nonlinear networks.

Appendix

6.A Obtaining Dynamical Adjacency Matrix from Static Con-

nectivity

A standard starting point for the analysis of network dynamics of the form (6.1) is the as-

sumption that the network adjacency matrix A is known. While this is a valid assumption (as the

construction of A is itself the subject of vast research in network identification and correspond-

ing field sciences), care should be taken in how one interprets raw network connectivity matrices.

Usually, the network structure is described not by its dynamic adjacency matrix A (which deter-

mines the evolution of network state according to (6.1)) but rather by its static connectivity matrix

C (our implicit assumption is that each node has a well-defined state that evolves over time through

network dynamics, so our discussion is not applicable to completely static networks). While for

any i, j ∈  , aij describes the impact of xj on xi over one time step (relative to xj), cij often

describes the strength of the link (i, j) in arbitrary units (e.g., number of synapses between two

neurons, capacity of high-voltage lines between two generators, or number of seats on a flight). In

particular, multiplying C by a positive constant results in an equivalent description of the network
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structure, yet multiplying A by a constant significantly alters network dynamics. Here, we outline

two methods for obtaining A from C, and describe example domains where each method seems

more relevant. Consider an arbitrary link (i, j) ∈  .

∙ Transmission: This method applies to dynamical networks where at each time step, the

value of the state of node i is itself affected (reduced) as a result of interaction with neighbor

node j. Here, the state of each node corresponds to a physical quantity that is transmitted to

its neighbors in order to affect their states. Neuronal, transportation, food, gene regulatory,

protein-protein interaction, and power networks are all examples of this type of interaction.

If the sampling time is chosen long enough such that “current" state of a node is completely

diffused through the network until the next time step, we can obtain A from C using

A = CDC, in−1,

where DC, in is the augmented in-degree matrix of C (a diagonal matrix with the sum of the

columns of C on its diagonal, except where the sum of a column of C is zero, in which case

the corresponding diagonal element of DC, in is 1). This means that over each time step, xi

is transmitted to the in-neighbors of node i proportionally to their connectivity strength, if i

has any in-neighbors, and preserved otherwise.

∙ Induction: This method is appropriate for networks in which nodal states are not physical

quantities and thus do not reduce as a result of network interactions. Opinion or epidemic

dynamics evolving over social and/or trust networks have such properties. Here, in order

to compute A from C, we start from the underlying continuous-time dynamics ẋ = (−�I +
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C)x where � > 0 is chosen such that −�I + C is stable (Hurwitz), and then discretize it to

obtain (6.1), where

A = e(−�I+C)Ts ,

and Ts is the sampling time [19, eq. (4.17)]. From the expansion of matrix exponential

(eM = I+M+ M2

2
+ M3

3!
+⋯), we see that A does not inherit the sparsity pattern of C (and G)

since nodes interact in continuous time. However, if ‖(−�I + C)2T 2s ∕2‖ ≪ ‖(−�I + C)Ts‖,

then the sparsity pattern of C is almost preserved in A. Therefore, in this work we use Ts =


ind∕‖�I + C‖ for the induction method with 
ind = 0.2 unless otherwise stated. Further,

Figure 6.7 shows the effect of 
ind on the value of � when using the induction method. As

expected, the larger 
ind, the larger Ts, the closer A gets to limk→∞Ak, the more similar 2k-

communicabilities for different k become, and the smaller � becomes.

Unless otherwise stated, we use the transmission method in this work. Nevertheless, it is to

be noted that the method used for obtainingA fromC can have profound effects on network control-

lability and should thus be chosen carefully. Figure 6.8 illustrates this concept by showing the mean

�-value of ER, BA, and WS networks for a number of different choices for this transformation.

6.B Comparison Between Gramian-based Measures of Con-

trollability

In this section, we first derive and elaborate on the relationship between the eigenvalues

of the Gramian and control energy. Then, we discuss the different Gramian-based measures of
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Figure 6.7: The average value of � for the induction method and varying values of 
ind (corre-
sponding to varying discretization step sizes Ts). Each point represents the average value of � for
50 realizations of ER networks with n = 100 and p = 0.2 and vertical bars (when visible) show one
standard error of the mean (s.e.m.). For each network, the value of K ≤ 103 that gives the largest
value of � is chosen. The average value of � drops with 
ind, showing the effect of discretization
on � and the merit of TVCS. The red point corresponds to 
ind = 0.2 used throughout this work.

controllability and their respective properties.

Assume that K is invertible (the network dynamics (6.1) is controllable). Then, for any

xf ∈ ℝn, among the (usually infinitely many) choices of {u(k)}K−1k=0 that take the network from

x(0) = 0 to x(K) = xf , the one that has the smallest energy is given by [19, Thm 6.1]

u∗(k) = b(k)T (AT )K−1−k−1
K xf , k ∈ {0,… , K − 1}.

Similar expression holds for arbitrary x0, but it is customary to evaluate control energy starting

from the network’s unforced equilibrium x = 0. It is immediate to verify that this gives the minimal

energy
∑K−1

k=0 u
∗2(k) = xTf

−1
K xf . Therefore, the unit-energy reachability set is given by

{xf ∈ ℝn
| xTf

−1
K xf ≤ 1}.
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Erdös-Rényi Barabási-Albert Watts-Strogatz
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Figure 6.8: Average value of � for different methods of obtaining dynamical adjacency matrix A
from static connectivity C. The plots show the effect of these methods on TVCS. The details on
how to obtain the plots are similar to Figure 6 in the main text. All matrices are normalized by their
spectral radius for uniformity and comparison. The plots show a sizable enhancement (respectively
depression) of � by the transmission (respectively induction) method compared to raw connectivity,
except for Erdös-Rényi networks whose � maintains a robust pattern irrespective of the method of
obtaining the dynamic adjacency matrix A from the raw static connectivity C.
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Since−1
K is positive definite, this is a hyper-ellipsoid inℝn, with axes alignedwith the eigenvectors

ofK . Let (�i, vi) be an eigen-pair ofK and xf = cvi. Then,

xTf
−1
K xf ≤ 1⇔ c2�−1i ≤ 1 ⇔ |c| ≤ �1∕2i ,

showing that the axis lengths of this hyper-ellipsoid are given by the square roots of the eigen-

values of K . Intuitively, the “larger” the reachability hyper-ellipsoid, the “more controllable"

the network dynamics (equation (6.1)) are. To quantify how large the hyper-ellipsoid is, several

measures based on the eigenvalues of K have been proposed in the literature [6, 8, 66]. Let

�1 ≥ �2 ≥ ⋯ ≥ �n ≥ 0 denote the eigenvalues of K . The most widely used Gramian-based

measures are

∙ tr(K) = �1 + �2 +⋯ + �n,

∙ tr(−1
K )

−1 = (�−11 + �−12 +⋯ + �−1n )
−1,

∙ det(K) = �1�2⋯ �n,

∙ �min(K) = �n.

It is clear from these relationships that all these measures, except for tr(K), approach 0 if �n → 0.

This property, i.e., the behavior of a measure as �n → 0, is the most critical difference between

tr(K) and the other three measures. For the rest of this discussion, let fc(⋅) be any of tr((⋅)−1)−1,

det(⋅), or �min(⋅). Since the network is (Kalman-) controllable if and only if �n > 0, having

fc(K) > 0 guarantees network controllability while tr(K) > 0 does not. This is a major

disadvantage of tr(K) for small networks, where controllability in all directions in state space is
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both achievable and desirable. As the size of the network grows, however, �n typically decays ex-

ponentially fast to zero [6], irrespective of network structure. This exponential decay of worst-case

controllability is even evident in the example network of Figure 6.1(a) comprising of only n = 5

nodes.

Computationally, this means that �n (and in turn fc(K)) can quickly drop below machine

precision as n grows. In fact, forK = 10 and double-precision arithmetics, this happens for n ∼ 15,

making the TVCS (equation (6.5)) with f = fc numerically infeasible (as it involves the comparison

of fc(K) for different {bk}K−1k=0 , which may be zero up to machine accuracy). Further, notice that

the computational complexity of TVCS for f = fc grows as nK due to the NP-hardness of TVCS,

enforcing the use of sub-optimal greedy algorithms even if machine precision was not a concern

(see [16] and the references therein for details).

In addition to the computational aspects of TVCS, the exponential decay of �n also has the-

oretical implications for the choice of f . When using f = fc, TVCS seeks to assign the control

nodes {�k}K−1k=0 such that controllability is maintained in all directions in the state space, with spe-

cial emphasis on the hardest-to-reach directions. The use of tr(K), on the other hand, involves

maximizing the average of Gramian eigenvalues, which usually strengthens the largest eigenvalues

and spares the few smallest ones. In large networks, the latter is in general more realistic as con-

trollability is hardly needed in all n directions of the state space. As discussed in detail in [67], this

seems to be the case in the resting-state structural brain networks: this paper shows that tr(K)

is maximized by controlling specific brain regions that have long been identified as the structural

“core” or “hubs” of the cerebral cortex, while the Gramian is itself close to singular.

Further, due to the same strong dependence of fc(K) but not tr(K) on �n, we often ob-
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serve that tr(K) is significantly less sensitive to the choice of the control nodes {�k}K−1k=0 , leading

to orders of magnitude smaller � than that of fc(K) (Figure 6.1(b)). This means that  is only

a small subclass of networks that benefit from TVCS measured by fc. This also has a clear in-

terpretation, since maintaining controllability in all directions in the state space requires a broader

distribution of the control nodes that facilitates the reach of the control action {u(k)}K−1k=0 to all the

nodes in the network.

Finally, we highlight the need for development and analysis of measures that are neither

strongly reliant on the least controllable directions (such as fc(K)) nor mainly ignore them (such

as tr(K)). Two such candidates are:

∙ tr(CTKC)whereC is a matrix (or vector) with columns that point towards some particular

directions of interest in the state space. This measure is a modular set function similar to

tr(K) [8], but the extensions of the notion of 2k-communicability and the relationship

between class / networks and scale-heterogeneity are unclear;

∙ appropriate approximations of log(fc(K)). While computing the exact value of

log(fc(K)) is subject to the same issues as fc(K) itself, approximations can be used

that provide a mitigation of the effects of the smallest eigenvalues of K . In the case of

fc(⋅) = det(⋅), e.g., various algorithms have been proposed to approximate log det of large

matrices, see, e.g. [68–74]. These algorithms, however, are predominantly designed with the

aim of reducing the computational complexity of determinant calculation and not mitigation

of the effects of its high condition number, and often rely on assumptions (such as sparsity

or knowledge of lower and upper bounds on matrix eigenvalues) that do not apply to K .

Thus, development of appropriate approximations of log(fc(K)) constitutes a warranted
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direction for future research.

6.C Relationships Between 2k-Communicability, Degree, and

Eigenvector Centrality

The notion of 2k-communicability introduced in this article has close connections with the

degree and eigenvector centrality in the limit cases of k = 1 and k → ∞, respectively. Recall that

the out-degree centrality and 2-communicability of a node i ∈ are defined as, respectively,

dout
i =

n
∑

j=1
aji,

Ri(1) =
n
∑

j=1
a2ji.

Therefore, if the network is unweighted (i.e., all the edges have the same weight), thenRi(1) ∝ dout
i ,

so 2-communicability and out-degree centrality result in the same ranking of the nodes (in particu-

lar, r(1) is the node with the largest out-degree). As edge weights become more heterogenous, these

two rankings become less correlated, with 2-communicability putting more emphasis on stronger

weights.

A similar relation exists between∞-communicability and left eigenvector centrality, as we

show next. Let v1,u1 ∈ ℝn be the right and left Perron-Frobenius eigenvectors of A, respectively,

normalized such that vT1 v1 = u
T
1 v1 = 1 (notice that u1 has unit inner product with v1 but does not

in general have unit length). Since the network is by assumption strongly connected and aperiodic,
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we have

lim
k→∞

( 1
�(A)

A
)k
= v1uT1 . (6.14)

Thus for any i ∈ ,

lim
k→∞

( 1
�(A)

)2k
Ri(k) = lim

k→∞

( 1
�(A)

)2k
(

(Ak)TAk
)

ii = (u1v
T
1 v1u

T
1 )ii = u

2
1,i.

Given that dividing Ri(k) by �(A)2k for all i does not change the ranking of nodes, we define

Ri(∞) = u21,i for all i. Since squaring non-negative numbers preserves their order, nodal rankings

based on∞-communicability and left eigenvector centrality are identical.

6.D Nodal Dominance

Among the networks where the nodes with the greatest Ri(1) and Ri(∞) coincide (i.e.,

r(0) = r(∞)), there is a higher chance (than in general) that any network belongs to class . How-

ever, about half of these networks still belong to class  , meaning that there exists 1 < k < ∞

such that r(k) ≠ r(0). To assess the importance of this time-variation of optimal control nodes, we

define the dominance of the node r(0) (over the rest of the network) as follows. Let r′(0) be the

index of the node with the second largest Ri(1) (largest after removing r(0)). Similarly, let r′(∞)

be the index of the second largest Ri(∞). We define

Dominance of r(0) = min
{Rr(0)(0) − Rr′(0)(0)

Rr(0)(0)
,
Rr(0)(∞) − Rr′(∞)(∞)

Rr(0)(∞)

}

.
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A small dominance indicates that another node has very similar valueRi(0) or Ri(∞) to r(0), while

a large dominance is an indication of a large gap between Rr(0)(k) and the next largest Ri(k) for

both k = 0 and k →∞.

6.E Networks with Multiple Inputs

Consider a multiple-input network, namely, a network in which m ≥ 1 nodes are controlled

at every time step. Let �1k,… , �mk ∈  denote the indices of the control nodes at every time k, and

�k = {�1k,… , �mk }. Then, the corresponding TICS and TVCS are defined as

max
�0,…,�K−1∈

f (K) (6.15a)

s.t. �0 =⋯ = �K−1 (6.15b)

and

max
�0,…,�K−1∈

f (K), (6.16)

respectively. Accordingly, a multiple-input network is said to belong to class  if the solution

of (6.16) satisfies (6.15b), and to class  otherwise.

Clearly, for a multiple-input network to belong to class  , any of the first m largest of

{Ri(k)}ni=1 should change over time, which is often implied by (but does not imply) a change in

r(k). Therefore, the condition of Theorem 6.3.3 can still be used as a tight proxy for networks in  ,

but is too conservative and can be relaxed as follows: assume thatA is irreducible, aperiodic, and di-
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agonalizable. Let {rdj ∈ ℝn
| j ∈  d} be the set of nodes with the m highest 2-communicabilities,

where the index set  d accounts for different choices of rankings if there are nodes with equal

2-communicabilities. Similarly, let {rcj ∈ ℝn
| j ∈  c} be the set of nodes with the m highest

centralities. Then, if rdj1 ≠ rcj2 for all (j1, j2) ∈  d ×  c, the network belongs to class  when K

is sufficiently large. The proof of this statement is a straightforward generalization of the proof of

Theorem 6.3.3 and thus omitted.

Similarly, the three conditions in Theorem 6.3.4 can be generalized to undirected multiple-

input networks as follows (with similar proofs as the proof of Theorem 6.3.4):

(i) For all i ∈ {1,… , m},

1 −wi1
∑

l≤m+1,l≠i+1wl1
≤

|�1| − |�2|
|�1| − |�n|

.

This condition can be simplified, at the expense of being more conservative, to 1−wi1
iwi1

≤

|�1|−|�2|
|�1|−|�n|

, for all i ∈ {1,… , m},

(ii) for all i ∈ {1,… , m}, wi2 = 1 −wi1,

(iii) the network has three or fewer nonzero eigenvalues with different absolute values and

R1(1) ≥ R2(1) ≥⋯ ≥ Rm(1) ≥ Ri(1),

for all i ∈ {m + 1,… , n}.

Finally, Figure 6.9 illustrates the effect of m on �-values of ER, BA, and WS networks

discussed in the main text.
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Figure 6.9: Average value of � for networks with increasing number of inputs. The plots show the
effect of multiple inputs on TVCS. The details on how to obtain the plots are similar to Figure 6
in the main text. The dynamic adjacency matrix A is obtained from the raw static connectivity C
using the transmission method in all cases. These plots show a slight depression in the benefit of
TVCS as the number of control nodes grows, despite the fact that networks with more control nodes
have a higher probability of belonging to  (namely, having � > 0).
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6.F 2k-Communicabilities of Simple Networks

Asmentioned in themain text, cf. Figure 5, the simple structure of homogeneous undirected

line, ring, and star networks allows us to compute their 2k-communicabilities analytically in closed

form, as derived in the following. Throughout, ℤ denotes the set of integers and for a, b ∈ ℤ, a|b

denotes that a divides b.

Proposition 6.F.1. (2k-communicabilities of line networks). Consider a line network of n nodes

with uniform link weights a (and no self-loops). Then, for i ∈ and k ∈ ℕ,

Ri(k)=a2k
∑

p∈

[(

2k
k+p(n+1)

)

−
(

2k
k+p(n+1)−i

)]

, (6.17)

where  = {−⌈ k
n+1

⌉,… , ⌈ k
n+1

⌉} and
(n
k

)

≜ 0 if k ∉ {0,… , n}. In particular, if i ≤ ⌈

n
2
⌉ and

k ≤ ⌈

n
2
⌉ − 1,

Ri(k) = a2k
[(

2k
k

)

−
(

2k
k − i

)]

. (6.18)

Proof. From [75, Lemma 1.77], we have

�j = 2a cos
j�
n + 1

and wij ∝ sin
2 ij�
n + 1

,

for i, j ∈ {1,… , n} where ∝ accounts for normalization. In order to normalize the eigenvectors,

we use the identities sin2 � = 1
2
(1 − cos 2�) and

n
∑

j=1
cos

2sj�
n + 1

= −1 for all s̸ | n + 1, (6.19)
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to get wij =
2
n+1

sin2 ij�
n+1

for all i, j ∈ {1,… , n} (one can show (6.19) by multiplying and dividing

the LHS by sin s�
n+1

and using the identity 2 sin � cos � = sin(� + �) + sin(� − �) for each term).

Thus, by substitution, we have Ri(k) =
2a2k

n+1

∑n
j=1 �

2
ijk where

�ijk = 2k sin
ij�
n + 1

cosk
j�
n + 1

.

By using the identity 2 sin � cos � = sin(� + �) + sin(� − �), k times and collecting terms, we get

�ijk =
k
∑

l=0

(

k
l

)

sin
(i + k − 2l)j�

n + 1
.

Hence, by squaring �ijk and substituting it in Ri(k), and using the identity 2 sin � sin � = cos(� −

�) − cos(� + �), we get

Ri(k) =
a2k

n + 1

k
∑

l,r=0

(

k
l

)(

k
r

)

[

n
∑

j=1
cos

2(l − r)j�
n + 1

−
n
∑

j=1
cos

2(i + k − l − r)j�
n + 1

]

. (6.20)

However, by (6.19), the two sums in (6.20) cancel each other unless l−r|n+1 or i+k−l−r|n+1

(the cases where both of these happen need not be excluded since they automatically cancel). Thus,

Ri(k) = a2k
[

∑

1

(

k
l

)(

k
r

)

−
∑

2

(

k
l

)(

k
r

)

]

, (6.21)

where

1 = {(l, r) ∈ {0,… , k}2 | l − r|n + 1},

2 = {(l, r) ∈ {0,… , k}2 | i + k − l − r|n + 1}.
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Defining p = n+1
l−r

in the first and p = i+k−l−r
n+1

in the second sum in (6.21), we get

Ri(k) = a2k
∑

p∈

[

k
∑

l=0

(

k
l

)(

k
l−p(n+1)

)

−
k
∑

l=0

(

k
l

)(

k
l+p(n+1)−i

)

]

, (6.22)

where we have used the identity
(k
s

)

=
( k
k−s

)

. Equation (6.17) then follows by applying the formula

∑k
l=0

(k
l

)( k
l±s

)

=
( 2k
k±s

)

[76, Eq. 6.69-70] to each of the two sums in (6.22). To get (6.18), note

that if i ≤ ⌈

n
2
⌉ and k ≤ ⌈

n
2
⌉ − 1, then the only nonzero term in (6.17) is the one corresponding to

p = 0.

According to this result, in the case of no self-loops, the value ofRi(k) increases with i until

i = ⌈

n
2
⌉ (i.e., the middle node) for k ≤ ⌈

n
2
⌉ − 1 (this can be observed from the expression (6.18)).

For general k, it can be shown that the value of the sum in (6.17) for Ri(k) is strongly dominated

by the summand corresponding to the index p = 0, which increases with i until i = ⌈

n
2
⌉ and

decreases afterwards. Thus, the optimal control node corresponds always to (one of) the center

node(s), i.e., b∗(k) = e
⌈

n
2 ⌉
for all k. If nodes have uniform self-loops (i.e., self-loops all with the

same weight), Ri(k) can no longer be computed analytically but simulations show the exact same

behavior;

Proposition 6.F.2. (2k-communicabilities of ring networks). Consider a ring network of n nodes

and uniform link weights a (with no self-loops). Then, for i ∈ and k ∈ ℕ,

Ri(k) =
(2a)2k

n

[

1 + 2
⌈

n
2 ⌉−1
∑

j=1
cos2k

(2j�
n

)

+ �En

]

, (6.23)

where �En equals one if n is even and zero otherwise.
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Proof. From [75, Lemma 1.77], we have �j = 2a cos
2j�
n

and (after normalization of eigenvectors),

wij =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2
n
cos2 2(i−1)j�

n
if 1 ≤ j < n

2
,

2
n
sin2 2(i−1)(n−j)�

n
if n

2
< j < n,

1
n

if j = n, or n ∈ ℤ even and j = n
2
,

for i, j ∈ {1,… , n}. Note that to normalize the eigenvectors, we follow a similar procedure to the

one described in the proof of Lemma 6.F.1 (setting s = 2i and substituting n by n − 1 in (6.19)).

The result then follows by substituting these expressions in Ri(k).

We can infer from the preceding result that without self-loops, the value ofRi(k) is indepen-

dent of i (as shown by (6.23)) for a uniform ring network, so the optimal control node is arbitrary

for all k. Similar result can be proved analytically if the nodes have uniform self-loops.

Proposition 6.F.3. (2k-communicabilities of star networks). Consider a star network given by

A =
⎡

⎢

⎢

⎢

⎣

lc aT

a lpIn−1

⎤

⎥

⎥

⎥

⎦

, (6.24)

where a ∈ ℝn−1 contains the link weights between the center node and peripheral nodes. Then

R1(k) =
(�1 − lp)2

(�1 − lp)2 + ‖a‖2
�2k1 +

(lp − �2)2

(lp − �2)2 + ‖a‖2
�2k2 ,

Ri(k) =
a2i−1

(�1 − lp)2 + ‖a‖2
�2k1 +

a2i−1
(lp − �2)2 + ‖a‖2

�2k2 +
‖a‖2 − a2i−1

‖a‖2
l2kp , (6.25)
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for all k ∈ ℕ ∪ {0} and i ∈ {2,… , n}, where

�1,2 =
lc + lp ±

√

(lc − lp)2 + 4‖a‖2

2
. (6.26)

Proof. Using the formula

det
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

P Q

R S

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

= (P − 1)det(S) + det(S − RQ),

for scalar P , row vector Q, column vector R, and square matrix S, and some algebra, we get |sIn −

A| =
(

s2 − (lc + lp)s + lclp − ‖a‖2
)

(s − lp)n−2, so the eigenvalues of A are given by

�3,…,n = lp, (6.27)

and �1,2 in (6.26). Note that we may or may not have |�1| ≥ ⋯ ≥ |�n| as the order depends on the

values of the parameter. By solving (A− �jIn)vj = 0 for j = 1, 2, and then using the orthogonality

of eigenvectors, we get

v1,2 ∝
⎡

⎢

⎢

⎢

⎣

�1,2 − lp

a

⎤

⎥

⎥

⎥

⎦

, (vj)1 = 0 ∀j ∈ {3,… , n}, (6.28)

where ∝ accounts for normalization. The result then follows by substituting (6.26)-(6.28) into

Ri(1) =
∑

j v2ij�
2
j separately for i = 1 and i ≥ 2, and simplifying.

Using this result, if all self-loop weights are the same (lc = lp in (6.24)), thenR1(1) > Ri(1)

for all i ≥ 2 from (6.12). Therefore Theorem 6.3.4(iii) implies that the center node is the optimal
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control node at all times.

6.G Additional Lemmas and Proofs

In this section, we formulate and prove a number of lemmas that underlie the main results of

this chapter and also provide the proofs of the main results presented in the main text. Throughout,

ℂ denotes the set of complex numbers and forM ∈ ℂn×n,M andM∗ denote its complex conjugate

and complex conjugate transpose, respectively, and M−∗ = (M∗)−1. Further, for � ∈ ℝn and

l ∈ ℕ ∪ {0}, �l ≜ [�l1 ⋯ �ln ]
T and |�| ≜ [|�1| ⋯ |�n|]T .

Proof of Theorem 6.3.3. Define

U = V−⋆.

Notice that the columns of U are the left eigenvectors of A, with the same order as in � and V.

Since for any k,

(Ak)TAk = (Ak)∗Ak = (V�kU∗)∗V�kU∗,

it follows that for any i and k,

Ri(k) =
(

(Ak)TAk
)

ii = (V�
kU∗i,∶)

∗V�kU∗i,∶ = ‖V�kU∗i,∶‖
2
2,

where Ui,∶ denotes the ith row of U. For simplicity, define c(i,k) = V�kU∗i,∶ ∈ ℂn. It is straightfor-
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ward to check that

c(i,k)l =
n
∑

j=1
vljuij�

k
j , l ∈ {1,… , n}

so

Ri(k) =
n
∑

l=1

|

|

|

c(i,k)l
|

|

|

2
=

n
∑

l=1
c(i,k)l c(i,k)l =

n
∑

l=1

n
∑

j=1

n
∑

m=1
vljvlmuijuim�

k
j�

k

m

=
n
∑

j,m=1

(

n
∑

l=1
vljvlmuijuim

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�(j,m)i

�kj�
k

m.

Dividing both sides by �2k1 and taking the limits as k →∞, we see that for all i, �(1,1)i = u2i1 = Ri(∞)

(notice that ui1 ∈ ℝ for all i since �1 ∈ ℝ>0 according to the Perron-Frobenius Theorem [77, Fact

4.11.4]). Choose r(1) ∈ argmaxiRi(1) and r(∞) ∈ argmaxiRi(∞). The network belongs to class

 if for some k > 1,

Rr(∞)(k) > Rr(1)(k)⇔ Rr(∞)(∞)�2k1 +
∑

(j,m)≠(1,1)
�(j,m)r(∞)�

k
j�

k

m > Rr(1)(∞)�2k1 +
∑

(j,m)≠(1,1)
�(j,m)r(1) �

k
j�

k

m

⇔
[

Rr(∞)(∞) − Rr(1)(∞)
]

�2k1 >
∑

(j,m)≠(1,1)

[

�(j,m)r(1) − �
(j,m)
r(∞)

]

�kj�
k

m

(a)
⇐

[

Rr(∞)(∞) − Rr(1)(∞)
]

�2k1 > �k1|�2|
k
|

|

|

|

|

|

∑

(j,m)≠(1,1)
�(j,m)r(1) − �

(j,m)
r(∞)

|

|

|

|

|

|

⇔
[

Rr(∞)(∞) − Rr(1)(∞)
]

�2k1 > �k1|�2|
k

∑

(j,m)≠(1,1)

|

|

|

�(j,m)r(1)
|

|

|

+ |

|

|

�(j,m)r(∞)
|

|

|

⇐
[

Rr(∞)(∞) − Rr(1)(∞)
]

�k1 > |�2|
k ⋅ 2 max

i∈{1,…,n}

n
∑

j,m=1

|

|

|

�(j,m)i
|

|

|

,

where in (a) we have used the fact that |�j�m| ≤ �1|�2| for any (j, m) ≠ (1, 1). Now, using the
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definition of �(j,m)i ,

n
∑

j,m=1

|

|

|

�(j,m)i
|

|

|

≤
n
∑

j,m=1

n
∑

l=1
|vlj||vlm||uij||uim|

=
n
∑

j,m=1
|uij||uim|

(

n
∑

l=1
|vlj||vlm|

)

(b)
≤

n
∑

j,m=1
|uij||uim| ‖V∶,j‖2

⏟⏟⏟
1

‖V∶,m‖2
⏟⏟⏟

1

= ‖Ui,∶‖21 ≤ ‖U‖2∞,

where (b) follows from the Cauchy-Schwarz inequality. Thus,

Rr(∞)(k) > Rr(1)(k)⇐
[

Rr(∞)(∞) − Rr(1)(∞)
]

�k1 > |�2|
k ⋅ 2‖U‖2∞

⇔ k >
log 2‖U‖2∞ − log

[

Rr(∞)(∞) − Rr(1)(∞)
]

log �1 − log |�2|
.

Therefore, the result follows by choosing K > K̄ , where

K̄ = ⌈

log 2‖U‖2∞ − log
[

Rr(∞)(∞) − Rr(1)(∞)
]

log �1 − log |�2|
⌉.

The following lemma will be useful in the proof of Theorem 6.3.4.

Lemma 6.G.1. LetW ∈ ℝn×n be a doubly-stochastic matrix and 
 ∈ ℝn
≥0 be such that 
1 ≥⋯ ≥ 
n.

If 1−w11
w11

≤ 
1−
2

1−
n

, then 1 ∈ argmax1≤i≤n (W
)i.
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Proof. Note that we have

1 −w11

w11
≤

1 − 
2

1 − 
n

⇔ (
1 − 
2)w11 ≥ (
1 − 
n)(1 −w11)

⇔ 
n +w11(
1 − 
n) ≥ 
2 + (1 −w11)(
1 − 
2)

⇒ ∀i ≥ 2 
n +w11(
1 − 
n) ≥ 
2 +wi1(
1 − 
2),

where the last implication is because wi1 ≤ 1 − w11 for all i ∈ {1,… , n}. The last inequality can

be equivalently expressed, for any i ∈ {2,… , n}, as

w11
1 + (1 −w11)
n ≥ wi1
1 + (1 −wi1)
2,

which, given that 
n ≤ 
j ≤ 
2 for all j ∈ {2,… , n}, implies

w11
1 +
n
∑

j=2
w1j
j ≥ wi1
1 +

n
∑

j=2
wij
j ,

for any i ∈ {2,… , n}. This can be equivalently written as

n
∑

j=1
w1j
j ≥

n
∑

j=1
wij
j ⇔ (W
)1 ≥ (W
)i,

completing the proof.

Proof of Theorem 6.3.4. For convenience, let � = [�1 ⋯ �n]T . After some algebraic manipula-
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tions, one can show that

Ri(k) = (A2k)ii =
n
∑

j=1
v2ij�

2k
j = (W�2k)i. (6.29)

The assumption that node 1 has the largest eigenvector centrality is equivalent to the largest element

of the first column ofW being w11, i.e.,

w11 = max1≤i≤n
wi1, (6.30)

or, also equivalently, r(∞) = 1. This can always be realized by a permutation of the rows of W

achieved by relabeling the node with the largest centrality as node 1 (note that relabeling the nodes

only permutes the rows ofW and not its columns. The order of its columns is arbitrary and corre-

sponds to the order of the diagonal elements of �).

The claim of the theorem is trivial in all cases for k = 0. Under condition (i), for k = 1, we

have

�21 − �
2
2

�21 − �2n
=
|�1| − |�2|
|�1| − |�n|

|�1| + |�2|
|�1| + |�n|

≥
|�1| − |�2|
|�1| − |�n|

≥
1 −w11

w11
.

For k ≥ 2, using the above inequality, we have

�2k1 − �
2k
2

�2k1 − �2kn
=
�21 − �

2
2

�21 − �2n

�2k−21 +⋯ + �2k−22

�2k−21 +⋯ + �2k−2n

≥
1 −w11

w11
.

Thus, the result follows from Lemma 6.G.1.
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Under condition (ii), for any k ≥ 1,

1 ∈ argmax
1≤i≤n

Ri(k)⇔
n
∑

j=1
w1j�

2k
j ≥

n
∑

j=1
wij�

2k
j ⇔ w11�

2k
1 + (1 −w11)�2k2 ≥

n
∑

j=1
wij�

2k
j

⇐ w11�
2k
1 + (1 −w11)�2k2 ≥ wi1�

2k
1 + (1 −wi1)�2k2

⇔ (w11 −wi1)(�2k1 − �
2k
2 ) ≥ 0,

where the last inequality is always true (cf. equation (6.30)).

Finally, under condition (iii), first consider the case when |�1| > |�2|. By contradiction, as-

sumeRi(k) > R1(k) for some i ∈ {2,… , n} and k ≥ 2. Since |�1| > |�i| for all i ∈ {2,… , n}, there

exists a sufficiently large k where R1(k) > Ri(k) (recall our node labeling convention in (6.30)).

Note that it is not necessary for k to be less than K . Thus, R1 and Ri swap orders at least 2

times. However, since A has (at most) three distinct nonzero eigenvalues, [78, Theorem 1] im-

plies that R1 and Ri can swap orders at most once, which is a contradiction. On the other hand, if

|�1| = |�2|, then each Ri is essentially the sum of at most two distinct exponential functions and

thus, using [78, Theorem 1] again, the order of all Ri’s remains unchanged for all k, yielding the

result.

Proof of Theorem 6.3.5. We first prove the first part of the theorem for general (not necessarily

symmetric) A0 and E. Recall that for k ∈ {0,… , K − 1}

r(k) = argmax
i∈

Ri(k) = argmax
i∈

(

((A + �E)k)T (A + �E)k
)

ii

(a)
= argmax

i∈

(

((�−1A + E)k)T (�−1A + E)k
)

ii,
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where (a) holds because the maximizer of a set is invariant to the scaling of all the elements of the

set by a constant. Using lim�→∞ �−1A + E = E and the continuity of polynomials, we get

lim
�→∞

Ri(k) = R̃i(k),

where R̃i denotes the 2k-communicabilities of a node i in the additive network E. Since E is not

acyclic, powers of E never vanish, and thus

∀k ∈ {0,… , K − 1} ∃i ∈ {1,… , n1} R̃i(k) > 0,

while R̃i(k) = 0 for i ∈ {n1 + 1,… , n} and all k. Therefore, for any k ∈ {0,… , K − 1}, there

exists �̄k > 0 such that

r(k) ∈ {1,… , n1},

for � > �̄k. The claim follows by taking �̄ = maxk∈{0,…,K−1} �̄k.

