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Abstract

We investigated association between HLA class | and class Il alleles and haplotypes, and K/R loci
and their HLA class I ligands, with multiple sclerosis (MS) in 412 European-American MS
patients and 419 ethnically-matched controls, using next generation sequencing. The
DRB1%*15:01~DQB1*06.02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95%
confidence interval (Cl) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03.01~DQB1*02:01
(OR =1.63; Cl =1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients
revealed a significant DRB1*03.01~DQB1*02:01 homozyote excess (15 observed, 8.6 expected; p
= 0.016). The OR for this genotype (5.27; Cl = 1.47-28.52; p = 0.0036) suggests a recessive MS
risk model. Controls displayed no HW deviations. The C*03:04~B%*40.:01 haplotype (OR = 0.27;
Cl1=0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with
A*02:01 (OR = 0.15; Cl = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective,
(OR =0.69; Cl =0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80
Bw4 variant (Bw4T) more so (OR = 0.53; Cl = 0.35-0.78; p = 7.55E-04). Protective associations
with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15.:01, but the
Bw4T variant was protective (OR = 0.64; Cl = 0.49-0.82; p = 3.37E-04) independent of LD with
DRB1%*15:01. The Bw4l variant was not associated with MS. Overall, we find specific class |
HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred
by DRB1*15:01.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Steven J. Mack, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way,
Oakland. CA 94501, sjmack@chori.org.

Conflicts of Interest
All authors declare that they have no competing financial interests in relation to the work described.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mack et al.

Page 2

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with
well-documented genetic contributions to its pathogenesis'. Genome wide association
studies have implicated >100 loci in MS risk?. The strongest genetic associations with MS
are with specific alleles at the HLA loci, in the Major Histocompatibility Complex (MHC)
on chromosome 6p21. In particular, HLA-DRB1*15.:01 is the strongest genetic determinant
of MS; this association has been very well-established in a variety of studies and
populations?=. HLA-DRBI allelic heterogeneity in MS risk has been described®16, but the
role of genetic variation at the other HLA loci has been less clearly defined, due, in part, to
the extensive linkage disequilibrium (LD) among the alleles at these loci. The MHC includes
~165 closely-linked genes, roughly half of which have immune-related functions!’, and
large-scale SNP screening of the MHC has identified at least one non-HLA MS association
in the so-called class 111 regionl4. Using recently developed next generation sequencing
(NGS) assays, we investigated the association of HLA class | and class Il alleles with MS.
NGS also facilitates the association analysis of the DRB3, DRB4 and DRB5 loci
(DRB3/4/5). These loci display strong LD with specific DRB1 allele families!®, and may
modulate autoimmune disease associations attributed to the DRB1 locus?? and display
DRB1-independent associations?%: 21,

HLA disease associations are typically interpreted in terms of peptide binding and
presentation driving specific adaptive immune responses, but class | epitopes serve as
ligands for the killer immunoglobulin-like receptors (KIR) on natural killer (NK) cells, key
elements in innate immunity?2: 23 and possible contributors to MS pathogenesis. While the
precise role of innate immunity in MS pathogenesis is unclear, NK cells may contribute to
MS indirectly via immunoregulatory activity, or directly through cytotoxicity of self-
tissues24-27,

KIR epitope ligands are encoded by class | amino acid positions 77 and 80; variants at these
positions define the HLA-C C1 and C2 ligands?8: 29, the HLA-A A3/A11 ligand, and the
Bw4 ligand of HLA-B and some HLA-A molecules30: 31, Encoded by genes on 19q13.4,
inhibitory and stimulatory KIRs regulate the cytolytic killing and cytokine secretion of NK
cells. The K/R gene complex is characterized by extensive gene content variation and allelic
diversity; K/R haplotypes have been classified into two broad categories: K/R A (nine genes
with primarily inhibitory functions) and K/R B (14 genes with inhibitory and stimulatory
functions). The C1 ligand is recognized by the inhibitory KIR2DL2 and KIR2DL3
receptors, C2 by KIR2DL12°, Bw4 by KIR3DL132, and A3/11 by KIR3DL233. The
stimulatory KIR2DS134 35 and KIR2DS?2 receptors are thought to bind to C2 and C1,
respectively3®; KIR2DS4 receptors bind strongly to A11 and weakly to C1 and C2%7.

KIR polymorphism has also been implicated in predisposition to many diseases, including
MS38-43 The presence of Bw4, the ligand for KIR KIR3DL1, was protective for MS in a
Norwegian cohort38 and, more recently, the combination of KIR3DL1 and Bw4 was
protective in a study of African-American patients and controls**. Disease association
analyses of KIR variation in the context of the HLA ligand require adjustment for LD
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between the HLA ligands, and specific disease associated HLA alleles. Using a MALDI-
TOF mass spectrophotometer assay for K/R locus presence/absence and a NGS assay for
HLA class | and class Il alleles, we explored the association of specific KIR/HLA ligand
combinations in a group of 412 patients of non-Hispanic European ancestry and 419
ethnically matched controls. We address the confounding issue of LD in these association
analyses using the strategy of stratification, analyzing those strata of the data in which an
associated allele is present separately from those in which it is absent.

