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ScienceDirect
Metabolism coordinates the conversion of available nutrients

toward energy, biosynthetic intermediates, and signaling

molecules to mediate virtually all biological functions.

Dysregulation of metabolic pathways contributes to many

diseases, so a detailed understanding of human metabolism

has significant therapeutic implications. Over the last decade

major technological advances in the areas of analytical

chemistry, computational estimation of intracellular fluxes, and

biological engineering have improved our ability to observe and

engineer metabolic pathways. These approaches are

reminiscent of the design, operation, and control of industrial

chemical plants. Immune cells have emerged as an intriguing

system in which metabolism influences diverse biological

functions. Application of metabolic flux analysis and related

approaches to macrophages and T cells offers great

therapeutic opportunities to biochemical engineers.
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Introduction
Metabolism comprises the set of coordinated biochemical

reactions that are executed by cells. Thus, metabolic

processes represent a crucial link between a cell’s genetic

program (which encodes mRNA and proteins/enzymes)

and the surrounding chemical microenvironment, where

substrates are converted to energy and the biosynthetic

intermediates required for cell division. The metabolic

state of a cell or organism is therefore tightly linked to

its health, and such information is of particular use in

the field of biomedicine. Many, but not all, of the most

active metabolic pathways in mammalian cells have been
Current Opinion in Chemical Engineering 2016, 14:72–81 
documented and characterized over the last century. For

example, new pathways associated with the tricarboxylic

acid (TCA) cycle [1,2] and pentose phosphate pathway

[3,4] have recently been characterized in mammals, pro-

viding new potential targets for controlling inflammation

(Immune-responsive gene 1/cis-aconitate decarboxylase;

IRG1/CAD) and cancer cell growth (transketolase-like 1;

TKTL1), respectively. However, beyond such basic

pathway discoveries we also have much to learn about

the functional regulation of many biochemical pathways

in human cells. Engineers have solved analogous pro-

blems in designing mechanical, electrical, and chemical

systems, offering lessons for biomedicine which can en-

hance our understanding of disease pathogenesis. Neither

engineering or biology alone can succeed in this task.

Crucial insights into the phenotype of metabolic disorders

and diseases in general will come from the clinic [5].

Detailed information on the behavior of such intercon-

nected metabolic networks will come from systems-based

analytics [6]. In the coming years these approaches will

become increasingly integrated to advance our under-

standing of human physiology in the coming years [7].

In this review we highlight the utility of engineering

concepts in studying cellular metabolism. We relate cellu-

lar functions and human metabolic physiology to that of an

industrial chemical plant, highlighting the utility of real-

time process parameters in operation of the latter while

pointing out the need for analogous data in human metab-

olism. We highlight recent advances in the areas of analyti-

cal chemistry, computational analysis of metabolomics

datasets, and biological engineering that are now facilitat-

ing the acquisition of human biochemical process condi-

tions. Finally, we discuss recent studies that have explored

the role of metabolism in regulating the immune system, an

area of intense interest within the biomedical community

that holds great therapeutic potential. The convergence of

engineering and biomedical science on these problems is

likely to catalyze many discoveries in the coming years.

Chemical process plant as an engineered
model system
The regulation of cellular biochemical processes has

grown more complex throughout evolution, with function-

al specialization increasing from prokaryotes to eukaryotes

and, in turn, to multicellular organisms. In a simplified

form, human cell and tissue metabolism can be viewed as a

set of interacting chemical reaction sequences. Conceptu-

ally, a chemical plant functions similarly to the human

body in that both use interconnected chemical processes
www.sciencedirect.com
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to execute specialized functions. Chemical engineers de-

sign, troubleshoot, and optimize such systems by breaking

them down into smaller unit operations, as such plants

consist of various units that execute specific steps of the

overall chemical process. Piping of transfer fluids from one

unit to the next connects each unit operation, and products

from one reactor are substrates in downstream chemical

reactions and/or separations processes. Since malfunction

in a single unit operation can affect the entire process,

chemical plants are highly controlled and regulated. De-

tailed study of individual unit operations as well as sys-

tems-level process control analysis are therefore crucial for

designing robust and productive chemical processes.