Now, assume A0 and E are symmetric. As before, let � = [�1 ⋯ �n]T ∈ ℝn and V ∈

ℝn×n be the vector of eigenvalues (with |�1| ≥ ⋯ ≥ |�n|) and the matrix of eigenvectors of A,

respectively, andW be the element-wise square of V. Recall that this gives

Ri(k) = (A2k)ii =
n
∑

j=1
v2ij�

2k
j = (W�2k)i.

Let i∗ ∈ {1,… , n1} be the node with the greatest eigenvector centrality in E and 
 ∈ ℝn be any

vector such that 
1 ≥ ⋯ ≥ 
n ≥ 0. Fix i ∈ {n1 + 1,… , n} arbitrarily and let r ≤ n1 be the rank of
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E. Using the inequalities

n
∑

j=1
wi∗j
j ≥ wi∗1
1,

r
∑

j=1
wij
j ≤ 
1

r
∑

j=1
wij ,

n
∑

j=r+1
wij
j ≤ 
r+1,

it follows that (W
)i∗ > (W
)i if

wi∗1
1 > 
1
r
∑

j=1
wij + 
r+1. (6.31)

Note that if (6.31) holds for 
 = |�|, then it holds for 
 = �2k for any k ≥ 1. This is because

wi∗1�
2k
1 = |�1|

2k−1 ⋅wi∗1|�1| > |�1|
2k−1

(

|�1|
r
∑

j=1
wij + |�|r+1

)

> �2k1

r
∑

j=1
wij + �2kr+1.

Therefore, our proof strategy is to find � such that (6.31) holds for 
 = |�| if � > �. To this end,

let �̃ = [�̃1 ⋯ �̃n]T ∈ ℝn and Ṽ ∈ ℝn×n be the vector of eigenvalues (with |�̃1| ≥ ⋯ ≥ |�̃n|) and

the matrix of eigenvectors of E, respectively, and W̃ be the element-wise square of Ṽ. Note that W̃

has the structure

W̃ =
[ ⋆ 0

0 ⋆

]

(6.32)
}

n1
}

n−n1

{

n1 {

n−n1

.

In the following, we bound � and V using perturbation theory of eigenvalues and eigenvectors. For
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simplicity of exposition, we only deal with the case where the r nonzero eigenvalues of E are all

distinct (the proof for the general case proceeds along the same lines but is more involved).

To bound the eigenvalues in �, let �A ∶ {1,… , n} → {1,… , n} be a permutation that re-

orders the eigenvalues of A based on their signed value, i.e., ��A(1) ≥ ��A(2) ≥ ⋯ ≥ ��A(n). Define

�E similarly for E (i.e., such that �̃�E(1) ≥ �̃�E(2) ≥ ⋯ ≥ �̃�E(n)). By Weyl’s Theorem [79, Thm

4.3.1],

|��A(j) − ��̃�E(j)| ≤ �(A0), (6.33)

for all j ∈ {1,… , n}. We know from the Perron-Frobenius theorem [77, Fact 4.11.4] for nonnega-

tive matrices that �A(1) = �E(1) = 1. Therefore, (6.33) implies that

��(E) − �(A0) ≤ �1 ≤ ��(E) + �(A0). (6.34a)

Moreover, since E has n − r zero eigenvalues, (6.33) implies that A has at least n − r eigenvalues

with absolute value less than or equal to �(A0), i.e.,

|�r+1| ≤ �(A0). (6.34b)

Next, we bound the eigenvectors in V. Define

�E = min{�̃�E(j) − �̃�E(j+1) | �̃�E(j)−�̃�E(j+1) > 0, j ∈ {1,… , n − 1}}.
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Using [80, Cor. 1], we have

‖v�A(j) − ṽ�E(j)‖ ≤
23∕2‖A0‖
��E

, (6.35)

for j ∈ �−1E ({1,… , r}). To see this, set � = �E and �̂ = A0 in [80, Cor. 1]. This is the only place

where we need the nonzero eigenvalues of E to be distinct. If E has a repeated nonzero eigenvalue,

then the corresponding eigenvectors are no longer unique, i.e., one has to study the perturbation of

eigenspaces rather than eigenvectors. Therefore, one can no longer use the simplified variant [80,

Cor. 1] of the Davis-Kahan Theorem but the original result itself, which provides essentially the

same result but is more technically involved.

Using �A(1) = �E(1) = 1 and (6.35), we get

|wi∗1 − w̃i∗1| = |v2i∗1 − ṽ
2
i∗1| ≤ 2||vi∗1| − |ṽi∗1|| (6.36)

≤ 2|vi∗1 − ṽi∗1| ≤ 2‖v1 − ṽ1‖ ≤
25∕2‖A0‖
��E

,

which together with w̃i∗1 ≥
1
n1
gives

wi∗1 ≥
1
n1
−
25∕2‖A0‖
��E

. (6.37a)

To derive similar bounds on wij , j ∈ {1,… , r} (recall that we fixed i ∈ {n1 + 1,… , n} arbitrarily

at the beginning of the proof), we need to choose � > 2�(A0)
|�̃r|

. This choice of � guarantees that

�A(j) ∈ {1,… , r} for all j ∈ �−1E ({1,… , r}). Therefore, using (6.35) and (6.32) and following the
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same steps as in (6.36), we get

wij ≤
25∕2‖A0‖
��E

, j ∈ {1,… , r}. (6.37b)

Now, using (6.34) and (6.37), (6.31) holds with 
 = |�| if

(

1
n1
−
25∕2‖A0‖
��E

)

(

��̃1 − �(A0)
)

>
(

��̃1 + �(A0)
) r25∕2‖A0‖

��E
+ �(A0),

which itself holds if � > �, where

� ≜ max
{

1,
2�(A0)
�̃r

,
8‖A0‖
�E

(

1+
�(A0)
�(E)

)

n21 + 2
�(A0)
�(E)

n1
}

,

completing the proof.

6.H Description of the Analyzed Real Networks

The real networks studied in this work have been acquired from a multitude of sources,

which we list here for easier reproduction of our results. All the databases are freely and publicly

available.

∙ BCTNet fMRI [42]: This is a human whole-brain functional network. Nodes represent brain

areas and edges represent fMRI co-activations. The dataset is available online at https:

//sites.google.com/site/bctnet/datasets.

∙ Cocomac [43]: This is a macaque whole-brain structural network based on the Felleman

and Van Essen atlas. Nodes represent brain areas and edges represent axonal projections
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(nerve tracts) between them. The dataset is retrieved from http://cocomac.g-node.org/

services/axonal_projections.php by entering the specifications detailed in http://

cocomac.g-node.org/main/faq.php#connectivitymatrix.

∙ BCTNet Cat [42]: This represents the cat structural thalamocortical network. Nodes rep-

resent thalamocortical areas and edges represent nerve tracts between them. The dataset is

available online at https://sites.google.com/site/bctnet/datasets.

∙ C. elegans [44]: This dataset contains the neural network of Caenorhabditis elegans worm

(C. elegans). Nodes represent individual neurons and edges represent the total number of

synapses and gap junctions between any pair of neurons. The dataset of available online at

https://toreopsahl.com/datasets/#celegans.

∙ air500 [45]: This is the network of the 500 busiest commercial airports in the United States

in 2002. Nodes represent airports and edges represent flights between them. The dataset is

available online at https://toreopsahl.com/datasets/#usairports.

∙ airUS [46]: This is the complete US airport network in 2010. Nodes and edges represent

airports and flights between them, respectively. The dataset is available online at https:

//toreopsahl.com/datasets/#usairports.

∙ airGlobal [46]: This dataset contains the global airport network according to OpenFlights.

org. Nodes and edges represent airports and flights between them, respectively. The dataset

is available online at https://toreopsahl.com/datasets/#usairports.

∙ Chicago [47, 48]: This dataset represents the road transportation network of the Chicago

region, USA. Nodes are transport nodes while edges represent connections between them.
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The dataset is available online as [81].

∙ E. coli [49]: This is the probabilistic functional gene network of E. coli. Nodes represent

genes and edges represent interactions between them. The dataset is available online at http:

//www.inetbio.org/ecolinet/downloadnetwork.php (The integrated network).

∙ Yeast [50]: This network represents the protein-protein interaction (PPI) network in the bud-

ding yeast. Nodes and edges represent proteins and the interactions among them, respectively.

The dataset is available online at http://vlado.fmf.uni-lj.si/pub/networks/data/

bio/Yeast/Yeast.htm.

∙ Stelzl [51]: This is a protein-protein interaction network in humans. Nodes and edges repre-

sent proteins and the interactions among them, respectively. The dataset is available online

as [82].

∙ Figeys [52]: Similar to above, this is a protein-protein interaction network in humans where

nodes and edges represent proteins and the interactions among them, respectively. The dataset

is available online as [83].

∙ Vidal [53]: Similar to above, this is a protein-protein interaction network in humans where

nodes and edges represent proteins and the interactions among them, respectively. The dataset

is available online as [84].

∙ westernUS [44]: This dataset describes the high voltage power grid in the Western States of

the US. Nodes represent transformers, substations, and generators, and the edges represent

high-voltage transmission lines. The dataset is available online at https://toreopsahl.

com/datasets/#uspowergrid.
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∙ Florida [54]: This network describes the food web in the cypress wetlands of South Florida

during the wet season. Nodes represent taxa and an an edge denotes that a taxon uses another

taxon as food. The dataset is available online as [85].

∙ LRL [55]: The networks describes the food web of Little Rock Lake, Wisconsin, USA.

Nodes represent autotrophs, herbivores, carnivores and decomposers while links represent

food sources. The dataset is available online as [86].

∙ Facebook group [56]: This dataset describes the social interactions among a group

of Facebook users. Nodes and edges represent profiles and the connections between

them, respectively. The dataset is available online at http://snap.stanford.edu/data/

egonets-Facebook.html.

∙ E-main [57, 58]: This datasets contains E-main communications in a research institution.

Nodes represent institution members and edges exist between any ordered pair of members

if one has sent at least one E-main to the other. The dataset is available online at http:

//snap.stanford.edu/data/email-Eu-core.html.

∙ Southern Women [59]: This is a social network of 18 Southern women. Nodes are individ-

uals and edges represent mutual attendance at one of the 14 events recorded. The dataset is

available online at https://toreopsahl.com/datasets/#southernwomen.

∙ UCI P2P [60]: This dataset describes an online community among the students of the

University of California, Irvine. Nodes represent individuals and edges represent at least

one message sent between any pair of them. The dataset is available online at https:

//toreopsahl.com/datasets/#online_social_network.
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∙ UCI Forum [61]: This network is based on the same online community as in UCR P2P,

but an edge exists between two individuals if they posted on the same topic in a forum.

This dataset is also available online at https://toreopsahl.com/datasets/#online_

social_network.

∙ Freeman’s EIES [62]: This is a network of researchers working on social network analysis.

Nodes represent researchers and edges represent personal relationships between them. The

dataset is available online at https://toreopsahl.com/datasets/#FreemansEIES (the

second dataset in the list).

∙ Dolphins [63]: This is a social network of bottlenose dolphins observed between 1994 and

2001. The nodes are the bottlenose dolphins and edges indicate a frequent association be-

tween them. The dataset is available online as [87].

∙ Physicians [64]: This network captures innovation spread among 246 physicians in four

towns in Illinois, USA. A node represents a physician and an edge represents that one physi-

cian recognizes the other as theor friend or that they turn to them if they need advice or are

interested in a discussion. The dataset is available online as [88].

∙ Org. Consult Advice & Value [65]: These are intra-organizational networks between em-

ployees of a consulting company. The nodes are individuals, and the edges represent fre-

quency of information or advice requests (Org. Consult Advice) and the value placed on the

information or advice received (Org. Consult Value). The datasets are available online at

https://toreopsahl.com/datasets/#Cross_Parker.

∙ Org. R&D Advice & Aware [65]: Similar to the networks above, these describe intra-
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organizational interactions among the members of a research team in a manufacturing com-

pany. Nodes represent individuals, and edges represent the extent to which individuals re-

ceived advice from their peers to accomplish their work (Org. R&D Advice) and employees’

awareness of each others’ knowledge and skills (Org. R&D Aware). The datasets are avail-

able online at https://toreopsahl.com/datasets/#Cross_Parker.
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Chapter 7

Network Identification with Latent Nodes

In this chapter, we continue our treatment of networked dynamical systems under resource

constraints and focus on the problem of network system identification. This problem has numer-

ous applications in science and engineering. In neuroscience, for instance, researchers seek to

understand how different regions of the brain cooperate with each other by having subjects per-

form certain goal-directed tasks while measuring their brain activity via multi-channel recordings

such as electroencephalograms (EEG) [1–5]. In systems biology, genetic network identification

uses data from RNA micro-array experiments to identify the interaction pattern between genes in a

regulatory network [6,7]. Similar examples exist in other areas including finance, social networks,

and physics.

Roughly speaking, the objective in network identification is to determine causal relation-

ships among the nodes in the network that model the direction and strength of the interactions be-

tween them. While network control and coordination has made much progress on problems where

the interaction topology is either given or the design objective itself, not so much attention has been

devoted to develop techniques to address the identification of unknown topologies from measured
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data. In many applications of complex network systems, only a manifest subset of the nodes can be

directly actuated and measured while the state of the remaining latent nodes and their number are

unknown. Our goal is to identify the transfer function of the manifest subnetwork and determine

whether interactions between manifest nodes are direct or mediated by latent nodes.

We show that, if there are no inputs to the latent nodes, the manifest transfer function can be

approximated arbitrarily well in theH∞-norm sense by the transfer function of an auto-regressive

model and present a least-squares estimation method to construct the auto-regressive model from

measured data. We show that the least-squares auto-regressive method guarantees an arbitrarily

smallH∞-norm error in the approximation of themanifest transfer function, exponentially decaying

once the model order exceeds a certain threshold. Finally, we show that when the latent subnetwork

is acyclic, the proposed method achieves perfect identification of the manifest transfer function

above a specific model order as the length of the data increases. We end the chapter with various

examples that illustrate our results.

7.1 Prior Work

An increasing number of works study topology identification problems to better understand

the interactions in large-scale networks and their role in determining the network behavior. A com-

plex network is commonly represented as a directed graph, and the interactions among neighboring

nodes are represented by directed edges whose weights reflect the interaction strength. In this

sense, topology identification aims at identifying the adjacency matrix of the network graph [8] or

its Boolean structure [9]. The work [10] studies the complete characterization of the interaction

topology of consensus-type networks using a series of node-knockout experiments, where nodes
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are sequentially forced to broadcast a zero state without being removed from the network. The

work [11] also uses node-knockout experiments to identify the topology of directed linear time-

invariant networks relying on the cross-power spectral densities of the network response to wide-

sense stationary noise. The work [12] presents a method to infer the topology of a network of cou-

pled phase oscillators from its stable response dynamics, assuming that one can manipulate every

individual node and perform large number of experiments. In general, without such assumption, it

is difficult or impossible, depending on the additional structural information available, to accurately

identify the topology of a general network. As a result, a main focus has been on particular net-

work realizations that explain the measured data, such as the sparsest realization, sometimes with

a design parameter to manage the trade-off between model accuracy and sparsity, see e.g., [7, 13].

Along these lines, the work [14] considers the identification of networked linear systems with tree

topologies.

The above-referenced works rely on knowledge of the number of nodes in the network.

However, it is often impossible to sample the state of all nodes, or even know the existence of some

of them. The work [15] studies the problem of learning latent tree graphical models where samples

are available only from a subset of the nodes, and proposes computationally efficient algorithms for

learning trees without any redundant hidden nodes. The work [16] proposes a method to identify

the latent nodes and consistently reconstruct the topology under the assumptions that the network

is a polytree and the degree of each latent node is at least three, with out-degree of at least two.

Unlike the topology identification algorithms proposed in [14,16], our approach here allows for the

possibility of cycles in the network topology. Using the notion of the dynamical structure function

of a networkwith latent nodes [17], thework [18] proposes a convex optimization-based approach to

find the best Boolean structure among manifest nodes which consists of computing and comparing
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the distance between an estimated transfer matrix or data to all possible Boolean structures. The

problem of minimal state-space realization of a given dynamical structure function was further

studied in [19]. In the present work, however, we use a least-square autoregressive identification

approach to identify not only whether a pair of manifest nodes are dynamically connected, but also

whether this connection is direct or indirect (latent-mediated) and, in the latter case, the length of

the shortest path between the two.

Recent work has employed sparse plus low-rank (S+L) decomposition to identify gen-

eral graphical models (with the possibility of cycles) with latent variables for static [20] and dy-

namic [21] models. The present work has two main differences with respect to this paper. First, the

S+L decomposition assumes that the subnetwork among manifest nodes is sparse and the number

of latent nodes is (considerably) smaller than the number of manifest ones, while our method is

applicable to arbitrary networks. Second, although the identification procedure of [21] also leads

to an auto-regressive (AR) model, it is based on the so-called maximum-entropy covariance exten-

sion. This method, with origins in seismic vibrations and human voice analysis, seeks to maximize

the prediction error [22] (while our approach seeks tominimize it), leading to very different models.

Finally, our work is inspired by the wide use in neuroscience of AR models to analyze brain

data via Granger causality and its variants and the study of effective connectivity among different

areas of the brain, see e.g., [2,3,23]. The Granger causality measure is a mainly descriptive tool that

captures influence and interconnection among time series. A popular variant of Granger causality,

direct directed transfer function (dDTF) [5, 24] distinguishes between direct and indirect intercon-

nections between two nodes by multiplying the directed transfer function (DTF, the normalized

transfer function between the two nodes) by the partial coherence between them in the frequency

domain. We are motivated here by understanding to what extent the reconstruction results ob-
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tained via methods that build on Granger causality are sensitive to the presence of latent nodes.

Furthermore, we propose a method using (multivariate) AR models for networks with latent nodes

that distinguishes between direct and indirect (i.e., latent-mediated) interconnections between two

nodes in the time domain based on the order of the interconnection between them.

7.2 Problem Statement

We consider a discrete-time, linear time-invariant (LTI) network dynamics with state-space

representation

x(k + 1) = Ax(k) + u(k),

y(k) = Cx(k), (7.1)

where k ∈ ℤ≥0 is the time index, x(k) ∈ ℝn is the network state (with xi(k) representing the state

of node i ∈ {1,… , n}), u(k) ∈ ℝn is the control input (with ui(k) acting on node i), and y(k) ∈ ℝm

is the network output. Here, A ∈ ℝn×n is the adjacency matrix of the network, characterizing the

interactions among neighboring nodes, andC ∈ ℝm×n is the output matrix. Since natural system are

usually driven by noise, the input, state, and output sequences are in general stochastic processes

over the sample space of noise realizations. For simplicity, the dynamical description (7.1) assumes

that all nodes are of order 1, that is, x(k + 1) depends directly only on x(k) and is conditionally

independent of x̊k−1 given x(k). Nevertheless, as we discuss later (see e.g., Remark 7.3.4), all

of the subsequent results are generalizable to systems whose dynamics (in the original “physical”

variables) are described by difference equations of order higher than 1.
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Even though there is a control input at every node in the network dynamics (7.1), we do not

assume that all the control inputs are user-specified. In fact, in a large-scale network, it is common

that one can actuate only a small subset of the nodes due to computational constraints, physical

limitations, or cost. A similar observation can be made regarding the number of nodes whose state

can be directly measured. For these reasons, here we assume that the nodes of the network are

divided into nm ≤ n manifest nodes, which can be directly actuated and measured by the user, and

n − nm latent nodes, which can neither be directly actuated nor measured by the user. With this

distinction, and using a permutation of the indices in (1, 2,… , n) if necessary, we can decompose

the network and input state as x = [xTm, x
T
l ]
T and u = [uTm,u

T
l ]
T , respectively, where the subindex

‘m’ corresponds to manifest nodes and the subindex ‘l’ corresponds to latent nodes. With this

convention, the output matrix takes the form C = [Inm , 0nm×(n−nm)]. With the decomposition of the

nodes into manifest and latent, the state-space representation (7.1) becomes

⎡

⎢

⎢

⎢

⎣

xm(k + 1)

xl(k + 1)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

A11 A12

A21 A22

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xm(k)

xl(k)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

um(k)

ul(k)

⎤

⎥

⎥

⎥

⎦

,

y(k) = xm(k). (7.2)

In the remainder of this chapter, we consider the network in the relabeled form (7.2). Fig. 7.1

illustrates this relabeling procedure (corresponding to a linear transformation) in a ring.

Since the focus of this work is on network identification and not stabilization, we make the

following standard assumption.

Assumption 7.2.1. The adjacency matrix of the complete network as well as the latent subnetwork

are Schur stable, i.e., �(A) < 1 and �(A22) < 1. □
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Figure 7.1: Node relabeling in a directed ring with 4 nodes. Nodes 1 and 3 are manifest, nodes 2
and 4 are latent. The permutation (1, 2, 3, 4) → (1, 3, 2, 4) makes manifest and latent nodes have
consecutive indices, as in (7.2).

Remark 7.2.2. (Direct versus latent interactions). The interaction graph of the manifest subnet-

work is characterized by A11. In particular, the state of node p affects the state of node q directly if

and only if the entry on the q-th row and the p-th column, denoted by A11(q, p), is nonzero. How-

ever, even if A11(q, p) = 0, it is still possible that node p affects node q indirectly through some

latent nodes. The distinction between direct and indirect connections is an important point to which

we come back later in our discussion. □

We refer to a latent node as passive if its corresponding input is zero. Throughout the

chapter, we only deal with passive latent nodes, so that ůl ≡ 0. We make the following assumption

on the input to the manifest nodes.

Assumption 7.2.3. The input ům to the manifest subnetwork is a zero-mean stochastic process with

independent and identically distributed (i.i.d.) absolutely continuous1 random vectors um(k), with

covariance Inm . □

Assumption 7.2.3 guarantees that ům is persistently exciting of arbitrary order and its power

spectral density does not vanish at any frequency. Similar assumptions are common in system iden-

1Recall that an absolutely continuous random variable/vector is one that has a probability density function (e.g.,
Gaussian).
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tification, see e.g., [11, 25]. The zero-mean assumption can be relaxed by assuming a nonzero but

known E[um(k)] corresponding to the scenario where the designer injects a deterministic stimulat-

ing signal into every manifest node, which itself is subject to the disturbance of a zero-mean white

noise. Without loss of generality and for simplicity, we assume E[um(k)] ≡ 0nm .

Given the setup above, our objective is to identify the transfer function Txmum(!) of the

manifest subnetwork, that is, the transfer function from um to xm, absent any knowledge of the

latent nodes.

Problem 5. (Identification of the manifest transfer function). Given the measured data ẙN , find

a linear auto-regressive model of order �, withN ≫ �, of the form

x̃m(k + 1) =
�−1
∑

i=0
Ãix̃m(k − i) + um(k), (7.3)

such that the associated transfer function Tx̃mum from um to x̃m and the transfer function Txmum from

um to xm in (7.1) are close in theH∞-norm, i.e., ‖Tx̃mum − Txmum‖∞ is small. □

There are alternative methods to identify the transfer function matrix Txmum besides the AR

method in (7.3). Our adoption here of AR model candidates is motivated by their widespread use

in neuroscience to determine causality and interconnections in human brain connectivity models,

see e.g., [2–4]2. Equipped with time series data obtained during the performance of a cognitive

task, the conventional procedure consists of first estimating an AR model, then computing its asso-

ciated transfer function matrix, and finally evaluating the Granger causality connectivity measure,

or generalizations of it, in the frequency domain. We are particularly motivated by the prospect of
2In general, the main advantage of AR models over more general models such as ARMA or BJ is their simplicity,

only capturing the internal dynamics and assuming negligible input noise correlation (though putting no restriction
on input signal correlation, which is significant in brain dynamics). As a result, prediction error minimization has a
closed-form solution for an AR model while it is non-convex in the ARMA or BJ cases.
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understanding the sensitivity of these approaches to the presence of latent nodes corresponding to

brain regions that are active during the cognitive task but are not directly measured.

7.3 Asymptotically Exact Identification of the Manifest Trans-

fer Function

In this section we establish that, given an arbitrary precision, there exists an AR model

solving Problem 5. More precisely, we show that there exists a sequence of AR models of the

form (7.3) with increasing order whose transfer functions converge to Txmum exponentially in the

H∞ sense. We later show that, if the latent subnetwork is acyclic, then this approximation can be

made exact.

We start our discussion with a useful auxiliary result.

Lemma 7.3.1. (Upper bound on ‖Ai22‖). For any Schur stable A22 ∈ ℝnl×nl and any �̄ ∈

(�(A22), 1), there exists � ∈ ℝ>0 such that ‖Ai22‖ ≤ � ⋅ �̄i, for all i ∈ ℤ≥0.

Proof. The result is an immediate consequence of the spectral radius formula limi→∞ ‖Ai22‖
1∕i =

�(A22).

We are now ready to state the main result of this section.

Theorem 7.3.2. (ARmodel whose transfer function converges to the manifest transfer function).

Consider the LTI network described by (7.2) where all the latent nodes are passive. For any �̄ ∈

(�(A22), 1), there exists 
̄ ∈ ℝ>0 such that for all � ∈ ℤ≥0, the AR model (7.3) with

Ã∗0 = A11, Ã∗i = A12A
i−1
22 A21, i ∈ {1,… , � − 1}, (7.4)
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guarantees

‖Tx̃mum(⋅, �) − Txmum‖∞ ≤ 
̄ ⋅ �̄� . (7.5)

Proof. We obtain from (7.2) that

Txmum(!) = (zInm − A11 − A12(zInl − A22)
−1A21)−1

(a)
= (zInm − A11 −

∞
∑

i=1
z−iA12Ai−122 A21)

−1, (7.6)

where z = ej! and (a) follows by using the relation (zInl − A22)
−1 =

∑∞
i=1 z

−iAi−122 . Similarly,

from (7.3) we obtain

Tx̃mum(!, �) = (zInm −
�−1
∑

i=0
z−iÃ∗i )

−1. (7.7)

Here we write the transfer function as Tx̃mum(!, �) to emphasize its dependence on �. It then follows

directly that

‖Tx̃mum(⋅, �) − Txmum‖∞ = ‖Txmum(T
−1
xmum

− T−1x̃mum(⋅, �))Tx̃mum(⋅, �)‖∞
(a)
≤ ‖Txmum‖∞‖Tx̃mum(⋅, �)‖∞‖T

−1
xmum

− T−1x̃mum(⋅, �)‖∞
(b)
≤ ‖Txmum‖∞‖Tx̃mum(⋅, �)‖∞

∞
∑

i=�
‖z−iA12Ai−122 A21‖∞

(c)
≤ ‖Txmum‖∞‖Tx̃mum(⋅, �)‖∞‖A12‖‖A21‖

∞
∑

i=�
‖Ai−122 ‖

(d)
≤ 
(�) ⋅ �̄� ,
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where


(�) ≜
�‖Txmum‖∞‖A12‖‖A21‖

�̄ − �̄2
‖Tx̃mum(⋅, �)‖∞. (7.8)

Here, (a) follows from the sub-multiplicativity of induced norms, (b) follows by the sub-additivity

of norms, (c) follows by the definition of theH∞-norm and also the sub-multiplicativity of induced

norms, and (d) follows from Lemma 7.3.1. The remainder of the proof is devoted to showing the

existence of a uniform upper bound 
̄ for 
(�). By the definition of theH∞-norm,

‖Tx̃mum(⋅, �)‖∞ = sup
−�≤!≤�

�max
(

Tx̃mum(!, �)
)

(7.9)

(a)
=
(

inf
−�≤!≤�

�min
(

T−1x̃mum(!, �)
)

)−1
,

where (a) holds due to the fact that �max(M) = �−1min(M
−1) for any invertible matrixM. To complete

the proof, we only need to show that

# ≜ inf
�∈ℤ≥0

inf
−�≤!≤�

�min
(

T−1x̃mum(!, �)
)

> 0. (7.10)

We show this in two steps.

(i) It follows from (7.6) and (7.7) that

lim
�→∞

T−1x̃mum(!, �) = T
−1
xmum

(!), ∀! ∈ [−�, �].

It is straightforward to show, using the exponential decay of A�22 and definition of uniform
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convergence, that each entry of T−1x̃mum(⋅, �) converges uniformly to the corresponding entry

of T−1xmum . Hence, given the uniform continuity of matrix eigenvalues as a function of matrix

entries [26, Thm 7.8c], �min
(

T−1x̃mum(⋅, �)
)

converges uniformly to �min
(

T−1xmum
)

. Thus, since

inf−�≤!≤� �min
(

T−1xmum(!)
)

= ‖Txmum‖∞ > 0 (which itself holds by Assumption 7.2.1), there

exists �0 ∈ ℤ≥0 such that

inf
�≥�0

inf
−�≤!≤�

�min
(

T−1x̃mum(!, �)
)

> 0.

(ii) For any finite �, we show that Tx̃mum(⋅, �) is BIBO stable and thus has no poles on the unit

circle (which in turn guarantees inf−�≤!≤� �min
(

T−1x̃mum(!, �)
)

> 0). For any bounded input um,

let the corresponding outputs of Tx̃mum(⋅, �) and Txmum be denoted by x̃m and xm, resp. (with

initial states set to zero). We then have

xm(k) − x̃m(k) = A12A�−122 xl(k − �),

where xl is the (internal) state of the latent nodes in Txmum . By Assumption 7.2.1, both xm(k)

and A12A�−122 xl(k − �) are bounded, proving the BIBO stability of Tx̃mum(⋅, �).

Hence, (7.10) follows by combining (i) and (ii) and the fact that the decompositionℤ≥0 = {0}∪{1}∪

⋯∪{�0−1}∪{�0, �0+1,…} is finite. Equivalently, there existsU > 0 such that ‖Tx̃mum(⋅, �)‖∞ < U

for all � ∈ ℤ≥0, so (7.5) holds with 
̄ = �U‖Txmum‖∞‖A12‖‖A21‖∕(�̄ − �̄
2).

Theorem 7.3.2 shows that the presence of latent nodes in the network, as long as they do

not receive any external input, does not affect the achievable accuracy of the identification via AR

modeling of the manifest transfer function.
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Remark 7.3.3. (Direct versus latent interactions – cont’d). It follows from the network dynam-

ics (7.2) that

xm(k + 1) =
k
∑

i=0
Ã∗i xm(k − i) + A12A

k
22xl(0) + um(k). (7.11)

By virtue of (7.11), we can distinguish whether two manifest nodes interact directly or indirectly

through latent nodes by looking at the matrix sequence {Ã∗i }. First, the state of manifest node p

affects the state of manifest node q directly if and only if Ã∗0(q, p) = A11(q, p) ≠ 0. Similarly, the

state of manifest node p affects the state of manifest node q indirectly through latent nodes if and

only if Ã∗i (q, p) ≠ 0 for some i ≥ 1. In particular, from the relation Ã∗i = −A12A
i−1
22 A21, one can see

that the state of p first affects some latent nodes (that correspond to the nonzero entries in the p-th

column of A21) through A21, then propagates through the latent subnetwork, reflected by Ai−122 , and

finally affects q through A12. Furthermore, if the latent subnetwork is acyclic, then Ã∗i (q, p) ≠ 0

implies that there are exactly i latent nodes in a path connecting p to q. □

Remark 7.3.4. (Systems described by higher-order difference equations). Unlike the system de-

scription in (7.1), the dynamic behavior of many real-world complex systems such as the brain

cortical networks is described by difference equations of orders significantly greater than 1, i.e.,

x(k + 1) = A(0)x(k) + A(1)x(k − 1) +⋯ + A(�−1)x(k − � + 1) + u(k), � ≫ 1 (7.12)

where x1,… , xnm still denote the manifest (sensed and actuated) nodes and xnm+1,… , xn are the la-

tent ones. In this description, the vector x corresponds to some relevant physical variables. Defining

the state vector �(k) = [x(k)T x(k−1)T ⋯ x(k− � +1)T ]T , one can rewrite (7.12) in order-1 form
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as

⎡

⎢

⎢

⎢

⎣

�m(k + 1)

�l(k + 1)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

11 12

21 22

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�m(k)

�l(k)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

um(k)

0

⎤

⎥

⎥

⎥

⎦

, (7.13)

where �m(k) = xm(k), �l(k) = [xl(k)T xm(k − 1)T xl(k − 1)T ⋯ xm(k − � + 1)T xl(k − � + 1)T ]T ,

11 = A
(0)
11 , and

12 =
[

A(0)12 A(1)11 A(1)12 ⋯ A(�−1)11 A(�−1)12

]

,

21 =
[

(A(0)21 )
T Inm 0 ⋯ 0 0

]T

,

22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A(0)22 A
(1)
21 A

(1)
22 ⋯A

(�−2)
21 A(�−2)22 A(�−1)21 A(�−1)22

0 0 0 ⋯ 0 0 0 0

Inl 0 0 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 0 0 0

0 0 0 ⋯ 0 0 0 0

0 0 0 ⋯ Inm 0 0 0

0 0 0 ⋯ 0 Inl 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In this description, we view �m as the actual “manifest state” of the system while the whole vector

�l is the “latent state”. The reason for this interpretation is that, at any time k, only xm(k) is directly

sensed/actuated while x(k−1),… , x(k−�+1) are quantities stored in the system. Interestingly, for

the order-1 description (7.1), this observation brings up the possibility of some of the latent vari-

ables xl simply being a relayed version of manifest variables. Note that, under this interpretation,

245



the matrices A(1)11 ,… ,A(�−1)11 represent manifest-latent (rather than manifest-manifest) interactions.

From (7.13), it is clear that all the treatment for (7.1) is readily applicable. Nevertheless, as � in-

creases, larger � is necessary in order for (7.3) to represent the system accurately. This is both

intuitive and clear from (7.5) and (7.8), where increasing � results in larger ‖A12‖ and ‖A21‖ as

well as (usually) ‖Txmum‖ and �(A22). This, in turn, may result in numerical difficulties when one

constructs the AR model from recorded input-output data (which is the subject of the next section).

□

Next, we show that there exists an AR model (7.3) whose transfer function coincides with

the manifest transfer function if the latent subnetwork is acyclic.

Corollary 7.3.5. (Exact manifest transfer function identification for acyclic latent subnetworks).

Under the assumptions of Theorem 7.3.2, further assume that the latent subnetwork is acyclic, i.e.,

there exists �22 ∈ ℤ≥1 such that A�2222 = 0nl×nl . Then, the matrix sequence Ã∗0,⋯ , Ã∗�22 in (7.4)

ensures Tx̃mum = Txmum .