We initially examined the association of alleles at individual /LA loci. Due to the very high
LD between the DRB1 and DQBI loci, and the HLA-C and -8 loci, each locus pair
(DRB1~D@B1and C~B) haplotype was analyzed as a “super-locus” (Tables 1, 2, 3 and
Supplementary Table S1). With the exception of DPBI, all loci and super-loci displayed
significant locus level heterogeneity between MS patients and controls (Table 1).

2.1. HLA Class Il Associations

Table 2 shows the association of DRB1~DQBI haplotypes and of DPBI1 alleles. As
extensively documented in previous studies* 45 46, DRB1*15:01~DQB1*06:02 confers very
high disease risk in this population (OR = 3.98; p-value (p) = <2.22E-16). We note that the
other relatively common DRZ2 (including DR15and DR16 alleles) haplotype in this
population, DRB1*16.01~DQB1*05.02, does not confer MS risk (OR = 1.0; p=0.95) in
this dataset. Association studies of African-American populations, in which the LD patterns
differ and the DQB1*06:02allele is often found on non-DRBI*15 haplotypes, indicate that
it is DRB1*15:01 and not DQBI*06:02that confers MS risk?* 47. Given the strength of the
DRB1%*15:01 association with MS, all observed associations (class | alleles or HLA ligands)
should be examined in light of potential LD with DRB1*15:01.

The other significantly associated susceptible DRB1I~DQBI haplotype in this dataset is
DRB1*03:01~DQB1*02:01 (OR = 1.63; p = 1.41E-03), as previously reported® 6. The
DRB1*04:05, *08:01, and *13:03alleles, previously reported to be associated with MS 7-16
were not associated in this data set. DRB1*04.05and *08.:01 are found on haplotypes with
different DQBI alleles in European and East Asian populations. The low frequency of the
DRB1%*13:03~DQB1*03:01 haplotype in this data set (f = 0.014 in controls and 0.02 in
cases) may explain the lack of statistical significance for this association (OR = 1.37; Cl =
0.6-3.19; p = 0.412). The frequency of DRB1*04.:05 haplotypes was very low, and these
haplotypes were “binned” (Supplementary Table S1). Counts, frequencies and summary
statistics for all detected alleles and haplotypes are included in Supplementary Table S2.

DRB1*01:01~DQB1*05:01 (OR = 0.41; p = 9.57E-06), DRB1*04.01~DQB1*03:01 (OR =
0.4; p = 1.24E-03), DRB1*14:01~DQB1*05:03 (OR = 0.42; p = 0.038) and
DRB1*07:01~DQB1*02:02 (OR = 0.55; p = 0.0014) were significantly protective for MS.
The DRBI1*01:01~DQBI1*05:01 haplotype is known to include the DQAI*01:01 allele*8-52,
which, along with DRB1*01:01, was recently shown to be protective for MS in the presence
of DRBI1*15:01°3. While no DRBI~DQBI haplotypes in our study displayed MS
associations in the DRB1*15.:01-positive stratum (Supplementary Table S3),
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DRB1*01:01~DQB1*05:01 remained protective in the DRBI1*15:01-negative stratum (OR
=0.57; p = 1.9E-02). The DRBI1*14:01 protective effect has been previously reported>#-56.
No individual DPBI1 alleles were associated with MS in this data set.

The clonal nature of NGS allows the analysis of the secondary DRB loci (DRB3/4/5).
Because all DRB1*15:01~DQB1*06.02 haplotypes carried the DRB5*01:01 allele, and all
DRB1%*16:01~DQBI1*05:02 haplotypes carried the DRB5*02:02 allele, the role of allelic
variation at DRB5 could not be assessed in this dataset. However, the predisposing
DRB1#03:01~DQB1*02:01 haplotype carries either DRB3*01.01 or *02.02. A recent study
of type 1 diabetes’® showed that the DRB1*03:01 haplotypes carrying DRB3*02:02
conferred greater risk than did those carrying DRB3*01:01. For MS, the allelic variation in
DRB3, appeared to affect the risk conferred by DRBI1*03:01 haplotypes based on this
modest sample set (15 MS patients, 3 controls) but this effect was not significant. The OR
for DRB1*03:01 homozygotes homozygous for DRB3*01.:01 was 3.64 (Cl = 0.69-36.1),
whereas the OR for DRB17*03:01 homozygotes that carried DRB3*02:02was 8.36 (Cl =
1.1-371.2). Testing whether the point estimates for these ORs are significantly different will
require a larger sample set. We note that A*30:02and B*18:01, alleles in strong LD with
DRB1*03:01~ DRB3*02:02 haplotypes??, are associated with MS (Table 3).

