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ABSTRACT OF THE DISSERTATION

Secure and Safe Edge Computing for the Internet-of-Things

by

Renju Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Mani B. Srivastava, Chair

Internet-of-Things (IoTs) have developed for more than one decade since their first appear-

ance. At their early stage, IoT devices are generally developed as sensor extensions, which

are not capable of performing complicated computing tasks. Hence, offloading the computa-

tional tasks to the cloud servers is the only option to learn the information from the sensory

data. However, with the rapid evolution of the technologies in the field of System-on-Chip

(SoC), more complex computational tasks are now able to be performed on IoT devices,

which is inevitably facing multi-tenancy requirements. For example, a UAV-as-a-Service can

be used by different users to perform object detection and traffic monitoring tasks. Un-

fortunately, current multi-tenancy edge systems face several issues from the security of the

sensors and actuators and the safety of their cyber-physical environment.

In this dissertation, we build an edge computing framework to address the security and

safety problems of current multi-tenancy edge systems. This framework focuses on a broad

category of IoT devices with sensors and actuators, including both rich computing resource

devices with powerful edge processors such as ARM Cortex-A series processors and bare-

metal IoT devices with only microcontrollers such as ARM Cortex-M series processors. The
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first part of this work focuses on securing the sensors and the actuators at the edge. More

specifically, we propose PROTC and VirtSense that utilize the hardware-assisted trusted

execution environment (TEE) such as ARM TrustZone to isolated the actuation and sensing

service from the untrusted execution environment. Furthermore, for those bare-metal IoT

devices that the hardware-assisted TEE is not available, we design Aerogel that utilizes

WebAssembly (Wasm) initially designed for secure JavaScript execution environment in web

browsers, to protect the sensors and actuators. Our results show that the protection of

Aerogel introduces 0.14% to 1.04% overhead to our benchmark tasks.

After the sensors have been adequately secured, the second part of this dissertation

focuses on the data usage from the sensors by preventing the applications from extracting

unexpected information from the sensory data, which could ultimately lead to the leakage

of users’ privacy. To achieve such a goal, we design a performant and secure runtime named

SecDeep that protects the inference libraries’ integrity and sensor data’s confidentiality by

leveraging the TEE to securely host the deep learning code and the drivers of sensors,

actuators, and the edge accelerator. Our results indicate that with the assistance of the edge

accelerator, SecDeep achieves 16 to 172 times faster performance than without using it while

still providing data protection.

Although ensuring the security of the IoT devices can mitigate the safety issues, not all

safety issues are caused by security problems such as the user’s misconfiguration. We propose

RemedIoT in the third part of this dissertation, which tackles the IoT device actuation

conflicts by introducing actuation programming abstractions to provide remedial actions of

those conflicts. Our evaluations on RemedIoT shows that around 80% of device conflicts can

be provided remedial actions.
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CHAPTER 1

Introduction

Smartphones became a platform for sensory applications that enable situational understand-

ing of user environments since their appearances as a simple communication tool. Similarly,

this evolution trend has now impacted the development of Internet-of-Things (IoTs) devices.

Back to a decade ago, people used IoT devices only as of the extension of sensors, and

those early-stage IoT devices are only able to collect sensory data of their environment with

no onboard data processing capability. Hence, if users want to learn useful information from

the data, such tasks have to be done in the cloud environment. With the technology revolu-

tion of both Internet such as 5G and the System-on-Chips (SoCs), IoT devices are equipped

with the computational abilities for data processing such as machine learning inference on

devices. Moreover, under the considerations of network latency, network availability, secu-

rity, and data privacy requirements, computing pushing to the edge (i.e., edge computing)

has now attracted researchers’ attention than ever [SCZ16, Sat17, SD16b, LOD18a, CDO17].

While some computing tasks are shifted to the edge, a single-tenant edge system can

never satisfy the emerging workloads when multiple users or applications need to share the

edge resources. Hence, a multi-tenant edge system is inevitably needed [SD16a, YSB16,

BZP10, Mic19, CGK16, CMG15, TSG18]. However, the current multi-tenant edge system

faces both security and safety issues due to the heterogeneity of the IoT environment, such as

isolating the execution environment and resolving control conflicts among different tenants.

Next, we explain the currently existing challenges of multi-tenant edge systems.
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1.1 Challenges

Since IoT devices are mostly equipped with sensors and actuators, enabling multi-tenancy at

the edge requires a secure and robust system to protect the usage of sensors and actuators,

which could ultimately lead to the concerns of the leakage of user privacy or the safety of

the environment. Next, we highlight three significant challenges from the perspectives of the

sensors and actuators usage.

1.1.1 Runtime Securities of Sensors and Actuators

The first challenge we are facing is how we can secure the safety and privacy-related sensing

and actuation services on IoT devices. For example, suppose a UAV has a flight-control

application and an image capturing application on board, where the image capturing ap-

plication is malicious and can compromise the operating system. In that case, the image

capturing application will gain full control of the UAV, which can fly the UAV to anywhere

the malicious application wants.

Merely relying on the memory address separation of the Operating System (OS) to iso-

late potential malicious applications is not sufficient because the design vulnerabilities can

compromise traditional OS through rootkits such as buffer overflow attacks (e.g., CVE-2019-

17666). Therefore, the whole OS environment should be treated as an untrusted environment,

and securing sensing and actuation services under such an untrusted execution environment

creates the challenges to be addressed by this dissertation.

Moreover, the memory address separation techniques require hardware assistance such as

Memory Management Unit (MMU). However, not all devices such as bare-metal IoT devices

equipped with ARM Cortex M series microcontrollers have MMU support. Hence, providing

sensors and actuators protection and allowing the users to have fine-grained access control

for those bare-metal IoT devices is another open question to be answered.
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1.1.2 Sensor Data Privacy

When access to the sensors has been secured, we then encounter the challenges of how the

applications can use those sensor data. Recently, deep learning inference at the edge is one

of the most ubiquitous functionalities of using the sensor data from the IoT devices. For

example, the facial recognition application on a smart camera is programmed using deep

learning inference libraries. Although a prior work [LPZ20] shows that current commod-

ity cameras cannot perform complex tasks on-device, several recent works [HPC18, HZ19,

OSD19, LSJ19, VFC18] have shown that such inference tasks could be accomplished with

the help of edge-available neural network accelerators such as Intel Neural Sticks [Intb].

However, directly feeding the raw data from the sensor will lead to the concerns of user

privacy because the application can infer more information than allowed. In the previous

example, if the facial recognition application is malicious and raw images are sent to it, this

application can also steal the user’s other private information, such as what the user is doing

every day.

Moreover, if the OS is not trusted, any raw sensor data sent to the applications is risked

to be eavesdropped by the OS. Meanwhile, the edge devices are now enabled with edge accel-

erators, such as ARM Mali GPU and Intel neural sticks, to accelerate edge inference. Hence

the question of how the edge systems can securely and performantly make deep learning

inference remains open.

Although some prior works have tried to protect the inference data confidentiality through

Intel SGX [LLP19, HSS18, TB19, GHZ18, TGS18] on the cloud environment, they failed to

provide performant protections on edge devices when OS is trusted.

1.1.3 Actuation Conflicts

Conflicts among actuators can lead to severe consequences in terms of safety and energy

consumption. For example, in a smart home, if one smart home application tries to turn on
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the air conditioner and the other application tries to turn off the air conditioner, then they

will form a racing condition such that the air conditioner jumps between on and off states,

which could ultimately cause the damage of the device.

Although some actuator conflicts are due to the system’s security issues, such as mali-

cious applications, more cases of these conflicts are caused by user misconfiguration. Prior

works [MAH16, MPS17, CTMb, LKL15a] have focused on detecting such conflicts, and none

of them are trying to provide runtime resolutions for these conflicts. Therefore, the question

of resolving runtime actuation conflicts still needs to be answered.

1.2 Contributions

This thesis contributes to the solutions to address the challenges mentioned earlier from

three aspects. Explicitly speaking, we focus on how to ensure the security of sensors and

actuators on an untrusted execution environment, how to ensure the sensor data is not

maliciously used at the edge, and how to resolve the device actuation conflicts because of

user’s misconfiguration.

In the beginning, we propose a system utilizing both hardware and software isolation

mechanisms to ensure the security of the sensors and actuators under the untrusted exe-

cution environment. We first introduce PROTC that protects essential actuation services

from being maliciously accessed by either untrusted OS or applications. The protection is

abstracted through the feature of ARM TrustZone. PROTC implements a trusted comput-

ing base within ARM TrustZone that enforces a secure access control policy for the UAV’s

essential protected actuation services. Such an access control policy integrated with cryp-

tographic techniques ensures that the control commands are genuinely from the user but

not from untrusted entities. The hardware protection from ARM TrustZone ensures that

the trusted computing base of PROTC is isolated from the OS. Next, we build a similar

system named VirtSense to protect the essential sensing services. VirtSense is an ARM
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TrustZone based virtual sensing system that provides each sensing application a virtual

sensor instance, which further enables a safe, flexible, and isolated sensing environment on

the IoT devices. The crucial part of VirtSense is a virtual sensor management unit that

delivers sensor samples to sensing services through different sensing signal reconstruction

techniques such that the sensors can be securely hidden from the OS while still serving for

the applications.

Although the above two systems can appropriately protect the sensors and actuators

through hardware-assisted mechanisms, the bare-metal IoT devices such as ARM Cortex M

series lack such hardware mechanisms. To address the protection problems on these devices,

we design Aerogel that uses lightweight WebAssembly (Wasm) features for execution en-

vironment isolation and further enables the fine-grained access control on bare-metal IoT

devices. More specifically speaking, Aerogel is an access control framework that interfaces

Wasm runtime with access control mechanisms for sensors, actuators, processor energy usage,

as well as memory usage. In particular, we treat the runtime as a multi-tenant environment

and leverage the inherent sandboxing mechanisms of Wasm to enforce the access control

policies to sensors and actuators.

The second part of this dissertation contributes to guarantee the sensory data confi-

dentiality of deep learning inference at the edge. We designed a secure runtime system

SecDeep, a low-power deep learning inference framework demonstrating that both security

and performance of deep learning inference on edge devices are well within our reach. More

specifically speaking, leveraging TEEs with limited resources, SecDeep guarantees full con-

fidentiality for input and intermediate data, as well as the integrity of the deep learning

model and framework. By enabling and securing neural accelerators, SecDeep is the first

of its kind to provide trusted and performant deep learning model inferencing on edge de-

vices. SecDeep partitions the deep learning libraries into two to reduce its core trusted

computing base size. The partition inside TEE is named as confidential computing base

whose data confidentiality is protected by the hardware. This partition requires the com-
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puting code that has to use plaintext tensor data such as the raw data from the sensor to

finish the computing. The other partition is outside of TEE named nonconfidential com-

puting base. This partition can only host the code that depends on the property of the

tensor data such as the size of the data rather than the raw data. Next, SecDeep mod-

ifies the OS kernel table as read-only to guarantee the integrity of the deep learning code

running in an untrusted execution environment such that each time when the kernel table

needs to be changed, SecDeep can examine whether such change will affect the results from

nonconfidential computing base. Moreover, SecDeep provides a data manager that uses a

format-preserving encryption method to sanitize the data communication between the two

partitioned computing bases.

The last part of this dissertation tackles the challenge of designing a framework to provide

remedial actions on IoT actuation conflicts. We propose RemedIoT a remedial action 1

framework for resolving Internet-of-Things conflicts. The RemedIoT framework uses state

of the art techniques to detect if a conflict exists in a given set of distributed IoT appli-

cations with respect to a set of policies, i.e., rules that define the allowable and restricted

state-space transitions of devices. For each identified conflict, RemedIoT will suggest a

set of remedial actions to the user by leveraging RemedIoT’s programming abstractions.

These programming abstractions enable different realizations of an IoT module while safely

providing the same level of utility, e.g., if an air-conditioner application that is used to im-

plement a cooling module conflicts with a CO2 monitor application that requires ventilation

at home, a non-conflicting smart fan application will be suggested to the user. However, not

all conflicts can be resolved by remedial actions, if in this situation, RemedIoT will just

block the conflict events.

1We draw on the analogy of remedial action schemes for safety-critical, complex industrial control systems

such as the electric power grid.
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1.3 Organization

This dissertation addresses the security and safety issues of edge computing environments

from three perspectives.

• Part 1: Securing Sensors and Actuators at Runtime. This part describes the run-

time protection for sensors and actuators on IoT devices by PROTC in Chapter 2,

VirtSense in Chapter 3, and Aerogel in Chapter 4.

• Part 2: Securing Inferencing from Sensor Data at the Edge. This part presents how

deep learning inference at the edge can be secured by SecDeep in Chapter 5.

• Part 3: . This part presents the resolution framework for actuation conflicts by Reme-

dIoT in Chapter 6.

We discuss the future research directions and conclude this dissertation in Chapter 7.
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Part I

Securing Sensors and Actuators at

Runtime
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CHAPTER 2

PROTC: Protecting Unmanned Aerial Vehicles’

Peripherals through ARM TrustZone

2.1 Introduction

Unmanned Aerial Vehicles (UAVs) are becoming pervasive and are heavily used in various

industries in recent years because of their flexibility and ease of use. For example, people

use UAVs for search and rescue, to inspect oil pipelines, or to take photographs. FAA has

projected that the sales of commercial Unmanned Aerial Vehicles will be roughly 2.7 million

by 2020 [FAA]. With the increased usage of UAVs, the security issues of UAVs are becoming

urgent. UAVs can cause millions of dollars of loss if crashing with an airplane[gov, Blo].

The software development for UAV, including UAV apps and UAV operating systems, is

still at an early stage. In the current UAV market at the time of writing (Mar 2017), the

most popular UAV piloting systems are ArduPilot [Ard] and PX4 [PX4]. ArduPilot and

PX4 support either bare-metal real-time OS or real-time Linux based OS. Some UAVs [Sol]

choose embedded OS, such as NuttX, as their UAV OS. The biggest drawback of the bare-

metal systems is that the control application and other applications share the same address

space. Hence, a malicious application can easily take control of the UAV by overwriting

the control application code on memory. Another drawback of bare-metal systems is that

it is hard for the user to install a third-party application. For example, if the UAV user

decides to install a data collector, he or she needs to rebuild the whole system stack. More

and more commercial UAV companies [DJI] and UAV SoC vendors [NAV, Beb, Rob] adopt
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real-time Linux based OS as the UAV OS. The advantage of RT Linux based OS is that

control applications and other applications have their own virtual memory space, such that

a malicious application cannot directly overwrite the code of control application on memory.

Another advantage of using RT Linux based OS is that the third-party programs such as

UAV image processing program [PIX] and data collecting programs [Sen] can be easily

installed during runtime without recompiling the whole system stack. However, RT Linux

based OS exposes vulnerabilities that could be maliciously used to control the UAV and

steal important private data by giving the kernel space privilege to malicious user space

program [ret09]. Malicious programs with rootkits, such as motochopper [mot], Vroot [vro],

are examples of where a malicious user space program can compromise the kernel and hence

control the UAV.

Our proposed mechanism, PROTC, can be used against memory attacks that escalate

user space applications’ privilege. PROTC has two major goals: 1) it ensures the UAV’s

safety and important data integrity even when the UAV’s OS is compromised; 2) it allows

for installing third-party applications easily (i.e., high flexibility). PROTC utilizes ARM

TrustZone technology to achieve these two goals. ARM TrustZone divides the instructions

on the ARM processor into two privileged blocks. Lower privileged instructions are executed

in normal world, and higher privileged instructions are executed in secure world. The secure

world programs can restrict the memory access from the normal world programs. In PROTC,

we regard the RT Linux based UAV OS as the untrusted OS that resides in normal world,

and we design a trusted computing block resides in a secure world to ensure that the user

permits access from an untrusted OS.

PROTC has three important components: critical applications, normal world applica-

tions and the trusted computing block. Critical applications need to access the protected

peripherals and are installed inside the UAV’s controller denoted as the ground control sta-

tion in our design. Normal world applications are installed in the untrusted environment

and do not have privileges to access any protected peripherals. The trusted computing block
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inside the secure world is composed of a decision maker and a command executer. The

decision maker enforces the protected peripherals’ access control policy so that only autho-

rized applications can access the protected peripherals. The command executor executes

the command sent from critical applications to pass the policy checking algorithm inside the

decision maker.

We propose four micro-benchmarks to test our PROTC prototype on Raspberry Pi 3

used by the commercial UAV SoC NAVIO2 [NAV] with Linaro RT Linux OS in the normal

world and OP-TEE [opt] OS in the secure world. These four micro-benchmarks stand for the

authorized and unauthorized access to protected peripherals with a base micro-benchmark

that directly accesses peripherals without the protections of PROTC. Our results show that

the average overhead introduced by PROTC is 143ms and that PROTC successfully prevents

unauthorized access to protected peripherals.

Our contribution is: We design a system-level protection mechanism, PROTC, to ensure

that the user grants access to protected peripherals and that all the unauthorized access to

protected peripherals is rejected.

The rest of this chapter is organized as follows: we first discuss the background and

related work for UAVs and ARM TrustZone in section 2.2 and section 2.3. We elaborate on

the existing vulnerability in Linux based OS and our motivations to this work in section 2.4.

In section 2.5 we introduce our PORTC model. We present preliminary results in section 2.6.

We conclude our work in section 2.7 and discuss the future direction of this work.

2.2 Background

2.2.1 ARM TrustZone

PROTC uses ARM TrustZone [ARMg] protection features to create an extra secure policing

zone. ARM TrustZone contains two different privilege blocks, as shown in Figure 2.1.
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Figure 2.1: ARM TrustZone overview

Secure World is a privileged computing block that only runs privileged instructions. The

secure world instruction is triggered when the NS bit in the SCR register is not set. Once a

program runs in the secure world, it exposes the full access to the memories, including those

memory-mapped peripheral registers. The secure world can define the memory regions that

can only be accessed by privileged instructions.

Normal World runs all untrusted components, such as an untrusted operating system

and its applications. The instructions inside normal world are unprivileged. Normal world

instructions can only access the memory region if it is not marked as the privileged memory

region by secure world.