A number of parallels between chemical plants and the

human body emerge with respect to their function and

analysis (Figure 1a). Organs such as the pancreas, liver,

and kidney regulate nutrients and metabolic waste pro-

ducts to ensure that adequate energy and chemical build-

ing blocks are supplied to other tissues, such as the heart

and brain. The vascular system serves to physiologically

link each of these operation centers. At the subcellular

level, distinct metabolic pathways are catalyzed by

enzymes often localized in specific organelles. For exam-

ple, mitochondria are the site of numerous biosynthetic

and bioenergetic reactions, the lysosome and peroxisome

are sites of recycling and detoxification, and the nucleus is

the center of genetic control. Process control analysis is a

fundamental tool of chemical engineers used to design

and optimize industrial plants. Metabolic control analysis

(MCA) has been analogously applied to characterize the

regulation of individual enzymes and metabolic pathways

[8]. However, key differences between chemical process-

es and cells or tissues highlight the challenges facing the

biomedical community but also provide insights into

approaches that can improve our understanding of human

metabolism and disease pathology.

Since the design of a chemical plant is based on a priori
knowledge, the flow of substrates, products, waste, and

energy is well known. Furthermore, gauges present

throughout the system provide engineers with real-time

data on current process conditions (e.g. temperature,

pressure) and deviations from targeted values. By con-

trast, human metabolic processes and their regulation are

not fully characterized, and many unknowns remain to be

discovered. Furthermore, given the challenges of clinical

work it is difficult if not impossible to know the time-

dependent concentrations and sources of metabolites

within human tissues, cells, and subcellular compart-

ments. As such, a major limiting factor in advancing

our understanding of how metabolism contributes to

human disease is the acquisition and analysis of biochem-

ical information in cells and tissues. In particular the most

valuable information lies in metabolic fluxes, which are

the ultimate metric describing an enzyme’s function.

Dysregulation of fluxes (e.g. limited oxygen transport
www.sciencedirect.com 
into tissues during ischemia, phosphorylation of glucose

in cancer cells) is a key factor in virtually all diseases that

in some cases can be used as a diagnostic biomarker (i.e.

FDG-PET in cancer) [9]. Therefore, the acquisition of

quantitative data on metabolic fluxes is needed to under-

stand the mechanisms through which metabolism

impacts or drives disease. Indeed, Lazebnik first related

the function of apoptotic signaling pathways to electrical

engineering concepts applicable to the circuitry of a

transistor radio [10]. Rather than approach the integrated

circuitry of such pathways by knocking out components

one-by-one, a more systematic method was proposed

using quantitative information on pathway function. In

terms of metabolism the situation is similar, as fluxes

cannot be effectively characterized as ‘ON’ or ‘OFF.’

Instead, the molar rates of reactions (in some cases rela-

tive to other pathways) are most informative. Fortunately,

technological advances have now greatly improved our

ability to estimate metabolic fluxes in complex biological

systems.

Technological advances in studying
metabolism
In the last few decades, major advances in the areas of

analytical chemistry, biological engineering, and compu-

tational interpretation of fluxes has greatly improved our

ability to quantify metabolism in cells and organisms

(Figure 2). Striking improvements in mass spectrometry

and other analytical platforms is increasing the chemical

information available to biomedical researchers. New

software tools are allowing metabolic researchers to inter-

pret and catalog these data and resolve pathway fluxes in

unprecedented detail. Next-generation tools for genome

engineering have enabled researchers to screen for crucial

metabolic pathways in certain cell populations and inter-

rogate the function of enzymes and pathways [11,12].

These advances are beginning to impact our understand-

ing of human metabolic physiology and are reviewed in

detail below. We subsequently highlight some examples

where metabolic flux analysis (MFA) and related

approaches have contributed to our understanding of

immune cell regulation by metabolic pathways. Impor-

tantly, our knowledge of metabolic pathways and their

regulation are by far not complete, and continued inno-

vation in our ability to probe these phenomena are

required to elucidate the physiological mechanisms of

disease.