2.2. Protective Association of A*02:01

In the association analyses of the class I loci (Table 3), HLA-A*02:01 appears protective
(OR = 0.69; p = 1.46E-03), as previously reported®’-62. After stratifying the data to account
for negative LD with DRB1*15:01 (Table 4), A*02:01 on haplotypes lacking DRB1*15.:01
remains protective (OR = 0.48; p = 1.1E-08).

Further, the ORs of three common extended A~C~B~DRBI1~DQB1~DPBI haplotypes, all
bearing DRB1%*15:01 and differing only in the HLA-A allele, indicate that the presence of
A*02:01 can reduce the risk conferred by DRB1*15:01 (Table 5). The OR conferred by the
extended C*07.02~B*07:02~DRB1*15:01~DQB1*06:02~DPB1*04:01 haplotype bearing
A*02:01is lower (OR = 1.65) than the OR for the same haplotype bearing A*03:01 (OR =
2.83) or A*24.02 (OR = 4.48). This protective effect of A*02:01 is not simply a haplotype
effect. The modification of DRBI-mediated risk by A*02:01 can also be assessed by
stratifying the data based on the presence of A*02:01 (Table 6); these observations suggest
that A*02:01in cisor in trans can decrease the OR of other DRBI~DQB1 haplotypes.

2.3. Associated C~B haplotypes

For C~B haplotypes (Table 3), C*07.02~B*07:02 is associated strongly with MS (OR =
1.99; p = 8.8E-07); however, this association reflects the strong LD between this haplotype
and the predisposing DRB1*15:01 allele (d’j; = 0.71 in MS patients, and 0.52 in controls).
Two different C~B haplotypes display a protective association in this data set. As previously
reported®0: 63. 64 C*05:01~B*44:02is modestly protective (OR = 0.65; p = 0.043). B*44.02
is rarely found with any other HLA-C allele, while the C*05.01~B%*18.:01 haplotype is
clearly not protective (OR = 2.07; Cl = 0.88-5.25; p = 0.71), suggesting that B*44:02 may
be responsible for the observed modest association for this haplotype.
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In addition, the C*03:04~B*40.01 haplotype (OR = 0.27; p = 6.76E-06) shows a strong
protective association. This protective C~B haplotype is in LD with the protective A*02.01
allele, and this three-locus haplotype (Table 4) is even more strongly protective (OR = 0.15;
Cl =0.04-0.45; p = 6.5E-05).

The cALD measures WHLA-A/HLA-C~HLA-B and WHLA-C~HLA-B/HLA-A are 0.6 and 0.42 in
cases, and 0.6 and 0.39 in controls, respectively, indicating more variation of C~B
haplotypes relative to HLA-A alleles, than in HLA-A alleles relative to C~B haplotypes; the
intermediate level of LD between A*02:01 and the C*03.04~B%*40:01 haplotype (d’j; = 0.11
in MS patients and 0.34 in controls) suggests that the strong protective association for the
A*02:01~C*03:04~B*40.01 haplotype results from the combination of these three alleles,
and not LD with a single protective locus. C*03.04~B*40:01 remains protective in the
absence of A*02:01 (OR =0.42; p = 0.018), and A*02:01 is modestly protective in the
absence of C*03.04~B*40:01 (OR = 0.79; p = 0.048), suggesting that the observed
protective association for the A*02:01 allele is not due entirely to LD with
C*03:04~B*40.01.

2.3.1. Impact of DRB1*15:01 Predisposition on C*03:04~B*40:01 Association—
The highly protective C*03:04~B*40.01 haplotype is in negative LD with the highly
predisposing DRB1*15:01 allele (d’jj = -1); no C*03:04~B*40.01-bearing haplotypes carry
DRB1%*15:01. In principle, this negative LD with DRB1*15:01 might account for the
protective associations observed for A*02:01 and C*03:04~B%*40.:01. \We applied
stratification analyses (Table 4) to determine if this LD pattern could account for the
observed protective association of this C~B haplotype. In the stratum lacking DRB1*15.:01,
the protective association of C*03.04~B*40:01 is even stronger (OR =0.29; CI = 0.15-0.55;
p = 2.45E-05), so the protective association cannot be attributed simply to negative LD with
the highly predisposing DRB1*15:01. In individuals carrying DRB1*15:01, the presence of
the C*03.04~B*40:01 haplotype on the other chromosome reduces MS risk (OR = 1.37; p =
0.57) compared to all other C-B haplotypes (OR = 5.06; p = 3.21E-13) (Table 6). The only
other significant associations in this DRB1*15.:01-negative stratum are C*05:01~B*18.:01
(OR =2.87; p=0.01) and C*07.01~B*08:01 (OR = 1.98; p = 0.0004) but these are both due
to LD with the predisposing DRB17*03:01 (d’j; = 0.87 and 0.72 in cases, and 0.51 and 0.69
in controls, respectively). C*03:04~B*40:01 remained protective in the DRB1*03:01-
negative stratum (OR = 0.32) (data not shown).