The proof of the result follows by comparing (7.6) and (7.7), and using the assumption

that the latent subnetwork is acyclic. Theorem 7.3.2 and Corollary 7.3.5 show that it is possible

to identify the transfer function of the manifest subnetwork without any knowledge of the passive

latent nodes. However, (7.4) cannot be directly applied to determine the auto-regressive model

because its evaluation requires knowledge of the adjacency matrixA of the whole network, which is

unknown. This problem can be circumvented by employing the measured data sequence ẙN ⊂ ℝnm ,

as explained in the next section.
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7.4 Identification via Least-Squares Estimation

In this section we employ least-squares estimation to compute from data the sequence of

matrices defining the auto-regressive model. We show that the estimates resulting from this method

asymptotically converge in probability, as the data length N and model order � increase, to the

optimal matrix sequence identified in Theorem 7.3.2. Finally, we particularize our discussion to

the case of acyclic latent subnetworks.

7.4.1 Least-Squares Auto-Regressive Estimation

Given a vector sequence ẙN ⊂ ℝnm , the problem of least-squares auto-regressive (LSAR)

model estimation with order � ∈ ℤ≥1 is to find a matrix sequence ̊̂A�−1 = {Â0,… , Â�−1} ⊂ ℝnm×nm

that minimizes the 2-norm of the residual sequence e̊N−1� ⊂ ℝnm defined by

e(k) = y(k + 1) −
�−1
∑

i=0
Âiy(k − i), (7.14)

for k ∈ {�,… , N − 1}. Equation (7.14) can be written in compact vector form as

ẙN�+1 =
̊̂A�−1�N + e̊N−1� , (7.15)
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where

ẙN�+1 =
[

y(� + 1) y(� + 2) ⋯ y(N)
]

∈ ℝnm×(N−�),

e̊N−1� =
[

e(�) e(� + 1) ⋯ e(N − 1)

]

∈ ℝnm×(N−�),

̊̂A�−1 =
[

Â0 Â1 ⋯ Â�−1

]

∈ ℝnm×nm� ,

�N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y(�) y(� + 1) ⋯ y(N − 1)

y(� − 1) y(�) ⋯ y(N − 2)

⋮ ⋮ ⋱ ⋮

y(1) y(2) ⋯ y(N − �)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Using the square of the prediction error [25]

tr(e̊N−1� (e̊N−1� )T ) = tr
(

(ẙN�+1 −
̊̂A�−1�N )(ẙN�+1 −

̊̂A�−1�N )T
)

as the cost function, we compute its gradient

)tr(e̊N−1� (e̊N−1� )T )

) ̊̂A�−1
= (ẙN�+1 −

̊̂A�−1�N )(−�
T
N ) =

̊̂A�−1�N�
T
N − ẙ

N
�+1�

T
N .

Setting this to zero, we get a system of linear equations for which a solution is guaranteed to exist

(since the rows of ẙN�+1�
T
N belong to the row space of �N�

T
N , which is the same as the row space

of �T
N ). By Assumption 7.2.3, det(�N�

T
N ) ≠ 0 and this solution is unique with probability one.3

3This is because (each element of) ẙN−1 is an affine function of ůN−2, and det(�N�T
N ) is a polynomial function

of ẙN−1, so det(�N�T
N ) is a polynomial function of ůN−2. Therefore, the level set  = {ůN−2 | det(�N�T

N ) = 0}
has Lebesgue measure zero. Thus, by Assumption 7.2.3, Pr( ) = 0.
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If det(�N�
T
N ) = 0, the minimum-norm solution can be found as

̊̂A�−1 = ẙN�+1�
T
N (�N�

T
N )

−1 = ẙN�+1�
+
N , (7.16)

where (⋅)+ denotes theMoore-Penrose pseudo-inverse. Since (7.16) is also valid for the nonsingular

case, it is taken as the solution to the LSAR estimation problem. In order to indicate the dependency

of the solution upon the measured data sequence, we sometimes use the notation ̊̂A�−1(ẙN ).

7.4.2 Convergence in Probability to Manifest Transfer Function

Here we study the transfer function resulting from the LSAR estimation method and char-

acterize its convergence properties, as the data length and the model order increase, with respect to

the transfer function of the manifest subnetwork. Our first result establishes that the LSAR matrix

estimate (7.16) converges in probability to the optimal matrix sequence identified in Theorem 7.3.2.

Proposition 7.4.1. (The LSAR estimate converges in probability to optimal matrix sequence).

Consider the LTI network described by (7.2) where all latent nodes are passive. Given the mea-

sured data sequence ẙN generated from the dynamics (7.2) stimulated by the white noise input ům

according to Assumption 7.2.3 and any �̄ ∈ (�(A22), 1), there exists � ∈ ℝ>0 (depending only on

the adjacency matrix A) such that the LSAR estimate Â�(ẙN ) in (7.16) satisfies

‖plim
N→∞

̊̂A�−1(ẙN ) − ̊̃A∗�−1‖max ≤ ���̄� , (7.17)

where ̊̃A∗�−1 =
[

Ã∗0 Ã∗1 ⋯ Ã∗�−1

]

∈ ℝnm×nm� is the optimal matrix sequence given by (7.4).
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Proof. For any quasi-stationary signal4 s̊, let

Rs(j) ≜ lim
N→∞

1
N

N
∑

i=1
E[s(i)s(i − j)T ].

Using the Birkhoff’s Ergodic Theorem [27, Thm 7.2.1] (see also [27, Thm 7.1.3]) and the fact that

ẙ is the output of a stable system (and thus the effects of initial conditions asymptotically vanish),

we can show that

plim
N→∞

1
N

N
∑

i=1
y(i)y(i − j)T = Ry(j).

As a result, 1
N
�N�

T
N ∈ ℝnm�×nm� also converges in probability and

R� ≜ plim
N→∞

1
N
�N�

T
N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ry(0) Ry(1) ⋯ Ry(� − 1)

RTy (1) Ry(0) ⋯ Ry(� − 2)

⋮ ⋮ ⋱ ⋮

RTy (� − 1) RTy (� − 2) ⋯ Ry(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Define

�(k) ≜ y(k + 1) −
�−1
∑

i=0
Ã∗i y(k − i), (7.18)

4Basically, a signal is quasi-stationary if it has a well-defined covariance function. See [25, Def 2.1] for a formal
definition.
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and note that the transfer function from um to � is T−1x̃mumTxmum , where Txmum and Tx̃mum are given

by (7.6) and (7.7), respectively. Equation (7.18) can be written in compact vector form as

ẙN�+1 =
̊̃A∗�−1�N + �̊N−1� , (7.19)

with �̊N−1� ≜ [�(�) �(� + 1) ⋯ �(N − 1)] ∈ ℝnm×(N−�). From (7.16) and (7.19), it follows that

plim
N→∞

̊̂A�−1(ẙN ) = plim
N→∞

1
N
ẙN�+1�

T
N (
1
N
�N�

T
N )

−1

= ̊̃A∗�−1 + plim
N→∞

1
N

�̊N−1� �T
N (
1
N
�N�

T
N )

−1. (7.20)

Moreover, Assumption 7.2.3 renders um(k) independent of ẙk, which further implies that

plimN→∞
1
N
ůN−1m,� �

T
N = 0nm×nm� , where ů

N−1
m,� ≜ [um(�) um(� + 1) ⋯ um(N − 1) ∈ ℝnm×(N−�).

Therefore,

plim
N→∞

1
N

�̊N−1� �T
N = plim

N→∞

1
N
(�̊N−1� − ůN−1m,� )�

T
N = 	, (7.21)

where 	 ≜
[

	1 	2 ⋯ 	�

]

∈ ℝnm×nm� , with

	j ≜ plim
N→∞

1
N

N−1
∑

i=�
(�(i) − um(i))yT (i − j + 1) ∈ ℝnm×nm .

Thus, using plimN→∞(
1
N
�N�

T
N )

−1 = R−1� , we have

plim
N→∞

̊̂A�−1(ẙN ) − ̊̃A∗�−1 = 	R
−1
� .
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By the sub-additivity of the max norm, it holds for any j ∈ {1,… , �} that

‖	j‖max ≤ plim
N→∞

1
N

N−1
∑

i=�
‖(�(i) − um(i))yT (i − j + 1)‖max

(a)
≤ plim

N→∞

�̄−�

N

N−1
∑

i=�
(�(i)−um(i))T (�(i)−um(i)) + plim

N→∞

�̄�

N

N−1
∑

i=�
yT (i−j+1)y(i−j+1)

= �̄−�tr(R�−um(0))+ �̄
�tr(Ry(0)), (7.22)

where (a) follows from Lemma 7.A.1 in the appendix with the positive scalar M chosen as �̄� .

Using the fact that the transfer function from um to � − um is T−1x̃mumTxmum − Inm , we obtain

R�−um(0) ≜ lim
N→∞

1
N

N−1
∑

i=0
E[(� − um)(i)(� − um)T (i)]

(a)
= 1
2� ∫

�

−�
(T−1x̃mumTxmum(!) − Inm)(T

−1
x̃mum

Txmum(!) − Inm)
∗d!

(b)
≤ ‖T−1x̃mumTxmum − Inm‖

2
∞Inm

(c)
≤ ‖Txmum − Tx̃mum‖

2
∞‖T

−1
x̃mum

‖

2
∞Inm

(d)
≤ 
̂ �̄2�Inm , (7.23)

where 
̂ ≜ 
̄2
(

1+ ‖A11‖+ ‖A12‖‖A21‖�(1− �̄)−1
)2 is constant, (a) follows from [28, eq. (9-193)],

(b) follows by the definition ofH∞-norm, (c) follows by the sub-multiplicativity of induced norms,

and (d) holds because of Theorem 7.3.2 and the observation that, by Lemma 7.3.1,

‖T−1x̃mum‖∞ ≤ 1 + ‖A11‖ + ‖A12‖‖A21‖�(1 − �̄)−1.
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We obtain from (7.22) and (7.23),

‖	j‖max ≤ �̄�(
̂nm + tr(Ry(0))),

and from (7.20) and (7.21),

‖ plim
N→∞

̊̂A�−1(ẙN ) − ̊̃A∗�−1‖max =‖	R
−1
� ‖max ≤ nm�‖R−1� ‖max‖	‖max

= nm�‖R−1� ‖maxmaxj ‖	j‖max ≤ ���̄� ,

where � = (
̂n2m + tr(Ry(0))nm)‖R
−1
� ‖max, as claimed.

When it is clear from context, we refer to plimN→∞ Âi(ẙN ) simply as Âi.

Remark 7.4.2. (Direct versus latent interactions – cont’d). Proposition 7.4.1 shows that Âi con-

verges in probability to Ã∗i exponentially as the model order � increases. Therefore, within a margin

of error that can be tuned as desired, we deduce from the discussion in Remark 7.3.3 that the LSAR

estimate Â0 allows us to determine whether two manifest nodes interact directly and the LSAR es-

timates {Âi}i≥1 allow us to determine whether two manifest nodes interact indirectly through latent

nodes with high probability as the length of measurement data grows. □

Given the result in Proposition 7.4.1, we next turn our attention to the transfer function from

e to y resulting from the LSAR estimation (7.14), which we denote by Tye(ẙN , �). The next result

shows that the H∞-norm of this transfer function is uniformly upper bounded with respect to the

model order �.

Lemma 7.4.3. (H∞-norm of Tye is uniformly upper bounded). Under the assumptions of Propo-
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sition 7.4.1, there exist positive scalars �0 and U∞
Tye

such that, for � ≥ �0,

‖plim
N→∞

Tye(ẙN , �)‖∞ ≤ U∞
Tye
. (7.24)

Proof. By definition ofH∞-norm, we have

‖plim
N→∞

Tye(ẙN , �)‖∞ = sup
−�≤!≤�

�max
(

plim
N→∞

Tye(!, �)
)

=
(

inf
−�≤!≤�

�min
(

plim
N→∞

T−1ye (!, �)
)

)−1
. (7.25)

Note that, for every ! ∈ [−�, �] and � ∈ ℤ≥0,

plim
N→∞

T−1ye (!, �) = zInm −
�−1
∑

i=0
z−iÂi = T−1x̃mum(!, �) −

�−1
∑

i=0
z−i(Âi − Ã∗i ), (7.26)

where z = ej!. However, for every ! ∈ [−�, �] and � ∈ ℤ≥0,

‖

‖

‖

�−1
∑

i=0
z−i(Âi − Ã∗i )

‖

‖

‖

≤
�−1
∑

i=0
‖Âi − Ã∗i ‖

(a)
≤ nm

�−1
∑

i=0
‖Âi − Ã∗i ‖max

(b)
≤ nm� maxi ‖Âi − Ã∗i ‖max ≤ nm��

2�̄� ,

where (a) follows from the fact that ‖A‖ ≤ nm‖A‖max for any matrix A ∈ ℝnm×nm and (b) follows

from Proposition 7.4.1. Therefore, usingWeyl’s theorem for the perturbation of singular values [29]
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in (7.26) and taking inf−�≤!≤� of both sides, we get

inf
−�≤!≤�

�min
(

plim
N→∞

T−1ye (!, �)
)

≥ inf
−�≤!≤�

�min
(

T−1x̃mum(!, �)
)

− ‖

‖

‖

�−1
∑

i=0
z−i(Âi − Ã∗i )

‖

‖

‖

≥ inf
−�≤!≤�

�min
(

T−1x̃mum(!, �)
)

− nm��2�̄� .

In view of (7.10), let �0 be such that

nm��
2�̄� ≤ #

2
, ∀� ≥ �0. (7.27)

Then, the result follows from (7.25) with U∞
Tye
= 2

#
.

We are finally ready to show that the transfer function Tye obtained from the LSAR method

converges in probability to the transfer function Txmum of the manifest subnetwork.

Theorem 7.4.4. (The LSARmethod consistently estimates themanifest transfer function). Under

the assumptions of Proposition 7.4.1, for any �̄ ∈ (�(A22), 1), there exist positive scalars �̄, 
̄ and

�0 such that, for � ≥ �0,

‖plim
N→∞

Tye(ẙN , �) − Txmum‖∞ ≤ (�̄�2 + 
̄)�̄� . (7.28)

Consequently, plimN→∞,�→∞ Tye(ẙN , �) = Txmum .

Proof. We only need to prove (7.28) as it directly implies the last equation in the statement. By the
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sub-additivity and sub-multiplicity of induced norms,

‖Tye(⋅, �) − Txmum‖∞ ≤ ‖Tye(⋅, �) − Tx̃mum(⋅, �)‖∞ + ‖Tx̃mum(⋅, �) − Txmum‖∞

≤ ‖Tye(⋅, �)‖∞‖Tx̃mum(⋅, �)‖∞‖T
−1
ye (⋅, �) − T

−1
x̃mum

(⋅, �)‖∞

+ ‖Tx̃mum(⋅, �) − Txmum‖∞. (7.29)

Next, by (7.9), Lemma 7.4.3, and Theorem 7.3.2, there exist positive scalars �0, U∞
Tye

and # such

that for � ≥ �0,

‖plim
N→∞

Tye(⋅, �) − Txmum‖∞ ≤ U∞
Tye
#−1‖plim

N→∞
T−1ye (⋅, �) − T

−1
x̃mum

(⋅, �)‖∞ + 
̄ �̄� . (7.30)

Finally, according to the definition of Tye(⋅, �) in (7.14) and Tx̃mum(⋅, �) in (7.7), it follows that

‖plim
N→∞

T−1ye (⋅, �) − T
−1
x̃mum

(⋅, �)‖∞ = ‖

�−1
∑

i=0
z−i(plim

N→∞
Âi − Ã∗i )‖∞

(a)
≤

�−1
∑

i=0
‖plim
N→∞

Âi − Ã∗i ‖
(b)
≤ nm��

2�̄� , (7.31)

where (a) holds by the sub-additivity and sub-multiplicity of ‖⋅‖ and (b) follows by Proposition 7.4.1

and the fact that ‖A‖ ≤ nm‖A‖max for any matrix A ∈ ℝnm×nm . Thus, we obtain (7.28) for � ≥ �0,

where �̄ ≜ U∞
Tye
#−1nm� is a constant.

According to Theorem 7.4.4, when the length N of the measurement data is sufficiently

large and the model order � exceeds a certain threshold, the error ‖Tye(�) − Txmum‖∞ obtained by

the LSAR method decreases exponentially with �.

Remark 7.4.5. (Identification of manifest transfer function requires higher-order models as sta-
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bility margin of latent subnetwork decreases). Even though an explicit expression of the threshold

�0 in Theorem 7.4.4 as a function of the network is difficult to obtain, we can still make some useful

observations. From inequality (7.27) in the proof of Lemma 7.4.3, one can see that �0 is an increas-

ing function of �̄. Hence, as the latent subnetwork becomes less stable (�(A22) gets closer to 1),

the corresponding �0 becomes larger, requiring the order of the AR model to be higher to ensure

exponential convergence. □

Remark 7.4.6. (Systems described by higher-order difference equations – cont’d). As explained

in Remark 7.3.4, the AR representation of systems with order � > 1 is identical to the � = 1 case,

although they require larger AR order �. For large-scale systems (n ≫ 1), increasing � rapidly

raises the number of parameters in (7.15), which leads to over-parametrization of the LSAR iden-

tification. Our simulations in Section 7.5 show how this can be overcome both by increasing N

(which is computationally costly) and exponential regularization. Also, note that when � > 1, the

only member of the sequence of matrices A(0)11 ,… ,A(�−1)11 (denoting all current and past interactions

among manifest nodes) that is identifiable by the LSAR method is A(0)11 (representing direct inter-

actions among manifest states) while the others are only identifiable in the aggregate form (7.5).

□

7.4.3 Exact Identification for Acyclic Latent Subnetworks

Here we show that the transfer function of the manifest subnetwork can be perfectly identi-

fied using the LSAR method with a finite model order if the latent subnetwork is acyclic. We start

by refining the result in Proposition 7.4.1 and showing how, in this case, the convergence of the

LSAR matrix estimate (7.16) to the optimal matrix sequence identified in Theorem 7.3.2 holds in
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the mean-square sense.

Proposition 7.4.7. (The LSAR estimate converges in mean square to optimal matrix sequence for

acyclic latent subnetworks). Consider the LTI network described by (7.2)where all latent nodes are

passive. Further assume that the latent subnetwork is acyclic, i.e., there exists �22 ∈ ℤ≥1 such that

A�2222 = 0nl×nl . Given the measured data sequence ẙN generated from the dynamics (7.2) stimulated

by the white noise input ům according to Assumption 7.2.3, the LSAR estimate ̊̂A�−1(ẙN ) in (7.16)

satisfies, for any � ≥ �22 + 1,

lim
N→∞

E[( ̊̂A�−1(ẙN ) − ̊̃A∗�−1)
T ( ̊̂A�−1(ẙN ) − ̊̃A∗�−1)] = 0nm�×nm� .

Proof. If A22 is nilpotent, using Corollary 7.3.5, we deduce that the transfer function from um to �

defined in (7.18) is T−1x̃mumTxmum = Inm . Consequently, the random vectors �(k)’s are i.i.d. with zero

mean and finite second moment E[�(k)�T (k)] = Inm . Define

ZN ≜ 1
N
( ̊̂A�−1 − ̊̃A∗�−1)�N�

T
N

(a)
= 1
N
(�̊N−1� − e̊N−1� )�T

N
(b)
= 1
N

�̊N−1� �T
N ,

where (a) follows from (7.15) and (7.19) and (b) follows from the fact that the least-squares estimate

̊̂A�−1 in (7.16) renders e̊N−1� �T
N = 0nm×nm� . Combining the fact that the �(k)’s are i.i.d. and the fact

that ẙk is a function of �̊k−1, we deduce that �(k) are independent of ẙk. This further implies that

E[ZN ] = 0nm×nm� . Furthermore,

lim
N→∞

E[ZTNZN ] = lim
N→∞

1
N2

E[�N (̊�N−1� )T �̊N−1� �T
N ]

= lim
N→∞

1
N
R� = 0nm�×nm� .
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Therefore,

lim
N→∞

E[ ̊̂A�−1 − ̊̃A∗�−1] = lim
N→∞

E[ZN ]R−1� = 0nm×nm� ,

and

lim
N→∞

E[( ̊̂A�−1 − Ã∗�)
T ( ̊̂A�−1 − ̊̃A∗�−1)] = R

−1
� lim

N→∞
E[ZTNZN ]R

−1
� = 0nm�×nm� ,

as claimed.

We build on this result to show that the manifest transfer function can be perfectly identified

using the LSAR method with a finite model order if the latent subnetwork is acyclic.

Theorem 7.4.8. (Exact manifest transfer function identification for acyclic latent subnetworks).

Under the assumptions of Proposition 7.4.7, for any � ≥ �22 + 1,

plim
N→∞

Tye(ẙN , �) = Txmum .

Proof. We have plimN→∞
̊̂A�−1(ẙN ) = ̊̃A∗�−1 from Proposition 7.4.7, which combined with (7.31)

implies

plim
N→∞

T−1ye (�) = T
−1
x̃mum

(�).

Moreover, from Corollary 7.3.5, we haveTx̃mum(�) = Txmum . The statement then follows from (7.29)

and Lemma 7.4.3.
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7.5 Simulations

In this section, we illustrate the performance of least-squares auto-regressive estimation in

identifying themanifest transfer function in two examples, a deterministic directed ring network and

a group of Erdős–Rényi random networks. We pay particular attention to the behavior displayed

as the length of measured data and the model order change. In both examples, the input signal is a

white Gaussian process with unit variance.

Example 7.5.1. (Directed ring network). Consider a directed ring network of 40 nodes with self-

loops and all edgeweights equal to � = 0.25. The nodes with indices {5, 23, 33, 34, 36} aremanifest

and the remaining 35 nodes are passive latent. Fig. 7.2.(a) shows a 3D plot of the identification error

‖Tye−Txmum‖∞ of the LSARmethod, with axes corresponding to length ofmeasured data andmodel

order, respectively. We note that, when the measured data length N is small, increasing the AR

model order � does not provide better estimation of the manifest transfer function. Similarly, when

the model order � is too low, increasing the data length N is not helpful either. Instead, when N

and � increase simultaneously, the LSAR method provides good estimation of the manifest transfer

function without any knowledge of the latent nodes, as predicted by Theorem 7.4.4. In Fig. 7.2.(b),

we fix N = 106 and show that the error of the model obtained by the LSAR method is quite

similar to the error ‖Tx̃mum − Txmum‖∞ of the ideal AR model from Theorem 7.3.2. Note that the

latter requires knowledge of the true adjacency matrix A, and we use it here merely for comparison

purposes. □

Example 7.5.2. (Erdős–Rényi random network). Here we consider a group of 10 Erdős–Rényi

random networks [30]. Each network in the group is of type G(10, 0.35), with 5 manifest nodes

chosen randomly and the remaining 5 nodes are latent. Each pair of edges (i, j), (j, i), 1 ≤ i <
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Figure 7.2: H∞-norm errors for the directed ring network of Example 7.5.1. (a) The H∞-norm
error of the LSARmethod as a function of data lengthN and model order �. Performance improves
asN and � increase. (b) Comparison of theH∞-norm errors of the LSARmethod (blue dotted lines)
and the optimal AR model from Theorem 7.3.2 (red dashed lines) forN = 106.

j ≤ 10 has nonzero weights with probability 0.35 (we choose edges in pairs so that, when plotting

the graph, the edge direction can be omitted). The weight of each edge has a uniform distribution

in {x ∈ ℝ | 0.1 < x < 0.35} (note that (i, j) and (j, i) can have different weights). Because of

rounding errors in the numerical computation, the estimated coefficient matrices (7.16) of the AR

model are usually full matrices. The lower bound on the edge weights allows us to discard entries

in Â0 that are smaller than 0.1. We consider a fixed lengthN = 106 of measured data and analyze

the effect of varying model order. Fig. 7.3 shows a 3D plot of the error in the identification of

the manifest transfer function by the LSAR estimation, with axes corresponding to network index

and model order, respectively. One can see the improvement in performance as the model order

increases for all 10 networks. Fig. 7.4 compares the identification error of the LSAR method for

the networks with indices 1, 6, 8, 10 in Fig. 7.3 against the error of the optimal AR model from

Theorem 7.3.2. The latent subnetwork of network 6 is acyclic (withA22 = 05×5), and the estimation

error goes to 0 when the AR model has order higher than �22 = 1, as predicted by Theorem 7.4.8.
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Figure 7.3: Illustration of the H∞-norm error of the LSAR with respect to the model order � for
the group of G(10, 0.35) Erdős–Rényi random networks of Example 7.5.2. Performance improves
as the model order � increases for all 10 networks. The length of measured data isN = 106.

To illustrate our observations in Remark 7.4.2 regarding the identification of manifest and latent

interactions, Fig. 7.5 shows on the left the networks with indices 1, 6, 8, 10 of Fig. 7.3 and on the

right the corresponding reconstructions obtained with the LSAR method. The indirect interactions

represented by dashed edges in these plots imply the presence of latent nodes. For comparison, we

have also used the brain connectivity estimator technique called direct directed transfer function

(dDTF) measure [5, 24] from neuroscience to identify direct connections between nodes. This

technique is a refinement of the directed transfer function (DTF) approach, which instead cannot

distinguish between direct and indirect connections. We have employed the dynamical modeling

method within the Source Information Flow Toolbox (SIFT) [31, 32] in EEGLAB [33], which is a

widely used open-source toolbox for EEG analysis. Fig. 7.6 shows the interaction topology among

the 5manifest nodes in network 10 identified by SIFT using the dDTFmeasure. The dDTFmeasure

is in the frequency domain and can also be a function of time (e.g., for time-varying networks).
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Figure 7.4: Comparison of the H∞-norm errors of the LSAR method (red dashed lines) and the
optimal AR model from Theorem 7.3.2 (blue dotted lines) for the Erdős–Rényi random networks
with indices 1, 6, 8, 10 in Fig. 7.3. The estimation error for network 6 becomes 0 when the AR
model has order higher than 1 because the latent subnetwork is acyclic with �22 = 1. The length of
measured data isN = 106.

Since our networks are time-invariant, the time axis can be ignored. The plot shows that the dDTF

identifies roughly equally strong connections for (2, 4) (which is in reality mediated by latent nodes)

and (4, 5) (which is a true direct connection). This is in contrast with the identification made with

the LSAR method presented in Fig. 7.5(d). □

Example 7.5.3. (Cortical brain network identification from EEG data). In this example, we apply

our method to a multi-channel electroencephalogram (EEG) time-series recorded from a human

scalp during a selective visual attention experiment in order to identify the manifest and latent-

mediated connections among the channels. The EEG data is taken from the sample dataset avail-

able in the EEGLAB MATLAB toolbox [33]. This dataset contains recordings from 32 channels
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Figure 7.5: Left: Erdős–Rényi random networks corresponding to the networks with indices 1 (a),
6 (b), 8 (c), 10 (d) in Fig. 7.3, where red circles represent manifest nodes and black circles represent
latent nodes. Right: reconstructed interaction graphs of the manifest subnetworks using the LSAR
method. The numbers next to these nodes indicate their indices. A blue solid edge represents direct
interaction and a black dashed edge represents indirect interaction through latent nodes. Note that
the latent subnetwork of network 6 is acyclic.

for more than 3 seconds with Ts = 7.8ms sampling time (128Hz sampling frequency). Chan-

nel locations are shown in Fig. 7.10(a) on a top (axial) view of the skull. During the experiment,

the subject is asked to perform specific motor actions in response to certain visual stimuli, requir-

ing coordination among several cortices. We take the first 13 EEG channels corresponding to the

fronto-temporal cortical areas (shown as blue squares in Fig. 7.10(a)) as the manifest nodes and the

remaining channels as well as the truly hidden brain regions (the ones not probed in the test) as the

latent nodes. In the following, we present the results of identifying the direct and indirect connec-

tions among the manifest nodes using the LSAR method as well as the dDTF algorithm [5,24] and

the S+L algorithm of [21]. For each method, we only keep the edges whose identified weights are

above a certain threshold � (which we choose as a proportional constant � ∈ (0, 1) times the largest
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edge weight in the network).

In neuroscience, the brain dynamics generating the EEG data are usually approximated by

a high-order AR model of the form (7.12) (� ≳ 10). As mentioned in Remark 7.4.6, larger � and

thus larger number of parameters are then required, which may lead to over-parametrization. To

prevent this, we use an exponentially-regularized version of (7.16) by minimizing

tr(e̊N−1� (e̊N−1� )T + 
 ̊̂A�−1PPT
̊̂AT�−1), (7.32)

where P = diag(1, �−10 ,… , �−(�−1)0 )⊗ Inm and, ideally, �0 = �(A22) (in practice, it is found by trial

and error). The role of the exponential regularizer is to encourage the higher-order AR terms to

decay exponentially, as Ã∗i do. In the simulations that follow, we have used 
 = 10 and �0 = 0.9.

Fig. 7.7 shows the reconstructed manifest subnetwork with direct and indirect connections

using the LSAR method for � = 15 and different values of �. One can observe that the sensitivity

of the network structure to the threshold ratio � is significant, showing that the majority of network

links are relatively weak with respect to the largest link (which is usually a self-loop). This sensi-

tivity, however, is smaller for the indirect connections. Note that increasing � is a way of enforcing

sparsity among the manifest nodes similar (but not equivalent) to [21]. Also, note that unlike [21],

the manifest subnetwork estimated by our method is directed (though directions are not shown in

Fig. 7.7 for simplicity).

For comparison, Fig. 7.8 shows the reconstructed manifest subnetwork with direct and indi-

rect connections using the S+L method of [21] for n = 55. Although the use of a threshold value is

5n represents the model order in [21]. While the role of the model order is not discussed in the reference, the
use of higher-order models significantly increases the computational cost of the algorithm. Also, note that there is no
one-to-one correspondence between the subfigures of Figs. 7.7-7.9.
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not prescribed in [21], we have used a fixed value of � = 0.01 for all values of (�, 
), since the ab-

sence of a threshold (� = 0) results in all nodes being estimated to be (both directly and indirectly)

connected. This lack of sparsity occurs for all values of (�, 
) (no matter how large they are chosen),

unless extremely large values are employed, which results in a fully disconnected network. From

various plots, we see that even with the use of a threshold value all the nodes are estimated to be in-

directly connected, with the sparsity of direct connections and the estimated number of latent nodes

being determined by (�, 
). This abundance of indirect connections and parameter-based tuning of

direct connectivity is similar to our results in Fig. 7.7, even though the details of the reconstructed

networks do not exactly match.

Fig. 7.9 shows the result of applying both the Directed Transfer Function (DTF) [34] and

direct Directed Transfer Function (dDTF) methods to the EEG channel data to estimate the indirect

and direct connections between the manifest nodes, respectively, for different frequency bands.

Both methods are applied to the data using the EEGLAB SIFT plugin for � = 15 (selected based

on SIFT Model Order Selection). In all cases, a constant threshold ratio � = 0.1 is used and the

value of the threshold is computed with respect to the largest off-diagonal link weight in the same

frequency. As can be seen, the connectivity pattern is considerably different between lower and

higher frequencies, where several pairs are not even indirectly connected over the �-� band. This

is in contrast to the reconstructed networks of Fig. 7.7 in which most pairs are at least indirectly

connected, even for threshold values as large as � = 0.15. Nevertheless, a common feature of

all the reconstructed networks in Figs. 7.7-7.9 is that the density of direct connections is higher

in the fronto-central (FC) areas and lower in central (C) areas and midline frontal pole (FPz). The

independence of this sparsity pattern from the employed reconstructionmethod and parameter value

suggests that it is a robust feature of the actual brain connectivity among these areas.
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Since the true network structure is unknown for this example (and hence the methods are not

directly comparable), we validate our LSAR estimated connectivity based on its ability to predict

future (i.e., unseen) channel activity. Thus, we used the first 80% of data for LSAR estimation and

the last 20% for evaluation, which is based on

R2 = 1 −
∑N ′

k=N+1 ‖e(k)‖
2

∑N ′

k=N+1 ‖y(k)‖2
, (7.33)

denoting the percentage of the future channel activity that is correctly predicted by the model [25,

§16.4], where ẙN ′

N+1 is the latter data sequence not used for estimation. The blue curve in Fig. 7.10(c)

shows the value of R × 100% for the LSAR method as a function of model order for the same

selection of nodes as above (i.e., anterior)6. This shows that the method is capable of predicting

more than 96.5% of unseen data with model orders � = 15 ∼ 20 (which is relatively low given

the large number of latent nodes and the high order of the underlying brain dynamics). It should

be noted that the R-value is not a suitable measure for comparison among the networks obtained

by the LSAR, S+L, and dDTF methods. On the one hand, the AR model underlying the dDTF

method is almost identical to the LSAR model used here, resulting in almost identical R values,

while the reconstructed networks are considerably different (c.f. Figs. 7.7 and 7.9) due to different

interpretations of on the model implications for network connectivity. On the other hand, the R

value is not well-defined for the S+L method since the right-hand side of (7.33) is negative, i.e.,

the reconstructed AR model has extremely poor prediction performance. This is not surprising as

the S+L method is aimed at maximizing the entropy (and thus minimizing predictability).

Next, we analyzed the effect of the choice of manifest nodes on the reconstructed network.

6Edge values are not thresholded (� = 0) for computing R values.
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In addition to selecting the 13 most anterior cortical nodes as above, we performed other runs

where we selected the 13 most posterior nodes and 13 random nodes to reconstruct the manifest

network using the LSAR method. We show in Fig. 7.10 these node choices (a), the reconstructed

network for the posterior (b) and random (d) selections (� = 0.12), and (c) theR values for all three

cases. Interestingly, the density of direct connections is significantly higher among the posterior

nodes. Also, the LSAR prediction performance is significantly lower in this case, suggesting less

conformity of the occipito-parietal cortex to the simplifying assumptions of our ARmodel (linearity

and passivity of latent nodes). Consistently, the network density and R value of the random case

interpolates between the anterior and posterior cases, as expected.

Finally, an interesting observation in Fig. 7.10(c) is that, even an AR model with � = 2 can

predict about 95% of unseen data in all cases. This, at first glance, questions the need for any higher-

order models as far as prediction is concerned. Nevertheless, notice that even an AR model with

� = 1, corresponding to an isolatedmanifest subnetwork, can predict 90% of unseen data, while the

visual discrimination task performed by the subject heavily relies on coordination between posterior

(visual) and anterior (motor planning and execution) areas. The reason why this model can predict

unseen data so well is in the strong dominance of first-order local dynamics of every area (the

diagonal of Ã0) over the rest of network dynamics.7 Thus, the prediction performance of a first-

order model serves as a baseline for higher orders, capturing the contribution of local interactions to

the overall brain dynamics. This enlightens why the ∼ 1% improvement in prediction performance

as we go from � = 2 to � = 15 ∼ 20 is significant. □

7This can be easily seen by inspecting the AR coefficients Ãi estimated from data, and is physiologically justified
as each area is composed of millions of neurons that are locally densely connected and serve specific purposes but only
(relatively) sparsely connected with remote areas.
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Appendix

7.A Auxiliary Result

Lemma 7.A.1. Given two vectors a,b ∈ ℝn, it holds for anyM ∈ ℝ>0 that ‖abT‖max ≤M−1aTa+

MbTb.

