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Abstract
Power calculation prior to a genetic experiment can help investigators choose the optimal sample size to detect a quantitative
trait locus (QTL). Without the guidance of power analysis, an experiment may be underpowered or overpowered. Either way
will result in wasted resource. QTL mapping and genome-wide association studies (GWAS) are often conducted using a
linear mixed model (LMM) with controls of population structure and polygenic background using markers of the whole
genome. Power analysis for such a mixed model is often conducted via Monte Carlo simulations. In this study, we derived a
non-centrality parameter for the Wald test statistic for association, which allows analytical power analysis. We show that
large samples are not necessary to detect a biologically meaningful QTL, say explaining 5% of the phenotypic variance.
Several R functions are provided so that users can perform power analysis to determine the minimum sample size required to
detect a given QTL with a certain statistical power or calculate the statistical power with given sample size and known values
of other population parameters.

Introduction

Genome-wide association studies (GWAS) and quantitative
trait locus (QTL) mapping are important tools for gene dis-
covery. The most popular method for GWAS is the Q+K
mixed linear model (MLM), first proposed by Yu et al.
(2006) and then modified by numerous authors to improve
the computational efficiency (Kang et al. 2008; Lippert
et al. 2011; Listgarten et al. 2012; Zhou et al. 2013). Note
that MLM is called linear mixed model (LMM) in statistics
literature, not mixed linear model. In terms of QTL map-
ping, the current method of choice is still the composite
interval mapping, first proposed by Zeng (1994) and Jansen
(1994) and then modified by Kao et al. (1999). In the mixed
model GWAS, the genomic background effect is captured
by the polygene modeled via a marker inferred kinship

matrix, while in composite interval mapping the genomic
background effect is controlled by selected markers
(cofactors) across the whole genome. Recently, Xu (2013a)
proposed to fit the genomic background effect in QTL
mapping via marker inferred kinship matrix. QTL mapping
populations (also called linkage populations) are often
homogeneous and thus there are no population structures
involved. However, QTL mapping experiments are often
replicated spatially and temporally. The systematic envir-
onmental effects should be included in the mixed models as
fixed effects. These fixed effects are analogous to the
population structure effects in GWAS. Methodology-wise,
GWAS and QTL are unified under the same LMM frame-
work. As a consequence, the power analysis proposed in
this study applies to both GWAS and QTL mapping.

Statistical power is defined as the ability to correctly
reject the null hypothesis (Castelloe and O’Brien 2001). In
GWAS and QTL mapping, the null hypothesis is the
absence of an effect for a candidate locus and thus the
power is defined as the probability of detecting a true QTL.
In interval mapping via the simple regression analysis
(Haley and Knott 1992) and single marker GWAS imple-
mented via PLINK (Purcell et al. 2007), power analysis is
very straightforward because standard methods of power
calculation in linear models apply (Castelloe and O’Brien
2001; Faul et al. 2007). The threshold of the test statistic for
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significance is drawn from the central Chi-square distribu-
tion. The power is calculated from the non-central Chi-
square distribution with the non-centrality parameter
defined from the true parameter values (Castelloe and
O’Brien 2001). For LMMs, especially for the kinship
matrix based GWAS, the non-centrality parameter is diffi-
cult to define. Therefore, power analysis in mixed models is
primarily conducted via Monte Carlo simulations, in which
true parameters are used to simulate the data (Green and
MacLeod 2016). The SIMR package is available for power
analysis via simulation under the generalized LMM (Fulker
et al. 1999; Spencer et al. 2009; Johnson et al. 2015; Green
and MacLeod 2016). The PAMM program (an R package)
is a power analysis for random effects in mixed models
under the likelihood ratio tests (Martin et al. 2011). Power
evaluation in classical mixed model association study via
simulation can also be found in Shin and Lee (2015).

In a simulation-based power analysis, the simulation is
replicated multiple times. For each replicate, the simulated
QTL is either detected or not by a method of interest under a
pre-specified genome-wide Type 1 error, say 0.05. The
number of replicates that show positive detection against the
total number of replicates is declared as the empirical
power. For large GWAS data, such a simulation approach is
time-consuming. People often use the genotypic data of an
existing population to simulate the response variable given
a set of true parameters. This approach can save some
computational time for not generating the genotypic data,
but performing GWAS for the simulated data is still very
costly. An explicit method for power calculation in mixed
models can save tremendous amount of time, but such a
method has not been available yet. Kononoff and Hanford
(2006) proposed to use PROC MIXED in SAS to calculate
the non-centrality parameter for an F test in dairy nutritional
studies. They provided the true parameters in PROC
MIXED and held the initial parameter values. They then
extracted the non-centrality parameter from the output. This
approach is a short cut method avoiding massive simula-
tions and may be adopted to the mixed model GWAS,
assuming users are skilled SAS programmers.

In human linkage and association studies, power calcu-
lation often deals with case-control data (Gordon et al.
2002; Edwards et al. 2005; Skol et al. 2006; Klein 2007;
Kim et al. 2008; Spencer et al. 2009; Hong and Park 2012;
Jiang and Yu 2016). Software packages are available for
case-control power calculation, e.g., the PGA (Power for
Genetic Association analyses) program in MatLab with
graphic interface (Menashe et al. 2008). Genetic power
calculator (GPC) (Sham et al. 2000; Purcell et al. 2003) is
an online program for power calculation in linkage and
association mapping. The method simultaneously tests
between family variance (variance across family means) for
association and within family variance for linkage. The

package uses likelihood ratio tests. However, this program
only deals with full-sib families, case-control study and
transmission disequilibrium test (TDT). The combined
linkage and association mapping part implemented in GPC
was initially proposed by Fulker et al. (1999) who evaluated
the statistical power via simulations. In case-control studies,
the test statistic is the typical Chi-square test by comparing
the allele frequencies of the case to the control. The non-
centrality parameter depends on the sample sizes, genotype
frequencies, disease prevalence, and phenotype mis-
classification probabilities (Edwards et al. 2005). In addition
to case-control studies, there are identity-by-descent (IBD)-
based methods for QTL mapping and GWAS (Amos 1994;
Xu and Atchley 1995; Almasy and Blangero 1998), all of
which estimate and test variance components. Power cal-
culation can be conducted theoretically using the expected
likelihood ratio test as the non-centrality parameter.

Yang et al. (2011, 2014) were the first group of people
explicitly addressing statistical power for the Q+K mixed
model. They used the expectation (average) of the Chi-
square test statistics of QTL to indicate the power. Their
purpose was to compare the powers of different models,
e.g., comparison of powers for LMMs with proximal con-
tamination and without proximal contamination. The
authors did not provide the exact power to detect a parti-
cular QTL; rather, used the expected Chi-square test to draw
a qualitative conclusion about the comparison. In addition,
Yang et al. method is a simulation-based method.

The only explicit method of power calculation for
GWAS without simulation was developed by Feng et al.
(2011) and Visscher et al. (2017), where the non-centrality
parameter is expressed as a function of QTL size (expressed
as QTL heritability). The software package GWAPower is
particularly designed for power calculation in GWAS (Feng
et al. 2011). Unfortunately, the non-centrality parameter
proposed there ignores the polygene captured by the kinship
matrix. The polygenic control is a fundamental part of the
LMM GWAS (Yu et al. 2006). It is unclear how the
polygene included in the model affect the power. Does the
polygene increase the power or decrease the power? How
does the overall relatedness of individuals affect the power?
Power calculation is an important first step to design QTL
mapping and GWAS experiments. In addition to many
other factors, sample size and QTL size are the key factors
determining the statistical power. Power calculation prior to
the experiments can help investigators choose the optimal
sample size to detect a biologically meaningful QTL.
Without the guidance of power analysis, an experiment may
be underpowered or overpowered. Either way will lead to
wasted resource in terms of labor, fund, and time. An
underpowered experiment will not be able to detect useful
QTL and the entire experiment will be wasted. On the other
hand, an overpowered experiment will take more resources
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than necessary to accomplish what is expected to accom-
plish. This study will derive the non-centrality parameter
(thus the statistical power) for the typical Q+K LMM
GWAS and QTL mapping. Readers can write their own
codes to calculate the power or sample size using the simple
formulas developed in the study. They can also use the R
functions provided in Supplementary Information of this
paper.

Method

Background of statistical power

In hypothesis testing, we typically express the belief that
some effect exists in a population by specifying an alter-
native hypothesis H1. We state a null hypothesis H0 as the
assertion that the effect does not exist and we attempt to
gather evidence to reject H0 in favor of H1. Evidence is
gathered in the form of sampled data, and a statistical test is
used to assess H0. If H0 is rejected but there really is no
effect, this is called a Type 1 error, which is usually
designated “alpha” (α), and statistical tests are designed to
ensure that α is suitably small (for example, less than 0.05).
If there really is an effect in the population but H0 is not
rejected in the statistical test, then a Type 2 error has been
made. The Type 2 error is usually designated “beta” (β).
The probability 1− β of avoiding a Type 2 error, that is
correctly rejecting H0 and achieving statistical significance,
is called the statistical power. An important goal in study
planning is to ensure an acceptably high level of power.
Sample size plays a prominent role in power computations
because the focus is often on determining a sufficient
sample size to achieve a certain power, or assessing the
power for a range of different sample sizes.

The relationship between Type 1 error and statistical power
is shown in Table 1. The off-diagonals of the 2 × 2 table
(Table 1) are the Type 1 and Type 2 errors. The two diagonal
elements represent the probabilities of making correct deci-
sions. The second diagonal element is the statistical power
(also called sensitivity), as usually defined in statistics. The
first diagonal element 1− α is called the specificity.