2.4. Hardy-Weinberg Equilibrium Analyses

The analysis of Hardy-Weinberg equilibrium (HWE) among controls can serve as a test of
genotyping and sampling validity, while deviations from HWE among cases can, potentially,
reveal patterns of disease association. Adherence to HWE expectations is a requirement for
control groups in case-control studies. Among those loci that showed a significant MS
association (HLA-A, -B, -C, DRB1, DQBI), no deviation from HWE was observed among
controls (data not shown), including HWE analysis for DRB1~DQBI haplotypes. While
studies of HLA diversity in the US population have identified varying degrees of population
stratification among non-Hispanic European Americans®®: %6, these Hardy-Weinberg
analyses reveal no significant population stratification in this cohort.

Genes Immun. Author manuscript; available in PMC 2019 April 18.
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Among MS patients, highly significant deviations from HWE were seen for genotypes of
DR~DQ haplotypes (p = 0.0027). The two most common genotypes of DRBI~DQB1
haplotypes that contributed to this deviation were DRB1*03:01~DQB1*02:01 homozygotes
(15 observed, 8.6 expected; p = 0.016) and

DRB1#*07:01~DQB1*03:03+ DRB1*15:01~DQB1*06:02 heterozygotes (10 observed, 5.3
expected; p = 0.0078), both observed more often than expected among cases. The excess of
DRB1*03:01 homozygotes among cases suggests a recessive model for MS risk. Consistent
with this interpretation of the HWE deviation, the OR for the homozygous
DRB1*03:01~DQB1*02:01 genotype is 5.27 (p = 0.0037) compared to
DRB1*03:01~DQB1*02:01+ DR~DQ*X (OR = 0.74; p = 0.13), where DR~DQ*Xis any
haplotype that does not include DRB1*15:01 or DRB1*03:01. The OR for this
DRB1*03:01~DQB1*02:01 homozygote is close to that for

DRBI1*03:01~DQBI1*02:01+ DRB1*15:01~DQB1*06:02 (OR = 5.55; p = 1.32E-06) and
DRB1*15:01~DQB1*06:02+ DRB1*15:01~DQB1*06:02 homozygote (OR =7.6; p = 1.13E
-05).

The excess of observed DRB1*07:01~DQB1*03:03+ DRB1*15:01~DQB1*06.02 genotypes
among cases suggests that the susceptibility conferred by the DRB1*15:01 haplotype may
be “dominant” over the protection conferred by the DRB1*07:01 haplotype. The expected
number of cases in the HWE analysis is based on the protective effect of the
DRB1*07:01~DQB1*03:03 haplotype over all genotype combinations.

2.5. Association analysis of KIR and HLA ligands

2.5.1 HLA Ligands—Assaciation analyses for the presence/absence of the KIR loci and
their HLA ligands are shown in Table 7 and Supplementary Table S4. As previously
reported3® the HLA ligand Bw4 (Thr or Ile at HLA-B amino-acid position 80) is negatively
associated with MS (Table 7A; OR = 0.62; p = 5.95E-04). The OR for Bw4/Bw4 is 0.63 and
for Bw6/Bwe6 is 1.61. The observed protective effect of Bw4+ alone, however, may be
attributed, in part, to negative LD with the highly predisposing DRB1*15.:01; when the data
are stratified on the presence of DRB1*15:01 (Table 7B), the statistical significance of the
Bw4+ effect is diminished in the stratum missing DRB1*15:01 (OR =0.72; p = 0.08). This
interpretation suggests that the observed Bw4 protective association with MS is not
necessarily due to the Bw4 signaling via its inhibitory receptor KIR3DL1, but may simply
reflect LD patterns between HLA-Band DRB1.

In the association analysis of individual amino acid residues (see below, Table 8C), the Bw4
epitope with Thr at position 80 (Bw4T) shows a protective association (OR = 0.64; p =
0.0003) but the stronger-binding Bw4 epitope with Ile (Bw4l) does not (OR =0.92; p =
0.56), consistent with the Bw4 association reflecting LD and not ligand mediated KIR
signaling. Association analyses of the Bw4 epitope on some HLA-A molecules (ABw4)
reveal no protective effect (data not shown). The frequency of DRB1*15.:01 in Bw4+
individuals is 48% in MS patients and 16% in controls, while it is 51% in Bw4- patients and
26% in Bw4- controls, suggesting that the disease risk associated with DRB1*15:01 is not
reduced in the Bw4 positive stratum. However, subdividing Bw4 does reveal a difference in
the association pattern, and this difference cannot be attributed simply to LD. Both Bw4T
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and Bw4l are in negative LD with DRB17*15:01 (d’j; = -0.45 and -0.64 in cases, and -0.79
and -0.92 in controls, respectively) but the negative association of Bw4T with MS remains
nominally significant (OR = 0.071; p = 0.032) even in the DRB1*15:01 negative stratum
(Table 7C).