Proof. By definition of the max norm,

‖abT‖max = max
1≤i,j≤n

|

|

|

aibj
|

|

|

≤
n
∑

i=1
(M−1

|

|

ai||
2 +M |

|

bi||
2)

=M−1aTa +MbTb.
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identification with latent nodes via auto-regressive models" by E. Nozari, Y. Zhao, and J. Cortés in

IEEE Transactions on Control of Network Systems, vol. 5, no. 2, pp. 722–736, 2018. The disserta-

tion author was the primary investigator and author of this paper.
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Figure 7.6: (a) The interaction topology identified by the dDTF method for the Erdős–Rényi net-
work with index 10. (b and c) A zoom-in of the (indirect) connection (2, 4) and the (direct) con-
nection (4, 5), resp.
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Figure 7.7: Reconstructed manifest subnetwork for the EEG data in Example 7.5.3 using our pro-
posed method with the exponentially-regularized objective function (7.32) and 
 = 10, �0 = 0.9,
and � = 15. The direct (solid blue) and indirect (dashed black) connections are depicted for dif-
ferent values of threshold ratio �. For each value of �, the connections whose weights are smaller
than � times the largest network weight are removed.
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Figure 7.8: Reconstructed manifest subnetwork for Example 7.5.3 using the S+L method in [21].
The direct (solid blue) and indirect (dashed black) connections are depicted for different values of
weight parameters (�, 
) and fixed threshold ratio � = 0.01. l represents the estimated number of
latent nodes.

272



FPz

F3

Fz

F4
FC5

FC1

FC2

FC6

T7

C3
C4

Cz

T8

(a) f = 1Hz (� band)

Direct

Indirect

FPz

F3

Fz

F4
FC5

FC1

FC2

FC6

T7

C3
C4

Cz

T8

(b) f = 5Hz (� band)

FPz

F3

Fz

F4
FC5

FC1

FC2

FC6

T7

C3
C4

Cz

T8

(c) f = 20Hz (� band)

FPz

F3

Fz

F4
FC5

FC1

FC2

FC6

T7

C3
C4

Cz

T8

(d) f = 50Hz (
 band)

Figure 7.9: Reconstructed manifest subnetwork for Example 7.5.3 using the combination of DTF
and dDTF estimation methods. The direct (solid blue) and indirect (dashed black) connections are
illustrated for different frequency values and fixed threshold ratio � = 0.1.
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Figure 7.10: Comparison between different selections of manifest nodes in Example 7.5.3: (a)
Electrode locations. (b and d) The reconstructed network for the 13 posterior nodes and 13 random
nodes, resp. (� = 0.12). (c) Prediction performance R for the three different choices of manifest
nodes (reconstructed network for anterior selection is given in Fig. 7.7(b)).
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Network Dynamics and Cognition
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Chapter 8

Hierarchical Selective Recruitment

In this chapter, we being our analysis of the relationship between the network dynamics of

the brain and cognition, which serves as one of the most important and concrete application areas of

network dynamical systems. The human brain is constantly under the influx of sensory inputs and

is responsible for integrating and interpreting them to generate appropriate decisions and actions.

This influx contains not only the pieces of information relevant to the present task(s), but also a

myriad of distractions. Goal-driven selective attention (GDSA) refers to the active prioritization

of the processing of task-relevant information over task-irrelevant distractions according to one’s

goals and desires and is vital for our ability to construct a dynamic yet coherent perception of the

world.1 Examples of GDSA range from selective audition in a crowded place to selective vision

in cluttered environments to selective taste/smell in food. As a result, a long standing question in

neuroscience involves understanding the brain’s complex mechanisms underlying selective atten-

tion [1–6]. Despite major advances, a fundamental understanding of GDSA and, in particular, how

1Note the distinction of this with stimulus-driven selective attention (the reactive shift of focus based on saliency
of stimuli) which is not the focus of this work.
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it emerges from the dynamics of the underlying neuronal networks, is still missing. The aim of this

chapter is to reduce this gap by bringing tools and insights from systems and control theory into

these questions from neuroscience.

In this chapter, we propose the novel theoretical framework of Hierarchical Selective

Recruitment (HSR) for GDSA. This framework is inspired by the extensive experimental re-

search [1–16] that has discovered some of the fundamental aspects of the neuronal mechanisms un-

derlying GDSA. These include (i) the brain’s hierarchical organization, so that (cognitively-)higher

areas (e.g., prefrontal cortex) control the activity of lower level ones (e.g., primary sensory and

motor cortices), (ii) the separation of timescales between subsequent hierarchical layers, (iii) its

sparse coding, so that task-relevant and task-irrelevant information is represented and processed by

different and mostly distinct neuronal populations (particularly for sufficiently distinct stimuli), (iv)

the distributed and graded nature of GDSA, so that selective attention happens at multiple layers of

the hierarchy, and (v) the concurrence of the suppression and enhancement of task-irrelevant and

task-relevant activity, respectively (formulated as selective inhibition and top-down recruitment in

HSR, respectively).

We begin our development of HSR by analyzing the internal dynamics of each layer of

the hierarchy described as a network with linear-threshold dynamics and deriving conditions on its

structure to guarantee existence and uniqueness of equilibria, asymptotic stability, and boundedness

of trajectories. We also provide mechanisms that enforce selective inhibition using the biologically-

inspired schemes of feedforward and feedback inhibition. Despite their differences, both schemes

lead to the same conclusion: the intrinsic dynamical properties of the (not-inhibited) task-relevant

subnetworks are the sole determiner of the dynamical properties that are achievable under selective

inhibition. Based on these results, we derive conditions on the joint structure of the hierarchical sub-
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networks that guarantee top-down recruitment of the task-relevant part of each subnetwork by the

subnetwork at the layer immediately above, while inhibiting the activity of task-irrelevant subnet-

works at all the hierarchical layers. To further verify the merit and applicability of this framework,

we carry out a comprehensive case study of selective listening in rodents and show that a small

network with HSR-based structure and minimal size can explain the data with remarkable accuracy

while satisfying the theoretical requirements of HSR. Our technical approach relies on the theory

of switched systems and provides a novel converse Lyapunov theorem for state-dependent switched

affine systems that is of independent interest.

8.1 Prior Work

In this work we use dynamical networks with linear-threshold nonlinearities (also called

rectified linear units, ReLU, in machine learning) to model the activity of neuronal populations.

Linear-threshold models allow for a unique combination between the tractability of linear systems

and the dynamical versatility of nonlinear systems, and thus have beenwidely used in computational

neuroscience. They were first proposed as a model for the lateral eye of the horseshoe crab in [17]

and their dynamical behavior has been studied at least as early as [18]. A detailed stability analysis

of symmetric (undirected) linear-threshold networks has been carried out in continuous [19] and

discrete [20] time: however, this has limited relevance for biological neuronal networks, which are

fundamentally asymmetric (due to the presence of excitatory and inhibitory neurons). An initial

summary of the properties of general (possibly asymmetric) networks, including the existence and

uniqueness of equilibria and asymptotic stability was given in [21], with limited rigorous justifi-

cation provided later in [22]. Lyapunov-based methods were used in a number of later studies for
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discrete-time linear-threshold networks [23–25], but the extension of these results to continuous-

time dynamics, which has more relevance to biological neuronal networks, is not clear. In fact,

the use of Lyapunov-based techniques in continuous-time networks has remained limited to planar

dynamics [26] and restrictive conditions for boundedness of trajectories [26, 27]. Recently, [28]

presents interesting properties of competitive (i.e., fully inhibitory) linear-threshold networks, par-

ticularly regarding the emergence of limit cycles. However, the majority of neurons in biological

neuronal networks are excitatory, making the implications of these results limited. Moreover, all

the preceding works are limited to networks with constant exogenous inputs whereas time-varying

inputs are essential for modeling inter-layer connections in HSR.

A critical property of linear-threshold networks is that their nonlinearity, while enriching

their behavior beyond that of linear systems, is piecewise linear. Accordingly, almost all the the-

oretical analysis of these networks builds upon the formulation of them as switched affine sys-

tems. There exists a vast literature on the analysis of general switched linear/affine systems, see,

e.g., [29–31]. Nevertheless, we have found that the conditions obtained by applying these results

to linear-threshold dynamics are more conservative than the ones we obtain using direct analysis of

the system dynamics. This is mainly due to the fact that such results, by the essence of their gener-

ality, are oblivious to the particular structure of linear-threshold dynamics that can be leveraged in

direct analysis.

A critical component of GDSA is selective inhibition. Selective inhibition has been the sub-

ject of extensive research in neuroscience. A number of early studies [3,9,10] provided evidence for

a mechanism of selective visual attention based on a biased competition between the subnetwork

of task-relevant nodes and the subnetwork of task-irrelevant ones. In this model, nodes belonging

to these subnetworks compete at each layer by mutually suppressing the activity of each other, and
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this competition is biased towards task-relevant nodes by the layer immediately above. Later stud-

ies [11,12] further supported this theory using functional magnetic resonance imaging (fMRI) and

showed [32], in particular, the suppression of activity of task-irrelevant nodes as a result of GDSA.

This suppression of activity is further shown to occur in multiple layers along the hierarchy [33],

grow with increasing attention [34,35], and be inversely related to the power of the task-irrelevant

nodes’ state trajectories in the alpha frequency band (∼ 8-14Hz) [14]. Here, we use insights from

this body of work in developing a theoretical framework for selective inhibition.

Also critical for GDSA is the hierarchical organization of the brain which has been recog-

nized for decades [36–38] and applies to multiple aspects of brain structure and function. These

aspects include (i) network topology [38–41] (where nodes are assigned to layers based on their

position on bottom-up and top-down pathways), (ii) encoding properties [42,43] (where nodes that

have larger response fields and/or encode more abstract stimulus properties constitute higher lay-

ers), (iii) dynamical timescale [39,41,44–55] (where nodes are grouped into layers according to the

timescale of their dynamics), (iv) nodal clustering [56–59] (where nodes only constitute the leafs

of a clustering tree), and (v) oscillatory activity [60] (where layers correspond to nested oscillatory

frequency bands). Note that while hierarchical layers are composed of brain regions in (i)-(iii),

this is not the case for (iv) and (v). The hierarchies (i)-(iii) are remarkably similar, and here we

particularly focus on (iii) (the timescale separation between hierarchical layers) as it plays a pivotal

role in HSR.

Studies of timescale separation between cortical regions are more recent. Several exper-

imental works have demonstrated a clear increase in intrinsic timescales as one moves up the

hierarchy using indirect measures such as the length of stimulus presentation that elicits a re-

sponse [44, 45], resonance frequency [46], the length of the largest time window over which the
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responses to successive stimuli interfere [47], and how quickly the activation level of any brain

region can track changes in sensory stimuli [48]. Direct evidence for this hierarchical separation

of timescales was indeed provided in [49] using the decay rate of spike-count autocorrelation func-

tions. This was shown even more comprehensively in [50] using linear-threshold rate models and

the concept of continuous hierarchies [39, 41] (whereby the layer of each node can vary continu-

ously according to its intrinsic timescale, therefore removing the rigidity and arbitrariness of node

assignment in classical hierarchical structures). Interestingly, recent studies show that this timescale

variability may have roots not only in synaptic dynamics of individual neurons [51], but also in

sub-neuronal genetic factors [52] as well as supra-neuronal network structures [53]. In terms of

applications, computational models of motor control were perhaps the first to exploit this cortical

hierarchy of timescales [54,55]. Despite the vastness of the literature on its roots and applications,

we are not aware of any theoretical analysis of the effects of this separation of timescales on the

hierarchical dynamics of neuronal networks.

Finally, we use tools and concepts from singular perturbation theory to rigorously leverage

this separation of timescales. The classical result on singularly perturbed differential equations goes

back to Tikhonov [61], [62, Thm 11.1] and has since inspired an extensive literature, see, e.g. [63–

66]. Tikhonov’s result, however, requires smoothness of the vector fields, which is not satisfied

by linear-threshold dynamics. Fortunately, several works have sought extensions to non-smooth

differential equations and even differential inclusions [67–70], culminating in the work [71] which

we use here. Similar to Tikhonov’s original work, [71] only applies to finite intervals. Extensions

to infinite intervals exist [72,73] but, as expected, they require asymptotic stability of the reduced-

order model which we do not in general have.
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8.2 Problem Statement

Consider a network of neurons evolving according to (2.8)-(2.9). Since the number of neu-

rons in a brain region is very large, it is common to consider a population of neurons with similar

activation patterns as a single node. The “firing rate” of such a node is then defined as the average of

the individual firing rates. This convention also has the advantage of getting more consistent rates,

as the firing pattern of individual neurons may be at times sparse. Accordingly, we use “node” and

“population” interchangeably.2 Combining the nodal rates in a vector x ∈ ℝn and synaptic weights

in a matrixW ∈ ℝn×n, we obtain, according to (2.8)-(2.9), the linear-threshold network dynamics

�ẋ(t) = −x(t) + [Wx(t) + p(t)]+, x(0) = x0. (8.1)

The extra term p(t) ∈ ℝn captures the external inputs to the network including un-modeled back-

ground activity and possibly nonzero thresholds (i.e., if a node becomes active when its net input

exceeds a threshold other than zero). Note that the right-hand side of (8.2) is a continuous (though

not smooth) vector field in x and thus solutions, in the classical sense, are well defined.

Consistent with the vision for hierarchical selective recruitment (HSR) outlined above, we

consider a hierarchical neuronal network  of the form (8.2), as depicted in Figure 8.1, whereby

the nodes in each layeri are further decomposed into a task-irrelevant part 0

i and a task-relevant

part 1

i . We make the convention thati is higher in the hierarchy thanj if i < j.

The state evolution of each layeri is modeled with linear-threshold network dynamics of

2Our discussion is nevertheless valid irrespective of whether network nodes represent individual neurons or groups
of them.
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⋮

⋮

Subnetwork i − 1

Subnetwork i

Subnetwork i + 1
 0

i
(inhibited)

 1

i
(recruited)

Figure 8.1: The hierarchical network structure considered in this work. Each layer is only directly
connected to the layers below and above it. Longer-range connections between non-successive
layers do exist in thalamocortical hierarchies but are weaker than those between successive layers
and are not considered in this work for simplicity.

the form (8.1), i.e.,

�iẋi(t) = −xi(t) + [Wi,ixi(t) + pi(t)]+, (8.2)

where xi ∈ ℝni , Wi,i ∈ ℝni×ni , and pi ∈ ℝni denote the state, internal synaptic connectivity, and

external inputs of i, respectively. In this model, the Wi,ixi term represents the internal subnet-

work connectivity and the pi term incorporates, in addition to background activity and nonzero

thresholds, the incoming signals from other subnetworks j ≠ i.

It is worth noticing that each layer of the network of networks exhibits rich dynamical behav-

ior when considered in isolation. Indeed, simulations of the dynamics (8.1) with random instances

ofW and constant p reveal that
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– locally, the dynamics may have zero, one, or many equilibrium points, where each equilib-

rium may be stable or unstable independently of others,

– globally, the dynamics is capable of exhibiting different nonlinear phenomena such as limit

cycles, multi-stability, and chaos,

– the state trajectories grow unbounded (in reality until saturation) if the excitatory subnetwork

[W]+ is sufficiently strong.

This richness of behavior can only increase if the layer is subject to a time-varying external input

p(t), and in particular when interconnected with other layers in the network of networks. Motivated

by these observations, our ultimate goal in this work is to characterize the dynamics of complex

networks composed of hierarchically-connected linear-threshold subnetworks and the conditions

under which their collective dynamics can give rise to HSR. Specifically, we tackle the following

problems:

(i) the analysis of the relationship between structure (Wi,i) and dynamical behavior for each

subnetwork when operating in isolation from the rest of the network (pi(t) ≡ pi);

(ii) the analysis of the conditions on the joint structure of each two successive layers i and

i+1 that allows for selective inhibition of
0

i+1 by its input fromi, being equivalent to the

stabilization of 0

i+1 to the origin (inactivity);

(iii) the analysis of the conditions on the joint structure of each two successive layersi andi+1

that allows for top-down recruitment of  1

i+1 by its input from i, being equivalent to the

stabilization of 1

i+1 toward a desired trajectory set byi (activity);
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(iv) the combination of (ii) and (iii) in a unified framework and its extension to the complete

N-layer network of networks.

We let

pi(t) = Biui(t) + p̃i(t),

where ui ∈ ℝmi
≥0 is the top-down control used for inhibition of  0

i . While in Part I we assume for

simplicity that p̃i(t) is given and constant, we here consider its complete form

p̃i(t) =Wi,i−1xi−1(t) +Wi,i+1xi+1(t) + ci,

where the inter-layer connectivity matrices Wi,i−1 and Wi,i+1 have appropriate dimensions and

ci ∈ ℝni captures un-modeled background activity and possibly nonzero activation thresholds.

Substituting these into (8.2), the dynamics of each layeri is given by

�iẋi(t) = −xi(t) + [Wi,ixi(t) +Wi,i−1xi−1(t) +Wi,i+1xi+1(t) + Biui(t) + ci]+. (8.3)

Also following Part I, we partition xi,Wi,j , Bi, and ci as3

xi =
⎡

⎢

⎢

⎢

⎣

x0i

x1i

⎤

⎥

⎥

⎥

⎦

, Wi,j =

⎡

⎢

⎢

⎢

⎣

W00

i,j W01

i,j

W10

i,j W11

i,j

⎤

⎥

⎥

⎥

⎦

, Bi =
⎡

⎢

⎢

⎢

⎣

B0

i

0

⎤

⎥

⎥

⎥

⎦

, ci =
⎡

⎢

⎢

⎢

⎣

c0i

c1i

⎤

⎥

⎥

⎥

⎦

, (8.4)

where x0i ∈ ℝri for all i, j ∈ {1,… , N}. By convention,W1,0 = 0,WN,N+1 = 0, and r1 = 0 (so

3This sparsity pattern can always be achieved by (re-)labeling the nodes.
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B1 = 0 and the first subnetwork has no inhibited part). Throughout, we assume that the hierarchical

layers have sufficient timescale separation, i.e.,

�1 ≫ �2 ≫⋯≫ �N .

Finally, define

� = (�1,… , �N−1), �i =
�i+1
�i
, i = {1,… , N − 1}.

In the following, we first analyze the internal dynamics of each layer of the hierarchy and then

formulate and analyze selective inhibition and selective recruitment, respectively. A comprehensive

case study is presented at the end to illustrate and verify the developed framework using.

8.3 Internal Dynamics of Single-Layer Networks

In this section, we provide an in-depth study of the basic dynamical properties of the network

dynamics (8.1) in isolation. In such case, the external input p(t) boils down to background activity

and possibly nonzero thresholds, which are constant relative to the timescale �. The dynamics (8.1)

thus simplify to

�ẋ(t) = −x(t) + [Wx(t) + p]+, t ≥ 0. (8.5)

In the following, we derive conditions in terms of the network structure for EUE, local/global

asymptotic stability, and boundedness of trajectories.
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8.3.1 Dynamics as Switched Affine System

The nonlinear dynamics (8.5) is a switched affine system with 2n modes. Each mode of this

system corresponds to a switching index � ∈ {0, 1}n, where for each i ∈ {1,… , n}, �i = 1 if the

node is active (i.e., (Wx(t) + p)i > 0) and �i = 0 if the node is inactive (i.e., (Wx(t) + p)i ≤ 0).

Clearly, the mode of the system varies with time and within the one corresponding to � ∈ {0, 1}n,

we have

[Wx(t) + p]+ = �(Wx(t) + p),

where � = diag(�). This switched representation of the dynamics motivates the following assump-

tions on the weight matrixW.

Assumption 8.3.1. Assume

(i) det(W) ≠ 0;

(ii) det(I − �W) ≠ 0 for all the 2n matrices � = diag(�),� ∈ {0, 1}n. □

Assumption 8.3.1 is not a restriction in practice since the set of matrices for which it is

not satisfied can be expressed as a finite union of measure-zero sets, and hence has measure zero.

By Assumption 8.3.1(i), the system of equations Wx + p = 0 defines a non-degenerate set of n

hyperplanes partitioning ℝn into 2n solid convex polytopic translated cones apexed at −W−1p. For

each � ∈ {0, 1}n, let Ω� be the associated switching region,

Ω� = {x ∈ ℝ≥0 | (2� − I)(Wx + p) ≥ 0}.
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The piecewise-affine dynamics (8.5) can be written in the equivalent form

�ẋ = (−I + �W)x + �p, ∀x ∈ Ω� , � ∈ {0, 1}n. (8.6)

Unlike linear systems, the existence of equilibria is not guaranteed for this system. In fact, for each

� ∈ {0, 1}n, according to (8.6), the point

x∗� = x
∗
�(p) = (I − �W)

−1�p, (8.7)

is the corresponding equilibrium candidate. This equilibrium candidate is indeed an equilibrium

if it belongs to the switching region Ω� where the description (8.6) is valid. We next identify

conditions for this to be true.

8.3.2 Existence and Uniqueness of Equilibria

Here we characterize the EUE for the dynamics (8.5). GivenW ∈ ℝn×n, define the equilib-

ria set-valued map ℎ ∶ ℝn ⇉ ℝn
≥0 by

ℎ(p) = ℎW(p) ≜ {x ∈ ℝn
≥0 | x = [Wx + p]+}. (8.8)

The map ℎ can, in particular, take empty values. EUE then precisely corresponds to ℎ being single-

valued on ℝn. If so, with a slight abuse of notation, we take ℎ ∶ ℝn → ℝn
≥0 to be an ordinary

function.

From the definition (8.7) of equilibrium candidate, note that x∗� ∈ ℎ(p) if and only if x∗� ∈
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Ω� . Then, using Assumption 8.3.1, and after some manipulations, we have

Wx∗� + p =W(I − �W)
−1�p + p (8.9)

= (W−1 − �)−1�p + p

= (I −W�)−1W�p + p

=
[

(I −W�)−1W� + I
]

p = (I −W�)−1p.

Therefore,

x∗� ∈ ℎ(p)⇔ x∗� ∈ Ω�

⇔ (2� − I)(I −W�)−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≜M�

p ≥ 0. (8.10)

Accordingly, for � ∈ {0, 1}n, let

Δ� ≜ {p ∈ ℝn
|M�p ≥ 0},

be the set of external inputs p such that (8.5) has an equilibrium in Ω� , which is a closed convex

polytopic cone. Also, note that ℎ can be equivalently written in the piecewise-linear form

ℎ(p) = {(I − �W)−1�p |M�p ≥ 0,� = diag(�), � ∈ {0, 1}n}. (8.11)

Note that ifM�p ≥ 0 for exactly one � ∈ {0, 1}n, then a unique equilibrium exists according

to (8.10). However, whenM�lp ≥ 0 for multiple �l ∈ {0, 1}n,l ∈ {1,… , l̄}, the network may
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have either multiple equilibria or a unique one x∗�1 = ⋯ = x∗�l̄ lying on the boundary between

{Ω�l}
l̄
l=1. The next result shows that the quantitiesM�p can be used to distinguish between these

two latter cases.

Lemma 8.3.2. (Existence of multiple equilibria). AssumeW satisfies Assumption 8.3.1, p ∈ ℝn

is arbitrary, and M� is defined as in (8.10) for � ∈ {0, 1}n. If there exist �1 ≠ �2 such that

p ∈ Δ�1 ∩ Δ�2 , then x
∗
�1
= x∗�2 if and only ifM�1p =M�2p.

Proof. Clearly,

x∗�1 = x
∗
�2

⇔Wx∗�1 + p =Wx
∗
�2
+ p

⇔ (I −W�1)−1p = (I −W�2)−1p, (8.12)

where we have used (8.9). Since both M�1p and M�2p are nonnegative, (8.12) holds if and only

if
(

(I −W�1)−1p
)

i =
(

(I −W�2)−1p
)

i = 0 for any i such that �1,i ≠ �2,i, which is equivalent to

M�1p =M�2p.

Our next result provides an optimization-based condition for EUE that is both necessary

and sufficient.

Proposition 8.3.3. (Optimization-based condition for EUE). LetW satisfy Assumption 8.3.1 and

M� be as defined in (8.10) for � ∈ {0, 1}n. For p ∈ ℝn, define �1(p) and �2(p) to be the largest

and second largest elements of the set

{

min
i=1,…,n

(M�p)i | � ∈ {0, 1}n
}

,
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respectively. Then, (8.5) has a unique equilibrium for each p ∈ ℝn if and only if

max
‖p‖=1

�1(p)�2(p) < 0. (8.13)

Proof. First, note that p = 0 is a degenerate case where the origin is the unique equilibrium be-

longing to all Ω� . For any p ≠ 0 and � ∈ {0, 1}n, M�p ≥ 0 if and only ifM�p∕‖p‖ ≥ 0. Thus,

EUE for all p ∈ ℝn and all ‖p‖ = 1 are equivalent. The result then follows from Lemma 8.3.2 and

the fact that, for any p,

�1(p)�2(p) < 0 ⇔ �1(p) > 0 and �2(p) < 0

⇔ ∃ unique � ∈ {0, 1}n M�p ≥ 0.

The optimization involved in (8.13) is usually highly non-convex. However, since the search

space ‖p‖ = 1 is compact, global search methods can be used to verify (8.13) numerically. Next,

we give our main result regarding the EUE that not only is verifiable analytically but also provides

insight into the class of matricesW that satisfy EUE.

Theorem 8.3.4. (Existence and uniqueness of equilibria). Consider the network dynamics (8.5)

and assume the weight matrixW satisfies Assumption 8.3.1. Then, (8.5) has a unique equilibrium

for each p ∈ ℝn if I −W ∈  .

Proof. The uniqueness can be shown as a corollary to both [74, Thm 5.3] and [75, Thm 2.2].

However, we provide in the following a novel proof technique based on (8.10) that establishes

both existence and uniqueness. From Lemma 8.3.2, we know that, for any p, (8.5) has a unique
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equilibrium if and only if exactly one element of {M�p | � ∈ {0, 1}n} is nonnegative. To check

this, we need to check whether

∃�1,�2 ∈ {0, 1}n s.t. M�1p ≥ 0 and M�2p ≥ 0.

Note that this is equivalent to saying that there exist x, y ∈ ℝn
≥0 such thatM−1

�1
x = p = M−1

�2
y. A

more general question, which is relevant to our discussion, is whether

M−1
�1
x =M−1

�2
y, x, y ∈ n ⧵ {0}, (8.14)

for any orthantn ofℝn (includingn = ℝn
≥0 as a special case). Note that x = y = 0 is a trivial case

and thus excluded. This is the question we analyze in the following. Notice that for any � ∈ {0, 1}n,

M−1
� = (I −W�)(2� − I) = (2� − I) −W�. (8.15)

Since nodes can be relabeled arbitrarily, we can assume without loss of generality that �1 =

[1Tn1 1
T
n2
0Tn3 0

T
n4
]T and �2 = [1Tn1 0

T
n2
1Tn3 0

T
n4
]T where n1,… , n4 ≥ 0,

∑4
i=1 ni = n. Then, it
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follows from (8.15) that

M−1
�1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1 −W11 −W12 0 0

−W21 In2 −W22 0 0

−W31 −W32 −In3 0

−W41 −W42 0 −In4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

M−1
�2
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1 −W11 0 −W13 0

−W21 −In2 −W23 0

−W31 0 In3 −W33 0

−W41 0 −W43 −In4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Wij’s are submatrices of W with appropriate dimensions. Taking the inverse of M−1
�1

as a

2-by-2 block-triangular matrix [76, Prop 2.8.7] (with the indicated blocks), we get

M�1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

In1 −W11 −W12

−W21 In2 −W22

⎤

⎥

⎥

⎥

⎦

−1

0

−

⎡

⎢

⎢

⎢

⎣

W31 W32

W41 W42

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

In1 −W11 −W12

−W21 In2 −W22

⎤

⎥

⎥

⎥

⎦

−1

−In3+n4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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so direct multiplication givesM�1M
−1
�2
=

⎡

⎢

⎢

⎢

⎣

B1 B2

B3 B4

⎤

⎥

⎥

⎥

⎦

, with

B1 =
⎡

⎢

⎢

⎢

⎣

In1 −W11 −W12

−W21 In2 −W22

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

In1 −W11 0

−W21 −In2

⎤

⎥

⎥

⎥

⎦

,

B2 = −
⎡

⎢

⎢

⎢

⎣

In1 −W11 −W12

−W21 In2 −W22

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

W13 0

W23 0

⎤

⎥

⎥

⎥

⎦

,

B3 = −
⎡

⎢

⎢

⎢

⎣

W31 W32

W41 W42

⎤

⎥

⎥

⎥

⎦

B1 +
⎡

⎢

⎢

⎢

⎣

W31 0

W41 0

⎤

⎥

⎥

⎥

⎦

,

B4 = −
⎡

⎢

⎢

⎢

⎣

W31 W32

W41 W42

⎤

⎥

⎥

⎥

⎦

B2 −
⎡

⎢

⎢

⎢

⎣

In3 −W33 0

−W43 −In4

⎤

⎥

⎥

⎥

⎦

.

With this, after some computations one can show that

M�1M
−1
�2
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1 ⋆ ⋆ 0

0

0

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ ⋆

⎤

⎥

⎥

⎥

⎦

0

0

0 ⋆ ⋆ In4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8.16)

Let � ∈ ℝ(n2+n3)×(n2+n3) be the bracketed block in M�1M
−1
�2
. Similarly, let x23, y23 ∈ ℝn2+n3 denote

the corresponding n2 + n3-dimensional sub-vectors in the decomposition of x and y, respectively.
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Then, according to Lemma 8.A.1, (8.14) holds if and only if y23 = 0 or

y23,�y23 ∈ n2+n3 ⧵ {0}, (8.17)

for some orthant n2+n3 ⊂ ℝn2+n3 . To check (8.17), define

Q =
⎡

⎢

⎢

⎢

⎣

Q11 Q12

Q21 Q22

⎤

⎥

⎥

⎥

⎦

≜
⎡

⎢

⎢

⎢

⎣

In1 −W11 −W12

−W21 In2 −W22

⎤

⎥

⎥

⎥

⎦

−1

,

R ≜ In3 −W33 −
[

W31 W32

]

Q
⎡

⎢

⎢

⎢

⎣

W13

W23

⎤

⎥

⎥

⎥

⎦

.

It can be shown that

� = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q22

[

Q21 Q22

]

⎡

⎢

⎢

⎢

⎣

W13

W23

⎤

⎥

⎥

⎥

⎦

−
[

W31 W32

]

⎡

⎢

⎢

⎢

⎣

Q12

Q22

⎤

⎥

⎥

⎥

⎦

R

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Inverting the left-hand-side matrix as a 2-by-2 block matrix [76, Prop 2.8.7] (the first block isQ−1)

and applying the matrix inversion lemma [76, Cor 2.8.8] to the first block of the result, we obtain

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1 −W11 −W12 −W13

−W21 In2 −W22 −W23

−W31 −W32 In3 −W33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋆ ⋆ ⋆

⋆ B̂1 B̂2

⋆ B̂3 B̂4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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where

B̂1 = Q22 +
[

Q21 Q22

]

⎡

⎢

⎢

⎢

⎣

W13

W23

⎤

⎥

⎥

⎥

⎦

R−1
[

W31 W32

]

⎡

⎢

⎢

⎢

⎣

Q12

Q22

⎤

⎥

⎥

⎥

⎦

,

B̂2 =
[

Q21 Q22

]

⎡

⎢

⎢

⎢

⎣

W13

W23

⎤

⎥

⎥

⎥

⎦

R−1,

B̂3 = R−1
[

W31 W32

]

⎡

⎢

⎢

⎢

⎣

Q12

Q22

⎤

⎥

⎥

⎥

⎦

, B̂4 = R−1.

Therefore, −� is the principal pivot transform of
⎡

⎢

⎢

⎢

⎣

B̂1 B̂2

B̂3 B̂4

⎤

⎥

⎥

⎥

⎦

. Since I −W ∈  , Lemma 2.3.2(v)

guarantees that −� ∈  , which by Lemma 2.3.2(iv) implies that for every nonzero y23 there exists

an index k ∈ {1,… , n2+ n3} such that (y23)k(�y23)k < 0, i.e., there does not exist any y23 ≠ 0 such

that (8.17) holds, in which case, by (8.16),M�1M
−1
�2
y = y. Therefore, we have shown that, for any

y ∈ ℝn,

y,M�1M
−1
�2
y ∈ n for some orthant n ⇔ y =M�1M

−1
�2
y ⇔ y23 = 0.

Recalling that y =M�2p, we have

M�1p,M�2p ∈ n for some orthant n ⇔M�1p =M�2p (8.18)

⇔
(

(M�2p)i = 0 ∀i s.t. �1,i ≠ �2,i
)

.

Using Lemma 8.3.2, the first equivalence in (8.18) for the particular case of n = ℝn
≥0 shows the
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uniqueness of equilibrium. To prove existence, consider the following assignment procedure. For

any �0 ∈ {0, 1}n, letn be the orthant that containsM�0p (if there are more than one such orthants,

we pick one arbitrarily). Define

n = {� ∈ {0, 1}
n
|M�p ∈ n}.

If n = {�0}, we assign �0 to n. If |n| > 1, it follows from (8.18) that

(i) M�p is the same for all � ∈ n; let x
∗
n

be this shared value,

(ii) |n| = 2
k for some k ≥ 1,

(iii) there exists n ⊆ {1,… , n} with |n| = k such that for any i ∉ n , �i is the same for all

� ∈ n ,

(iv) (x∗n)i = 0 for all i ∈ n .

Due to (iv), x∗n belongs to the intersection of 2k orthants (n and 2k − 1 other orthants that differ

from n along the dimensions in n). Therefore, we can assign each of the 2k elements of n

to its corresponding orthant from the 2k orthants that contain x∗n . By repeating this procedure for

all unassigned �0 ∈ {0, 1}n, we can uniquely assign every �0 ∈ {0, 1}n to an orthant in ℝn such

that no two are assigned to the same orthant. Therefore, one � ∈ {0, 1}n must be assigned to the

positive orthant ℝn
≥0, showing the existence of an equilibrium and completing the proof.