Analytical measurements of metabolic pathways

A wide variety of analytical platforms, especially nuclear

magnetic resonance spectrometry (NMR) and mass spec-

trometry (MS)-based techniques, have improved the

sensitivity and resolution of metabolite quantitation in

biological systems. 1H, 13C, and 31P NMR-based techni-

ques offer crucial information to biomedical scientists

given their non-invasiveness [13]. Magnetic resonance

imaging (MRI) techniques have successfully been
Current Opinion in Chemical Engineering 2016, 14:72–81
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Figure 1
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Human physiology viewed as an industrial chemical process. (a) The human body consists of numerous functional systems with interacting

components that execute metabolic reactions. Conceptually, chemical plants function similarly, and both can be characterized in terms of distinct

unit operations. Quantitative information on physiological states within the body are therefore required to optimize and improve human health. (b)

Stable isotope-assisted metabolomics facilitates visualization of metabolic fluxes. Injection of dyes generates a color distribution that can be used

to calculate flows across continuous stirred tank reactors (CSTRs). Isotope tracers and metabolomics allow visualization of metabolic dynamics

from one metabolic pool to the next. Labeling of TCA intermediates is shown when metabolizing [U-13C6]glucose and [U-13C5]glutamine, with open

circles depicting 12C atoms and closed circles depicting 13C isotopes.
applied to measure metabolites in vivo, such as 2-hydro-

xyglutarate (2HG) in the brains of patients with gliomas

carrying isocitrate dehydrogenase (IDH) mutations [14].

Although the sensitivity of NMR is relatively low com-

pared to MS-analytics, when used with stable isotope

tracers NMR provides information on the position of

labeling (isotopomers) which is particularly informative
Current Opinion in Chemical Engineering 2016, 14:72–81 
in pathways such as the TCA cycle [15]. To further

enhance the sensitivity of such measurements 13C sub-

strates can be hyperpolarized before administration. In

this manner, dynamic nuclear polarization (DNP) can

greatly improve both in vivo and ex vivo quantitation of

isotopomers and thus metabolic activity associated with

pyruvate and TCA metabolism [16–18]. More detailed
www.sciencedirect.com
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Figure 2
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Key technological advances that facilitate quantitation of metabolic processes. A number of innovative technologies allow for detailed metabolic

analysis, including analytical chemistry approaches (blue), new methods for engineering biological systems (green), and computational tools for

interpreting metabolomics data or estimating flux (red).
and comprehensive descriptions of this technology with

applications in perfused tissues and cell cultures are

available [19–21], as NMR continues to be an indispens-

able tool for biochemists.

Mass spectrometry (MS) has emerged as a versatile tool

for quantifying small molecules in biological systems at

varying levels of mass resolution. For greater separation,

mass spectrometry is typically combined with other sep-

aration methods, including gas chromatography (GC–
MS), liquid-chromatography (LC–MS) or capillary elec-

trophoresis (CE–MS) [22,23]. Whereas GC provides high

chromatographic resolution that is particularly suited for

volatile analytes and molecules such as fatty acids [24],

chemical derivatization is often required. LC or direct

infusion into high resolution MS instruments is increas-

ingly used in metabolomics and flux-based applications as

well. Some approaches can provide spatial information on

metabolites via imaging mass spectrometry, including

matrix-assisted laser desorption ionization (MALDI), de-

sorption electrospray ionization MS (DESI-MS), and

secondary ion mass spectrometry (SIMS), as reviewed

in detail elsewhere [25]. Given the diversity of chemis-

tries within the metabolome, no single approach can

provide a complete metabolic profile to the user. As such,
www.sciencedirect.com 
the choice of technology should be considered carefully

and tailored to the system and hypothesis.

Importantly, conventional metabolomics studies provide

only a snapshot of metabolite levels rather than valuable,

quantitative information on fluxes noted above. There-

fore, stable-isotope tracing is often combined with MS or

NMR analysis of isotopologue or isotopomer quantitation,

respectively [23]. In principal, the interconversion of

metabolites from one pool to the next is similar to the

flow through the unit operations or tanks of a chemical

plant. In the same way that an inputted dye can be used to

determine residence times or generate color distributions

that are a function of the flow from one unit to the next,

isotopic labeling allows biomedical researchers to visual-

ize the dynamics and interconnectivity of metabolic path-

ways (Figure 1b). The most useful stable isotopes used

for observing intermediary metabolism in mammalian

systems are 13C, 15N, and 2H (deuterium), though any

‘label’ carried through a reaction can be employed [26].