2.5.2 HLA Ligand with KIR—Since the interaction of specific receptors and their HLA
ligands is functional, we analyzed specific combinations of HLA ligands and KIR genotypes
(Supplementary Table S4A). To address the issue of LD with DRB1#*15.01, we also
examined these combinations in the stratum lacking DRB1*15:01 (Supplementary Table
S4B). The combination of Bw4 and K/R3DL1 has been reported to be protective in the
recent study of MS in African-Americans** including the DRBI*15:01-1acking stratum. In
our dataset, Bw4 is protective in the presence of K/R3DL 1, a gene present on virtually all
KIR haplotypes (OR = 0.62; p = 6.12E—-04) but also protective in the presence of KIR2DL3
(OR =0.58; p = 9.12E-05). However, following stratification on DRB1*15:01, Bw4 and
KIR3DL 1 are no longer significantly protective (OR = 0.75; p = 0.11) in the DRB1*15:01
negative stratum. The protective association with Bw4 and K/R2DL 3, however, is still
nominally significant (OR = 0.62; p = 0.010). At the KIR genotype level, one specific
combination in this DRB1*15:01 negative stratum (Bw4+ and K/R2DL2I KIR2DL3) shows
a nominally significant protective association (OR = 0.59; p = 0.017), but Bw4+ with
KIRZDLZIKIRZDL2 (OR = 2.17; p = 0.051), or with KIR2DL3 KIRZDL3(OR =0.91;p =
0.63) do not. Given the multiple comparisons in this association analysis, replication in
another cohort will be critical in validating this observation.

2.6. Association Analyses of Individual Amino Acids

The association analyses of individual amino acids in the HLA class I and class // genes can
potentially reveal functionally important aspects of disease associations. Several statistically
significant associations are shown in Table 8A and dissected in Tables 8B and 8C.

Table 8B shows the individual DRBI exon 2-encoded amino acid residues associated with
MS. Pro at DR position 11 and Arg at position 13 are significantly associated with MS (OR
= 3.23; p = 2.22E-186, each) but these specific residues are unique to ODRB1*15and *16
alleles and reflect the association of DRB1#*15:01. The less common DRB1*15:02and
DRB1%*16:01 alleles found in this population share this amino acid motif but do not confer
risk to MS. Position 86 Val is also associated with MS (OR = 2.15; p = 1.56E-14). Many
DRB1 alleles that are not associated with MS also encode Val-86 but the Val-Gly
dimorphism at position 86 is the only difference between highly susceptible DRB1*15.:01
and neutral DRB1*15:02. Position 86 contributes to peptide binding pocket 1, underscoring
the role of position 86 dimorphism in determining peptide specificity.

Association analyses of individual HLA class I-encoded amino acid residues that constitute
the KIR ligand epitopes are shown in Table 8C. As noted above, the HLA-B position 80
BwA4T subtype is protective while Bw4l, thought to be a stronger binding ligand of
KIR3DL1, is not. The modest protective association of Bw4T is not due to negative LD with
DRB1%*15:01, as it remains nominally significant even in the DRB1*15.:01-negative stratum
(Table 7C).
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The HLA-C positions 77 and 80, which encode the C1 and C2 KIR ligands, are not
associated with MS but, interestingly, amino acid positions 73-90, which influence the
strength of KIR ligand binding®” are significantly associated. The OR for the 73-77-80-99
motif (A~S~N~D) for the C2 epitope is 1.63 (p = 2.3E-06). This motif, however is in LD
with HLA-C*07:02(0OR = 1.9; p = 2.11E-06), the HLA-C allele in LD with DRB1*15.:01.
Thus, the observed association of the A~S~N~D C2 motif probably reflects LD rather than
KIR signaling. The same motif is present in C*07:01 and *07:04, alleles not associated with
MS, consistent with this interpretation.

2.7 HLA-A*02:01 and Bw4

The strong protective associations of C*03.04~B*40:01 and A*02:01 do not appear to
reflect LD with DRB1*15:01 or the Bw4 ligand group. The A*02:01 protective association
with MS has been previously reported in various populationsl4 57-61|n a recent study of
African-American MS, the combined presence of KIR3DL1 and Bw4, its ligand, was
protective, and the protective association for A*02 was attributed to LD with Bw444. This
interpretation suggests that innate immunity and NK cell function, regulated by the Bw4
ligand, account for the observed negative association with A*02:01.

Our data suggest that A*02:01 is associated with protection from MS in European
Americans, and that the protection conferred by A*02:01 in combination with
C*03:04~B*40:01 (OR = 0.15; p = 6.51E-05) is stronger than the observed negative
association with Bw4 presence (OR = 0.62; p = 5.95E-04). In our study, LD is modest
between A*02:01 and the Bw4 epitope (d’jj = 0.17 in MS patients and 0.18 in controls), but
much lower than LD of C*07.:02~B*07:02with DRB1*15:01 in MS patients (0.71) or
A*02:01 with C*03:04~B*40:01 in controls (0.34). The A*02:01~Bw4 haplotype is as
protective as Bw4 presence (OR = 0.62; p = 1.69E-03) (Table 9), but A*02.01~-Bw4T
haplotypes are more protective (OR = 0.53; p = 7.55E-04), while A*02:01~-Bw4l
haplotypes are not, consistent with Table 8C.