Secure Monitor is used to bridge secure world and normal world. The normal world

programs cannot directly access the memory protected by the secure world. However, when

a normal world program needs to get access from the memory region protected by the secure

world, it will trigger a secure monitor call (SMC) so that the context in normal world will

be switched to secure world.

2.2.2 Open Portable Trusted Execution Environment (OP-TEE)

OP-TEE [opt] is an open-source project supported by several independent contributors and

the Linaro group. OP-TEE is aimed to provide the system support that runs on ARM

TrustZone enabled SoCs.

OP-TEE contains a normal world OS and a secure world OS. Normal world OS is con-
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sidered as untrusted OS, while secure world OS is the privileged trusted OS. Normal world

OS has a kernel driver that can use SMC to context switch to secure world OS. In PROTC,

we use OP-TEE APIs to make the context switch between normal world and secure world.

2.3 Related Work

Arm TrustZone Prior research utilizing ARM TrustZone mainly focuses on the smart-

phone domain. ARM TrustZone is used to monitor normal world kernel so that malicious

code cannot be injected to kernel binaries [ANS14], or to virtualize an OS apart from

RTOS [SHT10]. Brasser et al. [BKL16a] uses TrustZone to enforce smart devices to comply

with privacy regulations. ARM TrustZone is also used to build trusted runtime on mobile

devices [SRS14, SSW15b].

ARM TrustZone is also used to ensure data integrity from smartphone sensors [YH,

CZG15, LSW12a]. In our work, we are not only targeting at protecting the integrity of data,

but also providing a mechanism to prevent malicious access to UAV’s essential peripherals.

UAV Security Most previous UAV research focuses on deploying or localization aspects,

such as reactive control for the UAV pilot system [BCC16], task cooperations [DKW11],

and capturing cinema scenes [FGT16]. Few prior work in UAV main focuses on the security

issue. ARDrones described the vulnerability over the network communication because of the

authentications on Telnet and FTP [SFH12, PBC14]. Son et al. compromised UAV sensors

by generating resonance signals [SSK15]. Sel et al. proposes a new framework to protect

important data on the UAV delivery service path by enhancing the white-box cryptogra-

phy [SWB16]. However, none of the above work considers the vulnerabilities existing on

UAV’s operating system. PROTC proposes thorough protection for UAV peripherals in the

system level.
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2.4 Motivations

UAV OS needs to ensure UAV’s control integrity against the memory attacks of malicious

applications installed on UAV and allows the user to install third-party applications easily.

When considering both system security and easiness for users to install third-party applica-

tions, embedded UAV OS is not a right choice because the OS and the applications share

the same address space, and a malicious application can easily control the UAV by directly

writing to the memory-mapped registers of protected peripherals such as actuators. Embed-

ded OS is also hard to install third-party applications because it requires the whole system

stack to be recompiled each time.

The optimal choice for UAV OS is to use real-time Linux based OS. Linux based OS is

more secure because of the separation of address space, and it is also easy to install any third-

party applications. UAV OS needs to carry both UAV’s pilot program [Ard, PX4], and other

programs such as image processing programs [PIX, eve], and data collection programs [Sen].

However, to use such an OS architecture, the security of UAV OS might be reduced because

the piloting program and other programs share the same OS.

Attacks: A malicious application can utilize the rootkit [vro, tow, mot] to compromise

the kernel even when the OS is not rooted. Vroot [vro] can change the kernel function

pointer’s destination to malicious user space code while maintaining its kernel privilege.

Towelroot [tow] and motochopper [mot] can trick the kernel to change the kernel data in

memory to escalate a user level process. Long et al. [II16] shows that malicious programs can

efficiently escalate the user space privilege by wildcard injection, physical address attacks, etc

in Linux. Moreover, previous research demonstrates that the user program can compromise

the kernel through the return-to-libc attack by overwriting the return address of a function

stack [ret09]. These attacks allow user processes to obtain kernel privilege so that they can

have unrestricted access to all the peripherals.

All the attack methods and tools above demonstrate the vulnerabilities in current com-
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Figure 2.2: Overview of PROTC system design

modity general-purpose OS such as Linux based OS. After the malicious applications have

compromised the kernel, they can quickly take over full control of the UAV. Our PROTC

provides a protection mechanism to prevent the UAV from being hijacked even when UAV

OS is compromised.

2.5 PROTC Design

PROTC mechanism aims to provide a secure UAV OS environment that prevents the UAV

from being maliciously controlled. The overview of PROTC design is shown in Figure 2.2.

PROTC contains three essential components: Critical Applications ; Normal World Applica-

tions ; Trusted Computing Block. The critical applications are the applications that need to

get certain access to protected peripherals, for example, a navigation system. Normal world

applications, also named untrusted applications, might be proxy of critical application or

independent application from third-party installed in normal world. The trusted comput-

ing block is the fundamental protecting block that enforces the security policy for access

to protected peripherals. The trusted computing block cannot be compromised because of
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TrustZone’s hardware protection.

2.5.1 Threat Model

PROTC framework trusts the applications on the ground control station in figure 2.2. More-

over, PROTC also trusts any code running inside the secure world, including all protected

peripheral drivers, and the software stack of PROTC. However, the applications installed,

the operating system (OS), and the peripherals running in the normal world on the UAV

SoC board are malicious and not trusted. We assume the ground control station is secure

and cannot be compromised. The Denial-of-Service (DoS) attacks, side-channel attacks to-

wards TEE, sensor attacks, and any other attacks that can maliciously modify or drop the

communication messages between the ground control station and the secure world are out

of the scope of this paper.

2.5.2 Trusted Computing Block

The trusted computing block is a security guard program that resides in the secure world. It

has two main features: 1) It enforces the access control policy described in section 2.5.6 so

that only user-approved access to protected peripherals can be permitted (Decision Maker).

2) When an access-authorized command is received from the critical applications, it needs to

execute the command and return the critical applications(Command Executer). As described

in section 2.4, the OS in the normal world might be compromised. Hence, access to protected

peripherals for normal world applications is revoked by trusted computing block, and these

protected peripherals can only be accessed from the trusted computing block due to ARM

TrustZone protection.

The memory types of trusted computing block are both shared memory that can be read

or written by normal world applications and non-shared secure memory that is only visible

to trusted computing block. For all the sensitive data, such as the private key of the trusted
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Figure 2.3: Procedure when critical application needs to access protected peripherals.

Step 1©: Critical application sends the encrypted access request to its proxy in normal world.

Step 2©: Critical app proxy passes the access request to TEE driver in normal world. Step 3©:

TEE driver passes the access request through SMC to decision maker in trusted computing

block. Step 4©: Decision maker decides whether to execute the command. Step 5©: Command

executer executes the command if decision maker decides to execute.

computing block used to sign protected sensor data sent to the critical application, it is

stored in secure non-sharable memory that only the trusted computing block can access.

2.5.3 Critical Applications

Critical applications need a part or full access to protected peripherals. The steps for the

critical applications to access protected peripherals are shown in Figure 2.3. One critical

application is the UAV control application that needs to access all the sensors and actuators

to fly the UAV. In our model, critical applications could be malicious. For example, a sensor

data collecting application is only given access to sensors, but it contains a malicious rootkit

and tries to change actuators’ value to fly the UAV.

Critical applications contain two parts. The first part is installed on the ground control

station that could be a UAV controller or a computer on the ground, and its main task is

to send the access command to UAV’s trusted computing block. The example of UAV’s
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pilot application sends the control command to the UAV according to the user’s input.

The second part of the critical application is the proxy installed on the UAV SoC board.

Critical application proxy only transmits the information between the ground control station

and the trusted computing block. However, some malicious critical applications could have a

malicious proxy that compromises UAV normal world OS by rootkit described in section 2.4.

2.5.4 Normal World Applications

Applications in the normal world are referred to as untrusted applications. These appli-

cations could be independent applications or the proxy of critical applications. Untrusted

applications are used to do tasks that do not require access to protected peripherals. For

example, PX4D [PIX] can be installed as an untrusted application if the camera is not

protected. However, untrusted applications might be malicious. For example, if an image

processing application contains a rootkit that can escalate its privilege, the image processing

application can directly write data to actuator memory-mapped registers to control the UAV

without the implementation of PROTC.

2.5.5 Secure Communication Channel Establishment

When critical applications on the ground control station need to send control commands

to the UAV, it will first establish a secure channel. The purpose is to assign the criti-

cal application an access number that will be further used to get authentication from the

trusted computing block to access the protected peripherals. The access code assigning algo-

rithm includes the following two steps: 1) Critical Application→ Trusted Computing Block:

PriCRI(Access Request) (i.e. Critical application signs access request to trusted comput-

ing block); 2) Trusted Computing Block → Critical Application: PriTCB (PubCRI (Access

Code)). Then, the critical application verifies the trusted computing block’s signature and

decrypts the message to obtain access code. We assume the trusted computing block pro-
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gram has the public key of the critical application, and the critical application has the public

key of the program inside the trusted computing block. We do not use the public key distri-

bution process in PROTC. However, a good and high efficient key exchange protocol could

be implemented as SSL/TLS. Once the critical application obtains the access code, it uses

the access code as part of the message while sending flight control command to the UAV to

reduce the overhead trusted computing block needed when executing the command.

2.5.6 Access Control Policy

The access control policy is enforced by the PROTC decision maker to ensure the integrity

of access to protected peripherals. The UAV user determines the access permission to the

protected peripherals. When an application on the ground control station (i.e., critical ap-

plication) wants to access protected peripherals, it will send a request through its proxy to

the trusted computing block. If it is the first time sending the access request, the trusted

computing block will issue an access request inquiry message back to the access request

daemon on the ground control station, and the user will decide whether to give the access.

Once the trusted computing block receives permission from the user, it will store the in-

formation securely inside a hash table within the secure world. To reduce the computation

complexity, the trusted computing block generates a unique random access code for each

application, where the random access code is hash-mapped to the application’s public key

and the protected peripheral access permission information. Once a critical application has

access code, it only needs to send the information along with the access code to the trusted

computing block as (PriCRI(PubTCB(request)), PubTCB(access code)). An overview of the

access control decision process is shown in figure 2.4.
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Figure 2.4: Access Control Decision Block Diagram. When critical application sends access

request to trusted computing block, trusted computing block checks whether the access

has already been authorized: if yes, execute the command; if no, discard the command;

otherwise, send the access request back to user for approval.

2.5.6.1 Sensors and actuators hierarchy

If the access request from an application to protected peripherals is denied, the application’s

remaining execution might be problematic. For example, if an application needs to access

IMUs to calculate the corresponding values sent to actuators, but the user denies this access

mistakenly, the application might send a dangerous command to actuators and crash the

UAV using the problematic results from IMUs. We adopted a hierarchical access design to

ensure guaranteed access to lower level protected peripherals if access to a higher level is

permitted.

In PROTC, the protected peripherals are divided into two hierarchical groups. All actu-

ators that might affect UAV’s safety directly are grouped together as the top level. All other

protected peripherals such as barometer and accelerometer are at a lower level. Moreover,

the access privilege for actuators is one-for-all that if an application is allowed to access one

actuator, it is automatically allowed to access all the other actuators and protected sensors.

However, the access privilege for other protected peripherals is one-for-one that if an ap-

plication has access to cameras, it does not guarantee access to other sensors or actuators
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Table 2.1: Summary of micro-benchmarks used to evaluate PROTC design.

Name Description

AUTH-FULL The access to all protected peripherals is authorized.

AUTH-PART The access to part of protected peripherals is authorized.

UNAUTH The access to all protected peripherals is NOT authorized.

DI-ACCESS Directly access to peripherals.

automatically.

2.6 Evaluation

We build a prototype of PROTC to test and evaluate our design, and we propose four

micro-benchmarks to evaluate PROTC design.

Hardware Setup In our implementation, we choose the Raspberry Pi 3 Model B board

that is one of the cheapest ARM TrustZone supported development boards as our prototype

testbed platform. Raspberry Pi 3 Model B is also the motherboard of NAVIO2 [NAV] that

is one of the most popular UAV SoC board in the current market.

Software Setup In PROTC, we follow the same NAVIO2 OS stack setups for our normal

world. More specifically speaking, we choose Linaro that uses a real-time Linux kernel in

normal world to ensure real-time constraints. A trusted computing block is installed in the

kernel space of OP-TEE1 in secure world so that the time budget will be guaranteed. We

also simulate the sensor data and actuator signals.

1OP-TEE on Raspberry Pi 3 is not secure due to the closed source of the hardware design. It is for

educational and prototyping purposes only.
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Micro-benchmarks We propose four micro-benchmarks that are summarized in table 2.1.

The first micro-benchmark is AUTH-FULL that has authorized access permission to access

all the protected peripherals. The second micro-benchmark is AUTH-PART that has au-

thorized access permission to access some of the protected sensors only. The third micro-

benchmark is UNAUTH that does not access permission to access any of the protected

peripherals. The last micro-benchmark is DI-ACCESS, which is served as our baseline bench-

mark that directly accesses the peripherals from normal world OS through recompiling the

whole system stack and disabling the PROTC mechanism. These four micro-benchmarks

represent all the possible situations in our system if the normal world OS is compromised.

Through evaluating the micro-benchmarks, we prove that PROTC is against the memory

attack that tries to control the UAV by compromising the UAV OS.

Security Analysis AUTH-FULL and UNAUTH show that the protected peripherals can

be accessed only when the user authorizes the access request. In PROTC, the access code is

mapped to both critical application’s public key and the permission to protected peripherals,

so even if UNAUTH has AUTH-FULL’s access code, UNAUTH cannot access the protected

peripherals because the trusted computing block will use the public key the access code

mapped (i.e. AUTH-FULL’s public key) to verify the signature of the message. AUTH-

FULL and AUTH-PART demonstrate that the permission given to higher-level protected

peripherals can be automatically propagated to lower level peripherals but not vice versa.

In one of our experiments, we give AUTH-FULL the access privilege to actuators but not

sensors, and due to the design of PROTC, AUTH-FULL still has the access privilege to pro-

tected sensors, and this avoids the potential wrong values sent to actuators that might cause

the crash of the UAV. AUTH-PART is only given the access privilege for one protected sen-

sor, so when it tries to access other protected peripherals, the decision maker denies its access

request. Our results show that even if the UAV OS is compromised, the malicious applica-

tions still cannot control the UAV because it does not have permission to access protected

22



Table 2.2: Statistics of overhead after running 100 times for each micro-benchmark(excluding

WiFi latency)

Micro-ben. Average (ms) Std. Dev. (ms) Range (ms)

AUTH-FULL 143.15 0.16 0.64

UNAUTH 143.13 0.10 0.50

DI-ACCESS 0.34 0.02 0.07

peripherals. This result also indicates that PROTC can be against memory-related attacks

such as buffer overflow attack and return-oriented programming (ROP) attacks performed

by those malicious applications.

Overhead We run the benchmark DI-ACCESS, UNAUTH, AUTH-FULL 100 times to

examine our PROTC design’s overall overhead, and the results are summarized in table 2.2.

The average overhead introduced by PROTC in AUTH-FULL is 143ms. A further breakdown

for AUTH-FULL overhead shows that the secure world session connection time from normal

world applications occupies 21.49% of the time. The cryptographic algorithm (i.e., pub/pri

key algorithm) of PROTC takes 61.17% of the time, and the rest, including sending and

executing the commands from normal world to secure world takes 17.34%. The results of

AUTH-FULL and UNAUTH tell that the significant overhead of PROTC in AUTH-FULL

is the cryptographic algorithms. The overhead of the command executer inside the trusted

computing block is only about 200 µs. Because the PROTC mechanism satisfies real-time

constraints by adopting RT-Linux kernel in normal world and using kernel space in secure

world, after we run the experiments 100 times, it shows that the range of AUTH-FULL is

0.501ms and the deadline while executing command will be guaranteed within 144ms.
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2.7 Conclusion Remark

PROTC successfully demonstrates that a new UAV system design based on ARM TrustZone

technology can protect UAV from being maliciously controlled. PROTC also shows that it

can be against memory attacks on UAV OS. A future direction of this work is to utilize the

trusted computing block in PROTC to determine whether to execute a command based on

the sensors’ values.
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CHAPTER 3

VirtSense: Virtualize Sensing through ARM

TrustZone on Internet-of-Things

3.1 Introduction

The number of Internet-of-Things (IoTs) has dramatically increased in the past few years.

Unlike the early stage IoT devices that are mainly designed as sensor extensions, the cur-

rent IoT devices are no longer only for data collecting but are capable of learning, or in

other words, smart sensing [KLL15]. The software system’s key transition from “sensor ex-

tensions” to ”smart sensing” is the changeover from a single-tenancy sensing system to a

multi-tenancy sensing system. We refer to the single-tenancy sensing system as that only

one application can access the physical sensors and the multi-tenancy sensing system as that

multiple applications can access the same sensors simultaneously without interfering with

each other.

The current sensing system on IoT devices inherits the concepts from mobile systems,

Linux-based systems, or embedded systems. Such migration shows an inefficiency while

workloads have been changed [LL16, LJJ15] from data collecting to sensing. The sensing

services on Linux or embedded systems are conceptually analogous to the single-tenancy

sensing system because when an application needs to use sensor resources, it sets up a mutex

lock so that other applications cannot modify it if a different sampling rate is sought. These

sensing mechanisms fail to meet a multi-tenancy sensing system’s fundamental requirement

because simultaneous sensor access from multiple applications with varying sensing rates is
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prohibited. On the mobile system such as Android, the sensing service is performed through

a max-for-all mechanism. The OS only provides the data with the maximum sampling rate

from all applications, although most applications do not need such a sensing granularity. On

iOS, sensor management discards the excessive data when doing downsampling for different

apps. Moreover, every application only allows having one sensing rate on iOS, so all threads

in a multiple-threaded application are only allowed to sense at one rate. Although the sensing

service from the mobile system is more advanced than the embedded system’s sensing service,

all of the burdens of dealing with excessive sensor data fall on the applications themselves.

Nevertheless, the sensing system should take over the burdens to achieve the sensing isolation

among and within applications on the multi-tenancy system. Moreover, mobile devices’

application workloads are different from those on IoT devices, where IoT devices are mostly

used for sensing or actuating, but mobile devices lean more as user-interactive workloads.

Hence, optimizing the sensing system on mobile devices is not an easy implementation.