The relationship between the Type 1 and Type 2 errors is
more intuitively illustrated in Fig. 1. The upper panel of Fig.
1 shows the null distribution (left) and the alternative dis-
tribution (right), where the upper tail of the null distribution
highlighted in light gray represents the Type 1 error and the
lower tail of the alternative distribution highlighted in dark
gray represents the Type 2 error. The line dividing the Type
1 and Type 2 errors is the critical value of the test statistic.
Sliding the critical value towards the left will increase the
Type 1 error but decrease the Type 2 error. However,
sliding the critical value towards the right will decrease the

Type 1 error but increase the Type 2 error. The lower panel
of Fig. 1 shows the changes of the Type 1 error, the Type 2
error, and the statistical power. A test statistic that max-
imizes the distance between the two distributions is the best
test. The critical value should be selected as to minimizing
both the Type 1 and Type 2 errors.

We now use a simple linear regression model to
demonstrate the statistical power. Let y be a response
variable and Z be an independent variable. The linear model
is

y ¼ μþ Zγ þ e ð1Þ

where μ is the intercept, γ is the regression coefficient, and e
is the residual error vector with an assumed N(0, σ2)
distribution for each individual error. The null hypothesis is

Table 1 Type 1 error (α), Type 2 error (β), and statistical power (1− β)

Ĥ0 Ĥ1

H0 PrðĤ0jH0Þ ¼ 1� α PrðĤ1jH0Þ ¼ α

H1 PrðĤ0jH1Þ ¼ β PrðĤ1jH1Þ ¼ 1� β

H0: Null hypothesis is true; Ĥ0: Null hypothesis is accepted

H1: Alternative hypothesis is true; Ĥ1: Alternative hypothesis is
accepted

Fig. 1 Relationship among the Type 1 and Type 2 errors, and the
statistical power. a The null distribution (left) and the alternative
distribution (right), where the upper tail of the null distribution high-
lighted in light gray represents the Type 1 error and the lower tail of
the alternative distribution highlighted in dark gray represents the Type
2 error. b Changes of the Type 1 and Type 2 errors, and the statistical
power as the critical value (the vertical line) changes
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H0:γ= 0 and the alternative hypothesis is H1:γ ≠ 0. Let γ̂ be
the estimated regression coefficient with an estimated
variance of

varðγ̂Þ ¼ σ2γ̂ ¼
σ2Pn

j¼1 ðZj � ZÞ2 �
σ2

nσ2Z
ð2Þ

where σ2Z is the variance of Z. The Wald test is defined as

W ¼ γ̂2

varðγ̂Þ ¼ nσ2Z
γ̂2

σ2
ð3Þ

When n is sufficiently large, under the null model, the
Wald test statistic follows a central Chi-square distribu-
tion with 1 degree of freedom (for small n, this test sta-
tistic actually follows an F distribution with 1 and n− 2
degrees of freedom). The assumed Chi-square distribution
for the Wald test holds in the ideal situation where the
residual error follows a normal distribution. If the normal
assumption of the error is violated, power calculation
based on the assumed Chi-square distribution will be
approximate. However, the approximation will be suffi-
ciently accurate if the sample size is large (Andersen
1970). For simplicity, let us use the central χ2 distribution
with 1 degree of freedom as the null distribution. The
critical value used to declare significance for the test is
χ21�α, which is the (1− α) × 100 percentile of the χ2 dis-
tribution. If the alternative hypothesis, H1:γ ≠ 0, is true, the
Wald-test will follow a non-central Chi-square distribu-
tion with a non-centrality parameter

δ ¼ nσ2Z
γ

σ

� �2 ð4Þ

If the independent variable is standardized prior to the
analysis, σ2Z ¼ 1 and the non-centrality parameter is simply

δ ¼ n
γ

σ

� �2 ð5Þ

It is proportional to the product of sample size and the
size of the effect (squared regression coefficient relative to
the residual error variance).

In terms of QTL mapping with the simple regression
model, a more informative way to represent the size of the
QTL is

h2QTL ¼ γ2

γ2 þ σ2
¼ ðγ=σÞ2

ðγ=σÞ2 þ 1
ð6Þ

Therefore,

γ

σ

� �2
¼ h2QTL

1� h2QTL
ð7Þ

The non-centrality parameter can be rewritten as

δ ¼ n
h2QTL

1� h2QTL
ð8Þ

The non-centrality parameter will be extended to LMM
in the following section. The power and Type 1 error
relationship may be different for different test procedures. If
the power responds to the change of Type 1 error strongly,
the method is considered as a good method. We often use
the receiver operating characteristic (ROC) curve to
describe the effectiveness of a test procedure. Figure 2
shows three methods (or three sample sizes) having three
different patterns of the ROC curves. The curve in red
deviates away the most from the diagonal line and thus is
the best method. The curve in blue is not as good as the red
curve. The curve in purple is closer to the diagonal line and
thus is the worst method among the three. If the ROC curve
of a method overlaps with the diagonal line, the method is
useless.

Linear mixed model and Wald test

We first consider the polygenic model ignoring any popu-
lation structure effects, which will be dealt with in a latter
section. Let y be the phenotypic value of a target quantita-
tive trait for QTL mapping or GWAS. The LMM can be
written as

y ¼ μþ Zkγk þ ξþ e ð9Þ

Fig. 2 The receiver operating characteristic (ROC) curves of three
methods (or different sample sizes). The curve in red deviating away
the most from the diagonal line is the best method. The curve in blue is
not as good as the red curve. The curve in purple closer to the diagonal
line is the worst method among the three
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where y (an n × 1 vector) is assumed to be adjusted by any
fixed effects, e.g., population structure, year, location, age,
and so on, prior to the mixed model analysis, Zk (an n × 1
vector) is a genotype indicator variable for the locus
(candidate gene) under investigation and assumed to be
standardized (subtracted by the mean and divided by the
standard deviation so that σ2Z ¼ 1), γk is the effect of the locus
and treated as a fixed effect, ξ is an n × 1 vector of polygenic
effects captured by a marker inferred kinship matrix and is
assumed to be Nð0;Kσ2ξÞ distributed where σ2ξ is the
polygenic variance, and e ~N(0, Iσ2) is a vector of residual
errors with a common variance σ2.

The marker inferred kinship matrix is calculated based
on (VanRaden 2008)

K ¼ 1
d

Xm
k′¼1

Zk′Z
T
k′ ð10Þ

where Zk′ is a vector of standardized genotype indicators for
marker k′ and m is the total number of markers used to
calculate the kinship matrix. The denominator d is a
normalization factor that makes the diagonal elements as
close to unity as possible. Typical value of d can take the
mean of the diagonal elements of the original un-normalized
kinship matrix. Note that normalization of the kinship matrix
is recommended in the power study. The number of markers
used to calculate K is not necessarily the same as the total
number of markers scanned in the study. Essentially, one of
the Zk′’s is Zk, so a potential proximal contamination
(Listgarten et al. 2012) occurs here, but if m is sufficiently
large, say m > 1000, effect of the proximal contamination on
the result is negligible (Wang et al. 2016; Wei and Xu 2016).

The expectation of y is E(y)= μ+ Zkγk and the
variance–covariance matrix of y is

varðyÞ ¼ V ¼ Kσ2ξ þ Iσ2 ¼ ðKλþ IÞσ2 ¼ Hσ2 ð11Þ

where λ ¼ σ2ξ=σ
2 is the variance ratio (representing the size

of the polygene) and H= Kλ+ I is the covariance structure.
The test statistic is the usual Wald test

W ¼ γ̂2k
varðγ̂kÞ

ð12Þ

where

γ̂k ¼ ðZT
k H

�1ZkÞ�1ZT
k H

�1y ð13Þ

and

varðγ̂kÞ ¼ ðZT
k H

�1ZkÞ�1σ2 ð14Þ

Under the null hypothesis H0: γk= 0, the Wald statistic
follows approximately the χ21 distribution. In GWAS, the
sample size is often sufficiently large so that the Chi-square
distribution is a very safe assumption.