LD between A*02:01 and Bw4T is comparable to that between A*02:01 and Bw4 (d’j; 0.16
in MS patients and controls), whereas LD is much stronger between A*02:01 and
C*05.01~B*44:02(0.59 in MS patients and 0.62 in controls). Of the HLA-Balleles in
protective C~B haplotypes, B*40:01 encodes Bw6, while B*44:02 encodes BwAT; the
protection associated with Bw4T may reflect, in part, the protective C*05:01~B*44.02
haplotype (and perhaps other Bw4T-encoding HLA-B alleles).

3. Discussion

We have identified multiple HLA class | and class Il alleles and haplotypes associated with
MS. Strong LD is a characteristic of the HLA region, and we investigated allele-pair LD and
conditional asymmetric LD, and applied stratification analysis to adjust for LD in order to
dissect and interpret these associations. In addition to standard case-control association
analyses, we applied Hardy-Weinberg equilibrium analyses to cases and controls to validate
our association findings. Many immune-related genes in the MHC were not analyzed in this
study; given the LD known for the MHC, our analyses do not exclude these genes as
potentially playing roles in MS susceptibility. However, association analysis, following
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stratification, proved effective at identifying the independent effects of specific HLA alleles
and haplotypes. As reported in many previous studies, the DRB1*15.:01~DQB1*06.02
haplotype is most strongly associated with MS risk; DRB1*03:01~DQB1*02:01 is also
significantly associated with a recessive effect on MS risk and, as expected, is very strongly
associated with MS in the DRB1*15.:01-negative stratum. NGS HLA typing allowed the
analysis of the DRB3allelic diversity on DRBI1*03:01 haplotypes, and our analyses suggest
that DRB3*02:02 may confer higher risk than DRB3*01:01, but this observation must be
tested in a larger study.

A*02:01, C*03:04~B*40:01 and the haplotype carrying all three alleles show very strong
protective associations (OR = 0.15 for the three-locus haplotype) with MS, independent of
LD with DRB1*15:01. The protective association of the A*02:01~ C*03:04~B*40.01
haplotype displays the strongest effect size of the observed HLA associations in this study.

For the HLA ligands of the KIR, the presence of Bw4 was negatively associated with MS in
the unstratified dataset, as noted in previous reports, but was no longer significant in the
stratum lacking DRB1*15:01. While this observed association may simply reflect negative
LD between Bw4 and DRB1*15.:01 in this population, the two Bw4 subtypes, Bw4T and
Bw4l, showed different association patterns. The protective association of Bw4T remained
nominally significantly even in the DRB1*15.:01-negative stratum, while Bw4l was not
associated in either stratum. The Bw4 motif on HLA-A molecules (all of which are Bw4l)
was also not significantly protective. From the available data, we cannot distinguish between
a potential effect on peptide binding mediated by this Thr/lle polymorphism in HLA-B
pocket F, differential signaling via the KIR3DL1 receptor, or a combination of the two. A
recent study of HIV infection indicates that the binding of a specific HIV peptide can
influence the interaction of the Bw4 epitope with the KIR3DL1 receptor®8. The difference
between an uncharged, polar side chain (Thr) and an aliphatic side chain (lle) may influence
peptide binding, and through differential peptide binding, KIR3DL1 signaling.

In investigating different HLA ligand/KIR genotype combinations in the DRB1*15:01-
negative stratum, the strongest protective Bw4 association we observed was in combination
with KIRZL2/KIR2DL 3, which is stronger than Bw4 in combination with 3DL1. This
protective association was nominally significant but, given the number of comparisons,
validation of this observation requires testing in another large cohort. The immunological
mechanism underlying the Bw4 T protective association remains unclear.

Many other amino acid positions were implicated in our analyses, but, as in all HLA related
association studies, they must be considered in the context of LD. Some disease associated
amino acid residues simply “tag” an allele, recapitulating an already well-established allele
association. These associations, the report of Raychaudhuri and colleagues
notwithstanding®®, do not increase our functional understanding of HLA-related disease
association. However, other individual amino acid associations that do not correspond
uniquely to specific alleles may provide some functional insights, although the peptide
binding properties of HLA molecules are obviously determined by multiple amino acid
residues. In general, the potential role of individual amino acids in disease associations can
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be best evaluated by comparing alleles that differ in disease risk, and differ in only one
amino acid position.

For example, DRBI alleles encode either Gly or Val at DR position 86; this position
contributes to peptide binding pocket 179, which anchors the N-terminal end of the bound
peptide’?. Positions 82 and 89 also contribute to pocket 1, but are invariant in this dataset
and in most HLA alleles. Neither 86G nor 86V tag a specific allele, but the predisposing
DRB1%*15:01 allele (86V) and the neutral DRB1*15:02allele (86G) differ only at encoded
position 86. In Table 8B, position 86V (OR = 2.15; p = 1.56E-14) was implicated as
potentially being functionally related to the observed association of DRB1 with MS.