Another challenge faced by the multi-tenancy sensing system is the enforcement of sensor

access control policy. The traditional access control mechanism on IoT devices inherited

from mobile systems usually seeks for the user’s permission at the time when an application

launches. Under this access control mechanism, if the state of the device changes while using

the application, and the new state no longer permits access to certain sensors, the access

control policy will not be able to execute such permission changes at runtime. Some research

work [EGC10] tracks the data flow to enforce access control policy at runtime. These access

control mechanisms rely on the OS boundary of user space and kernel space. However, the

OS boundary is not always reliable. For example, the vulnerability in Wifi-module found in

2019 (CVE-2019-17666) on Linux can escalate a userspace application with kernel privilege.

If the OS gets compromised, all these access control mechanisms can be bypassed.

To remedy the shortcomings of current sensor systems for IoT devices, we propose Virt-

Sense, as illustrated in figure 3.1, an enclave and virtualization-based framework that meets

the real-time demands of the multi-tenancy sensing system. Such a system aims to achieve
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sensing isolation among different sensing applications and enforce the access rules in an

untrusted environment. These goals enable simultaneous and legit access to sensors from

different applications without affecting each other.

The concept of virtualization helps the sensing system multiplex the limited physical

sensor resources to different sensing applications through sensing resampling techniques.

While software-based virtualization introduces extra overheads, we balance the trade-offs

between sensing accuracy and data delivery speeds. We expose such trade-offs as options for

developers to choose so that they can control the granularity of sensor accuracy and data

delivery speed.

Enclave technology furnishes VirtSense with a trusted computing base (TCB), which

further guarantees the enforcement of access control policy. The enclave TCB will maintain

its integrity when the OS gets compromised because of the hardware protection. One of

TCB’s design considerations is to keep its minimal size due to the extra execution overhead.

Hence the balance of how often in enforcing permission rules should be carefully chosen.

If the access permission is checked too frequently, the overhead is too large; if the access

permission is checked too rarely, it will not provide access protection. In VirtSense, we
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allow the developers to choose how often they want their access rules to be enforced for the

applications’ access requests.

Our implementation of VirtSense uses ARM TrustZone based devices and prototypes the

architecture on Raspberry Pi. Our preliminary results show that VirtSense satisfies multi-

tenancy sensing needs by — 1) Allowing each sensing application control over its specific set

of sensing requirements; 2) the access control policy is enforced under simulated compromised

OS.

3.2 Background

3.2.1 Sensing System

Most embedded systems and Linux-based OSes only allow one application to sense at a

given rate, while all other applications have to wait until the one releases the resource if

they have different sensing needs. On Android, the sensor manager manages the sensing

requests. All the applications send the sensing requests to the sensor manager through a

Binder message, at which the sensor manager will then obtain the sensor data and distribute

it to the applications. The sensing rate is not guaranteed because the sensor manager

chooses the largest sensing rate from all the applications and broadcast the data to all

sensing applications.

3.2.2 ARM TrustZone

ARM TrustZone is the trusted execution environment technology initially developed by the

ARM company. It is implemented on all A-series processes and two m-series (m23 and m33).

ARM TrustZone separates the execution environment into two - normal world and secure

world. The normal world is the untrusted environment running an untrusted OS. The secure

world is the trusted computing base of TrustZone. The context switch between the normal
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world and secure world is done through Secure Monitor Call (SMC). The code that runs

in the secure world has higher privilege than the code in the normal world, and the secure

world can define the memory region that can only be accessed by privileged code. These

regions could be regular memory or memory-mapped registers of peripherals. If the code

running in the normal world tries to access the protected memory regions, TrustZone throws

a hardware exception.

3.3 Design of VirtSense

Our crucial motivation for the VirtSense sensing system on IoT devices is that the sensing

system should take care of the sensing needs from different sensing applications. These

sensing needs are the sensing requests for periodic sensing at different sampling rates or

event-driven sensing requests. Under the current sensing framework such as Android or

iOS, the burden of taking care of the sensing difference is on the applications’ side. In

other words, the current sensing framework lacks the understanding of applications’ sensing

needs. Moreover, the current sensor access control mechanisms purely rely on the isolation

and protection from the OS. When an OS gets compromised by a malicious application

containing a rootkit, the access control mechanisms will no longer protect the device.

We provide a sensing framework VirtSense, as illustrated in figure 3.1 that supports the

discrepancy of multiple application sensing workloads with the emphasis on sensing flexibility,

accuracy, and security. In this section, we will discuss the design of the framework.

3.3.1 Design Goals

To overcome the shortcomings of the current sensing framework while not diminishing the

functionalities of the existing sensing framework, we set up the following goals to design our

new sensing framework.
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• Sensing simplicity. Current sensing framework pushes the sensing burdens to each

application. If one application changes its sampling rate, it might affect all other appli-

cations using the same sensing service. Nevertheless, while dealing with the different

sensing requests from different applications, the sensing framework needs to manage

the sampling requests’ difference but not the applications themselves. Due to the hard-

ware resource limitation that each physical sensor can only have one sampling rate,

the sensing framework should multiplex the physical sensor values to different sens-

ing events. The sensing system should provide a high-level abstract for multi-tenancy

sensing applications but not pass this burden to the applications.

• Options for balancing sensing accuracy and sensor data delivery speed.

Downsampling or upsampling is needed when the sensing framework multiplexes the

physical sensor values to each sensing request at their requested sensing rate. Down-

sampling or upsampling requires data reconstruction, and different techniques will af-

fect the data accuracy and the delivering speed because higher accuracy requires more

data to reconstruct the sensing signal, which lowers the data delivering speed. The

abstraction of choosing such downsampling or upsampling sensing techniques should

be exposed to the application developers to properly determine the most beneficial

downsampling or upsampling techniques for their applications.

• Sensor access security. All the existing sensor access control mechanisms, such as

asking users for permissions when launching an app and using data-flow to track the

access control, rely on user space and kernel space boundary security. While designing

the new sensing framework, we aim at the access security of sensors even if the OS

is compromised (i.e., a broken of user and kernel space). The access control policy

needs to be independent of applications but only controls the behaviors of how an

application accesses the sensory data. Furthermore, the access control should have

the capability of dynamically adjusting sensor access permission while using the device

rather than only asking for permission at the application launching time. For example,
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an access control rule can reject the microphone sensing request if the device is in a

secret conference room while approving it if the device is outside a conference room.

• Scalability. The sensing framework needs to have a proper level of scalability. When

new software or hardware sensors are added to the system, the new sensing framework

is able to integrate them into the existing system with the sensors’ driver modules

without overhauling the whole sensing system.

3.3.2 Design Principles

To achieve the goals explained in section 3.3.1, we present VirtSense sensing framework that

virtualizes physical sensors based on enclave technology. While designing VirtSense, we set

forth two essential principles VirtSense needs to follow.

3.3.2.1 Principle of Various Sensing Workloads

Every sensing application has its requirements for sensing work. The examples of the sensing

workloads can be different sensing rate for periodical sensing or different event-driven sensing

requests. The various sensing workloads also indicate that different applications need to share

the limited physical sensing resources. VirtSense needs to understand the discrepancies

among all the sampling requests and satisfy these needs.

Embracing sensor virtualization in VirtSense. Virtualization overrides the hardware

resource limitations by allowing software management to multiplex the hardware resources

for each virtual instance, allowing applications to request one or more instances for the re-

sources. In contrast, each instance is independent and does not interfere with each other.

Specifically speaking, the virtual sensor instance in VirtSense refers to an instance for a

physical sensor or a combination of multiple physical sensors (e.g., software sensors). Each

application no longer needs to be “penalized” while other applications require different sens-
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ing requests. For example, when application A requests a periodic sampling with a sampling

rate of 60 Hz while application B requests a periodic sampling with 100 Hz and applica-

tion C requests an event-driven sampling, the application A, B and C themselves do not

need to comprehend the difference of other applications since VirtSense is responsible for

multiplexing the physical sensor resources. Meanwhile, each application can also choose the

sensing accuracy for its instances. By virtualizing the physical sensors, VirtSense is commit-

ted to provide applications sensing simplicity, scalability and the options for sensing

accuracy.

3.3.2.2 Principle of Untrusted OS Execution Runtime

Due to the large size and various functionalities of the OS, OS can get compromised through

malicious kernel extensions or rootkits. Hence, the compromised OS have the abilities to

bypass all the security protection mechanism. Under VirtSense, it must ensure its code’s

confidentiality and integrity, especially access control code, which implies that the code

is executed under a possible compromised OS environment. Enclave technology provides a

protection infrastructure to allow VirtSense to run securely under an untrusted environment.

Embracing enclave in VirtSense. Enclave provides hardware-level protection for the

confidentiality of essential memory-mapped peripherals. Using enclave protection can guar-

antee the required safety policy to be enforced regardless of the health status of the OS. The

enclave will throw a hardware exception if the malicious OS tries to access the protected

memory regions, including those memory-mapped registers for peripherals, without passing

through the access control policy. Differing from the traditional OS protection boundary

for the access control of all sensors, VirtSense adopted enclave for the access for the sake of

enhanced security, which provides the system an improved sensor access security. The

enclave in VirtSense provides a minimal yet sufficient trusted computing base. The access

for sensors from the OS outside the enclave is prohibited, and the only method to use the
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sensor resources from the OS is to send an access petition to TCB in the enclave. This

protective layer makes sure the sensor access policy inside TCB is enforced regardless of the

security status of the OS.

3.4 VirtSense Prototype

We prototype VirtSense with four key components that are sensing service interface, enclave

proxy, secure apps, and virtualization management, as shown in figure 3.2. These four parts

provide a secure interface and sensing service for the applications in the normal world.

3.4.1 Threat Model

Under the VirtSense framework, we assume that the applications in the normal world are

not trusted. These applications could be intentionally malicious and compromise the whole

OS. They can be downloaded and installed from any third-party manufacturer while the

applications and execution runtime inside the secure world are secure and trusted. The

secure world applications need to be conducted extra scrutinizing by an authorized party.

The side-channel attacks against TEE and Denial-of-Service (DoS) attacks are beyond this

paper’s scope. Moreover, VirtSense assumes the applications do not maliciously use the
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sensor data after the access is granted.

Sensing service interface. The sensing service interface provides the interface APIs to

applications for sensing instances creation and the sensing rate and accuracy manipulation.

To keep a proper high-level abstraction, the sensing service interface is the only exposure

point between the applications and VirtSense service. It also plays the role of load balancer

of VirtSense, which determines how to deliver the sensor values to each application with

minimal overhead. For example, if all applications sample at 60 Hz, the sensing service

interface will only create one instance for all the applications, even if every application

requires a virtual sensing instance.

Enclave Proxy. Enclave Proxy communicates with the secure world inside the enclave.

It batches and sends the sensing requests from the normal world applications to the enclave

server in the secure world through the SMC driver. Moreover, the secure world’s sensor data

are also received by the enclave proxy that further delivers to sensing service interface and

applications.

Enclave Server. The enclave server is the communication midpoint between the normal

world and the secure world, residing in the secure world. The enclave server processes the

sensing request batches from the normal world applications and sends them to virtualization

management. It also packs up the sensor data updated from the virtualization management

and delivers them back to the normal world’s applications. Enclave proxy and enclave server

are the two communication endpoints that bridge the sensing requests sent from the normal

world and the sensor data delivered back from the secure world.

Secure Apps. Secure apps, which are the critical components of the access control mech-

anism, are pre-installed. They are used to control access from normal world applications to

sensors. All the sensor access requests need to be sent to secure apps through virtualization
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management for access authenticity checks. Secure apps can contain rules defined by the

users to restrict the access of sensors. For example, a rule can be depicted as when the device

is within a certain room. The speaker cannot sense the environment by the applications.

If the decision is more complicated to make than using rules, a pre-trained neural network

can be integrated with the secure apps. Moreover, because secure apps have no restrictions

on accessing the protected sensors, the pre-trained neural network can be further trained

while using the device. The sensor access request from normal world applications can only

be granted if all secure apps approve such access.

Virtualization management. Virtualization management enforces the access policies

from secure apps and dynamically chooses the sensing sampling rate set for the real physical

sensors to satisfy the sensing requests from the normal world applications. The virtualization

management receives the sensing requests through the enclave server, and it checks whether it

has violated the access rules from either of the secure apps. If the access request is permitted,

the virtualization management will change the sensing sampling rate if necessary and send

sensor data back to the enclave server when they are updated. The details of the virtual

sensing algorithms and APIs provided to the developers will be introduced in section 3.4.2.

3.4.2 Sensing Virtualization Algorithm

The algorithm of VirtSense virtualization management provides each sensing instance a

resampled sensor value calculated based on the physical sensor value. As we discussed in

the previous section, VirtSense allows both event-driven sensing and periodic sensing. In

VirtSense, each application is permitted to create one or more sensing instance. For different

sensing instance, the application developers can specify a resampling method to satisfy the

sensing needs. VirtSense sets the maximum sensing rate among the sampling requests by

all the applications as the physical sensor sampling rate. Figure 3.3 shows a demonstration

of different sensing resampling techniques. The sensor’s firmware pre-processes all the raw
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(a)	Fast	resampling.	Desired	sensing	
time	tD.	Estimate	value	VD

(b)	Moderate	resampling.	Desired	
sensing	time	tD.	Estimate	value	VD

(c)	Slow	resampling.	Desired	sensing	
time	tD.	Estimate	value	VD

Figure 3.3: Example of resampling methods. Physical sensor value updated at t, t+p and

t+2p, where p is the physical sensor sampling rate. tD is the desired sensing time for a

virtual sampling request, and VD is the returned value marked in a grey box from VirtSense.

data for the resampling.

Fast resampling. Fast resampling method returns the closest available sensor value at the

requested sampling time. This method provides sensor resampling values with low accuracy

but high speed. When the application developer chooses this method, VirtSense will deliver

the sensing value at the highest priority regarding the other two resampling methods.

Moderate resampling. Moderate resampling uses a linear approximation strategy to

resample the sensor values. This method will provide a more accurate sensor resampling

value than the fast resampling method, while the calculation and delivering speed will be

slower than that. VirtSense assigns moderate resampling a medium priority while providing

the sampling values to the applications.

Slow resampling. Slow resampling is supposed to provide the most accurate resampled

data. These sample data recovering techniques are high-order approximation with least

square estimation or [GGG04, AG01, GS03]. Using these methods will be the lowest priority,
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Figure 3.4: Running application with desired sampling rate 10Hz, 30Hz and 50Hz simultane-

ously (fast resampling) with physical sensor value from 100Hz to 200Hz with 20Hz increment

in VirtSense.

hence the lowest delivery speed while delivering to the applications.

3.4.3 Sensor Security and Access Control

The secure world restricts all access to the sensors. The secure world prohibits direct access

to the sensors from the normal world OS. But rather, the normal world applications need to

send the access request to TCB residing in the secure world. In VirtSense, we implement

secure apps as the safety rule checkers to check the access request’s validity. When the

enclave server receives the batched access requests from the enclave proxy, it passes the

requests to secure apps through virtualization management, and then the secure apps will

determine whether the access is allowed. Because the context switch between the normal

world and the secure world is expensive, secure apps cannot track the information flow of

how sensor data objects are used, such as TaintDroid [EGC10].
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3.5 Evaluation

3.5.1 Experiment Setup

Our experiment uses Raspberry Pi 3 as the platform. It is one of the cheapest ARM A-series

development board. We use Open-Portable Trusted Execution Environment (OP-TEE)1 for

the software setup. OP-TEE is an ARM TrustZone enabled prototype operating system.

OP-TEE uses Linaro Linux in the normal world and Rich OS in the secure world based

on GlobalPlatform TEE Client API. We also generate simulated sensor data at different

sensing rate. Because the secure world runtime of OP-TEE does not have inter-process

communication based on the message queue, we use a secure-world application shared storage

file to emulate the inter-process communication.

To evaluate our preliminary implementation, we launch three periodic sampling applica-

tions with sampling rate at 10Hz, 30Hz, and 50Hz, and several other malicious applications

with various sampling rates. We also provide a secure app that contains the rule only to

allow sensor access if they are sampled at 10Hz, 30Hz, or 50Hz. We measure the average

sampling received for each application, as shown in figure 3.4.

3.5.2 Preliminary Results

Overhead. Our results show that the overhead introduced by VirtSense is 16ms on av-

erage. We use two different clocks to calculate the overhead. The first clock starts before

calling into the secure world and ends up exiting from the secure world. The second clock

measures the overhead introduced by the access control applications inside the secure world.

By further breaking down the overhead, roughly 0.18 ms comes from the context switch

between the normal world and the secure world, and the rest comes from the enforcement of

1https://www.op-tee.org/. Current OP-TEE on Raspberry Pi 3 is not secure. It is for educational

and prototyping purposes only.
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security rules by security apps. The current security rule enforcement communicates to sen-

sor virtualization management through a shared secure file, and it can be further optimized

through a more efficient inter-process communication such as message queues.

Multi-tenancy sensing virtualization. To test how the physical sensing rate could

affect the virtual sensing rate, we run three sensing applications requiring 10Hz, 30Hz, and

50Hz sensing rate simultaneously with different physical sensor rates, as shown in figure 3.4.

We let the applications run for about ten seconds and calculate the average sampling rate.

The average sampling rate demonstrates that the more accurate it is when the desired

sampling rate is low.

Security analysis. We install a secure app that restricts the access of all the sensing re-

quests except with sensing rate 10Hz, 30Hz or 50Hz. The secure app successfully blocked

the sensing requests not specified by the rule. VirtSense can prevent memory attacks such

as buffer overflow attacks from malicious applications to read sensor data without the user’s

authorization. Moreover, it also prevents the sensing request conflicts when two different

sensing applications require different sensing frequencies. Our implementation of VirtSense

does not protect against DoS attack because secure apps must scrutinize each request. How-

ever, the DoS attacks from malicious applications can be mitigated if the secure app can

restrict a certain number of access requests in a unit time.

3.6 Related Work

Enclave technology has been widely deployed in all kinds of different systems in recent years.

For example, Intel SGX is for secure machine learning [OSF16a, LJL17, PMS16], Docker

container [ATG16], distributed system [ZDB17, HZX16] and and database system [MCS17,

BSP16].
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Sensor virtualization has been explored in the domain of IoT networks [EM09b, BGA15].

