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ABSTRACT OF THE DISSERTATION

Power, Sabotage, andMisdirection: Three Essays on Political Economy

by

Frederick Aram Papazyan

Doctor of Philosophy in Economics

University of California San Diego, 2023

Professor T. Renee Bowen, Chair

This dissertation is a collection of three essays on political economy. In the first

chapter, I develop an economic theory of how a society’s distribution of power and re‐

sources evolves over time. Multiple lineages of players compete by accumulating power,

which is modeled as an asset that increases the probability of winning conflicts over

resources. Given any initial distribution of power, this model provides a unique equi‐

librium prediction of how it will evolve over time. Three types of stable distributions

are approached in the long run: inclusive, oligarchic, and dictatorial, where power is

uniformly distributed among all players, a few players, or held by just one player, re‐

spectively. I show that power and resources inevitably fall into the hands of a fewwhen

xiv



political competition is left unchecked in large societies. This addresses a longstanding

empirical puzzle, and I also provide policy implications for keeping inclusivity stable

in large societies.

In the second chapter, my co‐author, Danil Dmitriev, and I consider the prob‐

lem of designing a voting mechanism that is robust to derailment by external groups.

We show that plurality voting and other standard mechanisms are often not robust to

sabotage; in fact it is sometimes preferable to not run any poll at all. The optimal vot‐

ing mechanism is found to make saboteurs indifferent between each alternative they

can vote for, since this undermines their ability to adversely affect the designer’s pre‐

dictions of other voters’ preferences.

In the third chapter, I study how a sender can use verifiable binary evidence

to influence a receiver about a binary state when the relevance of information is ex

ante uncertain and asymmetrically known by the sender. The sender has access to two

pieces of evidence: one they know to be perfectly informative of the state and one that

is completely uninformative. I show that while full disclosure of evidence is possible

in equilibrium, the receiver to fully unravel which piece of evidence is relevant. Con‐

sequently, the Receiver may gain little to no information about the state even when all

evidence is disclosed.

xv



Chapter 1

Power Consolidation in Groups

1.1 Introduction

As inequality continues to rise in the United States, so have concerns that it may

be drifting towards oligarchy.1 This trend is not exceptionally American: persistently

rising political and economic inequality has been observed in several other nations in

the OECD (2008, 2011, 2012, 2015, 2021) alongside worldwide trends of spreading author‐

itarian rule (Freedom House, 2022) and democratic backsliding (Repucci (2020), Hyde

(2020)). Understanding how the distributions of political power and economic resources

in a society evolve over time has become increasingly important, and since these distri‐

butions are fundamentally linked, their dynamics can only be understoodwhen studied

in tandem.2

What allows – or indeed prevents – power and resources from falling into the

hands of a few in a society? Prevailing explanations overwhelmingly rely on structural

factors, qualitative features of societies such as culture, geography, economic condi‐

1Krugman (2014a), Piketty in Krugman (2014b), Saez and Zucman (2019), and Gilens and Page (2014).
2Piketty (1995, 2013, 2015, 2018, 2019), Stiglitz (2011, 2016), Rausser et al. (2011), Krugman (2020),World

Bank (2005, 2017), United Nations (2020), and Callander et al. (2021), discussed in the literature review.
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tions, exposure to external threats, etc. As Acemoglu and Robinson (2022b) point out,

such explanations necessarily cannot account for how otherwise similar societies can

arrive at vastly different power structures, which is awidespreadoccurrence (Acemoglu

and Robinson, 2019).

To illustrate, consider China, Taiwan, and Pre‐2020 Hong Kong: many argue that

China has an intrinsic tendency towards authoritarian regimes – as opposed to more

egalitarian ones – that stems from Chinese culture, especially its Confucian heritage.3

However, these explanations are starkly at odds with the fact that “Hong Kong and Tai‐

wan are cut from the same cultural cloth as mainland China, yet they rest on very dif‐

ferent political systems” (Acemoglu and Robinson, 2022a).

This chapter constructs a theory of how a society’s distribution of power evolves

due to intergenerational competition over resources. I consider a society that is popu‐

lated by (non‐overlapping generations of) players frommultiple lineages. Each lineage

is initially endowed with a stock of power, which is modeled as an asset that increases

one’s probability of winning conflicts over consumable resources. Every period, play‐

ers inherit and accumulate power, and then engage in conflicts over resources.4

In this model, society’s distribution of power endogenously evolves due to the

individual, strategic power accumulation decisions players make in the course of this

intergenerational power accumulation contest. In the absence of shocks, players’ ini‐

tial distribution of power uniquely determines its equilibrium trajectory and long‐run

behavior. Three types of stable distributions emerge in the long run: inclusive (where

power is uniformly distributed), dictatorial (where only one player holds a strictly pos‐

itive amount of power), and oligarchic (where power is uniformly distributed among

3Huntington (1991, 1996), Dalio (2021), Qing (2013), and several others discussed in Spina et al. (2011).
4This standard contest theoretic approach reflects Max Weber’s (1925) widely‐adopted definition of

power as “the probability that one actor within a social relationship will be in a position to carry out
his own will despite resistance, regardless of the basis on which this probability rests,” and the fact that
it must be accumulated by, for instance, “expenditures of time and money on campaign contributions,
political advertising, and other ways that exert political pressure” (Becker, 1983).
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more than two – but fewer than all – players, with the rest being powerless).

In addition to providing sharp, rich equilibrium predictions, this chapter also

generates novel insights and testable implications. Itsmain result (Proposition 4) is that

inclusive power structures are never stable in sufficiently large societies when political

competition is left unchecked.5 In contrast, dictatorships and sufficiently concentrated

oligarchies can remain stable in arbitrarily large groups (Proposition 5). This provides

a novel theoretical explanation for why large groups appear to be more vulnerable to

power consolidation, which is currently considered a long‐standing empirical puzzle.

Michels (1915) notably stated this as the Iron Law of Oligarchy, and over a century later,

the tendency of power consolidation to take place in large groups of people appears to

be widely accepted as a stylized fact, but there appears to be little agreement regarding

its explanation (Leach (2005, 2015); Diefenbach (2019)). This model delivers insights

not only on the competitive forces that underlie this tendency, but also on the policies

that can counteract it. Finally, this chapter provides an additional result (Proposition

6) which characterizes how larger populations induce stronger dictatorships.

The framework I construct in this chapter builds on Acemoglu and Robinson

(2022b), whomodel how the balance‐of‐power between two players – one representing

elites, the other representing non‐elites – evolves over time.6 This chapter primarily

generalizes and re‐frames the analysis to societies made up of any finite number of

players, who may be viewed as individual agents or as representative agents of a socioe‐

conomic sub‐group.7 While this substantially expanded scope is valuable, it more im‐

portantly gives this framework the ability to generate previously unattainable insights

5I.e. whenone does not intervene in the aforementionedpower accumulation contest by reallocating
power or policies that affect players’ incentives in this contest (discussed in subsection 1.4.1).

6This in turn is related to Acemoglu (2005) – which provides much of its microfoundation – and in
Acemoglu and Robinson (2019) the authors provide an extensive view of history through the lens their
model.

7Becker (1983) notes how “groups − defined by occupation, industry, income, geography, age, and
other characteristics − that ... use political influence to enhance the well‐being of their members.”
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into why power consolidation appears to become increasingly likely as societies grow

large. The rest of the (extensive) related literature is now reviewed.

Literature Review

Foundationalwritings on the emergence andpersistenceof elites andoligarchies

include Michels (1915), Mosca (1939), Mills (1956), Pareto (1935, 1991), and Bottomore

(1964), which are critiqued in Dahl (1958), Rustow (1966), Cammack (1990), and Ober

(2008). The emergence of oligarchies in large groups of people was viewed as an in‐

evitability by Michels (1915), stating it as the Iron Law of Oligarchy. He primarily fo‐

cuses on the role played by bureaucratization, starting from the premise that large

groups require bureaucracy in order to effectively organize and coordinate actions,

and then arguing that bureaucracies naturally lead to hierarchies. Leach (2005) notes

that “[d]espite almost a century of scholarly debate ... there is still no consensus about

whether and under what conditions Michels’s claim holds true.” This assessment ap‐

pears to be supported by the thorough reviews of the modern literature provided by

Leach (2005, 2015) and Diefenbach (2019).

In a recent seminal work, Winters (2011) provides an extensive study of how oli‐

garchies emerge and persist in a variety of societies around the world, where he also

notes that a “consistent pattern in human history is for very small minorities to amass

great wealth and power.” Rather than focusing on how particular institutional struc‐

tures allow or preclude the formation of oligarchies, he instead argues that wealth de‐

fence and the accumulation of material power – a notion of power that is conceptually

similar to what I model here – are far more important factors in the formation of oli‐

garchies. Moreover, he emphasizes how oligarchies can emerge even in the presence

of democratic norms and institutions, and the possibility of having democracies only

in name. This is also emphasized inWinters and Page (2009), an empirical study on the
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distribution of material power in the United States.

This framework draws on the long‐standing contest theory approach to modeling

power and conflict. As Hirshleifer (1989, 1991a, 1991b) discusses, bothmilitary conflicts

(e.g. Lanchester (1916), Ewerhart (2021)) and political conflicts8 can be modeled as a

contest, which “is a game in which players compete for a prize by exerting effort so as

to increase their probability of winning” Skaperdas (1996). The “prize” in this model

is control over resources (a consumable good such as natural resources, public funds,

etc.), which is seized by the victor of conflicts. Players accumulate power (“effort”) to

increase their probability of winning conflicts.

AContest SuccessFunction (CSF) defines the conditional probability that aplayer

wins the conflict given the amount of power they hold and the amount held by each

of their opponents. This chapter focuses on the commonly used difference‐form CSF

which, as its name suggests, only depends on power differences. The properties of this

formwere notably discussed in Hirshleifer (1989), who discusses how it relaxes certain

overly‐idealized aspects of its counterpart, the ratio‐form/Tullock CSF (Tullock, 1980);

both forms are axiomized in Skaperdas (1996).

In the context of this framework, the most important property of the difference‐

form CSF is that each player’s marginal benefit of accumulating power is increasing

in how closely matched they are with their opponents. As mentioned above, power

is modeled as an asset that is accumulated at a cost. I assume that the marginal cost

of accumulating power (at any fixed rate) is diminishing in the amount of power one

currently holds. Intuitively, this captures the notion that themore powerful one already

is, the less costly it is to obtainmore of it.9 Since this chapter focuses on the competitive

forces that underlie how players’ distribution of power evolves, its results largely boil

8For example, Becker’s (1983, 1985)models of interest grouppolitics andTullock’s (1967, 1980) seminal
works on rent seeking

9This assumption appears to be supported by the observations in Pierson (2000), Maxwell and Oliver
(1993), Francois (2002), Desai and Olofsgård (2011), and Drutman (2015).
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down to these two natural features of power accumulation incentives.

As will be seen below, the equilibrium dynamics of this model feature what is

known as the discouragement effect. This phenomenon was notably observed in the Har‐

ris and Vickers (1987)model of patent races – and in a variety of other dynamic contests

(Konrad, 2012) – as well as in Aghion et al. (2005) and Aghion (2005) which study inno‐

vation investments. Experimental evidence of the discouragement effect is reviewed

in Dechenaux et al. (2015). Indirectly related to this work are Berry (1993), Clark and

Riis (1996), and Chowdhury and Kim (2014) who study multi‐winner contests. While

themodel herein explicitly uses a single‐winner contest mechanism, onemay interpret

there being multiple “effective” winners at the oligarchic and inclusive power struc‐

tures in this model.

The form of power considered here has parallels with the notion of personal

power, which was first systematically studied by Bowen et al. (2022). Their notion is

similar in that it increases the probability of actualizing one’s ideal outcome by assert‐

ing one’s will. However, it is qualitatively different in that personal power derives from

one’s personal characteristics, and its effectiveness must be learned by others. This

chapter instead focuses on the forms of power that are accumulated and inherited.

Jeon and Hwang (2020) resembles the present chapter in motivation but not in

approach. In contrast to the dynamic contest setup considered here, they work in a

dynamic bargaining framework. Their model admits two classes of stable power struc‐

tures that resemble the dictatorial and oligarchic power structures seen here. Another

key difference is that Jeon andHwang (2020) consider infinitely forward‐looking agents

while the agents considered here are short‐lived, being replaced each period. In their

model, dictatorial power structures are unstable given that agents are sufficiently for‐

ward looking. Interestingly, while my model does admit a dictatorial class of stable

power structures, it also admits inclusive and oligarchic classes despite agents’ short
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lifespan. Hence, there also exist qualitative differences in terms of results. Similarly,

Acemoglu and Robinson (2006) also provide a theoretical explanation for the Iron Law

of Oligarchy (Michels, 1915), but through a differentmechanism than the one seen here.

In their model, elites entrench themselves by exploiting the structure of institutions in

which they operate, while the results in this model do not rely on the explicit structure

of institutions.

This chapter is also related to Bowen and Zahran (2012). In the present model,

dictatorial and oligarchic power structures are reached by trajectories that originate

sufficiently nearby. These classes respectively have qualitative similarities to the com‐

promise and no‐compromise classes in Bowen and Zahran (2012), which are reached in

an analogous fashion.

As mentioned above, several economists and political scientists have stressed

the intimate link between the studies of political inequality and economic inequality,

and of their respective dynamics. Since power and wealth are intimately linked (Win‐

ters and Page (2009), Winters (2011), Page et al. (2013) Gilens and Page (2014)) so are the

dynamics of their respective distributions, a phenomenon (Stiglitz, 2011) aptly summa‐

rized as “[w]ealth begets power, which begets more wealth.”

Themain conclusionofPiketty’s groundbreaking 2013work,Capital in the Twenty-

First Century, was that “[t]he history of the distribution ofwealth has always been deeply

political, and it cannot be reduced to purely economic mechanisms... [i]t is shaped

by the way economic, social, and political actors view what is just and what is not, as

well as by the relative power of those actors and the collective choices that result.” In

Piketty’s 2015 discussion of this work, he stresses the importance of “putting the distri‐

bution back at the center of economics” and “the role of political conflict in relation to

inequality,” noting how “[i]nstitutional changes and political shocks ... can be viewed

as largely endogenous to the inequality and development process itself.”

7



In parallel fashion, Stiglitz (2016) discusses why standard economic theory can‐

not currently explain the observed divergence in income inequality among countries

with similar production and technological capacities, where he urges that more focus

must be placed on the role played by rent seeking, political institutions, and power rela‐

tions. Krugman (2020), Callander et al. (2021), the United Nations (2020), and theWorld

Bank (2005, 2017) have expressed similar sentiments as the above.

The rest of this chapter is organized as follows. Section 1.2 constructs themodel,

states its assumptions, and defines equilibrium. Section 1.3 then characterizes the equi‐

librium dynamics of power structures and the stable power structures that arise in the

long run. Properties of these stable power structures are characterized in section 1.4,

which is followed by the conclusion in section 1.5. All proofs of the results in the main

text of this chapter are found in Appendix A.1.1. Appendix A.1.2 contains auxiliary re‐

sults (with their respective proofs). Appendix A.1.3 contains supplementary figures,

and Appendix A.1.4 contains information on Contest Success Functions.

1.2 Model

Time has an infinite horizon and is initially10 taken to be discrete with period‐

length, Δ > 0 (𝑡 ∈ {0, Δ, 2Δ, ...}). There are 𝑁 ≥ 2 lineages of risk neutral, short‐lived

players that are replaced each period; lineage 𝑖 ∈ {1, ..., 𝑁 } is formally defined as

i ≡ {𝑖0, 𝑖Δ, 𝑖2Δ, ...},

where 𝑖𝑡 denotes the generation‐𝑡 player from lineage 𝑖.
Players compete by accumulating and passing along stocks of power, an asset

10Period length is later made arbitrarily small when attention is brought to model dynamics, which
are more tractably characterized in continuous time.
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that increases one’s probability of winning conflicts over resources (in a way made

precise below). The amount of power held by the lineage‐𝑖 player at time 𝑡 is given

by 𝑥𝑖𝑡 ∈ [0, 𝜒], where 𝜒 > 0 is arbitrarily fixed.11 The publicly‐observable state vector

𝑥 𝑡 ∶= (𝑥1𝑡 , ..., 𝑥𝑁 𝑡) corresponds to the group’s power structure at time 𝑡 and will be the

central object of analysis in this chapter.

Lineage 𝑖 is initially endowedwith 𝑥𝑖0 units of power; this is held by player 𝑖0, who
is assumed to remain inactive for the entirety of period 0 and simply serves to initialize

the game. Play then proceeds as follows: at the beginning of period 𝑡 ∈ {Δ, 2Δ,…}, player
𝑖𝑡 inherits their predecessor’s power 𝑥𝑖,𝑡−Δwhich linearly depreciates at rate, 𝛿 > 0 (hence
by amount 𝛿Δ each period). Players then simultaneously choose howmuch to invest in

their own power. Formally, player 𝑖𝑡 commits to accumulating power at rate, 𝐼𝑖𝑡 ≥ 0
throughout the period, which adds 𝐼𝑖𝑡Δ units of power to 𝑖𝑡 ’s stock by the end of the

period. The instantaneous flow cost of investing at rate 𝐼𝑖𝑡 when starting at 𝑥𝑖,𝑡−Δ is given

by 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ).
Afterward, society endows a lump‐sum unit of resources (a consumable good).

Players compete over these resources through a winner-takes-all conflict whose victor

is randomly chosen according to the (conditional) probability distribution,12

𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡 ; 𝑁 ) ≡ P{Player 𝑖𝑡 wins the conflict |Power structure is 𝑥 𝑡 }. (1.1)

That is, each players’ probability of victory depends not only on howmuch power they

hold (𝑥𝑖𝑡), but also that held by others (𝑥−𝑖,𝑡 ). At the end of period 𝑡, player 𝑖𝑡 earns an

11Assuming that power takes values in [0, 𝜒] simplifies exposition, but does not qualitatively affect the
results of this model. 𝜒 is made arbitrarily large in Section 1.4.1. This operation only plays a significant
role in the latter two parts of Proposition 5. All other results – including the main result (Proposition 4)
– remain qualitatively unchanged. It also allows this model to comment on the implications of decisions
such as Citizens United v. FEC (2010), as I discuss in Section 1.4.

12Assuming that players necessarily engage in conflict – and that the conflict iswinner-takes-all – do not
affect the results of this chapter.
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expected “lifetime” net payoff of

𝜋𝑖 (𝑥𝑖𝑡 , 𝐼𝑖𝑡 , 𝑥−𝑖,𝑡 , 𝑥𝑖,𝑡−Δ) ≡ 𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡 ; 𝑁 ) − Δ ⋅ 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ), (1.2)

where 𝐶(⋅, ⋅) is weighted by period length – while 𝐻(⋅, ⋅; ⋅) is not – since the former is a

flow cost while the latter is a lump sum benefit.

The following assumption is made on the cost and marginal cost 𝐷1𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ) ≡
𝜕
𝜕𝐼𝑖𝑡 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ) of power accumulation.

Assumption 1. 𝐶 ∶ [0,∞)2 → [0,∞) satisfies

1. Cost 𝐶(⋅, 𝑥𝑖,𝑡−Δ) and marginal cost 𝐷1𝐶(⋅, 𝑥𝑖,𝑡−Δ) are strictly increasing ∀𝑥𝑖,𝑡−Δ.

2. 𝐶(𝐼𝑖𝑡 , ⋅) and 𝐷1𝐶(𝐼𝑖𝑡 , ⋅) are decreasing ∀𝐼𝑖𝑡 ≥ 0.

3. 𝐷1𝐶 is continuously differentiable in its first argument and continuous in its sec‐

ond argument.

Assumption 1.1 (increasing, convexpower accumulation costs) is standard. More

important is Assumption 1.2, which states that the cost – and marginal cost – of power

accumulation diminish with how much power one currently holds. This captures the

idea that the more powerful one already is, the less costly it is to further accumulate

power, both in absolute terms and on the margin. The notion that there are upfront

costs to power accumulation is intuitive, and also appears to be supported by real world

observations (see Footnote 9 in the Literature Review). Finally, Assumption 1.3 is amild

smoothness assumption.13

13Assumption 1.3 is essentially a relaxation of the assumption that 𝐶 is twice continuously differen‐
tiable: it permits 𝐷1𝐶(𝐼 , ⋅) to have “kinks” (∀𝐼 ≥ 0).
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Figure 1.1: Player 𝑖⋅’s marginal benefit of power accumulation ℎ as a function the rela‐
tive effectivity 𝑒𝜆𝑥𝑖⋅/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅ of their power.

The second assumption made in this chapter concerns the benefit 𝐻 of holding

power. I assume it takes a standard form that is commonly referred to as the difference‐

form or logistic‐form contest success function, whose properties were notably studied

by Hirshleifer (1989).

Assumption 2. Given 𝑥, the lineage‐𝑖 player wins the conflict with probability

𝐻(𝑥𝑖, 𝑥−𝑖; 𝑁 ) ≡ 𝑒𝜆𝑥𝑖
∑𝑁

𝑗=1 𝑒𝜆𝑥𝑗
= 1

1 + ∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖−𝑥𝑗)
, (𝜆 > 0). (1.3)

Beyond assuming that 𝐻 is continuous and only directly depends on power dif-

ferences, assuming the above functional form is equivalent to assuming that it satisfies

a collection of innocuous to mild axioms (Skaperdas, 1996, Theorem 3).14 As Corchón

and Dahm (2010) note, it is standard to interpret 𝑒𝜆𝑥𝑖 as the effectivity of player 𝑖’s power,

14For readers’ convenience, these axioms and Skaperdas’s Theorem are summarized in Appendix
A.1.4.
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which corresponds to how effectively player 𝑖’s power influences their victory probabil‐

ity.

The main implication of this assumption is that the marginal benefit of power

accumulation (“contest incentives”)

ℎ(𝑥𝑖, 𝑥−𝑖; 𝑁 ) ≡ 𝜕
𝜕𝑥𝑖

𝐻(𝑥𝑖, 𝑥−𝑖) =
𝜆∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖−𝑥𝑗)

[1 + ∑𝑗≠𝑖 𝑒−𝜆(𝑥𝑖−𝑥𝑗)]
2 =

𝜆𝑒𝜆𝑥𝑖/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗

(1 + 𝑒𝜆𝑥𝑖/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗)
2 (1.4)

is increasing in how closely-matched one is with other players in terms of power. This

captures the idea that gains over a closely‐matched opponent are more valuable than

thosemade against amuchweaker (ormuch stronger) one. This property is formalized

in the final equality of (1.4): the closer the relative effectivity 𝑒𝜆𝑥𝑖⋅/∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅ of player 𝑖⋅’s
power is to 1, the larger their marginal benefit of power accumulation, as shown in

Figure 1.1. Note that the dependence of 𝐻 and ℎ on 𝑁 will henceforth be suppressed

when there is little risk of confusion.

Remark 1. Parameter 𝜆 provides a tractable, systematic way to analyze the role played

by the institutional constraints on the effectivity of power in reduced form. Larger 𝜆
increase the effectivity 𝑒𝜆𝑥⋅ of any given level of power 𝑥⋅. This is because larger 𝜆 cor‐

respond to conflicts that are less noisy in that their outcome depends more heavily on

players’ relative powers (Hirshleifer, 1989). To illustrate, note that as 𝜆 → 0, the victor is
essentially decided by a fair 𝑁‐sided dice roll. As 𝜆 → ∞, (one of) the strongest player(s)

win with probability 1, like in an all‐pay auction.15

I focus on Markov perfect equilibrium (Maskin and Tirole, 2001). The state vari‐

able in period 𝑡 is 𝑥 𝑡−Δ ∈ [0, 𝜒]𝑁 , the previous period’s power structure; the initial power

15Lanchester (1916) and Hillman and Riley (1989) consider the latter limiting case.
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structure 𝑥0 ∈ [0, 𝜒]𝑁 is exogenously fixed. Given 𝑥 𝑡−Δ, player 𝑖𝑡 ’s action set is 16

𝑋𝑖𝑡(𝑥 𝑡−Δ) ≡ [max{𝑥𝑖,𝑡−Δ − 𝛿Δ, 0}, 𝜒] (1.5)

A strategy 𝑥𝑖𝑡 ∶ [0, 𝜒]𝑁 → 𝑋𝑖𝑡 for player 𝑖𝑡 maps each state 𝑥 𝑡−Δ to an action 𝑥𝑖𝑡 in 𝑋𝑖𝑡(𝑥 𝑡−Δ).
The sequence {(𝑥∗1𝑡 , ..., 𝑥∗𝑁 𝑡)}𝑡∈{Δ,2Δ,…} is a (Markov perfect) equilibrium – henceforth simply

referred to as “equilibrium” – if at each 𝑡, 𝑥∗𝑖𝑡 (𝑥∗𝑡−Δ) is a best response to 𝑥∗−𝑖,𝑡(𝑥∗𝑡−Δ) ∀𝑖 ∈
{1, ..., 𝑁 }.

1.3 Equilibrium Power Structures

The problem faced by the lineage‐𝑖 player in period 𝑡 ∈ {0, Δ, 2Δ, ...} is given by

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

max𝑥𝑖𝑡 ,𝐼𝑖𝑡
𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − Δ ⋅ 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ)

s.t. 𝑥𝑖𝑡 = 𝐼𝑖𝑡Δ + 𝑥𝑖,𝑡−Δ − 𝛿Δ

0 ≤ 𝑥𝑖𝑡 ≤ 𝜒

𝐼𝑖𝑡 ≥ 0

(1.6)

The equilibrium of the game described above can be characterized using (1.6).

Before doing so, it is important to note the following:

Proposition 1. Given any initial power structure 𝑥0, the equilibrium of this game is unique

for all sufficiently small period length Δ.

Proof. Found in appendix subsection A.1.1. ■

16Notice that since 𝑥𝑖𝑡 and 𝐼𝑖𝑡 “pin down” one another, the number of choice variables can be reduced
to one. For the purposes of defining strategies and equilibria, 𝑥𝑖𝑡 is considered the only choice variable
of player 𝑖𝑡 .
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Proposition 1 guarantees that each initial power structure 𝑥0 yields a unique equi‐
librium path {𝑥∗0, 𝑥∗Δ, 𝑥∗2Δ, ...} when Δ becomes small. Intuitively, this uniqueness stems

from the fact that increasing power by any fixed amount 𝐼⋅ becomes prohibitively ex‐

pensive as Δ becomes small. As Δ approaches zero, players will turn out to differentially

adjust their stocks of power in equilibrium (as opposed to making infrequent “large”

adjustments). This is shown in Proposition 2, where I solve the above game and make

period length Δ arbitrarily small so that that the equilibrium dynamics of 𝑥∗𝑡 can be

studied in continuous time (which is more tractable for analysis).

1.3.1 Equilibrium Power Dynamics

Let ̇𝑥∗𝑖𝑡 ≡ limΔ→0
𝑥∗𝑖𝑡−𝑥∗𝑖,𝑡−Δ

Δ and let (𝐷1𝐶)−1(⋅, ⋅) denote the inverse function of 𝐷1𝐶(⋅, ⋅)
with respect to its first argument, keeping its second argument fixed. With this nota‐

tion in hand, the equilibrium dynamics of 𝑥∗𝑡 are characterized in continuous time as

follows.

Proposition 2. As Δ → 0, ̇𝑥∗𝑖𝑡 obeys the following law of motion for each 𝑖 ∈ {1, … , 𝑁 }:

̇𝑥∗𝑖𝑡 =

⎧⎪⎪
⎨⎪⎪
⎩

−𝛿1R++(𝑥∗𝑖𝑡 ), if ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡) < 𝐷1𝐶(0, 𝑥∗𝑖𝑡 )

0, if ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡) > 𝐷1𝐶(𝛿, 𝑥∗𝑖𝑡 ) and 𝑥∗𝑖𝑡 = 𝜒

(𝐷1𝐶)−1(ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡), 𝑥∗𝑖𝑡 ) − 𝛿, otherwise,

(1.7)

Proof. Found in appendix subsection A.1.1. ■

The first two parts of (1.7) correspond to the corner solutions of (1.6) while the

third corresponds to the interior solution. The first part states that when the marginal

benefit ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡) of power accumulation is less than the marginal cost 𝐷1𝐶(𝐼𝑖𝑡 , 𝑥∗𝑖𝑡 ) of
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accumulating power at any 𝐼𝑖𝑡 ≥ 0, then it is optimal for player 𝑖𝑡 to not add any power

to their stock so that it depreciates unabated ( ̇𝑥∗𝑖𝑡 = −𝛿) or remains at zero. The second

equation implies that player 𝑖𝑡 maintains themaximum level of power (𝑥∗𝑖𝑡 = 𝜒 ) when the

net marginal gain of doing so is positive. Otherwise the third equation applies, and the

optimal ̇𝑥∗𝑖𝑡 equalizes the marginal benefit and marginal cost of power accumulation:

ℎ(𝑥∗𝑖𝑡 , 𝑥∗−𝑖,𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
marginal benefit

= 𝐷1𝐶( ̇𝑥∗𝑖𝑡 + 𝛿, 𝑥∗𝑖𝑡 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
marginal cost

. (1.8)

This case most clearly illustrates the two primary forces behind players’ equilibrium

power accumulation behavior: first, how closely matched player 𝑖𝑡 is with their compe‐

tition17 positively effects ̇𝑥∗𝑖𝑡 through increasing marginal benefit ℎ. Second, how much

power 𝑥∗𝑖𝑡 player 𝑖𝑡 holds decreases the marginal cost 𝐷1𝐶 of accumulating at any given

rate, which has a positive effect on ̇𝑥∗𝑖𝑡 . Note that when a marginal increase in player 𝑖𝑡 ’s
stock of power 𝑥∗𝑖𝑡 makes themmarginallymore closelymatchedwith their competition,

these effects work in parallel and jointly induce an increase in ̇𝑥∗𝑖𝑡 . Otherwise, they are
counterveiling effects.

Notice that equation (1.7) is time-invariant; howa group’s power structure evolves

in equilibrium depends only on its current power structure (𝑥∗𝑡 = 𝑥∗𝑡′ ⇔ ̇𝑥∗𝑖𝑡 = ̇𝑥∗𝑖𝑡′ ∀𝑖, 𝑡 , 𝑡′).
This is indicative of the results of the next section, which characterizes the asymptotic

behavior of 𝑥∗𝑡 . In the absence of shocks that affect ℎ or 𝐷1𝐶, the group’s initial power

structure is the sole determinant of its asymptotic power structure.

Moving forward, notationwill oftenbe simplifiedby suppressing time subscripts

and asterisks: “ ̇𝑥𝑖” and “𝑥𝑖” should henceforth be taken to mean “ ̇𝑥∗𝑖𝑡 ” and “𝑥∗𝑖𝑡 ,” respec‐
tively. Moreover, I will often refer to “player 𝑖𝑡” as “player 𝑖.”

17In the sense discussed below equation (1.4).
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Figure 1.2: Player 𝑖⋅’s equilibrium power accumulation rate ( ̇𝑥∗𝑖⋅ ) as a function of their
effectivity (𝑒𝜆𝑥𝑖⋅) and their opponents’ aggregate effectivity (∑𝑗≠𝑖 𝑒𝜆𝑥𝑗⋅).18 This figure is
produced assuming 𝑁 = 3 players, depreciation rate 𝛿 = 0.1, institutional constraint
parameter 𝜆 = 2.5, power cap 𝜒 = 1, and cost function 𝐶(𝐼⋅, 𝑥⋅) = 𝐼 2⋅ +max{0.5 − 𝑥⋅, 0}𝐼 .

1.3.2 Stable Power Structures

Now that the equilibriumdynamics of 𝑥 𝑡 have been fully characterized, attention

is turned to the the stable power structures that can arise in the long run.

Definition 1. A power structure ̄𝑥 ∈ [0, 𝜒]𝑁 is stable if

a. ̇𝑥𝑖 = 0 ∀ 𝑖 at ̄𝑥, and

b. ∀𝜀 > 0, ∃𝜌 > 0 such that if ||𝑥0 − ̄𝑥|| < 𝜌, then ||𝑥 𝑡 − ̄𝑥|| < 𝜀 ∀ 𝑡 ≥ 0 and lim𝑡→∞ ||𝑥 𝑡 − ̄𝑥|| = 0,
where || ⋅ || denotes the Euclidean norm.

18This is easily derived from (1.7) using the final equality of (1.4) and noticing that 𝑥𝑖⋅ = ln(𝑒𝜆𝑥𝑖⋅)/𝜆.
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Part a of this definition requires the system to be at rest at ̄𝑥; when this is satisfied

̄𝑥 is often referred to as a steady state. Part b requires that all trajectories that start near

̄𝑥 not only remain near ̄𝑥, but also converge to ̄𝑥. Proposition 3 fully characterizes the

stable power structures that can arise under Assumptions 1 and 2, which will turn out

to always take one of the following forms:

1. Inclusive, where all players hold zero or all hold 𝜒 units power. That is,

̄𝑥 ∈ {(0, … , 0), (𝜒 , … , 𝜒)} =∶ ℐ . (1.9)

I refer to (0, … , 0) as de-escalated inclusive, and to (𝜒 , … , 𝜒) as escalated inclusive.

2. Oligarchic, where 𝑘 ∈ {2, ..., 𝑁 − 1} players (“the oligarchs”) hold 𝜒 units of power,

and the remaining 𝑁 − 𝑘 players are powerless. That is

̄𝑥 ∈ {𝑥 ∈ {0, 𝜒}𝑁 ∶
𝑁
∑
𝑖=1

1{𝜒}(𝑥𝑖) = 𝑘} =∶ 𝒪𝑘 . (1.10)

Given 𝑘 ∈ {2, … , 𝑁 − 1}, I refer to the elements of 𝒪𝑘 as 𝑘-archic power structures.
The set of oligarchic power structures is defined as ∪𝑁−1

𝑘=2 𝒪𝑘.

3. Dictatorial, where only one player (“the dictator”) holds a strictly positive amount

𝑑 ∈ (0, 𝜒] of power. That is,

̄𝑥 ∈ {(𝑑, 0, … , 0), … , (0, … , 0, 𝑑)} =∶ 𝒟𝑑 . (1.11)

I refer to ̄𝑥 as strong dictatorial if 𝑑 = 𝜒 and weak dictatorial otherwise.

With this terminology in hand, the following proposition characterizes the necessary

and sufficient conditions (labeled with roman numerals) under which inclusive, oli‐
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garchic, anddictatorial power structures are stable (parts 1‐5) andestablishes that power

structures outside these classes are never stable (part 6).

Proposition 3. ̄𝑥 is stable only if it is inclusive, oligarchic, or dictatorial. More specifically:

1. The escalated inclusive power structure (𝜒 ,..., 𝜒) is stable if and only if

ℎ(𝜒, (𝜒 ,..., 𝜒))>𝐷1𝐶(𝛿, 𝜒) (I)

2. The de-escalated inclusive power structure (0,..., 0) is stable if and only if

ℎ(0, (0,..., 0))≤𝐷1𝐶(0, 0) (II)

3. Let 𝑘 ∈ {2,..., 𝑁 − 1}. Each 𝑘-archic power structure ̄𝑥 ∈ 𝒪𝑘 is stable if and only if

ℎ(𝜒, (
𝑘−1

⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,
𝑁−𝑘
⏞0,..., 0))>𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (

𝑘
⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,

𝑁−𝑘−1
⏞0,..., 0))<𝐷1𝐶(0, 0). (III)

4. Let 𝑑 ∈ (0, 𝜒). Each weak dictatorial power structure ̄𝑥 ∈ 𝒟𝑑 is stable if and only if

ℎ(⋅, (0,..., 0)) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑, 19 and

ℎ(0, (𝑑, 0,..., 0)) < 𝐷1𝐶(0, 0)
(IV)

5. Each strong dictatorial power structure ̄𝑥 ∈ 𝒟𝜒 is stable if and only if

ℎ(𝜒, (0,..., 0)) > 𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (𝜒 , 0,..., 0)) < 𝐷1𝐶(0, 0). (V)

6. No other stable power structures are possible.

19I.e. ℎ(𝑑, (0,..., 0)) − 𝐷1𝐶(𝛿, 𝑑) = 0 and ∃𝜀 > 0 s.t. ℎ(𝑥⋅, (0,..., 0)) − 𝐷1𝐶(𝛿, 𝑥⋅) > 0 ∀𝑥⋅ ∈ (𝑑 − 𝜀, 𝑑) and
ℎ(𝑥⋅, (0,..., 0)) − 𝐷1𝐶(𝛿, 𝑥⋅) < 0 ∀𝑥⋅ ∈ (𝑑, 𝑑 + 𝜀).
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Proof. Found in appendix subsection A.1.1. ■

The intuition behind each of the above conditions is quite natural, so they are

only very briefly sketched here. Condition I says that each player has a strictly positive

netmarginal gain ofmaintaining 𝜒 units of power. Thismakes it optimal for eachplayer

to maintain 𝜒 units of power when 𝑥 = (𝜒,..., 𝜒) and – by the continuity of ℎ and 𝐷1𝐶
– guarantees that players accumulate power ( ̇𝑥𝑖 > 0 ∀𝑖) when 𝑥 is sufficiently near to

(𝜒 ,..., 𝜒). The necessity of Condition I for the stability of (𝜒 ,..., 𝜒) is most easily seen in

the case where ℎ(𝜒 , (𝜒 ,..., 𝜒) < 𝐷1𝐶(𝛿, 𝜒): convex investment costs make it optimal for

each player to optimally allow their power to depreciate when 𝑥 = (𝜒,..., 𝜒), so that it

fails to be a steady state.20

Condition II implies that when all players are powerless, it is not optimal for any

player to accumulate power (so that ̇𝑥𝑖 = 0 ∀𝑖 at 𝑥 = 0). When the inequality in Condition

II is strict, then ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐷1𝐶(0, 𝑥 𝑖) ∀𝑖 when 𝑥 is sufficiently close to (0,..., 0), since ℎ
and 𝐷1𝐶 are continuous. At all such 𝑥, every player optimally allows their power to de‐

preciate at rate 𝛿, eventually causing each to hold no power.21 When Condition II fails,

it follows from the convexity of investment costs that each player begins to accumulate

power (so that ̇𝑥𝑖 > 0 ∀𝑖 at 𝑥 = (0,..., 0)).

Remark 2. The de‐escalated inclusive power structure (0,..., 0) emerges in equilibrium

only when each player lets their power fully depreciate; this represents in a certain

sense the trivial case of the model (which is not ruled out by Assumptions 1 and 2).

The first (second) part of Condition III plays a similar role as Condition I (II).

The first part says that the net marginal gain of maintaining 𝜒 units of power is positive

20When ℎ(𝜒, (𝜒 ,..., 𝜒) = 𝐷1𝐶(𝛿, 𝜒), each player maintains their power level when 𝑥 = (𝜒,..., 𝜒), so that
it is a steady state. However, if one takes 𝜀 > 0 units of power from each player, the power structure will
not return to 𝑥 in equilibrium, so that the second part of the definition of stability is violated.

21The explanation in the casewhereCondition II holdswith equality ismore involved; formoredetails,
please see the proof of Proposition 3.
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when faced with 𝑘 − 1 other players who also hold 𝜒 units of power, and 𝑁 − 𝑘 players
who hold no power. The second part implies that it is not optimal for powerless players

to accumulate power at 𝑘‐archic power structures. Notice that ConditionV is essentially

the 𝑘 = 1 analogue of Condition III.

Condition IV is necessary and sufficient for the stability of weak dictatorships,

where player 𝑖 (“the dictator”) holds 𝑥𝑖 = 𝑑 ∈ (0, 𝜒) units of power, and all other play‐

ers hold no power. The second part of this condition makes power accumulation sub‐

optimal for powerless players when the dictator holds 𝑑 units of power. The first part

of Condition IV says that the dictator player 𝑖’s marginal cost 𝐷1𝐶(𝛿, 𝑑) of maintaining 𝑑
units of power is equal to its marginal benefit ℎ(𝑑, (0,..., 0)), so that maintaining 𝑑 units
of power is optimal for the dictator. Furthermore, it says that ℎ(⋅, (0,..., 0)) intersects
𝐷1𝐶(𝛿, ⋅) from above, which is crucial for the second part of Definition 1 to be satis‐

fied. When this holds, then decreasing (increasing) the dictator’s power by any “small”

amount causes them to optimally accumulate power (let their power depreciate) until

they return to holding 𝑑 units of power. However, when ℎ(⋅, (0,..., 0)) intersects 𝐷1𝐶(𝛿, ⋅)
from below, any such perturbation will cause 𝑥𝑖 to drift away from 𝑑 in equilibrium.
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Figure 1.3: Power level 𝑑 ∈ (0, 𝜒) is sustained in a stable weak dictatorship only if the
dictator’s marginal benefit ℎ(⋅, (0,..., 0)) of power intersects marginal cost 𝐷1(𝛿, ⋅) at 𝑑
from above. Power level 𝑑 = 𝜒 is sustained in a stable strong dictatorship only if a dic‐
tator’s marginal benefit ℎ(𝜒 , (0,..., 0) ofmaintaining 𝜒 units of power strictly outweighs
the marginal cost 𝐷1𝐶(𝛿, 𝜒) of maintaining that power level.

Finally, the last part of Proposition 3 shows that if ̄𝑥 is not inclusive, oligarchic,

or dictatorial, it cannot be stable. The ̄𝑥 outside the aforementioned three classes either

have (1) two or more players with interior power levels or (2) exactly one player with

an interior power level. First consider the case where 0 < ̄𝑥𝑖 < ̄𝑥𝑗 < 𝜒 for some 𝑖 ≠ 𝑗
(i.e. two players hold different interior power levels at ̄𝑥). If such an ̄𝑥 is a steady state

( ̇𝑥⋅ = 0 for all players), then (1.7) implies that for each player ℓ ∈ {𝑖, 𝑗}, the marginal cost

𝐷1𝐶(𝛿, ̄𝑥ℓ) of maintaining ̄𝑥ℓ units of power is equal to its marginal benefit ℎ( ̄𝑥ℓ, ̄𝑥−ℓ) =
𝐷1𝐶(𝛿, ̄𝑥ℓ) ∀ℓ ∈ {𝑖, 𝑗}. This leads to a contradiction since 𝐷1𝐶(𝛿, 𝑥𝑖) ≥ 𝐷1𝐶(𝛿, 𝑥𝑗) (Assump‐

tion 1.2) and ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) < ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) (shown in the proof).

The power structures that remain to be considered may be steady states, but

never stable ones, since arbitrarily small perturbations cause 𝑥 𝑡 to eventually leave a

neighborhood of ̄𝑥 at some 𝑡. This is achieved by giving the interior player(s) a posi‐

21



tive amount of power (each in the same amount). This windfall of power – even when

arbitrarily small – increases the net marginal gain of investment of the interior‐power

player(s) by the same amount, inducing each to begin accumulating power at a com‐

mon, positive rate. When the aforementioned neighborhood and windfall are suffi‐

ciently small, players who held 0 or 𝜒 units of power at ̄𝑥 will optimally remain at their

respective power levels not only after the perturbation but also as the interior‐power

player(s) accumulate power within the neighborhood. (This is because ℎ and 𝐷1𝐶(𝛿, ⋅)
are continuous.) That is, as the interior power players accumulate power at the same

rate, the extremal power players will not move from their respective positions, and the

group’s power structure will eventually leave any sufficiently small neighborhood of ̄𝑥,
making it unstable.

1.3.3 Three Player Illustration

This section illustrates the global equilibrium dynamics in the case with 𝑁 = 3
players. In the interest of clearly visualizing these results, I focus on the case where the

set of stable power structures is

{ (𝜒 ,𝜒 , 𝜒)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
escalated
inclusive

, (𝑑, 0, 0),(0, 𝑑, 0), (0, 0, 𝑑)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

dictatorial

, (𝜒 , 𝜒 , 0), (𝜒 , 0, 𝜒),(0, 𝜒 , 𝜒)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

oligarchic
(2‐archic)

},

where 𝑑 ∈ (0, 𝜒]. Figure 1.4 visualizes the equilibrium dynamics in this case; the intu‐

ition behind these dynamics are now discussed.22

22This intuition applies for arbitrary 𝑁 ; the intuition behind how the de‐escalated inclusive power
structure is reached is discussed in Remark 2. Finally, note that additional visualizations of equilibrium
dynamics are provided in Appendix A.1.3.
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Figure 1.4: Simplex plot representation of simulated equilibrium paths produced us‐
ing cost function 𝐶(𝐼⋅, 𝑥⋅) = 𝐼 2⋅ + (1 − 𝑥⋅)𝐼⋅, institutional constraint parameter 𝜆 = 5.5, and
depreciation parameter 𝛿 = 0.1.

When players’ powers are initially close to one another, the (escalated) inclusive

power structure is reached through competition. Since players’ contest incentives are

strongest when they are evenly matched with one another – in the sense discussed be‐

low equation (1.4) – each player begins with similarly strong power accumulation in‐

centives. Moreover, each initially face similar power accumulation costs (andmarginal

costs). Consequently, players begin accumulating power at similar rates in equilibrium,

resulting in each becoming more powerful but their relative powers remaining similar.