Non-centrality parameter

To evaluate the power of the Wald test, we must assume
that all parameters are known so that we can find the dis-
tribution of the test statistic under the alternative hypothesis.
The parameters include γk, λ, and σ2. The variance of the
estimated QTL effects given in Eq. (14) involves a quad-
ratic form of Zk. If we replace the quadratic form by its
expectation, the variance becomes

varðγkÞ ¼ EðZT
k H

�1ZkÞ
� ��1

σ2 ð15Þ

Note the difference between (15) and (14), where one is
γ̂k and the other is γk. The non-centrality parameter is
obtained by replacing all estimated parameters in the Wald
test statistic by the true values and thus

δ ¼ γ2k
varðγkÞ

¼ γ2k

EðZT
k H

�1ZkÞ
� ��1

σ2
¼ EðZT

k H
�1ZkÞ γ

2
k

σ2

ð16Þ
A non-centrality parameter is not supposed to contain the

actual data but here we have a kinship matrix (K) embedded
in matrix H. Let us consider K as a constant when we take
the expectation of the quadratic form of Zk. Since Zk is a
standardized variable, E(Zk)= 0 and varðZkÞ ¼ I, where we
assume that the n individuals are not genetically related, i.e.,
they are independent. Note that being genetically indepen-
dent does not mean K= I because K is not the coancestry
matrix but a matrix calculated from markers. The expecta-
tion of the quadratic form for Zk can be written in the fol-
lowing form:

EðZT
k H

�1ZkÞ ¼ EðZT
k ÞH�1EðZkÞ þ tr H�1varðZkÞ

� � ¼ trðH�1Þ
ð17Þ

because E(Zk)= 0 and varðZkÞ ¼ I. Recall that H−1=U
(Dλ+ I)−1UT and thus

trðH�1Þ ¼ tr UðDλþ IÞ�1UT
� �

¼ tr UTUðDλþ IÞ�1
� �

¼ tr ðDλþ IÞ�1
� �

¼ Pn
j¼1

ðdjλþ 1Þ�1

ð18Þ
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Therefore, the non-centrality parameter is

δ ¼ trðH�1Þ γ
2
k

σ2
¼

Xn
j¼1

ðdjλþ 1Þ�1 γk
σ

� �2

ð19Þ

If Zk is centered but not scaled and the variance is σ2Z , we
would have

EðZT
k H

�1ZkÞ ¼ EðZkÞTH�1EðZkÞ þ trðH�1Þσ2Z ¼ trðH�1Þσ2Z
ð20Þ

Therefore, the non-centrality parameter would be

δ ¼ trðH�1Þσ2Z
γ2k
σ2

¼
Xn
j¼1

ðdjλþ 1Þ�1σ2Z
γk
σ

� �2

ð21Þ

We now define the proportion of phenotypic variance
explained by the QTL by

h2QTL ¼ γ2k
σ2P

¼ γ2k
γ2k þ σ2ξ þ σ2

¼ γ2k=σ
2

γ2k=σ
2 þ λþ 1

ð22Þ

This way of expressing the size of the QTL is more
intuitive. The ratio (γk/σ)

2 can be expressed as a function of
h2QTL, as shown below:

γk
σ

� �2
¼ ðλþ 1Þ h2QTL

1� h2QTL
ð23Þ

Therefore, the non-centrality parameter can be written as a
function of the QTL heritability,

δ ¼
Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ h2QTL
1� h2QTL

ð24Þ

Let us call

n0 ¼
Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ ð25Þ

the effective sample size, which would be the actual sample
size if the polygenic variance were nil (λ= 0), as
demonstrated below:

Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ ¼
Xn
j¼1

ð0þ 1Þ�1ð0þ 1Þ ¼ n

ð26Þ
The non-centrality parameter of the mixed model would

then be identical to the simple regression model, as shown
in Eq. (8). Finally, the non-centrality parameter is simplified

into

δ ¼ n0
h2QTL

1� h2QTL
ð27Þ

Type 1 error, Type 2 error, and statistical power

Let α be the Type 1 error chosen by the investigator, let β be
the Type 2 error when the Type 1 error is set at α and let ω
= 1− β be the statistical power. We define χ2(τ, δ) as a non-
central Chi-square variable with τ degrees of freedom and a
non-centrality parameter δ. Therefore, χ2(1, 0) is just a
central Chi-square variable with 1 degree of freedom. The
cumulative distribution function for a non-central Chi-
square variable is described by

Fðxjτ; δÞ ¼ Pr χ2ðτ; δÞ � x
� � ð28Þ

Given this notation, we define the Type 1 error by

α ¼ 1� Fðxj1; 0Þ ð29Þ

where F(x|1, 0) is the cumulative distribution function for a
central Chi-square variable with 1 degree of freedom. The
threshold of the test statistic is obtained via the inverse of
the central Chi-square distribution,

x1�α ¼ F�1ð1� αj1; 0Þ ð30Þ

The Type 2 error using this threshold is

β ¼ Fðx1�αj1; δÞ ð31Þ

and thus the power is

ω ¼ 1� β ¼ 1� Fðx1�αj1; δÞ ð32Þ
The above three equations allow us to calculate the sta-

tistical power given the genetic parameters of the population
under study.

We now demonstrate that if the Type 1 and Type 2 errors
are fixed and the sample size along with the population
parameters are known, we can find the minimum detectable
QTL. There is another inverse function for the non-central
Chi-square distribution, which is called the second non-
centrality parameter,

δβ ¼ F�1ðx1�αj1; βÞ ð33Þ
This non-centrality parameter can also be calculated from

quantiles of the standardized normal distribution. Let z1−α/2

=Φ−1(1− α/2) and z1−β=Φ−1(1− β) be the quantiles of
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the standardized normal distribution. They are the inverses
of the normal distribution, also called probit functions. The
non-centrality parameter can be expressed as (Xu 2013b)

δβ ¼ ðz1�α=2 þ z1�βÞ2 ð34Þ

Replacing δ in Eq. (24) by δβ in Eq. (34) leads to

ðz1�α=2 þ z1�βÞ2 ¼
Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ h2QTL
1� h2QTL

ð35Þ

This equation is all what we need to calculate h2QTL given
all other parameters, including the Type 1 and Type 2
errors. For example, if α= 5 × 10−7 and β= 0.15 (equiva-
lent to a power of ω= 0.85), the non-centrality parameter
should be

δβ ¼ ðz1�α=2 þ z1�βÞ2 ¼ ð5:0263þ 1:0364Þ2 ¼ 36:7569

Given λ, n, and dj, we should be able to find h2QTL.

A special kinship matrix with the compound
symmetry structure

The eigenvalues of a marker inferred kinship matrix depend
on the sample size and the LD structure of all markers used
to infer the kinship matrix. Evaluation of power must be
conducted numerically after we have the kinship matrix
(this will be done later in the simulation study). We now
simplify the kinship matrix so that a general trend can be
found regarding the change of power. We assume that the
kinship matrix has the following special structure:

K ¼

1 ρ � � � ρ

ρ 1 � � � ρ

..

. ..
. . .

. ..
.

ρ ρ � � � 1

2
66664

3
77775

where ρ represents the correlation between any pair of
individuals. This structure is close to the compound
symmetry (CS) structure (differing by a common factor).
Under this assumption, the eigenvalues are d2= d3=⋯=
dn= 1− ρ and d1= n− (n− 1)(1− ρ) because

P
dj ¼ n

(the sum of all eigenvalues of a correlation matrix equals the
sample size). These eigenvalues yield

Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ ¼ ðλþ 1Þ n� 1
ð1� ρÞλþ 1

þ 1
ð1þ nρ� ρÞλþ 1

� 	
¼ n0

ð36Þ

which is the effective sample size. Substituting it into Eq.
(24), we have

δ ¼ ðλþ 1Þ n� 1
ð1� ρÞλþ 1

þ 1
ð1þ nρ� ρÞλþ 1

� 	
h2QTL

1� h2QTL
ð37Þ

Remember that the non-centrality parameter directly
relates to the statistical power. We now examine the non-
centrality parameter under some special cases. If λ→ 0, the
non-centrality parameter becomes

lim
λ!0

δ¼ lim
λ!0

ðλþ 1Þ n�1
ð1�ρÞλþ1 þ 1

ð1þnρ�ρÞλþ1

h i
h2QTL

1�h2QTL


 �

¼ n
h2QTL

1�h2QTL

ð38Þ

So, the power increases as h2QTL and n increase. This is
consistent with the simple regression analysis, i.e., interval
mapping (Lander and Botstein 1989; Haley and Knott
1992). If ρ→ 0, the same conclusion is obtained as the
situation where λ→ 0, that is

lim
ρ!0

δ¼ lim
ρ!0

ðλþ 1Þ n�1
ð1�ρÞλþ1 þ 1

ð1þnρ�ρÞλþ1

h i
h2QTL

1�h2QTL


 �

¼ n
h2QTL

1�h2QTL

ð39Þ

Note that the situation of ρ= 0 is equivalent to λ not
being estimable because the kinship matrix is an identity
matrix, explaining why λ= 0 is the same as ρ= 0. We now
examine the situation when ρ→ 1,

lim
ρ!1

δ ¼ ðn� 1Þðnλþ 1Þ þ 1½ � ðλþ 1Þ=ðnλþ 1Þ½ � h2QTL
ð1� h2QTLÞ

ð40Þ

If n is relatively large,

lim
ρ!1

δ � nðλþ 1Þ h2QTL
ð1� h2QTLÞ

ð41Þ

which implies that adding the kinship matrix in GWAS
actually helps boost the power by a factor (λ+ 1).

In reality, the CS assumption of the kinship matrix is not
required in power analysis. Given λ, one can directly cal-
culate n0 using Eq. (24). The reason to introduce ρ is to
identify a general trend of the relationship between the
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power and the overall relatedness of individuals in the
association population.