Senaas [ACN10] uses event-driven sensor virtualization technology to provide an interface

for IoT clouds. SenseWrap [EM09a] and Kim el. [KK15] designs a network middleware to

provide cloud-based IoT virtualization. Furthermore, Islam el. [ILH13] designed a virtual-

ization approach for wireless sensor networks. Ko el. [KLL15] proposed the virtualization of

sensor network management on mobile devices. Some other work designed sensor or actuator

virtualization framework on specific areas, such as smart camera [JNG17, SIS11]. However,

unlike VirtSense, none of the above work focuses on the sensor virtualization on a single

node. PROTC [LS17] uses ARM TrustZone to protect the drone’s safety. SeCloak [LSD18a]

uses ARM TrustZone to ensure an actuation control on the mobile device. Unlike the prior

work, VirtSense uses enclave to achieve a secure virtualization environment for sensors.

3.7 Conclusion

We proposed a new sensing architecture VirtSense based on virtualization and enclave to

satisfy the needs of multi-tenancy sensing applications. Through our preliminary results, we

show that VirtSense provides both a secure and flexing sensing system.
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CHAPTER 4

Aerogel: Lightweight Access Control Framework for

WebAssembly-Based Bare-Metal IoT Devices

4.1 Introduction

The scope of leveraging mobile and internet-of-things (IoT) devices for sensing physical

spaces has generalized beyond human activity recognition. Distributed and deployed IoT

systems leverage the ubiquitous sensors for a myriad of applications such as smart healthcare,

smart city lighting, and transportation [HQS17]. In the 5G context, on-device edge compu-

tation enables nascent market applications such as augmented reality, mass IoT, and drone

services [STL20]. Consequently, the latency requirements, privacy, and security concerns for

these safety-critical applications have naturally shifted computation from centralized cloud

resources to decentralized edge IoT and mobile devices [STB16].

The heterogeneity of the underlying device hardware and software ecosystems poses com-

plex challenges for application developers. The dynamicity and heterogeneity of these devices

necessitate support for dynamically instantiated, portable workloads stemming from more

than one source while maintaining security and performance for applications. More critically,

the isolation mechanisms to secure these platforms assume some form of memory manage-

ment unit (MMU) [ARMi]. Several resource- and energy-constrained IoT hardware platforms

do not support MMUs [ARMd, ARMe]. For instance, in 2016, experts estimated ARM to

have shipped 22 billion units of the MMU-less Cortex-M based devices [Ens16]. Although

Cortex-M processors are enabled with Memory Protection Units (MPU ) that can provide
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memory isolation, MPUs can only support a finite number of memory regions. Moreover,

applications need to be rewritten under different bare-metal OSes that use MPUs because

they require different OS abstractions.

The requirements of security, performance, portability, and dynamic instantiation for

heterogeneous computation platforms are not unique to the 5G IoT edge. In response to

the increasing demands of performance and security for web application deployment in frag-

mented and heterogeneous environments, engineers from the top four major browser vendors

collaboratively developed WebAssembly (Wasm) [Com]–a portable low-level bytecode that

is platform-independent. Subsequently, industry giants such as Intel and Redhat formed an

alliance, known as the Bytecode Alliance [Cla20], to develop a micro-runtime for Wasm that

is supported by bare-metal IoT devices, i.e., resource-constrained, MMU-less devices where

all software models share the same memory space. The Wasm Micro-runtime (WAMR) [Byt]

enables applications that can run the target binary at native speeds independent of the device

and can achieve sandboxing without a memory-management unit.

Although WAMR is a strong candidate to support secure, performant, and multi-tenant

computation on edge, the scope of IoT applications is not limited to computation services.

The computation abstractions will run alongside sensing and actuation services provided by

the IoT device that interacts with the physical world. WAMR currently lacks the abstractions

necessary to provide access control to sensors and actuators for IoT devices while maintaining

performance and security. Steps have been made towards providing limited access control

(e.g., only for certain memory regions or pieces of sensitive information) for multi-tenant IoT

devices using hypervisors [KB18, AMT18, GPH11], using the compiler at the compilation

time [KSK19, CAS17, CAB18], or using secure runtime memory views based on offline static

analysis [YZ18]. However, the proposed architectures are device-dependent, requiring the

recoding and recompilation of the software stack for different IoT device architectures. The

shifting workloads of the dynamic and heterogeneous IoT edge will require over-the-air (OTA)

updates at runtime while supporting other tenants. Thus, in this paper, we aim to tackle the
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following challenge: how can we extend the security capabilities of Wasm on IoT to include

access control for multi-tenant IoT device peripherals while maintaining performance and

low resource overhead?

In this paper, we design Aerogel, a runtime framework that utilizes the protection

mechanisms of Wasm bytecode sandboxing to provide access protection for IoT device pe-

ripherals – even when the applications and the OS are sharing the same address space.

Aerogel builds upon the Wasm runtime to provide micro-management for each tenant

(application). Tenant applications are compiled into Wasm bytecode such that applications

can be platform-independent. The Wasm runtime isolates application bytecode from any

platform-dependent native code that needs to interact with the application. Aerogel in-

struments Wasm runtime to provide a fine-grained access control mechanism such that users

can easily define the processor energy consumption, memory usage, as well as access to sensor

and actuator peripherals for each application.

We evaluate Aerogel on a low-power, resource-constrained MCU dev board (nRF52840)

and benchmark a representative set of safety-critical IoT applications. Aerogel’s runtime

overhead ranges from 0.19% to 1.04% extra execution time and from 18.8% to 45.9% extra

energy on our proposed benchmarks. Our results show that the fine-grained access control

mechanism provides minimal overhead for MCU energy, and peripheral access energy while

having a minimal overhead on application execution relative to related works.

Contributions. We summarize our contributions as follows.

• We propose Aerogel, a Wasm-based access control mechanism for bare-metal IoT

devices. Wasm enables platform-independent application execution necessary for het-

erogeneous IoT networks.

• Aerogel leverages the sandboxing capabilities of Wasm to isolate tenant applications

from each other as well as from platform-dependent native code. Aerogel enables
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secure sandboxing for multi-tenant applications for resource-constrained (less than 1

MB of memory), low-power devices.

• We evaluate Aerogel on a real low-power, resource-constrained MCU and show re-

sults of minimal 0.39µAh extra energy and minimal overhead 2.1ms.

The rest of the paper is organized as follows. Section 4.2 briefly discusses the background

information of Wasm and bare-metal IoT devices. We then overview Aerogel in section 4.3

and explain the details of the design in section 4.4. We talk about the implementation in

section 4.5 and evaluate our work in section 4.6. We next analyze the security issues and

limitations and discuss the future work in section 4.7. We compare Aerogel with the

related work in section 4.8. Lastly, we conclude this paper in section 4.9.

Our source code to reproduce our results is available online: https://github.com/nesl/

Project-directory.

4.2 Background

We first discuss the emerging field of multi-tenancy on bare-metal IoT devices. We then

describe the security guarantees provided by Wasm and give a brief overview of the Wasm

runtime for IoT devices.

4.2.1 Multi-tenant Bare-metal IoT Devices

Bare-metal IoT devices have shifted away from single-purpose applications as equipped sen-

sors and actuators enable them to perform multiple tasks. For example, the battery-powered

smart camera Blink XT2 [Sec] can capture images and perform on-device object detection.

Further, the development ecosystem of IoT devices has enabled APIs for developers to im-

plement applications that leverage the sensor and actuator abstractions, e.g., the Skills

API for Amazon Alexa [ATA02]. Hence, we model the complex and fragmented software
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and hardware IoT ecosystems as multi-tenant application environments. However, support-

ing multi-tenancy confounds the challenges of performance, sustainability, and security on

resource-constrained devices.

Bare-metal characterization. We characterize bare-metal IoT devices with limited re-

sources, such as small battery capacities containing few thousand mAh energy, low-end

microprocessors (MCUs) with only a few hundred MHz frequencies, or small memory size

with few hundred Kilo-Byte(KB) memories. These devices typically do not have compli-

cated memory protection mechanisms such as user space and kernel space address separation

through the Memory Management Unit (MMU). Moreover, those devices are designed for

heterogeneous sensing and actuation workloads such as UAVs and smart home sensors. For

example, Pixhawk 4 [PX4] flight control device is equipped with two ARM-M processors that

have 216 MHz for flight control and 24 MHz MCUs for I/O operations, and each processor

has 512KB and 8KB RAM respectively. Other popular bare-metal IoT device examples

include the Nest Protect [Goo] (MCU = 100 MHz [ARMd] and RAM = 512 KB) and the

EdgeReady Voice Control platform [NXP] (MCU = 600 MHz [ARMe] and RAM = 1024 KB).

Lack of multi-tenant isolation. MMU-less, bare-metal IoT devices cannot provide mem-

ory isolation among different applications. Figure 4.1 shows an example of a bare-metal

UAV system supporting two different applications, i.e., tenants, that perform sensing tasks

to control flight dynamics. If various entities develop the applications, the bare-metal devices

would not be able to protect one safety-critical application from another application’s bugs

or vulnerabilities. Although researchers [LCG17, DMS14, PPR18] have proposed to leverage

Memory Protection Units (MPUs) on ARM Cortex-M based IoT devices to provide memory

isolation [CAB18], MPUs can only support a finite number of memory regions. Moreover,

the associated applications would not be portable as they need to be rewritten under differ-

ent bare-metal OSes. Thus, we require a lightweight, portable, and software-based memory
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Figure 4.1: The UAV example of multi-tenant bare-metal software stacks Aerogel targets

on. All the code in the shared areas including runs on the same address space.

isolation for multi-tenant applications.

4.2.2 WebAssembly for Non-web Embeddings

Researchers have adopted WebAssembly [Com] (Wasm) to account for the bottlenecks of

security, portability, and dynamic instantiation. Wasm was initially designed for web browser

JavaScript applications on heterogeneous client devices to enhance the security of script

isolation, improve web application execution speed, and erase the execution environment’s

heterogeneity requirement. Wasm has since generalized beyond web embeddings to bare-

metal IoT devices due to the original problems’ generality.

4.2.2.1 Tenets of Wasm.

We first motivate the major advantages of Wasm in the context of bare-metal IoT devices.

Performance. Wasm is designed as a statically-typed programming language such that

the variable type is determined at compilation time. Additionally, Wasm utilizes a linear

memory structure that is loaded as a compact binary format. Hence, Wasm is able to achieve
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near-native speed performance [HRS17, was].

Security. Wasm provides runtime code isolation for applications by running them in sand-

boxed execution environments. Inside each sandbox, the Wasm application has full access

to its memory. However, any access to the memory outside of the sandbox throws an ex-

ception. Moreover, each Wasm application has its own sandbox, and its sandbox cannot

be arbitrarily accessed by different applications. By achieving this, Wasm runtime linearly

allocates memory regions and ensures that the entry and the exit point of a function do not

go beyond the sandbox bounds. If a Wasm bytecode instruction reads from or writes to a

specific memory address, Wasm runtime will check whether the memory address is within

the application’s sandboxed memory regions.

Portability and Dynamic Instantiation. Wasm is a platform-independent binary format

whose execution resides on top of its runtime. Hence, Wasm applications are portable on

any device that has a Wasm runtime and can initiate the execution environment without

recompiling the software stack.

4.2.2.2 Wasm Micro-runtime

Wasm bytecode is executed on a Wasm runtime. From the runtime’s perspective, Wasm

bytecode is a group of Wasm bytecode instructions, where each instruction is encoded

with one OPCODE followed by one or more arguments. For example, i32.add(i32.const

3)(i32.const 2) computes the addition of 3 and 2. Wasm byte code applications have a

special instruction that can execute native functions inside Wasm runtime exported through

pre-registered function tables.

Wasm micro-runtime [Byt] (WAMR) is one of the most popular lightweight runtimes for

Wasm bytecode on bare-metal devices. WAMR has only a few hundred kilobytes of memory
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footprint. WAMR manages all the execution of Wasm bytecode. In the beginning, it allo-

cates a contiguous memory region for the Wasm application that can only grow contiguously

starting from the end address. Next, each Wasm instruction is translated into machine code

by WAMR. Hence, if the Wasm opcode is a memory access opcode, it is further sanitized

by WAMR to make sure such access does not go beyond the allocated memory region. To

reduce the execution overhead, WAMR also allows a mixture of Wasm bytecode execution

and platform-dependent execution. A mixture may be allowed for platform-dependent func-

tionality optimization. For example, if a Wasm application tries to use pthread, WAMR

allows it to choose an optimized platform-based pthread and run the native code. To main-

tain security enforcement, the associated native code is provided by WAMR and not the

application developer. Although WAMR provides the initial framework for Wasm on IoT

devices, Aerogel will aim to a provide peripheral access control framework for bare-metal

IoT applications. Next, we overview the design of Aerogel.

4.3 Overview

We first describe the threat model and goals of Aerogel followed by the design workflow.

4.3.1 Threat Model and Assumptions

Aerogel trusts the software stack below the applications running on bare-metal IoT devices.

More specifically speaking, Aerogel trusts the firmware, the bare-metal OS, and the Wasm

runtime. Aerogel does not trust any application. We assume the entire software stack

code–including the application, the bare-metal OS, the Wasm runtime, and the firmware of

the hardware–is running on the same address space as there is no MMU for the memory

address space separation. Side-channel attacks, including cyber-physical attacks, towards

the sensors or actuators such as GPS spoofing are out of the scope of this paper.

48



Application

Bare-metal OS

Sensing 
Application

Flight Control 
Application

Aerogel Runtime

Access 
Control Spec 

Sheet
Initial Access Checker

Sensor/Actuator Module

Wasm Runtime

Processor Energy 
Checker

Sensor/Actuator 
Energy Checker

Memory Usage 
Checker

Concurrent 
Access Checker

…

1

2 2 2

Spec Sheet Parser

3 3

4 4

5

6

7

8

Camera Sensors/Actuators

Firmware Firmware

GPS

Firmware …

9

8 8

Figure 4.2: An overview and the workflow of Aerogel. The darker grey area is the com-

ponent of Aerogel.

4.3.2 Goals

We enumerate the design goals for Aerogel as follows:

• Sensor and actuator access protection. Each application is expected to be isolated

from each other under a robust sandboxed execution environment. Aerogel needs to

make sure its execution environment does not allow arbitrary access to the peripherals

such as sensors or actuators.

• Fine-grained access control. Aerogel aims to provide a fine-grained access control
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mechanism such that the users are able to define the the processor energy consumption,

memory usage, as well as the energy consumption per sensor and actuator for each

application.

• Minimal overhead and memory footprint. Aerogel aims to provide low over-

head and low memory footprint runtime support such that it has minimal execution

impact for all applications on the resource-constrained bare-metal devices.

4.3.3 Workflow

Figure 4.2 provides an overview of Aerogel’s design workflow. Prior to execution, all ap-

plication code needs to be compiled to Wasm bytecode. At runtime, Aerogel parses the

access control specification sheet ( 1 ), which is the user-defined access rules whose details

are discussed in section 4.4.2. After the specification sheet is processed, the Wasm runtime

loads the Wasm bytecode of the applications as Wasm instructions and initiates their runtime

environment( 2 ). Wasm runtime then attempts to execute the loaded Wasm instructions.

Upon each instruction execution, the Wasm runtime makes a request to the Aerogel run-

time checker to determine if the current application has exceeded the maximum allowable

processor energy and memory usage( 3 ). If an application’s processor usage has exceed its

allotment (assuming the allotment exists), Aerogel will request the bare-metal OS sched-

ule the current application to sleep for a user-defined period of time. The total processor

energy consumption for the particular application is reset to zero by the processor energy

checker after the user-defined reset time in the access control specification sheet has elapsed.

Resetting the application’s energy consumption prevents the application from sleeping in-

definitely. If the application’s memory usage has reached its allotment, the memory can no

longer be increased.

If the Wasm instruction requires reading sensor data or writing data to actuator periph-

erals, a request is sent to Aerogel’s initial sensor and actuator permission checker to check
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whether such an access is allowed in the user-defined sensor and actuator allowlist ( 4 ).

Once the initial access has been cleared, Aerogel’s runtime checks whether the maximum

total number of accesses has been achieved for the requested sensors or actuators by the

access monitor( 5 ). If either the initial permission checking or the maximum number of

access checking fails, the access is denied. Aerogel’s runtime throws an exception that is

handled by Wasm runtime. Otherwise, the request is passed to be registered by the sensor

and actuator module( 6 ) that directly interfaces with the sensors and actuators. When new

sensor data for or a new actuation command from a particular application needs to be han-

dled by the sensor and actuator module( 7 ), the module sends requests to the energy usage

and the memory usage checkers to verify whether the memory usage or the energy usage

has exceeded the maximum allotment for the associated sensor or actuator ( 8 ). If not, the

sensor and actuator module executes the actuation command or sends back the new sensor

data to the application ( 9 ). Otherwise, the corresponding command or data is discarded.

We next explain the details of Aerogel’s design.

4.4 Aerogel Runtime

We first describe how Aerogel provides memory protection for sensors and actuators. We

then explain how access control policies are defined and enforced.

4.4.1 Wasm-based Peripheral Memory Isolation

Aerogel’s bare-metal peripheral access control hinges on isolating the peripheral memory

locations from the application memory that resides on the same contiguous linear memory

space. We describe how Aerogel isolates the memory-mapped peripherals from application

memory in two stages: application instantiation and application runtime.
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4.4.1.1 Isolation at Application Instantiation.

When the Wasm runtime instantiates the runtime environment for an application, it needs

to allocate the associated memory heap. The runtime searches for the first available mem-

ory region from the beginning of the linear physical memory. Aerogel’s runtime checks

whether such allocation has overlapped with sensor or actuators memory-mapped addresses,

i.e., by checking whether the linear regions include sensor or actuator addresses. If an overlap

is detected, Aerogel’s runtime returns the first possible available memory regions that do

not overlap with the I/O address of the sensors and actuators with the required size of the

memory and returns the start address to Wasm runtime.

