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Abstract

In this paper we study one-dimensional three-phase flow of immis-
cible, incompressible fluids through porous media. The model uses
the common multiphase flow extension of Darcy’s equation, and does
not include gravity and capillarity effects. Under these conditions,
the mathematical problem reduces to a 2 × 2 system of conservation
laws, whose essential features are: (1) the system is strictly hyperbolic;
(2) both characteristic fields are nongenuinely nonlinear, with single,
connected inflection loci. We argue that these are necessary prop-
erties for the solution to be physically sensible, and show they are
natural extensions of the two-phase flow model. We present the com-
plete analytical solution to the Riemann problem (constant initial and
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injected states) in detail, and describe the characteristic waves that
may arise, concluding that only 9 combinations of rarefactions, shocks
and rarefaction-shocks are possible. We demonstrate that assuming
the saturation paths of the solution are straight lines may result in
very inaccurate predictions for some realistic systems. Efficient al-
gorithms for computing the exact solution are also given, making the
analytical developments presented here readily applicable to the inter-
pretation of lab displacement experiments, and to the implementation
in streamline simulators.

key words: flow in porous media, conservation laws, Buckley-Leverett, hyper-

bolic system, waves, entropy solution

1 Introduction

Quantitative predictions of the flow of three immiscible fluids —water, oil
and gas— are required to assess many processes of great practical interest:
primary oil production below bubble point and with movable water; water-
floods, man-made and natural; immiscible CO2 floods; steam floods; gravity
drainage of gas caps with oil and water; water-alternating-gas (WAG) pro-
cesses; and contaminant intrusions into the shallow subsurface, just to name
a few.

Here we study the classical formulation of three-phase flow, which makes
use of the common multiphase extension of Darcy’s equation [33]. When
the fractional flow approach is used, flow of three immiscible incompressible
fluids is described by a pressure equation (whose solution is trivial in the
one-dimensional case) and a 2×2 system of saturation equations [10]. Capil-
larity effects enter the formulation as a nonlinear diffusion term. It was long
believed that, for negligible capillary forces, the system of equations would be
strictly hyperbolic for any relative permeability functions. This is far from
being the case and, in fact, most relative permeability models used today
give rise to systems which are not strictly hyperbolic for the entire range
of admissible saturations [8, 15, 18, 19, 39, 40]. Loss of strict hyperbolicity
typically occurs at bounded regions of the saturation triangle (the so-called
elliptic regions), where the system is elliptic in character. The only relative
permeability models in the existing literature which do not produce elliptic
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regions are those where the relative permeability of a phase depends solely
on the saturation of that phase [30, 44]. This behavior is not supported by
experimental results [34]. For models of this type, the elliptic region (where
eigenvalues are complex conjugates) shrinks to an isolated umbilic point (a
saturation state with a real double eigenvalue), thus rendering a nonstrictly
hyperbolic system at that point. The literature on mixed elliptic/hyperbolic
systems, and nonstrictly hyperbolic systems is vast (see, e.g., [22,27,31] and
the references therein), yet a complete theory is still lacking.

It is our opinion that the presence of elliptic regions contradicts the ex-
pected physical behavior of a three-phase displacement. Arguments support-
ing this view are given in [20]. More precisely, elliptic regions should not be
justified simply because they appear as a consequence of using a questionable
postulate (the multiphase extension of Darcy’s equation) with common rel-
ative permeability functions. Therefore, we propose that if this questionable
model is to be used, appropriate relative permeabilities should be employed,
so as to avoid nonphysical behavior of the solution. It turns out [20] that it
is indeed possible to impose conditions on the relative permeability functions
so that the system of saturation equations is strictly hyperbolic inside the
entire saturation triangle. The required conditions are in agreement with
pore-scale physics and experimental data.

With the above considerations in mind, we study in this paper the solution
to the Riemann problem—initial data given by two constant states separated
by a single discontinuity— of three-phase flow. Because the system is strictly
hyperbolic for all saturation paths of interest, we use the theory of Lax [25],
as extended by Liu [28,29] to systems whose characteristic fields are neither
genuinely nonlinear nor linearly degenerate. A recent result for this type of
systems [1] is used to limit the admissible wave structure that may arise in
three-phase displacements. Identification of the admissible wave types allows
us to present, for the first time, the complete catalogue of solutions to the
Riemann problem of three-phase flow. Particular attention is given to the
actual calculation of the analytical solution. Efficient algorithms based on a
predictor-corrector strategy coupled with full Newton iteration are presented,
which achieve quadratic convergence in all cases. Some of the developments
are more easily understood when introduced in the context of the well-known
theory of two-phase Buckley-Leverett flow [9]. For this reason, the analogy
between three-phase flow and two-phase flow will be stressed throughout the
paper.

An outline of the paper is as follows. In Section 2 we present the govern-
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ing equations of two-phase and three-phase flow, under the Buckley-Leverett
conditions. Important properties of the equations are explained in Section 3,
and the character of the system is discussed. In Section 4 we present the
complete set of solutions to the Riemann problem of three-phase flow. The
analytical solution of the two-phase flow case is also given to motivate the
developments. As an application of the analytical solution, in Section 5 we
describe an example of water and gas injection into a core that is initially
filled with oil and water, and we evaluate the accuracy of a common ap-
proximation of the exact solution. The main conclusions are summarized in
Section 6. Algorithms for the efficient calculation of wave curves and selected
solution types are compiled in the Appendix.

2 Governing equations

We study multiphase flow in porous media under the following assumptions:

1. One-dimensional flow

2. Immiscible fluids

3. Incompressible fluids

4. Homogeneous rigid porous medium

5. Multiphase flow extension of Darcy’s law

6. Negligible gravitational effects

7. Negligible capillary pressure effects

A derivation of the governing equations was presented in [20] (see also [3, 7,
10, 37]). In order to stress the analogy between two-phase and three-phase
flow, we present here the fractional flow formulation of multiphase flow in a
unified setting. By assumption 2, there is no mass transfer between phases
and, therefore, one can identify components with phases. For two-phase flow
we may have, for example, water (w) and oil (o) components. For three-
phase flow, we shall consider a system consisting of water (w), gas (g) and
oil (o). The one-dimensional mass conservation equation for the α-phase is,
in the absence of source terms:

∂tmα + ∂xFα = 0, 0 < x < L, t > 0, α = 1, . . . , n, (1)
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where mα is the mass of the α-phase per unit bulk volume, Fα is the mass
flux of the α-phase, ∂t(·), ∂x(·), denote partial derivatives with respect to
time and space, respectively, L is the length of the domain, and n is the
number of phases. The mass of the α-phase per unit bulk volume is:

mα = ραSαφ, (2)

where ρα is the density of the α-phase, Sα is the saturation of the α-phase, and
φ is the porosity. The phase densities and the porosity are assumed constant
(assumptions 3 and 4, respectively). Mass fluxes are modeled using the
common multiphase flow extension of Darcy’s equation [33] (assumption 5).
Neglecting gravitational and capillarity effects (assumptions 6 and 7), the
mass flux of the α-phase takes the form:

Fα = −ραkλα∂xp, (3)

where k is the absolute permeability, p is the pressure, and λα is the relative
mobility of the α-phase, defined as

λα :=
krα
µα

, (4)

where krα is the relative permeability, and µα the dynamic viscosity of the
α-phase. Substituting Equations (2) and (3) into (1), the mass conservation
equations read:

∂tSα + ∂x(−
1

φ
kλα∂xp) = 0, α = 1, . . . , n. (5)

Equations (5) are not all independent from each other, as they have to satisfy
the constraint that the fluids fill up the pore volume,

∑n

α=1 Sα ≡ 1. The
fractional flow approach decouples the problem into a “pressure equation”
and a “saturation equation” [10]. Adding the conservation equations for all
phases and using the saturation constraint, we obtain the pressure equation:

∂xvT = 0, (6)

where

vT := − 1

φ
kλT∂xp (7)
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is the total velocity, and λT =
∑n

α=1 λα is the total mobility. The pressure
equation dictates that the total velocity vT is at most a function of time.
When gravity and capillary forces are not considered, the fractional flow of
the α-phase is simply:

fα =
λα

λT

. (8)

2.1 Two-phase flow

With the definitions (7)–(8) above, two-phase flow is governed by a scalar
saturation equation,

