UC San Diego

SIO Reference

Title

Atmospheric optical measurements in western Florida, Flight 112, Part I

Permalink

https://escholarship.org/uc/item/9mj093wz

Author

Boileau, Almerian R
Publication Date
1960-04-01

> Visibility Laboratory
> University of California Scrips Institution of Oceanography San Diego 52, California

ATMOSPHEFIC OFTICAL MEASUREMENTS IN WESTERN FLORID i,
FLIGHT 112, Part I
ilmerian R. Boileau

April 1960
Index. Number NS 714-100

Bureau of Ships Contract NObs-72092

SIO REPERENCE 60-22

Approved:

Approved for Distribution:

Roger Revelle, Director Scripts Institution of Oceanography

TABLE Of CONTENTS

Face
IN'FGODUCTION AND SUMMARY 1
PROCEDURE 2
Flight Pattern, Figure 1 3
Temperature Profile, Figure 2 5
Color Photographs of Sky, Fi.gure 3, et. seq. 7
Sun's Zenith and Azimuth Angles, Figure 10 15
PRESENTATION OF DA.A 16
Catalogue of Graphs 18
Data vs. Altitude, Figure..77, et. seq. 20
Data vs. Azimuthal. Angle, Figure 26, Et. seq. 35
DTSOUSSION 53
Preface 53
Notation and Instrumentation 53
Filter-Ptiototube Spectral Response, Figure 44 54
Recorded Optical Quantities 56
Computed Optical Property 58
Operational Procedure 59
Cycling of Filters 61
REFERENCES
ACKNOWLEDGFMENTS

FLIGHT 112, Part I^{*}
 by

Almerian $R_{\text {c }}$ Boileau

INTRCDUCTION AND SUMMARY

The Visib:ility Laboratory of the University of California, La Jolla Campus, is engaged in an on-going research program studying optical image transmission through the atmosphere. In connection with this work several data gathering flights were made in westerm Florida in the vicinity of Eglin fir Force Base in the spring of 1957. Flight 112, the subject of this report, was one of these.

Part I of this report, presents the data as a catalogue of the recorded optical measurements as they varied with altitude, time of day, azimuthal angle with respect to the sun, and meteorological conditions. Not included is the distribution of the sky's luminance and radiance which will be presented as one or more additional parts of. this report.

[^0]
FBOCEDUEE

U. S. Hir Force XB-29, No. 4224725 took off from Eglin fir Force Base, Florida, at 0917 Eastern Standard Time, 16 May 1957 to begin Flight 112. This airplane carried optical and meteorological instruments from the Visibility Laboratory of the University of California, La Jolla Carnpus. Lt the time of the flight there were nine optical instruments in operation plus one meteorological instrunent, viz., a resistance type indicating vortex themometcr. The airplane arrived at 20000 feet altitude preparatory to data gathering at 1010.

Data were gathered from 20000 feet to 100 feet as follows:

Eastern Standard Time
1010-1036
1042-1057
1057-1108
1108-1118

1119-1127
1200-1204

Altitudes
At 20000 feet
20000 to 10000 feet
At 10000 feet
10000 feet to 1000 feet
it 1000 fect
On Eglin A.F. Rase runway

The flight pattern was north and south bevoen Eglin Air Force Base and Crestview as shown in Figure 1.

FIGURE I
FLIGHT II 2
16 MAY 1957
CRESTVIEW, FLORIDA

The day was clear and warm. During ascent, from take-off to 20000 feet, the air temperature was recorded at each 100 feet of altitude. The tempereture profile is shown as Figure 2. Near the profile, at the appropriate altitudes, are subjective notes made by the project engineer during ascent. The smooth curves drawn near the temperature profile represent pseudo-adiabats. Note that in general the observed haze layers are at altitudes where the temperature profile has agreater slope than the pseudo-adiabats; the haze layer just below 10000 feet and the lack of an observed haze layer between 16500 feet and 17500 feet are exceptions.

Color prints made from Kodachrome transparencies taken by the project engineer in the bombardier's position of the B-29 describe the day much better than words. These are shown in Figures 3 through 9 immediately following this page. These were t aken through the glass windows at the bombardier's position. Reflection of objects inside the airplane are seen in several of the prints.