Memory collision resolution. When Wasm runtime’s requested memory region overlaps

with a sensor’s or actuator’s memory-mapped I/O address, Aerogel’s runtime starts look-

ing for the first possible memory addresses that could fulfill with the request. Aerogel’s

runtime first searches from the low address to the high address of all sensors and actuators

without considering other conditions such as whether the memory is used by other applica-

tions, further checked by the Wasm runtime. For instance, a sensor and an actuator may have

addresses 0x8FFFFFE0 and 0x8FFFFFF0 respectively, and the Wasm runtime needs to allocate

0x100 bytes of memory. Assuming the memory is aligned in 4-byte settings, Aerogel’s run-

time first checks whether 0x8FFFFFD4 can fulfill with the request of 0x100 memory size. In

this instance, the allocation overlaps with the actuator’s address (0x8FFFFFE0). Aerogel’s

runtime then checks whether 0x8FFFFFE4 can be a potential candidate and ensures there are

no other actuators or sensors between 0x8FFFFFE4 and 0x900000D0 (0x8FFFFFE4+ 0x100),

hence 0x8FFFFFE4 will be returned to Wasm runtime that will do further checks of whether

the memory regions will be eligible.
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4.4.1.2 Isolation at Application Runtime.

When the application’s current memory size is not large enough to satisfy the needs, the

Wasm runtime will enlarge the existing memory region. Wasm application’s runtime memory

is enlarged by extending the end address of the original memory’s end address but keeping

the same starting address. In other words, only one chunk of contiguous physical memory

is allowed for each application. Wasm runtime will do a similar memory checking procedure

as when instantiating an application to request Aerogel runtime to check whether such

extension overlaps with memory mapped I/O addresses of the sensors or actuators, but the

anticipated memory size is the application’s original memory heap size plus the required

enlarging memory size. If a new starting address is return by Aerogel runtime, Wasm

runtime copies the contents from the old memory chunk to the new memory regions and

frees the old memory trunk.

Given peripheral memory isolation, we can now explain how Aerogel’s runtime enforces

access control to the devices by starting from how the users should specify the access rules

through an access control specification sheet.

4.4.2 Access Control Specification

The Aerogel access control specification sheet defines the permission list for each applica-

tion. Aerogel requires the user to provide two pieces of information through the specifi-

cation sheet: 1) per-device specifications and 2) per-application specifications. Per-device

specification. For each device, the user needs to define the device’s manufacturer informa-

tion. In particular, the user should specify the power consumption profiles for each sensor,

actuator, and memory-mapped I/O addresses as well as the processor power under different

power states. The user also defines the maximum number of applications that can access

each sensor or actuator at a time. Per-application specification. For each application on

the IoT device, the user provides an allowlist of sensors or actuators, the maximum energy
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1. <Device-Spec>
2. <!--The metadata of the device-->
3. <Param name="home_camera" description="Home smart camera"/>
4. <Sub-Devices>
5. <Property>
6. <!--Capture the image-->
7. <Param name="image_sensor" address=0x8FFFFFE0/>
8. <!--Power state, power unit mW-->
9. <Max-Access val=10/>
10. <Power-State val=”active" power=800>
11. <Power-State val=”sleep" power=300>
12. </Property>
13. <Property>
14. <!--Adjust the angle of the camera-->
15. <Param name="angle_actuator" address=0x8FFFFFF4/>
16. <Max-Access val=1/>
17. <!--Power state, power unit mW-->
18. <Power-State val=”active" power=1000>
19. </Property>
20. </Sub-Devices>
21. </Device-spec>

(a) An example of per-device specification sheet. This device speci-

fication sheet is a smart home camera that has an image sensor cap-

turing the images and a camera angle adjustment actuator.

1. <Access-Control-Spec>
2. <Applications>
3. <!--Application name and description-->
4. <Param name="home_security" description="Home security App"/>
5.
6. <!--Allowed access devices and energy (uAh)-->
7. <Access-Devices>
8. <!--Set the consumed energy to be 0 after reset (ms)-->
9. <Device name="image_sensor" energy=2500 reset=10000>
10. <Device name="angle_actuator" energy=unlimited reset=0>
11. <Device name="door_actuator" energy=1500 reset=15000>
12. </Access-Devices>
13.
14. <!--Allowed processor energy and memory usage-->
15. <Processor-Memory>
16. <Processor val=5000 reset=15000> <!--5000 uAh-->
17. <Memory val=131072> <!--128 KB-->
18. </Processor-Memory>
19. </Applications>
20. </Access-Control-Spec>

(b) An example of per-application specification sheet. This access

control specification sheet is a smart home security monitoring appli-

cation, which is allowed to access smart camera and door controller.

Figure 4.3: Example of the specification sheet needed by Aerogel.
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usage, the maximum processor energy usage, as well as the maximum memory usage. The

user will also specify the reset time for resetting the application’s total energy usage to be

zero.

Figure 4.3 shows an example of the two specification sheets for Aerogel1. Figure 4.3a

shows a per-device specification sheet for a smart home security camera that has an image

sensor and an angle adjustment actuator. In this example, up to ten applications can access

the image sensor. The device has two power states: active and sleeping. The angle actuator

is only accessible by one application at any time. Figure 4.3b is an example of access control

per-application specification sheet. In this example, the home security application is given

access to the smart camera’s image sensor, the angle adjustment actuator, and the door

movement actuator. Access to the angle adjustment actuator allows unlimited energy usage.

The total energy usage for the processor resets after 15000 ms.

Once the specification sheet policies are loaded in memory, Aerogel’s runtime starts

enforcing the access control rules using a hierarchy of access checkers. The first access control

checker focuses on compute resource access control.

4.4.3 Compute Resource Access Control

The first stage of Aerogel’s access control focuses on compute resource policies. Aero-

gel first checks compute resource access policies before peripheral access policies since all

applications will require compute resources, but not all applications will access peripherals.

Aerogel’s compute access control has two components: the memory usage checker and the

processor energy usage checker.

1The grammar template can be found here: https://tinyurl.com/aerogel-spec-sheet
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4.4.3.1 Memory usage checker.

The memory usage checker performs the total memory usage checking when a new piece of

memory region needs to be allocated by the Wasm runtime. Thus, this type of access control

checking is triggered in two scenarios: 1) application instantiation and application runtime

memory expansion. Because Wasm runtime allows only one chunk of contiguous memory

for each Wasm application, the memory usage checker only needs to keep track of each

application’s start and end addresses when its memory regions are changed. The memory

usage checker computes the total memory usage of a specific application by subtracting the

application’s end address from the application’s start address. The difference is compared

with the user-specified memory usage threshold. Hence, the performance of checking the

memory usage is always constant, i.e., O(1).

4.4.3.2 Processor energy usage checker.

An application’s processor energy usage is defined as the processor energy consumed by

executing its Wasm instructions and invoked native functions. For example, suppose a

Wasm instruction adds two numbers with the opcode ADDITION followed by two numbers

as the arguments. In that case, the processor energy consumed is the processor energy that

needs to add those two numbers, including loading them to the registers and storing the

result back to the memory.

For each Wasm instruction or native function invocation, Aerogel’s runtime records the

total execution time under different processor states and computes the energy consumption

using the following formula:

Etotal =
n∑
i=i

Pi ∗ ti (4.1)

where P1, P2, ..., Pn are the different power states of the processor and t1, t2, ..., tn are the

corresponding execution times.

After the execution of one Wasm instruction, the processor energy usage checker checks
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whether the application’s total energy cost has exceeded the maximum allowable value. Sup-

pose the total energy cost is more than the allowed maximum. In that case, the application

is scheduled to sleep for a period defined by the user. Once the period has passed, the total

energy cost resets to zero.

Performance optimizations.

Since one application might have many Wasm instructions, it is inefficient to compute the

energy for every instruction. We introduce two optimization methods to reduce the overhead

of the processor energy checking procedures.

• For the static instructions whose execution times do not change under different appli-

cations, e.g., addition and subtraction, Aerogel’s runtime stores the value of their

associated energy cost. When Aerogel encounters those instructions, the checker

retrieves the value from the first computation.

• Similarly, when instructions have the same processor execution cycles, we only need to

compute the processor energy consumption for one of them and reuse the calculated

value for the rest instructions. For example, loading a 32-bit float to a register has the

same number of execution cycles as loading a 32-bit integer.

After passing the compute resource access control checkers, the application can issue

requests to access sensor and actuator peripherals. The requests are forwarded to the sensing

and actuation specific application access checkers.

4.4.4 Sensor And Actuator Access Control

Unlike the compute resource access controls checkers, the sensor and actuator access con-

trol checkers only enforce the access control rules when an application requires access to

the sensors or actuators. Aerogel’s sensor and actuator access control consists of three
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components: the sensor and actuator initial permission checker, the access monitor, and the

sensor and actuator energy usage checker.

4.4.4.1 Sensor and actuator initial permission checker.

The initial permission checker is triggered when a new application requests Aerogel’s

runtime to read the sensor data or write data to actuator peripherals. When such a request

is received, the initial permission checker checks whether the requested sensor or actuator

is in the allowlist of sensors and actuators for the application parsed from the specification

sheet. If the requested sensor or actuator is on the list, the initial access checker will allow

the request to advance to the next stage. Otherwise, a denial will be sent back to the

application.

4.4.4.2 Access monitor.

The access monitor verifies that only a certain (user-defined) number of applications are ac-

cessing the sensors and actuators, i.e., Aerogel enforces the user-defined counting semaphores

for sensor and actuator peripherals. When an application needs to register with the sen-

sor and actuator module, the access monitor finds the current total number of applications

accessing the sensor or actuator. If the access is less than the total number of allowed ac-

cesses, the peripheral access will be granted. Aerogel’s runtime then increments the total

number of accesses. When an application dispatches from the sensor and actuator module,

Aerogel’s runtime will decrement the total number of applications accessing the sensor or

actuator.

4.4.4.3 Sensor and actuator energy usage checker.

When there is a new peripheral event to be handled such as new sensor data or new actuation

command, the sensor and actuator module sends the power states of the sensor or actuator
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and the duration of that application on each power state to the sensors and actuators energy

usage checker. The checker looks up the power information of each power state sent from

the module according to the previously parsed per-device specification sheet. The checker

then computes the energy usage of this event using a similar formula as Equation 4.1 and

adds this energy to the total sensor or actuator energy consumed by the application for that

particular sensor or actuator.

The energy usage checker also compares whether the energy usage has exceeded the max-

imum allowable value. If yes, the access checker will request Aerogel’s runtime to virtually

dispatch the corresponding application from the sensor and actuator module, i.e., the ap-

plication cannot read or write to peripherals. The application’s total energy consumption

for the given sensor or actuator is only reset to zero when the user-defined reset period has

passed. If the application was previously dispatched from the sensors and actuators module,

it would be virtually registered back with the module. All virtual dispatches or registrations

do not decrease or increase the number of total accesses for that sensor or actuator.

4.5 Implementation

In this section, we will discuss the implementation of Aerogel.

4.5.1 System Setup

We prototyped our design Aerogel as depicted in figure 4.2 with the Wasm micro-runtime

(WAMR) [Byt]–which is implemented in a mixture of C and assembly on both a bare-metal

dev board (Nordic nRF52840 [Nor]) and a simulator (QEMU [QEM]). We use the Zephyr

real-time OS [Zep] as the bare-metal operating system. The nRF52840 dev board is equipped

with a 32-bit ARM Cortex-M4 MCU whose running frequency is 64 MHz with 1MB flash

and 256 KB RAM. The nRF52840 is mainly utilized by wireless IoT devices such as wireless

security cameras. Because we need to measure the overhead of Aerogel under different
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processor frequencies, we also set up the QEMU simulator with various MCU frequencies

from 10 MHz to 110 MHz with 512 KB RAM.

Aerogel and the associated runtime are implemented with a total of 2321 significant

Lines of Code (sLoC): 1399 sLoC for the Aerogel runtime implementation, 108 sLoC for

testing and debugging purposes, and 814 sLoC for evaluation.

4.5.2 Aerogel Runtime

We now describe how we implement the three major components of the Aerogel runtime:

the access control specification sheet parser, the sensor and actuator module, and the access

control checkers. Moreover, we describe how we augmented our implementation to support

Just-in-Time (JIT) compilation for the Wasm applications enabled by the WAMR.

4.5.2.1 Access control specification sheet parser

The parser needs to initiate two types of state variables when parsing the specification sheet:

global state variables and per-application state variables. The global state variables are

shared among all the applications. In particular, all variables extracted from the per-device

specification sheet information are considered global variables, e.g., the address of each sensor

and actuator, the power states, and the maximum allowable concurrent access to a particular

sensor or actuator. The access control specification sheet initiates the global state variables

only once. We implement the parse per device() function to parse the per-device access

control specification sheet at the beginning of the wasm env create()–which creates the

Wasm environment for all Wasm applications.

Per-application state variables are parsed from per-application specification sheets and

vary for different applications. We implement the parse per app() function to parse

the per-application access control specification sheet such that each application’s variables

are initialized. These variables include information about the allowable set of sensors and
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Table 4.1: APIs implemented of the sensor and actuator module exposed to the Wasm

application developer.

APIs Description

sensing (id, freq, duration,

cb func)

Register the application to the sensor with

id for given frequency and duration. The re-

sults are sent back by the callback function.

actuation(id, *value, cb func)

Send the actuation command with the ex-

pected value to the actuator with id. The

returned values if any from the actuator are

sent back through the callback function.

actuators, the energy allowed, and the associated reset time. The access control checker

will use the variables after each application is instantiated by the wasm instantiate()

function–which initiates the Wasm application runtime for a particular application.

4.5.2.2 Sensor and Actuator Module

We implement the sensor and actuator module as native functions that are exported and

exposed to the Wasm applications. When a Wasm application calls the sensor and actuator

module functions, the Wasm runtime looks into a function table pre-registered with all native

functions and finds the symbols of the sensor and actuator module functions. The symbols

are linked with the Wasm application at runtime.

We implement two APIs for application developers, as summarized in table 4.1. The

sensing API is used to register the application to listen to any sensing events, and the

actuation API is used to send an actuation command to the actuators from the application.

When a Wasm application invokes either of these APIs, the sensing and actuating functions

will first call the access control checking() function of the Aerogel runtime to ensure
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such a request is legitimate. If the request is to periodically send actuation commands or

receive sensing data, the sensing or actuating functions will call the energy and memory

usage checking functions to ensure the total energy and memory usage has not exceeded the

application’s allotment.

4.5.2.3 Access Control Checkers

The sensor and actuator access checkers’ implementation is integrated with the sensor and

actuator module. In particular, the sensor and actuator initial permission checker and the

access monitor are called at the beginning of the functions sensing (id, freq, duration,

cb func) and actuation(id, *value, cb func) before executing the sensing or actua-

tion requests. The sensor and actuator energy usage checker is implemented at the sensor

and actuator module before the peripheral request is executed. The reset timer used by the

Aerogel access control checkers to reset the total peripheral energy is realized with the

Zephyr up-time timer, which is the time relative to the board’s boot-up time.

The compute resource access checkers are implemented where a Wasm native function

or bytecode instruction is called. For the memory usage checker, it is invoked when extra

memory is needed for the Wasm application’s runtime. In particular, the memory usage

checker is implemented at the beginning of wasm instantiate() function that instanti-

ates the Wasm runtime environment for the application and the wasm enlarge memory()

function that requests extra memory when the current memory is not large enough. The

processor energy usage checker is implemented at the end of the execution of each Wasm

bytecode instruction or native function.

4.6 Evaluation

We evaluate our design Aerogel on both nRF5840 dev board and QEMU. We first explain

the benchmarks we used for our evaluation, followed by the experimental results.
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Table 4.2: Simulated sensors and actuators for Unmanned Aerial Vehicles (UAVs) and smart

home for Aerogel evaluations.

Category Device Name Peripherals Description Index Power Max Concurrent Access 

U
n

m
an

. 
A

er
ia

l 

V
eh

ic
le

 

(U
A

V
) Camera Camera image sensor Capturing the images ① 2W 5 

GPS GPS sensor Sensing GPS positioning signals ② 1W 10 

Propellers Motor actuators Controlling UAV propeller motors ③ 10W 1 

Sm
ar

t 
H

o
m

e
 

Camera 
Camera image sensor Capturing images ④ 5W 5 

Angle control actuator Controlling camera angles ⑤ 4W 1 

Door Control 

Motion Sensor Detection moving objects ⑥ 0.2W 10 

Door motor actuator Controlling door opening and closing ⑦ 3W 1 

Battery usage sensor Detecting battery capacity ⑧ 0.2W 10 

Speaker Speaker actuator Playing sound from the speaker ⑨ 4W 1 

Microphone Microphone sensor Sensing acoustic signals ⑩ 1W 2 

 

Table 4.3: Benchmark applications running on nRF52840 board and its access configurations.

 

App Name Description 
Devices 

Used 

# of 

Wasm 

inst. 

Wasm 

file size 

(Bytes) 

Allowed 

Devices 

Device 

Energy 

Allowed 

MCU 

Energy 

Allowed 

Memory 

Usage 

Allowed 

R
eg

u
la

r 

A
cc

es
s 

uav_ctrl UAV flight control system ①②③ 75 542 ①②③ 100 mAh 20 Ah Unlimited 

uav_sense UAV image capturing based on different locations ①② 41 362 ①② 50 mAh Unlimited 250 KB 

home_monitor Voice control to get home info and play it via the speaker ④⑧⑨⑩ 86 607 ④⑧⑨⑩ Unlimited Unlimited 255 KB 

home_security Door opening after image identity verification ④⑤⑥⑦ 70 565 ④⑤⑥⑦ 100 mAh Unlimited 230 KB 

R
es

tr
ic

t.
 

A
cc

es
s 

uav_shortage_mcu Exceeds max allowed MCU power usage on UAV ① 41 374 ① 10 mAh 0.5 Ah 250 KB 

home_shortage_cam Exceeds max allowed home camera power usage ④ 41 393 ④ 1.5 Ah 60 Ah 240 KB 

uav_max_access Exceeds max allowed access to UAV propellers ①③ 77 549 ①③ 60 mAh 70 Ah 250 KB 

home_init_denial Access to some smart home sensors denied ④⑧⑩ 55 490 ④ 60 mAh 50 Ah 200 KB 

 

4.6.1 Benchmarks

To evaluate our design, we first implemented several simulated sensors and actuators for

Unmanned Aerial Vehicles(UAVs) and smart home environments. For the UAVs, we simu-

lated a camera, a GPS, and the motor for the propellers. For the smart home scenario, we

simulated four different devices that have more than one sensor or actuator, e.g., a smart

home camera and a door controller. Table 4.2 summarizes all of the simulated devices.