∂tSw + vT∂xfw = 0, (9)

and the algebraic constraint So = 1 − Sw. By definition, the water satu-
ration cannot be negative or greater than 1. For the purpose of this paper,
saturations are understood to be renormalized [20], so that the range of satu-
rations [0, 1] covers the two-phase flow region, where both phases are mobile.
We use the following equivalent notation:

u ≡ Sw, f ≡ fw, (10)

and introduce the dimensionless space and time coordinates:

xD :=
x

L
, (11)

tD :=
1

L

∫ t

0

vT (t̄) dt̄. (12)

With these definitions, we write Equation (9) as:

∂u

∂tD
+

∂f

∂xD

= 0. (13)

We shall abuse notation and understand x and t as dimensionless space and
time coordinates, and write (13) simply as:

∂tu+ ∂xf = 0. (14)
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2.2 Three-phase flow

Three-phase flow is described by a 2× 2 system of saturation equations,

∂t

(

Sw

Sg

)

+ vT∂x

(

fw
fg

)

=

(

0
0

)

, (15)

and the algebraic constraint So = 1− Sw − Sg. The solution is restricted to
lie in the saturation triangle:

T := {(Sw, Sg) : Sw ≥ 0, Sg ≥ 0, Sw + Sg ≤ 1}. (16)

The saturation triangle is usually represented as a ternary diagram (see Fig-
ure 1), on which the pair (Sw, Sg) is represented as the triple (Sw, Sg, So),
where So ≡ 1− Sw − Sg. Defining the equivalent vector notation:

u :=

(

u
v

)

≡
(

Sw

Sg

)

, f :=

(

f
g

)

≡
(

fw
fg

)

, (17)

and understanding the space and time variables as their dimensionless coun-
terparts (Equations (11)–(12)), the system (15) can be written in its final
form:

∂tu + ∂xf = 0. (18)

After a change of variables, the vector of unknowns u can be understood
as the vector of reduced saturations, rather than actual saturations [20]. After
this renormalization, the three-phase flow region —where all three phases are
mobile— covers the entire saturation triangle.

3 Mathematical structure of the equations

In this section we describe the mathematical structure of the equations pre-
sented in Section 2, and the behavior of solutions to these equations. We
start with the simpler case of two-phase flow and then address the more
complicated structure of three-phase flow. The character of Equations (14)
and (18) will be determined by the functional dependence of the fractional
flows:

fα =
λα

λT

=
krα/µα

∑n

β=1 krβ/µβ

. (8′)
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Figure 1. Saturation triangle (top) and ternary diagram (bottom).

We neglect the dependence of phase viscosities µα on pressure and temper-
ature, and take them as constants. Therefore, the character of the system
is a direct consequence of the relative permeability model. Relative per-
meabilities krα are assumed to be functions of the current fluid saturations
only.

3.1 Two-phase flow

The analysis of the scalar equation (14) governing two-phase flow is useful
as a preliminary step to the much more complicated system describing three-
phase flow.

For two-phase flow, we assume that relative permeabilities depend on the
water saturation alone:

krw = krw(u), kro = kro(u). (19)
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Figure 2. Typical behavior of the relative permeability functions for an
oil-water system.

An example of the typically assumed behavior of relative permeabilities for
an oil-water system is given by the functions (Figure 2):

krw = u2, kro = (1− u)2. (20)

From the definition of the fractional flow in Equation (8),

fw =
krw/µw

krw

µw
+ kro

µo

=
krw

krw + µw

µo
kro

. (21)

Using the quadratic model (20) for the relative permeabilities, and defining
the viscosity ratio µ̃ := µw/µo, we get the following expression for the flux:

f(u) =
u2

u2 + µ̃(1− u)2
. (22)

The flux function above is depicted in Figure 3 for different values of the
viscosity ratio µ̃. Despite its simplicity, this model displays the key features of
two-phase flow in porous media: the flux function is S-shaped and, therefore,
nonconvex.

Since the flux f is a real function of u only, the saturation equation (14)
is hyperbolic. In Figure 4 we plot the flux function for the quadratic relative
permeabilities (20) and a viscosity ratio µ̃ = 0.5, and show that the saturation
range U = [0, 1] can be split into a convex and a concave region U = [0, u0]∪
[u0, 1], respectively. Moreover, the derivative of the flux function attains its
maximum value at the inflection point u0.
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Figure 4. Convexity regions of the flux function in two-phase flow.

Remark. As we shall see, these general properties (nonconvex flux func-
tion f , with a single inflection point, where f ′ attains a maximum value)
determine the type of admissible solutions of two-phase flow displacement
processes.

One can use the method of characteristics to show that solutions to the
two-phase saturation equation may involve discontinuities [26]. The charac-
teristics are curves x(t) on the (x, t)-plane, which are integral curves of the
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ordinary differential equation

dx

dt
= f ′(u(x, t)). (23)

If Equation (14) admits a classical (continuous and differentiable) solution,
the rate of change of the solution u along a characteristic is

Du

Dt
:=

d

dt
u(x(t), t) =

∂u

∂t
+ f ′(u)

∂u

∂x
= 0, (24)

that is, u is constant along the characteristics. As illustrated in Figure 5, the
construction above develops a triple-valued solution even for smooth initial
conditions. This non-physical behavior indicates that the classical solution
has to be replaced by a weak (discontinuous) solution.

3.2 Three-phase flow

We now study the mathematical structure of the system of equations (18)
governing three-phase flow. We argue what is the expected character of the
system, and what restrictions should be imposed on the relative permeabili-
ties as functions of fluid saturations.

3.2.1 Character of the system of equations

The system (18) is a 2× 2 real system of first-order partial differential equa-
tions. Its character is determined by the eigenvalue problem:

Ar = νr, (25)

where

A := Duf ≡ f ′(u) ≡
(

f,u(u) f,v(u)
g,u(u) g,v(u)

)

(26)

is the Jacobian matrix of the system, ν is an eigenvalue, and r is a right
eigenvector, all evaluated at the saturation state u. Subscripts after a comma
denote differentiation (e.g., f,u ≡ ∂uf). The eigenvalues νi, i = 1, 2 are given
by:

ν1,2 =
1

2

[

f,u + g,v ∓
√

(f,u − g,v)2 + 4f,vg,u

]

. (27)
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Figure 5. The two-phase Buckley-Leverett flow problem develops a non-
physical triple-valued solution, with characteristics that intersect
each other, even when the initial conditions are smooth.

The right eigenvectors ri = [riu, riv]
t, i = 1, 2 are calculated by the following

expressions:

r1v

r1u

=
ν1 − f,u
f,v

=
g,u

ν1 − g,v
, (28)

r2u

r2v

=
f,v

ν2 − f,u
=
ν2 − g,v
g,u

. (29)

The system may be classified into four categories [20]:

1. Strictly hyperbolic. The eigenvalue problem has two real, distinct,
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eigenvalues. The Jacobian matrix is diagonalizable and there are two
real and linearly independent eigenvectors [2].

2. Elliptic. The eigenvalues are complex conjugates.

3. Nonstrictly hyperbolic. There is a double real eigenvalue, and the Jaco-
bian matrix is diagonalizable. The system is hyperbolic (real eigenval-
ues and linearly independent eigenvectors) but not strictly hyperbolic
(which requires that the eigenvalues be distinct).

4. Parabolic. The system has a real, double eigenvalue, and the Jacobian
matrix is defective (non-diagonalizable).

In [20] we argue that the system should be strictly hyperbolic for all sat-
uration states in the three-phase flow region. In this case, the system has
two distinct families of characteristic curves, which carry waves traveling at
different characteristic speeds [47]. In particular, we do not allow for mathe-
matical singularities such as elliptic regions (regions of the saturation space
where the system is elliptic in character) and umbilic points (isolated satura-
tion states where the system is nonstrictly hyperbolic) inside the saturation
triangle. We support the view that these singularities are artifacts of an
incorrect mathematical model, rather than a necessary consequence dictated
by physics [10,11,15,20,21,32,40].

3.2.2 Relative permeabilities

It is not the purpose of this paper to review the current models of relative
permeabilities (see, e.g., [4, 32] and the references therein). It suffices to
say that most of them give rise to elliptic regions [8, 15, 19, 40]. In [20] we
show it is possible to formulate models which are strictly hyperbolic every-
where in the three-phase flow region, even when using the usual multiphase
form of Darcy’s equation, and relative permeabilities which are functions
of the current fluid saturations alone. Enforcing strict hyperbolicity leads
to generic conditions that the relative permeability functions must satisfy.
It turns out that the most serious condition that needs to be imposed is a
positive derivative of the gas relative permeability near its immobile satura-
tion. This requirement is supported by pore-scale physics and is also in good
agreement with experimental data [20]. The proposed type of relative perme-
abilities produces a model that: (1) is everywhere strictly hyperbolic inside
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the ternary diagram; and (2) presents a single umbilic point at the corner of
100% reduced gas saturation (the G vertex of the saturation triangle).