Figures 3-9, included in the first printing of this report, consisted of color prints from Kodachrome transparencies made during data-gathering runs. These depict the appearance of the sky as seen from $20,000,10,000$, and 1,000 feet and while they give the reader a visual description of the atmosphere during flight, something highly destrable, thay are not necessary for using the data in Figtures ?1-43. Accordingly, these Figures are not included in this second printing.

Azimuthal and zenith angles of the sun computed for 30.5 . Lat. and $86.5^{\circ} \mathrm{W}$. Long., the approximate position of Eglin .ir yorc. Base, are shown in Figure 10 imnediately following this page. These angles are plotted for the period 1000 to 1200 Eastern Standard Tirne. The ordinates of the lower graph are shown as zenith angles on the left and as elevation angles on the right, these angles being complementary.

SUN'S AZIMUTHUL AND ZENITH ANGLES
DURING FLIGHT II2, COMPUTED FOR POSITION 30.5° N.LAT., $86.5^{\circ} \mathrm{W}$.LONG.

FIGURE 10
FLIGHT 112
16 MAY 1957
EGLIN A.F. BASE

PRESENTATION OF DAM

The data recorded during Flight 112 are prosented herewith as a catalogue of grephs. Each measured quantity is shown as it varied with altitude and tirle or as it varied with respect to the sun's azimuth. The computed apparent attenuation length values, $L_{i}(z)$, are similarly presented.

The purpose of this report is to make available the data which were recorded and, in the case of the attenuation length, computed. Interpretation and discussion of applications of these data arc reserved for subsequent reports.

The following notes concerning the graphs are pertinent:

1. Each instmument measured a photometric quantity and its radiometric counterpart. This was accomplished by successively interposing four different optical filters into the flux path of each instrument. The four measured quantities were sampled once each filter cycle. (See Figure 44 for filter-phototube spectral responses). The filter cycling and rate of descent were such that date points were recorded approximately three times per thousand feet of altitude. The graphs presented herein are faired curves basod on the data points.
2. Certain figures, e.g., Figures 17, 18, 19, and 20, have a vertical line drawn which represents the limiting high value of the instrument's response. This condition is further indicated by the words
"OFF' SCALE" printed to the right of the vertical line. At the conclusion of this field trip the sensitivity of each of those instruments was adjusted to permit higher values to be recorded.
3. In Figures 18, 19, and 20, the two limiting graphs which enclose the crosshatched area represent the range of values obtained by the nadir telephotometer. This telephotometer has a 1° circular cone acceptance angle. At 20000 feet the area subtending this angle is a disc 350 feet in diameter, at lower altitudes the diameter is less. Hence areas of different reflectances, which are seen successively as the airplane flies along a prescribed course, will cause the nadir luminances and radiances to fluctuate over a range of values.

CATILOGUE OF GRAPHS

Atmospheric Optical Measurements vs Altitude and Time

Quant	Sybh?	Figure	Page
İluminance: Downwelling		11	20
Irradiance, Doatwelling	$1:(z, \cdots)$	12-1.3	21,22
Ilhmirance, Uowellince	$\mathrm{Fi}_{\mathrm{F}}\left(\mathrm{z},{ }_{0}+\right.$)	34	23
Irradiance, jpwelling	H(z, +	15	24
Luminance, Zenith	$B(z, 0,0)$	16	25
Radiance, Zenith	$N(z, 0,0)$	17	26
Luminance, Nadir	$B\left(z, 180^{\circ}, 0\right)$	18	27
Radiance, Nadir	$N\left(z, 180^{\circ}, 0\right)$	19-20	28,29
Luminance, Horizontal	$\mathrm{B}\left(2,90^{\circ}, 113^{\circ}\right)$	21	30
Radiance, Horizontal	$N\left(z, 90^{\circ}, 113^{\circ}\right)$	22	31
Lurinous Path Function Horizontal	$\mathrm{B}_{*}\left(\mathrm{z}, 90^{\circ}, 113^{\circ}\right)$	23	32
Radiant Path Function Horizontal	$\mathrm{N}_{*}\left(2,90^{\circ}, 113^{\circ}\right)$	24	33
Apparent Attenuation Length	$L_{f}(z)$	25	34

Atnospheric Optical Measurements by Azimuthal
Distributjon at Constant illitude

Time	Altitude	Figure	Page
1016	20000 feet	$26-31$	$35-40$
1105	10000 feet,	$32-37$	$41-46$
1119	i 000 feet	$38-43$	$47-52$

The horizontal luminous path function, horizontal radiant path function, horizontal luminance, and horizontal radiance were recorded at each of the above altitudes and fror: these recorded values apparent attenuation lengths for the photometric case and two radiometric cases were computed. it each of the above altitudes the upper and lower sky luminance and radiance values were also measured; these quantities will be the subject of additional parts of this report.