We evaluated eight different Wasm sensing and actuation applications, as summarized

in table 4.3 based on the sensors and actuators of the UAVs and the smart home. Among
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these eight Wasm sensing and actuation applications, four of them have regular access to

the sensors or actuators. The other four are restricted to evaluate denial for certain access

requests.

The regular access Wasm applications for UAVs are the uav ctrl that is designed to be

the UAV flight control system, and uav sense that is used to capture an image through the

camera of the UAV. In the smart home scenario, we proposed a home monitor application

that monitors the home status through the available sensors and a home security applica-

tion that protects the safety of the home. The four restricted access applications are used to

evaluate the four different access control checkers under extreme conditions such as a short-

age of processor energy consumption and sensor energy consumption, maximum concurrent

accesses to peripherals, and initial access to peripherals denial. For each sensor or actuator

the applications try to access, we set the duration for one second.

4.6.2 Results

We analyze the results of the benchmarks on the nRF52840 board and QEMU. We combined

the overhead of the initial access checker, the memory usage checker, and the maximum

concurrent access checker for all of our results. The total overhead in the worst case is less

than 0.07% of the execution time.

4.6.2.1 Latency overhead

We run all benchmark Wasm applications on the nRF52840 board, as summarized in ta-

ble 4.4. The reported overhead in this table does not include the specification sheet parsing

since this is done only at the system boot up time, where the average overhead of parsing

the specification sheet is 450ms.

Our results show that for the regular access applications, Aerogel runtime introduces at

most 1.04% overhead. Most of the overhead comes from the sensor and the actuator energy

64



Table 4.4: Aerogel overhead of benchmark applications running on nRF52840 dev board.

 Aerogel Overhead Breakdown    

Percentage over 
Total time 

Processor 
Energy 

Checker 

Sen./Act. 
Energy 

Checker 

Other 
Checkers 

Total 
Aerogel 

Overhead 

App 
Execution 

Total 
time 
(ms) 

uav_ctrl 0.01% 1.02% 0.01% 1.04% 98.96% 3166 

uav_sense 0.00% 0.17% 0.01% 0.19% 99.81% 1056 
home_monitor 0.00% 0.92% 0.02% 0.94% 99.06% 4127 
home_security 0.00% 0.58% 0.02% 0.61% 99.39% 4092 

uav_shortage_mcu 0.01% 0.12% 0.01% 0.14% 99.86% 1530 
uav_shortage_cam 0.01% 0.52% 0.02% 0.55% 99.45% 1171 
uav_max_access 0.01% 0.17% 0.06% 0.24% 99.76% 1064 
home_init_denial 0.01% 0.09% 0.07% 0.16% 99.84% 1054 

 

checker, whose energy checking happens more frequently than the other checkers. For the

UAV sensing application, the overhead is only 0.19% of the total execution. This reduction

comes from the shorter execution time–which implies lesser sensor and actuator energy usage

checks. When examining the runtime overhead of the restricted access applications, we found

the sensor energy shortage application has the most overhead at 0.55%. This overhead is the

result of the applications that require frequent access to sensors and, thus, more energy checks

when new sensor data is available. On the other hand, the lowest MCU application’s overhead

is 0.14%. When the application’s energy usage is denied, the application is scheduled to sleep

immediately–resulting in fewer checks than other applications.

We examined the overhead percentage of different access checks relative to the total

Aerogel overhead. The results–depicted in Figure 4.4–show that the sensor and the actua-

tor energy usage checker consumes the most overhead. The energy usage checker is triggered

when a new sensor event or actuation command needs to be handled. Some applications,

e.g., the uav control that sends more than 1000 actuation commands, trigger thousands of

sensor and energy usage checking procedures. In contrast, the processor energy usage checker

triggers only tens of times, as shown in table 2.1. Hence, the overhead of the sensor and

actuator energy usage checker is significantly higher than that of the processor energy usage

checker. Other access control checkers, such as the initial access control checker, consume
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Figure 4.4: The overhead percentage of different Aerogel runtime access control checkers

under each Wasm application on nRF52840 board.
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Figure 4.5: The overhead of Aerogel for uav sense on nRF52840 board under various

camera sensing frequency.

a large portion of the overhead only in restricted access applications, especially the initial

access denial app. This overhead is due to the high-frequency sensor’s access denial, resulting

in fewer energy usage checks.

We ran the experiment under different sensing frequencies on the nRF52840 dev board

and different processor frequencies on the QEMU emulator. Figure 4.5 shows the different
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Figure 4.6: The overhead of Aerogel for home security on QEMU simulator under various

MCU frequency.

camera sensing frequencies of the uav sense application. The overhead of the sensor and

actuator energy usage checker increases with respect to the increase of the sensing frequency.

In contrast, the overhead of other access control checker does not increase. The sensing

frequency change only increases the number of sensing events that trigger the sensor energy

usage checking. We also show the overhead of Aerogel runtime under different MCU

frequencies on the QEMU simulator, as illustrated in Figure 4.6. Aerogel runtime has

very minimal overhead when the MCU frequency is greater than or equal to 70 MHz.

4.6.2.2 Memory overhead

We next evaluated Aerogel’s SRAM and flash memory overhead. We only evaluated

the memory overhead for the four regular access applications since the restricted access

applications cannot provide full execution paths. The flash memory size is the size of all

the compiled code–including the OS, the applications, and the Aerogel runtime. For

the flash memory, Aerogel runtime only introduces a marginal overhead that is less than

5KB–independent of the application. The Aerogel runtime overhead of SRAM is also

minimal around 0.1KB. This minimal overhead is due to the fact that no significant amount
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Figure 4.8: The SRAM usage of nRF52840 board when running different applications.

of temporary data is stored in memory.

4.6.2.3 Energy consumption

Finally, we evaluated our benchmark on nRF52840 for energy consumption. To measure

the board consumption, we used the Monsoon power monitor [Mon] to connect to the dev

board. The monitor provides a 3V external battery for the board. Our results show that

the Aerogel runtime costs a maximum of 0.65 µAh and a minimum of 0.39 µAh for all

regular access applications. For the restricted access control applications, the energy con-
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Figure 4.9: The energy consumption of nRF52840 board when running different applications.

sumption with Aerogel runtime enabled for some applications such as home init denial

and uav max access is less than those without enabling Aerogel runtime. This is because

when such access is denied, Aerogel runtime does not need to have further energy usage

check of the sensor or actuators. The application is not allowed to further execute to read

the sensor data or to send the actuation commands.

4.7 Security Analysis

We will do the security analysis and discuss the future works.

Attack Prevention. Due to the memory protection characteristics of Wasm, Aerogel

can build a secure runtime that provides software memory isolation for all peripherals even

when the devices lack the memory address space separation from MMU. Aerogel also

protects the bare-metal IoT devices from malicious applications that try to drain the device’s

resources such as the battery and memory. Moreover, Aerogel can protect the sensors and
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actuators of the device from being accessed without the user’s authorizations. Further,

Aerogel’s processor energy usage checker can mitigate a Denial-of-Service (DoS) attack

from a malicious Wasm application because it has a restricted energy and memory usage

allotment.

Limitations. Aerogel cannot protect against side-channel memory attacks [LKP20].

Aerogel also cannot protect against cyber-physical attacks on the peripherals such as

GPS spoofing. Furthermore, Aerogel cannot prevent the application from misusing the

sensor data or sending dangerous actuation commands if it is granted access to the sensor

or the actuator. Next, Aerogel cannot provide access control for sensors or actuators that

are not memory-mapped I/Os, e.g., interrupt-based sensors, because Wasm runtime only

provides the isolation of the memory. Finally, RAM energy usage control is out of the scope

of this paper.

4.8 Related Work

We now compare the existing work with Aerogel.

Wasm on Edge. OneOS [JGP19] designs a single-image universal edge OS for heteroge-

neous IoT devices using JavaScript that can enable Wasm execution. Hall et al. [HR19]

utilizes Wasm to execute serverless functions on edge to reduce the hardware resources us-

age with respect to traditional edge serverless computation systems. Wasmachine [WW20]

uses Wasm to host an edge operating system with kernel written by Rust to speed up the

applications running on top of it. Jeong et al. [JSS19] proposes a system offloading Wasm

functions mingled with JavaScript to edge server from the mobile devices to reduce execu-

tion latency. However, unlike Aerogel, none of the above focuses on access protections to

use peripherals such as sensors and actuators on bare-metal IoT devices where MMU is not
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available.

Memory Protection on Bare-metal Devices. ACES [CAB18], uXOM [KSK19], Mi-

croGuard [SHC19] and Clements et al. [CAS17] use the compiler to achieve the memory

compartmentalizing on bare-metal devices based on ARM Cortex-M’s Memory Protection

Unit (MPU). PicoXom [SC20] uses MPU to provide read-only memory execution environ-

ment on ARM Cortex M environment. µRAI [ACB] enforces Return Address Integrity (RAI)

by modifying the compiler to move the return address from writable memory to read- and

execute-only memory regions. Moreover, ARMor [ZLD11] uses formal verification methods

of software fault isolation (SFI) to ensure the memory safety and the control flow integrity of

applications by inserting dynamic check before certain instructions. Unlike them, Aerogel

is able to achieve memory isolation including the protections to the peripherals at runtime

without pre-inspecting the applications.

Access Control on IoT Devices. Access control on IoT devices. AccTee [GNK19] uses

Intel SGX with Wasm to enforce access control usage for the memory and CPU usage for

cloud applications. Several prior works [AKA19, PDK19, OBS18, HCK18, LMN18] adopt

blockchain techniques to achieve decentralized access control for IoT devices. Atlam et

al. [AAW17] builds an access control model based on the context of the environment to decide

whether granting the access request exposes the security risks of the data usage. However,

although the above works propose access control framework for IoT networks, these works

fail to provide fine-grained access control for applications running on an individual devices

unlike Aerogel.
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4.9 Conclusion

In this paper, we propose Aerogel, a lightweight access control framework to provide

the users capabilities of having fine-grained access control for Wasm-based bare-metal IoT

devices. Aerogel leverages the security features of Wasm runtime to protect the access

and usage of peripherals. We prototype Aerogel on nRF52840 dev board, and the results

show that Aerogel only introduces 0.19% to 1.04% overhead.
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CHAPTER 5

SecDeep: Secure and Performant Deep Learning

Inference Framework for Edge Devices

5.1 Introduction

Deep learning (DL) has enabled applications that require complex reasoning about the raw

sensor data stemming from the proliferous Internet of Things (IoT) [LOD18b]. Tradition-

ally, to account for the memory and computation constraints of edge devices, resource-

intensive tasks such as deep learning (DL) inferences have been offloaded to cloud-based

resources [OSS20, WCY18, WZB18]. With the increasing demands for better application

latency and privacy, recent efforts have pushed such inference tasks closer to the edge devices

where the data are collected. Thanks to emerging on-device technology with low-power pro-

cessors and accelerators, edge devices are now capable of performing advanced computation

tasks such as moderate deep learning tasks [WBC19, XDH18, OG18, LZC18]. Unfortunately,

larger computation tasks entail a larger attack surface, and securing DL inference models

from leaking private information in untrusted operating systems is a daunting challenge even

for cloud environments.

Recent advances in trusted execution environments (TEEs) have provided an opportunity

to revisit the security mechanisms for protecting computation and private user information.

A TEE is a secure area in the processor that enables the mapping of sensitive data and

associated computation into trusted memory before interacting with an untrusted operating

system. TEEs such as Intel SGX [Inta] and AMD SEV [AMD] are enabled in the latest
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Intel and AMD CPUs to provide secure computations for applications. ARM CPUs—which

are ubiquitous in mobile and IoT edge devices—are enabled with ARM TrustZone [ARMa]

TEEs that can map sensor peripherals to trusted memory. These hardware-based solutions

enable a new opportunity to build trusted DL inference systems from the digitization of

sensor values to the output DL inference.

Indeed, we are not alone in recognizing this promise to secure DL inferences, and there are

concurrent efforts to protect offloaded inference tasks using TEEs [LLP19, OSF16b, GHZ18,

TGS18]. However, these solutions are specifically designed for cloud environments and are

not viable solutions for low-power, low-memory edge devices. Moreover, these solutions also

fail to interface the TEEs with available accelerators securely (e.g., GPUs). Accordingly,

they suffer from fundamental issues in achieving security and performance:

• Large secure memory usage and TCB: To protect the entire DL inference, we can simply

try to place everything—framework, data, and model, into the TEE. Unfortunately, this

is not a feasible solution due to a large trusted computing base (TCB) and inherent mem-

ory constraint [LLP19]. Current efforts for securing DL on the cloud [LLP19, OSF16b,

GHZ18, TGS18] leverage Intel SGX with 128MB of total secure memory, which would be

a significant amount of secure memory for edge devices (as in §5.2.2). Moreover, as typical

edge deep learning frameworks have hundreds of thousands of lines of code, placing such

a large codebase within a TEE contradicts the notion of minimizing the TCB and attack

surface.

• Limited inference performance: TEEs have yet to be interfaced with on-device accelerators

to enable secure and performant DL inference, completely neutralizing the benefits of the

accelerators. Our experiments demonstrate that on-device accelerators can improve the

inference latency by more than two orders of magnitude.

In this paper, we address these limitations by presenting SecDeep. SecDeep aims to

protect data confidentiality during the entire end-to-end DL inference on edge devices, from

the digitization of the raw sensor data until obtaining the inference results from accelerators.
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We further extend the guarantees toward the integrity of the inference model and the under-

lying computation. SecDeep demonstrates that we can adequately secure GPU-accelerated

DL inference frameworks on edge devices.

In designing SecDeep, there are several technical challenges to address. (1) First, we

must minimize the TCB and the secure memory of large DL model inference frameworks

while not significantly degrading the performance or utility. This first challenge implies that

we need to identify a portion of the DL model inference frameworks that can reside outside

of the TEE while being able to leverage available accelerators. (2) Second, if we are to run

a portion of the DL model inference framework outside of the TEE, we must ensure the

integrity of the associated code. (3) Finally, we must further ensure the confidentiality of

any data that needs to be passed this code residing outside of the TEE. We tackle these

challenges as follows:

• DL model computation split: to reduce the TCB size of the DL inference model, we

split the model computation base into a confidential computing base and a nonconfidential

computing base. The confidential computing base is comprised of any code that interacts

with the plaintext input data, e.g., matrix multiplication in a convolutional layer of a deep

learning model. The nonconfidential computing base is comprised of any code that does

not need to interact with the plaintext tensor data, e.g., GPU configuration code.

• Runtime integrity checker inside TEE: to verify any parts of the model and related code

running in the untrusted environment, we utilize code signing. At compilation time, our

enhanced compiler will sign the nonconfidential computing base with cryptographic hash-

ing. When the model is loaded, the integrity checker sanitizes any access request to the

nonconfidential computing base to preserve integrity.

• Secure runtime data management: although the nonconfidential code and data are exposed

to the untrusted OS, the data are adequately encrypted when they go outside of the TEE.

SecDeep adopts similar techniques from [YZ19, ANS14] in which the kernel page table is

treated as a user-space process page table to protect the code’s integrity. SecDeep uses
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Format-Preserving Encryption (FPE) to hide the values of the data.

We implement SecDeep prototype using an edge device enabled with ARM TrustZone

TEE [ARMa] and interface it with an embedded GPU through the ARM NN SDK [ARMk].

We minimize the TCB of the ARM NN framework from 232K sLoC to 1K sLoC. Our eval-

uation shows that SecDeep achieves 16× to 127× better inference latency than CPU-only

solutions for a representative set of on-device deep learning models (SqueezeNet [IMA16],

MobileNet V1 [HZC17], MobileNet V2 [SHZ18], GoogleNet [SWY15], YoloTiny [RF16],

ResNet50 [HZR15], and Inception [IS15]) while ensuring confidentiality and integrity of the

data and code.

We make the following contributions in this chapter.

•We present SecDeep, the first system to our knowledge that provides secure and private

deep learning model inference framework for edge devices. (§5.3)

•We develop a technique for edge devices to minimize the TCB via proper DL computation

split and ensure the integrity of the code and the associated split through secure bootup.

(§5.4)

•We show how SecDeep can maintain the performance of DL inference on the edge by

securely interfacing on-device accelerators with TEEs. (§5.5)

•We implement SecDeep for ARM-enabled edge devices by interfacing the ARM TrustZone

TEE with the ARM NN deep learning computation framework. We minimize the TCB of

the ARM NN from 232K sLoC to ˜1K sLoC. (§5.6)

•We evaluate SecDeep on a representative set of deep learning inference models and demon-

strate that deep learning on the edge can be secure and performant. (§5.7)

5.2 Background and Motivation

This section will discuss the background and motivation of our SecDeep framework.
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5.2.1 DL Inference Framework on the Edge

Due to the high demand for edge computing needs resulting from data privacy, network la-

tency, and network bandwidth concerns, the most popular deep learning frameworks provide

support to run deep learning model inferences at the edge directly from the raw input sensor

data. For example, Caffe2 [Caf], PyTorch [PyT], and TensorFlow Lite [Ten] provide devel-

opers with an efficient way to perform deep learning inference at the edge before sending

them to the cloud. More generic platforms, such as ARM NN [ARMk], have emerged from

hardware vendors, allowing the aforementioned deep learning frameworks to target common

platforms with the same underlying computation base. ARM NN currently supports both

Caffe and Tensorflow1 for a more generic optimized performance on ARM devices. These

frameworks expose a common design: a framework composed of a neural network parser

along with computation libraries that are optimized for specific operating systems such as

Android [And] or iOS [Appb].

Neural network parser. Most on-device deep learning frameworks consist of a neural

network parser. Given a model that is generated using a supported framework such as Caffe

or Tensorflow, the parser compiles the model into a graph representation that interfaces

with the underlying computation libraries. This graph is constructed in a way that can be

optimized for the backend execution.