This cycle repeats until each player reaches 𝜒 units of power.

Dictatorial power structures are reached through a qualitatively different pro‐

cess. One player (say, player 1) begins significantly more powerful than the rest, which

thereby gives them a significant cost advantage at the outset (Assumption 1.2). This al‐
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lows them to accumulate power at a faster rate than other players in equilibrium, caus‐

ing their gap in power towiden over time. Not only does this cause player 1’s cost advan‐
tage to amplify, it also eats away at each player’s power accumulation incentives. These

incentives progressively weaken to the point where even matching depreciation rate 𝛿
becomes sub‐optimal for players 2 and 3, so that these players eventually (optimally)

allow their respective powers to fully depreciate, at which point player 1 has fully con-

solidated power. This is an example of the Discouragement Effect that is known to arise

in a wide variety of dynamic contests (Konrad, 2012).

Finally, oligarchic (here, 2‐archic) power structures are reached through a combi-

nation of the above two processes. These are reached when two players (say, players 1

and 2) begin closely matched to each other but outmatch the rest (here, player 3). Play‐

ers 1 and 2 compete with one another, each driving the other player’s power up in the

same way that the escalated inclusive power structure is reached. This causes these

players to “outrun” (in terms of power accumulation) player 3, who eventually allows

their power to fully depreciate due to the Discouragement Effect.

While this model generates very natural equilibrium dynamics, it also yields

quite novel insights, which are now presented in the next section.

1.4 Properties of Stable Power Structures

1.4.1 Stable Power Structures in Large Societies

I now turn to the main result of this chapter: as it turns out, there always exists

a finite group size past which the escalated inclusive power structure ceases to be stable.

Proposition 4. The escalated inclusive power structure (𝜒 ,..., 𝜒) is not stable in groups larger
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than

𝑁̄ I𝜒 ≡
⎧⎪
⎨⎪⎩

⌈𝜆+√(𝜆−4𝐷1𝐶(𝛿,𝜒))𝜆
2𝐷1𝐶(𝛿,𝜒) ⌉ , if 𝜆/4 ≥ 𝐷1𝐶(𝛿, 𝜒)

0 , otherwise.23
(1.12)

Proof. Found in appendix subsection A.1.1. ■

This result implies that in a sufficiently large society, unchecked political compe‐

tition will inevitably leave a subset of its population marginalized. The takeaway of this

result should not be a familiar sense of resignation, but of urgency: political competi‐

tion must be regulated to make inclusivity achievable in large societies; failing to do so

guarantees its impossibility.

What kinds of interventions can keep the escalated inclusive power structure sta‐

ble in large societies? Before turning to this matter, it is first important to understand

why the escalated inclusive power structure destabilizes in sufficiently large groups. Re‐

call that by Proposition 3.1, the escalated inclusive power structure is stable if and only

if
(𝑁 − 1)𝜆

𝑁 2 = ℎ(𝜒, (𝜒 , ..., 𝜒);𝑁 ) > 𝐷1𝐶(𝛿, 𝜒).
∵ Equation (1.4) Condition I

The abovewas used to derive𝑁 I𝜒 . Notice that a player’smarginal benefit ℎ(𝜒, (𝜒 ,..., 𝜒); 𝑁 )
at 𝑥 = (𝜒,..., 𝜒) is decreasing24 in 𝑁 and decays to zero as 𝑁 grows large, eventually

falling below themarginal cost𝐷1𝐶(𝛿, 𝜒) ofmaintaining 𝜒 units of power after the group

grows larger than 𝑁 I𝜒 .

To see the intuition behind this, recall that players’ power accumulation incen‐

tives ℎ are increasing in how closely matched they are with their competitors (in the

sense discussed after equation (1.4)). At the escalated inclusive power structure, every
23(𝜒 ,..., 𝜒) is not stable at any 𝑁 ≥ 2 when 𝜆/4 < 𝐷1𝐶(𝛿, 𝜒). See proof for more details.
24I.e. ℎ(𝜒, (𝜒 ,..., 𝜒); 𝑁 ′) < ℎ(𝜒, (𝜒 ,..., 𝜒); 𝑁 ) ∀𝑁 ′ > 𝑁 ≥ 2.
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Figure 1.5: The group size 𝑁̄ I𝜒 past which the escalated inclusive power structure
(𝜒 , … , 𝜒) is never stable depends on noise/institutional constraint parameter 𝜆 and the
marginal cost 𝐷1𝐶(𝛿, 𝜒) of maintaining 𝜒 units of power.

player faces𝑁 −1 opponents that are each as strong as they are. This is why each player

has strong power accumulation incentives when 𝑁 is small; in fact they are as strong

as possible when 𝑁 = 2. However, as 𝑁 grows large, players become overwhelmed by

their aggregate competition at 𝑥 = (𝜒,..., 𝜒). This is somewhat ironic, since – as was dis‐

cussed in subsection 1.3.3 – competitive pressure is what drives 𝑥 towards this power

structure; when 𝑁 grows large, competitive pressure is also what snuffs it out.

To return to the matter of policy interventions, I establish the following compar‐

ative statics result:

Corollary 1. When 𝜆/4 ≥ 𝐷1𝐶(𝛿, 𝜒), 𝑁̄ I𝜒 is strictly increasing in 𝜆 and strictly decreasing in

𝐷1𝐶(𝛿, 𝜒); otherwise it is increasing in 𝜆 and decreasing in 𝐷1𝐶(𝛿, 𝜒).

Proof. Found in appendix section A.1.1. ■

Lowering 𝐷1𝐶(𝛿, 𝜒) corresponds to decreasing the marginal cost of maintaining

𝜒 units of power; increasing 𝜆 corresponds to loosening institutional constraints on the
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effectivity 𝑒𝜆𝑥⋅ of power 𝑥⋅ (Remark 1). The above corollary suggests that either change

increases 𝑁̄ I𝜒 , so that the escalated inclusive power structure is more robust to group

size. This may seem counter‐intuitive at first, since these policies seem to favor those

who are already powerful.

This is indeed the case: observe that interventions that increase 𝜆 (decrease

𝐷1𝐶(𝛿)) simply serve to increase (decrease) the left‐hand (right‐hand) side of Condition

I, mentioned just above. Recalling the discussion of Proposition 3, Condition I is nec‐

essary and sufficient for the stability of (𝜒 ,..., 𝜒) because it ensures that players’ net

marginal gain of power accumulation is positive when they are all sufficiently power‐

ful. Moreover, any finite increase (decrease) in 𝜆 (𝐷1𝐶(𝛿)) is only a temporary solution

in growing societies, since they only increase 𝑁̄ 𝐼𝜒 by a finite amount.

The hard upper bound 𝜒 on power is also a policy lever; a real world example

is the U.S. Supreme Court’s decision in Citizens United v. FEC (2010), which effectively

made the legal caponpolitical expenditures unbounded. Notice that increasing 𝜒 raises

𝑁̄ 𝐼𝜒 only by diminishing 𝐷1𝐶(𝛿, 𝜒) (Assumption 1). Consequently, the discussion in the

paragraph above also applies here; given the United States’ persistent, alarming rise

in inequality discussed in the introduction, raising 𝜒 may not be helpful. Moreover,

it turns out that in any case this policy lever will only get you so far. As I now show in

Proposition 5.1,making 𝜒 unbounded – like in theCitizensUnited decision – 𝑁̄ 𝐼𝜒 remains

finite in all but a knife‐edge case where the marginal cost of maintaining an arbitrarily

large amount of power becomes arbitrarily close to free. The remainder of this propo‐

sition shows that dictatorships and oligarchies are far more robust to population size.

Proposition 5. Suppose that lim𝜒→∞𝐷1𝐶(𝛿, 𝜒) > 0.25 If 𝜒 is made arbitrarily large, then

1. The group size past which the escalated inclusive power structure is unstable remains

25That is, some 𝜀 > 0 – which may be arbitrarily small – bounds 𝐷1𝐶(𝛿, ⋅) from below. This only leaves
the knife‐edge case where 𝐷1𝐶(𝛿, 𝜒) decays to exactly 0 as 𝜒 → ∞.
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finite.

2. Apart from the trivial case when 𝜆/4 ≤ lim𝜒→∞ 𝐷1𝐶(𝛿, 𝜒),26 dictatorial power struc-

tures remain stable at arbitrarily large group sizes.

3. 𝑘-archies remain stable at arbitrarily large group sizes if 𝑘 is less than or equal to

𝑘̄ ≡
⎧⎪
⎨⎪⎩

⌊ lim𝜒→∞
𝜆+√(𝜆−𝐷1𝐶(𝛿,𝜒))𝜆

𝐷1𝐶(𝛿,𝜒) ⌋ if 𝜆 > lim𝜒→∞ 𝐷1𝐶(𝛿, 𝜒)

0 else.
(1.13)

Otherwise, 𝑘-archies with 𝑘 ∈ {𝑘̄ + 1, 𝑘̄ + 2, …} are not stable at any group size.

Proof. Found in appendix section A.1.1. ■

When 𝜒 → ∞, the restriction of power to [0, 𝜒] becomes relaxed by an arbitrarily

large amount. The first part of this proposition shows that in all but the aforementioned

knife‐edge case, the escalated inclusive power structure still becomes unstable past a

finite group size, and for the same reason as before: players become overwhelmed by

their aggregate competition. However, notice in equation (1.12) that relaxing institu‐

tional constraints on the effectivity of power (i.e. making 𝜆 arbitrarily large) allows the

escalated inclusive power structure to remain stable in arbitrarily large group sizes. Re‐

calling Remark 1, this is effectively amounts to turning conflict into an all‐pay auction.

Proposition 5 provides another interesting implication in its latter two parts: dic‐

tatorships and oligarchies with sufficiently few oligarchs are robust to group size.27 As

I discussed in the Literature Review, this reflects a stylized fact that is far from fully

26When 𝜆/4 ≤ lim𝜒→∞ 𝐷1𝐶(𝛿, 𝜒), the maximum attainable marginal benefit 𝜆/4 (see Figure 1.1) is less
than the marginal cost of maintaining any positive level of power (because of Assumption 1.2) ∀𝑁 ≥ 2.

27Note that keeping 𝜒 fixedwill artificially cause dictatorships and oligarchies to becomeunstable past
a finite group size (details are provided in Propositions 11 and 12 in Appendix A.1.2). Moreover, note that
Since the trivial case of this model is not ruled out by its assumptions, the de‐escalated inclusive power
structure may remain stable at arbitrarily large group sizes (Remark 2).
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understood: power tends to fall into the hands of a few in large groups of people. In

contrast to prevailing explanations, the one provided here does not rely on the partic‐

ular details of political institutions; it simply stems from the nature of incentives in

power accumulation competitions.

To see the intuition for why 𝑘 must be sufficiently small for a 𝑘‐archy to be ro‐

bust to group size, recall that in 𝑘‐archic power structures, each oligarch28 is individu‐

ally equally matched with 𝑘 − 1 other players. When 𝑘 ≤ 𝑘̄, oligarchs face more than

one – but not too many – closely matched opponents, which ensures strong competi‐

tion incentives. Otherwise, the oligarchs become overwhelmed like the players in the

escalated inclusive power structure.

This leaves one final mystery: why do dictatorships remain stable at arbitrarily

large group sizes? Since dictators have no closely matched competitors, shouldn’t their

contest incentives be weak? This is indeed the case when 𝑁 is small, but as 𝑁 becomes

large this story qualitatively shifts.

1.4.2 Comparative Statics of Stable Dictatorial Power

This section characterizes the comparative statics of stable dictatorial power, the

amount of power held by the strongest player (”the dictator”) in a stable dictatorship.

Recall that Proposition 3 established thatweak dictatorships (with dictatorial power 𝑑 ∈
(0, 𝜒)) are stable if and only if

ℎ(⋅, (0,..., 0)) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑, and

ℎ(0, (𝑑, 0,..., 0)) < 𝐷1𝐶(0, 0),
(Condition IV)

28Recall that the strongest players in 𝑘‐archic power structures are termed “oligarchs.”
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and strong dictatorships (with dictatorial power 𝑑 = 𝜒 ) are stable if and only if

ℎ(𝜒, (0,..., 0)) > 𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (𝜒 , 0,..., 0)) < 𝐷1𝐶(0, 0). (Condition V)

Depending onmodel primitives, it is possible for no dictatorships to be stable or formul-

tiple levels of power to be sustained in stable dictatorships as in Figure 1.3 in subsection

1.3.2.29 For ease of exposition, assume throughout this subsection that exactly one level

of power 𝑑 is sustained in a stable dictatorship.30 Analogous results holdwhenmultiple

types of dictatorship are stable, but are substantially more cumbersome to state, and

offer insubstantial additional insight.

Proposition 6. The amount of power held by dictators in stable dictatorships increases in

group size 𝑁 .

Proof. Found in appendix subsection A.1.1. ■

It is natural to expect that larger group sizes lead to stronger dictators. Mechan‐

ically, this is because increasing group size 𝑁 translates the dictator’s marginal benefit

ℎ(⋅, (0, … , 0); 𝑁 ) rightward (equationA.50 in the proof of Proposition 6). This is illustrated

in Figure 1.6a, below. Intuitively, this is because under assumption 2, powerless play‐

ers have a small but non‐zero probability of victory.31 As a result, powerless players

collectively exert competitive pressure on the dictator player. This pressure grows with

the number of powerless players, thereby inducing the dictator to hold an increasingly

high level of power in stable dictatorships. Note that when this level of power is in the

interior of (0, 𝜒), it is strictly increasing in group size 𝑁 . Hence, if 𝜒 is made arbitrar‐

29Recall that the equilibrium dynamics in (1.7) are always unique, hence even when multiple “kinds”
of dictatorships are stable. This is visualized in Figures A.1 and A.2 in Appendix A.1.3.

30Formally put: assume that either (1) Condition IV holds for exactly one 𝑑 ∈ (0, 𝜒) and Condition V
fails or (2) IV fails at all 𝑑 ∈ (0, 𝜒) and Condition V holds.

31As discussed in Hirshleifer (1989), this reflects the noisiness in conflicts. Figure A.5 in Appendix
A.1.3 visualizes how powerless players’ victory probability varies with model primitives.
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ily large, the amount of power held in stable dictatorships grows without bound with

group size.

As 𝑁 becomes large, dictators’ contest incentives – and hence optimal behavior

– start to resemble those of oligarchs in 2‐archies. The way in which dictators optimally

respond to increases in group size is what ultimately causes their contest incentives to

growwith𝑁 and allows dictatorships to be robust to group size in Proposition 5. Strong

dictators emerge when (the rest of) society is collectively strong. While this resembles

Acemoglu and Robinson’s (2022b) main result, there is an added twist: non‐dictator

players are individually powerless, having only collective strength in numbers.
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els of power held in dictatorships (denoted
𝑑𝑁 in this figure) because it shifts the dicta‐
tor’s marginal benefit of power accumula‐
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Figure 1.6: How larger group size induces higher levels of power in stable dictator‐
ships.

Other comparative statics properties of the amount of power 𝑑 held in stable

dictatorships are given in the result below.
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Proposition 7.

1. Uniformly increasing the marginal cost of investment 𝐷1𝐶(⋅, ⋅) decreases 𝑑.

2. 𝑑 is decreasing in 𝛿.

3. d increasing in 𝜆 if and only if 𝜆𝑑−1
𝜆𝑑+1𝑒𝜆𝑑 < 𝑁 − 1.

Proof. Found in appendix subsection A.1.1. ■

Thefirst twoparts of this proposition consider the negative relationship between

the amount of power 𝑑 held by dictators in stable dictatorships and the marginal cost

𝐷1𝐶(𝛿, 𝑑) of maintaining 𝑑 units of power. If the latter value were to increase – say, due

to anunexpected “shock” – thedictator’smarginal cost ofmaintaining 𝑑 would outweigh
the marginal benefit ℎ(𝑑, (0, … , 0)). The dictator consequently lets their power depreci‐

ate until stabilizing at a new, lower level of power.

Conflict noise parameter 𝜆 has a less straightforward relationship with stable

dictatorial power 𝑑. Increasing 𝜆 induces an increase in 𝑑 if and only if they are both

sufficiently small, a requirement that becomes less stringent as 𝑁 increases. As 𝜆 be‐

comes large, simply surpassing the other players – rather than the amount by which

one surpasses – becomes the dominant influencing factor in winning conflicts. The

role played by group size is also natural: larger 𝑁 correspond to more powerless play‐

ers, who always have a strictly positive probability of winning conflicts when 𝜆 < ∞.

Thus, dictators in larger groups face more pressure to maintain higher levels of power

in parallel fashion to Proposition 6.

1.5 Conclusion

This chapter developed an economic theory of how a society’s distribution of

power evolves over time. To investigate the competitive forces that underlie this evo‐
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lution, I studied an intergenerational power accumulation contest among multiple lin‐

eages of players, where power was modeled as an asset that increases one’s chances of

winning conflicts over resources. Given any initial distribution of power, this model

makes a unique equilibrium prediction32 of how it will evolve over time and the sta‐

ble distribution to which it tends in the long run, which always falls into three classes,

termed inclusive, oligarchic, and dictatorial.

This model also makes a far more concerning prediction: in sufficiently large

societies, unregulated political competition inevitably leads to power falling into the

hands of a few. As this turns out, this result generates a novel explanation for the long‐

standing empirical puzzle initiated by Michels (1915), providing a solid game theoreti‐

cal foundation for his Iron Law of Oligarchy. Given this, one may worry that Michels’s

grim portent is unfolding before our very eyes as inequality continues to rise in nations

around the world. There is indeed cause for worry, but only if nothing is done about it.

Despite Michels’s (1915) assertion that “[h]istorical evolution mocks all the pro‐

phylactic measures that have been adopted for the prevention of oligarchy” (p. 406),

this chapter provides a few policy implications on how to safeguard inclusivity in large

societies. Relaxing institutional limits on the capacity of individual actors to influence

political decision‐making or policies that decrease the cost of accumulating said influ‐

ence each turn out to improve the robustness of inclusivity to population size, but with

two major caveats. The first, more obvious limitation is that these measures are local

solutions in the sense that they help societies that are already sufficiently “close” to in‐

clusivity on track to fully achieving it. The second, far more serious caveat is that such

policies can only get one so far: they will never make inclusivity fully robust to popu‐

lation size in all but a knife‐edge case. However, inclusivity can be made fully robust

to population size if one is able to effectively make political conflicts into an all‐pay

32In the absence of shocks to the group’s power structure, the number of players, or any other model
primitives that affect the costs or benefits of accumulating power.
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auction.

These results – as with all of the results in this chapter – are novel in that they

do not hinge on the particular details of political institutions, or on qualitative features

(e.g. culture, geography, etc.) of the societies wherein they reside. Rather, they stem

from two natural features of power accumulation contests: (1) the incentive to accumu‐

late power strengthens with how closely matched one is with one’s opponents and (2)

the marginal cost of accumulating power diminishes with how powerful one already

is. The aforementioned details come into play insofar as they affect the costs and ben‐

efits of power accumulation, and are flexibly handled by this reduced form framework,

which not onlymakes it highly portable but also highlights the potential generality of its

results. Furthermore, this framework helps unify the study of how the distribution of

power evolves in societies, accommodating the endogenous emergence of an unprece‐

dented variety of regimes ranging from dictatorship to inclusivity as well as the various

“shades” of oligarchy in between.33

This chapter forges ahead in an emerging research area which, as Dixit (2021)

discusses, is an exciting and promising one. The developments in this chapter allowed

me to generate previously unattainable insights not only on the nature of political in‐

equality in large societies, but also on themain conclusion of its foundation, Acemoglu

and Robinson (2019, 2022b). While I confirm that competitive pressure is indeed what

allows strong, inclusive regimes to emerge, it is also precisely what causes it to destabi‐

lize in sufficiently large societies.

Further exploring this emerging area of investigation forms part of my research

agenda; as such, I conclude this chapter with a brief discussion of the directions I plan

to pursue in future work. My first priority is to consider the case where longer lived

agents can accumulate productive capital in addition to power. Along with introducing

33These shades of oligarchy themselves range fromdiarchies and triarchies to less concentrated forms
that resemble gentries or the polyarchies studied in Dahl (1971).
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an interesting trade‐off that potentially carries novel implications for economic growth,

this serves an evenmore important purpose: it would allowme to investigate how polit‐

ical and economic inequality interact and the link between their dynamics. Given the

discussion in the Introduction, this is crucially important for fully understanding the

dynamics of each. It may also be fruitful to study the case withmultiple forms of power.

As mentioned earlier, the reduced form nature of this framework was useful for clearly

establishing its overarching takeaways. Now that this has been accomplished, unpack‐

ing the abstract notion of power considered here would facilitate putting data to this

model. Another planned direction is to investigate the internal hierarchies that form

within oligarchies by studying the case where agents can form coalitions. Finally, on

the normative side I am interested in further exploring how one can reallocate power

in practice. Two considerations make this a highly non‐trivial task: first, a social plan‐

ner may face information constraints regarding the distribution of power within the

society over which they preside. The second, more serious challenge stems from the

fact that in practice one cannot rely on a benevolent social planner that is completely

external to society. Societies, of course, must regulate themselves, which presents an

interesting institutional design problem that I plan to explore in future research.

Chapter 1 is currently being prepared for submission for publication of the ma‐

terial. The dissertation author, Frederick Aram Papazyan, is the sole author of this

chapter.
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Chapter 2

Sabotage‐Proof Mechanism Design

2.1 Introduction

Polls – especially those conducted online – are notorious for their lack of robust‐

ness to sabotage; the derailment of online polls by internet trolls1 is a common and

well‐documented occurrence, often producing amusing news articles but also poten‐

tially large costs. Take for instance the 2015–2016 New Zealand flag referendums, where

an online poll was used to crowdsource a replacement for the country’s national flag.

The public gallery of flag submissions quickly became inundated with ridiculous, un‐

usable flags such as those depicted in Figure 2.1, below. This process took well over a

year, cost approximately 26million New Zealand dollars, andwas ultimately fruitless in

producing a new flag. Similar derailments have interfered with crowdsourcing in mar‐

keting campaigns (BBC, 2016), information‐gathering during the 2020 US Presidential

Election (Collins and Popken, 2019; Frenkel et al., 2020; Kennedy, 2020), and even pre‐

vented the government of NorthMacedonia fromproperly counting its own population

(The Economist, 2020).

1A “troll” in this context is someonewho is deliberately trying to derail a poll or any othermechanism
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(a) “Happy Kwi [sic]” by Davy
Lee

(b) “Good Flag” by James Ire‐
land

(c) “Fire the Lazar! [sic]” by
James Gray

(d) “Sheep andHokey Pokey”
by Jesse Gibbs

(e) “Deranged Cat Raking its
Garden” by Jeong Hyuk Fi‐
dan

(f) “Flag‐bearing kiwi” by
George George

Figure 2.1: A sample of noteworthy submissions from the New Zealand Flag Referen‐
dum gallery (New Zealand Government, 2015).

How does one optimally design votingmechanisms in the presence of saboteurs

or trolls?2 This question can be split into two parts: how does one design the entry part

of the mechanism to encourage normal agents and dissuade trolls, and how does one

design the voting part of the mechanism given a fixed population of participants? We

aim to answer both questions in this project. However, so far our results focus on the

second part. It is a natural place to start the analysis and proceed to the entry part via

backward induction. For now, we consider a situation where the entry has already oc‐

curred, and analyze the designer’s problem given a fixed population of participants. In

this framework, we focus on analyzing a few benchmark mechanisms and characteriz‐

ing the optimal mechanism as completely as possible.

We start by analyzing a simple illustrative example with two genuine agents and

one troll. Each genuine agent has a private type corresponding to a bliss point over

2Here, we use “troll” and “saboteur” interchangeably.
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actions the mechanism designer can take. The mechanism designer’s objective is to

maximize the welfare of the genuine agents. There is a common prior over their types.

The designer gathers information through a poll and then takes an action. The troll’s

objective is to minimize the welfare of the genuine agents. We consider two specific

mechanisms as reasonable baselines — “majority rule” and “average‐of‐votes” — for

both methodological and empirical reasons. Choosing the outcome that was voted for

on average is theoretically optimal assuming that trolls are absent, utility is quadratic,

and that it is indeed possible to average over votes.3 On the other hand, choosing the

outcomewith themost votes is by and large themost widely used in polls and elections.

Our project offers insights into how suboptimal these two mechanisms are in the pres‐

ence of trolls.

Analyzing the agents’ equilibrium behavior in the illustration below, we derive

the welfare implications for both mechanisms and compare with the benchmark of

doing nomechanism (“no‐poll benchmark”). In the example, “majority rule” performs

exactly as the no‐poll benchmark, whereas “average‐of‐votes” (amore fine‐tunedmech‐

anism) performs better when ex‐ante uncertainty over types is high, but worse when it

is low.

We then consider amore general model with a fixed number of agents and trolls.

We derive similar predictions as in the Illustration, and show that when ex‐ante un‐

certainty is low, the “average‐of‐votes” mechanism will perform poorly compared to

a blind mechanism. Intuitively, this happens because under low ex‐ante uncertainty

there is little potential gain from gathering information from the agents, but the nega‐

tive impact of trolls is still present in its full force. Consequently, when there is little in‐

formation the designer can potentially gain from an informative mechanism, running

a blind mechanismmay be strictly better.

3For instance, this is possible in the Weber (1929) Problem and in other facility location problems
that followed.
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We derive two important properties of the optimal mechanism. First, we show

that the optimal mechanism has to satisfy a quasi-monotonicity property, which basi‐

cally requires that more votes for a given type result in an action that is closer to that

type’s optimal action. Interestingly, this property is always violated by the “majority

rule” mechanism, which indicates that it is never optimal. Next, we show that the op‐

timal mechanism also has to satisfy an indifference property, which requires the trolls

to be indifferent between their messages. This allows us to reduce the search for the

optimal mechanism to a narrow family of mechanisms that fulfill the property. It also

allows us to generally rule out the “average‐of‐votes” as the optimal mechanism.

Returning to thebenchmarkmechanisms– “average‐of‐votes” and “majority rule”

– we prove that they can be improved in simple ways that rely on the indifference prop‐

erty of the optimal mechanism. The majority rule can be improved by implementing a

supermajority rule with a default option that is informed by the prior. This counteracts

the trolls’ influence in two ways: their votes are less likely to be pivotal, and the default

option is the opposite of what they would vote for under the majority rule. As for the

average‐of‐votes rule, it can be improved by a weighted-average-of-votes mechanism in

which the option that the trolls would vote for receives a lower weight in determining

the outcome than other options. This directly counteracts the trolls’ influence.

Finally, we consider the limit case where the number of trolls is arbitrarily large

and derive a worst‐case result applicable to any (continuous) mechanism. This can

model a situation where trolls have very low costs of entry (and possibly submitting

multiple votes). We show that given any continuous mechanism, trolls can achieve the

worst‐case outcome under it if they are sufficiently numerous. A natural corollary fol‐

lows: if number of trolls is potentially unlimited, the best mechanism for the designer

to implement is a blind (or no‐poll) mechanism, which ignores messages from agents

and chooses the ex‐ante best outcome. This speaks to the observed tendency of online
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polls being shut down or cancelled when a large influx of trolls occurs, and suggests

that such action may indeed be optimal in these circumstances.

At the end of the chapter, we discuss these insights in more detail and outline

future extensions. Most notably, we plan to consider the entry part of the designer’s

problem and see how the presence of trolls affects the optimal population of agents

that the designer wants to attract. We also plan to analyze environments where the de‐

signer’s preferences are not perfectly aligned with the genuine agents’. In this scenario,

it is plausible that the trolls’ desire to hurt the designer could inadvertently improve the

genuine agents’ welfare. For example, in an auction setting, saboteurs could decrease

the auctioneer’s expected revenue, which may be beneficial to the genuine bidders.

Literature Review Our focus in this chapter is on the design of polling mechanisms

in the presence of adversarial saboteurs among the voters. To our knowledge, there are

papers that incorporate a strict subset of these considerations, but not all of them. For

instance Chorppath and Alpcan (2011), Liu et al. (2017), Yang et al. (2017), Brahma et al.

(2022), and Jiang et al. (2022) focus on mechanism design with malicious/adversarial

agents in non‐voting settings. In the literature on electoral competition, (Invernizzi,

2020) studies sabotage within parties and (Hirsch and Kastellec, 2022) studies studies

sabotage between parties. We instead focus on the other side of the ballot‐box (voters)

in polls (i.e. without strategic candidates).

This chapter is also related to the literature on the design of false name‐proof4

mechanisms when anonymous agents can participate more than once (e.g. by creat‐

ing multiple identifiers, botting, etc.). Such mechanisms were originally studied in

combinatorial-auction settings (Yokoo (2003, 2008), Yokoo et al. (2001, 2004, 2006), and

Rastegari et al. (2007)) and only more recently in voting games albeit without saboteurs

4I.e. mechanisms where agents do not have an incentive to participate more than once, even if they
are able to do so.
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(Conitzer (2008), Bachrach and Elkind (2008), Aziz et al. (2011), Elkind et al. (2011), and

Fioravanti and Massó (2022)).

This chapter is also related to Lambert and Shoham (2008), who studies how to

design a surveymechanism that elicits truthful opinions, and toGary‐Bobo and Jaaidane

(2000), who study a pollingmechanism design problem. However, neither paper allows

for saboteurs amongst the voting population as in this chapter. Sabotage is a consider‐

ation more often seen in (dynamic and static) contests (discussed in Chowdhury and

Gürtler (2015)). Most relevant is Ishida (2012), which considers the problem of design‐

ing sabotage‐proof dynamic contests.

2.2 Illustration

Suppose there are three agents, 𝑖 ∈ {1, 2, 3}. Agents 1 and 2 are “genuine” or “nor‐
mal” (interchangeable) agents. Each of them has a type 𝜃𝑖 ∈ {𝛾1, 𝛾2}, with an i.i.d. prior

distribution characterized by P(𝜃𝑖 = 𝛾1) = 𝑝, where 𝑝 ∈ (0; 1). For simplicity, assume

𝛾1 = 1 and 𝛾2 = 2. Agent 3 is a “troll” or “saboteur” (interchangeable) and will be de‐

scribed below.

There is a mechanism designer who wants to maximize the well‐being of agents

1 and 2. The utility function of an agent of type 𝜃𝑖 is given by

𝑢𝑖(𝑎, 𝜃𝑖) = − (𝑎 − 𝜃𝑖)2 ,

where 𝑎 ∈ R is the expected action taken by the designer.5 The objective function of the

designer is given by

𝑉 (𝑎) = E [
2
∑
𝑖=1

𝑢𝑖(𝑎, 𝜃𝑖)] .

5Notice that these agents are risk neutral. If a had instead represented the designer’s realized action,
these agents would be risk averse.
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Agent 3 is a “troll”, or a “saboteur”, whose goal is to reduce the well‐being of

agents 1 and 2 as much as possible. He does not know the agents’ types, but knows the

prior distribution, just as the mechanism designer. In a sense, his objective is entirely

opposite of the designer’s objective.6 Hence, no matter what mechanism the designer

creates, agent 3will participate in a way that ex‐anteminimizes 𝑉 (𝑎). Agents 1 and 2 are
aware of this and can take it into account when choosing how to behave.

In order to maximize the well‐being of agents 1 and 2, the designer can create a

mechanism, which consists of a message set 𝑀 and an outcome rule 𝑥 ∶ 𝑀3 → R. We

limit our attention to direct mechanisms in which agents report their types, i.e. 𝑀 =
{1, 2}. The choice of a mechanism then boils down to choosing the outcome function.

There are two baseline mechanisms we will consider. The first will be referred

to as “majority rule”, where the designer implements the action equal to the mode of

observed messages (and randomizes in case of a tie). It closely matches the design of

online polls discussed in the Introduction. The second mechanism will be referred to

as “average‐of‐messages rule”, where the designer implements the action equal to the

average of observed messages.7 This mechanism is optimal in the absence of trolls,

given the quadratic‐loss utility function of the normal agents.

As we will see, both mechanisms have their comparative strengths and weak‐

nesses when it comes to solving the designer’s problem. In short, the majority rule

is less susceptible to the influence of trolls, since they have to be pivotal in order to

affect the outcome. On the other hand, the average‐of‐votes rule incorporates more

information from the normal agents and has the potential to better match the average

type of the agents. However, that potential can be limited by the increased influence

of trolls, who no longer need to be pivotal in order to affect the outcome. In fact, we

6Note that the designer does not care about the troll’s well‐being. One way to interpret this assump‐
tion is that the troll comes from outside the population of agents that the designer cares about, e.g. a
foreigner participating in a poll about purely domestic matters.

7Recall that 𝛾1 = 1 and 𝛾2 = 2, so messages are just real numbers.
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show that this mechanism might perform worse than doing no mechanism at all — a

“blind mechanism” benchmark, where the designer always takes the ex‐ante best ac‐

tion. This occurs when there is little information that can be gained through the poll

to begin with, in which case the negative influence of trolls outweighs the positive gain

frommore information.

The next two subsections outline a detailed analysis of the two baseline mecha‐

nisms.

Majority rule

As implied by its name, this outcome rule selects the mode of the received mes‐

sages when themode is unique; otherwise, we assume that the outcome rule uniformly

randomizes between the choices tied for first. Formally, if m represents the vector of

observed messages, then

𝑥(m) ≡ U {mode(m)}. (2.1)

How do the genuine agents and the troll behave in this mechanism?

Lemma 1. Fix mechanism 𝑀 = {1, 2} and 𝑥(m) ≡ U {mode(m)}, and assume that genuine

agents always break indifference in favor of telling the truth. Then any BNE of the resulting

game is for genuine agents to tell the truth and for the troll to tell either 𝑚3 = 1 or 𝑚3 = 2 (he

is indifferent).

The proof of this lemma can be found in Appendix A.2.1. Intuitively, any agent’s

vote matters only when that agent is pivotal. For genuine agents, that means that their

decision matters only when the other agent and the troll split votes, in which case the

agent strictly prefers to tell the truth.8 For the troll, his decisionmatters only when the

8Our assumption about the indifference‐breaking rule eliminates nonsensical equilibria where all
agents always say the same message.
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genuine agents are (truthfully) splitting the vote, inwhich case he is indifferent between

saying 1 (and hurting type 2) or saying 2 (and hurting type 1). Importantly, this is not the

case when there is more than one troll, and we plan to consider this case in subsequent

work.

Let us now consider the welfare implications of the “majority rule” mechanism.

Given the BNE described in Lemma 1 (for argument’s sake, assume 𝑚3 = 2), the ex‐ante
welfare of agents is equal to

𝑉𝑀𝑉𝑊 = 𝑝2 ⋅ 0 + 2𝑝(1 − 𝑝) ⋅ (− (0)2 − (1)2) + (1 − 𝑝)2 ⋅ 0 = −2𝑝(1 − 𝑝) (2.2)

Our benchmark for welfare is the no‐poll scenario, under which the designer

does not create any mechanism and simply takes the ex‐ante best action. That action

should maximize the objective function,

𝑉𝑁𝑃 (𝑎) = −𝑝2 ⋅ 2 (𝑎 − 1)2 − 2𝑝(1 − 𝑝) ⋅ ((𝑎 − 1)2 + (𝑎 − 2)2) − (1 − 𝑝)2 ⋅ 2 (𝑎 − 2)2 .

which has the corresponding first order condition,

−4𝑝2(𝑎 − 1) − 4𝑝(1 − 𝑝) ⋅ (2𝑎 − 3) − 4(1 − 𝑝)2(𝑎 − 2) = 0

Solving this first order condition for 𝑎 yields 𝑎 = 2 − 𝑝 as the designer’s ex‐ante best

action.9

Under this action, we can show that the agents’ welfare (after a few algebraic

9Note that 𝜕2
𝜕𝑎2 𝑉𝑁𝑃 (𝐴) = −4𝑝2 − 8(1 − 𝑝)𝑝 − 4(1 − 𝑝)2

44



simplifications) is given by

𝑉𝑁𝑃 = −2𝑝2(1 − 𝑝)2 − 2𝑝(1 − 𝑝)((1 − 𝑝)2 + 𝑝2) − 2(1 − 𝑝)2𝑝2

= −2𝑝(1 − 𝑝).

Note that this is exactly the same as 𝑉𝑀𝑉𝑊 . This implies that running a “majority rule”

mechanism leads to the same welfare as running no mechanism at all! The presence

of the troll completely nullifies the effectiveness of the mechanism in conveying infor‐

mation to the designer.

Average‐of‐votes

This outcome rule simply takes the average of the messages received by the

mechanism designer. Formally,

𝑥(m) ≡ 1
𝑁

𝑁
∑
𝑖=1

𝑚𝑖 (2.3)

Similarly to the “majority rule” discussion, let us find the equilibrium in the re‐

sulting game between the genuine agents and the troll.

Lemma2. Fixmechanism𝑀 = {1, 2} and 𝑥(m) ≡ 1
𝑁 ∑𝑁

𝑖=1 𝑚𝑖, and assume that genuine agents

always break indifference in favor of telling the truth. Then the unique BNE of the resulting

game involves the genuine players telling the truth and the troll playing the following strategy:

𝑚∗3𝑇 =

⎧⎪⎪
⎨⎪⎪
⎩

1, if 𝑝 < 1
2

{1, 2}, if 𝑝 = 1
2

2, if 𝑝 > 1
2 .

The proof of this lemma can be found in Appendix A.2.2. Intuition behind it
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is similar to that of Lemma 1, with the exception that now the troll is not indifferent

between messages because he is able to affect the outcome in all cases (as opposed to

only the cases where he is pivotal in the “majority rule” mechanism).

Let us now consider the welfare implications of the “average‐of‐votes” mecha‐

nism. Assume 𝑝 > 1
2 (to pin down the exact message of the troll). Given the BNE de‐

scribed in Lemma 2 , the ex‐ante welfare of the genuine agents is equal to

𝑉𝐴𝑀 = 𝑝2 ⋅ 2 (− (13)
2
) + 2𝑝(1 − 𝑝) ⋅ (− (23)

2
− (−13)

2
) + (1 − 𝑝)2 ⋅ 0

= −29𝑝
2 − 10

9 𝑝(1 − 𝑝) = −29𝑝 (5 − 4𝑝) .

Let us now compare it to the no‐poll benchmark. We already know that under it

the designer’s problem is exactly the same as the one already considered in the “major‐

ity rule” discussion, so the optimal action is 𝑎 = 2 − 𝑝 and the attained welfare is

𝑉𝑁𝑃 = −2𝑝(1 − 𝑝).

When is this outcome better than the one provided by “average‐of‐votes” mechanism?

Note:

𝑉𝐴𝑀 < 𝑉𝑁𝑃 ⇔ −29𝑝 (5 − 4𝑝) < −2𝑝(1 − 𝑝) ⇔ 𝑝 > 4
5.

That is, if 𝑝 is sufficiently high, the no‐poll benchmark (as well as the “majority rule”

mechanism)provideshigherwelfare than the “average‐of‐votes”mechanism. Intuitively,

this happens because there is little ex‐ante uncertainty over the distribution of types of

the genuine agents, meaning that the no‐poll benchmark performs relatively well. This

also means that there is little information that could potentially be gained from run‐

ning the “average‐of‐votes” mechanism, while the negative effect of the troll’s presence

still remains in full force. Therefore, if ex‐ante uncertainty over the type distribution
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is sufficiently low, the “average‐of‐votes” mechanism loses to the no‐poll benchmark

and to the “majority rule” mechanism. On the other hand, if the ex‐ante uncertainty is

sufficiently high, there is a lot of information to be gained from the “average‐of‐votes”

mechanism, so it is worth choosing it over the considered alternatives.

2.3 Model

In this section, we introduce a general model of voting mechanism design with

a finite number of voters and trolls (or saboteurs). We focus on the case of two types

in the interest of clearly presenting our results.10 We will partially characterize the

optimalmechanism by showing that it must satisfy a particular “indifference property”

for the saboteurs. Wewill also analyze theperformanceof twobenchmarkmechanisms

— majority rule and average-of-votes rule. Finally, we will finish by discussing how these

benchmark mechanisms can be improved in simple ways to account for the presence

of the saboteurs.

2.3.1 Setting

There is a designer that can take a public action 𝑎 ∈ R and 𝑁 “genuine”/“normal”

voters. Each voter 𝑖 has a type 𝜃𝑖 ∈ {𝛾1, 𝛾2} =∶ Γ that is i.i.d. with P(𝜃𝑖 = 𝛾1) = 𝑝. This is
common knowledge. A voter of type 𝜃 has a standard quadratic‐loss utility function

𝑢(𝑎, 𝜃) = −(𝑎 − 𝜃)2.

We make the assumption of a specific functional form for tractability of analysis. In

general, we can assume any single‐peaked utility function (so that it has a bliss point).

10Our main results in subsections 2.3.2 and 2.3.3 can be straightforwardly extended to the case with
an arbitrary, finite number of types.

47



The designer’s objective function is to maximize the expected aggregate welfare

of the genuine voters voters:

𝑈 (𝑎) = E [
𝑁
∑
𝑖=1

𝑢(𝑎, 𝜃𝑖)] .

In addition to the 𝑁 genuine agents, the voting population also contains 𝑇 trolls (or

saboteurs). Each troll agent has objective function that is diametrically opposed to that

of the designer:

𝑢𝑇 (𝑎) ≡ −E [
𝑁
∑
𝑖=1

𝑢(𝑎, 𝜃𝑖)]] = −𝑈 (𝑎).

Hence, their goal is to minimize the designer’s objective function.

In order to choose 𝑎, the designer picks a voting mechanism which specifies a

message set𝑀 and an outcome rule 𝑔 ∶ 𝑀𝑁+𝑇 → R. Wewill focus on directmechanisms

that allow voters to submit a report of their type. Formally, 𝑀 = {𝛾1, 𝛾2}. The messages

of voters and trolls are indistinguishable to the designer, but she knows that there are

𝑁 voters and 𝑇 trolls. Given that there are two types, we can express a mechanism’s

outcome rule as a mapping 𝑔 ∶ {0, 1, … , 𝑁 + 𝑇 } → [𝛾1, 𝛾2] from the number of votes for

𝜃 = 1 into an outcome 𝑎 ∈ [𝛾1, 𝛾2].11

The timing of themodel is as follows. Nature draws the types of the voters, {𝜃𝑖}𝑁𝑖=1.
The designer announces and commits to a mechanism 𝑔. Voters and trolls submit mes‐

sages to themechanism. The outcome is picked according to 𝑔 and submittedmessages,

and payoffs realize.

Before we proceed to the analysis of the optimal mechanism, it is useful to an‐

alyze a benchmark case where there are no trolls. Suppose 𝑇 = 0. The designer then

faces a straightforward problem of eliciting types of the voters and picking the best ac‐

tion. Given that the voters vote sincerely, the designer will observe {𝜃𝑖}𝑁𝑖=1. Maximizing

11We allow for “compromise” outcomes, in which the designer picks action 𝑎 ∈ (𝛾1, 𝛾2).
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aggregate welfare:

max
𝑎∈[1,2]

−
𝑁
∑
𝑖=1

(𝑎 − 𝜃𝑖)2 ⟹ 𝑎∗ = 1
𝑁

𝑁
∑
𝑖=1

𝜃𝑖.

In other words, the optimal mechanismwithout the trolls is the average‐of‐votes. Here‐

after, we will describe a mechanism by its outcome rule 𝑔(𝑘) for all 𝑘 ∈ {0, 1, … , 𝑁 + 𝑇 },
where 𝑘 is the number of votes for the lower type, 𝛾1.

Lemma 3. If 𝑇 = 0, the optimal mechanism is the average-of-votes rule, i.e. the outcome rule

is

𝑔(𝑘) = 𝑘
𝑁 𝛾1 + 𝑁 − 𝑘

𝑁 𝛾2.

It is useful to examine what happens to the performance of the average‐of‐votes

mechanism (denoted by 𝑔𝑎𝑣 ). We will also compare its performance to that of a “blind

mechanism” (𝑔𝑏), which ignores the votes and always picks the ex‐ante best action. Us‐

ing the prior, we can find that action to be

𝑔𝑏(𝑘) = argmax
𝑎

E𝜃𝑖 [
𝑁
∑
𝑖=1

−(𝑎 − 𝜃𝑖)2] ⟹ 𝑔𝑏(𝑘) = 𝑝𝛾1 + (1 − 𝑝)𝛾2.

Suppose there are some trolls, 𝑇 ≥ 1. The average‐of‐votes mechanism is now

defined as

𝑔𝑎𝑣 (𝑘) = 𝑘
𝑁 + 𝑇 𝛾1 +

𝑁 + 𝑇 − 𝑘
𝑁 + 𝑇 𝛾2.

Wecan show that the trolls’ best strategy under thismechanism is to vote for the ex‐ante

less likely type. For concreteness, assume 𝑝 > 1
2 , which makes 𝛾2 the less likely type.

Lemma 4. Assume 𝑝 > 1
2 . Under 𝑔𝑎𝑣 , the trolls optimally vote for 𝜃 = 𝛾2.