Administration of tracer in mammalian cell culture is

fairly straightforward, though the choice of labeled sub-

strate and undefined nature of some medium components

must be considered. In vivo applications are increasingly

common and can be enhanced by infusion of tracer to
Current Opinion in Chemical Engineering 2016, 14:72–81
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achieve steady-state enrichment in plasma [27��]. Com-

binations of different tracers may also be employed to

increase the information available for calculating fluxes

[28]. In addition to measuring free metabolites, isotopic

enrichment is readily quantified into components of

cellular biomass, which can be separated and analyzed

to increase flux observability. Recent studies have isolat-

ed RNA, DNA, glycogen, and glycans to quantify isotope

enrichment in metabolic precursors to enhance signal

and provide additional information for flux calculations

[29–32], drawing on related approaches that quantify

acetyl-coenzyme A labeling from fatty acid measure-

ments [33,34]. Finally, improved quantitation of metabo-

lite labeling via tandem mass spectrometry has the

potential to enhance flux resolution in MFA applications

[35–37]. Broadly, these analytical approaches are increas-

ing the data available for modeling intracellular metabo-

lism, with the hope that more information increases the

fidelity of results.

In addition to the metabolomics approaches noted above,

direct measurements of fluxes also provide useful infor-

mation when characterizing the metabolic state of higher

cells. Measurement of uptake and secretion fluxes from

cultured cells can provide valuable information on amino

acid and glycolytic metabolism [38]. On the other hand,

microplate-based assays have been increasingly used to

monitor respiration rates to assess mitochondrial dysfunc-

tion [39]. Notably, in combination with plasma membrane

permeabilization, measurements of mitochondrial respira-

tion in permeabilized cells can allow for control of mito-

chondrial substrate provision, resulting in more in-depth

mitochondrial studies using respirometry [40] or metabo-

lomics [41] approaches. Increasingly, combinations of one

or more analytical approaches are used to decipher the

metabolism of complex systems, as each measurement

may provide specific information for improved flux reso-

lution [32,42��]. Such orthogonal measurements facilitate

a more integrative view on metabolism but also require

increasingly complicated software for analysis.

Computational advances

The analytical approaches described above generate

highly complex data sets that can include absolute or

relative metabolite levels, direct flux measurements (e.g.

glucose uptake, respiration), and tracer-specific isotopo-

logue or isotopomer abundances. As a result, researchers

have developed numerous algorithms for interpreting

these data, resolving fluxes, and designing experiments

[43��,44]. Some of the most complex software is designed

to estimate fluxes and associated sensitivities or confi-

dence intervals for a given system. The user must input a

metabolic network (often pared down to focus on inter-

mediary metabolism) and measurements of fluxes, iso-

topologues, and when required metabolite abundances.

The latter data must be considered when conducting

kinetic or non-stationary metabolic flux analysis
Current Opinion in Chemical Engineering 2016, 14:72–81 
(NSMFA) [45]. Versatile software packages are becoming

available to resolve fluxes using various tracers (e.g. 13C,
15N, 2H), and these have been reviewed in detail else-

where [46]. Often, the most informative data lies in flux

confidence intervals obtained via parameter continuation

[47], as not all fluxes will be resolvable for a given network

and experimental dataset.

Tracer choice directly impacts the isotopologues and

fluxes that can be determined from a particular experi-

ment, and computational approaches have been devel-

oped to evaluate, optimize, and design tracer

combinations with enhanced resolution [48–50]. For ex-

ample, combinations of glucose tracers are useful for

studying the pentose phosphate pathway [51], and gluta-

mine tracers are particularly informative when studying

tricarboxylic acid (TCA) metabolism in proliferating can-

cer cells [48]. However, post-mitotic cells such as differ-

entiated myoblasts (i.e. myotubes) exhibit very low

glutamine anaplerosis [52�], and alternate tracers should

be considered depending on the metabolic state of the

system to be studied.