The fact that the condition in Lemma 2.3.2(iv) is an equivalent characterization of P-

matrices suggests that the sufficient condition of Theorem 8.3.4 is tight. Indeed, extensive simula-

tions with randommatrices did not reveal any instance ofW that is not a P-matrix but for which (8.5)
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has a unique equilibrium for all p ∈ ℝn (where we checked the latter using Proposition 8.3.3). This

leads us to the following conjecture, which was also made in [21] as a claim without proof.

Conjecture 8.3.5. (Necessity of I − W ∈  for EUE). Assume the weight matrix W satisfies

Assumption 8.3.1. Then, (8.5) has a unique equilibrium for all p ∈ ℝn if and only if I−W ∈  .□

Remark 8.3.6. (Computational complexity of verifying I − W ∈ ). Although the problem

of determining whether a matrix is in  is straightforward for small n, it is known to be co-NP-

complete [77], and thus expensive for large networks. Indeed, [78] shows that all the 2n principal

minors of A have to be checked to prove A ∈  (though disproving A ∈  is usually much easier).

In these cases, one may need to rely on more conservative sufficient conditions such as �(|W|) < 1

or ‖W‖ < 1 (cf. Lemma 2.3.3) to establish I − W ∈  . These conditions, moreover, have

the added benefit of providing intuitive connections between the distribution of synaptic weights,

network size, and stability. We elaborate more on this point in Section 8.4.3. □

Example 8.3.7. (Uniform excitatory-inhibitory networks). Consider a network of n nodes inwhich

�n, � ∈ (0, 1) are excitatory, (1 − �)n are inhibitory, and the synaptic weight between any pair of

nodes only depends on their type (the synaptic weight of any inhibitory-to-excitatory connection

is wei < 0, and similarly for wee > 0, wie > 0, wii < 0). Also, assume common external inputs

pe, pi ∈ ℝ for all excitatory and inhibitory nodes, respectively. Let xe(t) and xi(t) be the average

firing rates of excitatory and inhibitory nodes, respectively. Then,

�

⎡

⎢

⎢

⎢

⎣

ẋe

ẋi

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

xe

xi

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

�nwee (1 − �)nwei

�nwie (1 − �)nwii

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xe

xi

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

pe

pi

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎦

+

.

This simplification of n-dimensional networks to planar dynamics is commonly known as the
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Wilson-Cowan model [79] and is a widely used model in computational neuroscience, see

e.g., [80, 81]. LetWEI ∈ ℝ2×2 be the corresponding weight matrix above. One can check that

I −WEI ∈  ⇔ �nwee < 1,

and

�(|WEI |) < 1⇔ �nwee < 1, (1 − �)n|wii| < 1, and

�(1 − �)n2wie|wei| < (1 − �nwee)(1 − (1 − �)n|wii|).

Thus, according to Theorem 8.3.4, EUE only requires the excitatory dynamics to be stable (note

thatwee has to be smaller as n grows), while the more conservative �(|WEI |) < 1 requires two extra

conditions: the stability of inhibitory dynamics and a weak interconnection between excitatory and

inhibitory subnetworks. □

8.3.3 Asymptotic Stability

The EUE, as discussed above, is an opportunity to shape the network state, provided the

equilibrium corresponds to a desired state (e.g., a memory, the encoding of a spatial location, or

eye position) and it attracts network trajectories [82–86]. Here we investigate when the latter holds,

i.e., the network equilibrium is asymptotically stable. Our main result on asymptotic stability is the

following.

Theorem 8.3.8. (Asymptotic stability). Consider the network dynamics (8.5) and assumeW sat-

isfies Assumption 8.3.1.
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(i) [Sufficient condition] IfW ∈ , then for all p ∈ ℝn, the network is globally exponentially

stable (GES) relative to a unique equilibrium x∗;

(ii) [Necessary condition] If for all p ∈ ℝn the network is locally asymptotically stable relative

to a unique equilibrium x∗, then −I +W ∈ .

Proof. (i)The EUE follows fromLemma 2.3.3(iii)&(iv) and Theorem 8.3.4. GES follows from [87,

Thm 1], but we give a simpler proof here for completeness. Consider an arbitrary trajectory x(t)

of (8.5) and define

�(t) = x(t) − x∗.

After some manipulations, one can show that

��̇(t) = (−I +M(t)W)�(t), (8.19)

whereM(t) is a diagonal matrix with diagonal entries

mii(t) ≜

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[Wix(t)+pi]+−[Wix∗+pi]+

Wi�(t)
ifWi�(t) ≠ 0,

0 otherwise.

Since the function [⋅]+ is monotonically increasing and Lipschitz with constant 1, mii(t) ∈ [0, 1]

for all i ∈ {1,… , n}. Thus, M(t) belongs to the convex hull of {�}�∈{0,1}n for all t ≥ 0. Let
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(��(t))�∈{0,1}n be a convex combination such that

M(t) =
∑

�∈{0,1}n
��(t)�, t ≥ 0.

By assumption, there exists P = PT > 0 and � > 0 such that

(−I +WT�)P + P(−I + �W) ≤ −�I, � ∈ {0, 1}n.

Therefore, the evolution of the Lyapunov function V (�) = �TP� along (8.19) satisfies

�
dV (�(t))

dt
= �T [(−I +WTM(t))P + P(−I +M(t)W)]�

= �T
[

∑

�∈{0,1}n
(−I + ��(t)WT�)P + P(−I + ��(t)�W)

]

�

= �T
[

∑

�∈{0,1}n
��(t)[(−I +WT�)P + P(−I + �W)]

]

�

≤ −�‖�‖2 ≤ − �
�(P)

V (�(t)),

proving GES.

(ii) Assume, by contradiction, that −I+W ∉ , which means that there exists � ∈ {0, 1}n

such that −I + �W is not Hurwitz. Then, consider the choice

p = (2I −W)� − 1n.

It is straightforward to show that x∗ = � is an equilibrium point for (8.5) lying in the interior of

Ω� . By assumption, x∗ is (unique and) locally asymptotically stable, which contradicts −I + �W
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not being Hurwitz. This completes the proof.

Similar to the problem of verifying whether a matrix is a P-matrix, cf. Remark 8.3.6, ver-

ifying total-Hurwitzness becomes computationally expensive for large n. The next result gives a

usually more conservative but computationally inexpensive alternative.

Proposition 8.3.9. (Computationally feasible sufficient conditions for GES). Consider the net-

work dynamics (8.5) and assume the weight matrixW satisfies Assumption 8.3.1. If �(|W|) < 1 or

‖W‖ < 1, then for all p ∈ ℝn, the network has a unique equilibrium x∗ and it is GES relative to

x∗.

Proof. If ‖W‖ < 1, the result follows from Lemma 2.3.3(ii) and Theorem 8.3.8. For the case

�(|W|) < 1, however, the claim follows from the argument in [22, Prop. 3], which we bring here

for completeness. For simplicity, assume thatW is irreducible, i.e., the network topology contains

a path from any node to any other (this assumption is without loss of generality since, if W is

not irreducible, the continuity of the spectral radius guarantees the existence of � > 0 such that

�(|W| + �1n1Tn ) < 1. The same argument can then be employed for |W| + �1n1Tn ). By the Perron-

Frobenius Theorem [76, Fact 4.11.4], there exists � ∈ ℝn
>0 such that �T |W| = �(|W|)�T . The

map ‖ ⋅‖� ∶ v → ‖v‖� ≜ �T |v| is indeed a norm onℝn. To show EUE, note that for any y, z ∈ ℝn,

‖[Wy + p]+ − [Wz + p]+‖� = �T |[Wy + p]+ − [Wz + p]+|

≤ �T |W(y − z)| ≤ �T |W||y − z| = �(|W|)�T |y − z|

= �(|W|)‖y − z‖�,

so x ↦ [Wx + p]+ is a contraction on ℝn
≥0 and has a unique fixed point by the Banach Fixed-Point
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Theorem, denoted x∗.

To show GES, let t ↦ x(t) be an arbitrary trajectory and consider �(t) ≜ (x(t) − x∗)et. We

have

��̇(t) =M(t)W�(t), (8.20)

where M(t) is the same as in (8.19). Then, by using [21, Lemma] (which is essentially a careful

application of Gronwall-Bellman’s Inequality [62, Lemma A.1] to (8.20)), we get

‖�(t)‖� ≤ ‖�(0)‖�e�(|W|)t ⇒ ‖x(t) − x∗‖� ≤ ‖x(0) − x∗‖�e−(1−�(|W|))t,

which gives GES by the equivalence of norms on ℝn.

From Lemma 2.3.3(iii), the conditions of Theorem 8.3.8 and Proposition 8.3.9 are not con-

clusive whenW satisfies −I +W ∈  but neitherW ∈  nor �(|W|) < 1. However,

(i) If a unique equilibrium x∗ lies in the interior of a switching region Ω� (a condition that

can be shown to hold for Lebesgue-almost all p), then x∗ is at least locally exponentially stable.

(ii) In our extensive simulations with random (W,p), any system satisfying −I +W ∈ 

was GES for all p.

These observations lead us to the following conjecture, whose analytic characterization remains an

open problem.

Conjecture 8.3.10. (Sufficiency of total-Hurwitzness for GES). Consider the dynamics (8.5) and

assumeW satisfies Assumption 8.3.1. The network has a unique GES equilibrium for all p ∈ ℝn If
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(a) (b)

Figure 8.2: Network trajectories for the excitatory-inhibitory network of Example 8.3.11. a) When
WEI = [0.9,−2; 5,−1.5], pEI = [1; 1], network has a unique GES equilibrium. b) However,
for WEI = [1.1,−2; 5,−1.5], pEI = [−0.01; −1], the network exhibits bi-stable behavior. The
colors of the trajectories correspond to the equilibria to which they converge. Note that although
�nwee > 1, the network is GES for most values of pEI , so we used Proposition 8.3.3 for finding a
pEI that leads to multi-stability.

and only if −I +W ∈ . □

We next study the GES of the uniform excitatory-inhibitory networks of Example 8.3.7.

Example 8.3.11. (Uniform excitatory-inhibitory networks, cont’d). Consider again the excitatory-

inhibitory network of Example 8.3.7. One can verify that

−I +WEI ∈  ⇔ �nwee < 1. (8.21)

Thus, the (sufficient) condition for EUE and (necessary) condition for GES coincide, and they

interestingly only restrict wee while wei, wie, and wii are completely free. Figure 8.2 shows sample

phase portraits for the cases �nwee < 1 and �nwee > 1. □
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8.3.4 Boundedness of Solutions

Here we study the boundedness of solutions under the network dynamics (8.2). While our

discussion so far has been about the dynamics (8.5) (with constant p), we switch for the remainder

of this section to (8.2) for the sake of generality, as the same results are applicable without major

modifications. Note that in reality, the firing rate of any neuron is bounded by a maximum rate

dictated by its refractory period (the minimum inter-spike duration). Unboundedness of solutions

in the model corresponds in practice to the so-called “run-away” excitations where the firing of

neurons grow beyond sustainable rates for prolonged periods of time, which is neither desirable

nor safe [88]. Since GES implies boundedness of solutions, any condition that is sufficient for GES

is also sufficient for boundedness. However, boundedness of solutions can be guaranteed under less

restrictive conditions. The next result shows that inhibition, overall, preserves boundedness.

Lemma 8.3.12. (Inhibition preserves boundedness). Let t↦ x(t) be the solution of (8.2) starting

from initial state x(0) = x0. Consider the system

� ̇̄x(t) = −x̄(t) + [[W]+x̄(t) + p(t)]+, x̄(0) = x0. (8.22)

Then, x(t) ≤ x̄(t) for all t ≥ 0.

Proof. Since x(t) ≥ 0 for all t, we can write (8.2) as

�ẋ(t) = −x(t) + [[W]+x(t) + p(t) + �(t)]+, (8.23)

where �(t) ≜ (W − [W]+)x(t) ≤ 0. Since the vector field (x, t) ↦ −x + [[W]+x + p(t)]+ is
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quasi-monotone nondecreasing4, the result follows by using the monotonicity of the function [⋅]+

and applying the vector-valued extension of the Comparison Principle given in [89, Lemma 3.4]

to (8.22) and (8.23).

While the result about preservation of boundedness under inhibition in Lemma 8.3.12 is

intuitive, one must interpret it carefully: it is not in general true that adding inhibition to any dy-

namics (8.2) can only decrease x(t). This is only true if the network vector field is quasi-monotone

nondecreasing, as is the case with the excitatory-only dynamics (8.22). Intuitively, this is because,

if the network has inhibitory nodes, adding inhibition to their input can in turn “disinhibit” and

increase the activity of the rest of the network.

The next result identifies a condition on the excitatory part of the dynamics to determine if

trajectories are bounded.

Theorem 8.3.13. (Boundedness). Consider the network dynamics (8.2). If the corresponding

excitatory-only dynamics (8.22) has bounded trajectories, the trajectories of (8.2) are also bounded

by the same bound as those of (8.22).

The proof of this result follows from Lemma 8.3.12 and is therefore omitted. The following

result, similar to Proposition 8.3.9, provides a more conservative but computationally feasible test

for boundedness.

Corollary 8.3.14. (Boundedness). Consider the network dynamics (8.2) and assume that p(t) is

bounded, i.e., there exists p̄ ∈ ℝn
>0 such that p(t) ≤ p̄, t ≥ 0. If �([W]+) < 1, then the network

trajectories remain bounded for all t ≥ 0.
4A vector field f ∶ ℝn×ℝ → ℝn is quasi-monotone nondecreasing [89] if for any x, y ∈ ℝn and any i ∈ {1,… , n},

(

xi = yi and xj ≤ yj for all j ≠ i
)

⇒ f (x, t) ≤ f (y, t).
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Proof. If p(t) is constant, the result follows from Theorem 8.3.13 and Proposition 8.3.9. If p(t) is

not constant, the same argument proves boundedness of trajectories for the dynamics

� ̇̄x(t) = −x̄(t) + [[W]+x̄(t) + p̄]+, x̄(0) = x0. (8.24)

The result then follows from the quasi-monotonicity of (x, t) ↦ −x + [W+x + p̄]+, similar to

Lemma 8.3.12.

Example 8.3.15. (Uniform excitatory-inhibitory networks, cont’d). Consider again the excitatory-

inhibitory network of Example 8.3.7. Clearly, the corresponding excitatory-only dynamics have

bounded trajectories if and only if

�([WEI ]+) < 1⇔ �nwee < 1, (8.25)

which is the same condition as (8.21). However, an exhaustive inspection of the switching regions

{Ω�}� and the eigenvalues of {−I + �W}� reveals that (8.25) can be relaxed to

− I +W be Hurwitz ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − �nwee) + (1 − (1 − �)nwii) > 0, and

(1 − �nwee)(1 − (1 − �)nwii) > �(1 − �)n2wiewei,

showing that there is room for sharpening Theorem 8.3.13. □

Remark 8.3.16. (Comparison with the literature). In this section, we have provided a comprehen-

sive list of conditions that both extend and simplify the state of the art on stability of dynamically

isolated linear-threshold networks. Regarding network equilibria, we have extended [74, Thm 5.3]
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to guarantee both existence and uniqueness when I−W ∈  (Theorem 8.3.4) and provided a novel

optimization-based if and only if condition for EUE (Proposition 8.3.3). On exponential stability,

Theorem 8.3.8 gives a simpler proof than [87, Thm 1] for the sufficiency ofW ∈  and a novel

proof for the necessity of −I +W ∈ . Finally, our result on boundedness of trajectories (The-

orem 8.3.13) extends Corollary 8.3.14 (also available in [27, Thm 1]) to a much wider class of

networks by exploiting the quasi-monotonicity of excitatory-only dynamics. □

Building on our understanding of single-layer dynamics, we next analyze multilayer dy-

namics beginning with mechanisms of selective inhibition.

8.4 Selective Inhibition in Bilayer Networks

Here, we study selective inhibition in bilayer networks as a building block towards the un-

derstanding of hierarchical selective recruitment in multilayer networks. With respect to the model

described in Section 8.2, we consider two layers (N = 2), where the dynamics of the lower layer

2 is described by (8.2) and the dynamics of the upper layer 1 is temporarily arbitrary (for gen-

erality). Our goal is to study the selective inhibition of 0

2 via the input that it receives from 1.

As pointed out in Section 8.2, when a group of neurons are inhibited, their activity is sub-

stantially decreased, ideally such that their net input (their respective component ofWx(t) + p(t))

becomes negative and their firing rate decays exponentially to zero. Therefore, the problem of se-

lective inhibition is equivalent to the exponential stabilization of the nodes  0

2 to the origin. To

this end, we decompose p(t) as

p(t) = Bu(t) + p̃. (8.26)
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The role of u(t) ∈ ℝm
≥0 is to stabilize  0

2 to the origin while the role of p̃ ∈ ℝn is to shape the

activity of 1

2 by determining its equilibrium For the purpose of this section, we assume p̃ is given

and constant.

Let r ≤ n be the size of 0

2 . We partition x,W, B, and p̃ similar to (8.4), i.e.,

x =
⎡

⎢

⎢

⎢

⎣

x0

x1

⎤

⎥

⎥

⎥

⎦

, W =

⎡

⎢

⎢

⎢

⎣

W00 W01

W10 W11

⎤

⎥

⎥

⎥

⎦

, B =
⎡

⎢

⎢

⎢

⎣

B0

0

⎤

⎥

⎥

⎥

⎦

, p̃ =
⎡

⎢

⎢

⎢

⎣

0

p̃1

⎤

⎥

⎥

⎥

⎦

, (8.27)

whereW00 ∈ ℝr×r,B0 ∈ ℝr×m
≤0 is nonpositive to deliver inhibition, and p̃1 ∈ ℝn−r. The first r rows

of B are nonzero to allow for the inhibition of 0

2 while the remaining n− r rows are zero to make

this inhibition selective to  0

2 . The sparsity of the entries of p̃ is opposite to the rows of B due to

the complementary roles of Bu(t) and p̃.

Themechanisms of inhibition in the brain are broadly divided [90] into two categories, feed-

forward and feedback, based on how the signal u(t) is determined. In the following, we separately

study each scenario, analyzing the interplay between the corresponding mechanism and network

structure. We will later combine both mechanisms when we discuss the complete HSR framework

in [91], as natural selective inhibition is not purely feedback or feedforward.

8.4.1 Feedforward Selective Inhibition

Feedforward inhibition [90] refers to the scenario where 1 provides an inhibition based

on its own “desired” activity/inactivity pattern for 2 and irrespective of the current state of 2.

This is indeed possible if the inhibition is sufficiently strong, as excessive inhibition has no effect

on nodal dynamics due to the thresholding in [⋅]+. However, this independence from the activity
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level of2 requires some form of guaranteed boundedness, as defined next.

Definition 8.4.1. (Monotone boundedness). The dynamics (8.2) is monotonically bounded if for

any p̄ ∈ ℝn there exists �(p̄) ∈ ℝn
≥0 such that x(t) ≤ �(p̄), t ≥ 0 for any p(t) ≤ p̄, t ≥ 0. □

From Lemma 8.3.12 and Proposition 8.3.9, (8.2) is monotonically bounded if �([W]+) < 1

and the initial condition x0 is restricted to a bounded domain. Also in reality, the state of any bio-

logical neuronal network is uniformly bounded due to the refractory period of its neurons, implying

monotone boundedness. The next result shows that the GES of 1

2 is both necessary and sufficient

for feedforward selective inhibition.

Theorem 8.4.2. (Feedforward selective inhibition). Consider the dynamics (8.2), where the exter-

nal input is given by (8.26)-(8.27) with a constant feedforward control

u(t) ≡ u ≥ 0.

Assume that (8.2) is monotonically bounded and

range([W00 W01]) ⊆ range(B0). (8.28)

Then, for any p̃1 ∈ ℝn−r, there exists ū ∈ ℝm
≥0 such that for all u ≥ ū, 2 is GES relative to a

unique equilibrium of the form x∗ = [0Tr (x
1

∗)
T ]T if and only if W11 is such that the internal  1

2

dynamics

�ẋ1 = −x1 + [W11x1 + p̃1]+, (8.29)
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is GES relative to a unique equilibrium.

Proof. (⇐) Define us to be a solution of

B0us = −[[W
00 W01]]+�(p̃). (8.30)

This solution exists by assumption (8.28). Let ū = [us]+ and note that B0u ≤ B0ū ≤ B0us. By

construction, (8.2), (8.26), (8.27), (8.30) simplify to

�ẋ0 = −x0,

�ẋ1 = −x1 + [W10x0 +W11x1 + p̃1]+, (8.31)

whose GES follows from Lemma 8.A.2.

(⇒) By monotone boundedness and nonpositivity of B0, x(t) ≤ �(p̃) for all t ≥ 0 and

any u ≥ ū. Let u = ū + [us]+ where us is a solution to (8.30). Similar to above, this simplifies

(8.2), (8.26), (8.27), (8.30) to (8.31), which is GES by assumption. However, for any initial condi-

tion of the form x(0) = [0Tr x
1(0)T ]T , the trajectories of (8.31) are the same as (8.29), and the result

follows.

As we show next, the condition (8.28) on the ability to influence the dynamics of the task-

irrelevant nodes through control also plays a key role in feedback selective inhibition. We defer the

discussion about the interpretation of this condition to Section 8.4.3 below.
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8.4.2 Feedback Selective Inhibition

The core idea of feedback inhibition [90], as found throughout the brain, is the dependence

of the amount of inhibition on the activity level of the nodes that are to be inhibited. This depen-

dence is in particular relevant to GDSA, as the stronger and more salient a source of distraction,

the harder one must try to suppress its effects on perception. The next result provides a novel char-

acterization of several equivalences between the dynamical properties of2 under linear full-state

feedback inhibition and those of 1

2 .

Theorem 8.4.3. (Feedback selective inhibition). Consider the dynamics (8.2), where the external

input is given by (8.26)-(8.27) with a linear state feedback u

u(t) = Kx(t), (8.32)

and K ∈ ℝm×n is a constant control gain. Assume that (8.28) holds. Then, there exists K ∈ ℝm×n

such that

(i) I − (W + BK) ∈  if and only if I −W11 ∈ ;

(ii) −I + (W + BK) ∈  if and only if −I +W11 ∈ ;

(iii) W + BK ∈  if and only ifW11 ∈ ;

(iv) �(|W + BK|) < 1 if and only if �(|W11
|) < 1;

(v) ‖W + BK‖ < 1 if and only if ‖[W10 W11]‖ < 1.
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Proof. (i)⇒) For any K = [K0 K1] ∈ ℝm×n,

W + BK =
⎡

⎢

⎢

⎢

⎣

W00 + B0K0 W01 + B0K1

W10 W11

⎤

⎥

⎥

⎥

⎦

. (8.33)

Thus, since any principal submatrix of a P-matrix is a P-matrix, I −W11 ∈  .

⇐) Since m ≥ R, there Lebesgue-almost always exists K̄ ∈ ℝm×n such that

−
[

W00 W01

]

= B0K̄. (8.34)

Using the fact that the determinant of any block-triangular matrix is the product of the determinants

of the blocks on its diagonal [76, Prop 2.8.1], it follows that I − (W + BK̄) ∈  .

(ii)⇒) This follows from (8.33) and the fact that a principal submatrix of a totally-Hurwitz

matrix is totally-Hurwitz.

⇐) Using the matrix K̄ in (8.34), the result follows from the fact that the eigenvalues of a block-

triangular matrix are the eigenvalues of its diagonal blocks.

(iii)⇒) Let P = PT > 0 be such that

(−I + (W + BK)T�)P + P(−I + �(W + BK)) < 0 (8.35)

for all � ∈ {0, 1}n. Consider, in particular, � = [0Tr (�
1)T ]T where �1 ∈ {0, 1}n−r is arbitrary. Let
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�1 = diag(�1) and partition P in 2-by-2 block form similarly toW. Since

(−I + (W + BK)T�)P + P(−I + �(W + BK))

=

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ (−I + �1W11)TP11 + P11(−I + �1W11)

⎤

⎥

⎥

⎥

⎦

,

and any principal submatrix of a negative definite matrix is negative definite, we deduceW11 ∈ .

⇐) Let P11 ∈ ℝ(n−r)×(n−r) be such that

(−I + (W11)T�1)P11 + P11(−I + �1W11) < 0,

for all �1 ∈ {0, 1}n−r and K̄ be as in (8.34). For any � = [(�0)T (�1)T ]T , (8.34) gives

−I + �(W + BK̄) =
⎡

⎢

⎢

⎢

⎣

−I 0

⋆ −I + �1W11

⎤

⎥

⎥

⎥

⎦

.

Thus, the dynamics

�ẋ =
(

− I + �(W + BK̄)
)

x,

is a cascade of �ẋ0 = −x0 and

�ẋ1 = (−I + �1W11)x1 + ⋆ ⋅ x0,

where the latter has the ISS Lyapunov function V 1(x1) = (x1)TP11x1. Using [92, Thm 3], (8.35)
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holds for K = K̄, P = diag(I,P11), and any � ∈ {0, 1}n, givingW + BK̄ ∈ .

(iv) ⇒) This follows from (8.33) and [76, Fact 4.11.19].

⇐) Consider the matrix K̄ in (8.34). The result then follows from the fact that the eigenvalues of a

block-triangular matrix are the eigenvalues of its diagonal blocks.

(v)⇒) Note that for any K ∈ ℝm×n,

‖W + BK‖2 = �
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

⋆ ⋆

⋆ W10(W10)T +W11(W11)T

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

≥ �(W10(W10)T +W11(W11)T ) =
‖

‖

‖

‖

‖

[

W10 W11

]

‖

‖

‖

‖

‖

2

,

where the inequality follows from the well-known interlacing property of eigenvalues of principal

submatrices (c.f. [93]).

⇐) Consider the matrix K̄ in (8.34) and note that

‖W + BK̄‖2 = �
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

0 0

0 W10(W10)T +W11(W11)T

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

= �(W10(W10)T +W11(W11)T ) =
‖

‖

‖

‖

‖

[

W10 W11

]

‖

‖

‖

‖

‖

2

< 1,

completing the proof.

Remark 8.4.4. (Feedback inhibition with nonnegative u(t)). Even though Theorem 8.4.3 is mo-

tivated by feedback inhibition in the brain, the result illustrates some fundamental properties of

linear-threshold dynamics and the corresponding matrix classes that is of independent interest,

which motivates the generality of its formulation. The particular application to brain networks
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requires nonnegative inputs, which we discuss next. The core principle of Theorem 8.4.3 is the

cancellation of local input [W00 W01]x to  0

2 with the top-down feedback input B0K̄x, simplify-

ing the dynamics of  0

2 to �ẋ0 = −x0 that guarantee its inhibition. However, the resulting input

signal u = K̄x (being the firing rate of some neuronal population) may not remain nonnegative at

all times. This can be easily addressed as follows. Similar to the proof of Theorem 8.4.2, we let

u(t) = [K̄x(t)]+.

This makes u(t) nonnegative without affecting the selective inhibition of  0

2 in (8.2) due to the

nonpositivity of B0 and the thresholding in [⋅]+. □

8.4.3 Network Size, Weight Distribution, and Stabilization

Underlying the discussion above is the requirement that2 can be asymptotically stabilized

towards an equilibrium which has some components equal to zero and the remaining components

determined by p̃. Here, it is important to distinguish between the stability of 2 in the absence

and presence of selective inhibition. In reality, the large size of biological neuronal networks often

leads to highly unstable dynamics if all the nodes in a layer, say 2, are active. Therefore, the

selective inhibition of 0

2 is not only responsible for the suppression of the task-irrelevant activity

of 0

2 , but also for the overall stabilization of2 that allows for top-down recruitment of 1

2 . This

poses limitations on the size and structure of the subnetworks 0

2 and 1

2 . It is in this context that

one can analyze the condition (8.28) assumed in both Theorems 8.4.2 and 8.4.3. This condition

requires, essentially, that there are sufficiently many “independent” external controls u to enforce

inhibition on 0

2 . The following result formalizes this statement.
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Lemma 8.4.5. (Equivalent characterization of (8.28)). Let the matrices W0 and B0 have di-

mensions r × n and r × m, respectively. Then, range(W0) ⊆ range(B0) for Lebesgue-almost all

(W0,B0) ∈ ℝr×n ×ℝr×m if and only if m ≥ r.

Proof. ⇒) Assume, by contradiction, that m < r, so range(B0) ⊊ ℝr for any B0. LetQ = Q(B0) be

a matrix whose columns form a basis for range(B0)⟂. Then, range(W0) ⊆ range(B0) if and only if

Q(B0)TW0 = 0. By Fubini’s theorem [94, Ch. 20],

∫ℝr×n×ℝr×m
I{Q(B0)TW0=0}(W

0,B0)d(W0,B0) = ∫ℝr×m
dB0

∫ℝr×n
I{Q(B0)TW0=0}(W

0,B0)dW0

= ∫ℝr×m
0 dB0 = 0,

where I denotes the indicator function. This contradiction proves m ≥ r.

⇐) Let B0 = [B0

1 B
0

2] where B
0

1 ∈ ℝr×r. It is straightforward to show that

{(W0,B0) | range(W0) ⊈ range(B0)} ⊆ ℝr×n × A,

where A = {B0
| det(B0

1) = 0}. Since A has measure zero, the result follows from a similar

argument as above invoking Fubini’s theorem.

Based on intuitions from linear systems theory, it may be tempting to seek a relaxation

of (8.28) for the case where m < r. This is due to the fact that for a linear system �ẋ =Wx + Bu,

it is known [95, eq (4.5) and Thm 3.5] that the set of all reachable states from the origin is given by

range
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

B0 W00B0 ⋯ (Wn−1)00B0

0 W10B0 ⋯ (Wn−1)10B0

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

,
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which is usually much larger than range(B). Therefore, it is reasonable to expect that (8.28) could

be relaxed to

range([W00 W01]) ⊆ range([B0 W00B0 ⋯ (Wn−1)00B0]). (8.36)

However, it turns out that this relaxation is not possible, the reason being the (apparently simple,

yet intricate) nonlinearity in (8.2). We show this by means of an example.

Example 8.4.6. (Tightness of (8.28)). Consider the feedback dynamics (8.2), (8.26), (8.32), where

n = 3, m = 1, r = 2, and

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2� 0 0

0 3� 0

0 0 �

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, � ∈ (0.5, 1).

Clearly, (8.28) does not hold (so Theorem 8.4.3(iv) does not apply), but range([W00 W01]) ⊆

range([B0 W00B0]). One can show that for all K ∈ ℝ1×3,

�(|W + BK|) ≥ 2� > 1,

while �(W11) = � < 1, verifying that (8.28) is necessary and cannot be relaxed to (8.36). □

Theorems 8.4.2 and 8.4.3 use completely different mechanisms for inhibition of  0

2 , yet

they are strikingly similar in one conclusion, namely, that the dynamical properties achievable under

selective inhibition are precisely those satisfied by the task-relevant part  1

2 . This has important

implications for the size and structure of the part 1

2 that can remain active at any instance of time
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without resulting in instability. The next remark elaborates on this implication.

Remark 8.4.7. (Implications for the size of 1

2 ). Existing experimental evidence suggest that the

synaptic weights W in cortical networks are sparse, approximately follow a log-normal distribu-

tion, and have a pairwise connection probability that is independent of physical distance between

neurons within short distances [96]. Figure 8.3(a) shows the value of �(|W|) for random matri-

ces with such statistics, which grows linearly with n. Notably, the network (representing 2 here)

rapidly loses stability as its size grows. On the other hand, recent advances in machine learning

suggest that the expressivity of a neuronal network (often loosely defined as its capacity to repro-

duce complex trajectories) is maximized when it operates at the boundary between stability and

instability, commonly referred to as the edge of chaos [97–99]. While determining the optimal size

of a network that leads to maximal expressivity is beyond the scope of this work, our results suggest

a critical role for selective inhibition in keeping only a limited number of nodes in2 active at any

given time while inhibiting others. In other words, while the overall size of subnetworks in a brain

network (corresponding to, e.g., the number of neuronal populations with distinct preferred stim-

uli in a brain region) is inevitably large, selective inhibition offers a plausible explanation for the

mechanism by which the brain keeps the number of active populations at any given time bounded

(O(1)), thus maintaining its local dynamics close to the “edge of chaos”.

Similarly, Figure 8.3(b) shows the probability of the three stability related conditions

I −W ∈  , −I +W ∈ , and �(|W|) < 1 (cf. Section 8.3) as a function of average absolute

weight in the network, showing a rapid drop from 1 to less than 0.1 around unit average absolute

weight. Interestingly, several works in the neuroscience literature have shown that neuronal net-

works maintain stability by re-scaling their synaptic weights that change during learning, a process
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commonly referred to as homeostatic synaptic plasticity [100]. Our results therefore open the way

to provide rigorous and quantifiable measures of the optimal size and weight distribution of neu-

ronal subnetworks that may be active at any given time in order to maintain any desired level of

network stability. □

Random Network

Linear Fit

(a) (b)

Figure 8.3: The effects of network size and weight distribution on its stability. (a) Linear growth of
�(|W|)with network size n. Each circle represents a randommatrix with 10% sparsity and synaptic
weights log-normally distributed with parameters � = −0.7 and � = 0.9 as given in [96]. As in
cortical networks, 80% of nodes are excitatory and 20% inhibitory. The line illustrates a fit of the
form log �(|W|) = � log n + � with � = 1 and � = −1.2, showing a linear growth of �(|W|) with
n. (b) Probability of I −W ∈  , −I +W ∈ , and �(|W|) < 1 as a function of the average
absolute weight of the networks with the same statistics as in (a) but fixed size n = 10 and varying
� = −3.5,−3,… , 2.5. The probabilities are estimated empirically with 103 sample networks for
each value of �.

Complementary to selective inhibition is selective recruitment, as analyzed next.

8.5 Selective Recruitment in Bilayer Networks

In this section we tackle the analysis of simultaneous selective inhibition and top-down

recruitment in a two-layer network. We consider the same dynamics as in (8.3) for the lower-
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level subnetwork 2, but temporarily allow the dynamics of 1 to be arbitrary. This setup allows

us to study the key ingredients of selective recruitment without the extra complications that arise

from the multilayer interconnections of linear-threshold subnetworks and is the basis for our later

developments. Further, by keeping the higher-level dynamics arbitrary, the results presented here

are also of independent interest beyond HSR, as they allow for a broader range of external inputs p̃

than those generated by linear-threshold dynamics. This can be of interest in, for example, brain-

computer interface (BCI) applications, where p̃2 is generated and applied by a computer (1, not

necessarily possessing linear-threshold dynamics) in order to control the activity of certain areas

of the brain (2).

For our subsequent analysis we need the equilibrium map ℎ (cf. equation (8.8)) to be Lips-

chitz, as stated next. The proof of this result is a special case of Lemma 8.6.2 and thus omitted.