Since the average‐of‐votes mechanism does not account for the trolls’ presence,

the designer’s expected welfare is smaller than when 𝑇 = 0. However, sometimes trolls

not only reduce the effectiveness of the mechanism, but can completely overturn any
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welfare improvement that it generates in their absence.

Lemma 5. The expected welfare under 𝑔𝑎𝑣 is strictly lower than under the blind mechanism

𝑔𝑏 if and only if

𝑝 > 𝑁 + 2𝑇
𝑁 + 2𝑇 + 𝑇 2 =∶ ̄𝑝.

Note that if 𝑇 = 0, this inequality turns into 𝑝 > 1. This is expected: without

trolls, the average‐of‐votes mechanism will always outperform the blind mechanism.

The lemma also sheds light on the circumstances when ignoring information from the

voters can be beneficial. When 𝑝 is large (close to 1), there is little ex‐ante uncertainty
about the average type in the voter population. As a result, there is little benefit in

gathering information about voters’ types in the first place. This leads a mechanism

that doesn’t put any weight on the prior to perform worse than picking the ex‐ante best

action.
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Figure 2.2: How ̄𝑝 ∶= 𝑁+2𝑇
𝑁+2𝑇+𝑇 2 from Lemma 5 varies with 𝑁 and 𝑇 .

Figure 2.2 demonstrates how ̄𝑝 depends on 𝑁 and 𝑇 . If we focus on a specific

level curve, we can observe that when 𝑇 needs to increase at a slower rate than 𝑁 to

maintain the same level of ̄𝑝. Technically, 𝑇 needs to grow at the rate proportional to
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√𝑁 .

2.3.2 Properties of the Optimal Mechanism

This section derives two properties of the optimal mechanism in the given set‐

ting — quasi-monotonicity and an indifference condition. The first property puts reason‐

able bounds on the optimal mechanism and allows us to rule out the majority rule as

the optimal mechanism. The second property puts a strict restriction on the optimal

mechanism that generally rules out the “average‐of‐votes” mechanism. Additionally,

we can use the insights of the indifference condition to suggest simple improvements

to both of these benchmark mechanisms.

Suppose that the designer observes 𝑘 votes given for type 𝜃 = 𝛾1. Given that

there are 𝑇 trolls in total, the true number of genuine agents of type 𝜃 = 𝛾1 can be from

max{𝑘−𝑇 , 0} tomin{𝑘+𝑇 , 𝑁 }. This allowsus toput some reasonableboundson theoptimal

mechanism’s outcome rule. The following proposition describes them formally.

Proposition 1. If 𝑔 is an optimal mechanism, then for any 𝑘 ∈ {0, 1, … , 𝑁 + 𝑇 }

𝑘
𝑁 𝛾1 + 𝑁 − 𝑘

𝑁 𝛾2 ≤ 𝑔(𝑘) ≤ max{𝑘 − 𝑇 , 0}
𝑁 𝛾1 + min{𝑁 − 𝑘 + 𝑇 , 𝑁 }

𝑁 𝛾2.

This property canbedescribed as quasi‐monotonicitywith respect to votes. Rou‐

ghly speaking, the optimal mechanism’s action should be increasing in the number of

votes that are cast for type 𝜃 = 𝛾2. Theremay be local non‐monotonicity, but overall the

outcome rule should fall within the given bounds. This property is clearly satisfied by

the “average‐of‐votes” mechanism, but it is not satisfied by the “majority rule” mecha‐

nism. Therefore, we can conclude that the latter mechanism is not optimal under any

prior 𝑝 and any number of voters or trolls.

Can the “average‐of‐votes” mechanism be optimal, then? The next property of
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the optimal mechanism sheds some light on this.

Proposition 2. Under the optimal mechanism, the trolls are indifferent between sending 𝑚 =
𝛾1 and 𝑚 = 𝛾2.

We refer to this as the indifference property, since the optimal mechanism has

to keep the trolls indifferent between all messages. Intuitively, when the trolls are not

indifferent, the designer can slightly adjust the outcome rule under the mechanism

without changing the trolls’ best reply. This allows the designer to improve aggregate

welfare under that strategy (and potentially worsen it under other strategies). This bit‐

by‐bit optimization remains possible until the designer reaches a mechanism in which

the trolls are indifferent between sending either message. Notably, this result can be

readily generalized to a settingwithmore than two types; then, the optimalmechanism

must keep the trolls indifferent between all messages.

The indifference property has two main benefits. First, it allows us to rule out a

lot of potentialmechanisms and focus on anarrow family of those that keep the trolls in‐

different. “average‐of‐votes” mechanism generally does not satisfy the property. The

only situation where it does is where 𝑝 = 0.5. In that case, the trolls are indifferent

between sending either messages, and it turns out that the “average‐of‐votes” is the op‐

timal mechanism in that case. However, in any other situation the mechanism is not

optimal because it violates the indifference property.

Second, the indifference property is a useful tool for reducing the computational

complexity of searching for the optimal mechanism. In a general setting with 𝑁 voters,

𝑇 trolls and 𝑘 types, a mechanism has to specify 𝑘𝑁+𝑇 outcomes. Proposition 2 puts
𝑘(𝑘−1)

2 equations that restrict these variables. As a result, it reduces the dimensionality

of the set of mechanisms that one needs to search through.

The impact of the indifference property can be seen visually in Figure 2.3, which

depicts the designer’s expected utility for the case𝑁 = 2 and 𝑇 = 1 and for various priors
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𝑝. Recall that in this case, a mechanism is characterized by {𝑔(0), 𝑔(1), 𝑔(2), 𝑔(3)}, where
𝑔(𝑘) is the outcome conditional on observing 𝑘 votes for 𝛾1. Correspondingly, the axes

in each subfigure capture 𝑔(1) and 𝑔(2) through the weights placed on 𝛾1.12

We can observe that the designer’s utility is generally higher along a dotted line

in each subfigure. This dotted line depicts the set of mechanisms that satisfy the indif‐

ference property from Proposition 2. As can be seen, the designer’s utility is generally

higher the closer the mechanism is to the dotted line. Intuitively, the closer a mecha‐

nism is to making trolls indifferent, the better (on average) it is. We can also see the

computational impact of the indifference property, which reduces the dimensionality

of the set of candidate mechanisms from 2 (a square) to 1 (a line).
We are currently investigating the designer’s problem under the indifference re‐

striction in order to see whether we can explicitly derive the optimal mechanism.

12For instance, if theweight placed on 𝛾1 under 1 vote for 𝛾1 is equal to 0.4, thatmeans 𝑔(1) = 0.4𝛾1+0.6𝛾2.
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Figure 2.3: Graphical illustration of the optimal mechanism for the case with 𝑁 = 2
genuine voters and 𝑇 = 1 troll voter, for various levels of 𝑝. The white star denotes
the optimal mechanism. The dotted line that the star is situated on is the family of
mechanisms that make the troll indifferent between messages.
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2.3.3 Improving BenchmarkMechanisms

In this section, we will propose ways to improve two benchmark mechanisms —

majority rule and average‐of‐votes rule — by using the indifference property.

Under both mechanisms, the trolls’ optimal strategy is the same. They can vote

for themore likely type 𝛾113 or the less likely type 𝛾2. To decrease the expected aggregate
welfare, trolls should vote for the less likely type. This introduce a bias against the prior

into the mechanisms’ outcomes. In order to improve aggregate welfare, the designer

should tweak the mechanisms in a way that introduces bias towards the prior. We will

show an intuitive way to do that for both benchmark mechanisms.

First, consider the majority rule. A common modification of this mechanism is

a supermajority rule, which makes it harder to affect the outcome of the vote by small

deviations in the vote distribution. One needs to also specify what happens if the su‐

permajority is not reached, which we refer to as the default option. This is where the

designer can put some bias towards the prior and offset the influence of the trolls. We

will show that modifying themajority rule in this way can improve its expected welfare.

Formally, let 𝑔𝑚𝑟 be themajority‐rulemechanism and 𝑔𝛼,𝑥𝑠𝑚𝑟 be an 𝛼‐supermajority

rule with default outcome 𝑥. The outcome 𝑥 is implemented if neither 𝛾1 nor 𝛾2 gets
enough votes to meet the threshold 𝛼. Naturally, we only consider 𝛼 > 1

2 . Before we

proceed to the result, recall that 𝑝 ≥ 1
2 , i.e., type 𝜃 = 𝛾1 is ex‐antemore likely in the voter

population. The resultwill assume that there are at least 3 trolls in order to avoid a trivial
case where changing the supermajority rule does not change the expected outcome.

Proposition 3. Suppose 𝑇 ≥ 3. There exists 𝛼 > 1
2 such that the expected welfare under

mechanism 𝑔𝛼,𝛾1𝑠𝑚𝑟 is strictly larger than the expected welfare under 𝑔𝑚𝑟 for any 𝛼 ∈ (12 , 𝛼).

Intuitively, the supermajority rule limits the trolls’ influence in two ways. First,

13Recall that we assume P(𝜃𝑖 = 𝛾1) = 𝑝 > 1
2 .
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it makes it less likely that their vote is pivotal. Second, it incorporates a bias towards

the prior in its default option. Note that in the Proposition, the supermajority rule picks

𝑎 = 𝛾1 (the more likely type from ex‐ante perspective) as its default option. This works

to counteract the trolls’ influence in the cases where they were previously pivotal.

Nowwe turn our attention to the average‐of‐votesmechanism. Themechanism’s

performance suffers in a similar fashion to the majority rule—trolls vote for the less

likely type and bias the outcome against the prior. One natural way to adjust the mech‐

anism is by changing the weights assigned to each vote. In the benchmarkmechanism,

votes for 𝛾1 and 𝛾2 receive equal vote in determining the outcome. The designer can

introduce a bias towards the prior by assigning a larger weight in the outcome to the

vote for the more likely type, 𝛾1.
Formally, let 𝑔𝑎𝑚(𝛽) be the weighted‐average‐of‐votes rule in which votes for 𝛾1

receive weight 𝛽 and weights for 𝛾2 receive weight 1. For example, if there are 𝑘 votes
for 𝛾1 and 𝑁 + 𝑇 − 𝑘 votes for 𝛾2, the outcome under 𝑔𝛽𝑎𝑚 would be

𝑔𝛽𝑎𝑚(𝑘) = 𝑘𝛽
𝑘𝛽 + (𝑁 + 𝑇 − 𝑘)𝛾1 +

𝑁 + 𝑇 − 𝑘
𝑘𝛽 + (𝑁 + 𝑇 − 𝑘)𝛾2.

Note that 𝛽 = 1 corresponds to the benchmark average‐of‐votes rule.

Proposition 4. There exists 𝛽 > 1 such that the expected welfare under 𝑔𝛽𝑎𝑚 is strictly higher

than the expected welfare under 𝑔1𝑎𝑚 for any 𝛽 ∈ (1, 𝛽).

Theweighted‐average‐of‐votes rule counters the trolls’ influence in adirectway—

by decreasing the weight of votes for the troll‐preferred option in determining the out‐

come.
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2.4 Limit Environment: Trolls Ruin Everything

In this section, wewill consider the effect of the trolls on amechanism’s outcome

when the number of trolls becomes large. For this purpose, we will restrict attention

to direct mechanisms that map distribution of votes into a distribution over outcomes.

Put more formally, we consider a direct mechanism that is characterized by the out‐

come rule, 𝑔 ∶ ΔΓ → ΔΓ.14 Note that the argument of the mechanism is a distribution

over votes (which are types due to directness of the mechanism), whereas the output

of the mechanism is a distribution over outcomes (which are types by a reasonable as‐

sumption).15

Let 𝑔(ΔΓ) denote the set of possible distributions over outcomes thatmechanism

𝑔 can generate. Let

𝑡 = min
𝑥∈𝑔(ΔΓ)

𝑉 (𝑥) = min
𝑥∈𝑔(ΔΓ)

E [
𝑁
∑
𝑖=1

𝑢𝑖(𝑥, 𝜃𝑖)]

be theworst utility (from ex‐ante perspective) that themechanismmay generate for the

designer. Let 𝜋𝑡 be the distribution of votes that produces that outcomes, i.e. 𝑉 (𝑔(𝜋𝑡)) =
𝑡. This is the ideal scenario for the trolls, given that their aim is to minimize the de‐

signer’s objective function. The following result focuses on trolls’ ability to manipulate

the mechanism to produce that scenario.

Before we introduce the result, let us introduce some notations. We will call a

mechanism 𝑔 continuous if 𝑔 ∶ ΔΓ → ΔΓ is a continuous mapping. Let 𝑝(𝜃, 𝑇 ) denote a

distribution of votes that is produced when normal agents have types 𝜃 = (𝜃1, … , 𝜃𝑁 ) and
trolls’ vote distribution is 𝜋(𝑇 ), which is defined as follows:

𝜋(𝑇 ) = min
𝜋∈𝐹(𝑇 )

|𝜋 − 𝜋𝑡 |,

14Recall that Γ = {𝛾1, 𝛾2} denotes the type space.
15Alternative way to view this is to map a distribution of votes into an outcome that is in the span of Γ,

when such an outcome can be defined. This is the case for the “average‐of‐votes” mechanism.
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where 𝐹(𝑇 ) = {𝜋 ∈ ΔΓ | ∀𝛾𝑖, 𝜋(𝛾𝑖) = 𝑘
𝑇 for some 𝑘 ∈ N }. Given these notations, we have the

following result:

Proposition 5. Fix a continuous mechanism 𝑔 ∶ ΔΓ → ΔΓ. Then for any 𝜃 and any 𝜖 > 0,
there exists ̄𝑇 such that if 𝑇 > ̄𝑇 , we have |𝑉 (𝑔(𝜋(𝜃, 𝑇 ))) − 𝑡| < 𝜖.

This result can be interpreted as follows. Fixing any continuous mechanism,

there will be a distribution of votes 𝜋𝑡 that produces the (ex‐ante) worst outcome under

this mechanism. If trolls are sufficiently numerous, they can get the actual distribution

of votes arbitrarily close to 𝜋𝑡 no matter the distribution of normal agents’ types. And

hence, due to continuity of the mechanism, they can get its outcome 𝑔(𝜋(𝜃, 𝑇 )) arbitrar‐
ily close to 𝑔(𝜋𝑡).

Letting 𝑇 grow to potentially unlimited extent may seem implausible at first,

since it relies on trolls being able to enter in large numbers at little to no cost. How‐

ever, this is a common feature of open‐access online polls that have been discussed

in the Introduction as part of our motivation. Several of those polls have clear signs

of “botting”, which is a practice of creating dozens and hundreds fake accounts or en‐

tries in order to participate in a poll. In these circumstances, having 𝑇 grow arbitrarily

large is not a strange assumption, and may have actually contributed to the organizers’

decision to shut down those polls, as we will see below.

Note that Proposition 5 places the designer into worst‐case analysis territory of

mechanism design. She knows that trolls, provided that they are sufficiently numer‐

ous, may get the outcome of any mechanism arbitrarily close to the worst case of that

mechanism. Given this, shemay evaluate mechanisms based on their worst case alone

and pick the best mechanism based on that evaluation.

Oneoption that is always open to thedesigner is to simply pick adistributionover

outcomes that is best from the ex‐ante perspective. Wewill refer to this as a blindmech‐

anism, since it does not gather any information from the agents and picks a distribution
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over outcomes based on the prior alone. Formally, a blindmechanism is characterized

by function 𝑔𝑏 ∶ ΔΓ → ΔΓ such that ∀𝜋 ∈ ΔΓ, 𝑔𝑏(𝜋) ∈ argmax𝑥∈ΔΓ 𝑉 (𝑥).

Lemma 6. Let 𝑔𝑏 be a blind mechanism and 𝑔 be any other continuous mechanism. Let 𝜋𝑡 be
the worst-case distribution of votes for 𝑔. Then 𝑉 (𝑔(𝜋𝑡)) ≤ 𝑉 (𝑔𝑏(⋅)).

This result easily follows from the definition of a blind mechanism. Since 𝑔𝑏
always maps any distribution of votes into argmax𝑥∈ΔΓ 𝑉 (𝑥), and since 𝑔(𝑝𝑡) is the worst‐
case outcome for 𝑔, it must be that 𝑉 (𝑔(𝑝𝑡)) ≤ max𝑥∈ΔΓ 𝑉 (𝑥). This implies 𝑉 (𝑔(𝑝𝑡)) ≤
𝑉 (𝑔𝑏(⋅)).

Lemma 6 indicates that when the designer expects toomany trolls to participate

in her mechanism, her best option might be to “shut down” the mechanism and run

a blind one. This relates our analysis to motivational examples in the Introduction,

where most online polls that were infiltrated by trolls were shut down by organizers.

Our analysis provides theoretical rationale for such a decision, and also suggests when

it is optimal. In particular, it is optimal to run ablindmechanismwhen costs of entering

the mechanism are very low for trolls, i.e. in situations where trolls will be sufficiently

numerous to bias the outcome towards the worst‐case scenario.

2.5 Discussion and Next Steps

We have studied two baseline mechanisms of gathering information in the pres‐

ence of trolls: “average‐of‐votes” and “majority rule”. Moreover, the “majority rule”

mechanism performs exactly the same as the no‐poll benchmark, meaning that it does

not give the designer any additional information that he can use. We have also shown

that it is not clear which mechanism is comparatively better: if the ex‐ante uncertainty

over the best action is high, a more flexible option (“average‐of‐votes”) is better, and

vice versa. This suggests that more simple, rigid mechanisms may perform better in
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the presence of trolls when there is relatively little ex‐ante uncertainty over what the

best action is. And if the opposite is the case, then more flexible mechanisms may per‐

form better. We plan to study this conjecture in a more general setting and determine

its truth value.

Another important question to ask is what role commitment plays in the pres‐

ence of trolls. In classical papers on limited commitment, it has been shown that a

mechanismdesigner generally performs betterwhenhehas access to full commitment.

However, in the environment where some agents actively try to sabotage his mecha‐

nisms, the power to commit may actually hurt the designer’s objective. If he commits

to a certain mechanism, then trolls will be able to take full advantage of it. They might

not be able to do so if the designer does not fully commit to a mechanism. This discus‐

sion can be related to the examples from Introduction, where many online polls were

rejected or shut down after it was discovered that trolls had a major influence over the

outcome. If the designer picks amechanismwhere he has to best respond to his beliefs

about the agents’ types, it imposes an interesting constraint on the trolls — they have

to conceal themselves among legitimate messages in order to avoid being “detected”.

We plan to formalize this analysis and determine whether it is indeed true that full‐

commitment mechanisms perform worse (on some metric) than limited‐commitment

mechanisms.

It is also important to consider environments where the designer’s objective is

not aligned with that of the normal agents, e.g. auction or classical principal‐agent set‐

ting. Apart from doing the same analysis of trolls’ influence on the welfare of normal

agents, we could also now disentangle two alternative models of trolls’ preferences —

anti‐agents and anti‐designer. In the first case, the trolls wish to hurt the aggregate wel‐

fare of the normal agents, which is similar to our current example. In the second case,

trolls wish to hurt the designer asmuch as possible, which could have non‐trivial effects
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on the welfare of normal agents.

To sum up, our future analysis includes studying full‐commitment mechanisms

more generally and check whether the insights we have gained so far hold there. In

addition, we plan to compare full‐commitmentmechanismswith limited‐commitment

mechanisms and see whether the latter generally perform better against trolls’ influ‐

ence than the former. We also plan to extend analysis to the case where the designer’s

preferences are not aligned with preferences of normal agents.

Chapter 2 is currently planned for submission for publication of the material.

Danil Dmitriev and the dissertation author, Frederick Aram Papazyan, are co‐authors

of this chapter.
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Chapter 3

Strategic Misdirection

3.1 Introduction

From political interviews and debates to courtroom examinations and hearings,

eliciting information about a state from others regularly requires deciding between

multiple lines of inquiry (information sources) whose informativeness is ex ante un‐

certain. Take for instance a regulator who gauges the efficacy of a novel vaccine de‐

veloped by pharmaceutical company, who discloses the results of various studies they

ran. Suppose that each study measured the effect of their vaccine on a distinct met‐

ric, each of which may – or may not – be relevant to the vaccine’s immunization ability

due to the presence of a confounding factor that the company privately knows to be

present/absent. Even if study results are verifiable – which prevents the company from

lying about them – the relevance of these results may not be possible to verify. This

poses a non‐trivial challenge to the regulator: even if study results are verifiable, and

all evidence is disclosed, towhat extent can the regulator learn? Would it ever be benefi‐

cial for the company to fully disclose all of their results, even when they have a positive

result they know is uninformative and a negative result they know to be informative?
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To study these questions I consider an evidence disclosure game played by a

Bayesian Sender and Receiver who have a common prior over a payoff‐relevant state, a

confound, and the signals produced over two information sources, which are all binary

and have a commonly‐known information structure. Given the realizations of the state

and the confound, one source produces a perfectly informative signal of the state, while

the other source produces a signal that is completely uninformative about the state (be‐

ing drawn independently of the realization of the state). Only the Sender observes the

realizations of each source’s signal and the confound (hence, they know which source

is ir/relevant).1 After observing these realizations, the Sender chooses whether to dis‐

close the realization from the relevant source, the irrelevant source, or the realizations

from both sources. After observing what the Sender disclosed, the Receiver updates

their beliefs using Bayes’ rule whenever possible. Finally, the Receiver takes a real‐

valued action that affects the payoffs of both players. The Receiver is assumed to face

a quadratic loss utility function (so that their bliss point is the state) while the Sender’s

utility function is a linear, strictly increasing function of the action chosen by the Re‐

ceiver. (Hence, Senders always have an incentive to positively influence the Receiver’s

action choice.)

I show that it is possible to observe full disclosure of information sources in per‐

fect Bayesian equilibrium. However, I also show that in any perfect Bayesian equilib‐

rium, Senders who see opposing draws of each sources signal must pool. Hence, when

sources produce signals that oppose one another, the Receiver necessarily does not up‐

date about the relevance of each source in equilibrium (in the sense that their posterior

belief about the confound is equal to their prior). Consequently, it is possible for the

Receiver’s posterior belief over the state to be equal to their prior, even after all infor‐

mation is disclosed.

1Hence, they can perfectly infer the realization of the state.
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Related Literature This chapter is related to Liang andMu (2020), who study howmy‐

opic agents can fall into “learning traps” when the informativeness of signals is ex ante

uncertain. The main departure of this model from Liang and Mu (2020) is that the Re‐

ceiver above relies on a strategic information provider (namely, the Sender). In con‐

trast, the information provider in their model is non‐strategic in that it always reveals

the source requested by the Receiver. A related framework is Liang et al. (2022). This is

largely a special case of Liang and Mu (2020) where confounding variables are absent

(as a result, optimizing agents always learn efficiently).

The communication game I consider also has parallels with Bull and Watson

(2019) and Shishkin (2021). In those papers, a Sender possibly observes an informa‐

tion source and then chooses whether to reveal it or to stay silent. Another paper that

studies signals of uncertain informativeness is Acemoglu et al. (2016); they show that

this causes asymptotic agreement between two Bayesian learners to become fragile.2

Hendricks andMcAfee (2006) is related in that it focuses on a specific type of diversion‐

ary tactic known as a feint. Finally, Sobel (2020) is relevant to this chapter through its

definition of “deception.”

Liang and Mu (2020) is part of a burgeoning collection of papers that study the

attentional misdirection of agents who learn “in isolation.”3 These papers focus on

how agents can be misdirected due to myopia (Liang and Mu, 2020), misspecification

Spiegler (2016, 2020, 2021), or the use of improper updating rules (Schwartzstein (2014)

and He (2018)). The results of Koçak (2018) also heavily depend on assuming agents

use improper updating rules, but does feature a Sender, distinguishing itself from the

aforementioned papers. That being said, the model he considers is qualitatively quite

2Note that in contrast to their paper, a common‐prior assumption is made below for simplicity. Re‐
laxing this assumptionwould likely have a highly non‐trivial and interesting effect on the Sender’s ability
to influence the Receiver using irrelevant information; I plan to explore this in the future.

3I.e. without a strategic intermediary – such as the Sender of this chapter – between the agent and
information sources.
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different from the one considered here.

As a disclosure game with verifiable information, this chapter is related to Mil‐

grom (1981), Grossman (1981), Shishkin (2021), Martini (2022), and Titova (2022). Apart

from the information structure of the game considered here, the setup I consider is

standard in this literature.

This chapter is also related to the literature on narratives (Glazer and Rubinstein

(2021), Eliaz and Spiegler (2020), Bénabou et al. (2019), and Lang (2020)) as well as to

papers that study how models are used to create spurious correlations (Spiegler et al.,

2021) or to persuade (Schwartzstein and Sunderam, 2021). Bayesian networks – which

are considered in most of the just aforementioned papers – are also relevant to the

present chapter, since the unknowns and sources in this chapter form a Bayesian net‐

work. Pearl (1985, 2000) are seminal works of this literature. The type of Bayesian net‐

work considered in this chapter is somewhat similar to the commonly‐used “Noisy‐OR

gate” class of Bayesian network. Oniśko et al. (2001) consider the problem of learning

the parameters of a Bayesian network with a small data set using a Noisy‐OR gate.

The rest of this chapter is structured as follows: section 3.2 establishes themodel,

section 3.3 contains the definition of perfect Bayesian equilibrium and the results of

this chapter, and section 3.4 contains concluding remarks. Proofs of all of the results

are found in Appendix A.3.

3.2 Model

Two players named Sender and Receiver play a one‐shot strategic communica‐

tion game. The following information structure is common‐knowledge: first, a (payoff-
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relevant) state 𝜔 ∈ {𝐿, 𝐻} is drawn according to the following probabilities:

P{𝜔 = 𝐻} ≡ 𝜇 ∈ (0, 1); P{𝜔 = 𝐿} ≡ 1 − 𝜇. (3.1)

I assume that -∞<𝐿<𝐻<∞; I interpret 𝐿 as a Low draw and 𝐻 as a High draw. Next, a

confounding variable 𝐶 ∈ {1, 2} is drawn (independently of the state 𝜔) according to the

following probabilities:

P{𝐶 = 1} ≡ 𝛾1 ∈ (0, 1); P{𝐶 = 2} ≡ 𝛾2 = 1 − 𝛾1. (3.2)

Afterwards, two information sources 𝑖 ∈ {1, 2} each produce a signal 𝑋𝑖 ∈ {𝐿, 𝐻} that
are conditionally independent given (𝜔, 𝐶),4 and are drawn according to the following

conditional probability distribution, where I assume that 𝜈𝑖 ∈ (0, 1) ∀𝑖 ∈ {1, 2}.
Table 3.1: Conditional probability distribution of source 𝑖’s signal, 𝑋𝑖, given state 𝜔 and
confound 𝐶, where 𝑖 ∈ {1, 2}.

P{𝑋𝑖=𝐿|𝜔, 𝐶} P{𝑋𝑖=𝐻|𝜔, 𝐶}
𝜔 = 𝐿 𝐶 = 𝑖 1 0
𝜔 = 𝐻 𝐶 = 𝑖 0 1
𝜔 = 𝐿 𝐶 ≠ 𝑖 1-𝜈𝑖 𝜈𝑖
𝜔 = 𝐻 𝐶 ≠ 𝑖 1-𝜈𝑖 𝜈𝑖

Notice that if 𝐶 = 𝑐, then source 𝑖 = 𝑐 produces a perfectly informative signal for 𝜔
while the other source 𝑖′ ≠ 𝑐 produces a signal that is completely uninformative about 𝜔.
Hence, 𝐶 pins down which source is relevant to learning about the state, 𝜔, and which

sourse is irrelevant.

Before (𝜔, 𝐶, 𝑋1, 𝑋2) aredrawn, players have a commonprior 𝜋(⋅)over (𝜔, 𝐶, 𝑋1, 𝑋2)

4I.e. P{𝑋1, 𝑋2|𝜔, 𝐶} = P{𝑋1|𝜔, 𝐶} ⋅ P{𝑋2|𝜔, 𝐶} ∀(𝑋1, 𝑋2, 𝜔, 𝐶), where P{𝑋𝑖|𝜔, 𝐶} is given in Table 3.1.
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𝜔
𝜔 P{𝜔}
L 1-𝜇
H 𝜇

state

𝐶
𝐶 P{𝐶}
1 𝛾1
2 𝛾2

confound

𝑋1

𝜔 𝐶 P{𝑋1=𝐿|𝜔, 𝐶} P{𝑋1=𝐻|𝜔, 𝐶}
L 1 1 0
H 1 0 1
L 2 1-𝜈1 𝜈1
H 2 1-𝜈1 𝜈1

source 1
signal

𝑋2

𝜔 𝐶 P{𝑋2=𝐿|𝜔, 𝐶} P{𝑋2=𝐻|𝜔, 𝐶}
L 1 1-𝜈2 𝜈2
H 1 1-𝜈2 𝜈2
L 2 1 0
H 2 0 1

source 2
signal

Figure3.1: Graphical representation of the conditional in/dependence structure of the
state 𝜔, confound 𝐶, and source signals 𝑋1 and 𝑋2, using a Bayesian network.

that conforms to the above description; formally, it is given by

𝜋(𝜔=𝜔̂, 𝐶=𝑐, 𝑋1=𝑥1, 𝑋2=𝑥2) ≡ P{𝜔=𝜔̂}P{𝐶=𝑐}
2

∏
𝑖=1

P{𝑋𝑖=𝑥𝑖|𝜔=𝜔̂, 𝐶=𝑐} (3.3)

where P{𝜔 = ⋅} and P{𝐶 = ⋅} and respectively given in equations (3.1) and (3.2), and

P{𝑋𝑖 = ⋅|𝜔 = ⋅, 𝐶 = ⋅} is given in Table 3.1. The Receiver does not directly observe 𝜔,𝐶,𝑋1

or 𝑋2.

The timing of the game proceeds as follows. First, state 𝜔 ∈ {𝐿, 𝐻} and confound

𝐶 ∈ {1, 2} are randomly (and independently) drawn according to equations (3.1) and

(3.2), respectively. Given realization (𝜔, 𝐶) = (𝜔̂, 𝑐), source 𝑖 ∈ {1, 2} then produces signal

𝑋𝑖 ∈ {𝐿, 𝐻} according to the conditional probabilities in Table 3.1. Let 𝑥𝑖 denote the

realization of 𝑋𝑖. R does not directly observe 𝜔, 𝐶, 𝑋1, or 𝑋2. S observes realizations

of each source signal (𝑋1, 𝑋2) = (𝑥1, 𝑥2), and the realization of the confound 𝐶 = 𝑐. I

henceforth refer to 𝜃 = (𝑥1, 𝑥2, 𝑐) as the Sender’s type. After observing their type, the

Sender forms a posterior belief 𝜋𝑆(⋅|𝑥1, 𝑥2, 𝑐) over (𝜔, 𝐶, 𝑋1, 𝑋2) using Bayes’ rule. Note

that since the Sender knows the identity of the relevant source (𝑐) and the realization
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of each source (𝑥1, 𝑥2) they can infer that 𝜔 = 𝑥𝑐 with probability 1. Therefore, upon

observing their type, the Sender’s posterior belief is degenerate:

𝜋 𝑠(𝜔, 𝐶, 𝑋1, 𝑋2|𝐶=𝑐, 𝑋1=𝑥1, 𝑋2=𝑥2} = 1{(𝜔, 𝐶, 𝑋1, 𝑋2) = (𝑥𝑐 , 𝑐, 𝑥1, 𝑥2)}. (3.4)

After observing their type, S then chooses which signal(s) – if any – to disclose.

Formally, they send a message 𝑚 from the following set:

M𝑥1,𝑥2 ≡ {𝑚𝑥1∅, 𝑚∅𝑥2 , 𝑚𝑥1𝑥2} . (3.5)

I assume it is common knowledge that given (𝑋1, 𝑋1) = (𝑥1, 𝑥2), the Sender can only send

messages from the above set ∀(𝑥1, 𝑥2) ∈ {𝐿, 𝐻}2. Since message 𝑚 = 𝑚𝑥1𝑥2 is available to

the Sender if and only if the Sender observed (𝑋1, 𝑋2) = (𝑥1𝑥2), it is commonly under‐

stood as “𝑋1 = 𝑥1 and 𝑋2 = 𝑥2.” Message 𝑚 = 𝑚𝑥1∅ is available to the Sender if and only

if (𝑋1, 𝑋2) ∈ {(𝑥1𝐿), (𝑥1, 𝐻 )}, and is hence commonly understood as “𝑋1 = 𝑥1.” Similarly,

message 𝑚 = 𝑚∅𝑥2 is available to the Sender only if (𝑋1, 𝑋2) ∈ {(𝐿, 𝑥2), (𝐻 , 𝑥2)}, and is

hence commonly understood as “𝑋2 = 𝑥2.”

Remark 3. Notice that source signal realizations are verifiable information, while the

identity of the relevant source (pinned down by realization 𝐶 = 𝑐) is not verifiable infor‐
mation. That is: the Sender cannot “lie” about signal realizations but they can disclose

signal realizations they know to be uninformative about the state.5

After observing the Sender’s message 𝑚, the Receiver forms a posterior belief

𝜋𝑅(⋅|𝑚) over (𝜔, 𝐶, 𝑋1, 𝑋2) using Bayes’ rule whenever possible. Let 𝜋𝑅𝜔 (⋅|𝑚) denote the

5For example, a Sender that observed (𝑋1, 𝑋2, 𝐶) = (𝑥1, 𝑥2, 1) cannot send message 𝑚𝑧1𝑧2 if𝑧𝑖 ∈ {𝐿, 𝐻} ⧵ {𝑥𝑖} for any 𝑖 ∈ {1, 2}, but they are free to send message 𝑚𝑥1 ,𝑥2 or 𝑚∅𝑥2 .
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marginal distribution of 𝜔 under posterior belief 𝜋𝑅(⋅|𝑚), which is given by

𝜋𝑅𝜔 (𝜔̃|𝑚) ≡
2
∑
̃𝑐=1

∑
𝑥̃1∈{𝐿,𝐻}

∑
𝑥̃2∈{𝐿,𝐻}

𝜋𝑅(𝜔=𝜔̃, 𝐶= ̃𝑐, 𝑋1=𝑥̃1, 𝑋2=𝑥̃2|𝑚). (3.6)

Furthermore, let 𝜇𝑅(𝑚) ≡ 𝜋𝑅(𝐻 |𝑚) denote the probability assigned to the event, 𝜔 = 𝐻 ,

under posterior belief 𝜋𝑅(⋅|𝑚). After forming their posterior belief, R takes an action

𝑎 ∈ R; R and S then respectively earn the following payoffs:

𝑢𝑅(𝑎, 𝜔) = −(𝑎 − 𝜔)2; 𝑢𝑆(𝑎) = 𝑎. (3.7)

Therefore, given posterior belief 𝜋𝑅, R earns expected payoff

E𝜔∼𝜋𝑅𝜔 (⋅|𝑚) [𝑢𝑅(𝜔, 𝑎)] = (1 − 𝜇𝑅(𝑚))[−(𝐿 − 𝑎)2] + 𝜇𝑅(𝑚)[−(𝐻 − 𝑎)2]. (3.8)

Since 𝑅 faces a quadratic loss utility function, they essentially want to match the state

in the sense that their expected utility (given posterior belief 𝜋𝑅) is maximized when

𝑎 = (1 − 𝜇𝑅(𝑚))𝐿 + 𝜇𝑅(𝑚)𝐻 = E𝜔∼𝜋𝑅𝜔 (⋅|𝑚)[𝜔]. However, 𝑆 has a state‐independent payoff

and simply wants 𝑅 to take as high an action as possible.

3.3 Equilibrium

The Sender’s disclosure strategy 𝜎 ∶ {𝐿, 𝐻}2 × {1, 2} → Δ (M𝑥1,𝑥2) maps their type

𝜃 ≡ (𝑥1, 𝑥2, 𝑐) to a distribution 𝜎(⋅|𝑥1, 𝑥2, 𝑐) over messages 𝑚 inM𝑥1,𝑥2. Since source signal

realizations are verifiable information, we necessarily have 𝜎(𝑚𝑧1𝑧2 |𝑥1, 𝑥2, 𝑐) = 0 if 𝑧1 ∈
{𝐿, 𝐻}⧵{𝑥1} or 𝑧2 ∈ {𝐿, 𝐻}⧵{𝑥2}. I now turn attention to the Receiver’s beliefs and strategies.
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Let the set of all messages that are possible for the Receiver to observe be denoted by

M ≡ ⋃
(𝑥1,𝑥2)∈{𝐿,𝐻}2

M𝑥1,𝑥2 = {𝑚𝐿∅, 𝑚𝐻∅, 𝑚∅𝐿, 𝑚∅𝐻 , 𝑚𝐿𝐿, 𝑚𝐿𝐻 , 𝑚𝐻𝐿, 𝑚𝐻𝐻 }. (3.9)

After observing message 𝑚 ∈ M, R forms a posterior belief 𝜋𝑅(⋅|𝑚) over (𝜔, 𝐶, 𝑋1, 𝑋2)
using Bayes’ rule, whenever possible. When using Bayes’ rule is possible, 𝜋𝑅(⋅|𝑚) is
given as follows:

𝜋𝑅(𝜔, 𝐶, 𝑋1, 𝑋2|𝑚) =
𝜎(𝑚|𝑥1, 𝑥2, 𝑐)𝜋(𝜔, 𝐶, 𝑋1, 𝑋2)

∑
𝜔̃∈{𝐿,𝑅}

∑
̃𝑐∈{1,2}

∑
̃𝑥1∈{𝐿,𝑅}

∑
̃𝑥2∈{𝐿,𝑅}

𝜎(𝑚| ̃𝑥1, ̃𝑥2, ̃𝑐)𝜋(𝜔̃, ̃𝑐, ̃𝑥1, ̃𝑥2)
(3.10)

Since information about signal realizations is verifiable, note that R has a degen‐

erate belief over 𝑋𝑖 if it is disclosed by the Sender.6 The Receiver’s action strategy

𝛼 ∶ Δ({𝐿, 𝐻}) ×M → Δ(R)

maps the Receiver’s posterior beliefs 𝜋𝑅(⋅|𝑚) and the Sender’s message 𝑚 to a distribu‐

tion over actions 𝑎 ∈ R.

The Sender’s expected utility from playing disclosure strategy 𝜎 after observing

(𝑋1, 𝑋2, 𝐶) = (𝑥1, 𝑥2, 𝑐), keeping the Receiver’s action strategy 𝛼 fixed, is given by

𝑉𝑠(𝛼, 𝜎 |𝑥1, 𝑥2, 𝑐) = E𝑚∼𝜎(⋅|𝑥1,𝑥2,𝑐) [E𝑎∼𝛼(⋅|𝑚,𝜋𝑅(⋅|𝑚)) [𝑢𝑆(𝑎)]] . (3.11)

TheReceiver’s expectedutility fromplaying action strategy 𝛼 afterhavingobservedmes‐

6Put in more formal terms: the Receiver’s posterior belief 𝜋𝑅(⋅|𝑚) is degenerate over 𝑋1 if they ob‐
serve message 𝑚 ∈ {𝑚𝐿∅, 𝑚𝐻∅, 𝑚𝐿𝐻 , 𝑚𝐿𝐿, 𝑚𝐻𝐿, 𝑚𝐻𝐻 } and it is degenerate over 𝑋2 if they observe message
𝑚 ∈ {𝑚∅𝐿, 𝑚∅𝐻 , 𝑚𝐿𝐻 , 𝑚𝐿𝐿, 𝑚𝐻𝐿, 𝑚𝐻𝐻 }.
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sage 𝑚 ∈ M is given by

𝑉𝑅(𝛼, 𝜎 |𝑚) = E𝑎∼𝛼(⋅|𝑚,𝜋𝑅(⋅|𝑚)) [E𝜔∼𝜋𝑅𝜔 (⋅|𝑚) [𝑢𝑅(𝑎, 𝜔)]] . (3.12)

In this chapter, I focus on perfect Bayesian equilibrium which is defined as follows.

Definition 2. A perfect Bayesian equilibrium consists of a Sender’s disclosure strategy

𝜎∗, Receiver’s action strategy 𝛼∗, and Receiver’s posterior belief 𝜋𝑅(⋅|⋅) over (𝜔, 𝐶, 𝑋1, 𝑋2)
given 𝑚 ∈ M such that

(i) 𝜎∗(⋅|𝑥1, 𝑥2, 𝑐) ∈ argmax𝜎(⋅|𝑥1,𝑥2,𝑐)∈Δ(M𝑥1𝑥2) 𝑉𝑠(𝛼
∗, 𝜎 |𝑥1, 𝑥2, 𝑐) ∀𝑥1, 𝑥2, 𝑐

(ii) 𝛼∗ (⋅|𝑚, 𝜋𝑅(⋅|𝑚)) ∈ argmax𝛼(⋅|𝑚,𝜋𝑅(⋅|𝑚))∈Δ(R) 𝑉𝑅(𝛼, 𝜎∗|𝑚) ∀𝑚, 𝜋𝑅(⋅|𝑚)

(iii) 𝜋𝑅(⋅|𝑚) is formed using Bayes’ rule and prior belief 𝜋 (in equation 3.3) whenever

possible.

(iv) 𝜋𝑅(𝜔, 𝐶, 𝑋1 ≠ 𝑥1, 𝑋2|𝑚) = 0 if 𝑚 ∈ {𝑚𝑥1∅, 𝑚𝑥1𝐿, 𝑚𝑥1𝐻 } for some 𝑥1 ∈ {𝐿, 𝐻}, and
𝜋𝑅(𝜔, 𝐶, 𝑋1, 𝑋2 ≠ 𝑥2|𝑚) = 0 if 𝑚 ∈ {𝑚∅𝑥2 , 𝑚𝐿𝑥2 , 𝑚𝐻𝑥2} for some 𝑥2 ∈ {𝐿, 𝐻}.

In words: (i) says that the Sender’s disclosure strategymaximizes their expected

payoff given the Receiver’s strategy and the Sender’s type (𝑥1, 𝑥2, 𝑐), for every type of

Sender; (ii) says that, given the Sender’s strategy, the Receiver’s strategy maximizes

their expected payoff, given any message they receive and any posterior belief they

hold; (iii) says that the Receiver’s posterior belief over (𝜔, 𝐶, 𝑋1, 𝑋2) given message 𝑚
is calculated using Bayes’ rule whenever possible; (iv) says that the Receiver’s posterior

beliefs on and off the equilibrium path are degenerate over any source signal that is re‐

vealed. This last condition ensures that whenever the Receiver observes, say, message

𝑚𝐻∅, they are certain that 𝑋1 = 𝐻 , regardless of whether 𝑚𝐻∅ was observed on or off

the equilibrium path. This reflects the fact that it is common knowledge that source
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signal realizations are verifiable in the sense that the Sender can only send messages

fromM𝑥1𝑥2 given that they observed (𝑋1, 𝑋2) = (𝑥1, 𝑥2).

(H,1,H,H)
(H,2,H,H)

(L,1,H,H)
(L,2,H,H)

(H,1,H,L)
(L,2,H,L)

(H,2,H,L)
(L,1,H,L)

(H,2,L,H)
(L,1,L,H)

(H,1,L,H)
(L,2,L,H)

(L,1,L,L)
(L,2,L,L)

(H,1,L,L)
(H,2,L,L)

supp 𝜋(⋅)

{𝐿, 𝐻 }×{1, 2}×{𝐿, 𝐻}2

supp 𝜋𝑅(⋅|𝑚∅𝐻 ) ⊆
supp 𝜋𝑅(⋅|𝑚𝐻𝐻 ) ⊆ supp 𝜋𝑅(⋅|𝑚𝐿𝐻 ) ⊆

supp 𝜋𝑅(⋅|𝑚𝐿∅) ⊆

⊇supp 𝜋𝑅(⋅|𝑚∅𝐿)⊇supp 𝜋𝑅(⋅|𝑚𝐻∅)
⊇supp 𝜋𝑅(⋅|𝑚𝐿𝐿)⊇supp 𝜋𝑅(⋅|𝑚𝐻𝐿)

Figure 3.2: Visualization of the support of agents’ common prior 𝜋(⋅) and how the
support of the Receiver’s posterior belief 𝜋𝑅(⋅|𝑚) varies with 𝑚 ∈ M. Each quatruple
above is an element (𝜔̂, 𝑐, 𝑥1, 𝑥2) of {𝐿, 𝐻 } × {1, 2} × {𝐿, 𝐻}2.

Figure 3.2 summarizes how observing (on‐ or off‐path) message 𝑚 ∈ M restricts

the Receiver’s posterior belief 𝜋𝑅(⋅|𝑚) over (𝜔, 𝐶, 𝑋1, 𝑋2). This yields two observations

that are useful to note before turning our attention to characterizing perfect Bayesian

equilibria.

Observation 1. In any perfect Bayesian equilibrium, 𝜇𝑅(𝑚𝐻𝐻 ) = 1 and 𝜇𝑅(𝑚𝐿𝐿) = 0must

hold, regardless of whether 𝑚 ∈ {𝑚𝐿𝐿, 𝑚𝐻𝐻 } is sent on or off the equilibrium path.