In [20] we also show that a very simple relative permeability model sat-
isfies all the required conditions. The relative mobilities are given by:

λw = (1/µw)u
2, (30)

λg = (1/µg)
(

βgv + (1− βg)v
2
)

, βg > 0 (31)

λo = (1/µo)(1− u− v)(1− u)(1− v). (32)

The most important feature of the model is the positive derivative of the
gas relative permeability function as it approaches zero. The model con-
siders that the relative permeabilities of the most and least wetting fluids
(usually water and gas) depend only on their own saturation, whereas the
relative permeability of the intermediate wetting fluid (usually oil) depends
on all saturations. This is a common assumption in hydrogeology [36] and
petroleum engineering [42, 43]. Although we do not defend this assumption
in general, it can be shown [20] that the relative mobilities (30)–(32) yield a
system which is strictly hyperbolic everywhere in the saturation triangle, as
long as the following conditions are satisfied:

βg >
µg√
µoµw

, (33)

µw < 2µo. (34)

For illustrative purposes, we take reasonable values of the viscosities:

µw = 0.875, µg = 0.03, µo = 2 cp, (35)

and a small value of the endpoint slope: βg = 0.1. These values of the pa-
rameters satisfy the two conditions (33)–(34) above. Relative permeabilities
for all three phases are shown in Figure 6. We use this model to carry out
all our sample calculations.

3.2.3 Fractional flow functions

From the definition (8), water and gas fractional flow functions are, respec-
tively (see Figure 7),

f(u, v) =
λw(u)

λT (u, v)
, (36)

g(u, v) =
λg(v)

λT (u, v)
. (37)
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4 Solution to the Riemann problem

4.1 Introduction

The Riemann problem consists in finding a (usually weak) solution to the
system of conservation laws:

∂tu + ∂xf = 0, −∞ < x <∞, t > 0, (38)

with initial condition

u(x, 0) =

{

ul if x < 0,

ur if x > 0.
(39)

For three-phase flow, the system of governing equations is the 2 × 2 sys-
tem (18), whereas for two-phase flow it reduces to the scalar equation (14).
Unrealistic as it may seem (unbounded domain, and piecewise constant ini-
tial data with a single discontinuity), the solution to the Riemann problem is
extremely valuable for practical applications. Many laboratory experiments
reproduce in fact the conditions of the Riemann problem: the medium has
initially homogeneous saturations, and the proportion of injected fluids is
held constant during the experiment. The solution to the Riemann problem
gives also information about the structure of the system of equations, and
can be used as the building block for obtaining solutions to problems with
more complex initial conditions (as in the Godunov method [16,26]).

The system (38) is invariant under uniform stretching of coordinates
(x, t) 7→ (cx, ct) and, therefore, admits self-similar solutions. The property
of self-similarity has been termed “stretching principle” [45] or “coherence
condition” [17,38] in the petroleum engineering literature. It means that the
solution at different times “can be obtained from one another by a similarity
transformation.” [5] We seek a solution of the form

u(x, t) = U (ζ), (40)

where, in our case, the similarity variable ζ is simply

ζ :=
x

t
. (41)

It can be shown (see, e.g., [12]) that self-similar solutions (40) of the
Riemann problem (38)–(39) are composites of constant states, shocks joining
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constant states, and rarefaction waves connecting constant states or contact
discontinuities. More precisely, since for a strictly hyperbolic system waves
of different families are strictly separated, any self-similar solution to the
Riemann problem for a n× n system comprises n+ 1 constant states:

ul = u0
W1−→ u1

W2−→ · · · Wn−1−→ un−1
Wn−→ un = ur. (42)

States ui−1 and ui are joined by a wave of the i-family (Wi) which, in general,
may consist of i-rarefactions, i-shocks and/or i-contact discontinuities.

Next, the admissible wave structure for two-phase and three-phase flow
is described, and the complete set of solutions to the Riemann problem is
given.

4.2 Riemann problem for two-phase flow

The solution to the two-phase displacement problem was presented originally
by Buckley and Leverett [9]. Many of the features in the displacement theory
of three-phase flow are natural extensions of concepts already present in the
two-phase flow case. Some concepts are more easily understood in the latter
case, which involves a scalar equation rather than a system.

4.2.1 Wave structure

In the two-phase flow case, the Riemann problem involves the scalar equa-
tion (14). Therefore, the left and right states (ul and ur, respectively) are
joined by a single wave:

ul
W−→ ur. (43)

When the flux function f of a scalar conservation law is convex, the wave
appearing in the solution is either a shock or a rarefaction. When f is
not convex, as in the present case (see Figure 4), the characteristic wave
may involve both [26]. We now study in more detail the structure of the
wave connecting the two constant states ul (left) and ur (right). There are
three possible wave types, namely: a single rarefaction, a single shock, and
a composite rarefaction-shock.

Single rarefaction (R) A rarefaction (a term coined in the context of
gas dynamics) is a smooth solution U(ζ), with U(ζl) = ul and U(ζr) =
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Figure 8. Example of a single rarefaction solution to the Riemann problem
of two-phase flow. The characteristic speed f ′ increases mono-
tonically from the left state to the right state, and the solution
is smooth and single-valued.

ur. If the solution is smooth (continuous and differentiable), substituting
Equations (40)–(41) into Equation (14), we obtain:

f ′(U)U ′ = ζU ′. (44)

If the solution is not a constant function, that is, if U ′ 6= 0, it must satisfy:

ζ = f ′(U). (45)

Clearly, the solution is admissible only if the characteristic speed f ′ increases
monotonically from the left state to the right state. Otherwise, characteristics
intersect on the x-t plane, and the solution is not single-valued. For the
characteristic speed to increase monotonically, both left and right states must
lie on the same convexity region, that is,

ul > ur ≥ u0, or ul < ur ≤ u0. (46)



R. Juanes and T. W. Patzek: Analytical solution to the Riemann problem . . . 19

ζ

u−

u+

- σ

Figure 9. Schematic of a shock.

An example of a rarefaction wave solution is shown in Figure 8 for the
case ul > ur ≥ u0, using the fractional flow function (22) with µ̃ = 0.5. The
figure includes a plot of: (a) the flux function indicating the left and right
states; (b) the flux derivative; (c) the solution profile at t = 1; and (d) the
characteristics on the x-t plane. The solution is constant along characteris-
tics, and characteristics spread from the origin in a rarefaction fan.

Single shock (S) A shock is a traveling discontinuity. Discontinuities
are allowed in the context of weak solutions, and they develop whenever
the characteristic speed f ′ at the left state is larger than that at the right
state. Otherwise, characteristics would intersect and the solution would be
multiple-valued. If a shock connects two states, u− = U(ζ−) and u+ = U(ζ+),
as shown schematically in Figure 9, the speed of propagation σ is determined
by the Rankine-Hugoniot condition:

f(u+)− f(u−) = σ · (u+ − u−). (47)

This condition is, in essence, a mass conservation statement when the solution
is discontinuous. In the scalar case, it is equivalent to the equal-area rule [9,
26]. For the solution to be admissible, the shock must satisfy the Lax entropy
condition for genuine shocks [25,26,41]:

f ′(u−) > σ > f ′(u+). (48)

In Figure 10 we show the case of a single shock between two constant
states, including: (a) the flux function indicating the left and right states;
(b) the flux derivative and the shock speed; (c) the solution profile at t = 1;
and (d) the characteristics on the x-t plane. The solution satisfies the Lax
entropy condition, which implies that characteristics go into the shock.
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Figure 10. Example of a single shock solution to the Riemann problem of
two-phase flow. The speed of propagation of the discontinuity is
determined by the Rankine-Hugoniot condition, and it is readily
checked that characteristics go into the shock.

Composite rarefaction-shock (RS) It might not be possible to connect
left and right states with a simple wave. In some cases, a composite wave
consisting of a rarefaction and a shock is required. The left and right states
must lie on different convexity regions so that the characteristic speed is not
monotonic, that is,

ul > u0 > ur, or ul < u0 < ur. (49)

The solution involves at most one rarefaction and one shock, because the
fractional flow function has one inflection point only. Moreover, since the
inflection point corresponds to a maximum value of the derivative, the rar-
efaction fan of a composite wave is always slower than the shock [1]. The
rarefaction and the shock are connected at some intermediate point u∗, called
the post-shock value. This is the value of u at which the left characteristic
speed (rarefaction fan) coincides with the speed of the right discontinuity
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Figure 11. Example of a composite rarefaction-shock solution to the Rie-
mann problem of two-phase flow. Left and right states lie nec-
essarily on opposite sides of the inflection point and the rar-
efaction is always behind the shock. The speed of propagation
of the discontinuity is determined by the concave hull construc-
tion.