Power calculation for models including dominance

The power calculation described so far applies to popula-
tions with only two possible genotypes per locus or more
than two genotypes per locus but only for the additive
genetic effect. We will extend the method to populations
with arbitrary number of genotypes per locus. For example,
an F2 population derived from the cross of two inbred lines
has three possible genotypes per locus. There are two
alternative ways to formulate the genotypic model. One is to
define an additive indicator (a) and a dominance indicator
(d) for individual j at locus k, such as

ZjkðaÞ ¼
þ1 for A1A1

0 for A1A2

�1 for A2A2

8><
>: and ZjkðdÞ ¼

0 for A1A1

1 for A1A2

0 for A2A2

8><
>:

Define Zk= [Zk(a)||Zk(d)] as an n × 2 matrix for the
genetic effect indicators and γk ¼ γ1k γ2k½ �T as the addi-
tive (γ1k) and dominance (γ2k) effects of marker k. The LMM
is

y ¼ μþ Zkγk þ ξþ e ð42Þ

which is exactly the same as Eq. (9) but here the
dimensionalities of Zk and γk are different from those of
the additive model. Let varðZkÞ ¼ ΣZZ be a 2 × 2 variance
matrix for the genotype indicator variables. The non-
centrality parameter is defined as

δ ¼
Xn
j¼1

ðdjλþ 1Þ�1 1
σ2

γTk ΣZZγk ð43Þ

If the genetic effect indicator variables are standardized,
ΣZZ= I, so that the non-centrality parameter becomes

δ¼ Pn
j¼1

ðdjλþ 1Þ�1 1
σ2 γ

T
k γk

¼ Pn
j¼1

ðdjλþ 1Þ�1 γ21kþγ22k
σ2

¼ Pn
j¼1

ðdjλþ 1Þ�1 σ2G
σ2

ð44Þ

where σ2G ¼ γ21k þ γ22k is the total genetic variance for the
locus of interest. Let us define λ ¼ σ2ξ=σ

2 and

h2QTL ¼ σ2G
σ2G þ σ2ξ þ σ2

¼ σ2G=σ
2

σ2G=σ
2 þ λþ 1

ð45Þ

so that

σ2G
σ2

¼ ðλþ 1Þ h2QTL
1� h2QTL

ð46Þ

We now have a non-centrality parameter expressed as a
function of QTL size,

δ ¼
Xn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ h2QTL
1� h2QTL

¼ n0
h2QTL

1� h2QTL
ð47Þ

Under the null model, H0 : σ2G ¼ 0, the Wald test statistic
(obtained by replacing the true values of parameters in δ by
the estimated parameters) will follow a Chi-square dis-
tribution with 2 degrees of freedom.

To extend the additive plus dominance model to a more
generalized genotypic model for arbitrary number of geno-
types per locus, e.g., four-way crosses, we code the genotypes
as dummy variables like what is done in the general linear
model for the analysis of variance (ANOVA). For example, in
a four-way cross population, there are four possible genotypes
per locus. The dummy variables are represented by an n × 4 Zk
matrix. Each row of Zk has exactly one element being 1 and
the remaining three elements being 0. The position where
value 1 takes place is the ordered genotype that this individual
holds. Let us denote the marker effects for locus k by
γk ¼ γ1k γ2k γ3k γ4k½ �T . The variance matrix for Zk is a
4 × 4 matrix ΣZZ. Supplementary Note S1 shows how to
standardize Zk using matrix ΣZZ. Under the null hypothesis,
H0 : σ2G ¼ 0, the Wald test follows a Chi-square distribution
with 4− 1= 3 degrees of freedom. In general, the degree of
freedom is the number of genotypes minus 1.

Population structure

Population structure is often caused by population hetero-
geneity (or admixture) represented by multiple ethnic
groups or subpopulations within the association population
(Pritchard et al. 2000a, 2000b). The purpose of fitting
population structure effects into the LMM is to reduce false
positives for loci that are confounded with population
structure (Toosi et al. 2018). For example, if a locus is fixed
to alleles unique to subpopulations and the subpopulations
are strongly associated with the trait under study, we do not
want to claim the locus as associated with the trait because
the association may be caused by subpopulations. Fitting
the population structure will prevent such a false positive.
Let us review the Q+K mixed model for GWAS (Yu et al.
2006),

y ¼ μþ Qηþ Zkγk þ ξþ e ð48Þ
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where Q is the design matrix for population structure
(obtained either from principal component analysis or
cluster analysis using genome-wide markers), η is a q × 1
vector of structural effects on the phenotype. If the model is
true, the estimated effects of η and γk are unbiased (best
linear unbiased estimates). However, the variance of γ̂k with
population structure will be increased compared with the
variance of estimated γk when the population structure is
absent. The increased variance is formulated as

varðγ̂kÞ ¼
σ2Pn

j¼1 ðdjλþ 1Þ�1 1�Pq
i¼1 r

2
ZQi

� �
σ2Z

ð49Þ

where r2ZQi
is the squared correlation between the ith column

of matrix Q and Zk (under the additive model, Zk is a single
column vector). The non-centrality parameter for the Wald
test is

δ¼ γ2k
varðγkÞ

¼ Pn
j¼1

ðdjλþ 1Þ�1 1�Pq
i¼1 r

2
ZQi

� �
σ2Z

γk
σ

� �2

¼ Pn
j¼1

ðdjλþ 1Þ�1ðλþ 1Þ 1�Pq
i¼1 r

2
ZQi

� �
σ2Z

h2QTL
1�h2QTL

¼ n0 1�Pq
i¼1 r

2
ZQi

� �
σ2Z

h2QTL
1�h2QTL

ð50Þ

If there is a single column of matrix Q, the extra term is
simply 1� r2ZQ, which is a fraction between 0 and 1. As a
result, population structure effects actually reduce the non-
centrality parameter and thus lower the power. If the
population structure effects are present but ignored in the
model, the consequence is a decreased power (if the struc-
ture effects are independent of the marker under study)
because the structure effects will go to the residual error. An
inflated residual error variance will decrease the power. If
the structure effects are correlated with the marker under
study, failure to incorporate them into the model will violate
the model assumption that residual error is not supposed to
correlate with the model effects and thus there is no correct
way to evaluate the theoretical power. Derivation of the
power in the presence of population structure is given in
Supplementary Note S2.

Simulation study to validate the power calculation

Populations

The purpose of the simulation study is to validate the the-
oretical powers under several different scenarios. To

simplify the simulation, we used marker inferred kinship
matrices from three different rice populations as known
quantities to generate phenotypic values. The first popula-
tion consists of 210 recombinant inbred lines (RIL) derived
from the hybrid (Shanyou 63) of two elite indica rice
varieties (Zhenshan 97 and Minghui 63). The original RIL
population was developed by Xing et al. (2002) and Hua
et al. (2002). The genotypic data were represented by 1619
bins extracted from ~270,000 SNPs and each bin consists of
many cosegregating SNPs (Yu et al. 2011). We used the
1619 bins to construct a 210 × 210 kinship matrix. Simu-
lation result from this kinship matrix was used to validate
power calculation for the simple additive model.

The second rice population consists of 278 hybrids from
random pairings of the 210 RILs of the first population with
the same number of bins (Hua et al. 2002). The bin geno-
types of the hybrids were inferred from the genotypes of the
210 parents. Each locus of the hybrid population has three
possible genotypes (A1A1, A1A2, and A2A2) with expected
frequencies of 0.25, 0.5, and 0.25, which mimic the geno-
typic frequencies of an F2 population. Since the parents of
the hybrids are inbred, the genotypes of a hybrid can be
regenerated if needed. Such an F2 is called an immortalized
F2 (IMF2) (Hua et al. 2002). The purpose of this population
is to validate power calculation for detection of both addi-
tive and dominance effects.

The third rice population consists of a diverse collection
of 524 accessions of rice, including both landraces and elite
varieties (Chen et al. 2014). Genotypes of 180,000 SNPs
were selected from a total of more than 6.4 million high-
quality SNPs. The selected subset of SNPs were used to
build the 524 × 524 kinship matrix. The population contains
293 indica and 231 japonica subspecies. This data set was
used to validate power calculation in the presence of
population structure. Here, the population structure is
represented by two subspecies with indica coded as 1 and
japonica coded as 0, i.e., the design matrix Q for population
structure contains only one column of a binary variable.

Simulations

Given a kinship matrix (sample size is already known) and a
polygenic parameter (λ ¼ σ2ξ=σ

2), we calculated the effec-
tive sample size n0, which allows us to calculate the theo-
retical power under each h2QTL. The empirical power from
simulation was then compared to the theoretical power. We
first simulated data in the absence of population structure
under the additive model with n= 210 recombinant lines
(the first population). The kinship matrix for the 210 RILs is
provided in Supplementary Data S1. Recall that the LMM is

y ¼ μþ Zkγk þ ξþ e ð51Þ
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where the parameter values were set at μ= 10, σ2= 5, and
σ2ξ ¼ 0; 5; 10f g, so that λ= {0, 1, 2}. Under the three
polygenic levels, the effective sample sizes are n0= {210,
303.74, 396.07}. For example, when λ= 1, the effective
sample size is n0 ≈ 304, much higher than the actual sample
size n= 210. Verbally, we say that we need a sample of 304
for λ= 0 to reach the same power as a sample of 210 for λ
= 1. We varied h2QTL from 0 to 0.06 incremented by 0.001
and generated one sample under each level of h2QTL. For
each sample, we first generated a Zk vector from a Bernoulli
distribution with probability 0.5. The values of Zk mimic the
numerical codes of the two possible genotypes for an RIL
population. We then standardized Zk so that μZ= 0 and
σ2Z ¼ 1. Next, given h2QTL, we calculated the true value of
the QTL effect using

γk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðλþ 1Þh2QTL=ð1� h2QTLÞ

q
ð52Þ

The standardized Zk multiplied by γk gives the genetic
value of the QTL for all individuals. The polygenic effects ξ
were generated from a multivariate normal distribution with
zero expectation and variance Kσ2ξ . We first generated n
independent standardized normal variables un×1. We then
generated polygenic effects using

ξ ¼ UD1=2u

where U (an n × n matrix) are the eigenvectors of K and D1/2

(a diagonal matrix) are the square roots of eigenvalues of K.
One can verify that ξ ~N(0, K), as shown below:

varðξÞ ¼ UD1=2varðuÞD1=2UT ¼ UD1=2D1=2UT ¼ UDUT ¼ K

Finally, e was simulated from N(0, Iσ2). Once the
response variable y was simulated, we called the “mixed”
function in R written by our own laboratory (Xu et al. 2014)
to perform the mixed model analysis and statistical test. The
locus was declared as significant if its p-value is smaller
than the nominal criterion of 0.05. The experiment was
replicated 1000 times and the proportion of samples with
significant detection was the empirical statistical power.
Alternatively, we could repeat the simulation 1619 times
(the number of markers) and compare the p-value of each
marker with 0.05/1619= 0.000030883 (after Bonferroni
correction) to calculate the proportion of significant mar-
kers. Each experiment consists of 1619 simulations because
of 1619 markers. We could then replicate the experiment
1000 times to calculate the average power over 1000
experiments. The alternative approach would take sub-
stantially longer time to complete the simulation because it
involves 1619 times more work. The empirical power from
the alternative approach would be much closer to the true

value because it would be equivalent to a simulation
experiment replicated 1619 × 1000 times.