Various software are available for extracting information

from metabolomics datasets generated on different plat-

forms. Here we focus on software used to determine

isotope enrichment in analytes. Mathematical correction

of natural isotope abundance using sum formula and

theoretical abundance within targeted metabolomics

datasets is fairly straightforward [53], and opensource

software is available for this purpose [54,55]. Algorithms

have recently been developed to identify labeled com-

pounds in an untargeted manner. Non-targeted tracer fate

detection (NTFD) facilitates the identification and quan-

titation of isotopic labeling of all detectable metabolites

downstream of a given tracer in GC-MS datasets [56].

Similar software has been developed for LC-MS plat-

forms [57]. Increasingly, researchers are incorporating

tools for extracting and interpreting isotopologue data

within their metabolomics software platforms, which will

facilitate the use of isotope tracing and MFA in more

complex biological systems [58].

These data-driven approaches are crucial tools for under-

standing the metabolic state of a cell, tissue, animal, or

patient. Various software-based approaches that balance

fluxes based on network stoichiometry and gene or pro-

tein expression are also available, allowing researchers to

explore the importance of pathways in silico. Although

challenges in the choice of objective function (i.e. how to

optimize metabolism) and modeling of compartmental-

ized systems remain, these tools provide a unique means

of generating metabolic hypotheses to be functionally

tested [59�,60]. Importantly, knowledge of metabolism is

a requirement for interpreting results from such models,

as software algorithms alone are unlikely to provide useful

data for researchers.
www.sciencedirect.com
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Engineering biological systems

Metabolism represents the biochemical phenotype of a

biological system, though genetic mutations, transcrip-

tion, translation, and post-translational modifications all

exert significant control over these pathways. As such, it is

increasingly important to study metabolism in the context

of engineered biological systems to shed new light on

metabolic regulation. Although the technologies de-

scribed above have significantly improved our ability to

study metabolism, perhaps even greater advances have

been made in technologies used to engineer genes, pro-

teins, and the microenvironment in mammalian systems.

For example, numerous techniques are now available to

control gene expression, including conventional RNA

interference [61] or recently developed clustered regu-

larly interspaced short palindromic repeats (CRISPRs)/

Cas-system gene editing tools. The latter provides a

powerful tool for modifying DNA sequences in a site-

specific manner for numerous applications [62,63]. In-

deed, researchers have applied CRISPR/Cas9 in vivo to

correct mutations associated with the human metabolic

disease hereditary tyrosinemia [64] and muscular dystro-

phy [65–67]. Furthermore, CRISPR-Cas9-based genetic

screens have been applied to identify synthetic lethalities

in metabolism [12]. On the other hand, engineering cells

with targeted knockouts in folate-mediated one carbon

metabolism has improved our ability to characterize this

pathway [11]. Although further research is needed to

increase efficiency and decrease off-target effects [68],

this technology has already been applied to improve our

understanding of metabolic pathway function in mamma-

lian cells.

Another major challenge in deciphering the metabolism

of higher cells is their compartmentation [69], as many

reactions and enzymes are localized to one or more

subcellular organelles. Analysis of isolated mitochondria

or selective cell permeabilization applied in conjunction

with metabolomics, isotopic tracing, and/or respirometry

can provide some information on the function of these

organelles [41,52�,70]. However, mitochondria in ‘isola-

tion’ likely exhibit different phenotypes compared to

those within active cells. Also, given the fast turnover

rates of many metabolites, separation of organelles before

MS or NMR analysis is not ideal. Subcellular compart-

mentalization is increasingly incorporated into MFA

models [52�], often to account for labeling discrepancies

in related metabolites like pyruvate, lactate, and alanine.

Microbial co-cultures present analogous problems to

MFA studies, as similar reactions may operate differently

in adjacent cells (or organelles). Incorporation of biomass

labeling into more complex models has been effective for

resolving fluxes in microbial co-cultures [71], and such

approaches may be effective in studying compartmental-

ized and/or multi-cellular mammalian tissue systems.