(shock):

f ′(u∗) = σ∗ :=
f(u∗)− f(ur)

u∗ − ur

. (50)

Equation (50) is a nonlinear equation, which can be solved, for example, by
Newton iteration.

The wave joining the left and right constant states is, thus, a rarefaction-
shock (W ≡ RS), which we express schematically as follows:

ul
R−→ u∗

S−→ ur. (51)

The appropriate criterion for ascertaining admissible shocks when the flux
function is not convex is the Oleinik entropy condition [12, 35, 41], which
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states that any discontinuity joining the states u− and u+ must satisfy:

f(u)− f(u−)

u− u−
≥ f(u+)− f(u−)

u+ − u−
≥ f(u+)− f(u)

u+ − u
, (52)

for all u between u− and u+. This entropy criterion is equivalent to the
concave hull construction [26]. In the particular case of two-phase flow,
where the flux function has only one change in convexity, associated with a
maximum value of the derivative, condition (52) reduces to checking that the
characteristic speed f ′ must increase from left to right along the rarefaction
fan, and that the shock satisfies:

f ′(u∗) ≥ σ∗ > f ′(ur). (53)

A solution which involves a composite rarefaction-shock wave is shown in
Figure 11, computed for the fractional flow function (22) with µ̃ = 0.5, as
before.

4.2.2 Complete set of solutions

The solution to the Riemann problem of two-phase flow consists in a single
wave that joins the left and right constant states. As shown above, this wave
may only be a rarefaction, a shock, or a rarefaction-shock. Therefore, only
three types of solutions are possible. In Figure 12 we present an algorithm
which summarizes the process of obtaining the wave structure for two-phase
flow.

4.3 Riemann problem for three-phase flow

The system of conservation laws (18) describing three-phase flow is a 2 × 2
system, which is strictly hyperbolic for all saturation paths of interest [20].
This implies that there are two separated waves connecting three constant
states: ul (left), um (middle), and ur (right). Therefore, the solution to
the Riemann problem for three-phase flow reduces to finding the intermedi-
ate constant state um as the intersection of an admissible 1-wave W1 (slow
wave) and an admissible 2-wave W2 (fast wave) on the saturation triangle
(Figure 13):

ul
W1−→ um

W2−→ ur. (54)
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• Given left and right states: ul, ur

• Trial shock speed: σtrial =
f(ul)− f(ur)

ul − ur

IF f ′(ul) > σtrial > f ′(ur) THEN

• S: Single shock with speed σ = σtrial

ELSE

IF f ′(ul) < f ′(ur) & f ′′(ul)f
′′(ur) > 0 THEN

• R: Single rarefaction

ELSE

• RS: Composite rarefaction-shock

· Post-shock value u∗ such that f ′(u∗) = σ∗

· Shock speed: σ∗ =
f(u∗)− f(ur)

u∗ − ur

END

END

Figure 12. Algorithm for obtaining the wave structure for two-phase flow.

The theory of strictly hyperbolic systems was compiled by Lax [25]. The
solution to the Riemann problem was restricted to systems whose character-
istic fields are either genuinely nonlinear or linearly degenerate. The notion
of genuine nonlinearity, which is made precise below, is central to solving the
Riemann problem of three-phase flow. Basically, genuine nonlinearity of a
characteristic field is the natural extension of convexity of the flux function
for scalar equations. As we shall see, this property does not hold for the
three-phase flow system, much in the same way as the flux function in two-
phase flow is not convex. The theory of Lax was extended by Liu [28, 29]
to find Riemann solutions for systems with nongenuinely nonlinear fields.
This theory is used here to describe the admissible wave structure, and the
complete set of solutions to the Riemann problem.
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4.3.1 Wave structure

We now describe the structure of the waves in the Riemann solution. From
the theory of strictly hyperbolic conservation laws [12], a wave of the i-family
consists of i-rarefactions, i-shocks and/or i-contact discontinuities. This is
discussed next.

Integral curves and rarefactions Rarefactions are smooth waves joining
constant states or contact discontinuities. If the solution is smooth, using
Equations (40)–(41) in Equation (38), a self-similar solution of the Riemann
problem satisfies the system of ordinary differential equations

A(U )U ′ = ζU ′, (55)
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where A(U) is the Jacobian matrix of the system (Equation (26)). This is an
eigenvalue problem, where the similarity variable ζ = x/t is an eigenvalue,
and U ′ is a right eigenvector. Because the system is strictly hyperbolic
(Section 3.2.1), there exist two distinct eigenvalues νi and two linearly in-
dependent eigenvectors ri, corresponding to the two different characteristic
families i = 1, 2. This leads to the following definition: An i-rarefaction is
a smooth function U i(ζ) satisfying Equation (55), where the parameter ζ is
not arbitrary, but the i-eigenvalue of the Jacobian matrix of the system:

ζ = νi(U i(ζ)). (56)

It follows that an i-rarefaction curve (in phase space) must lie on an
integral curve of the i-family, that is, a curve whose tangent at any point U

is in the direction of the i-eigenvector ri(U ) at that point. The two families
of integral curves, usually termed as slow and fast paths, are depicted in
Figure 14 for the relative mobilities (30)–(32).

A rarefaction curve U i(ζ) will provide an admissible single-valued solution
only if the similarity variable parameter ζ = νi increases monotonically along
the curve from the left state to the right state.

Rarefaction curves can be calculated by simple numerical integration with
a Runge-Kutta algorithm, as explained in Appendix A.1.

Hugoniot loci and shocks Any propagating discontinuity connecting two
states u− = U (ζ−) and u+ = U (ζ+), must satisfy an integral conserva-
tion equation for each variable, known as the Rankine-Hugoniot jump condi-
tion [26]:

f(u+)− f(u−) = σ(u+;u−) · (u+ − u−), (57)

where σ(u+;u−) is the speed of propagation of the discontinuity. For a fixed
state u−, one can determine the set of states u+ which can be connected
to u− such that Equation (57) is satisfied. There are two families of solutions,
one for each characteristic family, which form two curves passing through the
reference state u−: H1(u−) and H2(u−) (Figure 15). The set of points on
each of these curves is called the Hugoniot locus. It is easy to show [26]
that the Hugoniot curves are tangent to the corresponding eigenvectors at
the reference point u−. Moreover, since the system is strictly hyperbolic,
Hugoniot loci do not have detached branches and are transversal to each
other [12].
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Figure 14. Integral curves for the relative mobilities (30)–(32). Integral
curves of the 1- and 2-family are usually termed slow and fast
paths, respectively.

Not every discontinuity satisfying the Rankine-Hugoniot condition is a
valid shock. For a genuine shock of the i-family (an i-shock) to be physically
admissible, it must satisfy the Lax entropy condition [12, 25,26,41]:

νi(u−) > σi(u+;u−) > νi(u+), (58)

where u− and u+ are the values at the left and at the right of the disconti-
nuity, respectively. Condition (58) implies that characteristics of the i-family
go into the shock. A shock curve of the i-family passing through point u−,
denoted as Si(u−), corresponds to a subset of the Hugoniot locus Hi(u−),
for which the entropy condition (58) is satisfied.

An algorithmic procedure for the calculation of the Hugoniot loci, based
on a Newton iterative scheme, is detailed in Appendix A.2.

Inflection loci and rarefaction-shocks The notion of genuine nonlin-
earity is crucial to the wave structure arising in multiphase flow. The i-field
is said to be genuinely nonlinear if the i-eigenvalue νi varies monotonically
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Figure 15. Plot of the Hugoniot loci of both characteristic families, H1(u−)
and H2(u−), for the relative mobilities (30)–(32) and two dif-
ferent reference states u− (4).
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along integral curves of the i-family. This is expressed mathematically as:

∇νi(U ) · ri(U ) 6= 0 for all U , (59)

where ∇νi(U ) := [∂νi/∂u, ∂νi/∂v]
t is the gradient of νi(U ). This condition

is equivalent to that of convexity, f ′′(u) 6= 0 ∀u, for scalar conservation laws.
The i-field is said to be linearly degenerate if νi is constant along integral
curves of the i-family, that is,

∇νi(U ) · ri(U) ≡ 0 for all U . (60)

Of course, the value of νi(U) may vary from one integral curve to the next. As
it turns out, the characteristic fields of the system describing three-phase flow
are neither genuinely nonlinear nor linearly degenerate: eigenvalues attain
local maxima along integral curves. We can therefore define the inflection
locus Vi for the i-characteristic field as the set of points U such that

∇νi(U) · ri(U) = 0, (61)

that is, the locations at which νi attain either a maximum or a minimum
value when moving along integral curves of the i-family.