While Figure 3.2 demonstrates themechanical reason for why this observation is

true, the intuition is as follows: when S discloses that both source signals areHigh (Low)

draws, R can perfectly infer the state must be High (Low), because one of the sources

must be relevant, and the relevant source is a perfectly informative signal of the state.
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Observation 2. If 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 } is sent off the equilibrium path, then there exists

a 𝜋 𝑟 (⋅|𝑚) that satisfies condition (iv) of Definition 2 such that 𝜇𝑅(𝑚) = 𝜓 , for any chosen
𝜓 ∈ [0, 1].

Informally put, the aboveobservation says that “anything goes,” for theReceiver’s

posterior beliefs about the state after observing any message 𝑚 ∈ ⧵{𝑚𝐿𝐿, 𝑚𝐻𝐻 } off the

equilibrium path. That is, when 𝑚 is a message that corresponds to full disclosure of

conflicting evidence (i.e.𝑚 ∈ {𝑚𝐻𝐿, 𝑚𝐿𝐻 }) or partial disclosure (𝑚 ∈ {𝑚∅𝐻 , 𝑚∅𝐿, 𝑚𝐻∅, 𝑚𝐿∅}).
Notice that in Figure 3.2, R’s posterior 𝜋𝑅(⋅|𝑚) formed after observing each suchmessage

has a support that is permitted (by condition (iv) of Definition 2) to include 𝐻 and 𝐿 re‐

alizations of the state. The intuition is most easily seen in the case of full disclosure of

conflicting evidence: after observing, say, message 𝑚 = 𝑚𝐻𝐿 off the equilibrium path,

condition (iv) of Definition 2 requires that

𝜋𝑅(𝐻 , 1, 𝐻 , 𝐿|𝑚𝐻𝐿) + 𝜋𝑅(𝐿, 2, 𝐻 , 𝐿|𝑚𝐻𝐿) = 1.

Hence, 𝜇𝑅(𝑚𝐻𝐿) is pinned down by R’s belief over the identity of the relevant source

(which is determined by 𝐶). Notice that given the above equation, any 𝜇𝑅(𝑚𝐻𝐿) ∈ [0, 1]
can be achieved while complying with condition (iv) of Definition 2. As we will see

below, the common‐knowledge information structure will also yield structure to R’s off

path beliefs, which will allow for them to be interpreted in terms of the information

structure.

Remark 4. Under the setup of this chapter, assuming that beliefs satisfy condition (iv)

in Definition 2 is equivalent to assuming the consistency requirement from Kreps and

Wilson (1982). This is shown in Lemma 7, which is found in appendix section A.3.2.

Because of this equivalence, all perfect Bayesian equilibria of the game considered in

this chapter are also sequential equilibria (which are defined in Kreps andWilson (1982)).
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In this chapter, I focus on pure strategy perfect Bayesian equilibrium, which

I henceforth refer to simply as “equilibrium” in the interest of concision. Condition

(ii) of Definition 2 thence requires 𝛼∗(⋅|𝑚, 𝜋𝑅(⋅|𝑚)) to place probability 1 on action 𝑎 =
𝑎∗(⋅|𝑚, 𝜋𝑅(⋅|𝑚)) given by

𝑎∗(⋅|𝑚, 𝜋𝑅(⋅|𝑚)) ≡ argmax
𝑎∈R

{
E𝜔∼𝜋𝑅𝜔 (⋅|𝑚)[𝑢𝑅(𝑎,𝜔)]

⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴[1 − 𝜇𝑅(𝑚)] [−(𝐿 − 𝑎)2] + 𝜇𝑅(𝑚) [−(𝐻 − 𝑎)2] }

= [1 − 𝜇𝑅(𝑚)] 𝐿 + 𝜇𝑅(𝑚)𝐻⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
E𝜔∼𝜋𝑅𝜔 (⋅|𝑚)[𝜔]

(3.13)

for every 𝑚 ∈ M and 𝜇𝑅(𝑚), both on and off the equilibrium path. Therefore, condition

(i) requires that 𝜎∗(⋅|𝑥1, 𝑥2, 𝑐) place probability 1 on message 𝑚 = 𝑠∗𝑥1𝑥2𝑐 such that

𝑠∗𝑥1𝑥2𝑐 ∈ argmax
𝑚∈M𝑥1𝑥2𝑐

{
𝑢𝑠(𝑎∗(⋅|𝑚,𝜋𝑅(⋅|𝑚)))

⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴[1 − 𝜇𝑅(𝑚)] 𝐿 + 𝜇𝑅(𝑚)𝐻 } = argmax
𝑚∈M𝑥1𝑥2𝑐

{𝜇𝑅(𝑚)} (3.14)

holds for every (𝑥1, 𝑥2, 𝑐). The above equality implies that in equilibrium each type

(𝑥1, 𝑥2, 𝑐) of Sender, behaves as if they choose the message 𝑠 = 𝑚∗𝑥1𝑥2𝑐 ∈ M𝑥1𝑥2 that maxi‐

mizes theReceiver’s posterior belief 𝜇𝑅(𝑚) that the state is high after observing𝑚, taking
the messages chosen by other Senders as given.7 For readers’ convenience, probability

tables for 𝜇𝑅(⋅) are provided in Tables A.1‐A.6 in appendix section A.3.1.

In Proposition 8, I show that full disclosure of source signals is always possible in

equilibrium, for any choice of model primitives.

Proposition 8. There is a pure-strategy equilibrium where each type (𝑥1, 𝑥2, 𝑐) sends message

𝑚𝑥1𝑥2 with probability 1.

7Note that the equality in (3.14) holds because [1-𝜇𝑅(𝑚)] 𝐿+𝜇𝑅(𝑚)𝐻=𝐿+(𝐻-𝐿)𝜇𝑅(𝑚) and 𝐻>𝐿.
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The proof of this proposition is found in subsection A.3.3 of Appendix A.3, and

the intuition is as follows: Types (𝐻 , 𝐻 , 1) and (𝐻 , 𝐻 , 2) each send𝑚𝐻𝐻 . Since 𝜇𝑅(𝑚𝐻𝐻 ) =
1, neither typehas a profitable deviation. Types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) each send𝑚𝐿𝐿. Since

𝜇𝑅(𝑚𝐿𝐿) = 0, it follows that in order for neither (𝐿, 𝐿, 1)nor (𝐿, 𝐿, 2) to have a profitable de‐
viation, wemust have 𝜇𝑅(𝑚𝐿∅) = 0 = 𝜇𝑅(𝑚∅𝐿).Notice that these equalities are equivalent
to requiring the following:

supp 𝜋𝑅(⋅|𝑚∅𝐿) ⊆ {(𝐿, 1, 𝐿, 𝐿), (𝐿, 2, 𝐿, 𝐿), (𝐿, 2, 𝐻 , 𝐿)};

supp 𝜋𝑅(⋅|𝑚𝐿∅) ⊆ {(𝐿, 1, 𝐿, 𝐿), (𝐿, 2, 𝐿, 𝐿), (𝐿, 1, 𝐿, 𝐻)}.

In words, this is saying that when R observes partial disclosure of a single Low draw

off the equilibrium path, they believe (with certainty) that the Sender is concealing a

Low draw from the relevant source. Recalling Figure 3.2, this is equivalent to saying

that R believes that the Sender is concealing a High draw from the relevant source with

probability zero. Hence, R believes that a deviation to disclosing a single 𝐿 realization

must come from a type of S that observed an 𝐿 realization of the relevant source.

Finally, we turn our attention to S types who saw conflicting signal realizations.

Types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) each send 𝑚 = 𝑚𝐻𝐿 with probability 1, and types (𝐿, 𝐻 , 1) and
(𝐿, 𝐻 , 2) each send 𝑚 = 𝑚𝐿𝐻 with probability 1. As a result, we have

𝜇𝑅(𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
; 𝜇𝑅(𝑚𝐿𝐻 ) =

𝛾2(1 − 𝜈1)𝜇
𝛾2(1 − 𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)

, (3.15)

by Tables A.2 and A.1, respectively. Therefore, in order for neither (𝐻 , 𝐿, 1) nor (𝐻 , 𝐿, 2)
to have a profitable deviation, we must have

𝜇𝑅(𝑚𝐻∅) ≤
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
= 𝜇𝑅(𝑚𝐻𝐿). (3.16)
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Similarly, in order for neither (𝐿, 𝐻 , 1) nor (𝐿, 𝐻 , 2) to have a profitable deviation, we

must have

𝜇𝑅(𝑚∅𝐻 ) ≤
𝛾2(1 − 𝜈1)𝜇

𝛾2(1 − 𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)
= 𝜇𝑅(𝑚𝐿𝐻 ). (3.17)

As mentioned earlier, the common‐knowledge information structure of this game al‐

lows for an interpretation of these inequalities. Notice that one can rearrange the in‐

equality 𝜇𝑅(𝑚𝐻∅) ≤ 𝜇𝑅(𝑚𝐻𝐿) in (3.16) to arrive at the following equivalent equality:

𝜋𝑅(𝐿, 2, 𝐻 , 𝐿|𝑚𝐻𝐿)
𝜋𝑅(𝐻 , 1, 𝐻 , 𝐿|𝑚𝐻𝐿)

≤ 𝜋𝑅(𝐿, 2, 𝐻 , 𝐿|𝑚𝐻∅)
𝜋𝑅(𝐻 , 1, 𝐻 , 𝐿|𝑚𝐻∅)

. (3.16′)

Notice that the left‐hand (right‐hand) term in the above inequality is the posterior odds

ratio of S’s type being (𝑥1, 𝑥2, 𝑐) = (𝐻 , 𝐿, 2) to their type being (𝑥1, 𝑥2, 𝑐) = (𝐻 , 𝐿, 1)under the
posterior belief R forms after observing on‐path message 𝑚𝐻𝐿 (off‐path message 𝑚𝐻∅).

In words, the inequality in (3.16′) says that when the Receiver observes only partial dis‐

closure (of a High draw from the first source) off the equilibrium path, they believe that

it ismore likely that the Sender is concealing aLowdraw from the relevant source thana

Low draw from the irrelevant source. Hence, the Receiver believes that Senders of type

(𝐻 , 𝐿, 1) aremore likely than those of type (𝐻 , 𝐿, 2) to deviate from sendingmessage𝑚𝐻𝐿

to message 𝑚𝐻∅.

Notice that the full source disclosure equilibrium necessarily involves pooling

of types (𝑥1, 𝑥2, 1) and (𝑥1, 𝑥2, 2) ∀𝑥1, 𝑥2, so that the Receiver’s posterior belief over 𝐶 is the

same as their prior after every message sent on the equilibrium path. As mentioned

just above, this does not affect the Receiver’s ability to learn if 𝑥1 = 𝑥2: after observ‐

ing 𝑚𝐻𝐻 (𝑚𝐿𝐿), the Receiver’s posterior belief assigns probability 1 to the event 𝜔 = 𝐻
(𝜔 = 𝐿). However, this can impede the Receiver’s ability to learn when the Sender holds

contradictory evidence (𝑥1 ≠ 𝑥2). In fact, the Receiver can potentially learn very little

(or even nothing) about about the state after observing full disclosure of contradictory
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Figure 3.3: Heat maps visualizing 𝜇𝑅(𝑚𝐻𝐿) (left‐hand side) and 𝜇𝑅(𝑚𝐿𝐻 ) (right‐hand
side) in the full source disclosure equilibrium when 𝜇=0.5=𝛾1=𝛾2, for various combina‐
tions of (𝜈1, 𝜈2) ∈ (0, 1)2.

Figure 3.3 illustrates the extremecasewhere there ismaximal ex anteuncertainty

regarding the state (𝜇 = 0.5) and the identity of the ir/relevant source (𝛾1 = 0.5 = 𝛾2).
Notice that when 𝜈2 = 1 − 𝜈1, then the Receiver’s posterior belief about the state after

observing message 𝑚𝐻𝐿 or 𝑚𝐿𝐻 is equal to their prior about the state. Furthermore,

when 𝜈2 = 1 − 𝜈1 and 𝜇 = 0.5 = 𝛾1, the probability that the Receiver observes either of

these messages on the equilibrium path is given by 0.5. That is, for these parameters,

there is a 50% chance that the Receiver learns nothing about the state in equilibrium,

despite full disclosure of evidence. This is of course a knife‐edge case, but it turns out

that there are a non‐negligible set of “nearby” cases. In order to discuss this in more

precise terms, a few definitions are needed.

Let the Kullback–Leibler divergence (henceforth referred to as “KL divergence”)

8In the sense that 𝜇𝑅(𝑚𝐻𝐿) and 𝜇𝑅(𝑚𝐿𝐻 ) are each “close” to 𝜇.
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of the Receiver’s prior and posterior belief about the state be denoted by

𝐷(𝜇𝑅(𝑚), 𝜇) ≡ (1 − 𝜇𝑅(𝑚)) ln (1 − 𝜇𝑅(𝑚)
1 − 𝜇 ) + 𝜇𝑅(𝑚) ln (𝜇

𝑅(𝑚)
𝜇 ) .

Since KL divergence is a type of statistical distance, larger values of 𝐷(𝜇𝑅(𝑚), 𝜇) corre‐
spond to larger differences between 𝜇 and 𝜇𝑅(𝑚). Hence, for each 𝜀 > 0, the inequality

max {𝐷 (𝜇𝑅(𝑚𝐻𝐿), 𝜇)) , 𝐷 (𝜇𝑅(𝑚𝐿𝐻 ), 𝜇))} < 𝜀 (3.18)

is a condition that intuitively requires that the Receiver’s posterior belief about 𝜔 after

observing𝑚 ∈ {𝑚𝐿𝐻 , 𝑚𝐻𝐿} to be sufficiently similar to their prior belief about 𝜔. For each
𝜓 ∈ [0, 1], the inequality

∑
𝜔̂∈{𝐿,𝐻}

∑
𝑐∈{1,2}

∑
(𝑥1,𝑥2)∈{(𝐿,𝐻),(𝐻 ,𝐿)}

𝜋(𝜔̂, 𝑐, 𝑥1, 𝑥2) > 𝜓 (3.19)

is a condition that requires the probability of the event 𝑋1 ≠ 𝑋2 to be larger than 𝜓 . No‐
tice that this is equal to theprobability that theReceiver receivesmessage𝑚 ∈ {𝑚𝐿𝐻 , 𝑚𝐻𝐿}
in the full source disclosure equilibrium.

For each (𝜓 , 𝜀), let 𝜆(𝜀, 𝜓 ) denote the Lebesgue measure of the set

Φ𝜓 𝜀 ≡ {(𝜇, 𝛾1, 𝜈1, 𝜈2) ∈ (0, 1)4 ∶ (3.18) and (3.19) both hold given (𝜓 , 𝜀)} . (3.20)

Intuitively, 𝜆(𝜀, 𝜓 ) > 0 implies that given (𝜓 , 𝜀), inequalities (3.18) and (3.19) hold for a

non‐trivial subset of parameters (𝜇, 𝛾1, 𝜈1, 𝜈2), and larger values of 𝜆(𝜀, 𝜓 ) correspond to

larger sizes of this subset. As Figure 3.4 shows, 𝜆(𝜀, 𝜓 ) can be non zero when 𝜀 is small

and 𝜓 up to roughly 0.5. Hence, this illustrates that for a non‐trivial subset of model

parameters, there is a “not small” probability that Receiver learns only a “small” amount
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of information about the state in the full‐disclosure equilibrium.
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Figure 3.4: Numerically computed Lebesgue measure 𝜆(𝜓 , 𝜀) of the set Φ𝜓𝜀 defined in
equation (3.20) for various combinations of (𝜓 , 𝜀) in (0, 1) × (0, 0.25).

As I show in the next proposition, all equilibria of this game must have pooling

among types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) as well as pooling among types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2).

Proposition 9. Let (𝑥1, 𝑥2) ∈ {(𝐿, 𝐻), (𝐻 , 𝐿)} be arbitrarily fixed. Then, there does not exist

any equilibrium where type (𝑥1, 𝑥2, 1) sends message 𝑚 ∈ M𝑥1,𝑥2 with probability 1 and type

(𝑥1, 𝑥2, 2) sends a different message 𝑚′ ∈ M𝑥1,𝑥2 ⧵ {𝑚} with probability 1.

The proof of this proposition is found in subsection A.3.3 of Appendix A.3. The

proof of why (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2)must pool in equilibrium is sketched below.9

Consider a pure strategy of the Sender where type (𝐿, 𝐻 , 1) sends message 𝑚∅𝐻

and type (𝐿, 𝐻 , 2) sends message 𝑚𝐿∅. If this strategy has type (𝐻 , 𝐻 , 𝑟 ′) send message

𝑚∅𝐻 for some 𝑟 ′ ∈ {1, 2}, then 𝜇𝑅(𝑚∅𝐻 ) ∈ (0, 1). Intuitively, 𝜇𝑅(𝑚∅𝐻 )must be strictly less

than 1 because there is a strictly positive probability that 𝑚∅𝐻 was sent by a Sender of

type (𝐿, 𝐻 , 1), who observed a Low draw of the relevant source (which implies that the

9The reasoning behind why (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2)must pool in equilibrium is very similar.
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state is Low with probability 1). However since 𝜇𝑅(𝑚𝐻𝐻 ) = 1 on and off the equilibrium

path (by condition (iv) of Definition 2), it then follows from equation (3.14) that type

(𝐻 , 𝐻 , 𝑟 ′) has a profitable deviation to message 𝑚𝐻𝐻 since 𝜇𝑅(𝑚∅𝐻 ) < 1 = 𝜇𝑅(𝑚𝐻𝐻 ).
If the aforementioned strategy has neither type (𝐻 , 𝐻 , 1) nor (𝐻 , 𝐻 , 2) sending

message 𝑚∅𝐻 , then by construction type (𝐿, 𝐻 , 1) is the only type that sends 𝑚∅𝐻 (since

type (𝐿, 𝐻 , 2) sends message 𝑚𝐿∅). Consequently, the Receiver can perfectly infer that

the Sender’s type is (𝐿, 𝐻 , 1) after receiving message 𝑚∅𝐻 . Therefore, they can perfectly

infer that 𝜔 = 𝐿 (since this type observed a Low draw from the relevant source) so that

𝜇𝑅(𝑚∅𝐻 ) = 0 in this case. In contrast, 𝜇𝑅(𝑚𝐿∅) > 0 since message 𝑚𝐿∅ is sent by type

(𝐿, 𝐻 , 2), who observed a High draw from the relevant source. Thus in light of equation

(3.14), it is evident that type (𝐿, 𝐻 , 1) has a profitable deviation to message 𝑚𝐿∅ since

𝜇𝑅(𝑚𝐻∅) = 0 < 𝜇𝑅(𝑚∅𝐿).
For all other pure strategies where type (𝐿, 𝐻 , 1) sends message 𝑚 ∈ M𝐿𝐻 and

type (𝐿, 𝐻 , 2) sends a different message 𝑚′ ∈ M𝐿𝐻 ⧵ {𝑚}, it turns out that 𝜇𝑅(𝑚) < 𝜇𝑅(𝑚′),
so that type (𝐿, 𝐻 , 1) has a profitable deviation to the message 𝑚′ sent by type (𝐿, 𝐻 , 2).
Intuitively 𝜇𝑅(𝑚) < 𝜇𝑅(𝑚′) holds in all of these cases because after observingmessage𝑚
(message 𝑚′), R’s posterior belief shifts mass towards the event that S saw a Low (High)

draw of the relevant source.

Notice that as a result of Proposition 9, it is not possible to have full unraveling

in equilibrium. Moreover, the Receiver’s posterior belief about 𝐶 is generically equal

to their prior with probability 1 given that the Sender observed conflicting signal real‐

izations (𝑥1, 𝑥2) ∈ {(𝐿, 𝐻), (𝐻 , 𝐿)}, which is the case where knowing the identity of the

relevant source is most crucial. Thus, the potential for the Receiver to learn very little

about the state when the Sender observed conflicting signals is not just a feature of the

full source disclosure equilibriumdiscussed in Proposition 8: it generically holds in any

equilibrium of this game.
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I now show that it is possible to observe partial disclosure of sources in equilib‐

rium. The following proposition shows that there exist – for certain model parameters

– equilibria where types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2) send message 𝑚𝐿∅ with probability 1 and

types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) send message 𝑚∅𝐿 with probability 1.

Proposition 10.

(a) There exists an equilibrium such that 𝜎∗(𝑚𝐿∅|𝜃) = 1 ∀𝜃 ∈ {(𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2), (𝐿, 𝐿, 1),

(𝐿, 𝐿, 2)} and 𝜎∗(𝑚∅𝐿|𝜃) = 1 ∀𝜃 ∈ {(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2)} if and only if 𝛾1+𝛾2(1-𝜈1)
𝛾2(1-𝜈1) ≤ 𝛾2𝜈1

𝛾1(1-𝜈2) .

(b) There exists an equilibrium such that 𝜎∗(𝑚𝐿∅|𝜃) = 1∀𝜃 ∈ {(𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2)} and
𝜎∗(𝑚∅𝐿|𝜃) = 1 ∀𝜃 ∈ {(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2), (𝐿, 𝐿, 1), (𝐿, 𝐿, 2)} if and only if 𝛾1𝜈2

𝛾2(1-𝜈1) ≥
𝛾1(1-𝜈2)+𝛾2
𝛾1(1-𝜈2) .

(c) There exists an equilibrium such that 𝜎∗(𝑚𝐿∅|𝜃) = 1∀𝜃 ∈ {(𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2), (𝐿, 𝐿, 1)} and
𝜎∗(𝑚∅𝐿|𝜃) = 1 ∀𝜃 ∈ {(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2), (𝐿, 𝐿, 2)} if and only if 𝛾2

𝛾1(1-𝜈2) =
𝛾1

𝛾2(1-𝜈1) .

(d) There exists an equilibrium such that 𝜎∗(𝑚𝐿∅|𝜃) = 1∀𝜃 ∈ {(𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2), (𝐿, 𝐿, 2)} and
𝜎∗(𝑚∅𝐿|𝜃) = 1 ∀𝜃 ∈ {(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2), (𝐿, 𝐿, 1)} if and only if 𝛾2𝜈1

𝛾1(1-𝜈2) =
𝛾1𝜈2+𝛾2(1-𝜈1)

𝛾2(1-𝜈1) .

The proof for Proposition 10 is sound in appendix section A.3.5. Notice that the

first two parts – where (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) pool – correspond to equilibria that exist for

a set of model parameters with non‐zero Lebesgue measure. In contrast, the latter two

parts – where (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) separate – correspond to equilibria that exist only in a

knife‐edge case.

Before discussing the reasoning behind this result, it is useful to note that since

types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2) pool on message 𝑚𝐿∅ and types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) pool on
message 𝑚∅𝐿, both

𝜇𝑅(𝑚𝐿∅) ∈ (0, 1) and 𝜇𝑅(𝑚𝐿∅) ∈ (0, 1) (3.21)
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hold regardless of themessages sent by types (𝐿, 𝐿, 1) and (𝐿, 𝐻 , 2).10 This has two conse‐

quences: first, this makes it never optimal for types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) to sendmessage

𝑚𝐿𝐿, since 𝜇𝑅(𝑚𝐿𝐿) = 0 on and off the equilibrium path by condition (iv) of Definition

2. The second implication is that any equilibrium with the aforementioned pooling

behavior must have types (𝐻 , 𝐻 , 1) and (𝐻 , 𝐻 , 2) sendmessage 𝑚𝐻𝐻 with probability 1.11

In the equilibrium described in part (a), 𝑚𝐿∅ is sent by all types that observed

𝑋1 = 𝐿 while 𝑚∅𝐿 is sent only by types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2). Neither type (𝐿, 𝐿, 1) nor
(𝐿, 𝐿, 2) has a profitable deviation to 𝑚∅𝐿 if and only if 𝜇𝑅(𝑚𝐿∅) ≥ 𝜇𝑅(𝑚𝐿∅), which is what

yields the inequality in part (a):

𝜇𝑅(𝑚𝐿∅)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1 + (1−𝜇𝜇 ) ( 𝛾1+𝛾2(1-𝜈1)𝛾2(1-𝜈1) )

≥
𝜇𝑅(𝑚∅𝐿)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1 + (1−𝜇𝜇 ) ( 𝛾2𝜈1

𝛾1(1-𝜈2))
⇔ 𝛾1+(1-𝛾1)(1-𝜈1)

(1-𝛾1)(1-𝜈1)
≤ (1-𝛾1)𝜈1

𝛾1(1-𝜈2)
. (3.22)

The above restriction places an upper bound (which depends on (𝜈1, 𝜈2)) on the probabil‐

ity 𝛾1 that the first source is relevant. Mechanically, this is because the latter inequality

in (3.22) can be rearranged as 𝛾1 ≤ ̄𝛾 (𝜈1, 𝜈2) for some function ̄𝛾 (𝜈1, 𝜈2)which is visualized

in the left‐hand panel of Figure 3.5. This makes intuitive sense: in part (a) types (𝐿, 𝐿, 1)
and (𝐿, 𝐿, 2) pool with types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2) at message 𝑚𝐿∅. Hence, when the prob‐

ability that the first source is relevant (𝛾1) is sufficiently large, types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2)
are better off pooling with types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) at message 𝑚𝐿∅.

Notice that no further restrictions on model parameters are required to sustain

an equilibrium that satisfies the description in part (a) of Proposition 10: one only has

to specify off path posterior beliefs {𝜋𝑅(⋅|𝑚𝐻∅), 𝜋𝑅(⋅|𝑚𝐻𝐿), 𝜋𝑅(⋅|𝑚∅𝐻 ), 𝜋𝑅(⋅|𝑚𝐿𝐻 )}, for the

10This is because the disclosure of a single, Low source signal realization (i.e. message 𝑚 ∈ {𝑚𝐿∅, 𝑚∅𝐿})
can come from the Sender that observed a Low realization of the relevant source (⇒ 𝜇𝑅(𝑚) < 1 ∀𝑚 ∈
{𝑚𝐿∅, 𝑚∅𝐿}) or a High realization of the relevant source (⇒ 𝜇𝑅(𝑚) > 0 ∀𝑚 ∈ {𝑚𝐿∅, 𝑚∅𝐿}).

11This is because if message 𝑚 ∈ {𝑚𝐻∅, 𝑚∅𝐻 } is sent by type (𝐻 , 𝐻 , 1) or (𝐻 , 𝐻 , 2), then 𝜇𝑅(𝑚) = 1; this
implies that type (𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2), (𝐻 , 𝐿, 1), or (𝐻 , 𝐿, 2) has a profitable deviation to 𝑚 (because of (3.14)
and (3.21)).
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Receiver that satisfy the following:

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚∅𝐿) ∀𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿}; 𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚𝐿∅) ∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 }. (3.23)

The former inequality precludes profitable deviations for types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2); the
latter precludes profitable deviations for types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2).
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Figure 3.5: Heatmaps visualizing ̄𝛾 (𝜈1, 𝜈2) (left‐hand side) and 𝛾 (𝜈1, 𝜈2) (right‐hand side).

The intuition for part (b) is very similar. The inequality in this part is derived

from the condition that ensures that types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) do not have a profitable

deviation to 𝑚𝐿∅:

𝜇𝑅(𝑚𝐿∅)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1 + (1−𝜇𝜇 ) ( 𝛾1𝜈2

𝛾2(1-𝜈1))
≤

𝜇𝑅(𝑚∅𝐿)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1 + (1−𝜇𝜇 ) ( 𝛾1(1-𝜈2)+𝛾2𝛾1(1-𝜈2) )

⇔ 𝛾1𝜈2
(1-𝛾1)(1-𝜈1)

≥ 𝛾1(1-𝜈2)+(1-𝛾1)
𝛾1(1-𝜈2)

, (3.24)

where 𝜇𝑅(𝑚𝐿∅) is given in row 6 of Table A.5 and 𝜇𝑅(𝑚∅𝐿) is given in the last row of Table

A.6. Off path beliefs are specified like in (3.23). In symmetric fashion to part (a), the
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condition in (3.24) places a lower bound on 𝛾1; that is, it can be rearranged as 𝛾 ≥ 𝛾(𝜈1, 𝜈2)
for some function 𝛾 (𝜈1, 𝜈2) which is visualized in the right‐hand panel of Figure 3.5.

The proofs for parts (c) and (d) follow very similar reasoning, but with one qual‐

itative difference: since types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) separate, precluding profitable devi‐

ations for both types now requires 𝜇𝑅(𝑚𝐿∅) = 𝜇𝑅(𝑚∅𝐿).12 This is what yields the condi‐

tion in parts (c) and (d), as before. Unlike the previous parts, these parts are knife‐edge

cases.

As one may suspect, the Receiver’s ex ante expected welfare is lower under the

partial disclosure equilibria of Proposition 10 than in the full source disclosure equi‐

librium of Proposition 8. When all sources were disclosed, the Receiver could fully

unravel the state whenever the Sender observed 𝑋1 = 𝑋2. However, in the partial dis‐

closure equilibria of Proposition 10, the Receiver is only able to fully unravel the state

when 𝑋1 = 𝐻 = 𝑋2.

I demonstrate this by comparing the Receiver’s expected welfare under the full

disclosure equilibrium and the partial disclosure equilibrium in part (a) of Proposition

10. Let the prior probability that (𝑋1, 𝑋2) = (𝑥1, 𝑥2) ∈ {𝐿, 𝐻}2 be denoted by

𝜋X(𝑥1, 𝑥2) ≡ ∑
𝜔∈{𝐿,𝐻}

∑
𝑐∈{1,2}

𝜋(𝜔, 𝑐, 𝑥1, 𝑥2).

In the full source disclosure equilibrium, the Receiver observes message 𝑚𝑥1𝑥2 with

probability 𝜋X(𝑥1, 𝑥2) for all (𝑥1, 𝑥2) ∈ {𝐿, 𝐻}2. Let 𝜋𝑅∗(⋅|⋅) denote the Receiver’s posterior
beliefs in the full source disclosure equilibrium, and let 𝜇𝑅∗(⋅) denote the associated

probability placed on the event 𝜔 = 𝐻 . The Receiver’s expected welfare under the full

12𝜇𝑅(𝑚𝐿∅) is given in the penultimate row of Table A.5 in part (c) and the third‐to‐last row of this table
in part (d); 𝜇𝑅(𝑚∅𝐿) is given in the third‐to‐last row of Table A.6 in part (c) and the penultimate row of this
table in part (d).
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source disclosure equilibrium is then given by

𝑊 𝑅𝐹𝐷 ≡ − 1
(𝐻-𝐿)2 [𝜋X(𝐻 , 𝐿) (1-𝜇𝑅∗(𝑚𝐻𝐿)) 𝜇𝑅∗(𝑚𝐻𝐿)+𝜋X(𝐿, 𝐻) (1-𝜇𝑅∗(𝑚𝐿𝐻 )) 𝜇𝑅∗(𝑚𝐿𝐻 )

𝜋X(𝐻 , 𝐻) ⋅ 0 + 𝜋X(𝐿, 𝐿) ⋅ 0].
(3.25)

Note that the last two termsaboveare equal to zerobecause 𝜇𝑅∗(𝑚𝐻𝐻 ) = 1 and 𝜇𝑅∗(𝑚𝐿𝐿) =
0. As we saw in (3.15),

𝜇𝑅∗(𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
; 𝜇𝑅∗(𝑚𝐿𝐻 ) =

𝛾2(1 − 𝜈1)𝜇
𝛾2(1 − 𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)

,

In the partial disclosure equilibrium in part (a) of Proposition 10, types (𝐻 , 𝐿, 1)
and (𝐻 , 𝐿, 2) pool on message 𝑚∅𝐿, types (𝐻 , 𝐻 , 1) and (𝐻 , 𝐻 , 2) pool on message 𝑚𝐻𝐻 ,

and all other types pool on message 𝑚𝐿∅. Hence, the Receiver observes message 𝑚∅𝐿

with probability 𝜋X(𝐻 , 𝐿), message 𝑚𝐻𝐻 with probability 𝜋X(𝐻 , 𝐻), and message 𝑚𝐿∅

with probability 1 − 𝜋X(𝐻 , 𝐿) − 𝜋X(𝐻 , 𝐻). Notice that this last probability is equal to

the prior probability that 𝑋1 = 𝐿. Let 𝜋𝑅∗∗(⋅|⋅) denote the Receiver’s posterior beliefs in

the aforementioned partial disclosure equilibrium, and let 𝜇𝑅∗∗(⋅) denote the associated
probability placed on the event 𝜔 = 𝐻 . As before, 𝜇𝑅∗∗(𝑚𝐻𝐻 ) = 1 and by (3.22)

𝜇𝑅∗∗(𝑚∅𝐿) =
𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
; 𝜇𝑅∗∗(𝑚𝐿∅) =

𝛾2(1-𝜈1)𝜇
𝛾2(1-𝜈1)𝜇 + [𝛾1+𝛾2(1-𝜈1)] (1-𝜇)

.

The Receiver’s expected welfare under the aforementioned partial disclosure equilib‐

rium is given by

𝑊 𝑅𝑃𝐷 ≡ − 1
(𝐻-𝐿)2 [𝜋X(𝐻 , 𝐿) (1 − 𝜇𝑅∗∗(𝑚∅𝐿)) 𝜇𝑅∗∗(𝑚∅𝐿)+𝜋X(𝐻 , 𝐻) ⋅ 0

+ [1 − 𝜋X(𝐻 , 𝐿) − 𝜋X(𝐻 , 𝐻)] (1-𝜇𝑅∗∗(𝑚𝐿∅)) 𝜇𝑅∗∗(𝑚𝐿∅)].
(3.26)
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Notice that 𝜇𝑅∗(𝑚𝐻𝐿) = 𝜇𝑅∗∗(𝑚∅𝐿). This is because 𝑚𝐻𝐿 is only sent by types

(𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) in the full disclosure equilibrium and message 𝑚∅𝐿 is only sent

by these types in the partial disclosure equilibrium of Proposition 10, part (a). Conse‐

quently, the Receiver’s expected welfare gain𝑊 𝑅𝐹𝐷 −𝑊 𝑅𝑃𝐷 when all sources are disclosed

is given by

𝑊 𝑅𝐹𝐷 − 𝑊 𝑅𝑃𝐷 = − 1
(𝐻−𝐿)2 [ 𝜋X(𝐿, 𝐻) (1-𝜇𝑅∗(𝑚𝐿𝐻 )) 𝜇𝑅∗(𝑚𝐿𝐻 )

− [1 − 𝜋X(𝐻 , 𝐿) − 𝜋X(𝐻 , 𝐻)] (1-𝜇𝑅∗∗(𝑚𝐿∅)) 𝜇𝑅∗∗(𝑚𝐿∅)].
(3.27)

After some straightforward algebraic manipulation, we arrive at

𝑊 𝑅𝐹𝐷 − 𝑊 𝑅𝑃𝐷 = (1 − 𝜈1)𝛾2𝜇
(𝐻 − 𝐿)2 ⋅ (1 − 𝜈2)𝛾1 + (1 − 𝜈1)𝛾2

[𝛾1𝜈2(1 − 𝜇) + 𝛾2𝜇(1 − 𝜈1)] ⋅ [𝛾1(1 − 𝜇) + 𝛾2(1 − 𝜈1)]
> 0.

The strict inequality follows from the fact that each term in themiddle expression above

is strictly positive since 𝜇, 𝛾1, 𝛾2, 𝜈1, 𝜈2 ∈ (0, 1) and 𝐻 > 𝐿. This is illustrated in Figure 3.6.
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Figure 3.6: Receiver’s welfare gain under the full disclosure equilibrium relative to the
partial disclosure equilibrium in part (a) of Proposition 10. This figure was generated
assuming 𝐿 = 0, 𝐻 = 1, 𝜈1 = 0.1, 𝜈2 = 0.9 and (𝜇, 𝛾1) ∈ (0, 1)2.

As the above figure demonstrates, the Receiver’s expected welfare gain from full
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source disclosure 𝑊 𝑅𝐹𝐷 − 𝑊 𝑅𝑃𝐷 is large when there is high prior uncertainty about the

state (i.e. when 𝜇 is near 0.5) and low prior uncertainty that the second source is rele‐

vant (i.e. when 𝛾1 is small). The intuition behind the former relationship is relatively

straightforward: in expectation more information is transmitted to the Receiver when

all source signals are disclosed; the value of this additional information grows with the

prior uncertainty about the state. To understand the effect of 𝛾1, recall that in the partial

disclosure equilibrium of Proposition 10, part (a), all Senders that observed 𝑋1 = 𝐿 pool
on 𝑚𝐿∅. Hence, upon observing 𝑚𝐿∅, the Receiver can only infer that 𝑋1 = 𝐿. Hence,

the informational value of this signal diminishes with 𝛾1.

3.4 Concluding remarks

In this chapter, I studied an evidence disclosure game where the Sender has ac‐

cess to a piece of evidence they know to be perfectly informative about a state, and one

that they know to be perfectly uninformative. In Proposition 8, I showed that full disclo‐

sure of evidence is possible in (pure strategy perfect Bayesian) equilibrium. However,

since this necessarily requires pooling amongst Senders that observe the same conflict‐

ing evidence, the Receiver cannot fully unravel which piece of disclosed evidence is

informative. Consequently, the Receiver can potentially gain little to no information

about the state after observing fully disclosed conflicting evidence when there is high

ex ante uncertainty regarding which piece of evidence is informative.

Full evidence disclosure is not necessarily ideal for the Receiver’s ability to learn

about the state; suppressing irrelevant evidence would be beneficial for the Receiver’s

ability to learn. This would also be beneficial for Senders who observed favorable, rel‐

evant evidence and unfavorable, irrelevant evidence. However, I show in Proposition

9 that Senders who observe the same conflicting evidence always pool in equilibrium,
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since the informativeness of evidence is not verifiable information. As a result, the

same learning failure discussed above generically takes place in equilibrium. Propo‐

sition 10 showed that under certain conditions on model primitives, even full source

disclosure can fail to hold in equilibrium.

Chapter 3 is currently planned for submission for publication of the material.

The dissertation author, Frederick Aram Papazyan, is the sole author of this chapter.
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Appendix A

Supplemental Material

A.1 Appendix of Chapter 1

A.1.1 Proofs

Proof of Propositions 1 and 2

Arbitrarily fix 𝑥 𝑡−Δ ∈ [0, 𝜒]𝑁 . Player 𝑖𝑡 faces the following optimization problem:

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

max𝑥𝑖𝑡 ,𝐼𝑖𝑡
𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − Δ ⋅ 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ)

𝑠.𝑡 . 𝑥𝑖𝑡 = Δ ⋅ 𝐼𝑖𝑡 + 𝑥𝑖,𝑡−Δ − 𝛿Δ

0 ≤ 𝑥𝑖𝑡 ≤ 𝜒

𝐼𝑖𝑡 ≥ 0

(A.1)

89



Where 𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝑒𝜆𝑥𝑖
∑𝑁

𝑗=1 𝑒𝜆𝑥𝑗
by Assumption 2. Notice that the optimization problem in

(A.1) is equivalent to the optimization problem

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

max𝑥𝑖𝑡
𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − Δ ⋅ 𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ + 𝛿, 𝑥𝑖,𝑡−Δ)

s.t. 0 ≤ 𝑥𝑖𝑡
𝑥𝑖𝑡 ≤ 𝜒

𝑥𝑖,𝑡−Δ − 𝛿Δ ≤ 𝑥𝑖𝑡

(A.1′)

wherein 𝑥𝑖𝑡 is the only choice variable.1 Optimization problem (A.1′) is now solved. I

form the Lagrangian

L = 𝐻(𝑥𝑖, 𝑥−𝑖) − Δ ⋅ 𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ + 𝛿, 𝑥𝑖,𝑡−Δ)
+𝑥𝑖𝑡𝜇1 + (𝜒 − 𝑥𝑖𝑡)𝜇2 + (𝑥𝑖𝑡 − 𝛿Δ − 𝑥𝑖,𝑡−Δ)𝜇3

(A.2)

where 𝜇1, 𝜇2, and 𝜇3 respectively denote the Lagrangemultiplier of the first, second, and

third inequality constraints of (A.1′). The first order condition is given by

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝐷1𝐶 (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ
Δ + 𝛿, 𝑥𝑖,𝑡−Δ) − 𝜇1 + 𝜇2 − 𝜇3. (FOC)

Recall that ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≡ 𝜕
𝜕𝑥𝑖𝑡𝐻(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) (equation (1.4)) and𝐷1𝐶 denotes the partial deriva‐

tive of 𝐶 with respect to its first argument. The Karush Kuhn‐Tucker (KKT) conditions

are given by (CS1), (CS2), and (CS3), which respectively correspond to the first, second,

1This is achieved by rearranging the equality constraint of (A.1)

𝑥𝑖𝑡 = Δ ⋅ 𝐼𝑖𝑡 + 𝑥𝑖,𝑡−Δ − 𝛿Δ ⇔ 𝐼𝑖𝑡 =
𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ

Δ + 𝛿

and substituting out 𝐼𝑖𝑡 . Notice that the third inequality constraint of (A.1′) can be rewritten as 0 ≤ 𝑥𝑖𝑡−𝑥𝑖,𝑡−Δ
Δ +

𝛿.
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and third inequality constraints of (A.1′).

𝑥𝑖𝑡 ≥ 0, 𝜇1 ≥ 0, 𝑥𝑖𝑡𝜇1 = 0 (CS1)

𝑥𝑖𝑡 ≤ 𝜒, 𝜇2 ≥ 0, (𝜒 − 𝑥𝑖𝑡)𝜇2 = 0 (CS2)

𝑥𝑖𝑡 ≥ 𝑥𝑖,𝑡−Δ − 𝛿Δ, 𝜇3 ≥ 0, (𝑥𝑖𝑡 − 𝛿Δ − 𝑥𝑖,𝑡−Δ) 𝜇3 = 0 (CS3)

Suppose the first two constraints of (A.1′) are both binding. This implies that

𝑥𝑖𝑡 = 0 and 𝑥𝑖𝑡 = 𝜒 , which is a contradiction since 𝜒 > 0. Therefore it is never possible

for the first two constraints of (A.1′) to both be binding.

Now suppose that the first constraint of (A.1′) is slack, but the second two con‐

straints are binding. This implies that 𝑥𝑖𝑡 = 𝜒 and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝛿Δ, which in turn jointly

imply that 𝑥𝑖,𝑡−Δ = 𝜒 + 𝛿Δ > 𝜒 , which is a contradiction. It follows that this case is never

possible.

I now turn to the case where only the second constraint of (A.1′) is binding. In

this case, 𝜇1 = 𝜇3 = 0, 𝜇2 ≥ 0, 𝑥𝑖𝑡 = 𝜒 , and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ − 𝛿Δ. The latter two imply that

𝑥𝑖,𝑡−Δ < 𝜒 + 𝛿Δ, which is non‐restrictive since 𝑥𝑖,𝑡−Δ must take values in [0, 𝜒]. In this

case, it follows from (FOC) that

ℎ(𝜒 , 𝑥−𝑖) ≥ 𝐷1𝐶 (𝜒 − 𝑥𝑖,𝑡−Δ
Δ + 𝛿, 𝑥𝑖,𝑡−Δ) (A.3)

Since ℎ is a bounded function and 𝐷1𝐶 is strictly increasing in its first argument, it fol‐

lows that there exists a sufficiently small Δ̃ > 0 such that ∀Δ < Δ̃ the above inequality

holds only at 𝑥𝑖,𝑡−Δ = 𝜒 .
Now consider the case where only the third constraint of (A.1′) is binding. In

this case 𝜇1 = 𝜇2 = 0, 𝜇3 ≥ 0, 𝑥𝑖𝑡 ∈ (0, 𝜒), 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝛿Δ. The latter two imply that
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𝑥𝑖,𝑡−Δ ∈ (𝛿Δ, 𝜒]. In this case, it follows from (FOC) that

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ
Δ + 𝛿, 𝑥𝑖,𝑡−Δ) (A.4)

In the case where the first and third constraints of (A.1′) are binding while the

second constraint is slack, we have 𝜇1 ≥ 0, 𝜇2 = 0, 𝜇3 ≥ 0, 𝑥𝑖𝑡 = 0, and 𝑥𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝛿Δ. It
follows from the latter two that 𝑥𝑖,𝑡−Δ = 𝛿Δ. It follows from (FOC) that

ℎ(0, 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶(0, 𝛿Δ) (A.5)

Next, consider the case where only the first constraint of (A.1′) is binding. Here,

we have 𝜇1 ≥ 0 = 𝜇2 = 𝜇3, 𝑥𝑖𝑡 = 0, and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ − 𝛿Δ. The latter two imply that

𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ). It follows from (FOC) that

ℎ(0, 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 (𝛿 − 𝑥𝑖,𝑡−Δ
Δ , 𝑥𝑖,𝑡−Δ) = 𝐷1𝐶 (𝛿Δ − 𝑥𝑖,𝑡−Δ

Δ , 𝑥𝑖,𝑡−Δ) (A.6)

Finally, attention is turned to the interior case where all constraints of (A.1′) are

slack. Here, 𝜇𝑖 = 0 ∀𝑖 ∈ {1, 2, … , 𝑁 }, 𝑥𝑖𝑡 ∈ (0, 𝜒), and 𝑥𝑖𝑡 > 𝑥𝑖,𝑡−Δ − 𝛿Δ. Equation (FOC) then

implies that 𝑥𝑖𝑡 satisfies the following equality:

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝐷1𝐶 (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ
Δ + 𝛿, 𝑥𝑖,𝑡−Δ) . (A.7)

Let 𝐷1ℎ denote the partial derivative of ℎwith respect to its first argument. Note

that ℎ(⋅, 𝑥−𝑖,𝑡) and 𝐷1ℎ(⋅, 𝑥−𝑖,𝑡) are bounded given any 𝑥−𝑖,𝑡 ∈ [0, 𝜒]𝑁−1 and recall that

𝐷1𝐶(⋅, 𝑥𝑖,𝑡−Δ) is strictly increasing given any 𝑥𝑖,𝑡−Δ ∈ [0, 𝜒]. It then follows that there exists

a sufficiently small Δ̂ > 0 such that givenanyfixedΔ < Δ̂, a unique 𝑥𝑖𝑡 ∈ (max{𝑥𝑖,𝑡−Δ − 𝛿Δ, 0}, 𝜒)
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satisfies (A.7) and that at said 𝑥𝑖𝑡

𝐷1ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) − 𝐷11𝐶 (𝑥𝑖𝑡 − 𝑥𝑖,𝑡−Δ
Δ + 𝛿, 𝑥𝑖,𝑡−Δ) < 0, (A.8)

where 𝐷11𝐶(𝑧, 𝑥 𝑖,𝑡−Δ) ≡ 𝜕2
𝜕𝐼 2𝐶(𝐼 , 𝑥𝑖,𝑡−Δ)|𝐼=𝑧.