Lemma 8.5.1. (Lipschitzness of ℎ). Let ℎ be as in (8.8) and single-valued5 on ℝn. Then, it is

globally Lipschitz on ℝn.

The main result of this section is as follows.

Theorem 8.5.2. (Selective recruitment in bilayer hierarchical networks). Consider the multilayer

dynamics (8.3) where N = 2, n1 = n2 − r2,W2,1 = [0n1×r2 In1]
T , c2 = 0, but x1(t) is generated by

some arbitrary dynamics

�1ẋ1(t) = 
(x1(t), x2(t), t). (8.37)

Let ℎ12 = ℎW11
2,2

as in (8.8). If

5It is indeed possible to show, using the same proof technique, that ℎ is Lipschitz in the Hausdorff metric even when
it is multiple-valued.
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(i) 
 is measurable in t, locally bounded, and locally Lipschitz in (x1, x2) uniformly in t;

(ii) (8.37) has bounded solutions uniformly in x2(t);

(iii) m2 ≥ r2;

(iv) W11

2,2 is such that �ẋ12 = −x
1

2 + [W
11

2,2x
1

2 + x1]
+ is GES towards a unique equilibrium for any

constant x1;

then there exists K2 ∈ ℝm2×n2 such that by using the feedback control u2(t) = K2x2(t), one has

lim
�1→0

sup
t∈[t,t̄]

‖

‖

‖

x2(t) −
(

0r2 , ℎ
1

2(x1(t))
)

‖

‖

‖

= 0, (8.38)

for any 0 < t < t̄ < ∞. Further, if the dynamics of x2 is monotonically bounded6, there also exists

a feedforward control u2(t) ≡ ū2 such that (8.38) holds for any 0 < t < t̄ <∞.

Proof. First we prove the result for feedback control. By (iii), there exists K2 ∈ ℝm2×n2 Lebesgue-

almost always (i.e., for Lebesgue-almost all (W00

2,2,W
01

2,2,B
0

2)) such that

W2,2 + B2K2 =

⎡

⎢

⎢

⎢

⎣

0 0

W10

2,2 W11

2,2

⎤

⎥

⎥

⎥

⎦

. (8.39)

Further, by [101, Thm IV.7(ii) & Thm V.3(ii)], all the principal submatrices of −I+ (W2,2+B2K2)

are Hurwitz. Therefore, by [101, Thm IV.3 & Assump 1], ℎ12 is singleton-valued Lebesgue-almost

6See [101, Def V.1]

325



always (i.e., for Lebesgue-almost allW2,2). Thus, the dynamics of x2 simplifies to

�2ẋ
0

2 = −x
0

2, (8.40a)

�2ẋ
1

2 = −x
1

2 + [W
10

2,2x
0

2 +W
11

2,2x
1

2 + x1]
+, (8.40b)

and has a unique equilibrium for any fixed x1. Assumption (iv) and [101, Lemma A.2] then ensure

that (8.40) is GES relative to (0r2 , ℎ
1

2(x1)) for any fixed x1.

Based on assumption (ii), let D ⊂ ℝn be a compact set that contains the trajectory of the

reduced-order model �1ẋ1 = 
(x1, (0r2 , ℎ
1

2(x1)), t). By assumption (i), 
 is Lipschitz in (x1, x2)

on compacts uniformly in t. Let L
 be its associated Lipschitz constant on D × {0r2} × ℎ
1

2(D).

Using (8.11) and Lemma 8.5.1,

∀x1, x̂1 ∈ D ‖
(x1, ℎ
1

2(x1), t) − 
(x̂1, ℎ
1

2(x̂1), t)‖ ≤ L
‖(x1 − x̂1, ℎ
1

2(x1) − ℎ
1

2(x̂1))‖

≤ L
(‖x1 − x̂1‖ + ‖ℎ12(x1) − ℎ
1

2(x̂1)‖)

≤ L
(1 + Lℎ)‖x1 − x̂1‖,

so 
(⋅, ℎ12(⋅), t) ∶ ℝ
n1 → ℝn1 is L
(1+Lℎ)-Lipschitz onD. Using this fact, Lemma 8.6.2 again, and

the change of variables t′ ≜ t∕�1, the claim follows from [71, Prop 1].

Next, we prove the result for constant feedforward control u2(t) ≡ ū2. Based on assump-

tion (ii), let x̄1 ∈ ℝn1
>0 be the bound on the trajectories of (8.37) and ū2 be a solution of

B0

2ū2 = −[[W
00

2,2W
01

2,2]]
+�(x̄1),
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where � comes from the monotone boundedness of the dynamics of x2. This solution Lebesgue-

almost always exists by assumption (ii). Then, the dynamics of x2 simplifies to (8.40), and [101,

Lemma A.2] guarantees that it is GES relative to (0r2 , ℎ
1

2(x1)) for any fixed x1. The claim then

follows, similar to the feedback case, from [71, Prop 1].

Remark 8.5.3. (Validity of the assumptions of Theorem 8.5.2.). Assumption (i) is merely technical

and is not a restriction in practice. In particular, this assumption is satisfied when using a linear-

threshold model for (8.37). Likewise, assumption (ii) is always satisfied in reality, as the state

of all biological neuronal networks are bounded by the inverse of the refractory period of their

neurons. Even in theory, this assumption can be relaxed to only the boundedness of the reduced-

order model in the case of feedback inhibition (cf. Theorem 8.6.3). Assumption (iii) requires that

there exist sufficiently many inhibitory control channels to suppress the activity of the first r nodes

of the lower-level subnetwork. The most critical requirement is assumption (iv), which is not only

sufficient but also necessary for inhibitory stabilization (cf. [101] for conditions onW11

2,2 that ensure

this assumption as well as its necessity for inhibitory stabilization). □

Themain conclusion of Theorem 8.5.2 is the Tikhonov-type singular perturbation statement

in (8.38). According to this statement, for any � > 0,

|x2(t) − (0r2 , ℎ
1

2(x1(t)))| ≤ �1n2 , ∀t ∈ [t, t̄], (8.41)

provided that �2∕�1 is sufficiently small, i.e., the higher-level dynamics is sufficiently slower than the

lower-level one. As discussed in Section 8.1, this timescale separation is characteristic of biological

neuronal networks.

An important observation regarding (8.41) is that the equilibrium map ℎ12 does not have
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a closed-form expression, so the reference trajectory ℎ12(x1(t)) of the lower-level network is only

implicitly known for any given x1(t). However, if a desired trajectory �12(t) ∈ ℝn2−r2
≥0 for x12 is

known a priori, one can specify the appropriate 
 such that ℎ12(x1(t)) = �12(t). To show this, let the

dynamics of �12(t) be given by

�1�̇
1

2(t) = 
�(�
1

2(t), t).

Then, choosing x1(t) = (I −W
11

2,2)�
1

2(t), yields

[W11

2,2�
1

2(t) + x1(t)]
+ = [�12(t)]

+ = �12(t),

which, according to (8.8), implies �12(t) = ℎ
1

2(x1(t)).

Next, we use this result to illustrate the core concepts of the bilayer HSR in a synthetic

but biologically-inspired example, where a subnetwork of inhibitory nodes generates oscillations

which are then selectively induced on a lower-level excitatory subnetwork.

Example 8.5.4. (HSR of an excitatory subnetwork by inhibitory oscillations). Consider the dy-

namics (8.3) with N = 2, a 3-dimensional excitatory subnetwork at the lower level, and a 3-
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dimensional inhibitory subnetwork at the higher level. Let

W1,1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −0.8 −1.7

−1 0 −0.5

−0.7 −1.8 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, c1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

11

10

10

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

W2,2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.9 1.2

0.7 0 1

0.8 0.2 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, c2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

3.5

2.5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

W1,2 = 0, W2,1 = −I, u2 = −5. (8.42)

It is straightforward to verify that this example satisfies all the assumptions of Theorem 8.5.2.

Therefore, we expect the actual x2-trajectory to be close to the desired x2-trajectory (0, ℎ
1

2(x1(t))

provided that �1 ≪ 1. Figure 8.4 shows the trajectories of this system for �1 = 0.5 together with a

schematic of the interconnections. We see that even with this mild separation of timescales, x2(t)

and (0, ℎ12(x1(t)) are remarkably close.

It is easy to see that the complete x2-subsystem is unstable by itself. However, when x2,1 is

inhibited, the remaining x2,2-x2,3 subnetwork becomes GES. Therefore, the higher-lever inhibitory

network (which is oscillatory itself) has selectively inhibited x2,1 while simultaneously recruiting

(by inducing an oscillation in) the x2,2-x2,3 part.7 Note that although x2,1 is not effectively used here,

it can be replaced by x2,2 or x2,3 at other times. In other words, while the full x2-dynamics is unstable,

any two-node part of it is GES. Therefore, different “tasks” can be accomplished at different times

through the selective inhibition of one of {x2,1, x2,2, x2,3} and top-down recruitment of the other

7Coherent oscillatory activity has been widely shown to be involved in transfer of information between cortical
circuits, see, e.g., [102–104].
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Inhibitory
�1

Excitatory
�2 = 0.5�1

Figure 8.4: The network structure (right) and trajectories (left) of the two-timescale network
in (8.42). The red pyramids and blue circles depict excitatory and inhibitory nodes, respectively,
and the trajectory colors on the left correspond to node colors on the right. The dashed lines show
the desired reference trajectories

(

0, ℎ12(x1(t))
)

.

two. Generalizing this to larger networks results in more flexible selective recruitment of different

subsets of nodes at different times, as observed in nature and formulated in Theorem 8.5.2. □

Remark 8.5.5. (Biological relevance of Example 8.5.4). In addition to providing a simple il-

lustration of the hierarchical selective recruitment framework developed here, the model (8.42)

captures a number of well-known aspects of selective attention in brain dynamics. First, exten-

sive human and animal studies have demonstrated a robust correlation between oscillatory activity,

particularly in the gamma frequency band (∼ 30 − 100Hz), and selective attention in a variety of

contexts [105–108]. Furthermore, gamma oscillations in the cortex are shown to be primarily gen-

erated by networks of inhibitory neurons, which then recruit the excitatory populations (see [109]

and the references therein), as captured by the network structure of Figure 8.4. Interestingly, the

oscillations generated by the higher-level inhibitory subnetwork fall within the gamma band by

setting �1 ∼ 3ms which lies within the decay time constant range of GABAA inhibitory receptors.8

8See, e.g., the Neurotransmitter Time Constants database of the CNRGlab at the Univer-
sity of Waterloo, http://compneuro.uwaterloo.ca/research/constants-constraints/
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Finally, the timescale of the dynamics of inhibitory subnetworks is in general slower than that of

excitatory dynamics in the brain [110–112], supporting the about 2-fold separation of timescales

in Figure 8.4. □

8.6 Selective Recruitment in Multilayer Networks

In this section, we tackle the problem stated in Section 8.2 in its general form and con-

sider an N-layer hierarchical structure of subnetworks with linear-threshold dynamics. Given the

model (8.3), let

ℎ1i ∶ c
1

i ⇉ {x1i | x
1

i = [W
11

i,i+1ℎ
1

i+1(W
11

i+1,ix
1

i + c
1

i+1) +W
11

i,ix
1

i + c
1

i ]
+}, i = 2,… , N − 1,

ℎ1N = ℎW11
N,N
,

be the recursive definition of the (set-valued) equilibriummaps of the task-relevant part of the layers.

The maps {ℎ1i }
N
i=2 play a central role in the multiple-timescale dynamics of (8.3). Therefore, our

first step is to study their properties carefully. Our first result characterizes their piecewise affinity

nature.

Lemma 8.6.1. (Piecewise affinity of equilibrium maps is preserved along the layers of a hierar-

chical linear-threshold network). Let ℎ ∶ ℝn → ℝn be a piecewise affine function of the form

ℎ(c) = F�c + f�, ∀c ∈ Ψ� ≜ {c | G�c + g� ≥ 0},

∀� ∈ Λ,

neurotransmitter-time-constants-pscs.html.
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where Λ is a finite index set and
⋃

�∈ΛΨ� = ℝn. Given matricesWl,l = 1, 2, 3 and a vector c̄,

assume

x = [W1x +W2ℎ(W3x + c̄) + c′]+, (8.43)

is known to have a unique solution x ∈ ℝn′ for all c′ ∈ ℝn′ and let ℎ′(c′) be this unique solution.

Then, there exists a finite index set Λ′ and {(F′�′ , f
′
�′ ,G

′
�′ , g

′
�′)}�′∈Λ′ such that

ℎ′(c′) = F′�′c
′ + f ′�′ , ∀c′ ∈ Ψ′�′ ≜ {c

′
| G′

�′c
′ + g′�′ ≥ 0},

∀�′ ∈ Λ′,

and
⋃

�′∈Λ′ Ψ
′
�′ = ℝn′ .

Proof. Pick any c′ ∈ ℝn′ and let x∗ be the unique solution of (8.43). Since
⋃

�∈ΛΨ� = ℝn, there

exists � ∈ Λ such that

W3x∗ + c̄ ∈ Ψ�. (8.44)

IfW3x∗ + c̄ lies on the boundary of more than one Ψ�, pick one arbitrarily. Therefore, x∗ satisfies

x∗ = [(W1 +W2F�W3)x∗ +W2(F�c̄ + f�) + c′]+.
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Similar to (8.11), we have

x∗ =
(

I − �(W1 +W2F�W3)
)−1�

(

c′ +W2(F�c̄ + f�)
)

≜ F′�′c
′ + f ′�′ , (8.45)

where � = diag(�),� ∈ {0, 1}n′ is such that

c′ ∈ Δ� = {c′ |M�
(

W2(F�c̄ + f�) + c′
)

≥ 0},

M� ≜ (2� − I)(I − (W1 +W2F�W3)�)−1,

and �′ ≜ (�,�). Using this new representation of x∗ in (8.45), we see that (8.44) holds if and only

if

W3(F′�′c
′ + f ′�′) + c̄ ∈ Ψ� ⇔ G�(W3F′�′c

′ +W3f ′�′ + c̄) + g� ≥ 0.

Therefore, (8.45) holds if and only if c′ ∈ Ψ′�′ with

G′
�′ ≜

⎡

⎢

⎢

⎢

⎣

G�W3F′�′

M�

⎤

⎥

⎥

⎥

⎦

, g′�′ ≜
⎡

⎢

⎢

⎢

⎣

G�(W3f ′�′ + c̄) + g�

M�W2(F�c̄ + f�)

⎤

⎥

⎥

⎥

⎦

.

The proof is therefore complete by letting Λ′ = Λ × {0, 1}n′ and noticing that
⋃

�′∈Λ′ Ψ
′
�′ = ℝn′

since any c′ ∈ ℝn′ must belong to at least one Ψ′�′ by construction.

Note that a special case of Lemma 8.6.1 is whenW2 = 0, in which case ℎ′ becomes, like

ℎ1N , the standard equilibrium map (8.8) of linear-threshold dynamics. Our next result characterizes
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the global Lipschitzness property of the equilibrium maps.

Lemma 8.6.2. (Piecewise affine equilibrium maps are globally Lipschitz). Let ℎ ∶ ℝn → ℝn be

a piecewise affine function of the form

ℎ(c) = F�c + f�, ∀c ∈ Ψ� ≜ {c | G�c + g� ≥ 0},

∀� ∈ Λ,

where Λ is a finite index set and
⋃

�∈ΛΨ� = ℝn. Then, ℎ is globally Lipschitz.

Proof. Pick any c, ĉ ∈ ℝn. Since all the sets Ψ� are convex, the line segment 
 ≜
{(

�, (1 − �)c +

�ĉ
)

| � ∈ [0, 1]
}

joining c and ĉ can be broken into k ≤ |Λ| <∞ pieces such that 
 =
⋃k

i=1 
i, 
i ≜
{(

�, (1 − �)c + �ĉ
)

| � ∈ [�i−1, �i]
}

, �0 = 0, �k = 1 and each 
i ⊂ Ψ�i for some �i ∈ Λ. Let

ci ≜ (1 − �i)c + �iĉ. Then,

‖ℎ(c) − ℎ(ĉ)‖ =
‖

‖

‖

‖

‖

‖

k
∑

i=1

(

ℎ(ci−1) − ℎ(ci)
)

‖

‖

‖

‖

‖

‖

≤
k
∑

i=1
‖ℎ(ci−1) − ℎ(ci)‖ =

k
∑

i=1
‖F�i(ci−1 − ci)‖

≤
[

max
�∈Λ

‖F�‖
]

k
∑

i=1
‖ci−1 − ci‖ =

[

max
�∈Λ

‖F�‖
]

‖c − ĉ‖,

completing the proof.

We are now ready to generalize Theorem 8.5.2 to anN-layer architecture while at the same

time relaxing several of its simplifying assumptions in favor of generality.

Theorem 8.6.3. (Selective recruitment in multilayer hierarchical networks). Consider the dy-

namics (8.3). If
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(i) The reduced-order model (ROM)

�1 ̇̄x
1

1 = −x̄
1

1 + [W
11

1,1x̄
1

1 +W
11

1,2ℎ
1

2(W
11

2,1x̄
1

1 + c
1

2) + c
1

1]
+,

of the first subnetwork has bounded solutions (recall x1 ≡ x
1

1 since r1 = 0);

(ii) For all i = 2,… , N ,

�iẋ
1

i (t) = − x
1

i (t) + [W
11

i,ix
1

i (t) +W
11

i,i+1ℎ
1

i+1(W
11

i+1,ix
1

i (t) + c
1

i+1) + c
1

i ]
+,

is GES towards a unique equilibrium for any c1i+1 and any c
1

i ;

then there exists Ki ∈ ℝmi×ni and ūi ∶ ℝ≥0 → ℝmi
≥0, i ∈ {2,… , N} such that using the feedback-

feedforward control

ui(t) = Kixi(t) + ūi(t), i ∈ {2,… , N}, (8.46)

we have, for any 0 < t < t̄ <∞,

lim
�→0

sup
t∈[t,t̄]

‖x0i (t)‖ = 0, ∀i ∈ {2,… , N}, (8.47a)
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and

lim
�→0

sup
t∈[0,t̄]

‖x11(t) − x̄
1

1(t)‖ = 0, (8.47b)

lim
�→0

sup
t∈[t,t̄]

‖x12(t) − ℎ
1

2(W
11

2,1x
1

1(t) + c
1

2)‖ = 0, (8.47c)

⋮

lim
�→0

sup
t∈[t,t̄]

‖x1N (t) − ℎ
1

N (W
11

N,N−1x
1

N−1(t) + c
1

N )‖ = 0. (8.47d)

Proof. For any 2 × 2 block-partitioned matrix W, we introduce the convenient notation Wl,all ≜

[Wl0 Wl1] and Wall,l ≜ [(W0l)T (W1l)T ]T for l = 0, 1. Further, for any i ∈ {2,… , N}, let

x1∶i = [xT1 … xTi ]
T . To begin with, let KN and ūN be such that

B0

NKN ≤ −W0,all
N,N , (8.48a)

ūN (t) ≤ −W
0,all
N,N−1xN−1(t) − c

0

N , ∀t, (8.48b)

Note that, if mN ≥ rN , then (8.48a) can be satisfied with equality. Otherwise, (8.48a) can still be

satisfied since all the rows of B0

N are nonzero, but may require excessive amounts of inhibition.

Also, notice that ūN is set by the subnetwork N − 1, which has access to xN−1(t) and can thus

fulfill (8.48b). As a result, the nodes in x0N are fully inhibited and evolve according to �N ẋ
0

N = −x
0

N ,
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and the overall network dynamics become

�1ẋ1 = −x1 + [W1,1x1 +W1,2x2 + c1]+,

⋮

�N−1ẋN−1 = −xN−1 + [WN−1,N−1xN−1 + BN−1uN−1 +WN−1,NxN

+WN−1,N−2xN−2 + cN−1]+,

�N−1�N−1ẋ
0

N = −x
0

N ,

�N−1�N−1ẋ
1

N = −x
1

N + [W
1,all
N,NxN +W

1,all
N,N−1xN−1 + c

1

N ]
+.

Letting �N−1 → 0, we get our first separation of timescales between xN and x1∶N−1, as follows. For

any constant xN−1, the xN dynamics is GES by assumption (ii) and [101, Lemma A.2]. Further, the

equilibrium map ℎN = (0rN , ℎ
1

N ) of the N’th subnetwork is globally Lipschitz by Lemmas 8.6.1

and 8.6.2, and the entire vector field of network dynamics is globally Lipschitz due to the Lips-

chitzness of [⋅]+. Therefore, it follows from [71, Prop 1] that for any 0 < t < t̄ <∞,

lim
�N−1→0

sup
t∈[t,t̄]

‖x0N (t)‖ = 0,

lim
�N−1→0

sup
t∈[t,t̄]

‖x1N (t) − ℎ
1

N (W
1,all
N,N−1xN−1(t) + c

1

N )‖ = 0,

lim
�N−1→0

sup
t∈[0,t̄]

‖x1∶N−1(t) − x
(1)
1∶N−1(t)‖ = 0.
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Here, x(1)1∶N−1 is the solution of the “first-step ROM"

�1ẋ
(1)
1 = −x(1)1 + [W1,1x

(1)
1 +W1,2x

(1)
2 + c1]+,

⋮

�N−1ẋ
(1)
N−1 = −x

(1)
N−1 + [WN−1,N−1x

(1)
N−1 +W

all,1
N−1,Nℎ

1

N (W
1,all
N,N−1x

(1)
N−1(t) + c

1

N )

+WN−1,N−2x
(1)
N−2 + BN−1uN−1 + cN−1]

+,

which results from replacing xN with its equilibrium value. Except for technical adjustments, the

remainder of the proof essentially follows by repeating this processN − 2 times. In particular, for

i = N − 1,… , 2, let Ki and ūi be such that

B0

iKi ≤ −|W
0,all
i,i | − |W01

i,i+1|F̄i+1|W
1,all
i+1,i|,

ūi(t) ≤ −W
0∶
i,i−1xi−1(t) − c

0

i , ∀t,

where F̄i ∈ ℝ(ni−ri)×(ni−ri) is the entry-wise maximal gain of the map ℎ1i over ℝ
ni−ri (cf. Theo-
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rem 8.6.4). This results in the “(N − i)’th-step ROM"

�1ẋ
(N−i)
1 = −x(N−i)1 + [W1,1x

(N−i)
1 +W1,2x

(N−i)
2 + c1]+,

⋮

�i−1ẋ
(N−i)
i−1 = −x(N−i)i−1 + [Wi−1,i−1x

(N−i)
i−1 +Wi−1,ix

(N−i)
i +Wi−1,i−2x

(N−i)
i−2 + Bi−1ui−1

+ ci−1]+,

�i−1�i−1ẋ
(N−i)0
i = −x(N−i)0i ,

�i−1�i−1ẋ
(N−i)1
i = −x(N−i)1i + [W1,all

i,i x
(N−i)1
i +Wall,1

i,i+1ℎ
1

i+1(W
1,all
i+1,ix

(N−i)
i (t) + c1i+1)

+W1,all
i,i−1x

(N−i)
i−1 + c1i ]

+.

Similarly to above, invoking [71, Prop 1] then ensures that

lim
�→0

sup
t∈[t,t̄]

‖x(N−i)0i (t)‖ = 0,

lim
�→0

sup
t∈[t,t̄]

‖x(N−i)1i (t) − ℎ1i (W
1,all
i,i−1x

(N−i)
i−1 (t) + c1i )‖ = 0,

lim
�→0

sup
t∈[0,t̄]

‖x(N−i)1∶i−1 (t) − x
(N−i+1)
1∶i−1 (t)‖ = 0.

Notice that after every invocation of [71, Prop 1], the super-index inside the parenthesis increases

by 1, showing one more replacement of a fast dynamics by its equilibrium state. In particular, after

the last (i.e., (N − 1)’th) invocation of [71, Prop 1], we reach x(N−1)11 , which is the same as x̄11 in

the statement. Together, these results (and sufficiently many applications of the triangle inequality

and Lemma 8.6.2) ensure (8.47), completing the proof.

Unlike the result in Theorem 8.5.2, (8.46) uses a combination of feedback and feedforward
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inhibition. While using only feedforward or feedback inhibition has the advantage of a simpler

implementation, their combination results in more flexibility and less conservativeness: in pure

feedforward inhibition, countering local excitations requires monotone boundedness and a suffi-

ciently large ū providing inhibition under the worst-case scenario, a goal that is achieved more

efficiently using feedback. On the other hand, pure feedback inhibition needs to dynamically can-

cel local excitations at all times and is also unable to counter the effects of constant background

excitation, limitations that are easily addressed when combined with feedforward inhibition.

Similar to Remark 8.5.3, assumption (ii) of Theorem 8.6.3 is its only critical requirement,

which is both necessary and sufficient for selective inhibition. The next result relates this condi-

tion to the joint structure of the subnetworks, serving as a vital step in the practical utilization of

Theorem 8.6.3.

Theorem 8.6.4. (Sufficient condition for existence and uniqueness of equilibria and GES in

multilayer linear-threshold networks). Let ℎ ∶ ℝn → ℝn be a piecewise affine function of the form

ℎ(c) = F�c + f�, ∀c ∈ Ψ� ≜ {c | G�c + g� ≥ 0},

∀� ∈ Λ, (8.49)

where Λ is a finite index set and
⋃

�∈ΛΨ� = ℝn. Further, let F̄ ≜ max�∈Λ |F�| be the matrix whose

elements are the maximum of the corresponding elements from {|F�|}�∈Λ. For arbitrary matrices

Wl, l = 1, 2, 3, if �
(

|W1| + |W2|F̄|W3|
)

< 1, then the linear-threshold dynamics

�ẋ(t) = −x(t) + [W1x(t) +W2ℎ(W3x(t) + c̄) + c]+,
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is GES towards a unique equilibrium for all c̄ and c.

Proof. We use the same proof technique as in [22, Prop. 3]. For simplicity, assume that |W1| +

|W2|F̄|W3| is irreducible (i.e., the network topology induced by it is strongly connected)9. Then,

the left Perron-Frobenius eigenvector � of |W1|+|W2|F̄|W3| has positive entries [76, Fact 4.11.4],

making the map ‖ ⋅ ‖� ∶ v→ ‖v‖� ≜ �T |v| a norm on ℝn. Further, it can be shown, similar to the

proof of Lemma 8.6.2, that for all c1, c2 ∈ ℝn,

|ℎ(c1) − ℎ(c2)| ≤ F̄|c1 − c2|,

where the inequality is entrywise. Thus, for any x, x̂ ∈ ℝn,

‖

‖

‖

[W1x+W2ℎ(W3x + w) + c]+ − [W1x̂ +W2ℎ(W3x̂ + w) + c]+
‖

‖

‖�

= �T ||
|

[W1x +W2ℎ(W3x + w) + c]+ − [W1x̂ +W2ℎ(W3x̂ + w) + c]+
|

|

|

≤ �T ||
|

W1(x − x̂) +W2(ℎ(W3x + w) − ℎ(W3x̂ + w))
|

|

|

≤ �T
(

|W1| + |W2|F̄|W3|
)

|x − x̂|

= �
(

|W1| + |W2|F̄|W3|
)

�T |x − x̂|

= �
(

|W1| + |W2|F̄|W3|
)

‖x − x̂‖�.

This proves that x ↦ [W1x+W2ℎ(W3x+w) + c]+ is a contraction on ℝn
≥0 and has a unique fixed

point, denoted x∗, by the Banach Fixed-Point Theorem [113, Thm 9.23].

9If |W1|+ |W2|F̄|W3| is not irreducible, it can be “upper-bounded” by the irreducible matrix |W1|+ |W2|F̄|W3|+
�1n1Tn , with � > 0 sufficiently small such that �(|W1| + |W2|F̄|W3| + �1n1Tn ) < 1. The same argument can then be
employed for this upper bound.
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To show GES, let �(t) ≜ (x(t) − x∗)et, satisfying

��̇(t) =M(t)W�(t), (8.50)

whereM(t) is a diagonal matrix with diagonal entries

mii(t) ≜

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

[W1x(t)+W2ℎ(W3x(t)+w)+c]+−x∗)i
�i(t)

if �i(t) ≠ 0,

0 otherwise.

It is straightforward to show that

|M(t)| ≤ |W1| + |W2|F̄|W3|, ∀t ≥ 0,

where the inequality is entry-wise. Then, by using [21, Lemma] (which is essentially a careful

application of Gronwall-Bellman’s Inequality [62, Lemma A.1] to (8.50)),

‖�(t)‖� ≤ ‖�(0)‖�e�(|W1|+|W2|F̄|W3|)t ⇒ ‖x(t)−x∗‖� ≤ ‖x(0)−x∗‖�e−(1−�(|W1|+|W2|F̄|W3|))t,

establishing GES by the equivalence of norms on ℝn.

Note that Theorem 8.6.4 applies to each layer of (8.3) separately. When put together, as-
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sumption (ii) of Theorem 8.6.3 is satisfied if

�
(

|W11

2,2| + |W11

2,3|F̄
1

3|W
11

3,3|
)

< 1,

⋮

�
(

|W11

N−1,N−1| + |W11

N−1,N |F̄
1

N |W
11

N,N−1|
)

< 1,

�
(

|W11

N,N |
)

< 1, (8.51)

where F̄1

i , i = 3,… , N is the matrix described in Theorem 8.6.4 corresponding to ℎ1i , and the affine

form (8.49) of ℎ1i is computed recursively using Lemma 8.6.1.

8.7 Case Study: Selective Listening in Rodents

We present an application of our framework to a specific real-world example of goal-driven

selective attention using measurements of single-neuron activity in the brain. Beyond the concep-

tual illustration of our results in Example 8.5.4 above, we argue that the cross-validation of theoreti-

cal results with real data performed here is a necessary step to make a credible case for neuroscience

research and significantly enhances the relevance of the developed analysis. We have been fortu-

nate to have access to data from a novel and carefully designed experimental paradigm [114, 115]

that involves goal-driven selective listening in rodents and displays the key features of hierarchical

selective recruitment noted here.
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8.7.1 Description of Experiment and Data

A long standing question in neuroscience involves our capability to selectively listen to

specific sounds in a crowded environment [2, 116–118]. Similar phenomena also exists in ani-

mals such as birds and rodents [116, 119]. To understand the neuronal basis of this phenomena,

the work [114] has rats simultaneously presented with two sounds and trains them to selectively

respond to one sound while actively suppressing the distraction from the other. In brief, the ex-

perimental procedure is as follows. In each trial, the animal simultaneously hears a white noise

burst and a narrow-band warble. The noise burst may come from the left or the right while the

warble may have low or high pitch, both chosen at random. Which of the two sounds (noise burst

or warble) is relevant and which is a distraction depends on the “rule” of the trial: in “localization”

(LC) and “pitch discrimination” (PD) trials, the animal has to make a motor choice based on the

location of the noise burst (left/right) or the pitch of the warble (low/high), respectively, to receive

a reward. Each rat performs several blocks of LC and PD trials during each session (with each

block switching randomly between the 4 possible stimulus pairs), requiring it to quickly switch its

response following the rule changes.

While the rats perform the task, spiking activity of single neurons is recorded in two brain

areas: the primary auditory cortex (A1) and themedial prefrontal cortex (PFC). A1 is the first region

in the cortex that receives auditory information (from subcortical areas and ears), thus forming a

(relatively) low level of the hierarchy. PFC, on the other hand, is composed of multiple regions that

form the top of the hierarchy, and serve functions such as imagination, planning, decision-making,

and attention [120]. Overall, spike times of 211 well-isolated and reliable neurons are recorded in

5 rats, 112 in PFC and 99 in A1, see [115].
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Using statistical analysis, it was shown in [114] that (i) the rule of the trial and the stimulus

sounds are more strongly encoded by PFC and A1 neurons, respectively, (ii) electrical disruption of

PFC significantly impairs task performance, and (iii) PFC activity temporally precedes A1 activity.

These findings are all consistent with a model where PFC controls the activity of A1 based on the

trial rule in order to achieve GDSA. We next build on these observations to define an appropriate

network structure and rigorously analyze it using HSR.

8.7.2 Choice of Neuronal Populations

In order to form meaningful populations among the recorded neurons, we perform three

classifications of them:

(i) first, we classify the neurons into excitatory and inhibitory. The standard procedure for

this classification is based on the spike waveform of each neuron: excitatory neurons have slower

and wider spikes while inhibitory neurons have faster and narrower ones [121]. Since the spike

waveforms of neurons are high-dimensional (24 samples per waveform, recorded at 30kHz), we

first perform a t-SNE dimensionality reduction and then used k-means clustering to identify the

174 excitatory and 37 inhibitory neurons (Figure 8.5(a)). These results conform with spike width

difference of excitatory and inhibitory neurons (Figure 8.5(b)) and the fact that about 80% of cortical

neurons are excitatory.

(ii) Second, we classify the PFC neurons based on their rule-encoding (RE) property. This

classification was also done in [114], so we briefly review the method for completeness. A neuron

is said to have a RE property if its firing rate is significantly different during the LC and PD trials

before the stimulus onset. In the absence of stimulus, any such difference is attributable to the
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(a) (b)

Figure 8.5: Excitatory/inhibitory classification of neurons. (a) Clustering of neuronal spike wave-
forms in the two-dimensional space arising from t-SNE dimensionality reduction. The excitatory
and inhibitory neurons form clearly distinct clusters that are identified using the k-means clustering
algorithm. (b) The spike waveforms of clustered neurons. As expected, the inhibitory neurons have
faster and narrower spikes, verifying the outcome of the t-SNE + k-means clustering procedure.

animal’s knowledge of the task rule (i.e., which upcoming stimulus it has to pay attention to in

order to get the reward). Thus, it is standard to assess neurons’ RE property during the hold period,

namely, the time interval between the initiation of each trial and the stimulus onset of that trial.

Therefore for each PFC neuron, we calculate its mean firing rate during the hold period of each

trial and then statistically compare the results for LC and PD trials (p < 0.05, one-sided MWW

rank-sum test). Among the 112 neurons in PFC, 40 encoded for LC while 44 encoded for PD (the

remaining PFC neurons with no RE property are discarded from further analysis).

(iii) Finally, we classify the A1 neurons based on their evoked response (ER) property. In

contrast to RE, a neuron has an ER property if its firing rate is significantly different in response to

the white noise (LC stimulus) and warble (PD stimulus) after the stimulus onset. Since the white

noise and warble are always presented simultaneously, it is not possible to make such a distinction

based on normal trials. However, before each LC or PD block, the animal is only presented with the
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respective stimulus for a few cue trials (which is how the animal realizes the rule change). Thus,

for each A1 neuron, we compare its mean firing rate during the listening period of each cue trial

(namely, the interval between the stimulus onset and the time that the animal commits to a decision)

and statistically compare the distribution of the results for LC and PD cue trials (p < 0.05, one-

sided MWW rank-sum test). Among the 99A1 neurons, 21 had an ER for LC while another 21 had

an ER for PD (the remaining A1 neurons with no ER property are discarded from further analysis).