In Figure 16 we show contour plots of eigenvalues and the inflection loci
for both characteristic families. We note that in all realistic models of multi-
phase flow, the inflection locus corresponds to maxima of eigenvalues. This is
consistent with the well-known behavior of the flux function for the two-phase
flow case, where the fractional flow function is S-shaped, and the inflection
point corresponds to the maximum value of the derivative (Figure 4).

For a strictly hyperbolic system whose characteristic fields are genuinely
nonlinear, any wave connecting two constant states ul and ur can only be a
rarefaction or a genuine shock, and any discontinuity must satisfy the Lax en-
tropy condition (58). If the characteristic fields are nongenuinely nonlinear,
each wave might consist in a combination of rarefactions and discontinu-
ities [28, 29]. In our case, since the inflection locus for each field is a single
connected curve satisfying certain orthogonality conditions with respect to
integral curves, the composite wave has at most one rarefaction and one dis-
continuity. Moreover, because the inflection loci correspond to local maxima
of eigenvalues along integral curves, the rarefaction is always slower than the
shock [1].

More precisely, a rarefaction-shock of the i-family connecting the left and
right states ul and ur, respectively, is a curve on the phase plane consisting
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Figure 16. Contour plots of eigenvalues νi and the inflection loci Vi of
both characteristic families, for the relative mobilities (30)–(32).
Inflection loci correspond to local maxima of eigenvalues when
moving along integral curves.
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of an i-rarefaction curve emanating from ul, connected to an i-shock curve
at some intermediate point u∗, which ends at the right state. We denote
this rarefaction-shock curve as RiSi(ul,ur) and, unlike rarefaction curves
or shock curves alone, is defined through both endpoints. The intermediate
state u∗ is the post-shock state, at which the following property holds:

νi(u∗) = σi(ur;u∗). (62)

A necessary condition for a RiSi(ul,ur) wave is that the left and right states
lie on opposite sides with respect to the inflection locus Vi. This rules out
the possibility of two such states being connected by a rarefaction wave,
since the characteristic speed would not be monotonically increasing and,
as a result, the solution would not be single-valued. Figure 17 shows two
rarefaction-shock curves for the first characteristic family, corresponding to
the same left state but two different right states. Note that the post-shock
value u∗, at which the R1 and S1 curves are connected, is different for each
case. This connection is always very smooth. In fact, it can be shown [25]
that both curves are connected with second order tangency (same slope and
curvature).

If the i-characteristic field is nongenuinely nonlinear, any discontinuity in
the i-wave, connecting two states u− (left) and u+ (right), must satisfy the
Liu entropy condition [28,29], which states that

σi(u+;u−) ≤ σi(u;u−), (63)

for all states u ∈ Si(u−) between u− and u+. This condition generalizes the
Oleinik entropy condition (52) for scalar equations to systems of conservation
laws. In the particular case of three-phase flow, it is possible to arrive at a
simpler condition. Because inflection loci are single connected curves, which
correspond to maxima of eigenvalues, it can be shown [1] that condition (63)
is equivalent to

νi(u−) ≥ σi(u+;u−) > νi(u+). (64)

Algorithms for calculating rarefaction-shock curves, based on a predictor-
corrector strategy that achieves quadratic convergence, are given in Ap-
pendix A.3.

4.3.2 Complete set of solutions

Based on the analysis of the wave structure in Section 4.3.1, a wave of the
i-family connecting two constant states may only be one of the following: an



R. Juanes and T. W. Patzek: Analytical solution to the Riemann problem . . . 31

  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1

PSfrag replacements

W

G

O

V1

R1

S1

ul

ur
u∗

(a) Right state with ur ≈ 0.17

  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1

PSfrag replacements

W

G

O

V1

R1

S1

ul

ur u∗

(b) Right state with ur ≈ 0.02
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ul = (0.5, 0.5) and two different right states. The dash-dotted
curve is the inflection locus of the 1-family. Note that the post-
shock state u∗ is different for each case.
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Figure 18. Schematic tree with all possible combinations of solutions to
the Riemann problem of three-phase flow.

i-rarefaction (Ri), an i-shock (Si), or an i-rarefaction-shock (RiSi). Since
the full solution to the Riemann problem is a sequence of two waves,W1 and
W2, there are only 9 possible combinations of solutions. A schematic tree
with all possible solution types is shown in Figure 18.

In Figure 19 we present the saturation paths in the ternary diagram for
all 9 solution types. These are:

(a) S1S2: both waves are genuine shocks and, therefore, the solution com-
prises three constant states separated by two discontinuities.

(b) S1R2: the solution consists of a 1-shock and a 2-rarefaction.

(c) S1R2S2: the solution comprises a genuine 1-shock through the left state
and a composite 2-rarefaction-shock through the right state.

(d) R1S2: the left state and the right state are joined by a 1-rarefaction
followed by a 2-shock.

(e) R1R2: both waves are rarefactions, so the solution is continuous ev-
erywhere.

(f) R1R2S2: a 1-rarefaction from the left state is followed by a composite
2-rarefaction-shock to the right state.

(g) R1S1S2: the slow wave emanating from the left state is a composite
rarefaction-shock, which is followed by a genuine 2-shock to the right
state.
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(h) R1S1R2: the left state is joined to the intermediate constant state by
a composite rarefaction-shock, and the right state is reached along a
2-rarefaction.

(i) R1S1R2S2: both waves are rarefaction-shocks.

All cases discussed above give the complete set of solutions to the Rie-
mann problem of three-phase flow, when the following physical properties
are satisfied: (1) the system is strictly hyperbolic; and (2) inflection loci
are single connected curves, transversal to the integral curves, and corre-
spond to maxima of the eigenvalues. Efficient algorithms for the complete
calculation of the solution are given in Appendix B. They are based on
a predictor-corrector strategy coupled with a full Newton iteration, which
achieves quadratic convergence in all cases.

5 Application example: water-gas injection

In this section we describe in some detail a synthetic example, where we
apply the analytical solution of three-phase flow presented in Section 4. The
objective is twofold:

1. Illustrate the applicability and potential of the theory to develop exact
solutions for problems of great practical interest.

2. Show that the wave structure arising in three-phase flow displacements
should not be approximated by a sequence of two consecutive two-phase
flow displacements.

5.1 Description of the problem

The problem involves simultaneous injection of water and gas into a core
that is initially filled with oil and water, as shown in Figure 20. Initially, the
core has constant reduced (normalized) saturations of 0.95 oil saturation, and
0.05 water saturation. Gas and water are injected in such proportion that the
reduced water and gas saturations at the inlet are 0.5 and 0.5, respectively.
The injected reduced saturations are assumed to be constant throughout the
experiment.

This physical problem is modeled mathematically as a Riemann problem,
where two initially constant states are separated by a single discontinuity.
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Figure 20. Sketch of the injection problem. Water and gas are injected
into a core initially filled with oil and water.

Here, the left (injected) saturation state is ul = (0.5, 0.5), and the right
(initial) saturation state is ur = (0.05, 0). We use the relative mobilities in
Equations (30)–(32) with βg = 0.1, and the fluid viscosities in (35).

5.2 Exact solution

The exact solution turns out to be of type R1S1R2S2, that is, both waves are
rarefaction-shocks: W1 ≡ R1S1, and W2 ≡ R2S2. The variables that need
to be determined to fully characterize the solution are: the intermediate
constant state um, the shock speeds σ1 and σ2, and the post-shock states u∗

1

and u∗
2 of each wave. The constant state um corresponds to the intersection

of the two wave curves, while the post-shock states are the points where
the rarefaction curve and the shock curve of the same family are joined.
Schematically, this can be represented as follows:

ul
R1−→ u∗

1
S1−→ um

R2−→ u∗
2

S2−→ ur. (65)

A detailed algorithm to obtain this solution is given in Appendix B.3.
In Figure 21 we show the saturation path of the exact solution. The cor-

responding saturation profiles are plotted in Figure 22 against the similarity
variable ζ = x/t. Of course, the right state coincides with the initial sat-
urations (95% oil and 5% water) and the left state is given by the injected
saturations (50% water and 50% gas). Because the characteristic speeds of
the slow and fast waves are very different, the entire saturation profile shown
on the right plot 22(b) does not allow to visualize the structure of the slow
wave (1-wave). A detail of the 1-wave is shown on the left plot 22(a). It
is apparent that the 1-wave involves changes in the saturation of all three
fluids.
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Figure 21. Saturation path of the exact solution to the water-gas injec-
tion problem. Both waves are rarefaction-shocks (R1S1R2S2

solution). Dash-dotted curves represent the inflection loci.