Finally, the non-Hispanic European-American cohort in this study represents a “pan-
European” population, and as such may be subject to population stratification. However, our
Hardy-Weinberg analyses revealed no significant population stratification in this cohort. In
addition, the frequencies of key alleles and haplotypes (e.g., HLA-B*18:01 and the
AI~B8~DR3haplotype) in our cohort are consistent with those observed across Europe’?,
as opposed to the very high-frequencies observed for these variants in specific European
populations, again suggesting that stratification in this cohort is minimal.

3.1 Conclusions

Some associations of specific HLA alleles, e.g., the strong protective effect of the
C*03:04~B*40.:01 haplotype, remain highly significant following stratification on
DRB1%*15:01. In general, the results of these analyses indicate that a careful consideration of
LD patterns among HLA alleles is essential in the interpretation of MS association data.
Overall, we conclude that specific HLA class | polymorphisms are protective for MS,
independent of the strong MS predisposition conferred by the DRB1*15.:01 allele.

4. Materials and Methods

4.1 Samples

Blood samples were collected for 412 MS patients of self-identified non-Hispanic European
ancestry, and 419 healthy, ethnically matched controls. MS patients were diagnosed by
neurologists specialized in demyelinating diseases in accordance with well-established
diagnostic and study inclusion criteria’3. Controls were of self-identified non-Hispanic
European ancestry and reported no history of chronic diseases for themselves or their
nuclear family. De-identified genomic DNA was extracted using a standard desalting method
and quantitated in duplicate using the PicoGreen dsDNA quantitation reagent. Coded DNA
aliquots are stored at —80°C. Study protocols were approved by the UCSF Committee on
Human Research and informed consent was obtained from all participants.

4.2 Genotyping

Locus-specific genotyping for the 14 K/R loci was performed as previously described’# 7>,
Next-generation sequencing of HLA-class | exons 2, 3 and 4, HLA class 1l exon 2, and HLA
class Il exon 3 (for the DQBI locus) on the Roche (Pleasanton, CA, USA) 454 GS FLX
instrument was used to genotype HLA-A, -C, -B, DRB1, DRB3/4/5, DQAI1, DQBI and
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DPBI alleles”®79. NGS HLA sequences were assigned to HLA alleles on the basis of
reference sequences in IMGT/HLA Database version 3.1.0 (July 17, 2010) using Conexio
(Fremantle, Australia) Assign ATF version 1.1.0.35.

HLA genotyping was blinded with respect to MS patients and controls, with 15% of
specimens retyped for quality assurance purposes; our NGS HLA genotypes were verified
independently via HistoGenetics (Osshing, NY, USA)89 with >98% concordance.
Discordant typings were reviewed and re-typed, and the final dataset was 100% concordant
between the two NGS methods. Subject disease-status (case/control) was only released for
analysis after the genotyping was completed.

4.3 Data Analysis

4.3.1. Tests of Association—We applied locus-level tests of heterogeneity and variant-
level chi-squared (XZ) tests of association at the genotype, haplotype, locus and individual
amino acid levels using BIGDAWG (v1.8.1)8L. In these tests, each multi-gene group (e.g.,
HLA-C~HLA-B), individual gene (e.g., HLA-DRBI) and inferred polymorphic amino acid
position (e.g., DR position 86) was treated as a locus, and individual haplotypes (e.g.,
HLA-C*07:02~HLA-B*07.:02), alleles (e.g., DRB1*03:01) and amino-acid residues (e.qg.,
DRp position 86V) were treated as variants. For each comparison, variants with expected
counts less than 5 in cases or controls were combined into a common “binned” category for
analyses®2,

We measured interaction between K/Rand HLA loci by applying a X2 test to contingency
tables that crossed disease phenotype with genotype, where genotype was defined as a given
KIR-HLA combination. Specifically, we tested dominant and additive effects of K/R genes
and their ligands at all biallelic loci in the overall cohort in addition to sub-cohorts defined
by presence of DRB1*15:01. From these contingency tables, we calculated odds ratio with
95% confidence intervals, and p-values.

4.3.2. Test of Hardy-Weinberg Equilibrium—We performed tests for deviations from
Hardy-Weinberg equilibrium (HWE) proportions using BIGDAWG and PyPop (v0.7.0)83,
assessing genotyping proportions for both individual loci and specific haplotypes (using
haplotypes assigned to individuals in BIGDAWG on the basis of posterior probabilities). We
identified significant locus-level HWE deviations using Guo and Thompson’s exact
method®4, and identified individual genotypes deviating significantly from HWE
expectations using Chen’s method8> 86, using a threshold of significance of 0.05.