Remark 8.7.1. (RE vs. ER detection). It is noteworthy that a smaller fraction of PFC and A1 neu-

rons also have ER and RE properties, respectively. However, we know from systems neuroscience

that these properties most likely arise from the PFC-A1 reciprocal connection, as auditory and at-

tention/decision making information disseminate from A1 and PFC, respectively. This motivates

our classification of A1 and PFC neurons based on ER and RE, respectively, and their reciprocal

connection in the proposed network structure below. Further, we note that our ER detection has a

difference with respect to [114]. In [114], the difference between the post-stimulus and pre-stimulus

firing rates (the latter being RE) is used for ER detection, with the motivation of removing the por-

tion of post-stimulus firing rate that is due to RE (and thus independent of stimulus). However,

this relies on the strong assumption that the RE and ER responses superimpose linearly, which we

found likely not to be true based on the statistical analysis of the present dataset, perhaps since RE

drives many neurons close to their maximum firing rate, leaving little room for additional ER. We

thus use the complete post-stimulus firing rate for ER detection, as above. □

As a result of the classifications described above, we group the neurons into 8 populations

based on the PFC/A1, excitatory/inhibitory, and LC/PD classifications. The firing rate of each

population (as a function of time) is then calculated as follows. For each neuron and each trial, the
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interval [−10, 10] (with time 0 corresponding to stimulus onset) is decomposed into 100ms-wide

bins and the firing rate of each bin (spike count divided by bin width) is assigned to the bin’s center

time. This time series is then averaged over all trials with the same stimulus pair and all the neurons

within each population, and finally smoothed with a Gaussian kernel with 1s standard deviation.

This results in one firing rate time series for each neuron and each stimulus pair.

For the purpose of this work, we limit our choice of stimulus pairs as follows. Recall that

each of LC and PD blocks contains 4 stimulus pairs (left-low, left-high, right-low, right-high). In

each block, these 4 pairs are divided into two go and two no-go pairs. When the animal hears a

go stimulus pair, his correct response is to go to a nearby food port to receive his reward. In no-

go trials, on the other hand, the correct response is simply inaction (action is punished by a delay

before the animal can do the next trial). Due to strong motor and reward-consumption artifacts in

go trials (cf. [114, Fig. S4]), we limit our analysis here to no-go trials. Further, we also discard the

no-go stimulus pair that is shared between LC and PD blocks, since the correct decision (no-go)

is independent of the block and thus does not require selective attention. Therefore, our analysis

hereafter only involves one firing rate time series for each neuronal population in each block.

8.7.3 Network Binary Structure

We next describe our proposed network binary structure10. In each of the two regions (PFC

and A1), the 4 populations are connected to each other according to the following physiological

properties (see [122–124] and [124–126] for evidence of these properties in PFC and A1, resp.):

(i) each excitatory population projects to (i.e., makes synapses on) the inhibitory population with

10We here make a distinction between the binary structure of the network, composed of only the connectivity pattern
among nodes, and its full structure, that also includes the connection weights.
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the same LC/PD preference (RE in PFC or ER in A1);

(ii) neurons in each excitatory population project to each other (captured by the excitatory self-

loops in Figure 8.6).

(iii) each inhibitory population projects to the populations (both excitatory and inhibitory) with

opposite LC/PD preference (the so-called lateral inhibition property);

While within-region connections are both excitatory and inhibitory, between-region connections in

the cortex (including PFC and A1) are almost entirely excitatory, completing the binary structure

shown in Figure 8.6.

Thalamus

A1

PFC

3

2

1

LC Time PD Manifest
Excitatory Node

Manifest
Inhibitory Node
Input Node

Figure 8.6: The proposed network binary structure. The physiological region, hierarchical layer,
and encoding properties of nodes are indicated on the left, right, and above the figure, respectively.
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Hierarchical Structure

To apply the HSR framework to the network of Figure 8.6, we still need to assign the nodes

to hierarchical layers. This assignment is in general arbitrary except for two critical requirements,

(i) the existence of timescale separation between layers and (ii) the existence of both excitatory and

inhibitory projections from any layer to the layer below (to allow for simultaneous inhibition and

recruitment). The trivial choice here is to consider each region as a layer, which also satisfies (i)

(since PFC has slower dynamics than A1) but not (ii) (since there would be no inhibitory connection

between regions). We thus propose an alternative 3-layer choice, as shown in Figure 8.6.11 This

choice clearly satisfies (ii), and we next show that it also satisfies (i).

Computation of Timescales

To assess the intrinsic timescales of each population, we employ the common method in

neuroscience based on the decay rate of the correlation coefficient [49,50]. In brief, for each neuron

l, we partition the time window before the stimulus onset12 into small bins (200ms-wide here) and

compute the smoothed mean firing rate of this neuron during each bin and each trial. This yields a

set {rli,k}i,k,l, where r
l
i,k denotes the mean firing rate of neuron l in the k’th time bin of trial i. The

Pearson correlation coefficient between two time bins k1 and k2 is estimated as

�lk1,k2 =

∑

i(r
l
i,k1
− r̄lk1)(r

l
i,k2
− r̄lk2)

√

∑

i(r
l
i,k1
− r̄lk1)

2∑
i(r

l
i,k2
− r̄lk2)

2
∈ [−1, 1],

11The bottom-most layer4 represents “external” inputs from sub-cortical areas. Since we have no recordings from
these areas, we do not consider any dynamics for 4 and accordingly do not include it in HSR analysis.
12In general, the time interval used for timescale estimation should not include stimulus presentation in order to

reduce the effects of external factors on the internal neuronal dynamics.
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Figure 8.7: Timescale separation among the layers 1, 2, and 3 in Figure 8.6. The circles il-
lustrate the values of the average auto-correlation coefficient �̄pk as a function of time lag k, whereas
the lines represent the best exponential fit over the range of time lags where each �̄pk -ecays expo-
nentially (note the logarithmic scale on the y-axis).

where r̄lk is the average of r
l
i,k across all the trials for neuron l. Let �

l
k be the average of �

l
k1,k2

over

all k1, k2 such that |k1−k2| = k and �̄
p
k, for any population p, be the average of �

l
k for all the neurons

l in the population p. Figure 8.7 shows this function for populations of excitatory and inhibitory

neurons in PFC and A1 (we do not split the neurons based on their LC/PD preference because it

is not relevant for timescale separation). Fitting �̄pk by an exponential function of the form Ae−k∕�

gives an estimate of the intrinsic timescale � of this population, which becomes exact for spikes

generated by a Poisson point process under certain regularity conditions [49]. Here, we use the

range of k values for which the decay of �̄pk is approximately exponential for calculating the fit. As

seen in Figure 8.7, there is a clear timescale separation between the layer of A1 excitatory neurons,

the layer of A1 inhibitory and PFC excitatory neurons, and the layer of PFC inhibitory neurons,

satisfying the requirement (i) above.13

13Also note that this method inherently underestimates the timescale separation between layers due to the mutual
dynamical interactions between them.
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Exogenous Inputs and Latent Nodes

The last step in specifying the binary structure of the network involves the exogenous inputs

to the prescribed neuronal populations (nodes). Clearly, nodes at the bottom layer (layer 3) receive

auditory inputs from subcortical areas which we represent as two input signals x41 and x
4
2 coming

from layer 4 and corresponding to the white noise and warble, respectively. Both these signals are

constructed by smoothing a square pulse that equals 1 during stimulus presentation and 0 otherwise

with the same Gaussian window used for smoothing the firing rate time-series.

The choice of the inputs to the PFC populations is more intricate. PFC is itself composed of

a complex network of several regions, each involved in some aspects of high-level cognitive func-

tions. The RE properties of the recorded PFC populations is only one outcome of such complex

PFC dynamics that also host the animal’s overall understanding of how the task works, his percep-

tion of time, etc. In order to capture the effects of such unrecorded PFC dynamics, we consider 3

additional excitatory PFC populations, as follows. Two input populations x13 and x
1
4 simply encode

the rule of each block14:

x13 ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if in LC block,

0, if in PD block,

x14 ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if in LC block,

1, if in PD block.

Populations with such a sustained constant activity only as a function of task parameters are indeed

observed duringGDSA in PFC [127]. The third additional PFC population encodes the time relative

to the stimulus onset, which is critical for the functioning of the recorded PFC populations. Among

14Note that this static response is different from, and much simpler than, the RE of the recorded PFC neurons, which
is greatly dynamic.
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the various forms of encoding time, we consider a population x15 with firing rate

x15(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|t0| − t t ∈ [t0, 0),

0 t ∈ (0, tf ],

where [t0, tf ] = [−7, 7] is the duration of each trial, since populations with such activity patterns

have been observed in PFC [128].15 Since these three populations have very slow dynamics but

are excitatory, following the same logic as before, we position them in the layer 1 together with the

recorded inhibitory PFC populations x11, x
1
2.

Finally, to capture the effects of the large populations of neurons whose activity is not

recorded, we consider one latent node for each of the 8 manifest nodes in the network16 with the

same in- and out-neighbors as their respective manifest node (the latent nodes are not displayed in

Figure 8.6 to avoid cluttering the plot of the network structure). We let {x1,j}j=6,7, {x2,j}8j=5, and

{x3,j}j=3,4 denote these nodes in1, 2, and 3, respectively.

8.7.4 Identification of Network Parameters

Having established the binary structure of the network, we next seek to determine its un-

known parametersWi,j . While there are physiological methods for measuring the synaptic weight

between a pair of neurons in vitro, they are not applicable in vivo and thus not available for our

dataset. Also, our nodes consist of several neurons, making their aggregate synaptic weight an ab-

stract quantity. Therefore, we resort to system identification/machine learning techniques to “learn”

15Even though both [127] and [128] involve primates, populations with similar activity patterns are expected to exist
in rodents.
16A node is called manifest if its activity is recorded during the experiment and latent otherwise.
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the structure of the network given its input-output signals. For this purpose, the choice of objective

function is crucial, for which we propose

f (z) = fSSE(z) + 
1fcorr(z) + 
2fvar(z), (8.52)

fSSE(z) =
2
∑

l=1

3
∑

i=1

nm,i
∑

j=1

∑

k
(x̂i,j(kT ;l) − xi,j(kT ;l))2,

fcorr(z) = 1 −
1
2nm

2
∑

l=1

1
nm

3
∑

i=1

nm,i
∑

j=1

1
K − 1

∑

k

(x̂i,j(kT ;l) − �̂i,j,l)(xi,j(kT ;l) − �i,j,l)
�̂i,j,l�i,j,l

,

fvar(z) =
(

2
∑

l=1

3
∑

i=1

nm,i
∑

j=1
(�̂i,j,l − �i,j,l)4

)1∕4
,

where,

– z is the vector of all unknown network parameters consisting of not only the synaptic

weights but also the time constants �i, the background inputs ci, and the initial states xi(0), i =

1, 2, 3;

– nm,i is the number of manifest nodes in layer i (so nm,1 = 2, nm,2 = 4, nm,3 = 2) and nm = 8

is the total number of manifest nodes;

– xi,j(t;l) is the measured state of j’th node in the i’th layer in response to the l’th stimulus

at time t (where l = 1 indicates the LC block and l = 2 the PD block) and x̂i,j(t;l) is its model

estimate;

– T = 0.1 is the sampling time; and

– �i,j,l, �i,j,l, �̂i,j,l, �̂i,j,l are the means and standard deviations of xi,j(⋅;l) and x̂i,j(⋅;l),

respectively.
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The rationale behind the objective function (8.52) is as follows. fSSE(z) is the standard sum

of squared error (SSE) function. In HSR, an important property of nodal state trajectories is the

sign of their derivatives, which transiently indicate recruitment (positive derivative) or inhibition

(negative derivative). This is captured by the average correlation coefficient fcorr(z), which is added

to fSSE(z) to enforce similar recruitment and inhibition patterns between measured states and their

estimates. Nevertheless, correlation coefficient between a pair of signals is invariant to the amount

of variation in them, requiring us to add the third term fvar(z). The use of 4-norm in fvar(z) partic-

ularly weights the nodes with large standard deviation mismatches. We use 
1 = 250 and 
2 = 150

to approximately balance the size of the 3 terms in f .

The objective function f is highly nonconvex and we thus use the GlobalSearch algorithm

from the MATLAB Optimization Toolbox to minimize it. Figure 8.8 shows the manifest nodal

states as well as their best model estimates. In order to quantify the similarity between these states

and their estimates, we use the standard R2 measure given by

R2 = 1 −
∑

l,i,j,k(xi,j(kT ;l) − x̂i,j(kT ;l))2
∑

l,i,j,k(xi,j(kT ;l) − �i,j,l)2
≃ 92.7%.

This high value is indeed remarkable, especially given the very small size of the network and the

limited availability of measurements in the experiment.

8.7.5 Concurrence of the Identified Network with Analysis

To conclude, we verify here whether the identified network structure satisfies the require-

ments of the HSR framework in terms of timescale separation and stability. Regarding the former,
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Figure 8.8: State trajectories of manifest nodes in the network of Figure 8.6 (blue: measured, red:
model estimate). t = 0 indicates stimulus onset. Solid and dashed lines correspond to LC and
PD blocks, respectively. The description of each node is indicated above its corresponding panel.
The LC/PD in the legend refers to the trial rule, while the LC/PD above each panel refers to the
preference of that particular node.

the identified time constants are given by

�1 = 4.70, �2 = 2.33, �3 = 1.07,
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yielding an almost twofold separation of timescales conforming to Figure 8.7. Regarding stability,

we have to consider the LC and PD blocks separately (as the definition of task-relevant (1) and

task-irrelevant (0) nodes changes according to the block).

In the LC block, the (manifest) LC nodes are task-relevant and the (manifest) PD nodes are

task-irrelevant. Therefore, under this condition,

W 11

3,3 = 0.17, W11

3,2 =
[

6.7 × 10−3 0

]

, W11

2,2 =

⎡

⎢

⎢

⎢

⎣

0.42 0

0.96 0

⎤

⎥

⎥

⎥

⎦

, W11

2,3 = 10
−2

⎡

⎢

⎢

⎢

⎣

6

2.5

⎤

⎥

⎥

⎥

⎦

.

It is then straightforward to see that

ℎ13(c
1

3) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ; c13 ≤ 0

c13∕(1 −W
11

3,3 ) ; c13 ≥ 0

⇒ F̄ 1

3 =
1

1 −W 11

3,3

.

Therefore,

�(|W 11

3,3 |) = 0.17 < 1,

�
(

|W11

2,2| + |W11

2,3|F̄
1

3 |W
11

3,2|
)

= �
(

⎡

⎢

⎢

⎢

⎣

0.42 0

0.96 0

⎤

⎥

⎥

⎥

⎦

)

= 0.42 < 1,
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satisfying the sufficient conditions for GES in (8.51). Similarly, in the PD block, we have

W 11

3,3 = 0.14 < 1, W11

3,2 =
[

0.36 0

]

, W11

2,2 = 10
−2

⎡

⎢

⎢

⎢

⎣

7.6 0

2.2 0

⎤

⎥

⎥

⎥

⎦

, W11

2,3 =

⎡

⎢

⎢

⎢

⎣

0.13

0.95

⎤

⎥

⎥

⎥

⎦

,

�
(

|W11

2,2| + |W11

2,3|F̄
1

3 |W
11

3,2|
)

= �
(

⎡

⎢

⎢

⎢

⎣

0.13 0

0.42 0

⎤

⎥

⎥

⎥

⎦

)

= 0.13 < 1,

also satisfying the GES conditions of (8.51).

Given the concurrence between the identified network structure and the hypotheses of our

results, Theorems 8.5.2 and 8.6.3 provide strong analytical support to explain the conclusions drawn

in [114, 115] from experimental data and statistical analysis. We believe HSR constitutes a rigor-

ous framework for the analysis of the multiple-timescale network interactions underlying GDSA,

complementing the conventional statistical and computational analyses in neuroscience.

Appendix

8.A Auxiliary Results

Here we provide auxiliary results that are used in the proofs of main results of the chapter.

The following result is used in the proof of Theorem 8.3.4 on the EUE for the dynamics (8.5).
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Lemma 8.A.1. Consider a matrix M̄ ∈ ℝn×n with the block form

M̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1 ⋆ 0

0 � 0

0 ⋆ In4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (8.53)

where ⋆ means an arbitrary block and � ∈ ℝn23×n23 . Then, there exists nonzero y ∈ ℝn such that

x ≜ M̄y and y belong to the same orthant(s) if and only if there exists nonzero y23 ∈ ℝn23 such that

x23 ≜ �y23 and y23 belong to the same orthant(s) or y23 = 0, where x23 and y23 denote the middle

n23-dimensional sub-vectors of x and y, respectively.

Proof. It follows from (8.53) that

M̄

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1

y23

y4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1 + ⋆ ⋅ y23

�y23

y4 + ⋆ ⋅ y23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Therefore, the (⇒) implication is immediate. For the (⇐) implication, note that if y23,�y23 ≠ 0

belong to the same orthant(s), then choosing y1 ∈ {±c}n1 , y4 ∈ {±c}n4 with sufficiently large c > 0

puts M̄y in the same orthant(s) as y. If y23 = 0, then M̄y = y and the result is trivial.

Finally, the following result is used in the proof of Theorem 8.4.2.

Lemma 8.A.2. (GES of cascaded interconnections). Consider the cascaded dynamics

�ẋ0 = −x0,

�ẋ1 = −x1 + [W10x0 +W11x1 + p̃1]+, (8.54)
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where x0 ∈ ℝr and x1 ∈ ℝn−r. IfW11 is such that

�ẋ1 = −x1 + [W11x1 + p̃1]+, (8.55)

is GES for any constant p̃1 ∈ ℝn−r, then the whole dynamics (8.54) is also GES for any constant

p̃1.

Proof. We only prove the result for p̃1 = 0. This is without loss of generality, since for p̃1 ≠ 0, we

can apply the change of variables � = x − ℎ([0T (̃p1)T ]T ) and shift the equilibrium to the origin.

Since (8.55) is GES, Theorem 8.B.1 guarantees that there exists x1 ↦ V 1(x1) such that

c1‖x
1
‖

2 ≤ V 1(x1) ≤ c2‖x
1
‖

2, (8.56a)

‖

‖

‖

)V 1(x1)
)x1

‖

‖

‖

≤ c3‖x
1
‖, (8.56b)

for some c1, c2, c3 > 0, and, if x
1(t) is the solution of (8.55),

� d
dt
V 1(x1(t)) ≤ −c4‖x

1
‖

2, (8.56c)

for some c4 > 0. Since [⋅]+ is Lipschitz continuous, it follows from (8.56b) and (8.56c) that if x1(t)

is the solution of (8.54),

� d
dt
V 1(x1(t)) ≤ −c4‖x

1
‖

2 + c3‖x
1
‖‖W10x0‖

≤ −
c4
2
‖x1‖2 +

c23‖W
10
‖

2

2c4
‖x0‖2,
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where the second inequality follows from Young’s inequality [129]. Now, let

V (x) =
c23‖W

10
‖

2

2c4
‖x0‖2 + V 1(x1).

It is straightforward to verify that V satisfies all the assumptions of [62, Thm 4.10] with a = 2,

completing the proof.

8.B A Converse Lyapunov Theorem for GES Switched-Affine

Systems

The existence of a converse Lyapunov function for asymptotically/exponentially stable

switched linear systems has been extensively studied for the case of time-dependent (arbitrary)

switching, see, e.g. [29, 130–133] and references therein. Similar results, however, are missing

for state-dependent switching. In this appendix, we prove a converse Lyapunov theorem for con-

tinuous GES switched affine systems with state-dependent switching that is used in both Parts I

and II of this work via [101, Lemma A.2]. The considered dynamics are general and subsume the

linear-threshold dynamics of interest to us.

Theorem 8.B.1. (Converse Lyapunov theorem for GES switched affine systems). Consider a
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state-dependent switched affine system of the form

�ẋ = f (x), x(0) = x0, (8.57)

f (x) = A�x + b�, ∀x ∈ Ω� = {x ∈ D | N�x + p� ≤ 0},

∀� ∈ Λ,

where Λ is a finite index set, A� is nonsingular for all � ∈ Λ, D =
⋃

�∈ΛΩ� ⊆ ℝn is an (open)

domain, and {Ω�}�∈Λ have mutually disjoint interiors. Assume that f is continuous. If (8.57) is

GES towards a unique equilibrium x∗, then there exists a C∞-function V ∶ ℝn
≥0 → ℝ and positive

constants c1, c2, c3, c4 such that for all x ∈ D,

c1‖x − x∗‖2 ≤ V (x) ≤ c2‖x − x∗‖2, (8.58a)

)V
)x
f ≤ −c3‖x − x∗‖2, (8.58b)

‖

‖

‖

)V
)x

‖

‖

‖

≤ c4‖x − x∗‖. (8.58c)

Proof. We structure the proof in three steps: (i) showing that the solutions of (8.57) are continu-

ously differentiable with respect to x0 along its trajectories, (ii) construction of a (not necessarily

smooth) Lyapunov-like function that satisfies (8.58) along the trajectories of (8.57), and (iii) con-

struction of V from this Lyapunov-like function (smoothening). We only prove the result for x∗ = 0

as the general case can be reduced to it with the change of variables x ← x − x∗.

(i) Let  (t; x0) denote the unique solution of (8.57) at time t ∈ ℝ (note that we let t < 0).

In this step, we prove that  is continuously differentiable with respect to x0 onD if x0 moves along
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 . Precisely, that

)
)�
 (t; (�; x0)) exists and is continuous at � = 0, (8.59)

for all x0 ∈ D. First, assume that x0 ∉ H , where H ⊂ D is the union of all the switching

hyperplanes.17 Thus, x0 belongs to the interior of a switching region, say Ω�1 . Let {�j}
J
j=1, with

J = J (t) ≥ 1, be the indices of the regions visited by  (�; x0) during � ∈ [0, t]. With a slight abuse

of notation, let Aj ≜ A�j and bj ≜ b�j , for j = 1,… , J . Then,

 (�; x0) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

eA1�(x0 + A−11 b1) − A
−1
1 b1; � ∈ [0, t1],

eA2(�−t1)( (t1; x0) + A−12 b2) − A
−1
2 b2; � ∈ [t1, t2],

⋮

eAJ (�−tJ−1)( (tJ−1; x0) + A−1J bJ ) − A
−1
J bJ ; � ∈ [tJ−1, t],

(8.60)

where tj = tj(x0) is the time at which  (�; x0) crosses the boundary between Ω�j and Ω�j+1 . This

expression for is valid for all x near x0 that undergo the same sequence of switches. To be precise,

let S ⊂ D be the set of points that lie at the intersection of two or more switching hyperplanes and

S(−∞,0] = {x ∈ D | ∃t ∈ [0,∞) s.t.  (t; x) ∈ S}.

In words, S(−∞,0] is the set of all points that, when evolving according to (8.57), will pass through

S at some point in time. Since S is composed of a finite number of affine manifolds of dimensions

17Recall that for each �, each row of N�x + p� = 0 defines a switching hyperplane.
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n− 2 or smaller, S(−∞,0] is in turn the union of a finite number of manifolds of dimensions n− 1 or

smaller, and thus has Lebesgue measure zero.

If x0 ∉ S(−∞,0], then it follows from the continuity of with respect to x0 onD, see e.g., [62,

Thm 3.5], that (8.60) is valid over a sufficiently small neighborhood of x0. Clearly,
) 
)x0

then exists

and is continuous if and only if tj’s are continuously differentiable with respect to x0. Consider t1

and let nTx + p = 0 be the corresponding switching surface, where nT is equal to some row of N�1

and equal to minus some row of N�2 . t1 is the (smallest) solution to

nT
(

eA1�(x0 + A−11 b1) − A
−1
1 b1

)

+ p = 0, � ≥ 0. (8.61)

The derivative of the lefthand side of (8.61) with respect to � equals nTf ( (t1; x0)), which is

nonzero if and only if the curve of  is not tangent to nTx + p = 0. If so, then the continuous

differentiability of t1 with respect to x0 follows from the implicit function theorem [134]. Other-

wise, it is not difficult to show that  (t; x0) remains in Ω�1 after t1
18, contradicting the fact that

t1 is a switching time. The same argument guarantees that tj , j = 2,… , J are also continuously

differentiable with respect to x0, and so is  (t; x0).

Before moving on to the case when x0 ∈ S(−∞,0], we analyze the case where still x0 ∉ S(−∞,0]

but x0 ∈ H , i.e., x0 belongs to a switching hyperplane, say nTx + p = 0 between Ω�1 from Ω�2 ,

as above. For simplicity, assume t is small enough such that  (�; x0) remains within Ω�2 for all

18This is a general fact about the solutions of linear systems and can be shown using the series expansion of the
matrix exponential.
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� ∈ [0, t].19 Let x belong to a sufficiently small neighborhood of x0 such that for � ∈ [0, t],

 (�; x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

eA2�(x + A−12 b2) − A
−1
2 b2; x ∈ Ω�2 ,

eA1�(x + A−11 b1) − A
−1
1 b1; x ∈ Ω�1 , � ≤ t1,

eA2(�−t1)( (t1; x) + A−12 b2) − A
−1
2 b2; x ∈ Ω�1 , � ≥ t1,

(8.62)

where t1 = t1(x) is now the solution to nT (t1; x)+p = 0. It is not difficult to show that for x ∈ Ω�1 ,

) (t; x)
)xi

= eA2t
[

e−A2t1eA1t1ei +
)t1
)xi

(

− A2e−A2t1eA1t1(x + A−11 b1)

+ e−A2t1A1eA1t1(x + A−11 b1) + A2e
−A2t1(A−12 b2 − A

−1
1 b1)

)

]

,

where ei is the i’th column of In. Taking the limit of this expression as x → x0 and using the facts

that limx→x0 t1 = 0 and A1x0 + b1 = A2x0 + b2, we get

lim
x
Ω�1
→ x0

) (t; x)
)xi

= eA2tei, ∀i ∈ {1,… , n},

⇒ lim
x
Ω�1
→ x0

) (t; x)
)x

= eA2t = lim
x
Ω�2
→ x0

) (t; x)
)x

,

where the second equality follows directly from (8.62). Therefore,  (t; x0) is continuously differ-

entiable with respect to x0 on the entire D ⧵ S(−∞,0].

Finally, if x0 ∈ S(−∞,0], the same expression as (8.60) or (8.62) (depending on whether

x0 ∈ H or not) holds for x0 and also for all x within a sufficiently small neighborhood of it that lie

19Note that if t is larger, then subsequent switches to Ω�j , j ≥ 3 are similar to the case above (where x0 was not on
a switching hyperplane) and thus do not violate continuous differentiability of  with respect to x0.
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on the same system trajectory as x0. This curve can be parameterized in many ways, one of which

is given by  (�; x0). Together with the analysis of the case x0 ∉ S(−∞,0] above, this proves that

(8.59) exists and is continuous at �0, as claimed.20

(ii) In this step we introduce a function V̂ that may not be smooth but satisfies properties

similar to (8.58). Let

V̂ (x) ≜ ∫

�

0
‖ (t; x)‖2dt, ∀x ∈ D,

where � is a constant to be chosen. It is straightforward to show that f is globally Lipschitz. Using

this and the GES of (8.57), the same argument as in [62, Thm 4.14] shows that

2c1‖x‖2 ≤ V̂ (x) ≤ 2
3
c2‖x‖2, (8.63)

for some c1, c2 > 0. Further, let

D ◦ (t; �; x) ≜
)
)�
 (t; (�; x)), t, � ∈ ℝ, x ∈ D.

By the definition of  , we have the identity

 (t; (s − t; x)) =  (s, x), t, s ∈ ℝ, x ∈ D.

20We have indeed proved a slightly stronger result than (8.59) for x0 ∉ S(−∞,0], which we use in step (ii) below.
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Taking d
dt
of both sides, we get

 t(t; (s − t; x)) −D ◦ (t; s − t; x) = 0,

where  t(t; x) =
) (t;x)
)t

. Setting s = t + �, this yields

D ◦ (t; �; x) =  t(t; (�; x)). (8.64)

For the parallel of (8.58b), we then have

d
d�
V̂ ( (�; x)) = ∫

�

0
2 (t; (�; x))TD ◦ (t; �; x)dt

(8.64)
= ∫

�

0
2 (t; (�; x))T t(t; (�; x))dt

= ∫

�

0

)
)t
‖ (t; (�; x))‖2dt

= ‖ (�; (�; x))‖2 − ‖ (�; x)‖2.

Thus

d
d�
V̂ ( (�; x))

|

|

|

|�=0
= ‖ (�; x)‖2 − ‖x‖2 ≤ −2c3‖x‖2, (8.65)

where the last inequality holds, as shown in [62, Thm 4.14], for an appropriate choice of � and

c3 =
1
4
. Finally, for the parallel of (8.58c), recall from step (i) that )

)x
 (t; x) exists and is continuous
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on D ⧵ S(−∞,0]. Therefore, from (8.57), we have

)
)t
) (t; x)
)x

=
)f
)x
( (t; x))) (t; x)

)x
,

) (t; x)
)x

|

|

|

|t=0
= In,

on D ⧵ (S(−∞,0] ∪H). Using the global Lipschitzness of f and the fact that D ⧵ S(−∞,0] is invariant

under (8.57), we have

‖

‖

‖

) (t; x)
)x

‖

‖

‖

≤ eLt, ∀x ∈ D ⧵ S(−∞,0],

where L is the Lipschitz constant of f . The same argument as in [62, Thm 4.14] then yields

‖

‖

‖

)V̂
)x

‖

‖

‖

≤ 2
3
c4‖x‖, ∀x ∈ D ⧵ S(−∞,0], (8.66)

for some c4 > 0.

(iii) In this step, we follow [135, Thm 3 & 4] to construct V as an smooth approximation

to V̂ and show that it satisfies (8.58). Since f is globally Lipschitz,  (t; x) is Lipschitz in x (see,

e.g., [136, Ch 5]) and so is V̂ . This, together with (8.65), satisfies all the assumptions of [135, Thm

4], which in turn guarantees the existence of an infinitely smooth V such that

|V (x) − V̂ (x)| < 1
2
V̂ (x), ∀x ∈ D, (8.67a)

)V
)x
f (x) < −c3‖x‖2, (8.67b)

for all x ∈ D. Equation (8.58a) follows immediately from (8.67b) and (8.63). To prove (8.58c), we
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note that the same construction of V as in [135, Thm 3 & 4] satisfies

‖

‖

‖

)V
)x

− )V̂
)x

‖

‖

‖

< 1
2
‖

‖

‖

)V̂
)x

‖

‖

‖

, ∀x ∈ D ⧵ S(−∞,0],

if the constants �i,k and �i,k, i, k = … ,−2, 0, 2,… (and consequently the corresponding r̄i,k, i, k =

… ,−2, 0, 2,… ) are chosen sufficiently small. This, together with (8.66), guarantees (8.58c), com-

pleting the proof.
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Chapter 9

Oscillations and Coupling in Brain

Networks

Oscillations in the brain are one of the most ubiquitous and robust patterns of activity and

correlate with various cognitive phenomena. Since Berger’s groundbreaking discovery of oscil-

latory activity in the brain [1], oscillations have been found in a wide range of species and brain

regions and multiple studies have shown the correlation between their properties (amplitude, phase,

shape, coupling, etc.) and various neurocognitive processes. Despite their importance, our un-

derstanding of brain oscillations is far from complete. Here, we take an analytical approach and

study the existence and properties of oscillations in simple mean-field models of brain activity with

bounded linear-threshold rate dynamics. This reveals the relationship between network structure

and oscillatory behavior, both within a single region and when coupled between multiple regions.

First, we obtain exact conditions for the existence of limit cycles in two-dimensional

excitatory-inhibitory networks (E-I pairs). Building on this result, we study networks of multi-

ple E-I pairs, provide exact conditions for the lack of stable equilibria, and numerically show that
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this is a tight proxy for the existence of oscillatory behavior. Finally, we study cross-frequency cou-

pling between pairs of oscillators each consisting of an E-I pair. We find that while both phase-phase

coupling (synchronization) and phase-amplitude coupling (PAC)monotonically increase with inter-

oscillator connection strength, there exists a tradeoff in increasing frequency mismatch between the

oscillators as it de-synchronizes them while enhancing their PAC.

9.1 Prior Work

Oscillations have been the subject of extensive research in the neuroscience literature, see,

e.g. [2,3]. In addition to the vast number of experimental and computational works, several efforts

have pursued analytical model-based approaches, particularly using mean-field models such as the

Wilson-Cowan model [4]. However, the sigmoidal nonlinearity in the Wilson-Cowan model has

not allowed more than partial characterizations [5–8] of structural conditions giving rise to oscil-

lations. Motivated by this, [9] studies oscillations and synchronization in Wilson-Cowan models

with bounded linear-threshold nonlinearities, but relies on unrealistic assumptions (excluding inter-

action terms in the nonlinearities, having mixed excitatory-inhibitory nodes (i.e., violating Dale’s

law), and a chain network topology) to obtain rigorous results. Linear-threshold networks are indeed

capable of modeling a wide range of (nonlinear) phenomena such as mono-, bi-, and multi-stability,

limit cycles, and chaos [10]. While the existence and uniqueness of equilibria and asymptotic sta-

bility are reasonably well understood, see [11] and references therein, our understanding of their

oscillatory behavior has remained limited.

A growing body of research has also studied brain oscillations using models of phase os-

cillators such as the Kuramoto model, see [12–14] and references therein. This is motivated by the
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fact [15] that the Kuramoto model is a local approximation to the Wilson-Cowan model (around

zero interconnection strength) and has the advantage of having smaller state dimensions. Neverthe-

less, this also comes at the expense of different global behaviors (when coupling is large), cf. [16],

and the exclusion of amplitude dynamics that are essential to neuronal phenomena such as PAC.

9.2 Problem Statement

Consider a neuronal network composed of a large number of neurons that communicate

with each other via asynchronous sequences of spikes. Grouping together neurons with similar

firing rates, under standard assumptions1, the mean-field dynamics of the network can be described

by the linear-threshold model

�ẋ(t) = −x(t) + [Wx(t) + p]m0 , x(0) ∈ [0,m], (9.1)

where x ∈ ℝN
≥0 is the state vector with components xi denoting the average firing rate of the i’th

neuronal population, i ∈ {1,… , N},W ∈ ℝN×N is the matrix of average synaptic connectivities,

p ∈ ℝN is the vector of average external (background) inputs to the populations, m ∈ ℝN
>0 is the

vector of average maximum firing rates, and � > 0 is the network time constant. Note that [0,m]

is invariant under (9.1), ensuring, in particular, that all solutions are bounded.