For the second population, the kinship matrix was drawn
from the genotypes of 1619 bins of n= 278 hybrids. The
parameter values were set at μ= 10, σ2= 5, and
σ2ξ ¼ 0; 5; 10f g, so that λ= {0, 1, 2}. Under the three levels
of polygenic variance, the effective sample sizes are n0=
278, n0= 402.50, and n0= 516.14, respectively. We
assumed that the additive and dominance effects contribute
equally to the hypothetical trait so that γ1k ¼ γ2k ¼

ffiffiffiffiffiffiffiffiffiffi
σ2G=2

p
,

where

σ2G ¼ ðλþ 1Þσ2 h2QTL
1� h2QTL

ð53Þ

Genotypes of the 278 hybrids for the locus of interest
were generated from a multinomial distribution with size 1
and probabilities 0.25, 0.5, and 0.25, respectively, for A1A1,
A1A2, and A2A2. We then coded the additive indicator Zk(a)
= Z1k and dominance indicator Zk(d)= Z2k from the simu-
lated genotypes. After standardization, the two genetic effect
indicators were horizontally concatenated into an n × 2
matrix Zk. The genetic value of individuals due to the QTL
were generated by

Zkγk ¼ Z1kγ1k þ Z2kγ2k

The kinship matrix of the 278 hybrids were calculated
from the 1619 markers and used to simulate the polygenic
effects from Nð0;Kσ2ξÞ distribution. The kinship matrix is
given in Supplementary Data S2. Adding simulated resi-
dual errors to the mean value μ= 10, the simulated QTL
effect and the polygenic effects, we generated the simulated
phenotypic values for all hybrids. Parameter estimation and
statistical tests were conducted using our own mixed
function in R. The p-value was calculated from the central
Chi-square distribution with 2 degrees of freedom. Nom-
inal 0.05 criterion for the p-value was chosen as the
threshold to declare statistical significance. The simulation
experiment was replicated 1000 times. The proportion of
samples in which significance was claimed was the
empirical power.

The third population was used to validate the power
calculation in the presence of population structure. The
kinship matrix of 524 rice varieties was calculated from
180,000 selected SNPs. This kinship matrix is given in
Supplementary Data S3. The population structure was
represented by a single column Q coded by 1 for indica and
0 for japonica (Supplementary Data S4). The population
parameters were set at μ= 0, σ2= 5, σ2ξ ¼ 5 and λ= 1. The
model with population structure is

y ¼ μþ Qηþ Zkγk þ ξþ e ð54Þ
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where both Q and Zk are standardized and the population
structure effect was set at η= 1. Ignoring the contribution
from the QTL, the phenotypic variance contributed by the
population structure is η2=ðη2 þ σ2ξ þ σ2Þ ¼ 1=ð1þ 5þ 5Þ
¼ 0:0909. Three levels of the correlation between Q and
Zk (a single column) was chosen: rQZ ¼ 0:0; 0:5; 0:9f g.
The effect of QTL and the polygenic effect were
simulated in the same way as the first population. The
genotype indicator Zk was simulated conditional on the
population structure. Since both Q and Zk are binary
variables, we used a special algorithm to generate Zk. We
simulated another vector of binary bits (denoted by ζ) to
indicate whether Zk should be different from Q or not.
Given Q and the simulated ζ, we generated

Zk ¼ ζð1� QÞ þ ð1� ζÞQ ð55Þ
If all values of ζ are 1’s, Zk= 1−Q and the correlation

should be −1. However, if all values of ζ are 0’s, Zk=Q
and the correlation should be 1. The vector of bits (ζ)
was simulated from a Bernoulli distribution with probability
r= 0.5(1− rQZ) using the following R code

ζ ¼ rbinom n ¼ 524; size ¼ 1; prob ¼ rð Þ

Supplementary Note S3 shows that varðZkÞ ¼ varðQÞ and
covðZk;QÞ ¼ ð1� 2rÞvarðQÞ ¼ rQZvarðQÞ

Therefore,

covðZk;QÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðQÞvarðZkÞ

p
¼ rQZvarðQÞ=varðQÞ ¼ rQZ

Both Q and simulated Zk were standardized before use to
generate the response variable.

Supplementary Note S4 provides several R functions and
the scripts to run the R functions. User instruction is also
included in this note.

Results

Numerical evaluation of power for some special
cases

Let us examine the power under a special case when the
sample size is n= 500, the target QTL contributes h2QTL ¼
0:05 of the phenotypic variance, the genome-wide Type 1
error is α= 5 × 10−7, the polygenic variance to the residual
variance ratio is λ= 1 and the effective correlation between
individuals in the kinship matrix is ρ= 0.5. We assume that
the total number of markers scanned is m= 100k so that the
genome-wide Type 1 error is α= 0.05/100000= 5 × 10−7

after Bonferroni correction for multiple tests. Note
that λ= 1 means that the polygene contributes h2POLY �
λ=ðλþ 1Þ ¼ 0:5 of the phenotypic variance. Under this
special case, the non-centrality parameter is

δ¼ 0:05�ð1þ1Þ
1�0:05

500�1
ð1�0:5Þ�1þ1 þ 1

ð1þ500�0:5�0:5Þ�1þ1

h i
¼ 35:02

ð56Þ

Substituting δ= 35.02 into Eq. (32) yields a statistical
power of ω= 0.8136, which is reasonably high. The para-
meter values in this special case are treated as default values
when we evaluate the change of power against the change
of one of the other factors (see next paragraph).

We now evaluate the change of power against the change
of one factor with other factors being fixed at the values
described above. For example, we can examine the change
of power against the change of sample size (n) when
h2QTL ¼ 0:05, α= 5 × 10−7, λ= 1, and ρ= 0.5. Figure 3
shows the changes of power against each of the factors. The
polygenic effect can increase the power (Fig. 3a), starting
from ω= 0.55 when λ= 0 to ω= 0.9 when λ= 2. The
curve progressively approaches 1, but very slowly. Sham
et al. (2000) also found the variance of common family
effect increases statistical powers in sibship analysis, where
the common effect shared by siblings is the polygenic effect
plus maternal effect. The effective correlation ρ also
increases the statistical power (Fig. 3b), but the relationship
is quite linear until ρ is close to 1. Figure 3c, d shows the
changes of power against the sample size and the QTL size,
respectively. These changes are consistent with the usual
expectation, both the sample size and the QTL size increase
the power monotonically.

Effective correlation coefficient of individuals

The numerical evaluation of statistical power described
above was conducted under a special structure of the kin-
ship matrix: the diagonal elements are all unity and off-
diagonal element are all the same (ρ). We have demon-
strated that the power increases as ρ increases. So, a GWAS
population with a high ρ tends to be more powerful than a
population with a low ρ, assuming that all other factors are
fixed. In reality, the diagonal element of the kinship matrix
will vary across individuals (not unity), the correlation
coefficient will vary across different individual pairs.
Equation (36) shows the link between the effective sample
size and ρ. For a given value of λ, we can calculate the
effective sample size

n0 ¼ ðλþ 1Þ
Xn
j¼1

1
djλþ 1

ð57Þ
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If this kinship matrix had a structure of identical off-
diagonal element, we should expect to have

n0 ¼ ðn� 1Þðλþ 1Þ
ð1� ρÞλþ 1

þ λþ 1
ð1þ nρ� ρÞλþ 1

ð58Þ

Given n0, n, and λ, we can solve for ρ. Such an ρ is called
the effective correlation between individuals in the GWAS
population. The above equation is a quadratic function of ρ
and the positive root is the effective ρ. For example, the
effective sample size from the kinship matrix of the rice
population consisting of 210 RILs (n= 210 and assume λ
= 1) is n0= 303.7358, which is calculated from Eq. (57).
Substituting n0 into Eq. (58) and solving for ρ leads to ρ=
0.6237.