4.3.3. Evaluation of Linkage Disequilibrium—We calculated normalized LD values
(d’ij)87 for individual haplotypes with PyPop, and calculated conditional asymmetric LD
(cALD) values, evaluating LD between sets of loci, using the “asymLD” R package (v0.1)88.
Values of d’j range from -1, when the haplotype is never observed, to 1, describing the
maximum possible LD based on the frequencies of the constituent alleles. The cALD
measure Wy g is the correlation coefficient for alleles at locus A conditioned on the alleles
at locus B, and describes the overall variation of alleles at locus A, given specific alleles at
locus B. Wy, is the correlation coefficient for alleles at locus B, conditioned on the alleles
at locus A, and describes the overall variation of alleles at locus B, given specific alleles at
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locus A9, When there are equal numbers of alleles and complete allele correlation between
both loci, the value of W,,gand Wy, is 1, indicating no variation of alleles between loci.

4.3.4. Corrections for Multiple Comparisons—For locus-level XZ tests of
heterogeneity involving individual loci (i.e., HLA-A and DPBI) and haplotypes of loci (e.g.,
C~Band DRB1~DQBI), the threshold of significance was calculated as 0.05/n, where n is
the number of comparisons. We note that these comparisons are not necessarily independent
(e.g., the HLA-A locus is included in four comparisons), so that these estimates can be
considered overly conservative.

Our tests of the specific hypothesis that the protective effect of HLA-A*02:01 is due to LD
with the Bw4 motif4 are addressed separately from other locus-level and haplotype-level
comparisons. These tests pertained to the A~Bw4/Bw6 and A~HLA-B Position 80 amino-
acid variant haplotypes. Similarly, our tests of Bw4 Thr and lle subtypes in DRB1*15:01-
positive and —negative strata address our observation that HLA-B position 80T is associated
with MS, whereas position 80l is not, and our tests of DRBI alleles in DRB1*15:01-positive
and —negative strata address the observation that DQA1*01.01 (found on the

DRBI1*01.01~ DQBI1*05:01 haplotype) is protective only in the presence of DRB1*15:01°3,
The threshold of significance for both of these pairs of locus-level X2 tests of heterogeneity
was calculated as 0.05/2 (0.025E-2).

For XZ tests of heterogeneity of amino-acid positions, the threshold of significance was
calculated for each individual locus as 0.05/n, where n is the number of variant amino-acid
positions at that locus. Results are not presented for positions that did not display significant
position-level heterogeneity.

In cases where locus-level tests of heterogeneity were not significant (p-value > the
threshold of significance), the threshold of significance for the 2 tests of association was
calculated as 0.05/n, where n equals the number of variants at that locus.

4.3.5. Statistical Power Analysis—We used the pwr.chisg.test function in the R “pwr”
package (version 1.2-0) to evaluate the size of an effect detectable in our dataset with the
recommended statistical power (1-B) of 0.8 with an a of 0.05%. For association tests of
alleles and haplotypes, with 31 allele categories, we expect to detect small effect sizes
(0.121). For tests of locus presence, motifs and amino acid positions, with 2-5 categories,
we expect to detect very small effect sizes (0.068 — 0.085).

4.4, Data Access

The HLA and KIR genotype data used for the analyses described here have been deposited
into ImmPort (http://www.immport.org), the public data-sharing resource of the National
Institute of Allergy and Infectious Disease’s (NIAID) Division of Allergy, Immunology, and
Transplantation (DAIT) and Division of Microbiology and Infectious Diseases (DMID), and
can be accessed under the ImmPort Study Accession Number SDY 1045 (doi:10.21430/
M3QW34U2SG).
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4.5 Code Availability

The source code for BIGDAWG is available online at https://cran.r-project.org/web/
packages/BIGDAWG/index.html and https://github.com/IgDAWG/BIGDAWG, with version
1.8.1 code at https://github.com/IgDAWG/BIGDAWG/tree/
eb0b4140ec3fb85h1a4fhab826ffc9f9e3239d10.

The source code for asymLD v0.1 is available online at https://cran.r-project.org/web/
packages/asymLD/index.html.

The source code for PyPop is available online at https://github.com/alexlancaster/pypop,
with version 0.70 code at https://github.com/alexlancaster/pypop/tree/
3f29d4b53548ce4deb60a5960368627999396653.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Locus-level Heterogeneity between Multiple Sclerosis Patients and Controls

Locus x2 df. p-value Significance 1
A 43.3012 17 4.34E-04 *
A~DRB1 169.5478 | 38 <2.22E-16 *
A~DRB1~DQB1 161.7085 | 39 <2.22E-16 *
A~C~B~DRB1~DQB1~DPB1 425118 11 1.3205E-05 *
C-B 81.8819 33 | 4.9007E-06 *
C~B~DRB1 100.52 24 2.45E-11 *
DRB1~DQB1 159.1034 | 26 <2.22E-16 *

DPB1 21.061 15 1.35E-01 NS

XZ; Chi-squared value.
d.f.: Degrees of freedom.

After correcting for eight comparisons, significance was evaluated at the 6.25E—03 level. Significant p-values are indicated with asterisks. NS: Not
Significant.
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