SIO Ref. 60-22

APPARENT ATTENUATION LENGTH $L_{A}(!0,000)$
NAUTICAL MILES

FIGURE 34
FLIGHT NO. 112
MAY 16, 1957
crestuiew, florida

LUMIINANCE, HORIZONTAL B(1000,90, $\phi)^{\circ}$ FOOT LAMBERTS

PHOTOPIC RECORD 1000 FT IIIS EST

FIGURE 39
FLIGHT NO. 112
MAY 16, 1957
CRESTVIEW, FLORIDA

(

Preface

The Visibility Laboratory of the University of Califormia, La Jolla Campus, has been engaged for several years in an on-going research program concerning image transmission through the atmosphere. This program is discussed in "In!age Transmission by the Troposphere I." ${ }^{l}$ In this article; of specio? interest in connection with this report, are notation, discussion of path functions, attenuation length, and the concept of equilibriun radiance (and lurninance).

Notation and Instrumentation

The notation used in this report follows the notation given in detail in the aforesaid article. The radiometric quantities irradiance and radiance are designated by H and N, respectively; the photometric counterparts illuminance and luminance are designated by E and B, r espectively. In the parentheses following the basic symbols, z specified altitude in fcet, the minus sign - indicates downwelling flux, the plus sign + indicates upwelling flux, θ specifies the zenith angle of the line of sight of the photoneter, and \varnothing specifies the azimuthal angle of the photoreter. In this report the azimuthal angle ϕ is with respect to the sun's braring.

The phototubes in the optical equipmonts are filtered to provide certain spectral responses. The photometric quantities are those recorded with phototube-filter combination that has the spectral sensitivity of the standard luminosity curve for the daylight-adapted human eye. This is designated as the "photopic" response and is shown as the upper curvo of Figure 44 .

[^1]At the time of Flight 112 the phototubes were also filtered to respond to radiant energy in the blue end of the spectrum in accordance with the blue spectral sensitivity curve in Figure 44. Similarly, they were also filltered to respond to the radiant energy in the middle part and the red end of the spectrum in accordence with the green and red spectral sensitivity curves in the same Figure. In this report these three sensivivities and responses to radiant energy recorded through these three filters are referred to as "blue" "green" and "red" sensitivitics and responses.

In each instrument the filtersused to provide the four filtered phototube spectral sensitivities are interposed successively in the flux path by the action of a ratchet solenoid which drives a wheel in which the filters are mounted. The ratchet solenoids are controlled from the project enginecris station so that all instruments heve the same filter in position at any onc time.

At the time of Flight 112 the normal order of interposition of filters was photopic, blue, green, and red. Subsequent reduction of data showed that the photopic and green data (when reduced to the same dimensional units) were so similar that it was decided to linit the data reduction and presentation to the photopic, blue, and red.

The phototubes are believed to measure the total radiant flux incident upon their cathodes independent of the degree of polarization. A test of several of the phototubes which are used in the optical instruments showed no disc:rible effect when polarized light with the direction of polarization undergoing a continuous change of 360° was incident on the phototube's cathodes.

The following optical guantitios who weorded during Flight 112:

Quantity	Symbol	Instrumentetion
Illuminance, Downwe?ling Irmacience, icwivelling	$E(2,-)$ $H(z,-)$	Heasured on a horizontal flat platu coilector"* A retating devios shakws the collector plate from the sun: rave tarice each revo.. lntion thus giving a measure of Gibminares fam the diffuse sky light.
Illuminance, Upwelling Irradiance, Upwclling	$E(z,+)$	Measured on a horizontel flat piate collector*
Luminance, Zenith Radianos, Zenith	$B(z, 0,0)$ $N(2,0,0)$	iveasured by zenith telephotometer. i:"storument is mounted so that wien airplane is level it measures intogreter luninence (or radiance) oí a I^{0} circuilar cone of zenith sky
Luminance, Nadir Radiance, Nadir	$\begin{aligned} & N\left(z, 180^{\circ}, 0\right) \\ & N\left(2,180^{\circ}, 0\right) \end{aligned}$	kieasured by nadir telephotometer. Instrament, is auplicate of zenith tolephotometer and is mounted to measure the integrated luninance (or radiance) of a 1° circular conc of nadir sky.