Sample size and smallest detectable QTL

We generated various population sizes with different mar-
ker densities via simulations to show the relationship among
the kinship matrix (under some special situations), the
effective ρ and the statistical power. We simulated a sample
of n= 1000 with variable number of markers starting from
m= 1000 to m= 10,000 incremented by 1000. The distance
between consecutive markers is 1 cM (equivalent to a
recombination fraction of 0.01). We also assumed λ= 1 so
that we can calculate the effective ρ. Supplementary Figure

S1 (panel A) shows the change of ρ against the number of
markers. Clearly, ρ decreases as the number of markers
increases. However, the increase in the number of markers
is caused by the increase of genome size because the dis-
tance between two consecutive markers is a fixed number.
So, 1000 markers correspond to a 10 Morgan of genome
size while 10k markers correspond to a genome size 100
Morgan. We then simulated n= 1000 individuals with a
fixed genome size (10 Morgan). This time we varied the
marker density from 1 marker per cM to 10 markers per cM.
The result is illustrated in Supplementary Figure S1 (panel
B). The effective ρ plotted against the marker density
appears to be flat, i.e., it does not depend on the marker
density but solely depends on the genome size. We then
simulated another n= 1000 individuals with a fixed number
of markers (m= 1000) but varied the genome size from 10
Morgan to 100 Morgan. The result is demonstrated in
Supplementary Figure S1 (panel C), showing that the
effective ρ monotonically decreases as the genome size
increases. Finally, we fixed the genome size at 10 Morgan
with m= 1000 markers and varied the sample size to see
how ρ changes as the sample size changes. Supplementary
Figure S1 (panel D), shows the increase of ρ when the
sample size changes from n= 500 to n= 6500 incremented
by 1000. So, large samples will increase the effective ρ and
eventually increase the power.

Fig. 3 Change of statistical
power. a Power changes as the
polygenic effect increases in the
situation where the sample size
is 500, the QTL size is 0.05, the
linkage disequilibrium
parameter is 0.5 and the nominal
Type 1 error is 0.05
(corresponding to 0.05/100,000
after Bonferroni correction for
10k scanned markers). b Power
changes as the effective
correlation changes in the
situation where the polygenic
effect size is 1, the sample size is
500, the QTL size is 0.05, and
the nominal Type 1 error is 0.05.
c Power changes as the sample
size increases in the situation
where the polygenic effect is 1,
the QTL size is 0.05, the linkage
disequilibrium parameter is 0.5
and the nominal Type 1 error is
0.05. d Power changes as the
QTL size increases in the
situation where the polygenic
effect is 1, the sample size is
500, the linkage disequilibrium
parameter is 0.5 and the nominal
Type 1 error is 0.05
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We further simulated n= 10,000 individuals with
m= 100k markers to construct the kinship matrix. The
marker density is one marker per 0.03 cM (equivalent to 33
markers per cM), which corresponds to a genome size of 30
Morgan in length. Such a kinship matrix may be common in
GWAS. We also set λ= 1 (equivalent to 50% of polygenic
contribution). From this kinship matrix, we found that the
effective sample size is n0= 18684.89 and the corre-
sponding effective correlation coefficient is ρ= 0.9297.
Assume that the QTL contributes h2QTL ¼ 0:05 of the phe-
notypic variance, from Eq. (37), we obtain

δ ¼ n0
h2QTL

1� h2QTL
¼ 18684:89� 0:05

1� 0:05
¼ 983:4154

ð59Þ
At α= 0.05/100,000= 5 × 10−7, this non-centrality

parameter leads to a perfect statistical power (100%). We
now let the power be ω= 1−β= 0.90 and try to find out the
smallest detectable QTL by this sample. The corresponding
non-centrality parameter is δβ= (z1−α/2+ z1−β)

2= 39.79,
from which we can find h2QTL using

h2QTL ¼ δβ
n0 þ δβ

¼ 39:79
18684:89þ 39:79

¼ 0:002125 ð60Þ

So, with a sample size n= 10,000 and marker number m
= 100k, we can detect a QTL that explains less than 0.20%
of the phenotypic variance with a 90% power. We also
extracted the first n= 1000 individuals from that large
sample (with m= 100k markers) for analysis. Under the
same set up as the large sample, i.e., λ= 1, α= 5 × 10−7 and
β= 0.10, we found that, with 90% power, such a population
(1000 individuals) can detect a QTL as small as
h2QTL ¼ 0:024. If we are not interested in detecting any QTL
with size smaller than 0.024, there is no reason to use a
sample larger than n= 1000.

Finally, from the same large simulated population with
100k markers evenly distributed on a 30 Morgan genome, we
evaluated the minimum QTL size that can be detected with
90% power at α= 5 × 10−7 under several different levels of λ
with variable sample size n. We varied λ from 1 to 10
incremented by 1, equivalent to h2POLY changing from 0.5 to
0.9. We varied n from 1000 to 10,000 incremented by 1000,
where the first n individuals of the large sample were extracted
for the analysis. The minimum detectable QTL size is obtained
from Eq. (60). The results are summarized in Table 2. In the
worst situation where n= 1000 and λ= 1, with 90% power,
the minimum detectable QTL is 2.389%. In the best situation
where n= 10,000 and λ= 10, the smallest detectable QTL is
0.045%. Table 2 shows the result when λ changes from 1 to
10. The effective correlation coefficients between individuals
that correspond to the 10 different levels of sample size (n) and
10 different levels of polygenic contributions (λ) are shown in
Table 3. This table is useful for people who are interested in
calculating the statistical power for a particular population
structure. For example, if one has a population of size 2000
and wants to find the statistical power of detecting a QTL
explaining 0.01 of the phenotypic variance, he can choose a ρ
value from the second row of Table 3. Let us assume that the
polygenic contribution is λ= 2, the corresponding effective
correlation is ρ= 0.8815, which leads to

n0 ¼ ð2000�1Þð2þ1Þ
ð1�0:8815Þ�2þ1 þ 2þ1

ð1þ2000�0:8815�0:8815Þ�2þ1

¼ 4848:021

The corresponding non-centrality parameter is

δ ¼ h2QTLðλþ 1Þn0
1� h2QTL

¼ 0:01� ð2þ 1Þ � 1616:007
1� 0:01

¼ 48:9699

Table 2 Minimum detectable QTL (h2QTL) for a population with variable sample sizes (n) and polygenic contribution (λ) when there are 100k
markers evenly distributed on a 30 Morgan genome

Sample size (n) Size of polygene (λ)

1 2 3 4 5 6 7 8 9 10

1000 0.02083 0.01437 0.01104 0.00900 0.00762 0.00663 0.00588 0.00529 0.00481 0.00442

2000 0.01032 0.00704 0.00537 0.00435 0.00367 0.00318 0.00280 0.00251 0.00228 0.00209

3000 0.00685 0.00465 0.00353 0.00286 0.00240 0.00208 0.00183 0.00164 0.00148 0.00136

4000 0.00512 0.00346 0.00263 0.00212 0.00178 0.00154 0.00136 0.00121 0.00110 0.00100

5000 0.00408 0.00276 0.00209 0.00169 0.00142 0.00122 0.00107 0.00096 0.00087 0.00079

6000 0.00340 0.00229 0.00173 0.00140 0.00117 0.00101 0.00089 0.00079 0.00072 0.00066

7000 0.00291 0.00196 0.00148 0.00119 0.00100 0.00086 0.00076 0.00068 0.00061 0.00056

8000 0.00254 0.00171 0.00129 0.00104 0.00087 0.00075 0.00066 0.00059 0.00053 0.00049

9000 0.00226 0.00152 0.00115 0.00092 0.00077 0.00067 0.00059 0.00052 0.00047 0.00043

10,000 0.00203 0.00136 0.00103 0.00083 0.00069 0.00060 0.00053 0.00047 0.00042 0.00039
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The statistical power is

ω ¼ 1� Fχ2ðx1�αj1; δÞ ¼ 1� Fχ2ð4:89j1; 48:97Þ ¼ 0:9999991

Tables 2 and 3 only show the results when the population
size (n) starts from 1000 and the polygenic effect (λ) starts
from 1. Supplementary Data S5 and S6 show the results
when the sample size ranges from 100 to 10,000 and the
polygenic effect (λ) ranges from 0 to 10. These two sup-
plementary tables provide guidelines for investigators to
evaluate the potential effectiveness of their populations.

Interestingly, we compared the minimum detectable QTL
under 90% power obtained from GWAPower (Figure 2 of
Feng et al. (2011)) and those obtained from our Supple-
mentary Data S5 (the first column of Data S5 when λ= 0).
The comparison is illustrated in Supplementary Figure S2.
The two methods are identical in the situation where λ= 0,
i.e., when the polygenic effect is ignored. This comparison
is to show that our powers in the absence of polygenic
effects are the same as the powers of the simple fixed model
GWAS. When the polygenic effect is present, Feng et al.
(2011) method cannot be used because it does not take into
account the kinship matrix. Using the HIV study data
(Fellay et al. 2007), Feng et al. (2011) claimed that with a
sample size 486, the minimum detectable QTL is
h2QTL ¼ 0:07; with a sample size 2554, the minimum
detectable QTL is h2QTL ¼ 0:014. In our study (Supple-
mentary Data S5), we show that the minimum detectable
QTL sizes are about 0.073 (n= 500) and 0.016 (n= 2500),
respectively, very close to findings of Feng et al. (2011).

Results of simulation to validate the theoretical
powers

Additive model

For the additive model of the 210 RIL population, we
simulated one sample from each combination of λ and h2QTL,

where λ= {0, 1, 2} and h2QTL ¼ 0; 0:001; 0:002; � � � ; 0:06f g,
a total of 3 × 61= 183 combinations. Using the 0.05 nominal
p-value threshold for one marker per experiment, the statis-
tical powers are shown in Fig. 4. The simulated powers (open
circles) vary slightly around the theoretical powers (smooth
curves), which validates the theoretical powers. The powers
under the three levels of λ are different, with λ= 2 having the
highest powers and λ= 0 the lowest powers. The fluctuation
of the simulated powers is due to sampling errors because we
used the 0.05 nominal p-value as the criterion for detection. In
other words, we simulated one marker at a time and compared
the p-value of this marker against 0.05 to declare significance
for this marker. The simulation was replicated 1000 times.
The proportion of samples with significant detection over
1000 replicates is the empirical powers. If we had increased
the number of replicates to 10,000, the simulated powers
would have been much closer to the theoretical values.