Recently we developed a genetically encoded reporter

system that works in conjunction with 2H tracers (and in
www.sciencedirect.com 
theory other isotopes) to provide information on compart-

ment-specific NAD(P)H metabolism [72��]. By inducibly

expressing mutant IDH1 or IDH2 in the cytosol or

mitochondria, respectively, one can quantify 2H-labeling

on (D)2HG produced in each compartment to determine

how folate-mediated one carbon metabolism contributes

to compartment-specific NADPH pools. This method

also provided insights into the function of reductive

carboxylation in anchorage-independent cancer cells

[73�].

Cell metabolism is commonly studied in 2D-cell culture

models, but this microenvironment does not necessarily

reflect the actual in vivo environment of cancer cells

[27��]. Therefore, in vivo model organisms, in particular

rodents, are valuable tools that help to advance our

understanding of metabolism. The ability to engineer

model organisms is increasing further as the CRISPR-

Cas9 genetic toolbox enables rapid generation of new

genetically engineered in vivo model systems [74]. In

addition to in vivo model organisms, substantial progress

has been made in engineering cellular microenviron-

ments which more accurately reflect in vivo situations,

such as human organs-on-chips [75] or HuMiX, a model of

gastrointestinal human–microbe interface to study com-

plex interactions between human cells and bacteria [76].

Given the complexities of metabolic systems and their

regulatory requirements, it is unlikely that such engi-

neered models will replace in vivo testing completely.

Although, the relative simplicity of in vitro systems can

provide a better means of elucidating molecular mecha-

nisms, any conclusions should be viewed in the context of

the system used.

Case study: immunometabolism
A large number of detailed studies employing metabo-

lomics and/or flux analysis approaches to study disease

pathogenesis have been published recently. Notably, the

large number of metabolic investigations and discoveries

makes it impossible to comprehensively review studies in

all human tissues. In particular, analyses of the heart,

liver, brain, and tumors have been described in detail.

Here we focus on applications in the immune system, an

area of emerging interest and tremendous therapeutic

potential.

The immune system is comprised of diverse cell types

present in various tissue microenvironments around the

body. As such, immune cells must sense and respond to a

highly complex set of physiological settings. We are now

beginning to appreciate that many of these signals con-

verge on metabolic enzymes and pathways to exert con-

trol over immune cell function. During an immune

response cells of the innate and adaptive immune system

become activated and reprogram metabolism to execute

their diverse functions, which may involve rapid prolifer-

ation, regulatory cross-talk amongst different cell types, or
Current Opinion in Chemical Engineering 2016, 14:72–81
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clearance of dead tissue and pathogens. Upon differenti-

ation to their downstream lineages immune cells there-

fore exhibit strikingly distinct metabolic phenotypes, so

there is much to learn in each situation. To date, most

studies have focused on metabolic changes occurring

within T cells and macrophages [77], but the many cell

types present in the immune system present immunol-

ogists and biochemical engineers with a deep set of

questions to be addressed in the coming years.

Although naı̈ve T cells rely on oxidative phosphorylation

and fatty acid oxidation for energy production, activated

T cells must reprogram metabolism to fulfill the meta-

bolic requirements of proliferation and cytokine produc-

tion [78]. Therefore, activated T cells increase glucose

uptake, glycolytic rates and glutamine catabolism. The

mammalian target of rapamycin complex 1 (mTORC1), a

central regulator of metabolism and cell growth, has

emerged as a crucial regulator of T cell function [79].

Modulation of metabolic pathways, including glycolysis

and components of the electron transport chain strongly

influence T cell expansion and function [80�,81]. More

unique mechanisms associated with these pathways are

now coming to light. For example, aerobic glycolysis

facilitates binding of the glycolytic enzyme glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) to effector