Given the above, for everyΔ < min{Δ̃, Δ̂}, themaximizer 𝑥∗𝑖𝑡 of (A.1′) is unique and
satisfies

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

𝑥∗𝑖𝑡 = 0, if ℎ(0, 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 ( 𝛿Δ−𝑥𝑖,𝑡−ΔΔ , 𝑥𝑖,𝑡−Δ)

and 𝑥𝑖,𝑡−Δ ∈ [0, 𝛿Δ]

𝑥∗𝑖𝑡 = 𝑥𝑖,𝑡−Δ − 𝛿Δ, if ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ + 𝛿, 𝑥𝑖,𝑡−Δ)

and 𝑥𝑖,𝑡−Δ ∈ (𝛿Δ, 𝜒]

𝑥∗𝑖𝑡 = 𝜒, if ℎ(𝜒, 𝑥−𝑖) ≥ 𝐷1𝐶 (𝜒−𝑥𝑖,𝑡−ΔΔ + 𝛿, 𝑥𝑖,𝑡−Δ)

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) = 𝐷1𝐶 (𝑥𝑖𝑡−𝑥𝑖,𝑡−ΔΔ + 𝛿, 𝑥𝑖,𝑡−Δ) , otherwise

Sending Δ → 0 yields

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

̇𝑥𝑖𝑡 = 0, if ℎ(0, 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 (0, 0) and 𝑥𝑖𝑡 = 0

or

if ℎ(𝜒 , 𝑥−𝑖,𝑡) ≥ 𝐷1𝐶(𝛿, 𝜒) and 𝑥𝑖𝑡 = 𝜒

̇𝑥𝑖𝑡 = −𝛿, if ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) ≤ 𝐷1𝐶 (0, 𝑥𝑖𝑡) and 𝑥𝑖𝑡 ∈ (0, 𝜒]

̇𝑥𝑖𝑡 = (𝐷1𝐶)−1 (ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡), 𝑥𝑖𝑡) − 𝛿, otherwise

Note that under Assumption 1 (𝐷1𝐶)−1 is guaranteed to be a well‐defined function (Jit‐

torntrum (1978, Theorem 1); Kumagai (1980)). ■
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Proof of Proposition 3

Parts 1, 2, 3, 4, and 5, respectively establish the necessary and sufficient condi‐

tions under which escalated inclusive, de‐escalated inclusive, oligarchic, weak dictato‐

rial, and strong dictatorial power structures are stable. Part 6 then shows that all other

power structures will fail to be stable.

To establish the stability of inclusive and oligarchic power structures, I use Lya‐

punov’s Direct/Second Method (Lyapunov, 1892, 1992).2 According to this method, ̄𝑥 ∈
[0, 𝜒]𝑁 is stable if there exists a continuous, differentiable function Λ ∶ R𝑁 → R and

an 𝜀‐ball of ̄𝑥, 𝐵𝜀( ̄𝑥), such that the following hold:

1. Λ( ̄𝑥) = 0 and Λ(𝑥 𝑡) > 0 ∀𝑥 𝑡 ∈ 𝐵𝜀( ̄𝑥) ⧵ { ̄𝑥}.

2. 𝑑
𝑑𝑡Λ(𝑥 𝑡) < 0 ∀𝑥 ∈ 𝐵𝜀( ̄𝑥) ⧵ { ̄𝑥}

Λ is often referred to as a Lyapunov function and thought of as an “energy function.”

Λ(𝑥 𝑡) ≡ 1
2

𝑁
∑
𝑖=1

( ̄𝑥𝑖 − 𝑥𝑖𝑡)2 (A.9)

whose time‐derivative is

Λ̇(𝑥 𝑡) ≡ 𝑑
𝑑𝑡 Λ(𝑥 𝑡) = −

𝑁
∑
𝑖=1

( ̄𝑥𝑖 − 𝑥𝑖𝑡) ̇𝑥𝑖𝑡 . (A.10)

Intuitively, Lyapunov’s DirectMethod amounts to showing that the energy of the system

strictly decreases to zero along all trajectories starting sufficiently close to a steady state

̄𝑥.
In what follows, let 𝑁 be arbitrarily fixed. Let 1𝑘 and 0𝑘 respectively denote

(1, … , 1) ∈ R𝑘 and (0, … , 0) ∈ R𝑘 (𝑘 = 1, … , 𝑁 ). Let 𝑒𝑖 ∈ R𝑁 denote the 𝑖th standard ba‐

2Formore information onLyapunov’sDirectMethod, please see LaSalle (1960), La Salle andLefschetz
(2012), and Chiang and Alberto (2015).
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sis vector (𝑖 = 1, … , 𝑁 ). Finally, let 𝐵𝜀(𝑥) denote the 𝜀‐ball centered at 𝑥, where 𝜀 > 0 and
𝑥 ∈ R𝑁 . I now proceed with the proof of Proposition 3, proving each part in turn.

Proof of Part 1 Here, I show that the escalated inclusive power structure ̄𝑥 = (𝜒 ,..., 𝜒)
is stable if and only if Condition I

ℎ(𝜒, (𝜒 ,..., 𝜒))>𝐷1𝐶(𝛿, 𝜒)

holds. I first suppose that this condition holds. It then follows from (1.7) that ̇𝑥𝑖 = 0
∀𝑖 ∈ {1, … , 𝑁 } so that the first part of Definition 1 is satisfied. I now turn to showing that

the remaining part of this definition is satisfied. Notice that Condition I, along with the

continuity of ℎ and 𝐷1𝐶, imply that for some 𝜀 > 0

ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐷1𝐶(𝛿, 𝑥𝑖), ∀𝑖 ∈ {1, ..., 𝑁 } and ∀𝑥 ∈ 𝐵𝜀(𝜒1𝑁 ). (A.11)

The dynamics of 𝑥 in 𝐵𝜀(1𝑁 ) ∩ [0, 𝜒]𝑁 are therefore given by

̇𝑥𝑖 =
⎧⎪
⎨⎪⎩

0, if 𝑥𝑖 = 𝜒

(𝐷1𝐶)−1 (ℎ(𝑥𝑖, 𝑥−𝑖), 𝑥𝑖) − 𝛿, otherwise
(𝑖 = 1, … , 𝑁 ). (A.12)

Arbitrarily fix 𝑖 ∈ {1, ..., 𝑁 }. Then at every 𝑥 ∈ 𝐵𝜀(𝜒1𝑁 ) ∩ {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 < 𝜒}, we have

̇𝑥𝑖 > 0 because

ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐷1𝐶(𝛿, 𝑥𝑖) ⇔ (𝐷1𝐶)−1(ℎ(𝑥𝑖, 𝑥−𝑖), 𝑥𝑖) − 𝛿 > 0 ⇔ ̇𝑥𝑖 > 0. (A.13)
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where the last equivalence directly follows from (A.12). Evaluating (A.9) and (A.10) at

̄𝑥 = 𝜒1𝑁 yields

Λ(𝑥) = 1
2

𝑁
∑
1
(𝜒 − 𝑥𝑖)2; Λ̇(𝑥) = −

𝑁
∑
1
(𝜒 − 𝑥𝑖) ̇𝑥𝑖.

Clearly Λ(𝜒1𝑁 ) = 0 and Λ̇(𝑥 𝑡) < 0 in 𝐵𝜀(𝜒1𝑁 ) ∩ [0, 𝜒]𝑁 ⧵ {1𝑁 }. Thus 𝑥 = 𝜒1𝑁 is stable. Now

let us suppose that

ℎ(𝜒 , 𝜒1𝑁−1) ≤ 𝐷1𝐶(𝛿, 𝜒),

meaning that Condition I is violated. Then ℎ(𝛼, 𝛼1𝑁−1) ≤ 𝐷1𝐶(𝛿, 𝛼) ∀𝛼 ∈ [0, 𝜒). Fix some

𝜀 > 0 and consider 𝑥0 = (𝜒 − 𝜌)1𝑁 , where 𝜌 ∈ (0, 𝜀). System (1.7) then implies that

ℎ(𝜒 − 𝜌, (𝜒 − 𝜌)1𝑁−1) = 𝐷1𝐶(𝛿, 𝜒 − 𝜌).

It then follows that ̇𝑥𝑖𝑡 = 0 ∀𝑖 ∈ {1, ..., 𝑁 } and ∀𝑡 ≥ 0 at 𝑥 𝑡 = (𝜒 − 𝜌)1𝑁 , thereby making 𝜒1𝑁
not stable. If instead we had

ℎ(𝜒 − 𝜌, (𝜒 − 𝜌)1𝑁−1) < 𝐷1𝐶(𝛿, 𝜒 − 𝜌),

then (1.7) would imply that ̇𝑥𝑖0 < 0 ∀ 𝑖. Moreover, since 𝑥𝑖0 = 𝑥𝑗0 ∀𝑖, 𝑗, we also know that

̇𝑥𝑖0 = ̇𝑥𝑗0 ∀𝑖, 𝑗. It then clearly follows that 𝑥𝑖𝑡 = 𝑥𝑗𝑡 < 𝜒 and ̇𝑥𝑖𝑡 = ̇𝑥𝑗𝑡 < 0 ∀𝑖, 𝑗 ∈ {1, ..., 𝑁 }
while 𝑥 𝑡 ∈ 𝐵𝜀(𝜒1𝑁 ) ∩ [0, 𝜒]𝑁 . Hence ∃𝑡 ≥ 0 at which 𝑥 𝑡 is not in this 𝜀‐ball centered at 𝜒1𝑁 ,
thereby making 𝜒1𝑁 not stable.

Proof of Part 2 Here, I show that the de‐escalated inclusive power structure ̄𝑥 = 0𝑁 is

stable if and only if Condition II

ℎ(0, 0𝑁−1) ≤ 𝐷1𝐶(0, 0)
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holds. First suppose that it does; this implies that ∃𝛼 ∈ (0, 𝜒] s.t. ℎ(𝛼, 𝛼1𝑁−1) < 𝐷1𝐶(𝛿, 𝛼).
To see why, first note that 𝐷1𝐶(0, 0) < 𝐷1𝐶(𝛿, 0) since 𝛿 > 0 and by Assumption 1 𝐷1𝐶 is

strictly increasing in its first argument. Since ℎ(𝑎, 𝑎1𝑁−1) = ℎ(0, 0𝑁−1) ∀𝑎 > 0 and 𝐷1𝐶 is

assumed to be continuous, the statement in (A.1.1) follows.

Assumptions 1 and 2 respectively imply that 𝐷1𝐶(𝛿, 𝛼′) ≤ 𝐷1𝐶(𝛿, 𝛼) and

ℎ(𝛼′, 𝛼′1𝑁−1) = ℎ(𝛼, 𝛼1𝑁−1) ∀𝛼 ∈ [0, 𝛼′).

It then follows that ℎ(𝛼, 𝛼1𝑁−1) < 𝐷1𝐶(𝛿, 𝛼) for all such 𝛼. By the continuity of ℎ and 𝐷1𝐶,
this in turn implies that ∃𝜀 > 0 such that

ℎ(𝑥𝑖, 𝑥−𝑖) < 𝐷1𝐶(0, 𝑥𝑖), ∀𝑖, and ∀𝑥 ∈ 𝐵𝜀(0𝑁 ) ∩ [0, 𝜒]𝑁 . (A.14)

Therefore, the dynamics in 𝐵𝜀(0𝑁 )∩[0, 𝜒]𝑁 are given by ̇𝑥𝑖 = −𝛿1R++(𝑥𝑖) for all 𝑖 ∈ {1, ..., 𝑁 }
.Clearly ̇𝑥𝑖 = 0 ∀𝑖 at 0𝑁 , so that the first part of Definition 1 is satisfied. Clearly all trajec‐

tories in 𝐵𝜀(0𝑁 ) ∩ [0, 𝜒]𝑁 approach the origin in the limit, and this can again be verified

using Lyapunov’s Direct method. Evaluating (A.9) and (A.10) at ̄𝑥 = 0𝑁 :

Λ(𝑥) = 1
2

𝑁
∑
1
𝑥2𝑖 ; Λ̇(𝑥) =

𝑁
∑
1
𝑥𝑖 ̇𝑥𝑖

The first function is zero at 𝑥 = 0𝑁 and the latter is strictly negative at every 𝑥 ∈ 𝐵𝜀(0𝑁 ) ∩
[0, 𝜒]𝑁 ⧵ {0𝑁 }. Hence, 0𝑁 is stable.

Now suppose instead that ℎ(0, 0𝑁−1) > 𝐷1𝐶(0, 0), which violates Condition II. It

then directly follows from (1.7) that ̇𝑥𝑖 > 0 ∀𝑖 ∈ {1, … , 𝑁 } at 𝑥 = 0𝑁 , which violates the first

part of Definition 1. ■
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Proof of Part 3 Fix some 𝑘 ∈ {2, ..., 𝑁 − 1}. I show that (𝜒1𝑘 , 0𝑁−𝑘) is stable if and only if

Condition III

ℎ(𝜒, (
𝑘−1

⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,
𝑁−𝑘
⏞0,..., 0))>𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (

𝑘
⏞⏞⏞⏞⏞⏞⏞𝜒,..., 𝜒 ,

𝑁−𝑘−1
⏞0,..., 0))<𝐷1𝐶(0, 0)

holds for 𝑘. By symmetry, this is without loss, and the proof where 𝑥̃ is instead an arbi‐

trarily fixed element of

{𝑥 ∈ {0, 𝜒}𝑁 ∶
𝑁
∑
𝑖=1

𝑥𝑖 = 𝑘𝜒} (A.15)

is identical, apart from having more complicated, cumbersome notation.

First, suppose that Condition III holds. Recall that this requires the following

two inequalities to hold:

ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘)) > 𝐷1𝐶(𝛿, 𝜒) (A.16a)

ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1)) < 𝐷1𝐶(0, 0) (A.16b)

where (A.16a) and (A.16b) respectively correspond to Condition III.1 and III.2. It follows

from Condition III.1 and equation 2 of (1.7) that ̇𝑥𝑖 = 0 ∀𝑖 ∈ {1, ..., 𝑘} at 𝑥 = (𝜒1𝑘 , 0𝑁−𝑘). It
follows from III.2 and line 1 of (1.7) that ̇𝑥𝑖 = 0 ∀𝑖 ∈ {𝑘 + 1, … , 𝑁 }. Therefore, part (a) of
the definition of stability (Definition 1) is satisfied.

Maintaining the supposition that Condition III holds, I now show 𝑥 = (𝜒1𝑘 , 0𝑁−𝑘)
satisfies the second definition of stability, again using Lyapunov’s Direct Method. Since

the inequalities in (A.16a) and (A.16b) hold at (𝜒1𝑘 , 0𝑁−𝑘), and since ℎ and 𝐷1𝐶 are con‐

tinuous functions, these inequalities hold in an 𝜀−neighborhood of 𝑥 = (𝜒1𝑘 , 0𝑁−𝑘). Let
U ≡ 𝐵𝜀((𝜒1𝑘 , 0𝑁−𝑘)) ∩ [0, 𝜒]𝑁 . It then follows from 1.7 that at every 𝑥 ∈ U and for all
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𝑖 ∈ {1, … , 𝑁 }:

̇𝑥𝑖 =
⎧⎪
⎨⎪⎩

[(𝐷1𝐶)−1 (ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡), 𝑥𝑖) − 𝛿]1R++(𝑥𝑖) if 𝑖 ≤ 𝑘

−𝛿1(0,∞)(𝑥𝑖) if 𝑖 > 𝑘.
(A.17)

Notice that for all 𝑖 ≤ 𝑘, ̇𝑥𝑖 > 0 in U ⧵ {𝑥 ∶ 𝑥𝑖 = 𝜒} because

ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡) > 𝐷1𝐶(𝛿, 𝑥𝑖) ⇔ (𝐷1𝐶)−1 (ℎ(𝑥𝑖𝑡 , 𝑥−𝑖,𝑡), 𝑥𝑖) − 𝛿 > 0.

As before, Λ((𝜒1𝑘 , 0𝑁−𝑘)) = 0. 𝑑
𝑑𝑡Λ(𝑥̃) < 0 ∀𝑥̃ ∈ U ⧵ {(𝜒1𝑘 , 0𝑁−𝑘)} because

𝑑
𝑑𝑡 Λ(𝑥̃ 𝑡) = −

𝑁
∑
1
(𝑥𝑖 − 𝑥̃𝑖) ̇𝑥𝑖 = −[

𝑘
∑
1
(𝜒 − 𝑥̃𝑖) ̇𝑥𝑖 +

𝑁
∑
𝑘+1

(−𝑥̃𝑖) ̇𝑥𝑖] < 0.

Note that the above inequality is strict because at any 𝑥 ∈ U ⧵ {(𝜒1𝑘 , 0𝑁−𝑘)} either 𝑥𝑖 < 𝜒
for some 𝑖 ≤ 𝑘 or 𝑥𝑖 > 0 for some 𝑖 > 𝑘; note that in U, ∀𝑖 > 𝑘 ̇𝑥𝑖 = 0 when 𝑥𝑖 = 0 and
strictly negative otherwise. Thus, (𝜒1𝑘 , 0𝑁−𝑘) is stable.

I now suppose that the following inequalities hold:

ℎ(1, (𝜒1𝑘−1, 0𝑁−𝑘)) ≤ 𝐷1𝐶(𝛿, 𝜒), (A.18)

ℎ(0, (𝜒1𝑘 , 0𝑁−𝑘−1)) < 𝐷1𝐶(0, 0). (A.19)

I now show that (𝜒1𝑘 , 0𝑁−𝑘) is not stable. Note that by the continuity of ℎ, ∃𝜀 > 0 such
that

ℎ(𝛼, (𝛼1𝑘 , 0𝑁−𝑘−1)) < 𝐷1𝐶(0, 0) ∀𝛼 ∈ (𝜒 − 𝜀, 𝜒]. (A.20)
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Define the following subset L of 𝐵𝜀( ̄𝑥),

L ≡ {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 = 𝛼 ∈ (𝜒 − 𝜀, 𝜒) ∀𝑖 ≤ 𝑘, 𝑥𝑖 = 0 ∀𝑖 > 𝑘}

{𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥 = 𝛼
𝑘
∑
𝑖=1

𝑒𝑖 for some 𝛼 ∈ (𝜒 − 𝜀, 𝜒)}
(A.21)

Notice that by construction ̇𝑥𝑖 = 0 ∀𝑖 ∈ {𝑘 + 1, … , 𝑁 } at any 𝑥 ∈ L. Furthermore, at any

𝑥 ∈ L we also have ̇𝑥𝑖 = ̇𝑥𝑗 < 0 ∀𝑖, 𝑗 ∈ {1, … , 𝑘}. This is because

𝜕
𝜕𝛼 ℎ(𝛼, (𝛼1𝑘−1, 0𝑁−𝑘)) = 𝜆2𝑒𝛼𝜆(𝑁 − 𝑘)[(𝑘 − 2)𝑒𝛼𝜆 + (𝑁 − 𝑘)]

[𝑁 + (𝑒𝛼𝜆 − 1)𝑘]3 > 0 (A.22)

with the inequality following from the facts that 𝑁 > 𝑘 ≥ 2, 𝜆 > 0, and the fact that

𝑒𝛼𝜆 > 1 ∀(𝛼, 𝜆) ∈ (0, ∞)2. (In words: at all states in L, powerless lineages (𝑘 + 1, … , 𝑁 )

maintain zero power, and all other lineages let their power depreciate at the same rate.)

It then follows that if 𝑥0 ∈ L, then there exists a 𝜏 > 0 such that 𝑥𝜏 ∉ 𝐵𝜀( ̄𝑥). At every

𝑡 ∈ [0, 𝜏 ) ̇𝑥𝑖𝑡 = ̇𝑥𝑗𝑡 < 0 ∀𝑖, 𝑗 ∈ {1, … , 𝑘} and ̇𝑥𝑖𝑡 = 0 ∀𝑖 ∈ {𝑘 + 1, … , 𝑁 }, so that at future time

𝑡′ ∈ (𝑡, 𝜏 ), 𝑥 𝑡′ ∈ L. 𝑥 𝑡 moves along L in this fashion at all 𝑡 ∈ [0, 𝜏 ) until it leaves the 𝜀‐ball
of ̄𝑥 at time 𝜏 . This violates the definition of stability, specifically the second part of

Definition 1.

This completes the proof that (𝜒1𝑘 , 0𝑁−𝑘) is stable if and only if Condition III

holds for 𝑘. As mentioned earlier, this was without loss of generality by symmetry; it

then follows that every element of

{𝑥 ∈ {0, 𝜒}𝑁 ∶
𝑁
∑
𝑖=1

𝑥𝑖 = 𝑘𝜒}

is stable if Condition III holds for 𝑘 and no element of the above set is stable otherwise.

■
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Proof of Part 4 Fix 𝑖 ∈ {1, ..., 𝑁 } and 𝑑 ∈ (0, 𝜒). I show that every weak dictatorial power

structure in {𝑒𝑖}𝑁𝑖=1 is stable if and only if Condition IV

ℎ(⋅, (0,..., 0)) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑, and

ℎ(0, (𝑑, 0,..., 0)) < 𝐷1𝐶(0, 0)

holds at 𝑑; recall that by “intersect from above at 𝑑” I mean that ℎ(⋅, (0,..., 0)) − 𝐷1𝐶(𝛿, ⋅)
is zero and strictly decreasing at 𝑑. Suppose that Condition IV holds at 𝑑 ∈ (0, 𝜒). I now
show that 𝑥̃ = 𝑑𝑒𝑖 is then stable. First, notice that by the first part of this condition, ̇𝑥𝑖 = 0
solves

ℎ(𝑑, 0𝑁−1) = 𝐷1𝐶( ̇𝑥𝑖 + 𝛿, 𝑑) (A.23)

by construction. The second part of IV dictates that ℎ(0, (𝑑, 0𝑁−2) < 𝐷1𝐶(0, 0), so it then

follows from the first line of (1.7) that ̇𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖 at 𝑥̃ = 𝑑𝑒𝑖. Hence the first part of the

definition of stable is satisfied.

I now turn to the second part of said definition. Assume that Condition IV holds

for some 𝑖 ∈ {1, ..., 𝑁 }. Then there exists an 𝑑 ∈ (0, 𝜒) at which ℎ(⋅, 0𝑁−1) intersects𝐷1𝐶(𝛿, ⋅)
from above at 𝑥𝑖 = 𝑑. By the second part of this condition, we have

ℎ(0, (𝑑, 0𝑁−2)) < 𝐷1𝐶(0, 0).

The stability of 𝑑𝑒𝑖 is now established not by Lyapunov’s Direct Method but rather by

using the definition of stability itself. That is, I must show that there exists a neighbor‐

hood of this point in which all trajectories beginning in said neighborhood approach

𝑑𝑒𝑖 in the limit.

Since ℎ(⋅, 0𝑁−1) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑥𝑖 = 𝑑, it follows from the conti‐
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nuity of ℎ and 𝐷1𝐶 that ∃ ̃𝜀1 > 0 such that the following inequalities hold.

ℎ(𝑥𝑖, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑥𝑖) ∀𝑥𝑖 ∈ (𝑑, 𝑑 + ̃𝜀1) (A.24)

ℎ(𝑥𝑖, 0𝑁−1) > 𝐷1𝐶(𝛿, 𝑥𝑖) ∀𝑥𝑖 ∈ (𝑑 − ̃𝜀1, 𝑑) (A.25)

Furthermore, by the second part of Condition IV and the continuity of ℎ and𝐷1𝐶, ∃ ̃𝜀2 > 0
such that

ℎ(0, (𝑑, 0𝑁−2)) < 𝐷1𝐶(0, 0) ∀𝑥𝑖 ∈ (𝑑 − ̃𝜀2, 𝑑 + ̃𝜀2). (A.26)

Let ̃𝜀 ≡ min{ ̃𝜀1, ̃𝜀2}. It then follows from (1.7) that any trajectory starting at an initial

conition 𝑥0 such that 𝑥𝑖0 ∈ (𝑑 − ̃𝜀, 𝑑 + ̃𝜀) and 𝑥𝑗0 = 0 ∀𝑗 ≠ 𝑖 asymptotes towards 𝑑𝑒𝑖.
Now let us consider trajectories starting away from the 𝑥𝑖‐axis. Throughout, keep

in mind the following:

ℎ(𝑥𝑗 , 𝑥−𝑗) < 𝐷1𝐶(0, 𝑥𝑗) ⇒ ℎ(𝑥𝑗 , 𝑥−𝑗) < 𝐷1𝐶(𝛿, 𝑥𝑗) ∀𝑥, ∀𝑗 ≠ 𝑖. (A.27)

That is, when the first inequality is true, the second one is also true. Below, for 𝑗 ≠ 𝑖, I
prove statements using the first inequality only. This helps me exploit the continuity of

ℎ and 𝐷1𝐶.3 Now, let

𝑔𝑗(𝑥𝑗 , 𝑥−𝑗) ∶= ℎ(𝑥𝑗 , 𝑥−𝑗) − 𝐷1𝐶(0, 𝑥𝑗) ∀𝑗 ≠ 𝑖 (A.28)

and

𝑔𝑖(𝑥𝑖, 𝑥−𝑖) ∶= ℎ(𝑥𝑖, 𝑥−𝑖) − 𝐷1𝐶(𝛿, 𝑥𝑖). (A.29)

3Recall the presence of 1R++(𝑥𝑗) inside 𝐷1𝐶(⋅, ⋅) in (1.7).
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For each 𝑗 ≠ 𝑖, fix some 𝜀𝑗 ∈ (0, |𝑔𝑗(0, (𝑑, 0𝑁−1))|). Since 𝑔𝑗 ∈ 𝒞 , ∃𝜁𝑗 > 0 such that

|𝑔𝑗(𝑥𝑗 , 𝑥−𝑗) − 𝑔𝑗(0, (𝑑, 0𝑁−1))| < 𝜀𝑗 when |𝑥ℓ| < 𝜁𝑗 ∀ℓ ≠ 𝑖 and |𝑥𝑖 − 𝑑| < 𝜁𝑗 .

Now, let 𝜀 = min{{𝜀𝑗}𝑗≠𝑖} and 𝜁 = min{{𝜁 }𝑗≠𝑖} and let

S𝜁 (𝑑𝑒𝑖) ∶= {𝑥 ∈ [0, 𝜒]𝑁 ∶ |𝑥𝑖 − 𝑑| < 𝜁 , |𝑥𝑗 | < 𝜁 ∀𝑗 ≠ 𝑖} (A.30)

denote the square 𝜁 ‐neighborhood centered at 𝑑𝑒𝑖, intersected with [0, 𝜒]𝑁 . Then, for all
𝑗 ≠ 𝑖 and 𝑥 ∈ S𝜁 (𝑑𝑒𝑖) ⧵ 𝜕([0, 𝜒]𝑁 ),4

|𝑔𝑗(𝑥𝑗 , 𝑥−𝑗) − 𝑔𝑗(0, (𝑑, 0𝑁−2))| < 𝜀

Notice that by construction, 𝑔𝑗(0, (𝑑, 0𝑁−2)) < 𝜀. Therefore, 𝑔𝑗(𝑥𝑗 , 𝑥−𝑗) ∀𝑥 ∈ S𝜁 (𝑑𝑒𝑖) ⧵
𝜕([0, 𝜒]𝑁 ). Hence, by (1.7), it follows that ̇𝑥𝑗 < 0 ∀𝑗 ≠ 𝑖 at every point in 𝑥 ∈ S𝜁 (𝑑𝑒𝑖) ⧵
𝜕([0, 𝜒]𝑁 ). Therefore, the power of all players other than 𝑖 strictly decays when 𝑥 is

away from the 𝑥𝑖‐axis but sufficiently close to the dictatorial steady state.

Note that since ℎ(⋅, 0𝑁−1) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑 and both are contin‐

uous, it follows that the gap between these two functions widens as one moves away

from 𝑑 (at least within a sufficiently small neighborhood of this point). Hence, there

exists a 𝜑 > 0 such that

𝜕
𝜕𝑥𝑖

(ℎ(𝑥𝑖, 0𝑁−1) − 𝐷1𝐶(𝛿, 𝑥𝑖)) < 0 ∀𝑥𝑖 ∈ (𝑑, 𝑑 + 𝜑). (A.31)

Now, let 𝜂 = min{𝜁 , ̃𝜀, 𝜑} and fix an 𝛼 ∈ (0, 𝜂). By construction,

ℎ(𝑑 + 𝛼, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑑 + 𝛼).
4Here, “𝜕(⋅)” denotes the boundary operator.
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ℎ is strictly increasing in 𝑥𝑗 (∀𝑗 ≠ 𝑖) at 𝑥 = (𝑑 + 𝛼)𝑒𝑖. Moreover, notice that

ℎ(𝑑 + 𝛼, 𝑥−𝑖) ≥ ℎ(𝑑, 0𝑁−1) > 𝐷1𝐶(𝛿, 𝑑) > 𝐷1𝐶(𝛿, 𝑑 + 𝛼) if ∑
𝑗≠𝑖

𝑥𝑗 ≥ 𝛼.

Therefore, ∃𝛽𝛼 ∈ (0, 𝛼) such that the following hold:

ℎ(𝑑 + 𝛼, 𝑥−𝑖) = 𝐷1𝐶(𝛿, 𝑑 + 𝛼) when ∑
𝑗≠𝑖

𝑥𝑖 = 𝛽𝛼 (A.32)

ℎ(𝑑 + 𝛼, 𝑥−𝑖) > 𝐷1𝐶(𝛿, 𝑑 + 𝛼) when ∑
𝑗≠𝑖

𝑥𝑖 > 𝛽𝛼 (A.32′)

ℎ(𝑑 + 𝛼, 𝑥−𝑖) < 𝐷1𝐶(𝛿, 𝑑 + 𝛼) when ∑
𝑗≠𝑖

𝑥𝑖 < 𝛽𝛼 . (A.32′′)

The two inequalities above follow from the fact that ℎ is increasing in 𝑥𝑗∀𝑗 ≠ 𝑖 at
𝑑𝑒𝑖. Notice that by construction, 𝛽𝛼 is strictly increasing in 𝛼.5 Let 𝜔 = min {𝜂, 𝛽𝜂} and let

S𝜔(𝑑𝑒𝑖) denote the square 𝜔−neighborhood about 𝑑𝑒𝑖, intersected by the unit hypercube.

Since 𝛽𝛼 ismonotone in 𝛼, it follows that S𝜔(𝑑𝑒𝑖) is bisected by thehypersurface 𝑥𝑖 = 𝜇(𝑥−𝑖).
𝜇 is increasing in the sense that 𝜕

𝜕𝑥𝑗 𝜇(𝑥−𝑖) > 0 ∀𝑗 ≠ 𝑖. Moreover, Note that 𝜇(0𝑁−1) = 𝑑
and 𝜇(𝑥−𝑖) = 𝜔 whenever∑𝑗≠𝑖 𝑥𝑗 = 𝜔. Let

𝒰 ≡ S𝜔(𝑑𝑒𝑖) ∩ {𝑥 ∶ 𝑥𝑖 > 𝜇(𝑥 𝑖)}

and

ℬ ≡ S𝜔(𝑑𝑒𝑖) ∩ {𝑥 ∶ 𝑥𝑖 < 𝜇(𝑥 𝑖)}.

In 𝒰 , ̇𝑥𝑖 < 0 and in ℬ, ̇𝑥𝑖 > 0. Recall that we have already established that ̇𝑥𝑗 < 0 for
all 𝑗 ≠ 𝑖 throughout S𝜔(𝑑𝑒𝑖). Therefore, any trajectory starting in S𝜔(𝑑𝑒𝑖) will eventually
intersect the 𝑥𝑖−axis. As we saw earlier, once 𝑥 𝑡 is on the 𝑥𝑖−axis (and in S𝜔(𝑑𝑒𝑖)), 𝑥 𝑡

5By (A.31), ℎ(𝑑 + 𝛼, 0𝑁−1) −𝐷1𝐶(𝛿, 𝑑 + 𝛼) becomes increasingly negative as 𝛼 increases. Accordingly, an
increasingly large 𝛽𝛼 is needed in order to make ℎ(𝑑 + 𝛼, ⋅) − 𝐷1𝐶(𝛿, 𝑑 + 𝛼) = 0 again, as in (A.32).
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will approach 𝑑𝑒𝑖 as 𝑡 → ∞. Therefore, the second part of the definition of stability is

satisfied by 𝑑𝑒𝑖
Now, suppose that ℎ(⋅, 0𝑁−1) and 𝐷1𝐶(𝛿, ⋅) do not intersect at 𝑑. If

ℎ(𝑑, 0𝑁−1) > 𝐷1𝐶(𝛿, 𝑑), then ̇𝑥𝑖 evolves according to the last line of (1.7) at 𝑥 = 𝑑𝑒𝑖 since
𝑑 < 𝜒 . Hence ̇𝑥𝑖 = (𝐷1𝐶)−1(ℎ(𝑑, 0𝑁−1), 𝑑) − 𝛿 at 𝑥 = 𝑑𝑒𝑖. Since

ℎ(𝑑, 0𝑁−1) > 𝐷1𝐶(𝛿, 𝑑) ⇒ (𝐷1𝐶)−1(ℎ(𝑑, 0𝑁−1), 𝑑) − 𝛿 > 0

thereby violating the first part of Definition 1.

Now suppose that ℎ(𝑑, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑑). Since 𝐶 is assumed to be strictly increas‐

ing and strictly convex in its first argument, this permits

ℎ(𝑑, 0𝑁−1) < 𝐷1𝐶(0, 𝑑)

to hold. In this case (1.7) implies that ̇𝑥𝑖 = −𝛿 < 0 at 𝑥 = 𝑑𝑒𝑖, thereby violating the

first part of Definition 1. I now show that this part of the definition is still violated if

ℎ(𝑑, 0𝑁−1) ∈ (𝐷1𝐶(0, 𝑑), 𝐷1𝐶(𝛿, 𝑑)). Since 𝑑 > 0, ̇𝑥𝑖 = (𝐷1𝐶)−1(ℎ(𝑑, 0𝑁−1), 𝑑) − 𝛿 at 𝑥 = 𝑑𝑒𝑖 by
the last line of (1.7). Since

ℎ(𝑑, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑑) ⇒ (𝐷1𝐶)−1(ℎ(𝑑, 0𝑁−1), 𝑑) − 𝛿 < 0

it follows that ̇𝑥𝑖 < 0 at 𝑥 = 𝑑𝑒𝑖.
Finally, suppose that ℎ(0, (𝑑, 0𝑁−2)) < 𝐷1𝐶(0, 0), and suppose that ℎ(⋅, 0𝑁−1) in‐

tersects 𝐷1𝐶(𝛿, ⋅) from below. This implies that for some 𝜀 > 0, ℎ(𝑥𝑖, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑥𝑖)
∀𝑥𝑖 ∈ (𝑑 − 𝜀, 𝑑) and ℎ(𝑥𝑖, 0𝑁−1) > 𝐷1𝐶(𝛿, 𝑥𝑖) ∀𝑥𝑖 ∈ (𝑑, 𝑑 + 𝜀). Let

L = {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 ∈ (𝑑 − 𝜀, 𝑑 + 𝜀), 𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖} ⊆ 𝐵𝜀(𝑑𝑒𝑖).
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Clearly ̇𝑥𝑗 = 0 ∀𝑥 ∈ L. Arbitrarily fix 𝜌 ∈ (0, 𝜀), and suppose the initial power structure is

𝑥0 = (𝑑 − 𝜌)𝑒𝑖. Since

ℎ(𝑑 − 𝜌, 0𝑁−1) < 𝐷1𝐶(𝛿, 𝑑 − 𝜌) ⇒ (𝐷1𝐶)−1(ℎ(𝑑 − 𝜌, 0𝑁−1), 𝑑 − 𝜌) − 𝛿 < 0

It follows from (1.7) that ̇𝑥𝑖 at 𝑥0. Since 𝜌 ∈ (𝑑 − 𝜀, 𝑑)was arbitrary, it follows that ̇𝑥𝑖 < 0 at
all 𝑥 ∈ {𝑥 ∈ L ∶ 𝑥𝑖 < 𝑑}. It then follows that for any 𝜌 ∈ (𝑑 − 𝜀, 𝑑), if 𝑥0 = (𝑑 − 𝜌)𝑒𝑖, ∃𝑡 > 0 s.t.
𝑥 𝑡 ∉ 𝐵𝜀(𝑑𝑒𝑖), thereby violating Definition 1.

Proof of Part 5 Arbitrarily fix 𝑖 ∈ {1, ..., 𝑁 }. Here, I show that Condition V

ℎ(𝜒, (0,..., 0)) > 𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (𝜒 , 0,..., 0)) < 𝐷1𝐶(0, 0)

is necessary and sufficient for ̄𝑥 = 𝜒𝑒𝑖 to be stable. For ease of exposition, the first and

second parts of Condition V are respectively referred to as “Condition V.1” and “Condi‐

tion V.2,” below.

First suppose that Condition V holds. It follows fromCondition V.1 and equation

2 of (1.7) that ̇𝑥𝑖 = 0 at this 𝜒𝑒𝑖. By Condition V.2 and equation 1 of (1.7), it follows that

̇𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖 at ̄𝑥. This establishes that if Condition V holds, then ( ̇𝑥1, … , ̇𝑥𝑁 ) = 0𝑁 at

𝑥 = ̄𝑥. Therefore, the first part of Definition 1 is satisfied. As before, I use Lyapunov’s

method to show that ̄𝑥 also satisfies the second part of Definition 1 if Condition V holds.

Since ℎ is continuous and 𝐷1𝐶(𝐼 , ⋅) is continuous for any fixed 𝐼 ≥ 0, it follows that for
some 𝜀 > 0

ℎ(𝑥𝑖, 𝑥−𝑖) > 𝐷1𝐶(𝛿, 𝑥𝑖) (A.33)

ℎ(𝑥𝑗 , 𝑥−𝑗) < 𝐷1𝐶(0, 𝑥𝑗) ∀𝑗 ≠ 𝑖 (A.34)

106



both hold for all 𝑥 ∈ 𝐵𝜀( ̄𝑥). It then follows that at every 𝑥 ∈ 𝐵𝜀( ̄𝑥) ⧵ { ̄𝑥}, ̇𝑥𝑖 > 0 if 𝑥𝑖 < 𝜒 (by

equation 3 of (1.7)), ̇𝑥𝑖 = 0 if 𝑥𝑖 = 𝜒 (by equation 2 of (1.7)), and that for every 𝑗 ≠ 𝑖, ̇𝑥𝑗 < 0
if 𝑥𝑗 > 0 and ̇𝑥𝑗 = 0 otherwise (by equation 1 of (1.7)). Like before, I use the Lyapunov

function from (A.9) evaluated at ̄𝑥 = 𝑒𝑖:

Λ(𝑥) = −[(𝜒 − 𝑥𝑖) −∑
𝑗≠𝑖

𝑥𝑗] (A.35)

whose time derivative is

Λ̇(𝑥) = −(𝜒 − 𝑥𝑖) ̇𝑥𝑖 +∑
𝑗≠𝑖

𝑥𝑗 ̇𝑥𝑗 . (A.36)

Fix some 𝑥 ∈ 𝐵𝜀( ̄𝑥) ∩ [0, 𝜒]𝑁 =∶ 𝒱 . Notice that the first term of (A.36) is strictly negative

if 𝑥𝑖 < 𝜒 and zero if 𝑥𝑖 = 𝜒 . The second term of (A.36) is equal to zero if and only if

𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖 and strictly negative otherwise. It then follows that Λ̇(𝑥) < 0 ∀𝑥 ∈ 𝒱 ⧵ { ̄𝑥}.
This establishes that if Condition V holds, then ̄𝑥 is stable.

I now show that if Condition V is violated, then stable strong dictatorial power

structures cannot exist. Let ̄𝑥 = 𝜒𝑒𝑖 and 𝜀 be defined as above. Suppose that only V.1 is

violated, so that

ℎ(𝜒 , 0𝑁−1) ≤ 𝐷1𝐶(𝛿, 𝜒) (A.37)

ℎ(0, (𝜒 , 0𝑁−2)) < 𝐷1𝐶(0, 0) (A.38)

if the inequality in (A.37) strictly holds, then by equation 1 of (1.7) ̇𝑥𝑖 < 0. Therefore, the
first part of the definition of stability is violated. ■
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ProofofPart 6 Theprevious parts of this proposition established conditions onmodel

primitives under which stable power structures in

{0, 𝜒}𝑁 ⊔ {𝑑𝑒𝑖 ∶ 𝑑 ∈ (0, 𝜒], 𝑖 ∈ {1, ..., 𝑁 }}

exist. I now show that no ̄𝑥 outside this set is ever stable under Assumptions 1 and 2. To

prove this, it is useful to first define

K 𝑧( ̄𝑥) ≡ {𝑖 ∈ {1, ..., 𝑁 } ∶ ̄𝑥 𝑖 = 𝑧} (𝑧 = 0, 𝜒); K 𝑖𝑛𝑡( ̄𝑥) ≡ {𝑖 ∈ {1, ..., 𝑁 } ∶ ̄𝑥 𝑖 ∈ (0, 𝜒)}.

Moreover, let 𝑘𝑧( ̄𝑥) ≡ #(K 𝑧( ̄𝑥)) for each 𝑧 ∈ {0, 𝜒} and 𝑘𝑖𝑛𝑡( ̄𝑥) ≡ #(K 𝑖𝑛𝑡( ̄𝑥)), where #(⋅)
outputs the cardinality of its input. Note that when there is little risk of confusion,K 𝑧,

𝑘𝑧,K 𝑖𝑛𝑡 , and 𝑘𝑖𝑛𝑡 may have their inputs suppressed.

First, let us consider an arbitrarily fixed ̄𝑥 where at least two players have interior
levels of power (i.e. 𝑘𝑖𝑛𝑡( ̄𝑥) ≥ 2). I now suppose that ̄𝑥 is stable and proceed to demon‐

strate that this yields a contradiction. If this supposition is true, then at 𝑥 = ̄𝑥 we have

̇𝑥𝑖 = 0 ∀ 𝑖 (by the first part of Definition 1). The following are then immediately implied

by (1.7):

ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) = 𝐷1𝐶( ̇𝑥𝑖 + 𝛿, ̄𝑥𝑖)| ̇𝑥𝑖=0 ∀𝑖 ∈ K 𝑖𝑛𝑡( ̄𝑥), (A.39)

ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) > 𝐷1𝐶(𝛿, ̄𝑥𝑖) ∀𝑖 ∈ K 𝜒 ( ̄𝑥), (A.40)

ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) < 𝐷1𝐶(0, ̄𝑥𝑖) ∀𝑖 ∈ K 0( ̄𝑥). (A.41)

First consider the case where for two players 𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥) we have 0 < ̄𝑥𝑗 < ̄𝑥𝑗′ < 𝜒 . It
then follows from Assumption 1 that 𝐷1𝐶(𝛿, ̄𝑥𝑗′) ≤ 𝐷1𝐶(𝛿, ̄𝑥𝑗). It is also straightforward to
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verify that ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗): let 𝑎 = 𝑒𝜆 ̄𝑥𝑗 , 𝑏 = 𝑒𝜆 ̄𝑥𝑗′ , and 𝑦 = ∑ℓ∈{𝑖}𝑁1 ⧵{𝑗,𝑗′} 𝑒
𝜆 ̄𝑥ℓ. Then,

ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) =
𝜆𝑎(𝑦 + 𝑏)
(𝑎 + 𝑏 + 𝑦)2 , (A.42a)

ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) =
𝜆𝑏(𝑦 + 𝑎)
(𝑎 + 𝑏 + 𝑦)2 . (A.42b)

Elementary algebra verifies that ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗).
The inequalities 𝐷1𝐶(𝛿, ̄𝑥𝑗′) ≤ 𝐷1𝐶(𝛿, ̄𝑥𝑗) and ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) > ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗), yield a contra‐

diction in light of (A.39):

ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′) = 𝐷1𝐶(𝛿, ̄𝑥𝑗′) ≤ 𝐷1𝐶(𝛿, ̄𝑥𝑗) = ℎ( ̄𝑥𝑗 , ̄𝑥−𝑗) < ℎ( ̄𝑥𝑗′ , ̄𝑥−𝑗′).  
Therefore, there exist no stable ̄𝑥 in the set

{𝑥 ∈ [0, 𝜒]𝑁 ∶ ∃𝑗 ∈ {1, ..., 𝑁 }, 𝑗′ ∈ {1, ..., 𝑁 } ⧵ {𝑗} s.t. 0 < 𝑥𝑗 < 𝑥𝑗′ < 𝜒},

under Assumptions 1 and 2.