[^2]| \sin Ref. $\mathrm{s}^{(4-22}$ | | - $57-$ |
| :---: | :---: | :---: |
| 2uantity | Symbol | Instrumentation |
| Luminance, Horizontal
 Radiance, Horizontal | $\begin{aligned} & B\left(z, 90^{\circ}, \phi\right) \\ & N\left(z, 90^{\circ}, \phi\right) \end{aligned}$ | Measured by equilibrium radiance telephotometer of attenuation meter. ${ }^{1}$ This telephotometer measures average luminance (or radiance) of $\frac{10}{2}$ circular cone of sky directly in front of airplane. |
| Horizontal,Luminoue Path Function
 Horizontal Radiant Path Function | $\begin{aligned} & \mathrm{B}_{*}\left(z, 90^{\circ}, \phi\right) \\ & \mathrm{N}_{*}\left(z, 90^{\circ}, \phi\right) \end{aligned}$ | Measured by path function telephotoneter of attenuation meter. |
| Luminance, Upper Sky Radiance, Upper Bky | $\begin{aligned} & B(z, \theta, \phi) \\ & N(z, \theta, \phi) \\ & 0 \leq \theta \leq 90^{\circ} \end{aligned}$ | Measured by upper hemisphere scanning telephotometer. This instrument measures the integrated luminance (or radiance) of a 5° circular cone of the sky as it sweeps from horizon to horizon through the zenith, making 10° steps in azimuth between each elevation sweep. ì complete map of the upper sky is made in 18 sweeps in 90 secorids. |
| Luainance, Lower Sky | $B(z, \theta, \varnothing)$ | Measured by lower hemisphere scanning telephotometer. This |
| Radiance, Lower 3ky | $\begin{array}{r} N(z, \theta, \varnothing) \\ 90 \therefore \theta \end{array}$ | instrument is similar to upper hemisphere scanning telephotometer in that it has a 5° acceptance angle and makes a complete lowt:r sky map in 90 seconds; it, is dissimilar to the upper scanning telephotometer in that its clevation sweep and azimuth movement are combined, the scanner swinging in a zimuth at a constant rate of ten degreus for each 180° elevation sweep. |

[^3]
Computed Optical Property

The following optical property is cornented frun two mensured quanti.ties:

$$
\begin{aligned}
& \text { Apparent rittenuation Length }{ }^{2} \quad L_{i}(a) \quad \begin{array}{l}
\text { Computed from path function, } \\
\\
\\
\\
\text { hotometric or radiant, and } \\
\text { horizontal luminance or radiance as follows: }
\end{array} \\
& L_{i n}(z)=\frac{B\left(2,90^{\circ}, \phi\right)}{B_{3 t}\left(2,90^{\circ}, \phi\right)} \quad \text { or } \frac{N\left(2,90^{\circ}, \phi\right)}{N_{*}\left(2,90^{\circ}, \phi\right)}
\end{aligned}
$$

2. The measured horizontal radiance, $N\left(z, 90^{\circ}, \phi\right)$, if the atmosphere is sufficiently clear, will have a lesser numerical value than the horizontal equilibrium radiance, $\operatorname{Ng}\left(z, 30^{\circ}, \phi\right)$. This is due to the curvature of the earth and its atmosphere. This causes the ratio of measured horizontal radiance to radiant path furction.. $N\left(z, 90^{\circ}, \phi\right) / N_{*}\left(z, 90^{\circ}, \phi\right)$ to be less than the ratjo of horizortal equilibrium radiance to radiant path function $\mathrm{NG}_{\mathrm{F}}\left(z, 90^{\circ}, \phi\right) / N_{*}\left(\varepsilon, 90^{-8}, \phi\right)$. This second ratio is defined as attenuation iength.

$$
L(z)=N a\left(z, 90^{\circ}, \phi\right) / N_{*}\left(z, 90^{\circ}, \phi\right)
$$

Thu first ratio is d,fincd as apparent attenuation length,

$$
L_{i_{2}}(z)=N\left(z, 90^{\circ}, \phi\right) / N_{*}\left(z, 90^{\circ}, \phi\right)
$$

Beceuse $N\left(z, 90^{\circ}, \phi\right)$ on a clear day is less than $\mathrm{Nq}\left(z, 90^{\circ}, \phi\right)$, the apparent attenuation length is less than attenuation Iength, i. $\epsilon ., L_{A}(z) \sim L(z)$.