5.3 Approximate solution

Classical analytical solutions of three-phase flow are usually restricted to the
case when saturation paths are straight lines [17, 24, 38, 46]. This approx-
imation dates back to the early conceptual model of a waterflood in the
presence of gas by Kyte et al. [23]. In general, straight saturation paths arise
only when the relative permeability of each phase is assumed to be a linear
function of its own saturation.

The physical motivation for assuming saturation paths that are straight
lines parallel to the edges of the ternary diagram is to split the actual three-
phase flow displacement into a sequence of two successive two-phase displace-
ments. In the context of the water-gas injection problem described above,
this approximation is equivalent to assuming that the fast wave is a displace-
ment of oil exclusively by gas, and that the slow wave is a displacement of
oil exclusively by water. Therefore, it is assumed that the water saturation
is constant along the fast wave, and the gas saturation is constant along the
slow wave. The immediate benefit of this simplification is that the solution
may be computed using the theory of two-phase Buckley-Leverett flow. Here
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Figure 22. Saturation profiles of the exact solution to the water-gas injec-
tion problem. Saturations of each phase are plotted against the
similarity variable ζ = x/t. The right plot (b) shows the entire
saturation profile. Because of the very different characteristic
speeds of the slow and fast waves, we show a detail of the 1-wave
on the left plot (a).

we evaluate the accuracy of this simplifying assumption.
In Figure 23 we show the saturation paths that result from the assumption

described above. The intermediate constant state um is obvious to calculate
as the intersection of the two wave paths. Each wave is then resolved using
the catalogue of two-phase flow solutions in Section 4.2. It turns out that the
slow wave is a 1-shock (W1 ≡ S1), and the fast wave is a 2-rarefaction-shock
(W2 ≡ R2S2). Thus, the wave structure is different from that of the exact
solution. In Figure 24 we plot the saturation profiles of the approximate
solution against the similarity variable ζ. The right figure 24(b) shows the
entire saturation profile, and the left figure 24(a) a detail of the 1-wave. It
is evident that, while the qualitative behavior of the fast wave is similar to
that of the exact solution (see Figure 22(b)), the structure of the slow wave
is very different (compare with Figure 22(a)).
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Figure 23. Saturation path of the approximate solution to the water-gas
injection problem, which assumes that saturation paths are
straight lines, parallel to the edges of the ternary diagram. The
slow wave is a 1-shock, and the fast wave is a 2-rarefaction-shock
(S1R2S2 solution). Each individual wave is fully determined us-
ing the theory of two-phase displacements.

5.4 Discussion

To better evaluate the accuracy of the straight-line approximation of the
saturation paths, we compare the oil production of the exact and the ap-
proximate solutions. This is done by taking a fixed length L of the core,
and calculating the amount of oil displaced at the outlet at any given time.
Using the definitions of dimensionless space and time coordinates in Equa-
tions (11)–(12), and the similarity variable in Equation (41), we plot the
results against the dimensionless time τ := 1/ζ = t/x. The variables of
interest are:

1. Oil production rate. This quantity is proportional to the oil fractional
flow foil at the outlet face, that is:

foil(τ) = 1− f(τ)− g(τ). (66)
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Figure 24. Saturation profiles of the approximate solution to the water-
gas injection problem, which assumes that the three-phase flow
displacement is split into a sequence of two successive two-phase
displacements. Saturations of each phase are plotted against
the similarity variable ζ = x/t. The right plot (b) shows the
entire saturation profile. The left plot (a) shows a detail of the
1-wave.

2. Cumulative oil production. This quantity is proportional to the frac-
tion Qoil of the original oil in place that has been swept through the
outlet face, that is:

Qoil(τ) =

∫ τ

0

foil(η) dη. (67)

In Figure 25 we plot the dimensionless oil production rate foil defined
in Equation (66), as predicted by the exact solution and the approximate
solution. The approximate solution agrees well with the exact solution at
early times (roughly, for τ < 3). The reason for this good agreement is
that, at early times, only the fast wave has reached the outlet face, and
the exact saturation path of the fast wave may be approximated accurately
by a straight line of constant water saturation (compare Figure 23 with 21,
and Figure 24(b) with 22(b)). However, the approximate solution deviates
very significantly from the exact solution for times τ > 3, because both
the saturation and the speed of propagation of the oil bank are predicted
incorrectly.
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Figure 25. Comparison of the dimensionless oil production rate predicted
by the exact solution and the approximate solution. The ap-
proximate solution deviates very significantly from the exact
solution because both the saturation and the speed of propaga-
tion of the oil bank are incorrect.

A faulty behavior of the approximate solution is better visualized by
plotting the dimensionless cumulative oil production Qoil defined in Equa-
tion (67), which is simply the area under the curve in Figure 25. This
quantity is shown in Figure 26 for both the exact and the approximate solu-
tions. The curve given by the exact solution tends asymptotically to a value
of Qoil,max = 0.95, which is precisely the initial reduced oil saturation. This
is required for mass conservation. In contrast, the curve predicted by the ap-
proximate solution reaches a plateau of Qoil,max ≈ 0.67 at time τ ≈ 15. This
behavior illustrates that the approximate solution is not mass conservative.

The results presented above motivate the following remarks:

1. Rarefaction-shocks waves, common in two-phase displacements, appear
also in realistic scenarios of three-phase flow.

2. In the realm of Buckley-Leverett models of three-phase flow, individual
waves involve simultaneous three-phase displacements.

3. In general, the saturation paths induced by the exact characteristic
waves are not straight lines on the ternary diagram. Saturation paths
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Figure 26. Comparison of the dimensionless cumulative oil production pre-
dicted by the exact solution and the approximate solution. The
exact solution tends asymptotically to a value of 0.95, consis-
tent with the original reduced oil saturation. The approximate
solution does not, which indicates it does not satisfy the overall
mass balance.

are straight lines only for linear relative permeability functions, or for
very particular initial and injected saturation states.

4. Splitting a three-phase displacement into a sequence of two successive
two-phase displacements —for which saturation paths are straight lines
parallel to the edges of the ternary diagram— is an assumption that
may not be appropriate.

5. In particular, it was shown by means of a representative example that
the approximate solution calculated under this assumption does not
satisfy overall mass balance, and leads to very inaccurate predictions
of oil recovery.

6 Conclusions

The key result of this paper is the complete general analytical solution to the
Riemann problem of three-phase flow of immiscible, incompressible fluids,
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when gravity and capillarity are not included in the formulation. The solu-
tion comprises two waves, a (slow) 1-wave and a (fast) 2-wave, separated by
an intermediate constant saturation state. Each of these two waves may only
be a rarefaction, a shock, or a rarefaction-shock. Thus, there can only be
9 possible combinations of admissible waves. All these combinations, which
constitute the complete set of solutions to the Riemann problem, are dis-
cussed in our paper. We demonstrate that, in general, a three-phase flow
displacement should not be approximated by a sequence of two successive
two-phase displacements. Such approximation does not satisfy an overall
mass balance, and may lead to very inaccurate predictions of oil recovery.

We are currently extending the analytical solution presented here to the
case when saturation states are outside the three-phase flow region, that is,
when one or more phases are immobile [13, 14]. Capillarity effects, which
smear the traveling discontinuities of the capillarity-free solution, may also
be incorporated through the method of asymptotic expansions [6].