Computation optimization. On-device deep learning frameworks also typically have

backend execution frameworks to optimally execute the associated neural network graph

representations depending on the available computation resources. For example, in ARM

NN [ARMk], if multiple backends are available simultaneously, the graph will be established

such that multi-computing can be achieved efficiently. The resource optimizer validates the

correctness of the input model and optimizes the resources needed for the model. It can

remove redundant operations, reshape the data if necessary, reorder the graph constructed

1Support for other frameworks are currently under development.
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by the parser, and determine which acceleration methods to use.

Given these computation frameworks for deep learning inference on the edge, we now

discuss how to secure the computation on these devices.

5.2.2 Secure Computation on the Edge

Although software-based cryptographic mechanisms allow for the protection and sanitiza-

tion of this digitized data on edge devices, the data can still be leaked either prior to being

encrypted or at the time of computation when the data are decrypted [YZ19]. To protect

the computation, most mainstream CPU manufacturers provide hardware-assisted TEEs.

For example, Intel provides extension guarding instructions (Intel SGX [Inta]) to establish

per-application TEE, and AMD also provides secure execution environments (Secure En-

crypted Virtualization [AMD]) to protect the application’s data confidentiality. However,

the most popular trusted execution environment that provides access protection to periph-

erals equipped on edge devices is ARM TrustZone [ARMa].

Trusted execution environments. Trusted execution environments (TEEs) are hardware

protection mechanisms that isolate the memory into secure memory and unsecure memory.

The secure memory can only be accessed by privileged code running inside the TEE while

any code can implicitly access the unsecure memory. In ARM TrustZone, the secure memory

code resides in secure memory—referred to as the Secure World (SW), whose high privilege is

designated by setting a special ARM instruction SMC. The unsecure code resides in unsecure

memory—referred to as the Normal World (NW). The context switch between SW and NW

is done through a Secure Monitor (SM) [ARMh].

Although one may trivially assume that computation for a large model such as a deep

learning model could be placed within the secure world of a TEE, we discuss the several

reasons why this is a strawman solution.

Strawman solution for secure model inference. A naive approach to provide such
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Figure 5.1: Maximum memory consumption of different Caffe models on an ARM device

using ARM NN.
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Figure 5.2: The average inference latency (log scale) of different Caffe Models on an ARM

device using ARM NN.

protections such as data confidentiality and code integrity is to put the entire deep learning

framework inside the trusted execution environment. However, this approach has two critical

flaws: 1) excessive secure memory usage is required (e.g., up to 821MB), 2) a large trusted

computing base will increase the attack surface of the application.

Mobile and IoT devices are typically memory-constrained on the order of a few Giga-

bytes. Secure memory is generally limited to tens of Megabytes per application as the initial
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allocation is deducted from the normal operating system’s unsecure memory allocation. For

example, in ARM TrustZone, the memory configuration is done at boot time, so the more

secure memory, the less unsecure memory for an already resource-constrained device. In

this paper, we follow the lead of prior works [AS19] and allocate only tens of Megabytes of

secure memory to provide the same level of protections—limiting the feasibility of running

large deep learning inference models within secure memory. For instance, Figure 5.1 shows

the maximum memory consumption of running different Caffe models on an ARM device

using ARM NN. Without any acceleration, the smallest model (SqueezeNet) consumes 28

MB of memory. With accelerators enabled, the memory consumption for a model inference

could shoot up to 821MB. Of course, without accelerators, the performance of on-device deep

learning inferencing applications is degraded by several orders of magnitude—as depicted in

Figure 5.2.

Moreover, Table 5.1a shows that edge deep learning frameworks could bring hundreds

of thousand lines of code. If the whole framework is placed inside TEE, the total trusted

computing base (TCB) size will be tremendously large and introduce unnecessary attack

surfaces. Upon analysis of the ARM NN deep learning inference framework as shown in

Table 5.1b, we found that, without acceleration, typically 90.2% of the framework code is

for tensor computation preparation or for performance optimization, and only about 9.8% is

dedicated to mathematical tensor computation that changes the values of the input tensor

data and yields the values of the output tensors. With acceleration enabled, the computation

and preparation code makes up about 99% of the code. Furthermore, the output of the

computation preparation and the performance optimization code only depends on the size

of the input rather than the values of the input. Thus, our design aims to leverage the

hardware-assisted execution environment to reduce the TCB size while still sanitizing the

access to accelerators with high security level by only putting the tensor value computation

code inside the TEE while leaving the tensor preparation code, the resource configuration

2including GPU acceleration backends in ARM ComputeLibrary
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Table 5.1: Lines of code for different deep learning frameworks on edge as well as a break-

down for the ARM NN deep learning inference framework. The table highlights the small

percentage of code dedicated to the privacy-sensitive tensor computation.

Framework Name sLoC

TensorFlow Lite [Ten] 404K

Caffe2 [Caf] 368K

PyTorch [PyT] 191K

Deeplearning4j [DL4] 690K

ARM NN2 [ARMk] 232K

(a) Lines of code for different deep learning frameworks on edge.

ARM NN No Accel. sLoC Pct.

Tensor Preparation 109.9K 90.2%

Tensor Computation 11.95K 9.8%

ARM NN GPU Accel. sLoC Pct.

Tensor Preparation 232K 99.95%

Tensor Computation 114 0.05%

(b) Lines of code breakdown for ARM NN deep learning

inference framework.
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Figure 5.3: The system model of SecDeep. We aim to secure DL model inferencing on IoT

edge devices that are enabled with a TEE and possibly on-device accelerators.

code, and the optimization code outside of TEE.

5.3 Overview

In this section, we describe the scope and workflow of SecDeep before discussing the main

technical challenges and insights.

5.3.1 Problem Scope

System Model: SecDeep is a general secure framework residing on the edge of IoT

networks to protect deep learning inference tasks, as shown in Figure 5.3. We assume the

devices are enabled with hardware support for TEEs as well as on-device neural accelerators.

We further assume that the DL model provider does not care about the confidentiality of

the DL model and its underlying computation framework, e.g., the model may be a publicly

available DL model such as SqueezeNet [IMA16] with an open-source computation framework
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such as ARM NN [ARMk]. To verify the integrity of the DL models in SecDeep, we

expect the provider will supply the hashes of the authentic models using cryptographic hash

functions (e.g., SHA-3 [Dwo15] and BLAKE3 [JZ]). During inference tasks, SecDeep is

designed to achieve (1) user data integrity and confidentiality, (2) the integrity of deployed

DL models, and (3) the integrity of supporting codebase, e.g., TensorFlow Lite [Ten], ARM

NN [ARMk].

We envision IoT device vendors and IoT cloud operators being early adopters of such

a framework, given the supporting evidence that inference tasks are being pushed closer to

the edge. As such, we consider two system scenarios to deploy SecDeep. (1) In the first

scenario, an IoT cloud backend needs the inference information from a mobile or IoT device

on the edge. The backend sends the request to the edge devices, and the edge device only

returns the final inference output from SecDeep instead of the raw, potentially large sensor

information to preserve user privacy and reduce network latency. (2) The second system

scenario is a mobile or IoT edge device that needs to perform end-to-end local inferencing

without needing to access or share any information with the IoT cloud backend. Given this

system model, we now consider the threat model for SecDeep.

Threat Model: SecDeep considers a strong adversary that aims to compromise the op-

erating systems in order to intrude, forge, and modify the inference tasks, as well as to steal

user data from the non-protected processes. Thus, we cannot trust any part of the soft-

ware stack—including the OS—that resides outside of a TEE. And although there are many

ways to defend against side-channel attacks and Denial-of-Service (DoS) attacks targeting

the program and data inside of a TEE, we assume that side-channel attacks, DoS attacks,

and cyber-physical attacks on sensors are outside of the paper’s scope. Given the system

and threat models of SecDeep, we now summarize the goals of its design.

Goals: SecDeep aims to protect data confidentiality during inference, starting from the

digitization of the raw sensor data until obtaining the inferenced results. This protection im-

plies that the confidentiality of any intermediate, generated metadata will also be protected.
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Figure 5.4: The architecture overview of SecDeep. The Dark shaded areas are the compo-

nents of SecDeep framework and the light shaded areas are the TEE.

Further, SecDeep aims to ensure the integrity of the inference code and the associated

model. Finally, SecDeep aims to utilize a minimal trusted computing base size with reason-

able inference latency and energy consumption while incurring no inference accuracy loss.

We illustrate how these design goals are achieved by walking through the SecDeep workflow.

5.3.2 SecDeep Workflow Design

Figure 5.4 shows the design architecture of SecDeep. The workflow of SecDeep can be

broken down into three steps: 1 transforming the deep learning inference computation base

for trusted execution, 2 secure, confidential, and performant execution of the deep learning

inference model, and 3 securing the inference result.
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DL model computation transformation for trusted execution. To identify which

components of the DL inference code and data should reside within the TEE, we first split the

deep learning libraries into two parts: a confidential computing base that executes in a TEE,

and a nonconfidential computing base that executes in the untrusted execution environment.

Generally, any code that only requires access to tensor metadata, e.g., tensor shapes, rather

than the plaintext tensor data, will be designated to the nonconfidential computing base.

Otherwise, the code will be designated as confidential. The confidential and nonconfidential

computation base are annotated at a functional level with preprocessor directives to enforce

this computation split at compile-time (as is done in Figure 5.5a). Given a split computation

base, the SecDeep system is initialized through a secure boot that ensures the integrity

of the entire SecDeep code base [She15, AFS97, Win08, Win12] as well the confidentiality

of the designated code. With a secure boot in place, we can now describe how SecDeep

handles the aforementioned split computation base at runtime.

Secure execution. After SecDeep properly loads the framework code, SecDeep starts

to load user data and performs the inference tasks in the following steps.

• First, the user data (e.g., sensor data) are securely loaded into the TEE via protected

drivers. Thus, the confidentiality and integrity of the data are guaranteed.

• Second, once the data are inside the TEE, SecDeep’s data manager decides if any noncon-

fidential code or data needs to be exported to the nonconfidential computing base due to

memory footprint limitation. When some data are set to be exported, SecDeep encrypts

them inside the TEE to ensure confidentiality.

• Third, to perform the inference, the nonconfidential computing base uses encrypted data

with the model parameters for the current neural network layer to configure the tensor in-

formation and send it back to the confidential computing base. Inside the TEE, SecDeep

then decrypts the data and begins executing the current layer collaboratively using a pro-

tected accelerator (e.g., an embedded GPU). After the results have been computed for

the current layer, SecDeep will repeat the same procedure until the inference process is
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complete.

Secure output: Because the inference process up until the output is secure and confidential,

securing the output is trivial, e.g., the results can be signed or encrypted before being sent

back to the requester. Therefore, we focus on the challenges and design of the first two

components of the SecDeep framework.

5.3.3 Challenges and Key Insights

Given this workflow, we highlight the key design challenges and our associated approach for

each.

Challenge 1: Managing the TCB size for the TEE. Performance with limited secure

memory is constrained. SecDeep needs to use limited secure memory to provide protec-

tions for the input data along with any data generated throughout the inference process

while providing a performant deep learning inference framework. SecDeep utilizes Format-

Preserving Encryption (FPE) along with an on-demand table to fulfill this requirement, as

described in section 5.5.2. Although the on-demand table requires more memory, our ex-

periments show that it significantly reduces the necessity for encryption and decryption of

often-used values and, thus, significantly reduces overhead.

Challenge 2: Ensuring code integrity outside of the TEE. Any code cannot be mod-

ified by the compromised OS after it is loaded into memory outside of the TEE. SecDeep

treats the kernel page table as a user-space process page table. This allows SecDeep to

forward every modification from the kernel page table after the system boots up to the TEE

to ensure the integrity of the inference code running outside of the TEE as described in

section 5.5.1.

Challenge 3: Ensuring data confidentiality outside of the TEE. Because some of

the code, i.e., the nonconfidential computing base, will reside outside of the TEE, there is

an inherent risk when computing with confidential data. Because this code only requires
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information about the properties of the confidential data, e.g., data size, the TEE generates

a placeholder value for the confidential tensor data. In particular, SecDeep uses format-

preserving encryption (FPE) to generate encrypted data with the same size and length as

the plaintext tensor data.

5.4 Transforming Inference Computation for Secure Execution

We now describe the design of the first major component of the SecDeep workflow. We

describe how the deep learning computation base is split into confidential and nonconfidential

code. We then briefly describe how we ensure the integrity of the code and the associated

split at bootup.

5.4.1 Splitting Deep Learning Computing Base

As discussed in Section 5.2, placing the entire DL inference computation framework within

a TEE is infeasible and only increases the attack surface of the TEE. Thus, given a DL

inference computation framework, we need to identify a minimal set of code that needs to

be protected inside TEE. In this case, we aim to protect only code that is designated as

confidential. This code will be annotated at development time so that it can be separated

from the nonconfidential code at compile-time and loaded into the TEE.

Deep learning confidential computing base. To minimize the code running inside TEE,

we design the confidential computing base to be composed of the deep learning inference

computation that requires access to the unencrypted, plaintext values of the tensor data.

For example, Figure 5.5a shows a snippet of code for different activation functions for a

neural network. The functions require access to the tensor values (Line 10) to calculate the

activation output for the next layer of the neural network. The variable inputTensor cannot

be replaced by any placeholder value without losing the fidelity of the original computation.

However, as per Section 5.2, we find that this confidential base typically makes up a very small
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1. /* Sample Confidential Computing Base Code */

2. float[] CPUActivation[CONFIDENTIAL] (inputTensor, 

3. tensorInfo, 

4. activationFunc,

5. float weight, float bias)

6. {

7. int tensorSize = tensorInfo.getTensorSize();

8. float[tensorSize] results;

9. for (int i = 0 ; i < tensorSize ; i++) {

10. float tensor_value = inputTensor.getData(i);

11. switch(activationFunc) {

12. case Linear:

13. results[i] = weight * tensor_value + bias;

14. break;

15. case SoftReLu:

16. results[i] = log(1.0f + exp(tensor_value));

17. break;

18. // Other Activation Function Computations

19. ...

20. }

21. }

22. return results;

23. }

(a) Confidential computing base code.

1. /* Sample Nonconfidential Computing Base Code */
2. void configureGPUActivationLayer(inputTensor, *layerInfo)
3. {
4. // Build config options. e.g. DataType
5. int dimension = inputTensor.data().dimension();
6. DataType type = inputTensor.type();
7. ...
8.
9. String configured_option = build_options(dimension, type, ...);
10. String layer_id = "activation_layer_1";
11. String gpu_kernel = "activation_layer";
12. // Set the GPU configuration
13. layerInfo.setGPUConfigure(configured_options, layer_id, gpu_kernel);
14. }

(b) Nonconfidential computing base code.

Figure 5.5: Example snippets of confidential and nonconfidential deep learning inference

computation code. Confidential code requires access to the plaintext tensor data, while non-

confidential code only requires information about the tensor metadata, e.g., the dimensions.

percentage of the overall computation base. Line 2 also shows an example of how a developer

may annotate a function as confidential with a preprocessor directive ([[CONFIDENTIAL]]3).

3This syntax is similar to the syntax used by a previous work that annotated code that can parrot-
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Deep learning nonconfidential computing base. Any code that does not require access

to the plaintext, unencrypted tensor data is designated as nonconfidential and will reside

outside of the TEE in the untrusted software stack. For example, Figure 5.5b shows a

snippet of code that observes the input tensor shape and configures the GPU accordingly.

The only interaction with the confidential variable inputTensor involves extracting the

variable dimensions and data type on Lines 5 and 6. The GPU configuration call does not

require access to the tensor values. Therefore, this code can easily be refactored such that

the tensor data is replaced with a placeholder variable that has arbitrary values with the

same shape, size, and data type. This maintains the fidelity of the original function and

would not compromise the integrity of the overall computation.

Despite this code being designated as nonconfidential, its integrity is still imperative to

the overall computation base. We describe how we maintain its integrity in Section 5.5.1.

Before doing so, an underlying assumption is that SecDeep’s base confidentiality enforce-

ment mechanism, along with the peripherals, has been secured upon booting the system.

We describe how a secure path can be established from sensor peripherals to accelerators in

the following subsection.

5.4.2 Securing the Path from Sensor Peripherals to Accelerators

SecDeep needs to create a secure path such that the raw sensor data along with any gen-

erated, intermediate metadata are protected when interfacing with accelerators. To achieve

such protections, SecDeep utilizes the properties of TEE to disable access to the protected

sensors and accelerators from the untrusted OS. SecDeep configures the memory-mapped

IO addresses of the sensors and accelerators into the secure memory of TEE such that, upon

booting up, those TEE-protected memory-mapped IO addresses can only be accessed by the

privileged code inside TEE, but not the untrusted OS. For example, in ARM TrustZone, if

transformed (approximated) by a neural network [ESC12].
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the memory-mapped IO addresses for the sensors are configured as secure memory addresses

before the system boots, any access to those addresses from the untrusted will be trapped

to a higher level execution (i.e., Boot Loader Stage 3 (BL3) [ARMf]) through exceptions,

and the secure world in the ARM TrustZone is able to decide whether such access requests

should be granted or not.

SecDeep furthers leverages secure boot features supported by most edge devices to

establish the initial mapping of sensor peripherals within the TEE [She15, AFS97, Win08,

Win12]. With secure boot, we can guarantee that the boot configuration, such as the TEE

configuration is properly enforced. Moreover, the secure boot also ensures the integrity and

confidentiality of any code that is designated as part of the confidential computing base.

However, although a TEE along with a secure boot mechanism allows us to provide a secure

path from raw sensor data to accelerators, SecDeep’s secure runtime execution is incomplete

as we still need runtime mechanisms for checking the integrity of the code as well as data

management between the confidential and nonconfidential computing bases.

5.5 Secure and Performant Inference Execution with Accelerators

In this section, we describe how the SecDeep secure runtime provides runtime protection

for the entire deep learning inference framework. SecDeep collaboratively works with the

data stack to serve as a secure storage outside of TEE when any datum is exchanged be-

tween the TEE and the untrusted execution environment. The SecDeep secure runtime is

comprised of two major components: a runtime integrity checker as well as a data manager.