The choice of the p-value threshold is irrelevant to the
comparison of the simulated powers with the theoretical
powers. In the following example, we simulated 10 inde-
pendent markers per genome. The p-value threshold after
Bonferroni correction was 0.05/10= 0.005. For each
experiment, we compared the p-values of all 10 markers
with 0.005 and recorded the number of significant markers
for each experiment. Such an experiment was replicated
1000 times so that an empirical power under each scenario
was calculated. The powers are illustrated in Supplementary
Figure S3. The simulated powers (open circles) are much
closer to the theoretical powers (smooth curves). However,
we actually performed 3 × 61 × 10 × 1000= 1,830,000
independent simulations here compared with 3 × 61 × 1 ×
1000= 183,000 independent simulations when a single
marker was detected at a time using the 0.05 nominal p-
value criterion. The shapes of the power functions for 10
markers are different from those of the powers for one
marker.

In the 210 RIL rice example, the number of markers is m
= 1619. If we detect 1619 markers in one experiment, the

Table 3 Effective correlation (ρ)
between individuals with
variable sample sizes (n) and
polygenic contribution (λ) when
there are 100k markers evenly
distributed on a 30 Morgan
genome

Sample size (n) Size of polygene (λ)

1 2 3 4 5 6 7 8 9 10

1000 0.9316 0.9511 0.9598 0.9650 0.9685 0.9711 0.9732 0.9748 0.9762 0.9773

2000 0.9520 0.9658 0.9719 0.9756 0.9781 0.9800 0.9814 0.9826 0.9835 0.9843

3000 0.9608 0.9721 0.9771 0.9801 0.9822 0.9837 0.9849 0.9858 0.9866 0.9873

4000 0.9662 0.9760 0.9803 0.9829 0.9847 0.9860 0.9870 0.9878 0.9885 0.9891

5000 0.9699 0.9786 0.9825 0.9848 0.9864 0.9875 0.9884 0.9892 0.9898 0.9903

6000 0.9725 0.9805 0.9840 0.9861 0.9876 0.9886 0.9895 0.9901 0.9907 0.9912

7000 0.9746 0.9820 0.9852 0.9872 0.9885 0.9895 0.9903 0.9909 0.9914 0.9918

8000 0.9762 0.9831 0.9862 0.9880 0.9893 0.9902 0.9909 0.9915 0.9920 0.9924

9000 0.9776 0.9841 0.9870 0.9887 0.9899 0.9908 0.9914 0.9920 0.9924 0.9928

10,000 0.9787 0.9849 0.9877 0.9893 0.9904 0.9912 0.9919 0.9924 0.9928 0.9932
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Bonferroni corrected threshold should be 0.05/m=
0.00003088. The entire experiment must be done 3 × 61 ×
1619 × 1000= 296,277,000 times. We did not simulate this
large number of experiments but only calculated the theo-
retical power functions, as shown in Supplementary Figure
S4. From this figure, we can easily find the powers to detect
a QTL explaining 0.05 of the phenotypic variance under the
three λ values, which are roughly 0.20, 0.42, and 0.66 for λ
being 0, 1, and 2, respectively. The sample size of the
population is not large enough to detect a QTL explaining
0.05 of the phenotypic variance with a reasonable power.
The powers would be sufficiently high to detect a QTL with
size h2QTL ¼ 0:10.

Genotypic model

The population with 278 hybrids was used to validate the
genotypic model (additive plus dominance). The theoretical
power functions and empirical powers from simulation are
illustrated in Fig. 5 under the 0.05 nominal p-value
threshold. Again, the simulated powers vary slightly around
the theoretical powers, validating the power calculation for
the genotypic model. The theoretical power functions using
the 0.05/1619= 0.00003088 threshold by detecting 1619
bins in one experiment are shown in Supplementary Figure
S5. The powers of this population are higher than the 210
RIL population, either due to the larger population size or
the genotypic model or both. When h2QTL is 0.05, the powers
are 0.27 for λ= 0, 0.57 for λ= 1, and 0.78 for λ= 2. A

power of 0.78 is already reasonably high. The power to
detect a QTL with h2QTL ¼ 0:10 is about 0.88 even for the
worst case scenario of λ= 0.

Population structure

The population of 524 rice varieties was used to simulate
statistical powers in the presence of population structure.
Figure 6 shows the theoretical powers and empirical powers
from simulations under λ= 1 and three scenarios of corre-
lation between the population structure and the marker
under study. The nominal 0.05 p-value threshold was used
since each time only one marker was tested. The simulated
powers fluctuated slightly around the theoretical powers, as
expected, which validates the power calculation of GWAS
for structured populations. Maximum powers occurred
when the population structure was not correlated with the
marker (rQZ= 0). When the correlation was 0.5, a slight
reduction of power was observed. As the correlation
reached 0.9, the power was substantially reduced. One can
imagine that if the correlation is 1.0, the power will be
reduced to zero. If we had tested m= 180,000 markers in
one simulation experiment, we would have used the Bon-
ferroni corrected p-value threshold, 0.05/m= 2.78 × 10−7,
as the criterion for significance declaration. Under each
combination of h2QTL and rQZ, we would need to test m
markers. If 1000 replications were done, the entire simula-
tion experiment would have been done 1000m=
180,000,000 times just for one combination of h2QTL and rQZ.

Fig. 5 Comparison of the theoretical powers to the empirical powers
from simulation studies using the kinship matrix of 278 hybrid rice
under the additive plus dominance model. Smooth curves are theore-
tical power functions and fluctuated curves tagged with open circles
are empirical power functions obtained from simulations. The power
functions are evaluated under three levels of polygenic contribution
represented by the ratios of the polygenic variance to the residual
variance (λ ¼ σ2ξ=σ

2)

Fig. 4 Comparison of the theoretical powers to the empirical powers
from simulation studies using the kinship matrix of 210 recombinant
inbred lines (RIL) of rice under the additive model. Smooth curves are
theoretical power functions and fluctuated curves tagged with open
circles are empirical power functions obtained from simulations. The
power functions are evaluated under three levels of polygenic con-
tribution represented by the ratios of the polygenic variance to the
residual variance (λ ¼ σ2ξ=σ

2)
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Although it is impossible to simulate such a huge experi-
ment within a reasonable amount of time, we can calculate
the theoretical powers in the blink of an eye. Supplementary
Figure S6 shows the theoretical powers under λ= 1 and the
three levels of rQZ. When population structure is present but
it is ignored, the power will be reduced compared to the
power when the population structure effect is included in
the model. This can be validated by Fig. 7, where the cor-
relation between the population structure and the QTL is
rQZ= 0. If rQZ ≠ 0, one of the assumptions of the linear
model will be violated and no theoretical powers are
available.

Powers of QTL mapping using full-sib and half-sib families

Responding to a reviewer’s comment on the effect of
relatedness among individuals on the statistic power, we
simulated two populations, one consisting of 20 full-sib
families and the other consisting of 20 half-sib families.
Each family had 25 members and thus each population had
500 individuals. The additive relationship matrices (Sup-
plementary Data S7 and S8) were included in the LMM to
capture the polygenic effects. Two levels of the polygenic
effects were investigated, λ= 1 and λ= 2. We expected that
the population made of full-sib families would have higher
power than the population consisting of half-sib families.
Using the nominal p-value threshold of 0.05 to declare
statistical significance, we examined the power functions
against h2QTL that ranges from 0.0 to 0.05. The results are

shown in Supplementary Figures S7 and S8, where the
former compares the simulated powers with the theoretical
powers and the latter compares the powers of full-sib
families with the powers of half-sib families. The conclu-
sions are (1) the simulated powers match the theoretical
powers closely and (2) the population of full-sib families is
indeed more powerful than the population of half-sib
families.

Discussion

The rapid development of new DNA sequencing technology
and the low cost of genotyping make GWAS more popular
as tools to detect QTL for quantitative traits of agronomical,
behavioral, and medical importance. The samples of GWAS
can be as large as more than half million in human (Marouli
et al. 2017). Typical GWAS samples are in the order of a
few hundreds to a few thousands. In this study, we showed
that the smallest detectable QTL using a sample of 10,000
individuals ranges from 0.4% to 0.04% of the phenotypic
variance (depending on the polygenic contribution),
assuming that 100k markers are scanned and used to con-
struct the kinship matrix (see Supplementary Data S5). Such
small QTL, although statistically significant, are not useful
biologically. Therefore, using very large samples for
GWAS is not always necessary. If the polygenic contribu-
tion is 50% of the phenotypic variance, 500 individuals are

Fig. 6 Comparison of the theoretical powers to the empirical powers
from simulation studies using the kinship matrix of 524 rice cultivars
with correction for population structures (indica and japonica sub-
species). Smooth curves are theoretical power functions and fluctuated
curves tagged with open circles are empirical power functions obtained
from simulations. The power functions are evaluated under λ ¼
σ2ξ=σ

2 ¼ 1 and three levels of correlation between population structure
(Q) and the genotypic indicator variable (Z)

Fig. 7 Comparison of the theoretical powers to the empirical powers
from simulation studies using the kinship matrix of 524 rice cultivars
with and without correction for population structures (indica and
japonica subspecies). Smooth curves are theoretical power functions
and fluctuated curves tagged with open circles are empirical power
functions obtained from simulations. The power functions are eval-
uated under λ ¼ σ2ξ=σ

2 ¼ 1 and the correlation between population
structure (Q) and the genotypic indicator variable (Z) is rQZ= 0
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sufficient to detect a QTL explaining 5% of the phenotypic
variance (see Supplementary Data S5). Extremely large
samples may be important for detecting rare genetic variants
that are often important for rare diseases (Visscher et al.
2017). Large sample sizes may also be necessary for QTL
mapping and GWAS for discretely distributed traits. These
traits are often analyzed using the generalized LMM (Che
and Xu 2012), in which the Wald test statistic follows the
Chi-square distribution only asymptotically. Detecting
dominance effects requires a slightly larger sample than
detecting additive effects because the dominance indicator
variable often has a smaller variance than the additive
indicator variable. Detecting epistatic effects (interaction
effects between loci) requires even larger samples because
(1) the epistatic genotype indicator variables have even
smaller variances (they are like rare variants) and (2) more
stringent Bonferroni correction (too many epistatic effects
to be tested in a single experiment). Large samples may also
be useful for determination of the number of loci and pre-
diction of phenotypes via GWAS. However, genomic pre-
diction often requires different statistical methods, not
GWAS (Meuwissen et al. 2001).