Now suppose that ̄𝑥𝑗 = 𝛼 ∀𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥) for some 𝛼 ∈ (0, 𝜒). It is possible to choose
a sufficiently small 𝜀 so that the inequalities in (A.40) and (A.41) hold in the following

subset of an 𝜀 ball of ̄𝑥:

𝒜 ≡ {𝑥 ∈ [0, 𝜒]𝑁 ∶ 𝑥𝑖 = ̄𝑥𝑖 ∀𝑖 ∈ K 0( ̄𝑥) ∪K 𝜒 ( ̄𝑥), |𝑥 − ̄𝑥| < 𝜀}

This follows from the continuity of ℎ and the fact that within this neighborhood only

interior components of ̄𝑥 vary in 𝒜 . Now consider 𝑥̂ = ̄𝑥 + 𝜌 ∑𝑖∈K 𝑖𝑛𝑡 ( ̄𝑥) 𝑒𝑖, where 𝜌 > 0 is
chosen so that 𝑥̂ ∈ 𝒜 . Then, we have for each 𝑖 ∈ K 𝑖𝑛𝑡( ̄𝑥)

ℎ(𝑥̂𝑖, 𝑥̂−𝑖) > ℎ( ̄𝑥𝑖, ̄𝑥−𝑖) = 𝐷1𝐶(𝛿, ̄𝑥𝑖) ≥ 𝐷1𝐶(𝛿, 𝑥̂𝑖),
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where the first inequality follows from the fact that

𝜕
𝜕𝛼 ℎ(𝛼, (𝛼1𝑘𝑖𝑛𝑡 ( ̄𝑥)−1, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥))) > 0,

while the last inequality follows from Assumption 1 that 𝐷1𝐶(𝐼 , ⋅) is weakly decreasing

for every fixed 𝐼 ≥ 0. Therefore if one perturbs 𝑥 𝑡 from ̄𝑥 to 𝑥̂, it follows from (1.7) that

̇𝑥𝑗 = ̇𝑥𝑗′ ≥ 0 ∀𝑗, 𝑗′ ∈ K 𝑖𝑛𝑡( ̄𝑥) at the perturbed point. Note that by construction, ̇𝑥𝑖𝜏 = 0 ∀𝑖 ∈
K 0( ̄𝑥) ⊔ K 𝜒 ( ̄𝑥) at every 𝜏 ∈ [𝑡, 𝑡′]. This implies that 𝑥 𝑡′ will leave the 𝜀‐ball of ̄𝑥 at some

time 𝑡 > 𝑡′, thereby ruling out stability.
The case that remains to be considered are the ̄𝑥 ∈ [0, 𝜒]𝑁 such that 𝑘𝑖𝑛𝑡( ̄𝑥) = 1

and 𝑘0( ̄𝑥) < 𝑁 − 1.6 By symmetry, I can focus on the case where ̄𝑥 = (𝛼, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥))
(for an arbitrarily fixed 𝛼 ∈ (0, 𝜒)) without loss; as before, rearranging the components

of ̄𝑥 does not affect the proof (besides notation).

Suppose that ̇𝑥𝑖 = 0 ∀𝑖 ∈ {1, … , 𝑁 } at ̄𝑥 (if this were not true, then the first part of

Definition 1 has already been violated). I will now show that the second part of Defini‐

tion 1 is violated. By continuity, (A.40) and (A.41) respectively hold ∀𝑖 ∈ K 𝜒 ( ̄𝑥) and ∀𝑖 ∈
K 0( ̄𝑥)when 𝑥 is inside some sufficiently small 𝜀‐ball of ̄𝑥. Since 𝜕

𝜕𝛼 ℎ(𝛼, (𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥))) >
0 and 𝐷1𝐶(𝛿, ⋅) is weakly decreasing, it follows that at 𝑥 = (𝛼 + 𝜌, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥)), we have
̇𝑥1 > 0 ∀𝜌 ∈ (0, 𝜀). Define the following subset of the 𝜀‐ball of ̄𝑥:

L = {𝑥 ∈ 𝐵𝜀( ̄𝑥) ∶ 𝑥1 ∈ (𝛼, 𝛼 + 𝜀), 𝑥𝑖 = 0 ∀𝑖 ∈ K 0( ̄𝑥), 𝑥𝑗 = 𝜒 ∀𝑖 ∈ K 𝜒 ( ̄𝑥)}

Given the above, it has been established that at every 𝑥 ∈ L ̇𝑥1 > 0 and ̇𝑥𝑗 = 0 ∀𝑗 ∈
{2, … , 𝑁 }. It then follows that for any 𝜌 ∈ (0, 𝜀), if the initial power structure is 𝑥0 =
(𝛼 + 𝜌, 𝜒1𝑘𝜒 ( ̄𝑥), 0𝑘0( ̄𝑥)) ∈ L, then 𝑥 𝑡 ∈ 𝐵𝜀( ̄𝑥) at some 𝑡 > 0, thus violating the second part of

6Hence 𝑘𝜒 ( ̄𝑥) ≥ 1; note that if 𝑘𝜒 ( ̄𝑥) = 0, this would correspond to the weak dictatorial case, which
was covered in Part 4 of this proof.

110



Definition 1. ■

Proof of Proposition 4

Recall that by the proof of part 1 of Proposition 3, the (𝜒 , … , 𝜒) is stable if and

only if

ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) > 𝐷1𝐶(𝛿, 𝜒) (A.43)

which is equivalent to
(𝑁 − 1)𝜆

𝑁 2 > 𝐷1𝐶(𝛿, 𝜒). (A.44)

Rearranging the above yields the quadratic inequality

0 > 𝐷1𝐶(𝛿, 𝜒)𝑁 2 − 𝜆𝑁 + 𝜆 (A.45)

When 𝜆
4 ≤ 𝐷1𝐶(𝛿, 𝜒), the escalated inclusive power structure is not stable for any𝑁 ; this

quickly follows from Condition I.7 Otherwise, solving the above quadratic inequality

for 𝑁 yields

𝜆 − √(𝜆 − 4𝐷1𝐶(𝛿, 𝜒))𝜆
2𝐷1𝐶(𝛿, 𝜒)

< 𝑁 <
𝜆 + √(𝜆 − 4𝐷1𝐶(𝛿, 𝜒))𝜆

2𝐷1𝐶(𝛿, 𝜒)
. (A.46)

It is easily verified that the left‐most term is always less than two:

𝜆 − √(𝜆 − 4𝐷1𝐶(𝛿, 𝜒))𝜆
2𝐷1𝐶(𝛿, 𝜒)

− 2 =
[√𝜆 − 4𝐷1𝐶(𝛿, 𝜒) − √𝜆]√𝜆 − 4𝐷1𝐶(𝛿, 𝜒)

2𝐷1𝐶(𝛿, 𝜒)
≤ 0.

Noting that 𝑁 is a natural number implies that no escalated inclusive steady state exist

7Notice that if ℎ(𝜒, 𝜒 ; 2) = 𝜆/4 < 𝐷1𝐶(𝛿, 𝜒), then Condition I (ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) ≥ 𝐷1𝐶(𝛿, 𝜒)) fails at all
𝑁 ≥ 2 since ℎ(𝑥, (𝜒 ,..., 𝜒); 𝑁 ) = (𝑁−1)𝜆

𝑁 2 is decreasing in 𝑁 on {2, 3, …}.
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for group sizes larger than

𝑁̄ 𝐼𝜒 ≡
⎡⎢⎢⎢⎢⎢

𝜆 + √(𝜆 − 4𝐷1𝐶(𝛿, 𝜒))𝜆
2𝐷1𝐶(𝛿, 𝜒)

⎤⎥⎥⎥⎥⎥
. (A.47)

■

Proof of Corollary 1

Suppose that 𝐷1𝐶(𝛿, 𝜒) = 𝑞 for some 𝑞 > 0 and that 𝜆 ≥ 4𝑞. Note that

𝜕
𝜕𝜆 [𝜆 + √𝜆 ⋅ (𝜆 − 4𝑞)

2𝑞 ] = 1
2𝑞 [

(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞)
√𝜆 ⋅ (𝜆 − 4𝑞)

] , (A.48)

and that
𝜕
𝜕𝑞 [

𝜆 + √𝜆 ⋅ (𝜆 − 4𝑞)
2𝑞 ] = −√𝜆

2𝑞2√𝜆 − 4𝑞
[(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞)] . (A.49)

Observe that equations (A.48) and (A.49) are respectively positive andnegative if (𝜆−2𝑞)+

√𝜆 ⋅ (𝜆 − 4𝑞) is positive, which is always the case under the aforementioned supposition:

(𝜆 − 2𝑞) + √𝜆 ⋅ (𝜆 − 4𝑞) > (𝜆 − 4𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

+√𝜆⏟
>0

√𝜆 − 4𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

≥ 0

■

Proof of Proposition 5

Arbitrarily fix 𝜀 > 0; suppose that 𝐷1𝐶(𝛿, ⋅) is bounded by 𝜀 from below. By equa‐

tion (A.46) in Proposition 4, the escalated inclusive power structure is stable only in
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group sizes smaller than

𝑁̄ 𝐼𝜒 ≡ ⌊𝜆 + √(𝜆 − 4𝐷1𝐶(𝛿, 𝜒))𝜆
2𝐷1𝐶(𝛿, 𝜒)

⌋

when 𝜆 > 4𝐷1𝐶(𝛿, 𝜒), and is otherwise not stable in any group size permitted in this

model (𝑁 ∈ {2, 3, …}). If 𝜆 ≤ 4𝜀, Proposition 5.1 trivially follows because of Assumption

1.2. Otherwise, 𝑁̄ 𝐼𝜒 clearly remains finite as 𝜒 → ∞ given the aforementioned supposi‐

tion.

Proposition 11 in Appendix section A.1.2 showed in equation (A.55) that for each

𝑘 ∈ {2, 3, …}, 𝑘‐archic power structures are stable only in groups smaller than

𝑁̄𝑂𝑘𝜒 ≡ ⌊𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆

𝐷1𝐶(𝛿, 𝜒)
− 𝑘)⌋

when 𝜆 > 𝐷1𝐶(𝛿, 𝜒) and not stable at any 𝑁 otherwise. Similarly to before, if 𝜆 < 𝜀
then Proposition 5.2 trivially follows because of Assumption 1.2. In the remaining case

where ∃𝑧 > 0 s.t. 𝜆 > 𝐷1𝐶(𝛿, 𝜒) ∀𝜒 > 𝑧, notice that the limit of 𝑁̄𝑂𝑘𝜒 as 𝜒 → ∞ only depends

on the sign of

lim𝜒→∞
𝜆 + √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆

𝐷1𝐶(𝛿, 𝜒)
− 𝑘.

𝑁̄𝑂𝑘𝜒 → ∞ as 𝜒 → ∞ if the above is strictly negative and lim𝜒→∞ 𝑁̄𝑂𝑘𝜒 ≤ 0 otherwise.
Proposition 12 in Appendix A.1.2 showed in equation (A.58) that dictatorships are

stable only in groups smaller than

𝑁̄𝐷𝜒 ≡ ⌊𝑒𝜆𝜒 ⋅ [𝜆 − 2𝐷1𝐶(𝛿, 𝜒) + √𝜆√𝜆 − 4𝐷1𝐶(𝛿, 𝜒)
2𝐷1𝐶(𝛿, 𝜒)

]⌋

which becomes arbitrarily large as 𝜒 → ∞ given the aforementioned supposition.

■
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Proof of Proposition 6

As in the above proofs, let 𝑒𝑖 denote the 𝑖th standard basis vector, and for each

𝑛 ∈ N let 0𝑛 ∈ R𝑛 denote the vector of zeros. Recall that by Proposition 3, a dictatorial

power structure where the strongest player has 𝑑 ∈ (0, 𝜒) units of power is stable if and
only if

ℎ(⋅, (0,..., 0); 𝑁 ) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑, and

ℎ(0, (𝑑, 0,..., 0); 𝑁 ) < 𝐷1𝐶(0, 0),
(Condition IV)

holds, and that strong dictatorial power structures are stable if and only if

ℎ(𝜒, (0,..., 0); 𝑁 ) > 𝐷1𝐶(𝛿, 𝜒) and ℎ(0, (𝜒 , 0,..., 0; 𝑁 )) < 𝐷1𝐶(0, 0). (Condition V)

holds. Arbitrarily fix 𝑁 ∈ {2, 3, …} and all other model primitives (𝜒 , 𝛿, 𝜆, and 𝐶) such
that for each 𝑀{𝑁 , 𝑁 + 1}, either (1) Condition IV holds at exactly one 𝑑𝑀 ∈ (0, 𝜒) and
condition V fails or (2) Condition IV fails at all 𝑑 ∈ (0, 𝜒) and Condition V holds. The

result of the proof is immediate in case where Condition V holds when the group size

is 𝑁 + 1.
Now suppose that for each 𝑀 ∈ {𝑁 , 𝑁 + 1}, Condition IV holds at exactly one

𝑑𝑀 ∈ (0, 𝜒) and condition V fails. Note that for all 𝑛 ∈ {2, 3, …} and ℓ ∈ {0, 1, 2, …},

ℎ (𝑥𝑖 − 1
𝜆 ln (𝑛 + ℓ − 1

𝑛 − 1 ) , 0𝑛−1; 𝑛) = ℎ (𝑥𝑖, 0𝑛+ℓ−1; 𝑛 + ℓ) . (A.50)

That is, given an initial group size of 𝑛, adding ℓmore players is equivalent to translating

ℎ(⋅, 0𝑛−1; 𝑛) rightward by 1
𝜆 ln (

𝑛+ℓ−1
𝑛−1 ). Moreover, observe that ℎ(⋅, 0𝑁−1; 𝑁 ) can only inter‐

sect 𝐷1𝐶(𝛿, ⋅) from above after the former attains its global maximum at 𝑥𝑖 = ln(𝑁−1)
𝜆
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as it is assumed that both functions are continuous and 𝐷1𝐶(𝐼 , 𝑥) is weakly decreas‐

ing in its second argument. It then follows that 𝑑𝑀 ∈ ( ln(𝑀−1)
𝜆 , 𝜒) ∀𝑀 ∈ {𝑁 , 𝑁 + 1}. If

𝑑𝑁 ∈ ( ln(𝑁−1)
𝜆 , ln(𝑁 )

𝜆 ), then 𝑑𝑁 < 𝑑𝑁+1 follows from the fact that 𝑑𝑁+1 > 𝑙𝑛(𝑁 )
𝜆 . If in‐

stead 𝑑𝑁 ∈ ( ln(𝑁 )
𝜆 , 𝜒), note that ℎ(⋅, 0𝑁−1; 𝑁 ) and ℎ(⋅, 0𝑁 ; 𝑁 + 1) are strictly decreasing on

( ln(𝑁 )
𝜆 , 𝜒). Since the latter is a rightward translation of the former, and since 𝐷1𝐶(𝛿, ⋅) is

decreasing, it follows that 𝑑𝑁 < 𝑑𝑁+1. Note thatwhen restricting attention to the interval

( ln(𝑁 )
𝜆 , 𝜒], translating ℎ(⋅, 0𝑁−1; 𝑁 ) rightward is equivalent to translating it upward; this

immediately yields a contradiction upon supposing that Condition V holds for 𝑁 and

Condition IV holds for 𝑁 + 1 at exactly one 𝑑𝑁+1 ∈ (0, 𝜒). Noting that ℎ(0, (𝑑, 0𝑁−2); 𝑁 ) is
decreasing in 𝑁 and 𝑑 ∀(𝑁 , 𝑑, 𝜆) ∈ {2, 3, …} × (0,∞)2, the proof is complete. ■

Proof of Proposition 7

I consider without loss of generality case where player 1 is a (weak) dictator:

𝑥̂ = (𝑑, 0𝑁 ), where 𝑑 ∈ (0, 𝜒) is as in the first part of Condition IV, which is reproduced

and discussed in the proof of Proposition 6, found immediately above. Assume that

𝐶(⋅, ⋅) complies with Assumption 1. Fix some small 𝜀 > 0 and choose some 𝐶̃ such that

𝐷1𝐶̃(⋅, ⋅) = 𝐷1𝐶(⋅, ⋅) + 𝜀. Since ℎ(⋅, 0𝑁 ) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑 < 𝜒 , it follows
from Assumptions 1 and 2 that ℎ(⋅, 0𝑁 ) − 𝐷1𝐶(𝛿, ⋅) is locally decreasing around 𝑑. Hence,

for sufficiently small but positive 𝜀, ℎ(⋅, 0𝑁 ) intersects 𝐷1𝐶̃(𝛿 , ⋅) at 𝑑̃ < 𝑑. This completes

the proof for part (i) of this proposition. Note that since 𝐶 is assumed convex in its first

argument, part (ii) immediately follows.

Turning to part (iii), we consider the effect of an increase in 𝜆 on 𝑑. Note that

𝜕
𝜕𝜆ℎ(𝑥𝑖, 0𝑁−1) = − (𝑁 − 1)𝑒𝜆𝑥𝑖

[(𝑁 − 1) + 𝑒𝜆𝑥𝑖]3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<0 ∵𝑁≥2

(1 − 𝑒𝜆𝑥𝑖 − 𝑁 + 𝜆𝑥 + 𝜆𝑥𝑒𝜆𝑥𝑖 − 𝜆𝑁𝑥) (A.51)

115



Setting the second term to less than zero and rearranging yields the inequality in part

(iii) of this proposition, thereby completing its proof. ■

A.1.2 Auxiliary Results

Proposition 11. Let 𝑘 ∈ {2, … , 𝑁 − 1}. 𝑘-archies are never stable past group size

𝑁̄𝑂𝑘𝜒 = ⌈𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆

𝐷1𝐶(𝛿, 𝜒)
− 𝑘)⌉ (A.52)

Proof. To simplify notation, let 𝑞𝜒 denote 𝐷1𝐶(𝛿, 𝜒) Recall that in the proof of Part 3 of

Proposition 3 (found in Appendix A.1.1), it was established that

ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘); 𝑁 ) > 𝑞𝜒 (A.53)

is necessary for the stability of each element in

{𝑥 ∈ {0, 𝜒}𝑁 ∶
𝑁
∑
𝑖=1

𝑥𝑖 = 𝑘𝜒} .

Hence if ℎ(𝜒, (𝜒1𝑘−1, 0𝑁−𝑘)) ≤ 𝑞𝜒 , no element of the above set is stable at any value

of 𝑁 permitted in this model. Hence, assume that ℎ(𝜒 , (𝜒1𝑘−1, 0𝑁−𝑘); 𝑁 ) > 𝑞𝜒 for the

remainder of this proof.

Note that (A.53) is equivalent to

𝜆 [𝑘 − 1 + (𝑁 − 𝑘)𝑒−𝜆𝜒]
[𝑘 + (𝑁 − 𝑘)𝑒−𝜆𝜒]2

> 𝑞𝜒 (A.54)

Which yields the following quadratic inequality in 𝑁 . Letting 𝛼 = 𝑒−𝜆𝜒 and 𝛽 = 𝜆
𝑞𝜒 , this
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is as follows:

𝛼2𝑁 2 + 𝛼[2(1 − 𝛼)𝑘 − 𝛽]𝑁 + {[(1 − 𝛼)𝑘 − 𝛽
2 ]

2
+ (1 − 𝛽

4 ) 𝛽} < 0

Note that the coefficient of 𝑁 2 is positive; by the formula for the vertex of a parabola,

it follows that no 𝑁 satisfies this inequality if 𝛽 ⋅ (1 − 𝛽
4 ) > 0 (⇔ 𝜆 < 4𝑞𝜒 ). Otherwise,

solving the above quadratic inequality yields the following:

𝑘 + 𝑒𝜆𝜒 [
𝜆 − √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆

𝐷1𝐶(𝛿, 𝜒)
− 𝑘] < 𝑁 < 𝑘 + 𝑒𝜆𝜒 [

𝜆 + √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆
𝐷1𝐶(𝛿, 𝜒)

− 𝑘] (A.55)

Therefore, 𝑘‐archies are never stable if 𝑁 is greater than or equal to

𝑁̄𝑂𝑘𝜒 = ⌈𝑘 + 𝑒𝜆𝜒 (
𝜆 + √(𝜆 − 𝐷1𝐶(𝛿, 𝜒))𝜆

𝐷1𝐶(𝛿, 𝜒)
− 𝑘)⌉

■

Proposition 12. Suppose Condition IV holds for some 𝑁 and 𝜒 , then there exist finite

𝑁𝐷𝑊𝜒 , 𝑁̄𝐷𝑊𝜒 , 𝑁̄𝐷𝑆𝜒 such that

1. Weak dictatorships are stable if 𝑁𝐷𝑊𝜒 ≤ 𝑁 < 𝑁̄𝐷𝑊𝜒 .

2. Only strong dictatorships are stable if 𝑁̄𝐷𝑊𝜒 ≤ 𝑁 ≤ 𝑁̄𝐷𝑆𝜒

3. Weak and strong dictatorships are unstable if 𝑁 > 𝑁̄𝐷𝑆𝜒 .

Proof. Recall that the marginal benefit of investment for player 𝑖 when her power is

𝑥𝑖 ∈ [0, 𝜒] and all other players have zero power is given by

ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) ≡ 𝜆(𝑁 − 1)𝑒−𝜆𝑥𝑖
(1 + (𝑁 − 1)𝑒−𝜆𝑥𝑖)2 (𝜆 > 0). (A.56)
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Recall that by (A.50) givenan initial group size of𝑁 , adding𝐾 moreplayers shiftsmarginal

benefit ℎ(⋅, 0𝑁−1; 𝑁 ) rightward.
Suppose that 𝑑𝑁 𝑒𝑖 (𝑑𝑁 ∈ (0, 1)) is stable when group size is 𝑁 ∈ {2, 3, ...}. This is

only possible if ℎ(⋅, 0𝑁−1; 𝑁 ) intersects 𝐷1𝐶(𝛿, ⋅) from above at 𝑑𝑁 . I demonstrate this via

proof by contrapositive. If ℎ(⋅, 0𝑁−1; 𝑁 ) is strictly greater than (strictly less than)𝐷1𝐶(𝛿, ⋅)
at 𝑑𝑁 , then the player 𝑖’s marginal benefit of investment is strictly greater than (strictly

less than) her marginal cost when 𝑥 = 𝑑𝑁 𝑒𝑖, hence ̇𝑥𝑖 > 0 ( ̇𝑥𝑖 < 0) at this point. Therefore
if ℎ(𝑑𝑁 , 0𝑁−1; 𝑁 ) ≠ 𝐷1𝐶(𝛿, 𝑑𝑁 ) then 𝑑𝑁 𝑒𝑖 is not a steady state. If the intersection is frombe‐

low, then 𝑑𝑁 𝑒𝑖 is not stable. Let 𝜀 > 0. Perturbing 𝑥𝑖 to 𝑑𝑁 + 𝜀 (𝑑𝑁 − 𝜀) causes themarginal

benefit of investment to become strictly greater than (strictly less than) the marginal

cost for player 𝑖, thereby inducing ̇𝑥𝑖 > 0 ( ̇𝑥𝑖 < 0) at this perturbed point. 𝑑𝑁 𝑒𝑖 is not stable
if ℎ(⋅, 0𝑁−1; 𝑁 ) is tangent to 𝐷1𝐶(𝛿, ⋅) at 𝑑𝑁 . This is shown through similar reasoning. Fi‐

nally, we consider the case where ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) = 𝐷1𝐶(𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ (𝑑𝑁 −𝜀, 𝑑𝑁 +𝜀) for some

𝜀 > 0. (That is, ℎ(⋅, 0𝑁−1; 𝑁 ) and 𝐷1𝐶(𝛿, ⋅) overlap in some 𝜀‐neighborhood of 𝑥𝑖 = 𝑑𝑁 .)
Note that if 𝑑𝑁 𝑒𝑖 is a steady state, we must have that ℎ(0, (𝑑𝑁 , 0𝑁−2); 𝑁 ) < 𝐷1𝐶(𝛿, 0) Oth‐
erwise ̇𝑥𝑗 > 0 ∀𝑗 ≠ 𝑖 at this point. By the continuity of ℎ and 𝐷1𝐶, there must be some

𝜂‐neighborhood of 𝑑𝑁 𝑒𝑖 throughout which this strict inequality holds. Consider the per‐

turbation to 𝑥′ = (𝑑𝑁 + 𝜈) 𝑒𝑖, where 0 < 𝜈 < min{𝜀, 𝜂}. By construction ℎ(𝑑𝑁 + 𝜈, 0𝑁−1; 𝑁 ) =
𝐷1𝐶(𝛿, 𝑑𝑁 + 𝜈), so ̇𝑥𝑖 = 0 at this point. Similarly, ℎ(0, (𝑑𝑁 + 𝜈, 0𝑁 ); 𝑁 ) < 𝐷1𝐶(𝛿, 0), so
̇𝑥𝑗 = 0 ∀𝑗 ≠ 𝑖. Therefore a trajectory that begins at 𝑥0 = 𝑥′ does not approach 𝑑𝑁 𝑒𝑖 in
the limit, thereby ruling out its stability. Note that max𝑥𝑖∈R

ℎ(𝑥𝑖, 0; 2) = 𝜆
4 ; this global maxi‐

mum is attained at 𝑥𝑖 = 0. Since (A.50) implies that ℎ(⋅, 0𝑁−1; 𝑁 ) is a rightward horizontal
translation of ℎ(⋅, 0; 2) (𝑁 = 2, 3, ...), it follows that max𝑥𝑖∈R

ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) = 𝜆
4 for every such

𝑁 . Recall that ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) attains its global maximum (about which it is unimodal) at

𝑥𝑖 = ln(𝑁−1)
𝜆 . Notice that this ismonotonically increasing in𝑁 when𝑁 ≥ 2. Since𝐷1(𝐼 , 𝑥)

is weakly decreasing in its second argument, it follows that min
𝑥𝑖∈[0,𝜒]

𝐷1𝐶(𝛿, 𝑥𝑖) = 𝐷1𝐶(𝛿, 𝜒).
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Finally, notice that lim𝑥𝑖→∞ ℎ(𝑥𝑖, 0𝑁 ; 𝑁 ) = 0. The desired result is immediate.

If 𝜆 < 4𝐷1𝐶(𝛿, 𝜒) then 𝑁̄ = 2. Now assume 𝜆 > 4𝐷1𝐶(𝛿, 𝜒) throughout the remain‐

ing duration of this proof. Since ℎ(𝑥, 0𝑁−1; 𝑁 ) is unimodal about ln(𝑁−1)
𝜆 it follows that

there exist exactly two values of 𝑁 that solve ℎ(𝜒, 0𝑁−1; 𝑁 ) = 𝐷1𝐶(𝛿, 𝜒). These are

𝑁1 = 1 + ( 𝑒𝜆𝜒
2𝐷1𝐶(𝛿, 𝜒)

) (𝜆 − 2𝐷1𝐶(𝛿, 𝜒) − √𝜆√𝜆 − 4𝐷1𝐶(𝛿, 𝜒)) (A.57)

and

𝑁2 = 1 + ( 𝑒𝜆𝜒
2𝐷1𝐶(𝛿, 𝜒)

) (𝜆 − 2𝐷1𝐶(𝛿, 𝜒) + √𝜆√𝜆 − 4𝐷1𝐶(𝛿, 𝜒)) . (A.58)

Let 𝑁̄𝐷𝑊𝜒 = ⌈𝑁1⌉. If 𝑁2 ∈ N, then let 𝑁̄𝐷𝑆𝜒 = 𝑁2 − 1; otherwise let 𝑁̄𝐷𝑆𝜒 = ⌊𝑁2⌋. When N

= 𝑁̄𝐷𝑆𝜒 , we know that ℎ(𝑥𝑖, 0𝑁̄𝐷𝑆𝜒 −1; 𝑁̄
𝐷𝑆𝜒 ) > 𝐷1𝐶(𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ (𝜒 − 𝜀, 𝜒] for some 𝜀 > 0 and

the reverse inequality holds in [0, 𝜒 − 𝜀]. Therefore the only stable dictatorships that

exist are {𝜒𝑒𝑖}𝑁̄
𝐷𝑆𝜒

1 . It follows from (A.50) that for all 𝑁 > 𝑁̄𝐷𝑆𝜒 , ℎ(𝑥𝑖, 0𝑁−1; 𝑁 ) < 𝐷1𝐶(𝛿, 𝑥𝑖)
∀ 𝑥𝑖 ∈ [0, 𝜒]. Therefore no dictatorial steady state can exist at any such 𝑁 . By construc‐

tion ℎ(𝑥𝑖, 0𝑁̄𝐷𝑊𝜒 −1; 𝑁̄
𝐷𝑊𝜒 ) > 𝐷1𝐶(𝛿, 𝑥𝑖) ∀ 𝑥𝑖 ∈ ( ln(𝑁̄𝐷𝑊𝜒 −1)

𝜆 , 𝜒]. It then follows that the only

dictatorial steady states that exist are {𝜒𝑒𝑖}𝑀1 . It follows from (A.50) that the same is true

for all 𝑁 ∈ {𝑁̄𝐷𝑊𝜒 , ..., 𝑁̄𝐷𝑆𝜒 }. ■

Remark 5. It is natural to expect that – given a fixed 𝜒 – dictatorships also become un‐

feasible once the group surpasses a certain size: powerless players, in sufficiently large

numbers, overwhelm all dictators. This subject was considered in Proposition 5, which

explores what happens when 𝜒 is made arbitrarily large. Note that a non‐trivial lower

bound 𝑁𝑊
𝜒 is possible; this follows from the fact mentioned earlier: powerless players

always have a chance of winning conflicts.

A.1.3 Supplementary Figures
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FigureA.1: Example of a casewhere two types ofweak dictatorial power structures are
stable. This simulation was generated using model primitives 𝜆 = 3.5, 𝛿 = 0.1, 𝑁 = 2,
𝜒 = 1, and 𝐶(𝐼 , 𝑥) = 0.77𝐼 2 +max{0.8 − 𝑥, 0}𝐼 .
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Figure A.2: Example of a three‐player phase diagram where all possible classes (and
subclasses) of stable power structures are featured. This simulation was generated
using 𝑁 = 3, 𝜆 = 4, 𝛿 = 0.1, and the cost function, 𝐶(𝐼𝑖𝑡 , 𝑥𝑖,𝑡−Δ) ∶= 0.6𝐼 2𝑖𝑡 + 1.37max{0.9 −
𝑥𝑖,𝑡−Δ, 0}𝐼𝑖𝑡 .

FigureA.3: Quaternary diagram depicting how the balance of power among four play‐
ers evolves over time. This diagramwas generated using the sameparameter and func‐
tion choices as in Figure 1.4. Like before, ̄𝑥𝑖 ∶= 𝑥𝑖

𝑥1+𝑥2+𝑥3+𝑥4 denotes player 𝑖’s share of
the group’s aggregate power.
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(a) Increasing from 𝐵 to 𝐵′ increases the marginal cost of investment uniformly for all players;
increasing 𝛾 to 𝛾 ′ increasesmarginal investment costs for players with 𝑥⋅ ∈ [𝛾 , 𝛾 ′). Geometrically,
increasing 𝐵 (𝛾 ) shifts 𝐷1𝐶(𝐼 , ⋅) upwards (rightwards) for every fixed 𝐼 . Increasing 𝐵 slows the
growth rate of 𝑑𝑁 and lowers 𝑁̄ , while increasing 𝛾 only has the effect of increasing 𝑁 .

(b) Increasing 𝜆 makes the outcome of conflict less noisy. This lowers 𝑁 and raises both𝑀 and
𝑁̄ . Moreover, this increase has a non‐monotonic effect on the path of 𝑑𝑁 . This is to be expected,
given part (iii) of Proposition 7.

Figure A.4: Comparative statics of {(𝑁 , 𝑑𝑁 )}∞𝑁=2

Figure A.5: Heatmaps of the probability 𝐻(0, (𝑑, 0… , 0); 𝑁 ) of a powerless player win‐
ning conflicts in a dictatorial power structure (where the dictator holds 𝑑 units of
power).
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A.1.4 More on Contest Success Functions

In what follows, let N = {1, … , 𝑁 } denote the set of lineages, where 𝑁 is arbitrarily

fixed. Moreover, throughout this section, all time subscripts will be suppressed and

the player from lineage 𝑖 will simply be referred to as “player 𝑖.”

Role Played by Assumption 2

This section discusses the assumption (Assumption 2) made on 𝐻(𝑥𝑖, 𝑥−𝑖) is the
conditional probability that player 𝑖 wins an 𝑁 ‐player conflict given that they hold

power 𝑥𝑖 and other players hold powers 𝑥−𝑖. Specifically, I assumed the functional

form (1.3), reproduced below

𝐻(𝑥𝑖, 𝑥−𝑖) ≡ 𝑒𝜆𝑥𝑖
∑𝑁

𝑗=1 𝑒𝜆𝑥𝑗
= 1

1 + ∑
𝑗≠𝑖

𝑒−𝜆(𝑥𝑖−𝑥𝑗)
, (𝜆 ≥ 0). (A.59)

This constitutes what is known as a Contest Success Function (CSF) in differences,

since it only directly depends on power differences. While it would have been more

general to directly assume that 𝐻 is a continuous function of power differences,

Skaperdas (1996, Theorem 3) shows that assuming the above functional form comes at

very little additional loss of generality. Specifically, he shows that assuming that 𝐻
satisfies the above functional form is equivalent to assuming that 𝐻 is a continuous

function of power differences that satisfies five additional axioms that – as we will now

see – are all very mild.

In order to properly state these axioms, and Theorem 3 from Skaperdas (1996), a more

general notion of contest success function is needed: specifically, one that

accommodates “breakaway conflicts” where only players from a subset M ⊆ N of

lineages participate. Formally, let 𝑝𝑖M N (𝑥) denote the probability that player 𝑖 wins a
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single‐winner conflict given that the power structure is 𝑥, the set of lineages is N , and

only players from lineages in M ⊆ N participate.8 The form of conflict considered in

the present model has M = N since players cannot be excluded from conflict.

The first three axioms are specifically in regards to 𝑝𝑖N N (𝑥), player 𝑖’s probability of
winning a conflict wherein all players participate when the power structure is 𝑥. The
first axiom states that 𝑝𝑖N N (⋅) is a valid conditional probability distribution

Axiom 1. ∑𝑁
𝑖=1 𝑝𝑖N N (𝑥) = 1 and 𝑝𝑖N N (𝑥) ≥ 0 ∀ 𝑥, 𝑖

The next axiom states that a player’s probability of winning a conflict (wherein all

players participate) is increasing in howmuch power they hold, and decreasing in

that held by each of their opponents

Axiom 2. 𝑝𝑖N N (𝑥) is increasing in 𝑥𝑗 if 𝑗 = 𝑖 and decreasing otherwise.

Axiom 3 is an anonymity condition that states that victory probabilities are

independent of player identities

Axiom 3. Let (𝜋1, … , 𝜋𝑁 ) be a permutation of (1, … , 𝑁 ). If 𝑥𝑗 = 𝑥̂𝜋𝑖 ∀𝑗, then
𝑝𝑖N N (𝑥1, … , 𝑥𝑁 ) = 𝑝𝜋𝑖N N (𝑥̂𝜋1 , … , 𝑥̂𝜋𝑁 ) ∀𝑖.

The two remaining axioms relate to the victory of probability 𝑝⋅M N in conflicts

wherein only a subset M ⊂ 𝑁 of players participate.

Axiom 4. For each M ⊆ N with at least two elements,

𝑝𝑖M N (𝑥) =
𝑝𝑖N N (𝑥)

∑𝑗∈M 𝑝𝑖N N (𝑥) ∀𝑖 ∈ M and ∀𝑥 (A.60)

8Notice that 𝑝𝑖
M N (⋅) is formally a function of 𝑥 – the vector of all player’s powers – as opposed to the

vector of powers held by players only in M .
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The left hand side of (A.60) is the conditional probability that player 𝑖 ∈ M wins, given

that only players in M participate, and that the power structure is 𝑥. The right‐hand
side is the conditional probability that player 𝑖 ∈ M wins, given that all players

participate but that the winner is a player in M (and given that the power structure is

𝑥).
The fifth and final axiom states that the probability of victory of those participating in

a conflict is independent of power held by players excluded from participation.

Axiom 5. For each M ⊆ N and 𝑖 ∈ N , 𝑝𝑖M N (𝑥) is constant in 𝑥𝑗 ∀ 𝑗 ∉ M .

Skaperdas (1996, Theorem 1) states that 𝑝𝑖M N (𝑥) satisfies Axioms 1‐5 if and only if

there exists an increasing, positive function 𝑓 ∶ R → R such that

𝑝𝑖M N (𝑥) = 𝑓 (𝑥𝑖)
∑𝑗∈M 𝑓 (𝑥𝑗)

∀𝑖 ∈ M , ∀M ∈ N , ∀𝑥 (A.61)

That is, stating that 𝑝𝑖M N (𝑥) satisfies Axioms 1‐5 is equivalent to stating that it takes the

functional form in (A.61), for some 𝑓 .
Finally, the following axiom formalizes the notion of a contest success function

depending only on power differences

Axiom 6. 𝑝𝑖N N (𝑥) = 𝑝𝑖N N (𝑥 + (𝑐, … , 𝑐)) ∀𝑖 and ∀𝑐 ∈ R s.t. 𝑥𝑖 + 𝑐 ≥ 0 ∀𝑖

We already know that if 𝑝𝑖N N (𝑥) satisfies Axioms 1‐5, it must take the functional form

in (A.61) for some 𝑓 (Skaperdas, 1996, Theorem 1). (Skaperdas, 1996, Theorem 3) states

that if one further assumes that 𝑝𝑖N N (𝑥) satisfies Axiom 6 (which implies that it only

depends on power differences) and that 𝑓 is continuous, 𝑓 must take the functional

form

𝑓 (𝑥𝑖) = 𝑒𝜆𝑥𝑖 (𝜆 > 0). (A.62)
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Remark 6. Corchón and Dahm (2010, p. 83) note that the above function is often

referred to as an effectivity function, where 𝑒𝜆𝑥𝑖 corresponds to how effectively player 𝑖’s
power influences their victory probability.

A.2 Appendix of Chapter 2

A.2.1 Proof of Lemma 1

Genuine Players’ (𝑖 = 1, 2) Problems

Given the vector of messagesm ∈ {𝐿, 𝐻}3 and types (𝜃1, 𝜃2) ∈ {𝐿, 𝐻}2, (genuine) player
𝑖 ∈ {1, 2} has the following utility function:

𝑢𝑖(𝑥(m), 𝜃𝑖) = −(𝑥(m) − 𝜃𝑖)2, (A.63)

where 𝑥(m) ≡ U {mode(m)}. Notice that under this simple setup, 𝑥(⋅) simplifies to

𝑥(m) ≡ sgn(𝑚1 + 𝑚2 + 𝑚3) (A.64)

because of the facts that there are 3 voters and that (𝐿, 𝐻) = (−1, 1).
Let 𝑚𝑘,𝜃𝑘 denote the message of player 𝑘 ∈ {1, 2, 3} who is of type 𝜃𝑘 ∈ {𝐿, 𝐻} ∪ {𝑇 }. Then
the expected utilities of players 1 and 2 are given by

E𝜃2𝑢1(𝑚1𝜃1 , (𝑚2𝜃2 , 𝑚3𝑇 ), 𝜃1) = −𝑝[𝑥(𝑚1𝜃1 , 𝑚2𝐿, 𝑚3𝑇 ) − 𝜃1]2 − (1 − 𝑝)[𝑥(𝑚1𝜃1 , 𝑚2𝐻 , 𝑚3𝑇 ) − 𝜃1]2

128



and

E𝜃1𝑢2(𝑚2𝜃2 , (𝑚1𝜃1 , 𝑚3𝑇 ), 𝜃2) = −𝑝[𝑥(𝑚1𝐿, 𝑚2𝜃2 , 𝑚3𝑇 ) − 𝜃2]2 − (1 − 𝑝)[𝑥(𝑚1𝐻 , 𝑚2𝜃2 , 𝑚3𝑇 ) − 𝜃2]2,

respectively.

To facilitate performing the calculations below, let

EU1𝜃1(𝑚1𝜃1 , (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 )) ∶= E𝜃2𝑢1(𝑚1𝜃1 , (𝑚2𝜃2 , 𝑚3𝑇 ), 𝜃1) and define

EU1𝜃1(𝑚1𝜃1 , (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 )) similarly.

Let 𝑖 = 1 and 𝜃1 = 𝐿 = −1. To characterize player 1’s optimal strategy, I consider the

following 8 cases, summarized in the table, below:

1 2 3 4 5 6 7 8

𝑚2𝐿 L L H H L L H H

𝑚2𝐻 H H L L L L H H

𝑚3𝑇 L H L H L H L H

Going through all of these cases exhausts all the possible (𝑚2𝐿, 𝑚2𝐻 , 𝑚3𝑇 ).
Case 1: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐿, 𝐻 ; 𝐿)
𝐸𝑈1𝐿(−1, (−1, 1; −1)) = 0 > −4(1 − 𝑝) = 𝐸𝑈1𝐿(1, (−1, 1; −1)) ⇒ 𝑚∗1𝐿(−1, 1; −1) = −1.
Case 2: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐿, 𝐻 ; 𝐻)
𝐸𝑈1𝐿(−1, (−1, 1; 1)) = −4(1 − 𝑝) > −4 = 𝐸𝑈1𝐿(1, (−1, 1; 1)) ⇒ 𝑚∗1𝐿(−1, 1; 1) = −1.
Case 3: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐻 , 𝐿; 𝐿)
𝐸𝑈1𝐿(−1, (1, −1; −1)) = 0 > −4 = 𝐸𝑈1𝐿(1, (1, −1; −1)) ⇒ 𝑚∗1𝐿(1, −1; −1) = −1.
Case 4: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐻 , 𝐿; 𝐻)
𝐸𝑈1𝐿(−1, (1, −1; 1)) = −4𝑝 > −4 = 𝐸𝑈1𝐿(1, (1, −1; 1)) ⇒ 𝑚∗1𝐿(1, −1; 1) = −1.
Case 5: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐿, 𝐿; 𝐿)
𝐸𝑈1𝐿(−1, (−1, −1; −1)) = 0 = 𝐸𝑈1𝐿(1, (−1, −1; −1)) ⇒ 𝑚∗1𝐿(−1, −1; −1) = {−1, 1}.
Case 6: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐿, 𝐿, 𝐻)
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𝐸𝑈1𝐿(−1, (−1, −1; 1)) = 0 > −4 = 𝐸𝑈1𝐿(1, (−1, −1; 1)) ⇒ 𝑚∗1𝐿(−1, −1; 1) = −1.
Case 7: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐻 , 𝐻 ; 𝐿)
𝐸𝑈1𝐿(−1, (1, 1; −1)) = 0 > −4 = 𝐸𝑈1𝐿(1, (1, 1; −1)) ⇒ 𝑚∗1𝐿(1, 1; −1) = −1.
Case 8: (𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = (𝐻 , 𝐻 ; 𝐻)
𝐸𝑈1𝐿(−1, (1, 1; 1)) = 0 = 𝐸𝑈1𝐿(1, (1, 1; 1)) ⇒ 𝑚∗1𝐿(1, 1; 1) = {−1, 1}.
Summarizing the above,

𝑚∗1𝐿(𝑚2𝐿, 𝑚2𝐻 ; 𝑚3𝑇 ) = { {−1, 1} , if 𝑚2𝐿 = 𝑚2𝐻 = 𝑚3𝑇

−1 , otherwise

The derivations for 𝑚∗2𝐿(⋅), 𝑚∗1𝐻 (⋅), and 𝑚∗2𝐻 (⋅) are very similar and are omitted. Let

𝑖, 𝑗 ∈ {1, 2} (𝑖 ≠ 𝑗) and 𝜃𝑖 ∈ {𝐿, 𝐻}. Then,

𝑚∗𝑖𝜃𝑖(𝑚𝑗𝐿, 𝑚𝑗𝐻 , 𝑚3𝑇 ) = { {−1, 1} , if 𝑚2𝐿 = 𝑚2𝐻 = 𝑚3𝑇

𝜃𝑖 , otherwise.