Our previous work [11] has characterized the existence and uniqueness of equilibria and

asymptotic stability for a variant of (9.1) with an unbounded activation function (m = ∞ ⋅ 1N ),

and these results are readily extensible to arbitrary finitem. However, the existence of oscillations

in linear-threshold dynamics is not as well understood. Further, brain networks often contain in-
1See, e.g., [17, Ch 7] for a comprehensive exposition or [11] for a brief discussion.
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terconnections of multiple coupled oscillators, but our understanding is even slimmer about the

oscillatory behavior of interconnections of linear-threshold networks of the form (9.1).

Our goal is to characterize the relationship between network structure and the oscillatory be-

havior observed in linear-threshold dynamics modeling brain networks. We formalize the problem

of interest as follows.

Problem 6. For the bounded linear-threshold network dynamics (9.1), characterize the relationship

between network structure (W,m,p) and

(i) existence of oscillations in a single network (9.1);

(ii) existence/preservation of oscillations in a network of oscillatory networks, each modeled

by (9.1);

(iii) phase-phase coupling (synchronization) and phase-amplitude coupling (PAC) between pairs

of oscillators. □

Questions (i) and (ii) arise naturally as the first steps towards understanding oscillatory

behavior of (9.1). On the other hand, synchronization (i.e., the phase-locking of two oscillators with

the same frequency) and PAC (i.e., the dependence of the amplitude of a high-frequency oscillator

on the phase of a low-frequency one), are of specific interest as they are the most widely observed

and studied oscillatory coupling phenomena in brain networks. Examples of these phenomena are

shown in Figure 9.1. We address (i) and (ii) in Section 9.3 and (iii) in Section 9.4.

Following common practice in computational neuroscience, we here adopt a broad notion

of oscillations that includes both periodic oscillations (limit cycles) and chaotic ones. In the latter

case, a chaotic behavior is oscillatory if its state trajectories are near-periodic or, equivalently, have

power spectra with distinct and pronounced resonance peaks.
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(a)

Oscillator 1

(b)

Figure 9.1: Examples of (a) synchronization and (b) PAC in models of neuronal activity. Note that
while both phenomena occur as a result of the interaction of two oscillators, synchronization is de-
fined (and measured) between the trajectories of both oscillators but PAC is defined (and measured)
between two frequency components of each trajectory.

9.3 Existence of Oscillations

In this section we analyze the dynamics (9.1) and derive conditions on the network structure

(W,m,p) giving rise to oscillatory behavior. The analytical tools in the study of oscillations are gen-

erally limited to 2-dimensional systems (cf. the Poincaré-Bendixson theory [18, Ch 3]) or higher-

dimensional systems that are essentially confined to 2-dimensional manifolds (see, e.g., [19, 20]).

Thus, we start our analysis by 2-dimensional networks and then extend the results to arbitrarily

large interconnections of 2-dimensional oscillators.
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9.3.1 Two-Dimensional Excitatory-Inhibitory Oscillators

An important property of biological neuronal networks, known as Dale’s law [4, 17], is

that each node has either an excitatory (E) or inhibitory (I) effect on other nodes, but not both.

This means that each column of W is either nonnegative or nonpositive. Thus, a 2-dimensional

network can be either E-E, I-I, or E-I. The latter, hereafter called an E-I pair, is also known as the

Wilson-Cowan model and has been widely used in computational neuroscience for decades [4–8].

Unlike the standard Wilson-Cowan model that uses sigmoidal activation functions, we show in the

following that a complete characterization of limit cycles can be obtained for E-I pairs with bounded

linear-threshold nonlinearities.

According to the Poincaré-Bendixson theory [18, Ch 3], in a two-dimensional system (N =

2), the lack of stable equilibria is, under mild conditions, necessary and sufficient for the existence

of almost globally (excluding trajectories starting at an unstable equilibrium) asymptotically stable

limit cycles. To study the equilibria of (9.1), we use its representation as a switched affine system. It

is straightforward to show [11] thatℝN can be decomposed into 3N switching regions {Ω�}�∈{0,l,s}N

defined by

Ω� = {x | (Wx + p)i ∈ (−∞, 0], ∀i s.t. �i = 0, and

(Wx + p)i ∈ [0, mi], ∀i s.t. �i = l, and

(Wx + p)i ∈ [mi,∞), ∀i s.t. �i = s},

where 0, l, and s denote inactive, active (linear), and saturated nodes, respectively. Thus, (9.1) can
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be rewritten in the switched affine form

�ẋ = (−I + �lW)x + �lp + �sm, ∀x ∈ Ω� , (9.2)

where for any � ∈ {0,l, s}N , �l ∈ ℝN×N is a diagonal matrix with diagonal entries

Σlii =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if �i = l,

0 if �i = 0, s,

and, likewise, �s ∈ ℝN×N is a diagonal matrix with diagonal entries

Σsii =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if �i = s,

0 if �i = 0,l.

Each Ω� then has a corresponding equilibrium candidate

x∗� = (I − �
lW)−1(�lp + �sm),

and the equilibria of (9.1) consist of all x∗� that belong to their respective switching regions. This

allows us to derive an exact characterization of limit cycles for E-I pairs, as stated next.

Theorem 9.3.1. (Limit cycles in E-I pairs). Consider the dynamics (9.1) withN = 2 and

W =

⎡

⎢

⎢

⎢

⎣

a −b

c −d

⎤

⎥

⎥

⎥

⎦

, a, b, c, d ≥ 0.

386



All network trajectories (except those starting at an unstable equilibrium, if any) converge to a limit

cycle if and only if

d + 2 < a, (9.3a)

(a − 1)(d + 1) < bc, (9.3b)

(a − 1)m1 < bm2, (9.3c)

0 < p1 < bm2 − (a − 1)m1, (9.3d)

0 < (d + 1)p1 − bp2 <
[

bc − (a − 1)(d + 1)
]

m1. (9.3e)

Proof. By [21, Thm 4.1], all the trajectories (except those starting at unstable equilibria, if any)

converge to a limit cycle if and only if the network does not have any stable equilibria. If a < 1, then

all the regionsΩ� ,� ∈ {0,l, s}2 are stable, ensuring the existence of a stable equilibrium (since the

existence of an equilibrium is always guaranteed by the Brouwer fixed point theorem [22]). Thus,

assume a ≥ 1. An exhaustive inspection of switching region dynamics shows that the trivially

stable regions (�′, j), �′ ∈ {0, s}, j ∈ {0,l, s} do not contain their equilibrium candidates if and

only if p ∈ Y c where

Y =
{

(p1, p2) | p1 ≤ max
{

0,min{bm2,
b

d + 1
p2}

}

or

p1 ≥ −(a − 1)m1 + min
{

bm2,max{0,
b(p2 + cm1)
d + 1

}
}

}

.
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Therefore, p ∈ Y c if and only if

p1 > 0, (9.4a)

p1 < bm2 − (a − 1)m1, (9.4b)

p1 > min{bm2,
b

d + 1
p2}, (9.4c)

p1 < −(a − 1)m1 + max{0,
b(p2 + cm1)
d + 1

}. (9.4d)

For (9.4) to be feasible, it is necessary and sufficient that

(9.4a) and (9.4b) : bm2 − (a − 1)m1 > 0, (9.5a)

(9.4a) and (9.4d) : p2 > −
bc − (a − 1)(d + 1)

b
m1, (9.5b)

(9.4b) and (9.4c) : p2 <
d + 1
b

(bm2 − (a − 1)m1), (9.5c)

(9.4c) and (9.4d) : bc > (a − 1)(d + 1). (9.5d)

Conditions (9.5a) and (9.5d) are the same as (9.3c) and (9.3b), respectively. Furthermore,

under (9.5), (9.4) simplifies to (9.3d) and (9.3e), which in turn ensure (9.5b) and (9.5c). In conclu-

sion, p ∈ Y c if and only if (9.3b)-(9.3e) hold.

What remains to study are the regions (l, 0), (l, s), and (l,l). The first two are not stable

since a ≥ 1. Also, though not needed, they do not include their equilibrium candidates due to (9.3d).

On the other hand, for � = (l,l), we have the equilibrium candidate

x∗� =
1

bc − (a − 1)(d + 1)

⎡

⎢

⎢

⎢

⎣

(d + 1)p1 − bp2

cp1 − (a − 1)p2

⎤

⎥

⎥

⎥

⎦

=Wx∗� + p.
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The first component of Wx∗� + p clearly belongs to [0, m1] by (9.3b) and (9.3e). For the second

component ofWx∗� + p, we have
2

(9.3b) ⇒ c
a − 1

> d + 1
b

(9.3e)
⇒ cp1 > (a − 1)p2,

and

(9.3d) ⇒ d + 1
b

p1 −
bc − (a − 1)(d + 1)

b
m1

> c
a − 1

p1 −
bc − (a − 1)(d + 1)

a − 1
m2

(9.3e)
⇒ p2 >

c
a − 1

p1 −
bc − (a − 1)(d + 1)

a − 1
m2,

ensuring that � = (l,l) always contains its equilibrium candidate. Therefore, this region must be

unstable which, under (9.3b), happens if and only if a > d + 2. This completes the proof.

The conditions of Theorem 9.3.1 have simple biological intuitions. Equation (9.3a) requires

the positive feedback among the neurons of the excitatory population3 to be sufficiently stronger

than the negative feedback among the inhibitory population. This, together with the strong mutual

coupling (9.3b) between the two populations, ensures local instability of the equilibrium point x∗(l,l)

and prevents the oscillations from damping. On the other hand, condition (9.3c) ensures that the

upper bound on the inhibitory input to the excitatory population (bm2) is high enough to balance the

strong self-excitation. This is consistent with thin spike widths and high firing rates of the inhibitory

“fast-spiking interneurons" in the cortex and the theory of excitatory-inhibitory (E-I) balance [23].

2We assume a ≠ 1 because (Wx∗� + p)2 ∈ [0, m2] trivially if a = 1.
3Recall that each node of the network dynamics (9.1) represents one population of neurons with similar activity

patterns.
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Finally, the conditions (9.3d) and (9.3e) require that the external inputs to the two nodes are neither

excessively low nor excessively high, as it would keep the respective nodes in negative or positive

saturation, resp., which would reduce the effective dimensionality of the network to less than two

and make oscillations impossible. We build on this result next to study the oscillatory behavior of

a network of oscillators, each represented by an E-I pair.

9.3.2 Networks of Two-Dimensional Oscillators

Consider n oscillators, each modeled by an E-I pair, connected over a network with adja-

cency matrix A ∈ ℝn×n
≥0 via their excitatory nodes [24]. Since A captures inter-oscillator connec-

tions, its diagonal entries are zero. Thus, the dynamics of the resulting network of networks is

Tẋ = −x + [Wx + p]m0 , (9.6a)
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where

x =
[

xT1 ⋯ xTn

]T

, xi =
⎡

⎢

⎢

⎢

⎣

xi,1

xi,2

⎤

⎥

⎥

⎥

⎦

, (9.6b)

T = diag(�1, �1, �2, �2,… , �n, �n), (9.6c)

W = diag(W1,… ,Wn) + A⊗ E, E =
⎡

⎢

⎢

⎢

⎣

1 0

0 0

⎤

⎥

⎥

⎥

⎦

, (9.6d)

Wi =

⎡

⎢

⎢

⎢

⎣

ai −bi

ci −di

⎤

⎥

⎥

⎥

⎦

, Aii = 0, i ∈ {1,… , n}, (9.6e)

p and m have similar decompositions to x, and⊗ denotes the Kronecker product.

We consider the case where each E-I pair oscillates on its own. The first question we address

is whether the pairs maintain any oscillatory behavior after their interconnection. Since conditions

for the existence of limit cycles in systems with higher than two dimensions are in general unknown,

we use the lack of stable equilibria (which constitutes the main condition in the Poincaré-Bendixson

theory for existence of limit cycles) as a proxy for oscillations. Later in Section 9.3.2, we show

numerically that this proxy is indeed a tight characterization of oscillatory dynamics.

Theorem 9.3.2. (Lack of stable equilibria in networks of E-I pairs). Consider the dynamics (9.6)

and assume that eachWi satisfies the conditions of Theorem 9.3.1. Then, the overall network does
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not have any stable equilibria if and only if

n
∑

j=1
Aijmj,1 < p̄i,1 − pi,1, (9.7)

p̄i,1 ≜ bimin
{

mi,2,
pi,2 + cimi,1
di + 1

}

− (ai − 1)mi,1,

holds for at least one i ∈ {1,… , n}. Moreover, the state of any E-I pair for which (9.7) holds may

not converge to a fixed value (except for trivial solutions starting at unstable equilibria, if any)

irrespective of the validity of (9.7) for other pairs.

Proof. Consider an arbitrary � ∈ {0,l, s}2n and let L ⊆ {1,… , n}, |L| = r be the set of pairs

whose respective switching region from � is unstable (i.e., �i = (l, j), j ∈ {0,l, s}, i ∈ L). Let

� = �̄ ⊗ I2 be the permutation matrix that permutes the pairs such that these r pairs are placed

first. Then,

�(−I + �W)�T =

⎡

⎢

⎢

⎢

⎣

R ⋆

0 N

⎤

⎥

⎥

⎥

⎦

,

R = −I + �L(diag({Wi}i∈L) + AL ⊗ E),

N = −I + �Lcdiag({Wi}i∈Lc ),

where Lc is the complement of L, and �L is the 2r × 2r principal submatrix of � consisting of

rows and columns corresponding to the pairs in L. AL and �Lc are defined similarly. Therefore,

the eigenvalues of −I + �W consist of those of R and N.

N has n−r eigenvalues equal to−1 and n−r eigenvalues that equal−1−di or−1, depending
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on whether �i,2 = l or not for each i ∈ Lc. On the other hand, if r > 0, then

tr(R) = tr(−I + �Ldiag({Wi}i∈L))

≥ tr(−I + diag({Wi}i∈L)) =
r
∑

i=1
ai − di − 2 > 0.

Therefore, any switching region Ω� is stable if and only if �i,1 ≠ l for all i ∈ {1,… , n}. To prove

the sufficiency of (9.7), consider any stable Ω� . Then, if (9.7) holds for even one i ∈ {1,… , n},

pi,1 +
n
∑

j=1
Aij(x∗�)j,1 ≤ pi,1 +

n
∑

j=1
Aijmj,1

(9.7)
< p̄i,1,

ensuring x∗� ∉ Ω� (by Theorem 9.3.1) and the sufficiency of (9.7). Regarding the last statement of

the theorem, note that for xi to converge to a fixed value,
∑

j Aijxj,1(t) must either also converge to

a fixed value or be greater than or equal to p̄i,1−pi,1 for sufficiently large t, both contradicting (9.7).

To prove the necessity of (9.7), assume that it does not hold for any i or, in other words, at

least one of

pi,1 +
N
∑

j=1
Aijmj,1 > bimi,2 − (ai − 1)mi,1, (9.8a)

or

pi,1+
N
∑

j=1
Aijmj,1>

bi(pi,2+cimi,1)
di+1

−(ai−1)mi,1, (9.8b)
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holds for all i ∈ {1,… , n}. Now, define � ∈ {0,l, s}n by

�i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(s, s) ; if pi,2 ≥ (di + 1)mi,2 − cimi,1,

(s,l) ; if pi,2 < (di + 1)mi,2 − cimi,1.

Note that (9.8b) implies (9.8a) if pi,2 ≥ (di+1)mi,2−cimi,1 and (9.8a) implies (9.8b) otherwise. Given

that all the excitatory nodes are at saturation in �, it is not difficult to show thatΩ� (which is stable,

by the reasoning above) contains its equilibrium, completing the proof of necessity of (9.7).

Theorem 9.3.2 provides a precise characterization of the lack of stable equilibria for the

network dynamics (9.6). Even though the lack of stable equilibria is in principle neither necessary

nor sufficient for the existence of limit cycles, we show next that it is in fact almost necessary and

sufficient for the existence of oscillatory behavior. Nevertheless, such oscillatory behavior is often

chaotic, not a limit cycle, which may have more relevance for neuronal oscillations [25].

9.4 Oscillatory Properties and Coupling

In this section, we focus on the properties of oscillations generated by (9.6) under the con-

ditions of Theorem 9.3.2. First, we show that the lack of stable equilibria (and thus (9.7)) is indeed

a tight proxy for existence of oscillations. Then, motivated by the experimental and computational

evidence in brain networks, we study the phenomena of synchronization and phase-amplitude cou-

pling.
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9.4.1 Regularity of Oscillations

To assess the oscillatory behavior of the networks that satisfy (9.7), we construct random

networks according to

di ∼  (0, dmax), ai ∼  (amin, amax), amin > dmax + 2,

bi = ci ∼  (bmin, bmax), bmin >
√

(amax − 1)(dmax + 1),

mj,i ∼  (mj,min, mj,max), m2,min >
amax − 1
bmin

m1,max,

�i ∼  (�min, �max), i.i.d. ∀j = 1, 2, i ∈ {1,… , n}, (9.9)

all satisfying (9.3a)-(9.3c). The values of pi,1 and pi,2 are always chosen at the center of their re-

spective ranges in (9.3d)-(9.3e) in order for the E-I pairs to oscillate at their maximum amplitude

before interconnection. For A, we first generate a random G ∈ ℝn×n
≥0 with zero diagonal and i.i.d.

 (0, 1)-distributed off-diagonal entries and set

A = �Ā, Ā = diag(p̄1 − p1)G[diag(G1n)diag(m1)]−1.

A then satisfies (9.7) for all i ∈ {1,… , n} if and only if � ∈ [0, 1).

To measure the existence of oscillations, we use the notion of regularity of oscillations.

Given a zero-mean signal x(t), we construct a regularity index as follows. LetX(f ) be the Fourier

transform of x(t), fmax = argmaxf |X(f )|, and

�reg =
|X(fmax)|

max{|X((1 − �)fmax)|, |X((1 + �)fmax)|}
∈ [1,∞),
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where � ∈ (0, 1). �reg = 1 indicates a flat power spectrum (lack of oscillations) whereas �reg → ∞

indicates a Dirac delta at fmax (perfectly regular oscillations). In practice, values of �reg ≳ 2 for

� ≲ 0.1 capture oscillatory behavior, with more regularity (less chaotic behavior) as �reg grows.

Figure 9.2(a) shows the probability distribution of �reg for random networks of n = 10

oscillators (N = 20 nodes), � = 0.1, and varying interconnection strength �. For disconnected

oscillators (� = 0), each oscillator has a perfectly regular oscillation (by Theorem 9.3.1) and thus

very large �reg (though finite due to finite signal length and numerical error). These oscillations lose

their regularity as we increase the connection strength � towards 1, but still persist up to � = 0.99,

showing the almost sufficiency of (9.7). Further, moving beyond � = 1, about 10% of oscillations

persist at � = 1.01 but all disappear at � = 1.05 due to convergence to the stable equilibria ensured

by Theorem 9.3.2. This shows that (9.7) is also almost necessary for existence of oscillations in the

network dynamics (9.6).

In addition to �, the regularity of oscillations also depend on the network size. Figure 9.2(b)

shows the distribution of �reg for networks of varying size at � = 0.9. Interestingly, network oscil-

lations lose regularity as we increase network size, which is in line with existing observations on

the relation between chaos and network size [26].

Figure 9.2 suggests, indirectly via the regularity of oscillations, that the network dynam-

ics (9.6) become increasingly chaotic as either n or � increases. To assess this more directly, we

compute the maximal Lyapunov exponent (MLE) for random networks with the same statistics

as (9.9), cf. Figure 9.3. MLE measures the exponential rate at which the norm of the solutions of

the linearization of the dynamics around a certain trajectory (network attractor in this case) grow or

decay. Therefore, a positive MLE is traditionally used as an indication of chaos [27]. As expected,

Figure 9.3 shows a clear increase in MLE both as a function of � < 1 and n, while moving � beyond
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(a) (b)

Figure 9.2: Regularity of oscillations as a function of network size (n) and inter-oscillator connec-
tion strength (�). The probability density function of log�reg is plotted for (a) n = 10 and varying
� and (b) � = 0.9 and varying n. Each distribution is based on 500 random networks (9.9) with
dmax = 1, amin = 3.5, amax = 5, bmin =

√

8 + 0.5, bmax =
√

8 + 2, m1,min = 1, m1,max = 2,
m2,min = 8∕bmin + 0.5, m2,max = 8∕bmin + 2, �min=1, �max=10.

1 rapidly decreases MLE.

Somewhat surprisingly, even though at � = 0 each E-I pair has a perfectly regular oscil-

lation (limit cycle) giving an individual MLE of 0 (see also [28, 29]), the network dynamics (9.6)

is still slightly chaotic, potentially due to the mismatch between the periods of the individual os-

cillators. Interestingly, increasing � up to ∼ 0.2 enhances order among the oscillators due to their

effort to synchronize. This further motivates the analysis of synchronization within the network

(cf. Problem 6(iii)), which we tackle next.
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Figure 9.3: Maximal Lyapunov exponent for varying network size n and inter-oscillator connection
strength �. Each point is the average MLE of 200 networks with the same statistics as in Figure 9.2.

9.4.2 Synchronization and Phase-Amplitude Coupling

The literature is rich in measures of synchronization, see e.g., [30] for a review and com-

parison of different methods. Given two discrete signals z1(k), z2(k), k ∈ {1,… , K}, we use the

measure of phase synchronization

�sync =
|

|

|

|

|

1
K

K
∑

k=1
ej(�1(k)−�2(k))

|

|

|

|

|

∈ [0, 1], (9.10)

where �i(k) is the instantaneous phase4 of {zi(k)}Kk=1. This is simply a circular average of the phase

difference between the two oscillators, giving a value of 1 if the two oscillators are phase-locked

and about 0 if they oscillate independently.5

Figure 9.4(a) shows the average value of �sync as a function of interconnection strength �

for pairs of oscillators (n = 2, N = 4) with the same statistic as in (9.9), except that the values of

4Wehere useHilbert transform to obtain the instantaneous phase. For a review and comparison of different methods,
see [31].

5To avoid edge effects and initial transients, we always compute (9.10) over a middle portion of {�i(k)}Kk=1, i = 1, 2,
for K equal to 103 times the period of the slower oscillator.
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the time constants �1 and �2 are chosen precisely to obtain a desired ratio !1∕!2 of their natural

frequencies. Similar to networks of phase oscillators such as the Kuramoto model [12], networks

with!1 = !2 are always synchronized irrespective of �, while synchronization increases with � and

decreases with frequency mismatch !1∕!2. However, the important distinction with the Kuramoto

model is that here it is not possible to fully synchronize arbitrary pairs of oscillators by increasing

their connection strength since oscillations vanish for � > 1 (the so-called oscillator death due to

saturation [16]). This results in a more realistic synchronization scheme and is consistent with the

fact [15] that the Kuramoto model approximates E-I dynamics similar to (9.3) only locally around

� = 0 (a.k.a. weakly coupled oscillators).

Next, we move to the analysis of PAC as given in Problem 6(iii). Here, we study the same

random networks of n = 2 oscillators as above and see how strongly the phase of the slower oscil-

lator affects the frequency of the faster one. To measure PAC in any signal6 {z(k)}Kk=1, we use the

measure

�PAC =
DKL(PA ‖  (−�, �))

log(Nbin)
∈ [0, 1],

recommended in [32] following a comparison of several measures available in the literature. Here,

we first bandpass-filter z around the two frequency ranges of interest to obtain a slow component

zslow and a fast one zfast . Then, we bin the instantaneous phases of zslow intoNbin bins and for each

bin, compute the average instantaneous amplitude of zfast over that bin.7 This gives a phase distri-

6Note that unlike synchronization, PAC is defined and measured for a single signal, even though it arises as a result
of the interaction between two oscillators. Throughout, we measure PAC using the state of the excitatory node of the
faster oscillator.

7We compute both the instantaneous phases and amplitudes using the Hilbert transform and useNbin = 10 through-
out.
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(a)

(b)

Figure 9.4: Cross-frequency coupling between pairs of oscillators. The average value of (a) �sync
and (b) �PAC is plotted for pairs of oscillators with varying ratios of natural frequencies !1∕!2 and
connection strength � and the same statistics as in Figure 9.2.

bution PA over [−�, �] that is uniform in the absence of PAC but is centered around a “preferred

phase" if the amplitude of zfast is larger at a certain phase of zslow. The measure �PAC then com-

putes the KL divergence of PA from the uniform distribution, normalized by its maximum possible

value.8

Figure 9.4(b) shows the value of �PAC for the same networks as in Figure 9.4(a). Inter-

estingly, �PAC also increases as a function of �, similarly to �sync but it increases as a function of

8As a reference, �PAC ∼ 10−4 for �-
 coupling in rodents hippocampus [32] (being a prominent example of PAC
in neural data).
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frequency mismatch between the oscillators. This shows, for the first time, a clear trade-off be-

tween synchronization and PAC, with �PAC reaching in vivo values of ∼10−4 only for large values

of frequency mismatch !1∕!2 ≳ 5 and strong coupling � ≳ 0.7. Note that this tradeoff (and PAC in

general) cannot be observed or explained using models of phase oscillators that exclude amplitude

dynamics, such as Kuramoto. These results also match observations in the brain, where the most

prominent examples of PAC are between theta (4-8Hz) and gamma (30-100Hz) frequency ranges

with !1∕!2 ≳ 5 [32], providing an exciting and promising encouragement for further analysis and

understanding of the structure of the underlying brain networks.

Appendix

9.A Auxiliary Result

Lemma 9.A.1. (Union of intersections with a partition). Consider a collection of sets {Aj}Jj=1 in

a universal set U and a corresponding collection of sets {Bj}Jj=1 that partition U . Then

[

J
⋃

j=1
(Aj ∩ Bj)

]c

=
J
⋃

j=1
(Ac

j ∩ Bj). (9.11)

Proof. Let C denote the left hand side of (9.11). Then for any j ∈ {1,… , J},

C ∩ Bj =
J
⋂

i=1

[

(Ac
i ∩ Bj) ∪ (B

c
i ∩ Bj)

]

= (Ac
j ∩ Bj) ∩

⋂

i≠j

[

(Ac
j ∩ Bj) ∪ Bj

]

= Ac
j ∩ Bj .
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The result follows by taking
⋃J

j=1 of both sides and using the fact that {Bj}Jj=1 is a partition of

U .
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Chapter 10

Conclusions

10.1 Summary

In this dissertation, we have studied several challenges that arise in the implementation of

networked dynamical systems theory. Our results are motivated by and applicable to networked

dynamical systems in a wide range of domains, from cyber-physical systems (Part I) to small-scale

industrial and a variety of large-scale complex systems (Part II) and the brain (Part III). Despite

the long-standing and well-studied nature of the problems studied, a common thread throughout

the dissertation is the proposition of pioneering solutions to these problems rather than incremental

improvements over the existing literature.

A further core is the interdisciplinary theme of the dissertation, bridging systems and control

theory, computer science, network science, and cognitive and computational neuroscience. We have

sought to simultaneously respect both the mathematical rigor of control theory and the practical

considerations (and the fine boundary of “acceptable assumptions") of the respective application

domains, as exemplified in our theory of goal-driven selective attention in Chapter 8. This cross-
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disciplinary theme is not only a hallmark of contemporary scientific research, but is also a defining

pillar of systems and control theory which is critical for filling in the yawning gap between rigorous

mathematical and applied/experimental sciences.

In Part I, we have focused on the problem of privacy preservation in networked dynamical

systems that perform distributed computations. While examples of distributed computations are

numerous, we have studied average consensus and convex optimization as two of the most fun-

damental computations that have widespread applications per se and are building blocks of more

complex ones. In both cases, we have employed the popular concept of differential privacy due

to its mathematically elegant formulation, independence from side information, independence to

the adversarial algorithms or capabilities, and immunity to post-processing. Also in both cases,

we have followed a similar theme of first proving an impossibility result that bounds the space of

possible differentially private algorithms and then designing a “best achievable" algorithm in this

space. These two steps can also be regarded as a necessary and a sufficient condition, respectively,

for each problem. We have further provided rigorous analysis of the outcome of our designed al-

gorithms and characterized its relationship with the true (non-private) outcome of the respective

computation.

In Part II, we have tackled three problems that all sought to solve an otherwise solved

problem under resource constraints. These problems pertain the stabilization (Chapter 5), control

(Chapter 6), and identification (Chapter 7) of networked systems with respective constraints on the

bandwidth and latency of the network communications, the number of nodes that can be actuated

as well as the control energy, and the number of nodes that can be sensed. In the first case, we have

built upon the two elegant frameworks of event-triggered and predictor-feedback control to design

the first event-triggered controller for nonlinear systems that can tolerate arbitrarily large delays. In

407



the second case, we have moved beyond the conventional time-invariant control schedules and pro-

vided a demonstration of the significant benefits of time-varying control scheduling as well as the

connections between this benefit and network structure. In the latter case, we have re-adopted the

well-established least-square autoregressive models but proposed their inherent time-lagged struc-

ture as a natural and asymptotically exact alternative to existing identification methods for networks

with latent nodes.

Finally in Part III, we have focused on the applications of networked control theory to cog-

nition. While the domain-unspecific results of Part II are applicable to brain networks in particular,

the latter involves various specific challenges that call for a focused study. One such challenge is

the existence of nonlinearities that are essential to the function of the nervous system and cannot

be simplified via linearization. To incorporate this essential nonlinearity without losing analytical

tractability, we have employed the well-established switched-affine class of linear-threshold models

but used them to develop a first axiomatic approach to the study of goal-driven selective attention

(Chapter 8) and neural oscillations (Chapter 9). In both cases, the main theme was to draw con-

nections between stereotypical observations in experimental neuroscience and the structure of the

underlying brain networks that are generating them. This led us to various necessary and/or suf-

ficient conditions in terms of network structure that we have then proceeded to verify against real

data in the case of selective attention. These studies pave the road for future research on various

aspects of networked dynamical systems, as we briefly describe next.

408



10.2 Future Directions

Our results, although comprehensive within their scope, are only first steps towards com-

plete solutions of their respective problems. Regarding differentially private distributed compu-

tations, a decently explored but still incomplete avenue of research involves the extension of our

results to other distributed computations such as dynamic average consensus, non-convex opti-

mization, filtering and estimation, and identification. A similar line of research can seek the de-

sign of algorithms for privacy preservation of the network structure and other parameters such as

edge weights and vertex degrees. Moreover, the privacy-accuracy tradeoff in differential privacy

is of paramount importance in its real-world applications and characterizing the optimal privacy-

accuracy trade-off curve for any of these problems has remained elusive (while numerical estimates

for specific algorithms can be obtained, as done here). Along the same lines, a fundamental and

highly warranted direction is the analysis of potential alternative definitions of privacy for net-

worked dynamical systems that impose less costs in terms of computational accuracy in exchange

of potentially weaker privacy guarantees. This can be beneficial for applications where the signif-

icant strength of differential privacy is not necessarily required and can be traded off with higher

computational accuracy.

Our design of event-triggered feedback stabilizers relied on the strong assumption of perfect

knowledge of system dynamics (i.e., known structural parameters, lack of disturbances, known

delay, and error-free numerical implementation) in order to compensate for arbitrarily large delays.

To probe how critical these assumptions are, we presented various simulations that suggested rather

high degrees of robustness (including input-to-state stability) for the closed-loop system. While

encouraging, rigorous characterization of such robustness has remained elusive and remains open
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for future research. In addition, the relaxation of our results to the use of output feedback will be a

further warranted step towards wider practical applicability.

Our analysis of the benefits of time-varying control scheduling presents an even larger set

of open questions. An important limitation of our work was the linearity of dynamics. As we saw

in our analysis in Part III (and well-known from the theory of nonlinear systems), nonlinearity is

essential for various fundamental aspects of complex systems. Characterizing the interplay between

nonlinearity and time-varying actuation is, however, an unexplored topic but invaluable in practice.

As explained before, we expect time-varying control scheduling to have an even larger benefit in the

presence of nonlinearities such as state saturations due to the additional limitations and complexities

that such nonlinearities impose on the spread of control energy from any single node in the network.

Also open is the question of how increasing the number of control inputs will affect the benefits

of time-varying actuation, as is the question of whether this benefit is dependent on the specific

dynamics that evolve over complex networks beyond their static structural connectivity. Finally,

a more fundamental quest seeks the definition of controllability metrics for large-scale networked

dynamical systems that do not suffer from numerical instabilities and the intrinsic conservatism

of the smallest eigenvalue, determinant, and trace of inverse of the Gramian, but do not restrict

attention to the few most easy-to-control nodes (as done by the trace of the Gramian) either.

A similar line of research, i.e., the importance and effects of network structure, is warranted

for network structure identification. While generic methods such as ours applies to any network

structure, some networks may be easier to identify than others and different structural properties

may even make networks suitable to be identified with one method better than others. Also our

analysis relied on the fundamental assumption that a “manifest" node can be both sensed and actu-

ated while a “latent" node is not only unavailable for sensing but is also subject to no external input
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from the environment. Relaxing these conditions and allowing for the existence of nodes that can

be sensed but not actuated or vice versa can indeed extend the applicability of the results presented

here.

Our development of the hierarchical selective recruitment is also only a first step, which

opens the door to numerous further investigations. A limitation of our analysis of feedback selective

inhibition is the need for full state feedback, which is unlikely to exist in real brain networks (though

is not impossible dependent on the definition and granularity of node definitions). While the natural

extension of output feedback remains open for future exploration, a promising starting point is our

parallel results on feedforward selective inhibition. The latter can provide significant levels of

robustness that can help both state and output feedback mechanisms. Further, two intertwined

questions pertain the transfer of (sensory) information along the hierarchy and the encoding of

information in more complex (than equilibrium) attractors. Various experimental studies highlight

the role of neural oscillations in selective attention which may be the link between these questions.

This was the motivation for our subsequent study of neural oscillations. With regard to this

preliminary analysis, various extensions are in order, including generalizations to arbitrary network

structures with higher than two dimensions, the analytical characterization of the effects of inter-

oscillator connectivity strength and frequency mismatch on synchronization and phase-amplitude

coupling, the verification of these results against real in vivo recordings, and generalizations to

incorporate conduction delays and noise. Finally, an important but almost unexplored question

pertains to the controllability and observability of linear-threshold networks as well as their optimal

sensor and actuator placement.
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