The statistical power developed here is not the empirical
power drawn from multiple simulation studies; rather, it is
derived based on theoretical distributions of the test statis-
tics (central and non-central Chi-square distributions). The
key to evaluate the power is the non-centrality parameter,
which is proportional to the product of the sample size (n)
and the squared effect of the QTL relative to the residual
variance. It is important to emphasize that if a QTL is sta-
tistically significant, it is true (subject to the controlled Type
1 error), regardless of how small the sample size is. There
are many studies being rejected initially by the editors and
reviewers due to small sample sizes. The investigators are
forced to repeat the experiments using much larger samples.
In our opinion, rejection of a study based on small sample
sizes is unfair to the investigators. The reason is that the
significance test (non-centrality parameter) is the product of
the sample size and the QTL size; The sample size has
already been taken into account when the test statistic is
calculated. If the test is significant in a small sample, the
effect must be very large to compensate for the small
sample size. Such a QTL should be more important than a
very small QTL detected in an extremely large sample.
Unfortunately, many editors and reviewers often favor the
latter and criticize the former. One particular comment
against small samples is the “Beavis’ effect” in small
samples, i.e., small samples lead to upward bias in esti-
mated QTL effect (Beavis 1994; Xu 2003). This is an abuse
or misinterpretation of the Beavis’ effect. In the original
simulation study, Beavis (1994) claimed that the average
reported QTL size from multiple studies is biased upward
for small samples. The reason for such a bias is due to

selective reports of QTL mapping results. Only statistically
significant QTL are reported and those studies with non-
significant detection are left out of the report (Xu 2003). For
a single study, regardless of the sample size, a significant
QTL is still significant and there is no bias of the estimated
effect, if the method itself is unbiased. Although we
encourage investigators to use large samples for QTL
mapping to increase the probability of detecting more QTL;
but if the investigators are lucky enough and have already
detected QTLs using small samples, there is no reason to
reject their studies. What is the reason for doing statistical
tests?

The mixed model in GWAS is a special case in LMM
where the covariance structure is modeled by a marker
inferred kinship matrix. Compared with its fixed model
counterpart, the mixed model power calculation requires a
given kinship matrix, which depends on marker data. This
has complicated the power calculation for mixed models.
Here, we assume that the marker genotype indicator (vari-
able Z) has been standardized (with mean zero and variance
1). In reality, the variance of Z often varies from marker to
marker, especially when many rare variants are present.
This way of power calculation seems to have ignored the
rare variant issue. However, standardization of Z will not
affect the power calculation because we defined the QTL
size as the proportion of the phenotypic variance con-
tributed by the QTL, denoted by h2QTL. In the original scale
of Z, the genetic variance contributed by the QTL is σ2G ¼
σ2Zγ

2 and σ2G is known, regardless of the scale of Z. When
we standardize Z, σ2G ¼ ðγ�Þ2. Therefore, ðγ�Þ2 ¼ σ2Zγ

2 and
γ= γ*/σZ. For a rare variant, σZ is extremely small, leading
to a very large QTL effect (γ) to compensate for the small σZ
and produce the same h2QTL as a common variant. Therefore,
rare variants are hard to detect because the effect must be
huge to produce a QTL with a detectable h2QTL and the
sample size to detect rare variants must be very large (Bush
and Moore 2012).

Statistical powers and Type 1 errors are concepts
depending on known genetic parameters, population struc-
tures, and sample sizes. In real data analysis, the genetic
parameters (effects of QTL) are not known. Therefore, there
are no such things as powers and Type 1 errors in real data
analysis. We often see reports that compare the test statistics
of two methods, one method generating test statistics higher
than the other method, and the authors then claim that the
first method has higher power than the second method. In
real populations, we really do not know whether the
detected QTL are real or just false positives. Therefore,
power analysis must be conducted either in theory or with
multiple replicated data simulated under the alternative
model. In GWAS, the population is often large and the
marker density is often very high, making multiple simu-
lation experiments very costly in terms of computational
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time. Therefore, theoretical evaluation is necessary. This
study is the first theoretical evaluation of statistical power
under the Q+K mixed model. If an investigator has
already collected the marker data, he can just build the
kinship matrix and calculate the eigenvalues of the kinship
matrix and calculate the effective sample size n0, from
which a power can be computed.

In addition to cryptic relatedness, population structure is
another factor that needs to be controlled in GWAS
(Pritchard et al. 2000b). Effects of population structure on
the powers of GWAS have been investigated via Monte
Carlo simulations (Atwell et al. 2010; Platt et al. 2010;
Korte and Farlow 2013; Shin and Lee 2015; Toosi et al.
2018). A consensus conclusion is that proper control of
population structure can reduce false positive rate. If an
association population consists of several subpopulations
(in human) or several different breeds and their hybrids (in
animals), many private alleles (unique to the subpopula-
tions) may exist and the allele frequencies of many loci may
be significantly different across subpopulations. If the trait
of interest is also associated with the population structures
due to historical and geographical reasons, the loci asso-
ciated with population structures are often detected as
associated with the trait, although they may not be the
causal loci (Atwell et al. 2010). When the population
structure effects are included in the mixed model, the
association signals of these loci will be reduced. This
explains why fitting population structure effects can reduce
false positives. However, population differentiation is most
likely caused by natural selection or domestication and loci
associated with traits under selection pressure may be the
causal loci. As a result, fitting population structure may not
be appropriate in GWAS for adaptation-related traits. A
well-studied area in evolutionary genomics is to detect
selection signatures (Baldwin-Brown et al. 2014; Xu and
Garland 2017). The loci associated with population struc-
tures are the very loci of interests in evolutionary genomics.
Assuming that we do not want to claim loci associated with
population structure as significant in GWAS and fitting
population structure is necessary, this study is the first to
theoretically evaluate the effects of population structures on
the statistical powers. The conclusions are consistent with
the empirical observations from simulation studies (Toosi
et al. 2018). However, if population structural effects are
present but ignored in the mixed model, the statistical power
will be reduced compared to that if they are taken into
account (see Fig. 7), which is due to the increased residual
error variance. However, the same phenomenon can be
stated alternatively as “Incorporating population structure
effects will increase power compared with that if they are
ignored.” The alternative statement appears to contradict
with the consensus conclusion about population structure.
One needs to be careful when interpreting the effects of

population structure on statistical power. We also quantified
the effect of population structure on power as a function of
the correlation coefficient between population structure (Q)
and genotype indicator of the locus under study (Zk), the
higher the correlation, the lower the power (see Fig. 6 and
Supplementary Figure S6).

The power formula derived in this study assumes that the
QTL is in perfect LD with a marker. If this is not true, then
the calculated power will be lower than the actual power.
Let r be the correlation coefficient between Z and the true
genotype indicator of the QTL, the power reduction is
represented by a reduced QTL effect represented by the
ratio of the square of the genetic effect to the residual error
variance, r2(γk/σ)

2, where γk is the effect of the true QTL and
r2 is the linkage disequilibrium parameter. This power
reduction can be compensated by an increased marker
density. Under the common disease/common variate
hypothesis, 500k to a million markers are required (Bush
and Moore 2012). Compared with sample size, marker
density is less important. Klein (2007) stated that geno-
typing more individuals with fewer markers is better than
genotyping fewer individuals with more markers.

Finally, theoretical power calculation depends on known
parameters and the distributions of the test statistics under
both the null model and the alternative model. For the usual
quantitative trait GWAS and QTL mapping, the residual
errors are often normally distributed, resulting in normally
distributed estimated QTL effects. The Wald test is a
quadratic form of the estimated QTL effects; it is well
known that the quadratic form of normal variables (yTAy)
follows a Chi-square distribution if the symmetric matrix in
the middle (A) is the inverse of the variance matrix of the
normal variables. It should be cautious to calculate power
for GWAS and QTL mapping with discrete traits, e.g.,
binary and ordinal traits, because the Wald test statistic
follows a Chi-square distribution only asymptotically.
Therefore, the sample size for discrete traits should be
sufficiently large to ensure the normality of estimated QTL
effects and thus the required Chi-square distribution of the
test statistic.

Data and R code

Several R functions are available. The R codes and exam-
ples to call the functions for power analysis are provided in
Supplementary Note S4. A sample kinship matrix with n=
210 individuals used to demonstrate the application is
provided in Supplementary Data S1.
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