The report "Thepry of Átenuation Measurements in Planetary Atmospheres," R. W. Preisendorfer, Scripps Institution of Oceanography, University of California, La Jolla Campus, SIO Ref. 58-81, of 24 November 1958 discusses this in detail.

Subsequent to Flisht 120 a scanning device was installed on the horizontal radianco telephotometer by which the differences between measured horizontal rediances and horizontal equilibrium radiances could be determined by means of cquations developed in the above mentioned report (SIO Ref. 58-81). Only one test flight using this technique was possible prior to the decommissioning of the airplane. The differences were found to be negligible for the blue response, and not over 5% for the photopic and red responses and this only at altitudes of 10000 to 20000 feet.

Operational Procedure

To record the measurements of the various optical quantities three different flight patterns are normally used. In sky mapping the airplane is maintained in straight and level flight for 90 seconds; during this time the filters are not changed. Path function measurements for $36 n^{\circ}$ sil azimuth require a left hand circular flight path at 30° bank; during this tine the filters are cycled to permit recording of comparable photometric and radiometric data. To record data as a function of altitude the airplane is held in a level attitude and by use of reduced powcr and extended flaps is allowed to descent. The flight procedure nust be a compositc of the different flight patterns to get the greatest amount of reliable data in the shortest elapsed time.

The three types of flight patterrs are described in greater detail as follows:
"A" run. firplane maintained level, at constant altitude and constant heading for duration of sky mapping. Usually two "f" runs are made in succession, 90 seconds each, with filters changed between runs. inother "A" run on reverse course with third filter selection completes sky map in photopic, blue, and red spectral sensitivities and returns airplane to starting point vicinity. During the run all other optical instruments are recording.
"B" run
Lirplanc is flown in a left handed, 30° bank, 360° turn during which horizontal path function and horizontal luminance (and radiance) are recorded, Each cardinal and inter-cardinal compass hoading is identified by the co-pilot and indicated electrically on instrument rocords. filters are cycled by hand from project engineer's position. Lit conclusion of "B" run airplane is kept in left handed turn during which time project engineer
photographs sky at cardinal compass headings. When conditions warrant it, i.e., to get a more complete coverage, photographs are al.so made at inter-cardinal compass headings.
"L" run firplane is maintilinod in level attitude, on constant heading, but with altitude decreasing approximately 1000 feet per minute. (This is accomplished by lowering landing gear, extending flaps, and reducing power, the flap extension and power reduction being adjusted to give a suitable descent rate at level attitude.) All optical instruments are recording during this run except upper and lower sky scanning telephotometers. Filters are cycled by hand from project engineer's position.

The usual sequence of data-gathering runs is:
"A" runs at maximum altitude for sky maps, using successively the three optical filters.
"B" runs for path function and horizontal luminance and radiance measurement.
"B" run for photogranhing sky.
"L" run from maximura to middle altitude.
Repeat "A" and "B" runs at middle altitude followed by "l" run
from middle to minimurn altitude.
Repeat "A" and "B" runs at minimum altitude.
The "L" runs vary in length, usually becauso of meteorological conditions. If' there are no pronounced haze layers seen during ascent, or, if no temporature irversion is apparent, the procedure would be as outlined above. In the case of Flight 112 the "L" run was from 20000 feet to 10000 feet, and from 10000 feet to 1000 feet.

Cycling of Filters

The operation of the optical filter selection mechanism is differont for the three typos of runs. In the "A" muns each filter remains in the flux path until a complete sky map is obtained. In the "p" and "L" runs the filters are cycled, but at different ratios: 'Phis discussion covers filter cycling during "B" and "L" mrs.