For simplicity, we impose that when

EU𝑖𝜃𝑖(𝑚𝑖𝜃𝑖 , (𝑚𝑗𝐿, 𝑚𝑗𝐻 ; 𝑚3𝑇 )) = EU𝑖𝜃𝑖(−𝑚𝑖𝜃𝑖 , (𝑚𝑗𝐿, 𝑚𝑗𝐻 ; 𝑚3𝑇 )),

player 𝑖 (of type 𝜃𝑖) will vote 𝜃𝑖. Imposing this “indifference‐breaking condition” yields

𝑚∗𝑖𝜃𝑖(𝑚𝑗𝐿, 𝑚𝑗𝐻 , 𝑚3𝑇 ) ≡ 𝜃𝑖 (sincere voting by genuine types)

Saboteur’s Problem (Player 3)

Given 𝜃−3 andm−3,𝜃−3,

𝑢3(𝑚3𝑇 ,m−3,𝜃−3 , 𝜃−3) = −∑
𝑗≠3

𝑢𝑗(𝑚𝑗𝜃𝑗 ,m−𝑗,𝜃−𝑗 , 𝜃𝑗)
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Given the (common) prior, player 3’s expected utility is as follows:

E𝜃−3[𝑢3(𝑚3𝑇 ,m−3,𝜃−3 , 𝜃−3)] = ∑
𝜏∈{𝐿,𝐻}2

P{𝜃−3 = 𝜏} ⋅ 𝑢3(𝑚3𝑇 ,m−3,𝜏 , 𝜏 )

which can be explicitly written as

E𝜃−3[𝑢3(𝑚3𝑇 ,m−3,𝜃−3 , 𝜃−3)] = 𝑝2[-𝑢1(𝑚1𝐿, (𝑚2𝐿, 𝑚3𝑇 ), 𝐿)-𝑢2(𝑚2𝐿, (𝑚1𝐿, 𝑚3𝑇 ), 𝐿)]
+𝑝(1-𝑝)[-𝑢1(𝑚1𝐿, (𝑚2𝐻 , 𝑚3𝑇 ), 𝐿)-𝑢2(𝑚2𝐻 , (𝑚1𝐿, 𝑚3𝑇 ), 𝐻)]
+(1-𝑝)(𝑝)[-𝑢1(𝑚1𝐻 , (𝑚2𝐿, 𝑚3𝑇 ), 𝐻)-𝑢2(𝑚2𝐿, (𝑚1𝐻 , 𝑚3𝑇 ), 𝐿)]
+(1-𝑝)2[-𝑢1(𝑚1𝐻 , (𝑚2𝐻 , 𝑚3𝑇 ), 𝐻)-𝑢2(𝑚2𝐻 , (𝑚1𝐻 , 𝑚3𝑇 ), 𝐻)].

Now, note the following:

(i) If 𝜃1 = 𝜃 = 𝜃2, then player 3 is not pivotal, so

𝑢𝑖(𝜃, (𝜃, 𝑚3𝑇 ), 𝜃) = 0 ∀𝑚3𝑇 (𝑖 = 1, 2; 𝜃 = −1, 1)

(ii) If 𝜃𝑖 = 𝐿, 𝜃𝑗 = 𝐻 (𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗), then player 3 is pivotal, so

𝑢𝑖(−1, (1, 𝑚3𝑇 ), −1) = { 0 , if 𝑚3𝑇 = −1
−4 , if 𝑚3𝑇 = 1

, 𝑢𝑖(−1, (1, 𝑚3𝑇 ), 1) = { −4 , if 𝑚3𝑇 = −1
0 , if 𝑚3𝑇 = 1

.

It then follows that

E𝜃−3[𝑢3(𝑚3𝑇 ,m∗
−3,𝜃−3 , 𝜃−3)] = 8𝑝(1 − 𝑝) ∀𝑚3𝑇 ∈ {−1, 1}

Hence, player 3 is indifferent between choosing 𝑚3𝑇 = −1 and 𝑚3𝑇 = 1 for all
𝑝 ∈ (0, 1). ■
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A.2.2 Proof of Lemma 2

The structure of this derivation is very similar to that of the previous section. We first

solve the genuine players’ (𝑖 = 1, 2) problems using an exhaustive method. Afterward,

we compare E𝜃−3[𝑢3(−1,m∗
−3,𝜃−3 , 𝜃−3)] and E𝜃−3[𝑢3(1,m∗

−3,𝜃−3 , 𝜃−3)] to derive 𝑚∗3𝑇 (⋅). The
only difference in this derivation is that now 𝑥(⋅) is given by (2.3) instead of (2.1).

Genuine Players’ (𝑖 = 1, 2) Problems

Case 1: 𝐸𝑈1𝐿((−1, (−1, 1; −1)) − 𝐸𝑈1𝐿((1, (−1, 1; −1)) = 4
3 −

8 𝑝
9 > 0

⇒ 𝑚∗1𝐿((1, (−1, 1; −1))) = −1,
Case 2: 𝐸𝑈1𝐿((−1, (−1, 1; 1)) − 𝐸𝑈1𝐿((1, (−1, 1; 1)) = 20

9 − 8 𝑝
9 > 0

⇒ 𝑚∗1𝐿((1, (−1, 1; 1))) = −1,
Case 3: 𝐸𝑈1𝐿((−1, (1, −1; −1)) − 𝐸𝑈1𝐿((1, (1, −1; −1)) = 8 𝑝

9 + 4
9 > 0

⇒ 𝑚∗1𝐿((1, (1, −1; −1))) = −1,
Case 4: 𝐸𝑈1𝐿((−1, (1, −1; 1)) − 𝐸𝑈1𝐿((1, (1, −1; 1)) = 8 𝑝

9 + 4
3 > 0

⇒ 𝑚∗1𝐿((1, (1, −1; 1))) = −1,
Case 4: 𝐸𝑈1𝐿((−1, (1, −1; 1)) − 𝐸𝑈1𝐿((1, (1, −1; 1)) = 8 𝑝

9 + 4
3 > 0

⇒ 𝑚∗1𝐿((1, (1, −1; 1))) = −1,
Case 5: 𝐸𝑈1𝐿((−1, (−1, −1; −1)) − 𝐸𝑈1𝐿((1, (−1, −1; −1)) = 4

9 > 0
⇒ 𝑚∗1𝐿((1, (−1, −1; −1))) = −1,

Case 6: 𝐸𝑈1𝐿((−1, (−1, −1; 1)) − 𝐸𝑈1𝐿((1, (−1, −1; 1)) = 4
3 > 0

⇒ 𝑚∗1𝐿((1, (−1, −1; 1))) = −1,
Case 7: 𝐸𝑈1𝐿((−1, (1, 1; −1)) − 𝐸𝑈1𝐿((1, (1, 1; −1)) = 4

3 > 0
⇒ 𝑚∗1𝐿((1, (1, 1; −1))) = −1,

Case 8: 𝐸𝑈1𝐿((−1, (1, 1; 1)) − 𝐸𝑈1𝐿((1, (1, 1; 1)) = 20
9 > 0

⇒ 𝑚∗1𝐿((1, (1, 1; 1))) = −1,
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Hence, player 1 (of type L) votes sincerely (i.e., 𝑚∗1𝐿(⋅) ≡ −1. As before, the derivations
for player 2 and for high types are omitted since they are very similar. Players 1 and 2

of either type vote sincerely (i.e., 𝑚∗𝑖𝜃𝑖(⋅) ≡ 𝜃𝑖, ∀𝑖 ∈ {1, 2}, ∀𝜃𝑖 ∈ {−1, 1}).

Saboteur’s Problem (Player 3)

Solving player 3’s problem is much simpler this time:

E𝜃−3[𝑢3(−1,m∗
−3,𝜃−3 , 𝜃−3)] − E𝜃−3[𝑢3(1,m∗

−3,𝜃−3 , 𝜃−3)] =
8 (𝑝 − 1)2

9 − 8 𝑝2
9 = 8

9 − 16 𝑝
9

which is positive if and only if 𝑝 > 1
2 . Hence,

𝑚∗3𝑇 ≡
⎧⎪
⎨⎪
⎩

−1 , if 𝑝 < 1
2

{−1, 1} , if 𝑝 = 1
2

1 , if 𝑝 > 1
2

■

A.2.3 Trolls’ Behavior Under “Majority Rule”

When there are N agents, 2 types (𝛾1 and 𝛾2), T trolls, and the voting mechanism is

“Majority Rule”, trolls will always vote for the less likely type.

Let 𝑛𝑖(𝜃) ∈ {0, 1, ..., 𝑁 } denote the number of agents that are type 𝛾𝑖 (𝑖 = 1, 2), given the

realization 𝜃 ∈ {𝛾1, 𝛾2}𝑁 . Since there are two types, 𝑛2(𝜃) ≡ 𝑁 − 𝑛1(𝜃).9 Let

𝜑(𝑛1) ∶= (𝑁𝑛1
)𝑝𝑛1(1 − 𝑝)(𝑁−𝑛1) (A.65)

denote the probability that 𝑛1 players are of the first type.

9The input for 𝑛1 will be suppressed throughout.
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Notice that trolls are pivotal if and only if |𝑛1 − 𝑛2| ≤ 𝑇 . This is equivalent to

𝑁 − 𝑇
2 ≤ 𝑛1 ≤ 𝑇 + 𝑁

2 .

For simplicity, assume that 𝑁−𝑇
2 , 𝑁+𝑇

2 ∉ N and that 𝑇 < 𝑁 .10 Trolls have two strategies

to compare: vote for 𝜃 = 𝛾1 or for 𝜃 = 𝛾2. We will show that trolls optimally vote for 𝛾2
iff 𝑝 > 1

2 .

Denote the trolls’ message by 𝑚𝑇 and let 𝐸𝑈𝑇 (𝑚𝑇 ) denote their expected utility from

voting 𝑚𝑇 .11 Then, the trolls will optimally pick 𝑚∗𝑇 = 𝛾2 iff 𝐸𝑈𝑇 (𝛾1) − 𝐸𝑈𝑇 (𝛾2) < 0. After
some (omitted) algebraic simplification, we get

𝐸𝑈𝑇 (𝛾1) − 𝐸𝑈𝑇 (𝛾2) =

⌊𝑁+𝑇
2 ⌋

∑
𝑛1=⌊𝑁−𝑇

2 ⌋+1
𝜑(𝑛1) [(𝑁 − 𝑛1)(𝛾1 − 𝛾2)2 − 𝑛1(𝛾1 − 𝛾2)2]

=

⌊𝑁+𝑇
2 ⌋

∑
𝑛1=⌊𝑁−𝑇

2 ⌋+1
𝜑(𝑛1)(𝑁 − 2𝑛1)(𝛾1 − 𝛾2)2

=

⌊𝑁2 ⌋

∑
𝑛1=⌊𝑁−𝑇

2 ⌋+1
(𝜑(𝑛1) − 𝜑(𝑁 − 𝑛1)) (𝑁 − 2𝑛1)(𝛾1 − 𝛾2)2,

where the last equality is due to the symmetry of 𝑁 − 2𝑛1 around 𝑛1 = 𝑁
2 . Next, note

10These assumptions are by no means necessary. In a more exhaustive proof, where 𝑁 , 𝑇 ∈ N, we
would need to use some tie‐breaking rule for when the 𝑛1 = 𝑁−𝑇

2 and 𝑛1 = 𝑁+𝑇
2 . The assumption 𝑇 < 𝑁 is

just so that we focus on the less trivial part of the complete proof. When 𝑇 ≥ 𝑁 , trolls are always pivotal.
11Here, trolls will always cast the same votes as one another, and hence can be treated as one player

in this proof.
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that due to the symmetry of binomial coefficients, we have

𝜑(𝑛1) − 𝜑(𝑁 − 𝑛1) = (𝑁𝑛1
) (𝑝𝑛1(1 − 𝑝)𝑁−𝑛1 − 𝑝𝑁−𝑛1(1 − 𝑝)𝑛1) ,

which is negative for any 𝑛1 < 𝑁
2 iff 𝑝 > 1

2 . Thus, if 𝑝 > 1
2 , we have 𝐸𝑈𝑇 (𝛾1) − 𝐸𝑈𝑇 (𝛾2) < 0,

and the trolls’ optimal strategy is to vote for the less likely type, 𝑚 = 𝛾2.
“■”

A.2.4 Proof of Lemma 4

Proof. The difference between the designer’s expected utility when trolls imitate 𝛾1
and 𝛾2 can be shown to satisfy

Δ𝐸𝑈 = −
𝑁
∑
𝑘=0

(𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘 (𝑘 (𝑁 − 𝑘

𝑁 + 𝑇 )
2
+ (𝑁 − 𝑘) ( 𝑇 + 𝑘

𝑁 + 𝑇 )
2
) (𝛾1 − 𝛾2)2

+
𝑁
∑
𝑘=0

(𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘 (𝑘 (𝑇 + 𝑁 − 𝑘

𝑁 + 𝑇 )
2
+ (𝑁 − 𝑘) ( 𝑘

𝑁 + 𝑇 )
2
) (𝛾1 − 𝛾2)2

∼
𝑁
∑
𝑘=0

(𝑁
𝑘
)(𝑘 (𝑁 − 𝑘

𝑁 + 𝑇 )
2
+ (𝑁 − 𝑘) ( 𝑇 + 𝑘

𝑁 + 𝑇 )
2
) ((1 − 𝑝)𝑘𝑝𝑁−𝑘 − 𝑝𝑘(1 − 𝑝)𝑁−𝑘)
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The last line is due to us removing (𝛾1 − 𝛾2)2 to simplify the expression (it is a common

positive term). Assuming 𝑁 is odd12, we can represent the sum above as follows:

Δ𝐸𝑈 ∼
𝑁−1
2
∑
𝑘=0

(𝑁
𝑘
) ((1 − 𝑝)𝑘𝑝𝑁−𝑘 − 𝑝𝑘(1 − 𝑝)𝑁−𝑘) [𝑘 (𝑁 − 𝑘

𝑁 + 𝑇 )
2
+ (𝑁 − 𝑘) ( 𝑇 + 𝑘

𝑁 + 𝑇 )
2
−

− (𝑁 − 𝑘) ( 𝑘
𝑁 + 𝑇 )

2
− 𝑘 (𝑇 + 𝑁 − 𝑘

𝑁 + 𝑇 )
2
].

Note that for 𝑘 < 𝑁
2 , we have (1 − 𝑝)𝑘𝑝𝑁−𝑘 − 𝑝𝑘(1 − 𝑝)𝑁−𝑘 > 0, since 𝑝 > 1

2 . Also note:

𝑘 (𝑁 − 𝑘
𝑁 + 𝑇 )

2
+ (𝑁 − 𝑘) ( 𝑇 + 𝑘

𝑁 + 𝑇 )
2
− (𝑁 − 𝑘) ( 𝑘

𝑁 + 𝑇 )
2
− 𝑘 (𝑇 + 𝑁 − 𝑘

𝑁 + 𝑇 )
2
=

= (𝑁 − 2𝑘) 𝑇 2
(𝑁 + 𝑇 )2 + 0 > 0,

since 𝑘 < 𝑁
2 .

Therefore, the difference Δ𝐸𝑈 is strictly positive term by term. This implies that the

designer achieves higher utility when trolls report more likely type (𝛾 = 2 since we
have 𝑝 > 1

2). Hence, trolls will optimize by picking the less likely type (𝛾 = 1) to
report. ■

A.2.5 Proof of Lemma 5

Proof. It can be shown that the expected utility of the designer (ex‐ante) is given by

E [
𝑁
∑
𝑖=1

𝑢𝑖(𝑔(𝜃, 𝑇 ), 𝜃𝑖)] = −
𝑁
∑
𝑘=0

(𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘 (𝑘 (𝑇 + 𝑁 − 𝑘

𝑁 + 𝑇 )
2
+ (𝑁 − 𝑘) ( 𝑘

𝑁 + 𝑇 )
2
)

= −𝑁𝑝 (𝑁 2(1 − 𝑝) + 𝑁(1 − 𝑝)(2𝑇 − 1) + 𝑇 (2𝑝 + 𝑇 − 2))
(𝑁 + 𝑇 )2

12The argument follows very similarly if 𝑁 is even.
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This sum is hard to interpret, but we can check comparative statics of it with respect

to 𝑇 and 𝑝. Straightforward algebraic calculations show that

𝜕
𝜕𝑇 E [

𝑁
∑
𝑖=1

𝑢𝑖(𝑔(𝜃, 𝑇 ), 𝜃𝑖)] = −2𝑁𝑝(𝑁𝑇 + 𝑝2 − 3𝑝 + 2)
(𝑁 + 𝑇 )3 < 0,

which implies that having more trolls will strictly reduce the designer’s welfare. This

is expected, since more trolls will be able to bias the result of the mechanism in a

more drastic way.

For the blind mechanism, the designer’s expected utility under is given by

E [
𝑁
∑
𝑖=1

𝑢𝑖(𝑝, 𝜃𝑖)] = −
𝑁
∑
𝑘=0

(𝑁
𝑘
)𝑝𝑘(1 − 𝑝)𝑁−𝑘 (𝑘 (1 − 𝑝)2 + (𝑁 − 𝑘) (2 − 𝑝)2)

= −𝑁𝑝(1 − 𝑝).

The blind mechanism performs better than the average‐of‐votes mechanism if and

only if

−𝑁𝑝(1 − 𝑝) > −𝑁𝑝𝑁
2(1 − 𝑝) + 𝑁(1 − 𝑝)(2𝑇 − 1) + 𝑇 (2𝑝 + 𝑇 − 2)

(𝑁 + 𝑇 )2 .

Rearranging and simplifying:

−(1 − 𝑝) > −𝑁
2(1 − 𝑝) + 𝑁(1 − 𝑝)(2𝑇 − 1) + 𝑇 (2𝑝 + 𝑇 − 2)

(𝑁 + 𝑇 )2

𝑝 − 1 > −𝑁
2(1 − 𝑝) + 𝑁(1 − 𝑝)(2𝑇 − 1) + 𝑇 (2𝑝 + 𝑇 − 2)

(𝑁 + 𝑇 )2

𝑝 > 𝑝𝑁 2 + 2𝑝𝑁𝑇 + (1 − 𝑝)𝑁 + 2(1 − 𝑝)𝑇
(𝑁 + 𝑇 )2

(𝑁 + 𝑇 )2𝑝 > (𝑁 2 + 2𝑁𝑇 − 𝑁 − 2𝑇 )𝑝 + 𝑁 + 2𝑇

𝑝 > 𝑁 + 2𝑇
𝑁 + 2𝑇 + 𝑇 2 .

■
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A.2.6 Proof of Proposition 1

Proof. Suppose that the observed number of votes for type 𝛾1 is 𝑘 ∈ {0, 1, … , 𝑁 + 𝑇 }. The
lowest number of trolls that can be in this number is 0 (if all of them voted for type 𝛾2),
and the highest number is 𝑇 (if all of them voted for type 𝛾1). Therefore, the highest
possible number of genuine agents with type 𝛾1 is 𝑘 and the lowest possible number is

max{𝑘 − 𝑇 , 0}. The true distribution of genuine types is anything in the range from

(max{𝑘 − 𝑇 , 0},min{𝑁 − 𝑘 + 𝑇 , 𝑁 }) to (𝑘, 𝑁 − 𝑘).

Note that the optimal outcome is decreasing in the number of genuine agents of type

𝛾1. Hence, it follows that the largest outcome that could be optimal is

𝑏 = max{𝑘 − 𝑇 , 0}
𝑁 𝛾1 + min{𝑁 − 𝑘 + 𝑇 , 𝑁 }

𝑁 𝛾2, (if number of 𝛾1 types is lowest)

and the smallest outcome that could be optimal is

𝑏 = 𝑘
𝑁 𝛾1 + 𝑁 − 𝑘

𝑁 𝛾2. (if number of 𝛾1 types is highest)

Let 𝑔(𝑘) be the mechanism’s outcome under the mechanism 𝑔. If 𝑔(𝑘) < 𝑏, the
expected welfare under the mechanism can be improved if we set 𝑔(𝑘) = 𝑏. Similarly,

if 𝑔(𝑘) > 𝑏, the expected welfare can be improved if we set 𝑔(𝑘) = 𝑏.
■

A.2.7 Proof of Proposition 2

Proof. Define a mechanism as an outcome rule 𝑔 ∶ {0, 1, … , 𝑁 + 𝑇 } → [𝛾1, 𝛾2], where the
argument is the number of votes for 𝛾1. The designer chooses this rule to maximize

the ex‐ante utility subject to the trolls’ best response.

Suppose that for a given mechanism 𝑔′ the trolls are not indifferent between 𝑚 = 𝛾1
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and 𝑚 = 𝛾2. For concreteness, assume that they prefer 𝑚 = 𝛾1. Fixing the trolls’ action,
the designer’s ex‐ante utility is continuous in 𝑔(0), 𝑔(1), …, 𝑔(𝑁 + 𝑇). Therefore, in a

neighborhood13 of 𝑔′ the trolls’ strategy can be treated as a constant in that it does not

change when the designer slightly adjusts 𝑔′(0), 𝑔′(1), …, 𝑔′(𝑁 + 𝑇 ). There are two
possibilities: either 𝑔′ is a local (and global14) maximum, or the designer can improve

upon it. We will prove that the former option is not possible.

If we fix the trolls’ strategy at 𝑚 = 𝛾1, the designer’s best reply is to essentially

“subtract” the trolls’ votes from the total. That is, if the designer observes 𝑘 votes for 𝛾1,
she then knows that 𝑘 − 𝑇 genuine agents have this type and 𝑁 + 𝑇 − 𝑘 genuine agents
have the other type. Then the designer’s optimal mechanism is 𝑔1, where

max
𝑔1(𝑘)

−(𝑘 − 𝑇 ) (𝑔1(𝑘) − 𝛾1)2 − (𝑁 + 𝑇 − 𝑘) (𝑔1(𝑘) − 𝛾2)2

⟹ 𝑔1(𝑘) = 𝑘 − 𝑇
𝑁 𝛾1 + 𝑁 + 𝑇 − 𝑘

𝑁 𝛾2.

Note that 𝑔1 completely neutralizes the trolls’ influence and achieves the same utility

level as under perfect information. This, however, cannot be the equilibrium, since

the trolls can benefit by switching some of their votes to 𝑚 = 𝛾2. In that case, the

mechanism will not take optimal action given any distribution of votes, and the

designer’s ex‐ante utility will be lower. Hence, the trolls would prefer to deviate from

𝑚 = 𝛾1.
This implies that the designer’s optimal mechanism cannot be 𝑔1, or any mechanism

for which the trolls strictly prefer message 𝑚 = 𝛾1. A similar proof can be done for the

mechanisms for which the trolls prefer 𝑚 = 𝛾2. Hence, the optimal mechanismmust

make the trolls indifferent between the messages. ■

13I.e. a set ofmechanisms 𝑔 such that ||(𝑔(0), 𝑔(1), … , 𝑔(𝑁 +𝑇 ))−(𝑔′(0), 𝑔′(1), … , 𝑔′(𝑁 +𝑇 ))|| < 𝜖 for some
𝜖 > 0, where || ⋅ || is the Euclidean norm.

14This is due to the concavity of the designer’s utility function.
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A.2.8 Proof of Proposition 3

Proof. Assume 𝑁 + 𝑇 is odd. The proof below can be easily adapted to the case where

𝑁 + 𝑇 is even.

We will show this result by proving that changing the majority rule 𝑔𝑚𝑟 to a

supermajority rule 𝑔 𝛼̂ ,𝛾1𝑠𝑚𝑟 with 𝛼̂ = 1
2 +

1
𝑁+𝑇 is always strictly beneficial for the designer.

This is true regardless of how the trolls respond to the change of the mechanism.

First, suppose that the trolls’ strategy remains the same. Recall that in the majority

rule, the trolls strictly prefer to vote for 𝜃 = 𝛾2. Thus, the mechanism 𝑔𝛼,𝛾1𝑠𝑚𝑟 will differ in

its outcome from 𝑔𝑚𝑟 in only one instance: when there are 𝑘̂ = [𝑁+𝑇
2 ] + 1 votes for 𝛾2.

The majority rule has 𝑔𝑚𝑟 (𝑘̂) = 𝛾2, but the supermajority rule has 𝑔 𝛼̂ ,𝛾1𝑠𝑚𝑟 (𝑘̂) = 𝛾1. This is
a beneficial change because in this instance there are more voters with type 𝜃 = 𝛾1
than 𝜃 = 𝛾2. Hence, the change to 𝑔 𝛼̂ ,𝛾1𝑠𝑚𝑟 leads to a higher expected welfare.

We will now verify that this improvement remains if the trolls switch their strategy

from voting for 𝜃 = 𝛾2 to voting for 𝜃 = 𝛾1. In this case, 𝑔 𝛼̂ ,𝛾1𝑠𝑚𝑟 will have the same

outcomes (and the same expected welfare) as 𝑔𝑚𝑟 if the trolls voted for 𝜃 = 𝛾1 instead of

𝜃 = 𝛾2. The expected welfare under 𝑔𝑚𝑟 is strictly higher if the trolls vote for 𝜃 = 𝛾1 than
if they vote for 𝜃 = 𝛾2. This implies that the change to 𝑔 𝛼̂ ,𝛾1𝑠𝑚𝑟 leads to a higher expected

welfare. ■

A.2.9 Proof of Proposition 4

Proof. Recall that for 𝛽 = 1, trolls prefer voting for 𝜃 = 𝛾2, since 𝑝 > 1
2 . For 𝛽 close to 1,

this will remain true due to the expected welfare’s continuity in 𝛽 (see below). The
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weighted‐average‐of‐votes mechanism’s expected welfare is

𝑉 (𝑔𝛽𝑎𝑚) = −
𝑁
∑
𝑖=0

(𝑁
𝑖
) 𝑝𝑖(1 − 𝑝)𝑁−𝑖(𝑖 ( 𝑁 + 𝑇 − 𝑖

𝑖𝛽 + (𝑁 + 𝑇 − 𝑖))
2
+

+ (𝑁 − 𝑖) ( 𝑖𝛽
𝑖𝛽 + (𝑁 + 𝑇 − 𝑖))

2
)(𝛾1 − 𝛾2)2.

To show the result, we will take the derivative with respect to 𝛽 and show that it is

negative at 𝛽 = 1. We will drop the (positive) term (𝛾1 − 𝛾2)2 to simplify the calculations.

𝜕
𝜕𝛽 𝑉 (𝑔

𝛽𝑎𝑚) ∼ −
𝑁
∑
𝑖=0

(𝑁
𝑖
) 𝑝𝑖(1 − 𝑝)𝑁−𝑖(− 2𝑖2(𝑁 + 𝑇 − 𝑖)2

(𝑖𝛽 + (𝑁 + 𝑇 − 𝑖))3+

+ (𝑁 − 𝑖)2𝑖
2𝛽(𝑖𝛽 + (𝑁 + 𝑇 − 𝑖)) − 2𝑖3𝛽2

(𝑖𝛽 + (𝑁 + 𝑇 − 𝑖))3 )

= −
𝑁
∑
𝑖=0

(𝑁
𝑖
) 𝑝𝑖(1 − 𝑝)𝑁−𝑖2𝑖2(𝑁 + 𝑇 − 𝑖)(𝑁 + 𝑇 − 𝑖) + (𝑁 − 𝑖)𝛽

(𝑖𝛽 + (𝑁 + 𝑇 − 𝑖))3 .

All terms are positive except for the negative sign at the front, so 𝜕
𝜕𝛽 𝑉 (𝑔

𝛽𝑎𝑚) < 0 at 𝛽 = 1.
Due to continuity of the expected utility, the trolls’ strategy will remain the same for a

range 𝛽 ∈ ( ̄𝛽, 1) for some ̄𝛽. Hence, the designer can improve upon the mechanism’s

expected welfare by reducing 𝛽. ■

A.2.10 Proof of Proposition 5

Proof of Proposition 5. We know that 𝑔 is continuous, i.e.

∀𝜖 > 0 ∃𝛿 > 0 s.t. ∀𝑝, 𝑝′ ∈ ΔΓ, |𝑝 − 𝑝′| < 𝛿 ⇒ |𝑔(𝑝) − 𝑔(𝑝′)| < 𝜖,

where | ⋅ | denotes the standard Euclidean norm.
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Define 𝑡 = min𝑥∈𝑔(ΔΓ) E [∑𝑁
𝑖=1 𝑢𝑖(𝑥, 𝜃𝑖)] and 𝑝𝑡 = argmin𝑥∈𝑔(ΔΓ) E [∑𝑁

𝑖=1 𝑢𝑖(𝑥, 𝜃𝑖)]. Due to
continuity of 𝑔, there exists a neighborhood of 𝑝𝑡 where the mechanism’s outcomes

are close to 𝑡, the trolls’ ideal outcome. We want to prove that as 𝑇 → ∞, the trolls will

be able to get into that neighborhood no matter the distribution of other agents’ types.

For 𝑇 trolls, let 𝑝(𝑇 ) be a distribution of their votes (excluding normal agents) that is

closest to 𝑝𝑡 . Formally, let 𝐹(𝑇 ) = {𝑝 ∈ ΔΓ | ∀𝛾𝑖, 𝑝(𝛾𝑖) = 𝑘
𝑇 for some 𝑘 ∈ N}, and define 𝑝(𝑇 )

as

𝑝(𝑇 ) = min
𝑝∈𝐹(𝑇 )

|𝑝 − 𝑝𝑡 |.

Note that 𝐹(𝑇 ) for different 𝑇 ∈ N can comprise points with arbitrary rational

coordinates. Since rational numbers are dense in R, it follows that we can always find

sufficiently large 𝑇 so that |𝑝(𝑇 ) − 𝑝𝑡 | is arbitrarily close to 0. Formally, for any 𝛿 > 0
there exists ̂𝑇1 ∈ N such that

𝑇 > ̂𝑇1 ⇒ |𝑝(𝑇 ) − 𝑝𝑡 | < 𝛿
2 .

This will be useful later on.

𝑝(𝑇 ) is the distribution of votes that trolls generate on their own. Now consider

possible variations that can be introduced to 𝑝(𝑇 ) due to normal agents’ (sincere) votes.

Let 𝜃 = (𝜃1, … , 𝜃𝑁 ) be vector of normal agents’ types, and let 𝑝(𝜃, 𝑇 ) be the distribution
of votes with normal agents and trolls included. That means

𝑝(𝜃, 𝑇 )(𝛾𝑖) =
𝑇 ⋅ 𝑝(𝑇 )(𝛾𝑖) + ∑𝑁

𝑗=1 1{𝜃𝑗 = 𝛾𝑖}
𝑁 + 𝑇 .

The distance between total distribution of votes and trolls’ distribution of votes is
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given by

|𝑝(𝑇 ) − 𝑝(𝜃, 𝑇 )| =
√
∑
𝛾𝑖∈Γ

(𝑝(𝑇 )(𝛾𝑖) − 𝑝(𝜃, 𝑇 )(𝛾𝑖))
2

=
√
∑
𝛾𝑖∈Γ

( 1
𝑁 + 𝑇 ⋅ (𝑁 ⋅ 𝑝(𝑇 )(𝛾𝑖) −

𝑁
∑
𝑗=1

{𝜃𝑗 = 𝛾𝑖}))
2
.

Due to quadratic nature of the norm, it will achieve its maximum when all normal

agents are of the same type. Thus, the distance will take form

|𝑝(𝑇 ) − 𝑝(𝜃, 𝑇 )| =
√
( 𝑁
𝑁 + 𝑇 ⋅ (𝑝(𝑇 )(𝛾 ) − 1))

2
+ ∑

𝛾𝑖≠𝛾
( 𝑁
𝑁 + 𝑇 𝑝(𝑇 )𝛾𝑖)

2

= 𝑁
𝑁 + 𝑇 ⋅

√
(𝑝(𝑇 )(𝛾 ) − 1)

2
+ ∑

𝛾𝑖≠𝛾
(𝑝(𝑇 )𝛾𝑖)

2

for some 𝛾 ∈ Γ. Clearly, lim𝑇→∞ |𝑝(𝑇 ) − 𝑝(𝜃, 𝑇 )| = 0, since the expression under the

square root is bounded by |Γ|, which is finite. Thus, for any 𝛿 > 0 there exists ̂𝑇2 ∈ N

such that

𝑇 > ̂𝑇2 ⇒ |𝑝(𝑇 ) − 𝑝(𝜃, 𝑇 )| < 𝛿
2 for any 𝜃.

Now we can take the maximum of ̂𝑇1 and ̂𝑇2 that will ensure

𝑇 > ̂𝑇 = max{ ̂𝑇1, ̂𝑇2} ⇒ |𝑝(𝑇 ) − 𝑝𝑡 | < 𝛿
2 and |𝑝(𝑇 ) − 𝑝(𝜃, 𝑇 )| < 𝛿

2 .

Finally, note that

|𝑝(𝜃, 𝑇 ) − 𝑝𝑡 | ≤ |𝑝(𝜃, 𝑇 ) − 𝑝(𝑇 )| + |𝑝(𝑇 ) − 𝑝𝑡 |.

Therefore, we can conclude that

𝑇 > ̂𝑇 ⇒ |𝑝(𝜃, 𝑇 ) − 𝑝𝑡 | < 𝛿
2 + 𝛿

2 = 𝛿.
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Hence,

∀𝜖 > 0 ∃ ̂𝑇 ∈ N such that 𝑇 > ̂𝑇 |𝑔(𝑝(𝜃, 𝑇 )) − 𝑔(𝑝𝑡)| < 𝜖.

If 𝑇 is large enough, trolls can guarantee that the outcome of mechanism 𝑔 is

arbitrarily close to the ex‐ante worst‐case outcome 𝑔(𝑝𝑡). This finishes the proof.
■

A.3 Appendix of Chapter 3

A.3.1 Formulæ for the Receiver’s posterior beliefs over the state

This subsection provides explicit formulæfor the Receiver’s posterior belief over the

state 𝜔 formed using Bayes’ rule after observing message 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 } on the

equilibrium path. In the interest of making notation more compact, let

𝜎(𝑚𝑧1,𝑧2 |𝑋1, 𝑋2, 𝑅) ≡ 𝜎̃ 𝑧1𝑧2𝑋1𝑋2𝑅 (𝑅 ∈ {1, 2}; (𝑋1, 𝑋2) ∈ {𝐿, 𝐻}2; (𝑧1, 𝑧2) ∈ {∅, 𝐿, 𝐻}2).

If 𝑚𝐻𝐿 is sent on the equilibrium path (i.e. ifmax{𝜎̃𝐻𝐿𝐻𝐿1, 𝜎̃𝐻𝐿𝐻𝐿2} > 0) then

𝜇𝑅(𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜎̃𝐻𝐿𝐻𝐿1𝜇

𝛾1(1 − 𝜈2)𝜎̃𝐻𝐿𝐻𝐿1𝜇 + 𝛾2𝜈1𝜎̃𝐻𝐿𝐻𝐿2(1-𝜇)
. (A.66)

If 𝑚𝐿𝐻 is sent on the equilibrium path (i.e. ifmax{𝜎̃𝐿𝐻𝐿𝐻1, 𝜎̃𝐿𝐻𝐿𝐻2} > 0) then

𝜇𝑅(𝑚𝐿𝐻 ) =
𝛾2(1 − 𝜈1)𝜎̃𝐿𝐻𝐿𝐻2𝜇

𝛾2(1 − 𝜈1)𝜎̃𝐿𝐻𝐿𝐻2𝜇 + 𝛾1𝜈2𝜎̃𝐿𝐻𝐿𝐻1(1-𝜇)
. (A.67)
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If 𝑚𝐻∅ is sent on the equilibrium path (i.e. ifmax{𝜎̃𝐻∅
𝑋1𝑋2𝑅 ∶ 𝑋1 = 𝐻} > 0) then

𝜇𝑅(𝑚𝐻∅) =
[𝛾1(1-𝜈2)𝜎̃𝐻∅

𝐻𝐿1 + 𝛾1𝜈2𝜎̃𝐻∅
𝐻𝐻1 + 𝛾2𝜈1𝜎̃𝐻∅

𝐻𝐻2] 𝜇
[𝛾1(1-𝜈2)𝜎̃𝐻∅

𝐻𝐿1 + 𝛾1𝜈2𝜎̃𝐻∅
𝐻𝐻1 + 𝛾2𝜈1𝜎̃𝐻∅

𝐻𝐻2] 𝜇 + 𝛾2𝜈1𝜎̃𝐻∅
𝐻𝐿2(1-𝜇)

. (A.68)

If 𝑚∅𝐻 is sent on the equilibrium path (i.e. ifmax{𝜎̃∅𝐻𝑋1𝑋2𝑅 ∶ 𝑋2 = 𝐻} > 0) then

𝜇𝑅(𝑚∅𝐻 ) =
[𝛾1𝜈2𝜎̃∅𝐻𝐻𝐻1 + 𝛾2(1 − 𝜈1)𝜎̃∅𝐻𝐿𝐻2𝛾2𝜈1𝜎̃∅𝐻𝐻𝐻2] 𝜇

[𝛾1𝜈2𝜎̃∅𝐻𝐻𝐻1 + 𝛾2(1 − 𝜈1)𝜎̃∅𝐻𝐿𝐻2𝛾2𝜈1𝜎̃∅𝐻𝐻𝐻2] 𝜇 + 𝛾1𝜈2𝜎̃∅𝐻𝐿𝐻1(1-𝜇)
. (A.69)

If 𝑚𝐿∅ is sent on the equilibrium path (i.e. ifmax{𝜎̃𝐿∅𝑋1𝑋2𝑅 ∶ 𝑋1 = 𝐿} > 0) then

𝜇𝑅(𝑚𝐿∅) =
𝛾2(1 − 𝜈1)𝜎̃𝐿∅𝐿𝐻2𝜇

𝛾2(1 − 𝜈1)𝜎̃𝐿∅𝐿𝐻2𝜇 + [𝛾1(1 − 𝜈2)𝜎̃𝐿∅𝐿𝐿1 + 𝛾1𝜈2𝜎̃𝐿∅𝐿𝐻1 + 𝛾2(1 − 𝜈1)𝜎̃𝐿∅𝐿𝐿2] (1-𝜇)
. (A.70)

If 𝑚∅𝐿 is sent on the equilibrium path (i.e. ifmax{𝜎̃∅𝐿𝑋1𝑋2𝑅 ∶ 𝑋1 = 𝐿} > 0) then

𝜇𝑅(𝑚∅𝐿) =
𝛾1(1 − 𝜈2)𝜎̃∅𝐿𝐻𝐿1𝜇

𝛾1(1 − 𝜈2)𝜎̃∅𝐿𝐻𝐿1𝜇 + [𝛾1(1 − 𝜈2)𝜎̃∅𝐿𝐿𝐿1 + 𝛾2(1 − 𝜈1)𝜎̃∅𝐿𝐿𝐿2 + 𝛾2𝜈1𝜎̃∅𝐿𝐻𝐿2] (1-𝜇)
. (A.71)

Table A.1: 𝜇𝑅(𝑚𝐻𝐿) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚𝐻𝐿}

𝜎(𝑚𝐻𝐿|𝑋1, 𝑋2, 𝐶)
(H,L,1) (H,L,2) 𝜇𝑅(𝑚𝐻𝐿)

0 0 any value in [0, 1]
1 0 1
0 1 0
1 1 𝛾1(1−𝜈2)𝜇

𝛾1(1−𝜈2)𝜇+𝛾2𝜈1(1-𝜇)

Table A.2: 𝜇𝑅(𝑚𝐿𝐻 ) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚𝐿𝐻 }

𝜎(𝑚𝐿𝐻 |𝑋1, 𝑋2, 𝐶)
(L,H,1) (L,H,2) 𝜇𝑅(𝑚𝐿𝐻 )

0 0 any value in [0, 1]
1 0 0
0 1 1
1 1 𝛾2(1−𝜈1)𝜇

𝛾2(1−𝜈1)𝜇+𝛾1𝜈2(1-𝜇)
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Table A.3: 𝜇𝑅(𝑚𝐻∅) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚𝐻∅}

𝜎(𝑚𝐻∅|𝑋1, 𝑋2, 𝐶)
(H,L,1) (H,H,1) (H,H,2) (H,L,2) 𝜇𝑅(𝑚𝐻∅)

0 0 0 0 any value in [0, 1]
at least one non‐zero 0 1
0 0 0 1 0
1 0 0 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+𝛾2𝜈1(1-𝜇)
0 1 0 1 𝛾1𝜈2𝜇

𝛾1𝜈2𝜇+𝛾2𝜈1(1-𝜇)
0 0 1 1 𝜇
1 1 0 1 𝛾1𝜇

𝛾1𝜇+𝜈1𝛾2(1-𝜇)
1 0 1 1 [(1-𝜈2)𝛾1+𝜈1𝛾2]𝜇

[(1-𝜈2)𝛾1+𝜈1𝛾2]𝜇+𝜈1𝛾2(1-𝜇)
0 1 1 1 [𝛾1𝜈2+𝛾2𝜈1]𝜇

[𝛾1𝜈2+𝛾2𝜈1]𝜇+𝜈1𝛾2(1-𝜇)
1 1 1 1 (1+𝛾2𝜈1)𝜇

(1+𝛾2𝜈1)𝜇+𝛾2𝜈1(1-𝜇)

Table A.4: 𝜇𝑅(𝑚∅𝐻 ) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚∅𝐻 }

𝜎(𝑚∅𝐻 |𝑋1, 𝑋2, 𝐶)
(L,H,2) (H,H,1) (H,H,2) (L,H,1) 𝜇𝑅(𝑚∅𝐻 )

0 0 0 0 any value in [0, 1]
at least one non‐zero 0 1
0 0 0 1 0
1 0 0 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+𝛾1𝜈2(1-𝜇)
0 1 0 1 𝜇
0 0 1 1 𝛾2𝜈1𝜇

𝛾2𝜈1𝜇+𝛾1𝜈2(1-𝜇)
1 1 0 1 [𝛾2(1-𝜈1)+𝛾1𝜈2]𝜇

[𝛾2(1-𝜈1)+𝛾1𝜈2]𝜇+𝛾1𝜈2(1-𝜇)
1 0 1 1 𝛾2𝜇

𝛾2𝜇+𝛾1𝜈2(1-𝜇)
0 1 1 1 [𝛾1𝜈2+𝛾2𝜈1]𝜇

[𝛾1𝜈2+𝛾2𝜈1]𝜇+𝛾1𝜈2(1-𝜇)
1 1 1 1 (𝛾1𝜈2+𝛾2)𝜇

(𝛾1𝜈2+𝛾2)𝜇+𝛾1𝜈2(1-𝜇)

146



Table A.5: 𝜇𝑅(𝑚𝐿∅) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚𝐿∅}

𝜎(𝑚𝐿∅|𝑋1, 𝑋2, 𝐶)
(L,L,1) (L,L,2) (L,H,1) (L,H,2) 𝜇𝑅(𝑚𝐿∅)

0 0 0 0 any value in [0, 1]
at least one non‐zero 0 0
0 0 0 1 1
1 0 0 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+𝛾1(1-𝜈2)(1-𝜇)
0 1 0 1 𝜇
0 0 1 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+𝛾1𝜈2(1-𝜇)
1 1 0 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+[𝛾1(1-𝜈2)+𝛾2(1-𝜈1)](1-𝜇)
1 0 1 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+𝛾1(1-𝜇)
0 1 1 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+[𝛾1𝜈2+𝛾2(1-𝜈1)](1-𝜇)
1 1 1 1 𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇+[𝛾1+𝛾2(1-𝜈1)](1-𝜇)

Table A.6: 𝜇𝑅(𝑚∅𝐿) ≡ Prob {𝜔 =𝐻|𝑚 =𝑚∅𝐿}

𝜎(𝑚∅𝐿|𝑋1, 𝑋2, 𝐶)
(L,L,1) (L,L,2) (H,L,2) (H,L,1) 𝜇𝑅(𝑚∅𝐿)

0 0 0 0 any value in [0, 1]
at least one non‐zero 0 0
0 0 0 1 1
1 0 0 1 𝜇
0 1 0 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+𝛾2(1-𝜈1)(1-𝜇)
0 0 1 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+𝛾2𝜈1(1-𝜇)
1 1 0 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+[𝛾1(1-𝜈2)+𝛾2(1-𝜈1)](1-𝜇)
1 0 1 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+𝛾2𝜈1(1-𝜇)
0 1 1 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+𝛾2(1-𝜇)
1 1 1 1 𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇+[𝛾1(1-𝜈2)+𝛾2](1-𝜇)
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A.3.2 Equivalence with sequential equilibrium

This appendix section elaborates on the claim made in Remark 4 of Chapter 3; this

claim is formally proven below in Lemma 7. Before this, a few definitions are

required.