We anticipate that the results of this paper will be relevant to: (1) the in-
terpretation of three-phase displacement experiments; (2) implementation of
the solution in streamtube simulators; (3) development of improved relative
permeability models; and (4) validation of numerical methods.
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A Solution algorithms for the wave curves of

three-phase flow

A.1 Rarefaction curves

Rarefaction curves are subsets of the integral curves, satisfying that the eigen-
value increases monotonically along the curve. Let ũi(ξ) = (ũi(ξ), ṽi(ξ)) be
a parameterization of a rarefaction curve of the i-family, Ri(û), starting at
the reference state û = (û, v̂). From the definition of a rarefaction curve, it
satisfies the initial value problem:

{

ũ′
i(ξ) = α(ξ)ri(ũi(ξ)),

ũi(0) = û,
(68)

where α(ξ) is some scalar factor.
For a 1-rarefaction curve we choose the following parameterization:

ũ1(ξ) = û+ ξ. (69)

Using Equation (28), the initial value problem (68) reduces to






ṽ′1(ξ) =
r1v

r1u

=
ν1 − f,u
f,v

=
g,u

ν1 − g,v
,

ṽ1(0) = v̂.
(70)

For a 2-rarefaction curve we use the parameterization

ṽ2(ξ) = v̂ + ξ. (71)

Using Equation (29), the initial value problem (68) takes the form






ũ′2(ξ) =
r2u

r2v

=
f,v

ν2 − f,u
=
ν2 − g,v
g,u

,

ũ2(0) = û.
(72)
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A simple Runge-Kutta algorithm can be used to integrate the scalar ordinary
differential equations (70) and (72).

A.2 Shock curves

Shock curves are subsets of the Hugoniot loci, satisfying the Lax entropy
condition. Here we describe a Newton iterative procedure for the calculation
of the shock curves. Let ũi(ξ) = (ũi(ξ), ṽi(ξ)) be a parameterization of an
i-shock curve, Si(û), starting at the reference state û = (û, v̂).

We use the following parameterization of the 1-shock curve:

ũ1(ξ) = û+ ξ. (73)

For each value of the parameter ξ, ũ1 is known from (73), and the following
system of algebraic equations needs to be solved for σ1 and ṽ1:

R1(σ1, ṽ1) := f(ũ1, ṽ1)− f(û, v̂)− σ1(ũ1 − û) = 0,

R2(σ1, ṽ1) := g(ũ1, ṽ1)− g(û, v̂)− σ1(ṽ1 − v̂) = 0.
(74)

We define the solution vector x and the residual vector R as:

x :=

(

σ1

ṽ1

)

, R :=

(

R1

R2

)

. (75)

We use Newton’s method to find the solution to the system (74), as indicated
in Figure 27.

For the 2-shock curve we use the following parameterization:

ṽ2(ξ) = v̂ + ξ. (76)

The iterative procedure to obtain the solution is identical to that of the 1-
shock curve, but now the system needs to be solved for ũ2 and σ2. The
solution vector, residual vector and Jacobian matrix are:

x =

(

ũ2

σ2

)

,

R =

(

f(ũ2, ṽ2)− f(û, v̂)− σ2(ũ2 − û)
g(ũ2, ṽ2)− g(û, v̂)− σ2(ṽ2 − v̂)

)

,

J =
∂R

∂x
=

(

f,u(ũ2, ṽ2)− σ2 −(ũ2 − û)
g,u(ũ2, ṽ2) −(ṽ2 − v̂)

)

.

(77)
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1. Set k = 0. Initial guess:

x(0) =

(

σ
(0)
1

ṽ
(0)
1

)

.

2. Evaluate residual vector and Jacobian matrix:

R(k) =

(

f(ũ1, ṽ
(k)
1 )− f(û, v̂)− σ

(k)
1 (ũ1 − û)

g(ũ1, ṽ
(k)
1 )− g(û, v̂)− σ

(k)
1 (ṽ

(k)
1 − v̂)

)

,

J (k) =
∂R

∂x

∣

∣

∣

∣

(k)

=

(

−(ũ1 − û) f,v(ũ1, ṽ
(k)
1 )

−(ṽ(k)
1 − v̂) g,v(ũ1, ṽ

(k)
1 )− σ

(k)
1

)

.

3. Solve linear system for the increment δx(k):

J (k)δx(k) = R(k).

4. Update solution: x(k+1) = x(k) − δx(k).

5. Check convergence:

IF ||R|| < ε STOP

ELSE Set k ← k + 1 and GOTO 2.

Figure 27. Newton algorithm for obtaining the 1-shock curve.

A.3 Rarefaction-shock curves

Rarefaction-shock curves RiSi(ul,ur) are composite waves, consisting of a
rarefaction curve emanating from a left state ul, and a shock curve that ends
at the right state ur. Both curves join at an intermediate state u∗, called
the post-shock state.

We now detail the procedure to compute rarefaction-shock curves of the
1-characteristic family. Assume that the left state ul and the first com-
ponent ur of the right state are known. A complete description of the 1-
rarefaction-shock requires: the second component vr of the right state, the
speed σ1 of the shock, and the post-shock value u∗. These unknowns are
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1. Set k = 0. Initial guess v
(0)
r .

2. Predictor:

(i) Integrate along rarefaction curve R1(ul) as in Equation (70)
until

ν1(ũ) = σ1(u
(k)
r ; ũ) =

f(u
(k)
r )− f(ũ)

ur − ũ
.

(ii) Set u
(k+1)
∗ = ũ at which integration terminated.

3. Corrector: Solve for σ
(k+1)
1 and v

(k+1)
r by imposing that the right

state belongs to the shock curve passing through the post-shock
value, u

(k+1)
r ∈ S1(u

(k+1)
∗ ), using the Newton algorithm in Figure 27.

4. Check convergence:

IF |v(k+1)
r − v

(k)
r | < ε STOP

ELSE Set k ← k + 1 and GOTO 2.

Figure 28. Predictor-corrector algorithm for obtaining the rarefaction-
shock curve of the 1-characteristic family.

obtained using the predictor-corrector algorithm of Figure 28. A schematic
of the kth iteration is shown in Figure 29.

It is important to note that the post-shock value u∗, at which the R1 and
S1 curves are connected, depends on both the left and the right states. This
connection is always very smooth. In fact, it can be shown [25] that both
curves are connected with second order tangency (same slope and curvature).
This property ensures that the predictor-corrector algorithm in Figure 28 will
achieve global quadratic convergence when the initial guess is close to the
solution.

The algorithm to compute a rarefaction-shock of the 2-characteristic fam-
ily is completely analogous. In this case, the left state ul and the second
component vr of the right state are known, and we use a predictor-corrector
algorithm to compute the first component ur of the right state, the speed σ2

of the shock, and the post-shock value u∗.
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R1(ul)

S1(u
(k)
∗ )

S1(u
(k+1)
∗ )

4ul

4u
(k)
r

4u
(k+1)
r

u
(k)
∗

u
(k+1)
∗

ur

Figure 29. Schematic of the kth iteration of the predictor-corrector algo-
rithm for obtaining a rarefaction-shock of the 1-characteristic
family. The rarefaction curve and the shock curve join at the
post-shock value with second-order tangency. This property
allows the algorithm to achieve quadratic convergence.

B Solution algorithms for selected solution

types of three-phase flow

Recall that the solution of the Riemann problem of three-phase flow consists
in a sequence of two waves connecting three constant states:

ul
W1−→ um

W2−→ ur. (54′)

The complete set of solutions (9 cases) is given in Section 4.3.2. In this ap-
pendix we describe efficient algorithms for the calculation of selected solution
types. Other cases can be computed similarly.

B.1 S1S2 solution
The first solution we consider is that when both waves are genuine shocks,
that is, W1 ≡ S1(ul) and W2 ≡ S2(ur). These two shock curves intersect at
the intermediate constant state um.

B.1.1 Solution procedure

The unknowns are the intermediate constant state um = (um, vm) and the
shock speeds σ1 and σ2. These 4 scalar unknowns can be found by imposing
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the Rankine-Hugoniot jump condition on each shock:

f(um, vm)− f(ul, vl) = σ1(um − ul),

g(um, vm)− g(ul, vl) = σ1(vm − vl),

f(um, vm)− f(ur, vr) = σ2(um − ur),

g(um, vm)− g(ur, vr) = σ2(vm − vr).

(78)

We propose using a full Newton iterative procedure to achieve quadratic
convergence. The solution vector x, the residual vector R and the Jacobian
matrix J are given by:

x =









σ1

vm
um

σ2









, (79)

R =









f(um, vm)− f(ul, vl)− σ1(um − ul)
g(um, vm)− g(ul, vl)− σ1(vm − vl)
f(um, vm)− f(ur, vr)− σ2(um − ur)
g(um, vm)− g(ur, vr)− σ2(vm − vr)









, (80)

and

J =









−(um − ul) f,v(um, vm) f,u(um, vm)− σ1 0
−(vm − vl) g,v(um, vm)− σ1 g,u(um, vm) 0

0 f,v(um, vm) f,u(um, vm)− σ2 −(um − ur)
0 g,v(um, vm)− σ2 g,u(um, vm) −(vm − vr)









.