In making "B" runs cither of two modes of filter operation can be used. One is to cycle the filters during the 360° turn, the other is to 0 make three 360 turns with the filters changed at the end of each turn. The advantage of the first method is that the data obtained in the three spectral ranges apply to the same air parcel. Additionally, this is accomplished in one turn of four minute duration. The main disadvantage of the method is that the data plotted as three separate curves are incomplete and missing porticns of the curves must be constructed; and this has proven to be morc difficult than expected.

In the second method the data recorded in each turn for each filter are complete end the data so recorded and plotted are nore reliable than that obtajed by the first method. There are three disadvantages, however. Pirst, the airplane does not necessarily retain its flight path and a different smple of air is measured, secondly, at four minutes per turn the time utilized in "B" runs is extended, and thirdly, if the same flight path is followed successive turns are in air contarinated with engine exhaust products. Both of these methods have been tricd and from the results obtained the decision was made to use the first method, that :\%, the one turn method with filters cyrcled during turn, during Filight 112.

The cycling of filters during the " 3 " runs: was done ori a nominal ten-second period. To identify the record by spectral response the photopic filter was used for four seconds, followed by blue for two seconds, green for two seconds, and red for two seconds.

The cycling of the filtere fo: the ' I " runs is a must if comparabli. spectral deta are to be recordeci. The nethod of naking several "L" runs with one filter for each run introtuces relatively large time variations with changes of sun's elevation, and air inovement taking place such that the instrument probes during two successive runs cenonot possibly be sampling the same air. The period of cycling during the "L" runs is dictated by the rotation of the shadowing device on the upper hemisphere illuminometor, it being very desirable to get one shadowed reading during each filter positioning. This established the filter cycling period of about sixteen seconds, i.e., seven seconds on photopic response, and three seconds each for the blue, green, and red responses, but since fiffeen seconds are easier to see on a watch dial this was used as the basis for the cycling period.

Because the atmosphere is stratified the data recorded by the various measurements do not plot as simple curves but show considerable structurc. In the cases of the instruments looking upward or downward and those receiving illuminance or irradiance the effect of the stratification is to show gradual changes. In these instruments cycling of filters can be tolerated. In the case of the instruments with a

horizontal line of sight, specifically the path function meter and the equilibrium luminance telephotometer, the stratification has a pronounced effect as the instruments are moved vertically. The measurement made through the filter which is in the flux path as the stratum is entered is the accurate one; the other two filtored quantities arc measured before and after entering the stratum. To plot graphs of these two quantities it has been necessary to accept the shape of the graph of the recorded quantity.

To overcome the disadvantages of cycling the filters in the horizontelly seeing instrunents the path function meter and equilibrium telephotometers ere being redesigned to record simultanoously the three spectral quantiti:s through beam-splitting prismis and three separate filter-phototube combinations.

REFRFDNCES

1. Duntl.ey, S. O., A. R. Boileau, and R. W. Preisendorfer, "Inage Transmission by the Troposphere I," Journal of the Optical Society of America, 47, pp. 499-506, (1957).
2. Preisendorfer, R. W., "Theory of Attenuation Measurements in Planetary litmosphares," SIO Ref. 58-81, Scripps Institution of Oceanography, Jniversity of California, La Jolla Cempus, 24 November 1958.

While the assistence of all who have helped in this work is very much appreciated special mention is made of the crew of the $\mathrm{B}-29$, No. 4224725, Captain Robert Baron, USiF, dircraft Comander, lst Lieutenant Donald Crandall, USAF, and Fir Force Cembridge Research Center Test Support Group. Thanks are also due to Mr. H. C. Schepler and Mr. Fritz Mantey of Air Force Armament Center, Eglin Air Force Base, for their assistance during the period of operations at that base.

[^0]: *This report is a result of research which has been supported by the Geophysics Research Directorate, Ajr Force Cambridge Fiesearch Center, Bedford, Massachusetts, and the U. S. Navy Bureau of Ships.

[^1]: I S. O. Duntley, A.R. Boileau, and R.W. Preisendorfer, "Image Transmission by the Troposphere I, "Journal of the Optical Society of America, 47, pp. 499-506, (1957).

[^2]: The flat plate collectors are made from translucent opal plastic. The exposed side of the plate is ground to a fine mat surface until the incjdent radiation is accepted nearly proportional to the cosine of the angle of incidence.

[^3]: 1 Bec: Figure 4, 1. 503 of reference 1.