cytokine mRNA to influence T cell function [82]. Fur-

thermore, the glycolytic metabolite phosphoenolpyruvate

(PEP) acts as a signal under nutrient replete conditions to

mediate T cell function, and in low-glucose such as the

tumor microenvironment low PEP levels can compromise

the anti-tumor effects of the immune system [83]. Meta-

bolic studies have also recently demonstrated a role for

serine and folate-mediated one carbon metabolism in T

cell proliferation [84]. On the other hand, a functional

electron transport chain is also required for expansion of

activated T cell populations [85]. Notably, changes in

lipid metabolism elicit strong effects on immune cell

function. In response to pathogens, induction of lipogenic

pathways is an integral part of antigen-driven blastogen-

esis and clonal expansion in CD8+ T cells [86]. In

memory T cells, regulation of mitochondrial fatty acid

oxidation by cytokines is crucial for generating energy

and cell survival [87]. In addition, isotopic tracer analysis

has revealed co-regulation of cholesterol metabolism and

the type 1 interferon (IFN) pathway which allows macro-

phages to coordinate antiviral responses [88�].

Macrophages are present in almost all tissues and play

crucial roles in the immune response, as they facilitate

clearance of invading pathogens and mediate tissue ho-

meostasis associated with inflammation. Recently, an in-

tegrated analysis of transcriptomic and metabolomic data

revealed new insights into the distinct metabolic signa-

tures of classical (M1) and alternative (M2) polarized

macrophages. Unlike alternatively polarized macrophages,

M1-like macrophages have a distinct metabolic pattern
Current Opinion in Chemical Engineering 2016, 14:72–81 
characterized by high glycolytic flux and an impaired TCA

cycle reminiscent of decreased IDH and succinate dehy-

drogenase (SDH) activities [89��]. This regulation allows

for accumulation of cis-aconitate and succinate. The for-

mer is a precursor of the antimicrobial metabolite itaco-

nate, which can accumulate to mM levels in stimulated

macrophages and microglia [90–92]. Succinate can medi-

ate various biological functions and is thought to enhance

interleukin (IL)-1b expression via stabilization of hypoxia-

inducible factor (HIF)-1a [93]. Recently, we and others

applied metabolomics, stable isotope tracing, and respira-

tory to uncover a link between these two phenomena,

where itaconate acts as an endogenous SDH inhibitor to

reprogram immune metabolism and modulate succinate

levels [1,2,94]. Notably, though HIF is stabilized under

pro-inflammatory conditions, metabolic tracing has

demonstrated that stimulated macrophages maintain py-

ruvate flux into the TCA cycle via pyruvate dehydroge-

nase (PDH) to sustain itaconate production [95]. It is

therefore quite valuable to understand how these mole-

cules are produced during immune cell stimulation, as

itaconate and other molecules with immunomodulatory

function may emerge as promising therapies.

Conclusions
The dynamics of immune cell populations in the body

presents both challenges and opportunities to the bio-

medical research community. Ultimately, MFA studies

using models of increasing complexity will become im-

portant for elucidating the regulation and function of

metabolic pathways within the immune system. Applica-

tion to cell models and in vivo systems will be required,

with an eye to deciphering mechanisms and interesting

phenotypes. Given the importance of immune cell func-

tion in combatting infections, clearing tumor cells, and

autoimmune diseases, immunometabolism will remain an

active area of study in the foreseeable future. Engineers

and immunologists will need to work together to under-

stand and control these systems effectively.
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54. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K,
Schomburg D: MetaboliteDetector: comprehensive analysis
tool for targeted and nontargeted GC/MS based metabolome
analysis. Anal Chem 2009, 81:3429-3439.

55. Millard P, Letisse F, Sokol S, Portais J-C: IsoCor: correcting MS
data in isotope labeling experiments. Bioinformatics 2012,
28:1294-1296.

56. Hiller K, Metallo CM, Kelleher JK, Stephanopoulous G:
Nontargeted elucidation of metabolic pathways using stable-
isotope tracers and mass spectrometry. Anal Chem 2010,
82:6621-6628.

57. Bueschl C, Krska R, Kluger B, Schuhmacher R: Isotopic labeling-
assisted metabolomics using LC–MS. Anal Bioanal Chem 2013,
405:27-33.

58. Cho K, Mahieu N, Ivanisevic J, Uritboonthai W, Chen Y-J,
Siuzdak G, Patti GJ: isoMETLIN: a database for isotope-based
metabolomics. Anal Chem 2014, 86:9358-9361.

59.
�
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