(81)

B.1.2 Admissibility of the solution

The solution is valid if each wave satisfies the Lax entropy condition:

S1 : ν1(ul) > σ1 > ν1(um),

S2 : ν2(um) > σ2 > ν2(ur).
(82)

B.1.3 Example

We show an example of a Riemann problem whose solution involves two
genuine shocks. We use the relative mobilities (30)–(32), with the values
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of fluid viscosities in (35). The left state is ul = (0.25, 0.2) and the right
state is ur = (0.15, 0.8). Solution of the nonlinear system of algebraic equa-
tions (78) yields:

um = (0.6152, 0.3278), σ1 = 0.1560, σ2 = 0.1930.

The schematic of the solution in the ternary diagram (saturation space)
is depicted in Figure 30. Inflection loci (dash-dotted curves) are plotted
for reference also. The intermediate constant state um is located at the
intersection of the two shock curves. Note that the 1-shock is admissible even
though the left and right states of the discontinuity, ul and um, respectively,
lie on opposite sides of the 1-inflection locus. The profiles of the characteristic
speeds ν1 and ν2, and the phase saturations Sw ≡ u, Sg ≡ v, and So ≡
1− u− v, are plotted against the similarity variable ζ = x/t in Figure 31.

In Figure 32 we show the evolution of the error with the number of iter-
ations of the Newton scheme. The error at iteration k is defined as:

e(k) := ||δu(k−1)
m ||1 = |u(k)

m − u(k−1)
m |+ |v(k)

m − v(k−1)
m |. (83)

The rate of convergence of the method is given by the exponent m in the
following expression relating the error at iteration k + 1 with the error at
iteration k:

e(k+1) ≤ C
(

e(k)
)m

, (84)

where C is a bounded positive constant. If we plot e(k+1) against e(k) in log-
log scale, the convergence rate is simply the asymptotic slope of the curve.
As shown in Figure 32, convergence of the iterative procedure is quadratic,
as expected.

B.2 R1R2 solution

We consider the case when both waves are rarefaction waves, so that W1 ≡
R1 and W2 ≡ R2. There are no discontinuities, and the solution is smooth
everywhere.

B.2.1 Solution procedure

The intermediate constant state is determined by the intersection of the two
rarefaction curves. By contrast to the previous case, in which the intersecting
curves were given by algebraic equations, rarefaction curves are defined by
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Figure 32. Performance of the Newton iterative scheme for the S1S2 solu-
tion, showing a quadratic rate of convergence.

differential equations (70) and (72). We suggest a predictor-corrector strat-
egy to find um iteratively. The algorithm is given in Figure 33, and the kth
iteration is illustrated in Figure 34.

B.2.2 Admissibility of the solution

The solution is admissible if it is single-valued, that is:

R1 : ν1 increases monotonically along R1 from ul to um,

R2 : ν2 increases monotonically along R2 from um to ur.

B.2.3 Example

We show an example of a Riemann problem that yields two simple rarefaction
waves. We use the same relative permeability model and the same viscosities
as before. The left state is ul = (0.5, 0.5) and the right state is ur = (0.4, 0.1).
Solution of the R1R2 intersection gives the intermediate constant state:

um = (0.2658, 0.3360).

In Figure 35 we plot the solution in the ternary diagram. The inter-
mediate constant state um is located at the intersection of the two rar-
efaction curves. Note that the saturation path never crosses the inflection
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1. Set k = 0. Initial guess u
(0)
m = (u

(0)
m , v

(0)
m ).

2. Predictor:

(i) Set the integration limit ûm = u
(k)
m and integrate along R1(ul)

to obtain point ûm.

(ii) Set the integration limit ṽm = v
(k)
m and integrate along R2(ur)

to obtain point ũm.

(iii) Compute eigenvectors r1(ûm) and r2(ũm) at the integration
endpoints.

3. Corrector: new approximation u
(k+1)
m is the intersection of two

straight lines with orientations r1 and r2 emanating from points ûm

and ũm, respectively.

4. Check convergence:

IF ||u(k+1)
m − u

(k)
m || < ε STOP

ELSE Set k ← k + 1 and GOTO 2.

Figure 33. Predictor-corrector algorithm for obtaining the R1R2 solution.

loci. Profiles of the wave speeds and phase saturations are shown in Fig-
ure 36. Points a < b < c < d on the x/t-axis correspond to the wave
speeds ν1(ul) < ν1(um) < ν2(um) < ν2(ur).

Figure 37 shows the evolution of the error, defined in Equation (83), with
the number of iterations of the predictor-corrector strategy. It is not surpris-
ing that convergence is quadratic, since the iterative procedure involves the
eigenvectors, which are tangent to the rarefaction curves.

B.3 R1S1R2S2 solution
We now consider the case with the most complicated wave structure that
may arise in the three-phase flow Riemann problem. In this case both waves
are composite rarefaction-shocks: W1 ≡ R1S1 and W2 ≡ R2S2.
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ũm
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m

Figure 34. Schematic diagram of the kth iteration of the predictor-
corrector procedure for a R1R2 intersection.

B.3.1 Solution procedure

The variables that need to be determined to fully characterize the solution
are: the intermediate constant state um, the shock speeds σ1 and σ2, and the
post-shock states u∗

1 and u∗
2 of each wave. The constant state um corresponds

to the intersection of the two wave curves, and the post-shock states are the
points where the rarefaction curve and the shock curve of the same family
are joined. Schematically, this can be represented as follows:

ul
R1−→ u∗

1
S1−→ um

R2−→ u∗
2

S2−→ ur (85)

The major difficulty in computing the solution is that both endpoints of the
R2 curve are unknown, so that the initial condition to start integration is
not know a priori. The predictor-corrector algorithm in Figure 38 has proven
very effective.
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Figure 37. Performance of the predictor-corrector iterative scheme for the
R1R2 solution, showing a quadratic rate of convergence.

1. Set k = 0. Initial guess u
(0)
m = (u

(0)
m , v

(0)
m ).

2. Predictor:

(i) Set the integration limit ûm = u
(k)
m and determine the

R1S1 curve using the predictor-corrector algorithm in
Figure 28, to obtain the post-shock value û∗

1 and the
endpoint ûm.

(ii) Integrate along the R2 curve from point ûm towards ur until
ν2(ũ) = σ2(ũ;ur). Set ũ∗

2 = ũ at which integration stopped.

(iii) Set v̂∗2 = ṽ∗2 and solve the S2 curve passing through the right
state ur to obtain the post-shock value û∗

2.

3. Corrector: new approximation u
(k+1)
m is the intersection of

curves S1(û
∗
1) and R2(û

∗
2). This is done in a similar fashion to a

R1R2 intersection described in Section B.2.

4. Check convergence:

IF ||u(k+1)
m − u

(k)
m || < ε STOP

ELSE Set k ← k + 1 and GOTO 2.

Figure 38. Predictor-corrector algorithm for obtaining the R1S1R2S2 so-
lution.
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B.3.2 Admissibility of the solution

The solution is admissible if each of the two waves is admissible individually,
that is,

R1S1 :

{

ν1 increases monotonically along R1 from ul to u∗
1,

ν1(u
∗
1) = σ1 > ν1(um),

R2S2 :

{

ν2 increases monotonically along R2 from um to u∗
2,

ν2(u
∗
2) = σ2 > ν2(ur).

(86)

B.3.3 Example

Using the same relative permeability model and the same viscosities as be-
fore, we solve the Riemann problem with left state ul = (0.5, 0.5) and right
state ur = (0.05, 0). The R1S1R2S2 solution gives:

um = (0.0475, 0.3552), u∗
1 = (0.3275, 0.3618), u∗

2 = (0.0499, 0.0247),

σ1 = 0.0805, σ2 = 7.6549.

In Figure 39 we represent the solution as a saturation path in the ternary
diagram. It is immediate to check that the solution is admissible. Each
composite wave crosses the inflection locus of the corresponding characteristic
family. We note that the 2-shock has a very small amplitude because the
right state almost coincides with the inflection locus of the 2-family.

Profiles of wave speeds and phase saturations are plotted in Figure 40.
We decided to split each plot into two and use a different scale on the x/t-
axis, due to the very different speeds of the 1- and 2-wave (compare the
values of σ1 and σ2 above). Otherwise, we would not be able to distinguish
the structure of the 1-rarefaction-shock from the plots. Points a < b < c < d
now correspond to ν1(ul) < σ1 < ν2(um) < σ2.
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Figure 39. R1S1R2S2 solution path in the ternary diagram.
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