A system of beliefs 𝑏∗ ≡ {𝜋𝑅(⋅), 𝜋𝑆(⋅), 𝜋𝑅(⋅|⋅), 𝜋𝑆(⋅|⋅)} consists of (1) each agent’s prior belief

𝜋𝑅(⋅) = 𝜋𝑆(⋅) = 𝜋(⋅) over (𝜔, 𝐶, 𝑋1, 𝑋2) (where 𝜋(⋅) is given in (3.3)), (2) S’s (degenerate)

posterior belief 𝜋𝑆(⋅|⋅) over (𝜔, 𝐶, 𝑋1, 𝑋2) formed using Bayes’ rule after observing their

type 𝜃 = (𝑥1, 𝑥2, 𝑐), which is given in (3.4), and (3) R’s posterior belief 𝜋𝑅(⋅|⋅) over
(𝜔, 𝐶, 𝑋1, 𝑋2) after observing S’s message 𝑚.

Definition 3 (Consistent Systems of Beliefs (Kreps and Wilson, 1982)). A system of

beliefs 𝑏∗ ≡ (𝜋𝑅(⋅), 𝜋𝑆(⋅), 𝜋𝑅(⋅|⋅), 𝜋𝑆(⋅|⋅)) is consistent with a strategy profile (𝛼∗, 𝜎∗) if there
exists a sequence of strategy profiles and systems of beliefs {(𝜙𝑛, 𝑏𝑛)}∞𝑛=1 such that

1. (𝛼𝑛, 𝜎𝑛) is a fully mixed strategy profile (𝑛 = 1, 2, …).

2. Each belief in 𝑏𝑛 ≡ (𝜋𝑅𝑛 (⋅), 𝜋𝑆𝑛 (⋅), 𝜋𝑅𝑛 (⋅|⋅), 𝜋𝑆𝑛 (⋅|⋅)) is calculated using (𝛼𝑛, 𝜎𝑛) and Bayes’

rule. (𝑛 = 1, 2, …)

3. (𝛼𝑛, 𝜎𝑛, 𝑏𝑛) → (𝛼∗, 𝜎∗, 𝑏∗) as 𝑛 → ∞.

Notice that, given the game considered in Chapter 3, the only non‐trivial parts of this

definition involve the Sender’s disclosure strategy and the Receiver’s posterior belief.

This is because (1) each agent’s prior and posterior belief is constant in the Receiver’s

action strategy, (2) agents have a common prior over (𝜔, 𝐶, 𝑋1, 𝑋2), and (3) the Sender’s

posterior belief over (𝜔, 𝐶, 𝑋1, 𝑋2) can always be formed using Bayes’ rule, which

results in the degenerate belief given in (3.4). Formally put: for any choice of 𝛼∗ and
{𝛼𝑛}∞𝑛=1, such that 𝛼𝑛 → 𝛼∗ as 𝑛 → ∞, 𝜋𝑅𝑛 (⋅) = 𝜋𝑅(⋅) = 𝜋(⋅) and 𝜋𝑆𝑛 (⋅) = 𝜋𝑆(⋅) = 𝜋(⋅) ∀𝑛 ∈ N

(∴𝜋 𝑗𝑛(⋅) → 𝜋 𝑗(⋅) as 𝑛 → ∞ ∀𝑗 ∈ {𝑅, 𝑆}) and 𝜋𝑆𝑛 (⋅|⋅) ≡ 𝜋𝑆(⋅|⋅) ∀𝑛 ∈ N (∴𝜋𝑆𝑛 (⋅|⋅) → 𝜋𝑆(⋅|⋅) as 𝑛 → ∞).
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Therefore, we can focus on the Sender’s strategies and the Receiver’s posterior beliefs

(i.e. {𝜎𝑛}∞𝑛=1, 𝜎∗, {𝜋𝑅𝑛 (⋅|⋅)}∞𝑛=1, and 𝜋𝑅(⋅|⋅)) when applying Definition 3.

Recall that when it is possible for R to use Bayes’ rule to form 𝜋𝑅(⋅|𝑚) – which is always

the case when S is using a fully mixed strategy – R’s posterior belief was given in

equation (3.10) as follows:

𝜋𝑅(𝜔, 𝐶, 𝑋1, 𝑋2|𝑚) =
𝜎(𝑚|𝑥1, 𝑥2, 𝑐)𝜋(𝜔, 𝐶, 𝑋1, 𝑋2)

∑
𝜔̃∈{𝐿,𝑅}

∑
̃𝑐∈{1,2}

∑
̃𝑥1∈{𝐿,𝑅}

∑
̃𝑥2∈{𝐿,𝑅}

𝜎(𝑚| ̃𝑥1, ̃𝑥2, ̃𝑐)𝜋(𝜔̃, ̃𝑐, ̃𝑥1, ̃𝑥2)

Recall that the Receiver’s belief that 𝜔 = 𝐻 under posterior 𝜋𝑅(⋅|𝑚) is given by

𝜇𝑅(𝑚) ≡
2
∑
̃𝑐=1

∑
̃𝑥1∈{𝐿,𝑅}

∑
̃𝑥2∈{𝐿,𝑅}

𝜋𝑅(𝜔 = 𝐻, 𝐶 = ̃𝑐, 𝑋1 = 𝑥̃1, 𝑋2 = 𝑥̃2|𝑚)

For readers’ convenience, appendix section A.3.1 contains explicit formulæ for 𝜇𝑅(𝑚)
when 𝑚 is on the equilibrium path (i.e. 𝜋𝑅(⋅|⋅) is formed using Bayes’ rule) along with

probability tables for 𝜇𝑅(𝑚) when the Sender uses a pure disclosure strategy.

Lemma 7.

1. If a system of beliefs 𝑏 is consistent with a strategy profile (𝛼, 𝜎) s.t. 𝜎(𝑚𝐿𝐿|𝜃) = 0
∀𝜃 ∈ {𝐿, 𝐻}2 × {1, 2}, then 𝜇𝑅(𝑚𝐿𝐿) = 0.

2. If a system of beliefs 𝑏 is consistent with a strategy profile (𝛼, 𝜎) s.t. 𝜎(𝑚𝐻𝐻 |𝜃) = 0
∀𝜃 ∈ {𝐿, 𝐻}2 × {1, 2}, then 𝜇𝑅(𝑚𝐻𝐻 ) = 1.

3. Let (𝛼, 𝜎) be a strategy profile with 𝜎(𝑚|𝜃) = 0 ∀𝜃 ∈ {𝐿, 𝐻}2 × {1, 2} for some

𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 }. Then for any 𝜓 ∈ [0, 1], there exists a system of beliefs 𝑏𝜓 that is

consistent with (𝛼, 𝜎) that has 𝜇𝑅(𝑚) = 𝜓 .
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Proof. I will now show that for each 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 }, if 𝑚 is observed by R off the

equilibrium path, then any 𝜇𝑅(𝑚) ∈ [0, 1] can be achieved while complying with the

definition of Consistency stated above. Henceforth let

𝜇𝑅𝑛 (𝑚) ≡
2
∑
̃𝑐=1

∑
̃𝑥1∈{𝐿,𝑅}

∑
̃𝑥2∈{𝐿,𝑅}

𝜋𝑅𝑛 (𝜔 = 𝐻, 𝐶 = ̃𝑐, 𝑋1 = 𝑥̃1, 𝑋2 = 𝑥̃2|𝑚)

where 𝜋𝑅𝑛 (⋅|⋅) is as defined in Definition 3.

I first show this for message 𝑚 = 𝑚𝐻𝐿 (the logic for other 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 } is very
similar). If the Sender uses a fully mixed strategy, then, as stated in equation (A.67),

𝜇𝑅(𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜎(𝑚𝐻𝐿|𝐻 , 𝐿, 1)𝜇

𝛾1(1 − 𝜈2)𝜎(𝑚𝐻𝐿|𝐻 , 𝐿, 1)𝜇 + 𝛾2𝜈1𝜎(𝑚𝐻𝐿|𝐻 , 𝐿, 2)(1-𝜇)
= 𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1 𝜎(𝑚𝐻𝐿|𝐻 ,𝐿,2)
𝜎(𝑚𝐻𝐿|𝐻 ,𝐿,1)(1-𝜇)

Suppose that 𝜎 has 𝜎(𝑚𝐻𝐿|𝐻 , 𝐿, 1) = 0 = 𝜎(𝑚𝐻𝐿|𝐻 , 𝐿, 2), so that 𝑚𝐻𝐿 is off the equilibrium

path. First suppose that for each 𝑛 ∈ N,

𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 1) = 1
𝑛2 , 𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 2) = 1

𝑛 .

It then follows that

𝜇𝑅𝑛 (𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇) 1/𝑛
1/(𝑛2)

= 𝛾1(1 − 𝜈2)𝜇
𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇)𝑛 → 1 as 𝑛 → ∞

Now suppose instead that for each 𝑛 ∈ N,

𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 1) = 1
𝑛 , 𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 2) = 1

𝑛2 .
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In this case, it follows that

𝜇𝑅𝑛 (𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇)1/(𝑛2)1/𝑛

= 𝛾1(1 − 𝜈2)𝜇
𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇)1𝑛

→ 0 as 𝑛 → ∞

Finally, suppose that for each 𝑛 ∈ N,

𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 1) = 1
𝑛 , 𝜎𝑛(𝑚𝐻𝐿|𝐻 , 𝐿, 2) = 𝜂

𝑛 .

for some 𝜂 ≠ 0. Given this, it follows that

𝜇𝑅𝑛 (𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇) 𝜂/𝑛1/𝑛
= 𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1 − 𝜇)𝜂 ,

which is constant in 𝑛 (hence, 𝜇𝑅𝑛 (𝑚𝐻𝐿) trivially approaches the value after the second
equality, above, as 𝑛 → ∞). Note that for any fixed 𝜓 ∈ (0, 1), setting

𝜂 = 𝛾1(1 − 𝜈2)𝜇
𝛾2𝜈1(1 − 𝜇) ⋅

1 − 𝜓
𝜓

implies that 𝜇𝑅𝑛 (𝑚𝐻𝐿) = 𝜓 ∀𝑛 ∈ N so that 𝜇𝑅𝑛 (𝑚𝐻𝐿) → 𝜓 as 𝑛 → ∞. Therefore, it can be

concluded that any 𝜇𝑅(𝑚𝐻𝐿) ∈ [0, 1] can be achieved while complying with the

definition of Consistency, mentioned above.

As mentioned above, the logic for other 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 } is very similar. Notice that

formulæ in equations (A.67)‐(A.71) all take a similar form. Namely, for any arbitrarily

fixed 𝑚 ∈ M ⧵ {𝑚𝐿𝐿, 𝑚𝐻𝐻 }, if 𝑚 is observed on the equilibrium path, then 𝜇𝑅(𝑚) takes
the form

𝜇𝑅(𝑚) =
∑𝑘

𝑗=1 𝛽𝑗𝜎(𝑚|𝜏 𝑗)
∑𝑘

𝑗=1 𝛽𝑗𝜎(𝑚|𝜏 𝑗) + ∑𝑘̃
𝑗=1 ̃𝛽𝑗𝜎(𝑚| ̃𝜏 𝑗)
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for some (𝑘, 𝑘̃) ∈ {1, 2, 3}2, (𝛽𝑗)𝑘𝑗=1 ∈ (0, 1)𝑘, ( ̃𝛽𝑗)𝑘̃𝑗=1 ∈ (0, 1)𝑘̃, and collection of distinct15types

{𝜏 }𝑘𝑗=1 ⊔ { ̃𝜏 𝑗}𝑘̃𝑗=1 ⊂ {𝐿, 𝐻}2 × {1, 2}. Following the same logic as before, first suppose that for

each 𝑛 ∈ N

𝜎𝑛(𝑚|𝜏 𝑗) = 1
𝑛 ∀𝑗 ∈ { ̂𝑖}𝑘̂𝑖=1 , 𝜎𝑛(𝑚| ̃𝜏 𝑗) = 1

𝑛2 ∀𝑗 ∈ { ̂𝑖}𝑘̃̂𝑖=1 .

Then, we have that

𝜇𝑅𝑛 (𝑚) =
∑𝑘

𝑗=1
1
𝑛𝛽𝑗

∑𝑘
𝑗=1

1
𝑛𝛽𝑗 +∑𝑘̃

𝑗=1
1
𝑛2

̃𝛽𝑗
=

∑𝑘
𝑗=1 𝛽𝑗

∑𝑘
𝑗=1 𝛽𝑗 + 1

𝑛 ∑
𝑘̃
𝑗=1 ̃𝛽𝑗

→ 1 as 𝑛 → ∞.

If we instead suppose that for each 𝑛 ∈ N

𝜎𝑛(𝑚|𝜏 𝑗) = 1
𝑛2 ∀𝑗 ∈ { ̂𝑖}𝑘̂𝑖=1 , 𝜎𝑛(𝑚| ̃𝜏 𝑗) = 1

𝑛 ∀𝑗 ∈ { ̂𝑖}𝑘̃̂𝑖=1 ,

it then follows that

𝜇𝑅𝑛 (𝑚) =
∑𝑘

𝑗=1
1
𝑛2𝛽𝑗

∑𝑘
𝑗=1

1
𝑛2𝛽𝑗 +∑𝑘̃

𝑗=1
1
𝑛

̃𝛽𝑗
=

∑𝑘
𝑗=1 𝛽𝑗

∑𝑘
𝑗=1 𝛽𝑗 + 𝑛∑𝑘̃

𝑗=1 ̃𝛽𝑗
→ 0 as 𝑛 → ∞.

Finally, if we arbitrarily fix some 𝜂 ≠ 0 and suppose that

𝜎𝑛(𝑚|𝜏 𝑗) = 1
𝑛 ∀𝑗 ∈ { ̂𝑖}𝑘̂𝑖=1 , 𝜎𝑛(𝑚| ̃𝜏 𝑗) =

𝜂
𝑛 ∀𝑗 ∈ { ̂𝑖}𝑘̃̂𝑖=1 ,

it then follows that

𝜇𝑅𝑛 (𝑚) =
∑𝑘

𝑗=1
1
𝑛𝛽𝑗

∑𝑘
𝑗=1

1
𝑛𝛽𝑗 +∑𝑘̃

𝑗=1
𝜂
𝑛

̃𝛽𝑗
=

∑𝑘
𝑗=1 𝛽𝑗

∑𝑘
𝑗=1 𝛽𝑗 + 𝜂∑𝑘̃

𝑗=1 ̃𝛽𝑗
∀𝑛 ∈ N.

15I.e. 𝜏 𝑗 ≠ 𝜏 ℓ ∀𝑗 ≠ ℓ, ̃𝜏 𝑗 ≠ ̃𝜏 ℓ ∀𝑗 ≠ ℓ, and 𝜏 𝑗 ≠ ̃𝜏 ℓ ∀𝑗 ∈ { ̂𝑖}𝑘̂𝑖=1 , ℓ ∈ { ̂𝑖}𝑘̃̂𝑖=1.
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Notice that for any arbitrarily fixed 𝜓 ∈ (0, 1), if one sets 𝜂 = 1−𝜓
𝜓 ⋅ ∑

𝑘
𝑗=1 𝛽𝑗

∑𝑘̃
𝑗=1 ̃𝛽𝑗

, it then follows

that 𝜇𝑅𝑛 (𝑚) = 𝜓 ∀𝑛 ∈ N so that 𝜇𝑅𝑛 (𝑚) trivially approaches 𝜓 as 𝑛 → ∞.

Finally, I show that when 𝑚 = 𝑚𝐻𝐻 or 𝑚 = 𝑚𝐿𝐿 is observed off the equilibrium path,

Consistency requires that 𝜇𝑅(𝑚𝐻𝐻 ) = 1 and 𝜇𝑅(𝑚𝐿𝐿) = 0, respectively. Recall that by
equation (3.5), 𝑚𝐻𝐻 can only be sent by types 𝜃 ∈ {(𝐻 , 𝐻 , 1), (𝐻 , 𝐻 , 2)} and 𝑚𝐿𝐿 can only

be sent by types 𝜃 ∈ {(𝐿, 𝐿, 1), (𝐿, 𝐿, 2)}. It then follows that

𝜇𝑅(𝑚𝐻𝐻 ) =
[𝛾1 ⋅ 𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 1) ⋅ 1 ⋅ 𝜈2 + 𝛾2 ⋅ 𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 2) ⋅ 1 ⋅ 𝜈1] 𝜇

[𝛾1 ⋅ 𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 1) ⋅ 1 ⋅ 𝜈2 + 𝛾2 ⋅ 𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 2) ⋅ 1 ⋅ 𝜈1] 𝜇 + (0)(1-𝜇) = 1

for any (𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 1), 𝜎(𝑚𝐻𝐻 |𝐻 , 𝐻 , 2)) ∈ (0, 1)2. It also follows that

𝜇𝑅(𝑚𝐿𝐿) =
(0)𝜇

(0)𝜇 + [𝛾1 ⋅ 𝜎(𝑚𝐿𝐿|𝐿, 𝐿, 1) ⋅ 1 ⋅ (1 − 𝜈2) + 𝛾2 ⋅ 𝜎(𝑚𝐿𝐿|𝐿, 𝐿, 2) ⋅ 1 ⋅ (1 − 𝜈1)] (1-𝜇)
= 0

for any (𝜎(𝑚𝐿𝐿|𝐿, 𝐿, 1), 𝜎(𝑚𝐿𝐿|𝐿, 𝐿, 2)) ∈ (0, 1)2. It then obviously follows that for any

sequence {𝜎𝑛}𝑛∈N of fully mixed disclosure strategies of the Sender, 𝜇𝑅𝑛 (𝑚𝐻𝐻 ) = 1 and
𝜇𝑅𝑛 (𝑚𝐿𝐿) = 0 ∀𝑛, which respectively approach 1 and 0 as 𝑛 → ∞. ■

A.3.3 Proof of Proposition 8

Suppose that type (𝑥1, 𝑥2, 𝑐) sends message 𝑚𝑥1,𝑥2 with probability 1 ∀𝑥1, 𝑥2. It then
follows that 𝜇(𝑚𝐿𝐿) = 0. By construction 𝑚𝐿∅ and 𝑚∅𝐿 are both off the equilibrium path.

Any choice of 𝜇𝑅(𝑚) ∈ [0, 1] satisfies condition (iv) in Definition 2 ∀𝑚 ∈ {𝑚𝐿∅, 𝑚∅𝐿}. To
illustrate, consider off‐path message 𝑚𝐿∅ condition (iv) only requires that

𝜋(𝜔, 𝐶, 𝑋1 = 𝐻, 𝑋2|𝑚𝐿∅) = 0. Hence, a 𝜋(⋅|𝑚𝐿∅) with a marginal distribution over 𝐶 that

places probability 1 on the event “𝐶 = 1” is permitted by condition (iv). This would

imply that after observing 𝑚 = 𝑚𝐿∅ off the equilibrium path 𝜇(𝑚𝐿∅) = 0; otherwise, the
assumption that the conditional independence structure of (𝜔, 𝐶, 𝑋1, 𝑋2) is common
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knowledge would be violated. Condition (iv) also permits 𝜋(⋅|𝑚𝐿∅) to have a marginal

distribution over 𝐶 that places probability 1 on the event “𝐶 = 1,” and a marginal

distribution over 𝑋2 that places any probability 𝛽 ∈ [0, 1] on the event “𝑋2 = 𝐻 .” Since

the conditional independence structure of (𝜔, 𝐶, 𝑋1, 𝑋2) is common knowledge, such a

𝜋(⋅|𝑚𝐿∅) would have 𝜇𝑅(𝑚𝐿∅) = 𝛽.
Hence, one may suppose that 𝜇𝑅(𝑚𝐿∅)=0=𝜇𝑅(𝑚∅𝐿). SinceM𝐿𝐿 = {𝑚𝐿𝐿, 𝑚𝐿∅, 𝑚∅𝐿}, it then
clearly follows that types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2) each do not have a profitable deviation.

Each type 𝜃 ∈ {(𝐻 , 𝐻 , 1), (𝐻 , 𝐻 , 2)} sends 𝑚𝐻𝐻 with probability 1, so that 𝜇𝑅(𝑚𝐻𝐻 ) = 1.
Therefore, each such type does not have a profitable deviation. Each type (𝐿, 𝐻 , 1) and
(𝐿, 𝐻 , 2) sends 𝑚𝐿𝐻 with probability 1, so

𝜇𝑅(𝑚𝐿𝐻 ) =
𝛾2(1 − 𝜈1)𝜇

𝛾2(1 − 𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)
∈ (0, 1)

Moreover, since each type 𝜃 ∈ {(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2)} sends 𝑚𝐿𝐻 with probability 1, so

𝜇𝑅(𝑚𝐻𝐿) =
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
∈ (0, 1)

The proof that condition (iv) of Definition 2 places no restriction on 𝜇𝑅(𝑚) ∈ [0, 1]
∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐻∅} is identical to the proof found in the first paragraph of this subsection.

Therefore, arbitrarily fixing any

𝜇𝑅(𝑚∅𝐻 ) ≤
𝛾2(1 − 𝜈1)𝜇

𝛾2(1 − 𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)

𝜇𝑅(𝑚𝐻∅) ≤
𝛾1(1 − 𝜈2)𝜇

𝛾1(1 − 𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
is in compliance with condition (iv). Given this, it follows that no type in

{(𝐻 , 𝐿, 1), (𝐻 , 𝐿, 2), (𝐿, 𝐻 , 1), (𝐿, 𝐻 , 2)}
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has a profitable deviation. ■

A.3.4 Proof of Proposition 9

Before proceeding with the proof, it is useful to recall equation (3.14), which implies

that in any equilibrium, the message 𝑚∗𝑥1𝑥2𝑐 ∈ M𝑥1𝑥2 sent by type (𝑥1, 𝑥2, 𝑐) of Sender
with probability 1 must be an element of argmax𝑚∈M𝑥1𝑥2

{𝜇𝑅(𝑚)} ∀(𝑥1, 𝑥2, 𝑐). In this proof,

let 𝑠𝑥1𝑥2𝑐 denote the message sent by type (𝑥1, 𝑥2, 𝑐) of Sender with probability 1 in a

given candidate equilibrium. Finally, probability tables for 𝜇𝑅(⋅) are provided in Tables

A.1‐A.6 in Appendix section A.3.1 for readers’ convenience.

I first show that there cannot exist any equilibria where type (𝐿, 𝐻 , 1) sends message

𝑚 ∈ M𝐿𝐻 with probability 1 while type (𝐿, 𝐻 , 2) sends a different message

𝑚′ ∈ M𝐿𝐻 ⧵ {𝑚} with probability 1. Recall that the set of messages available to each of

this types is given by

M𝐿𝐻 ≡ {𝑚𝐿∅, 𝑚∅𝐻𝑚𝐿𝐻 }.

First suppose that (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚𝐿∅, 𝑚∅𝐻 ). Then 𝜇𝑅 (𝑚𝐿∅) = 0 and 𝜇𝑅 (𝑚∅𝐻 ) = 1 (see
the second row of Table A.5 and Table A.4, respectively). Therefore type (𝐿, 𝐻 , 1) has a
profitable deviation to message 𝑚∅𝐻 . If (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚𝐿∅, 𝑚𝐿𝐻 ), then 𝜇𝑅 (𝑚𝐿∅) = 0 (see
the second row of Table A.5) and 𝜇𝑅 (𝑚𝐿𝐻 ) = 1 (see the third row of Table A.2).

Therefore type (𝐿, 𝐻 , 1) has a profitable deviation to message 𝑚𝐿𝐻 .

Now suppose that (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚∅𝐻 , 𝑚𝐿∅). It is expositionally most clear to proceed

by breaking this case down into two sub‐cases: first, suppose that ∃𝑟 ′ ∈ {1, 2} such that

𝑠𝐻𝐻𝑟 = 𝑚∅𝐻 . Given Table A.4 it then follows from the assumption that 𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1)
that 𝜇𝑅(𝑚∅𝐻 ) < 1. Recalling that condition (iv) of Definition 2 implies that 𝜇𝑅(𝑚𝐻𝐻 ) on
and off the equilibrium path, it follows that type (𝐻 , 𝐻 , 𝑟 ′) of Sender has a profitable
deviation to message 𝑚𝐻𝐻 . If we then suppose that 𝑠𝐻𝐻𝑟 ′ ≠ 𝑚∅𝐻 ∀𝑟 ′ ∈ {1, 2}. Recall that
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in the case under consideration, 𝑠𝐿𝐻2 ≠ 𝑚𝐿∅. It then follows from Table A.4 that

𝜇𝑅(𝑚𝐸𝐻 ) = 0. Observing Table A.5, it follows that 𝜇𝑅(𝑚𝐿∅) > 0 since 𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1).
Therefore type (𝐿, 𝐻 , 1) of Sender has a profitable deviation to message 𝑚𝐿∅.

If (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚∅𝐻 , 𝑚𝐿𝐻 ), then 𝜇𝑅 (𝑚∅𝐻 ) < 1 and 𝜇𝑅 (𝑚𝐿𝐻 ) = 1. The latter equality
follows from row 3 of Table A.2. The former inequality mechanically follows from the

fact that 𝑠𝐿𝐻1 = 𝑚∅𝐻 ≠ 𝑚𝐿𝐻 and the assumption that 𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1). Intuitively,
𝜇𝑅 (𝑚∅𝐻 ) < 1 because message 𝑚∅𝐻 is sent by type (𝐿, 𝐻 , 1) with strictly positive

probability and source 1 has a strictly positive probability of being relevant (i.e. 𝛾1 > 0).
Since 𝜔 = 𝐿 with probability 1 if the relevant source’s signal is drawn as 𝐿, it then
follows that 𝜋𝑅𝜔 (⋅|𝑚∅𝐻 ) gives strictly positive weight to the event that 𝜔 is 𝐿. Since
𝜇𝑅 (𝑚∅𝐻 ) < 1 = 𝜇𝑅 (𝑚𝐿𝐻 ), it then follows that type (𝐿, 𝐻 , 1) has a profitable deviation to

message 𝑚𝐿𝐻 .

Now suppose that (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚𝐿𝐻 , 𝑚𝐿∅). Then by the second row of Table A.2,

𝜇𝑅 (𝑚𝐿𝐻 ) = 0. In this case, 𝜇𝑅(𝑚𝐿∅) > 0. Mechanically, this follows from the assumption

that 𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1), as is made apparent in row 3 onward of Table A.5. Intuitively, it

follows from the fact that 𝑚𝐿∅ is sent with strictly positive probability by type (𝐿, 𝐻 , 2),
whose signal from the relevant source (𝑐 = 2) is 𝑥2 = 𝐻 . Since the second source is

relevant with strictly positive probability (i.e. 𝛾2 = 1 − 𝛾1 > 0), and the state 𝜔 is 𝐻 with

probability if the relevant source signal is drawn as 𝐻 , it follows that 𝜋𝑅𝜔 (⋅|𝑚𝐿∅)must

place strictly positive weight on the event that 𝜔 = 𝐻 . Since 𝜇𝑅(𝑚𝐿𝐻 ) = 0 < 𝜇𝑅(𝑚𝐿∅), it
follows that type (𝐿, 𝐻 , 1) has a profitable deviation to message 𝑚𝐿∅.

Finally, let us suppose that (𝑠𝐿𝐻1, 𝑠𝐿𝐻2) = (𝑚𝐿𝐻 , 𝑚∅𝐻 ). It then follows that 𝜇𝑅 (𝑚𝐿𝐻 ) = 0
and 𝜇𝑅 (𝑚∅𝐻 ) = 1. The former equality holds for the same reason as before: since 𝑚𝐿𝐻

is sent only by type (𝐿, 𝐻 , 1), the Receiver knows that the first source is relevant, and its

signal was realized as 𝑋1 = 𝐿. The latter equality follows from the fact that 𝑚∅𝐻 is not

sent by type (𝐿, 𝐻 , 1), and the remaining types that can send 𝑚∅𝐻 are (𝐿, 𝐻 , 2), (𝐻 , 𝐻 , 1),
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(𝐻 , 𝐻 , 2). Therefore, when the Receiver observes 𝑚∅𝐻 , they believe the Sender holds

an 𝐻 draw of a relevant source with probability 1, and hence can infer that the state is

𝐻 with probability 1. Since 𝜇𝑅 (𝑚𝐿𝐻 ) = 0 < 1 = 𝜇𝑅 (𝑚∅𝐻 ), type (𝐿, 𝐻 , 1) has a profitable
deviation to message 𝑚∅𝐻 .

Since all distinct pairs of messages inM𝐿𝐻 have now been exhausted, we can now

conclude that there do not exist equilibria wherein types (𝐿, 𝐻 , 1) and (𝐿, 𝐻 , 2) send
different messages, each with probability 1.

The proof that no equilibria exist where (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) send different messages,

each with probability 1 is nearly identical to the proof presented above. For

completeness, it is presented below. Recall that the set of messages available to these

types of Senders is given by

M𝐻𝐿 ≡ {𝑚𝐻∅, 𝑚∅𝐿, 𝑚𝐻𝐿}.

If (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚𝐻∅, 𝑚∅𝐿), then 𝜇𝑅 (𝑚𝐻∅) = 1 and 𝜇𝑅 (𝑚∅𝐿) = 0. Therefore type (𝐻 , 𝐿, 2)
has a profitable deviation to message 𝑚𝐻∅.

If (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚𝐻∅, 𝑚𝐻𝐿), then 𝜇𝑅 (𝑚𝐻∅) = 1 and 𝜇𝑅 (𝑚𝐻𝐿) = 0. Therefore type (𝐻 , 𝐿, 2)
has a profitable deviation to message 𝑚𝐻∅.

Now suppose that (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚∅𝐿, 𝑚𝐻∅). Then, 𝜇𝑅 (𝑚∅𝐿) > 0, which follows from

Table A.6 and the assumption that 𝛾1, 𝜈1, 𝜈2, 𝜇 are each elements of (0, 1). As in the third

case of the previous part of this proof, it is convenient to break this case into two

sub‐cases. First suppose that 𝑠𝐻𝐻𝑟 ≠ 𝑚𝐻∅ ∀𝑟 ∈ {1, 2}. It then follows from Table A.3 that

𝜇𝑅(𝑚𝐻∅) = 0. Hence, type (𝐻 , 𝐿, 2) has a profitable deviation to 𝑚∅𝐿. If we instead

suppose that 𝑠𝐻𝐻𝑟 = 𝑚𝐻∅ for some 𝑟 ∈ {1, 2}, then 𝜇𝑅(𝑚𝐻∅) ∈ (0, 1) by Table A.3 and the

assumption that (𝛾1, 𝜈1, 𝜈2, 𝜇) ∈ (0, 1)4. Since condition (iv) of Definition 2 requires that

𝜇𝑅(𝑚𝐻𝐻 ) = 1 on and off the equilibrium path, it then follows that type (𝐻 , 𝐻 , 𝑟) has a
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profitable deviation to 𝑚𝐻𝐻 .

If (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚∅𝐿, 𝑚𝐻𝐿), then 𝜇𝑅 (𝑚𝐻𝐿) > 1 and 𝜇𝑅 (𝑚𝐻𝐿) = 0. The former inequality

follows from Table A.6 (row three onward) and the assumption that

(𝛾1, 𝜈1, 𝜈2, 𝜇) ∈ (0, 1)4; the latter equality follows from row three of Table A.1. Given this,

it follows that type (𝐻 , 𝐿, 2) has a profitable deviation to message 𝑚∅𝐿.

Now suppose that (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚𝐻𝐿, 𝑚𝐻∅). Then 𝜇𝑅 (𝑚𝐻𝐿) = 1 (by row two of Table

A.1) and 𝜇𝑅 (𝑚𝐻∅) < 1 (which follows from row three onward of Table A.3 because of

the assumption that (𝛾1, 𝜈1, 𝜈2, 𝜇) ∈ (0, 1)4). It then follows that (𝐻 , 𝐿, 2) has a profitable
deviation to 𝑚𝐻𝐿.

If (𝑠𝐻𝐿1, 𝑠𝐻𝐿2) = (𝑚𝐻𝐿, 𝑚∅𝐿), then 𝜇𝑅 (𝑚𝐻𝐿) = 1 and 𝜇𝑅 (𝑚∅𝐿) < 1, for the same reasons as

mentioned previously. Therefore type (𝐻 , 𝐿, 2) has a profitable deviation to message

𝑚𝐻𝐿.

Since all distinct pairs of messages inM𝐻𝐿 have now been exhausted, we can now

conclude that there do not exist equilibria wherein types (𝐻 , 𝐿, 1) and (𝐻 , 𝐿, 2) send
different messages, each with probability 1. ■

A.3.5 Proof of Proposition 10

As in the Proof of Proposition 9 (found in appendix section A.3.4), I let 𝑠𝑥1𝑥2𝑐 denote the
message sent by type (𝑥1, 𝑥2, 𝑐) of Sender with probability 1 in a given candidate

equilibrium. By construction, focus is placed on candidate equilibria where

𝑠𝐻𝐿1 = 𝑠𝐻𝐿2 = 𝑚∅𝐿; 𝑠𝐿𝐻1 = 𝑠𝐿𝐻2 = 𝑚𝐿∅. (A.72)

As is evident from Table A.6, 𝜇𝑅(𝑚∅𝐿) = 1 is possible only if 𝑚∅𝐿 is not sent on the

equilibrium path or is sent only by type (𝐻 , 𝐿, 1) due to the assumption that

𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1). Therefore, it follows that 𝜇𝑅(𝑚∅𝐿) < 1. Similarly, it is evident from
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Table A.5 that 𝜇𝑅(𝑚𝐿∅) can be equal to one only if 𝑚𝐿∅ is not sent on the equilibrium

path or sent only by type (𝐿, 𝐻 , 2). Therefore, we can also conclude that 𝜇𝑅(𝑚𝐿∅) < 1.
Suppose that ∃𝑟 ∈ {1, 2} such that type (𝐻 , 𝐻 , 𝑟) sends message 𝑠𝐻𝐻𝑟 ∈ {𝑚𝐻∅, 𝑚∅𝐻 } with
probability 1. If this were the case, then 𝜇𝑅(𝑚) = 1. It would then follow that there

exists a type in {(𝐿, 𝐻 , 𝑟 ′), (𝐻 , 𝐿, 𝑟 ′)}2𝑟 ′=1 that has a profitable deviation to message 𝑚.
Hence any equilibrium wherein (A.72) holds must have 𝑠𝐻𝐻𝑟 = 𝑚𝐻𝐻 ∀𝑟 ∈ {1, 2}. What

remains to be considered are the messages sent by types (𝐿, 𝐿, 1) and (𝐿, 𝐿, 2). I
consider these cases in the order that parts (a)‐(d) are presented in the statement of

Proposition 10. Note that there cannot exist an equilibrium where 𝑠𝐿𝐿𝑟 = 𝑚𝐿𝐿 for some

𝑟 ∈ {1, 2}. This is because 𝜇𝑅(𝑚𝐿𝐿) = 0 on and off the equilibrium path but 𝜇𝑅(𝑚) > 0
∀𝑚 ∈ {𝑚𝐿∅, 𝑚∅𝐿} because of (A.72) and the assumption that 𝜇, 𝛾1, 𝜈1, 𝜈2 ∈ (0, 1). Hence if

𝑠𝐿𝐿𝑟 = 𝑚𝐿𝐿 for some 𝑟 ∈ {1, 2}, type (𝐿, 𝐿, 𝑟) would have a profitable deviation to some

message 𝑚 ∈ {𝑚𝐿∅, 𝑚∅𝐿}.

Part (a) First suppose that 𝑠𝐿𝐿1 = 𝑚𝐿∅ and 𝑠𝐿𝐿2 = 𝑚𝐿∅. It then follows from the last

row of Table A.5 that

𝜇𝑅(𝑚𝐿∅) =
𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇 + [𝛾1+𝛾2(1-𝜈1)] (1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾1+𝛾2(1-𝜈1)𝛾2(1-𝜈1) )
. (A.73)

It follows from row 6 of Table A.6 that

𝜇𝑅(𝑚∅𝐿) =
𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾2𝜈1
𝛾1(1-𝜈2))

. (A.74)
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In order for neither type (𝐿, 𝐿, 1) nor (𝐿, 𝐿, 2) to have a profitable deviation, the

following must hold

1
1 + (1−𝜇𝜇 ) ( 𝛾1+𝛾2(1-𝜈1)𝛾2(1-𝜈1) )

≥ 1
1 + (1−𝜇𝜇 ) ( 𝛾2𝜈1

𝛾1(1-𝜈2))
⇔ 𝛾1+𝛾2(1-𝜈1)

𝛾2(1-𝜈1)
≤ 𝛾2𝜈1

𝛾1(1-𝜈2)
. (A.75)

In order for neither type (𝐿, 𝐻 , 1) nor (𝐿, 𝐻 , 2) to have a profitable deviation, the

Receiver’s off path beliefs formed after message 𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 }must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚𝐿∅) ∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 },

for the value of 𝜇𝑅(𝑚𝐿∅) given in (A.73). In order for neither type (𝐻 , 𝐿, 1) nor (𝐻 , 𝐿, 2) to
have a profitable deviation, the Receiver’s off path beliefs formed after message

𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿}must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚∅𝐿) ∀𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿},

for the value of 𝜇𝑅(𝑚∅𝐿) given in (A.74). Given the above, it clearly follows that an

equilibrium that satisfies

𝑠𝐿𝐿1 = 𝑚𝐿∅, 𝑠𝐿𝐿2 = 𝑚𝐿∅; 𝑠𝐿𝐻𝑟 = 𝑚𝐿∅ ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐿𝑟 = 𝑚∅𝐿 ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐻𝑟 = 𝑚𝐻𝐻 ∀𝑟 ∈ {1, 2}

exists if and only if (A.75) holds.

Part (b) First suppose that 𝑠𝐿𝐿1 = 𝑚∅𝐿 and 𝑠𝐿𝐿2 = 𝑚∅𝐿. It then follows from row 6 of

Table A.5 that

𝜇𝑅(𝑚𝐿∅) =
𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇 + 𝛾1𝜈2(1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾1𝜈2
𝛾2(1-𝜈1))

. (A.76)
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It follows from the last row of Table A.6 that

𝜇𝑅(𝑚∅𝐿) =
𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇 + [𝛾1(1-𝜈2)+𝛾2] (1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾1(1-𝜈2)+𝛾2𝛾1(1-𝜈2) )
. (A.77)

In order for neither type (𝐿, 𝐿, 1) nor (𝐿, 𝐿, 2) to have a profitable deviation, the

following must hold

1
1 + (1−𝜇𝜇 ) ( 𝛾1𝜈2

𝛾2(1-𝜈1))
≤ 1

1 + (1−𝜇𝜇 ) ( 𝛾1(1-𝜈2)+𝛾2𝛾1(1-𝜈2) )
⇔ 𝛾1𝜈2

𝛾2(1-𝜈1)
≥ 𝛾1(1-𝜈2)+𝛾2

𝛾1(1-𝜈2)
. (A.78)

In order for neither type (𝐿, 𝐻 , 1) nor (𝐿, 𝐻 , 2) to have a profitable deviation, the

Receiver’s off path beliefs formed after message 𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 }must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚𝐿∅) ∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 },

for the value of 𝜇𝑅(𝑚𝐿∅) given in (A.76). In order for neither type (𝐻 , 𝐿, 1) nor (𝐻 , 𝐿, 2) to
have a profitable deviation, the Receiver’s off path beliefs formed after message

𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿}must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚∅𝐿) ∀𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿},

for the value of 𝜇𝑅(𝑚∅𝐿) given in (A.77). Given the above, it clearly follows that an

equilibrium that satisfies

𝑠𝐿𝐿1 = 𝑚∅𝐿, 𝑠𝐿𝐿2 = 𝑚∅𝐿; 𝑠𝐿𝐻𝑟 = 𝑚𝐿∅ ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐿𝑟 = 𝑚∅𝐿 ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐻𝑟 = 𝑚𝐻𝐻 ∀𝑟 ∈ {1, 2}

exists if and only if (A.78) holds.
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Part (c) First suppose that 𝑠𝐿𝐿1 = 𝑚∅𝐿 and 𝑠𝐿𝐿2 = 𝑚𝐿∅. It then follows from

penultimate row of Table A.5 that

𝜇𝑅(𝑚𝐿∅) =
𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇 + [𝛾1𝜈2+𝛾2(1-𝜈1)] (1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾1𝜈2+𝛾2(1-𝜈1)𝛾2(1-𝜈1) )
. (A.79)

It follows from third‐to‐last row of Table A.6 that

𝜇𝑅(𝑚∅𝐿) =
𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇 + 𝛾2𝜈1(1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾2𝜈1
𝛾1(1-𝜈2))

. (A.80)

In order for neither type (𝐿, 𝐿, 1) nor (𝐿, 𝐿, 2) to have a profitable deviation, the

following must hold

1
1 + (1−𝜇𝜇 ) ( 𝛾1𝜈2+𝛾2(1-𝜈1)𝛾2(1-𝜈1) )

= 1
1 + (1−𝜇𝜇 ) ( 𝛾2𝜈1

𝛾1(1-𝜈2))
⇔ 𝛾1𝜈2+𝛾2(1-𝜈1)

𝛾2(1-𝜈1)
= 𝛾2𝜈1

𝛾1(1-𝜈2)
. (A.81)

In order for neither type (𝐿, 𝐻 , 1) nor (𝐿, 𝐻 , 2) to have a profitable deviation, the

Receiver’s off path beliefs formed after message 𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 }must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚𝐿∅) ∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 },

for the value of 𝜇𝑅(𝑚𝐿∅) given in (A.79). In order for neither type (𝐻 , 𝐿, 1) nor (𝐻 , 𝐿, 2) to
have a profitable deviation, the Receiver’s off path beliefs formed after message

𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿}must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚∅𝐿) ∀𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿},
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for the value of 𝜇𝑅(𝑚∅𝐿) given in (A.80). Given the above, it clearly follows that an

equilibrium that satisfies

𝑠𝐿𝐿1 = 𝑚∅𝐿, 𝑠𝐿𝐿2 = 𝑚𝐿∅; 𝑠𝐿𝐻𝑟 = 𝑚𝐿∅ ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐿𝑟 = 𝑚∅𝐿 ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐻𝑟 = 𝑚𝐻𝐻 ∀𝑟 ∈ {1, 2}

exists if and only if (A.81) holds. That is, any such equilibrium exists only in a

knife‐edge case.

Part (d) First suppose that 𝑠𝐿𝐿1 = 𝑚𝐿∅ and 𝑠𝐿𝐿2 = 𝑚∅𝐿. It then follows from the

third‐to‐last row of Table A.5 that

𝜇𝑅(𝑚𝐿∅) =
𝛾2(1-𝜈1)𝜇

𝛾2(1-𝜈1)𝜇 + 𝛾1(1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾1
𝛾2(1-𝜈1))

. (A.82)

It follows from the penultimate row of Table A.6 that

𝜇𝑅(𝑚∅𝐿) =
𝛾1(1-𝜈2)𝜇

𝛾1(1-𝜈2)𝜇 + 𝛾2(1-𝜇)
= 1

1 + (1−𝜇𝜇 ) ( 𝛾2
𝛾1(1-𝜈2))

. (A.83)

In order for neither type (𝐿, 𝐿, 1) nor (𝐿, 𝐿, 2) to have a profitable deviation, the

following must hold

1
1 + (1−𝜇𝜇 ) ( 𝛾1

𝛾2(1-𝜈1))
= 1

1 + (1−𝜇𝜇 ) ( 𝛾2
𝛾1(1-𝜈2))

⇔ 𝛾1
𝛾2(1-𝜈1)

= 𝛾2
𝛾1(1-𝜈2)

. (A.84)

In order for neither type (𝐿, 𝐻 , 1) nor (𝐿, 𝐻 , 2) to have a profitable deviation, the

Receiver’s off path beliefs formed after message 𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 }must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚𝐿∅) ∀𝑚 ∈ {𝑚∅𝐻 , 𝑚𝐿𝐻 },
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for the value of 𝜇𝑅(𝑚𝐿∅) given in (A.82). In order for neither type (𝐻 , 𝐿, 1) nor (𝐻 , 𝐿, 2)
to have a profitable deviation, the Receiver’s off path beliefs formed after message

𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿}must satisfy

𝜇𝑅(𝑚) ≤ 𝜇𝑅(𝑚∅𝐿) ∀𝑚 ∈ {𝑚𝐻∅, 𝑚𝐻𝐿},

for the value of 𝜇𝑅(𝑚∅𝐿) given in (A.83). Given the above, it clearly follows that an

equilibrium that satisfies

𝑠𝐿𝐿1 = 𝑚𝐿∅, 𝑠𝐿𝐿2 = 𝑚∅𝐿; 𝑠𝐿𝐻𝑟 = 𝑚𝐿∅ ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐿𝑟 = 𝑚∅𝐿 ∀𝑟 ∈ {1, 2}; 𝑠𝐻𝐻𝑟 = 𝑚𝐻𝐻 ∀𝑟 ∈ {1, 2}

exists if and only if (A.84) holds. Just as in the previous part, any such equilibrium

exists only in a knife‐edge case. ■
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