To enable both components, we later detail the secure APIs exposed by SecDeep that fa-

cilitate the confidential data exchange between trusted and untrusted computing bases. The

corresponding data sanitization of the secure runtime enables SecDeep to securely leverage

available accelerators without leaking private data.
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5.5.1 Runtime Integrity Checker

To confirm the integrity of the code running in the deep learning nonconfidential computing

base as well as the deep learning model, we design a checker located inside of the TEE

for verification. The key intuition of the integrity checker’s design is the verification of

the hash value of both the model and the code in a trusted mode. The integrity checker

works together with an enhanced compiler that signs the nonconfidential computing base

code at compilation time to make sure the integrity is preserved when loading the code and

the model. After the code and the model have been loaded, the integrity checker sanitizes

any access request to the memory of the nonconfidential computing base to make sure the

untrusted OS cannot modify the code in the nonconfidential computing base after the secure

boot. This sanitization is enforced by trapping the modification of the kernel page table

into a higher-level model such as BL3 in ARM. We next describe the design details of the

integrity checking mechanisms for both the nonconfidential computing base code and the

associated DL model.

Nonconfidential computing base code integrity. To detect the code integrity before

any code is loaded into the memory of the nonconfidential computing base, we first modify

the associated compiler to hash the nonconfidential computing base code running outside of

the TEE. To hash the code at compilation time, the compiler identifies what code belongs

to the nonconfidential deep learning computing base by excluding any code that has been

annotated as confidential (e.g., Figure 5.5a). The extracted nonconfidential computing base

is then hashed accordingly at compile time. At runtime, SecDeep’s integrity checking

service temporarily stores the hash value into the secure memory using any key exchange

algorithm (e.g., as Diffie–Hellman algorithm). The integrity checker then allocates memory

regions for the nonconfidential computing base. After the code has been loaded, the integrity

checker computes the hash of the loaded code and compares it with the hash value supplied

at compilation time to verify the code’s integrity.
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To ensure that the integrity of the loaded code is protected from the modifications by

the untrusted OS, we hide the code pages from the OS kernel—as depicted in Figure 5.6.

We first configure all kernel page tables to be read-only during the aforementioned secure

boot [She15, AFS97, Win08, Win12]. At runtime, if the OS needs to modify a kernel page

table, e.g., modifying the page table base registers (PTBR) in ARM, such a request will be

trapped into the TEE. Within the TEE, SecDeep’s integrity checker will ensure that the

page table modification will not result in mapping a kernel page table into a nonconfidential

computing base memory regions via a table walking attack [JLK14, BWK17].

In this scenario, another potential attack is to swap the page table with a compromised

one such that the nonconfidential computing base code will be accessed through the new

kernel page table. To protect against such attacks, SecDeep disables the base registers

that modify the kernel page table by removing the page swapping instructions and trapping

the write instructions into TEE. SecDeep then checks the access to ensure that the new

page table will be mapped into sensitive memory regions when a new kernel module has been

loaded. Although similar approaches have been used in prior works [ANS14, YZ19], these

approaches need additional mechanisms to perform data confidentiality verification at the

same time. Because SecDeep has pre-processed the data confidentiality issue, we simplify

their approach to obtain better performance with the same level of security.

Finally, SecDeep needs to make sure the exception handler outside of the TEE is not

able to make modifications to the kernel page table when an exception has been trapped

by a higher privileged code. Similar to its code integrity protection techniques, SecDeep

modifies the exception handler such that any exceptions will be trapped and forwarded to

the TEE. The TEE will examine the code to ensure that the code does not contain any

modifications in the memory regions from either the nonconfidential computing base or the

secure buffer. If the exception does not violate the code’s integrity check, the exception

will be returned back to the untrusted TEE. The saved registers will be restored for further

execution. However, if an exception contains any modifications to the sensitive regions, the
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exceptions will never be returned and the user will be notified of the malicious behavior.

Deep learning inference model integrity. Although the deep learning inference model

will reside in the same untrusted memory as the nonconfidential computing base, the design

of the integrity checking mechanism will require a slightly different approach. As per our

system model, we assume that the provided model will be stored in the storage media or may

be downloaded from the internet. In either case, we assume that we will also be provided a

hash of the authentic model using cryptographic hash functions. Thus, SecDeep’s integrity

checker focuses only on detecting the model’s integrity and not the protection of the model

before it is loaded in memory. However, if one wants to protect the model from being

modified in a future implementation, secure communication can be established with the

cloud through a TEE [DJZ15].

Further, since our system model does not require the DL model to be confidential—as

well as the aforementioned constraints of secure memory, SecDeep loads the model in the

nonconfidential computing base outside of the TEE. Instead of verifying the integrity of the

DL model against its hashed value within the TEE, SecDeep utilizes a mechanism provided

by the TEE to set up a read-only (nonconfidential) buffer for the non-TEE code—while the

TEE code has read and write privileges to the buffer. To ensure a secure buffer design, we

take a similar approach as the nonconfidential computing base and hide the memory region

from the untrusted OS kernel. In particular, we the mapping from the kernel page table to

the buffer region4.

Given the secure buffer design, SecDeep’s integrity checking service computes the hash

of the model and passes the signature to the nonconfidential computing base through the

read-only buffer. When the model is loaded, the nonconfidential computing base checks

whether it has been verified by the integrity checking service.

4Another possible design is to use hidden registers that are invisible to the untrusted environment [YZ19].

However, this design may potentially waste registers and, hence, significantly hinder the performance.
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Figure 5.6: When the untrusted OS tries to modify the kernel page table, the request will be

trapped to the TEE to make sure the mapping does not map to sensitive memory regions.

The shaded areas are the sensitive memory regions.

5.5.2 Data Management

The final component of SecDeep’s secure runtime is the data manager, which primarily

manages the confidential data communication between the deep learning nonconfidential

computing base and the secure memory inside the TEE. In particular, SecDeep’s data

manager is responsible for providing the associated data sanitization by replacing the raw

data with encrypted data that has the same dimensions—as shown in the sample snippet

in Figure 5.5b. Further, if the secure memory is running low, the data manager is also

responsible for encrypting any data that needs to be stored outside of the TEE in the

untrusted data stack. Hence, the data manager design has two requirements. First, the

original data’s confidentiality cannot be leaked. This means that the attackers cannot reverse

engineer any secrets from the supplied encrypted data. The second requirement is that the

dimensions of the original data must be the same as the supplied data. To satisfy these needs,

SecDeep uses a format-preserving encryption (FPE) [BRR09] function to sanitize the data.

FPE encrypts the plaintext value of each basic element of the tensor data while ensuring the
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Figure 5.7: The sanitization procedures of the confidential raw data before leaving the TEE.

The shaded areas are trusted.

dimensions of the data are retained. For example, if the tensor data represents an array of

integers, the FPE encrypts every integer of the array to create an array of encrypted integers.

This array has the same length and data size as the plaintext tensor data array.

However, if we simply encrypt and decrypt the data using FPE whenever there is a

context exchange between the trusted and untrusted execution environments, this implies

that the total computation for every confidential value will be doubled, i.e., the data will need

to be encrypted when exiting the TEE and decrypted upon entry. A prior study [LLP19]

confirmed that there is indeed a large overhead incurred from such frequent swapping. Hence,

to provide efficient swapping, SecDeep utilizes a table inside the TEE to maintain the

mapping of encrypted data to the raw data. This method will ensure the “decryption” time

to be constant, i.e., it will have a complexity of O(1) by simply referring to the table if the

encrypted datum has been created. If an encrypted datum is designated to enter to the

TEE from the untrusted execution environment, SecDeep’s data manager first refers to the

table to retrieve the original plaintext datum. If the datum cannot be found in the table,

the data manager performs a decryption method to obtain the original raw datum. This

table-mapping approach is summarized in Figure 5.7: when any confidential data needs to
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exit the TEE, it is first encrypted using FPE ( 1 - 2 ), and then stored in the table using the

encrypted data as the key and the plaintext data as the value ( 3 - 5 ). Equivalent plaintext

values will have the same encrypted values.

On-demand table maintenance. As discussed, the table will inevitably require extra

usage of secure memory. There are a couple of optimizations SecDeep adopts to reduce the

extra secure memory consumption. First, SecDeep’s data manager is to only maintain an

entry as long as it is needed. An entry is created when the raw datum needs to leave the

TEE. When the raw datum is encrypted and exfiltrated, a count of the datum entry increase

by one (starting from zero). When the datum is returned into the TEE to be encrypted, the

counter is decreased by one. If the count becomes zero, the entry is removed from the table.

Second, if the secure memory is full, SecDeep’s data manager unit uses a cache evicting

algorithm (e.g., least frequently used) to release more memory and move the encrypted data

outside of the TEE. When one layer’s computation is finished, all of the intermediate data

will be destroyed unless they are needed for the next layer, which will be indicated by the

nonconfidential computing base’s results.

The traditional implementation of the table data structure usually reserves enough space

at initiation time and increases the size by copying the existing table into a larger mem-

ory chunk. Due to the constraints of the secure memory, we design an on-demand table

mechanism to save the mapping of the decrypted data. Inspired by traditional kernel OS

design, we design SecDeep’s on-demand table to be segmented into small chunks by having

a multi-level table ( 3 - 5 ). The table entry will only be created when data needs to be

stored but does not need to reserve a large space at the initiation time like the traditional

table, which is able to ultimately save secure memory usage, and this design also does not

require a large consecutive memory if the key-pairs are large.
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1. /* Nonconfidential Computing Base */
2. void prepartion(model)
3. {
4. loaded_model = c_model_init(model);
5. for (auto layer: loaded_model)
6. {
7. tensor_info = c_tensor_request(layer);
8. // Computation such as configurations
9. ...
10. c_output_result(layer);
11. }
12. }

(a) The nonconfidential computing base sample code that

configures the input tensor for each layer.

1. /* Confidential Computing Base */
2. void model_verification(model)
3. {
4. loaded_model = i_model_load(model);
5. hash_verify(loaded_model);
6. }
7.
8. void data_store(data)
9. {
10. encrypted_data = encrypt(data);
11. i_data_store(encrypted_data);
12. }

(b) The confidential computing base sample code to verify

the model integrity, and store the necessary data outside of

TEE.

Figure 5.8: Sample code of how confidential computing base and nonconfidential computing

base interacts with other components using secure APIs.

5.5.3 Confidential Data Exchange through Secure APIs

As depicted in Section 5.3.1, SecDeep’s secure APIs enable confidential data exchange

between various components of SecDeep, including those residing both inside and outside

of the TEE. Table 5.2 summarizes the five secure APIs exposed by SecDeep. The APIs

are split into two categories: 1) computing base APIs that enable communication between
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Table 5.2: Summary of secure APIs in SecDeep.

Category Name Description

Computing Base APIs

c tensor request(layer) Request encrypted tensor data from the deep learning confidential computing.

c output result(layer) Send results of the specific layer from the nonconfidential to confidential computing base.

c model init(model) Requests SecDeep secure runtime to load the model.

Internal APIs
i data store(data) Store encrypted data from the deep learning confidential computing base.

i model load(model) Send the model to SecDeep secure runtime for integrity verification.

the confidential and nonconfidential computing bases, and 2) the internal APIs that enable

communication between SecDeep’s data stack and secure runtime.

Computing base APIs. The computing base APIs are used to send tensor information be-

tween the confidential computing base and the nonconfidential computing base. For instance,

Figure 5.8a provides a sample code snippet for a secure API request from the nonconfiden-

tial computing base to the confidential computing base. Once the nonconfidential computing

base has configured the input tensor and the resource requests to use a GPU, the code in

the nonconfidential computing base will call c output result(layer) (Line 10) to pass

the results to the confidential computing base via SecDeep’s secure runtime data manager

using a secure buffer.

Internal APIs. The internal APIs are used to exchange the data stored on the data stack

in the untrusted execution environment with the data in SecDeep’s secure runtime. For

example, Figure 5.8b shows a sample code snippet of the integrity checker verifying and

signing the deep learning model. The secure API i model load (model) is called to load

the model from the data stack (Line 4). The APIs are designed to use secure monitor code

(SMC) to establish a secure buffer such that a malicious OS cannot modify the contents as

described in section 5.5.1 by properly hiding the memory region from the kernel page table.

5.6 Implementation

In this section, we discuss how we prototype the design of SecDeep.
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Table 5.3: Lines of code implemented for SecDeep.

Model Name Repo sLoC

User Library
ARM NN 694

ComputeLibrary 126

Integrity Checker

ATF 897

OP-TEE 69

Linux 457

LLVM Compiler 70

Data Manager OP-TEE 1635

Total 3948

5.6.1 System Setup

We prototype the design of SecDeep using ARM NN with a Caffe deep learning model

on a HiKey960 Android reference board [96b]. The Hikey960 board was enabled with an

embedded GPU–a Mali G71 MP8 graphics processor, and ARM TrustZone support. For the

TEE, we use ARM Trusted Firmware (ATF) [ARMl] with Open Portable Trusted Execution

Environment (OP-TEE) [opt] within ARM TrustZone. Because the driver of Mali GPU is

not fully open-source, we have to simulate the secure access in our implementation. Although

we prototype SecDeep on an ARM A-series dev board, SecDeep is portable to low-end

ARM processors such as Cortex-M23 [ARMb] and Cortex-M33 [ARMc] processors with ARM

TrustZone.

We implement the user library inside ARM NN and the associated ARM Compute Li-

brary [ARMj] to provide the secure APIs. We implement the integrity checker within the

OP-TEE and modify the Linux kernel. We also modify the LLVM compiler to perform

the confidential code extraction and provide the signatures for the codebase. We imple-
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ment the data manager inside OP-TEE. Table 5.3 summarizes the 3.9K lines of code for the

implementation.

To evaluate our framework, we built a deep learning inference application using ARM

NN to perform image classification using different Caffe models supplied for the Hikey960

reference board. We now detail how each component of the SecDeep is implemented.

5.6.2 Deep Learning Computing Base Split Annotation

We leverage ARM NN and ARM Compute Library with the support of Caffe inference

framework to build the confidential computing base and nonconfidential computing base.

Upon analysis, we found that most of the ARM NN code is for resource preparation such

as building the computation nodes of a special graph or the model parser that loads the

model into memory. The ARM NN documentation revealed that the tensor data can only

be accessed through the function Map() inside the structure ITensorHandle. Thus, we were

able to script the identification of all the code that uses these functions and analyze whether

they are using the sensitive tensor data. We found that the only functions of the ARM NN

code that needed the aforementioned confidential designation were the functions associated

with the tensor input layers that process all the input data and other tensor metadata such

as padding.

5.6.3 Secure Runtime

We build the secure runtime inside ARM TrustZone using both OP-TEE OS and ARM

Trusted Firmware (ATF). The OP-TEE OS is responsible for processing the model integrity

checking. The ATF traps all of the kernel page table modifications and computes the code

hashing. The ATF is also responsible for checking whether the kernel modification will map

to a memory region that holds nonconfidential computing base code and data and the secure

buffer.
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Integrity checker. We implement the runtime integrity checker for both the deep learning

model and the code inside the nonconfidential computing base. We implement an MD5 hash

mechanism inside OP-TEE to compute whether the model has been tampered with while

loading it onto the inference framework.

For the nonconfidential computing base code integrity checker, we first modify the Linux

kernel page table entry functions such as clear pte bit() and set pte() so that, every time

these functions are called, they will be trapped to BL3 through SMC. When the BL3 handler

functions in ATF receive such requests, the BL3 handler functions determine which request

they need to handle. If the OS tries to load code into the nonconfidential computing base,

the BL3 handler functions use SHA1 to compute the hash of the code and compare it with

the compiler-supplied hash. If the kernel page table modification request should not load the

code into nonconfidential computing base, the BL3 handler functions walk through all of the

page tables to make sure the modification does not map to the nonconfidential computing

base nor the secure buffer.

Offline signature generation for nonconfidential computing base code. To generate

the signature for the nonconfidential computing-based code, we extract any code that was not

designated as confidential using the aforementioned annotations. We modified the LLVM

compiler such that during the code emission stage, when the LLVM compiler detects the

confidential designation, it computes the hashing for the code block for that function. We use

a SHA-1 hashing algorithm to do the hashing computing and verification for the instructions

within the designated code blocks. We then sign the hash values and store the signature

into the data segment of the program. The program is later loaded into secure memory for

verification.
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Table 5.4: Benchmark models used for evaluation.

Model Name Model Size

Light

SqueezeNet 5 MB

MobileNet V1 17.1 MB

MobileNet V2 14.4 MB

Med.
GoogleNet 28.3 MB

Yolo Tiny 65.6 MB

Heavy
ResNet-50 102.5 MB

Inception BN 137.8 MB

5.6.3.1 Data Manager

We implement the runtime data manager inside OP-TEE. We use Advanced Encryption

Standard (AES) with Counter (CTR) mode as the format-preserving encryption (FEP)

method because AES-CTR provides the same length of the output as the input. We also

implement a two-level table for our on-demand hash table, where the key is the encrypted

data and the value is the plaintext data. We maintain the table using the least frequently

used (LFU) mechanism. We also evaluate different maximum table size values allowed before

adding a new entry in the next section.

5.7 Evaluation

In this section, we will discuss how we evaluated SecDeep with various parameters to show

that (1) SecDeep achieves secure DL model inferencing with superb latency (e.g., 172×

better than CPU) via secure acceleration, and (2) incurs only a minimal TCB size and

computation/energy overhead.

Benchmark Models. Our implementation of SecDeep supports Caffe models. Thus, we
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Figure 5.9: The overall latency introduced by SecDeep and the comparison with CPU

acceleration and GPU acceleration.

chose to evaluate popular Caffe models with varying size as listed in Table 5.4. We first

chose 3 popular, lightweight (less than 20 MB) models: SqueezeNet [IMA16], MobileNet

V1 [HZC17], and MobileNet V2 [SHZ18]. We then evaluated 2 mediumweight (less than 100

MB) models: GoogleNet [SWY15] and Yolo Tiny [RF16]. Finally, we used 2 heavyweight

(greater than 100 MB) models: ResNet50 [HZR15] and Inception BN [IS15]. These are a

representative set of on-device models with varying capabilities.

Trusted Computing Base Size. Based on our implementation, the current TCB size

is 1015 sLoC, where 901 sLoC comes from OP-TEE and 114 sLoC comes from ARM NN.

Compared with the total computing base size 232K5 of ARM NN, SecDeep has provided

a minimal TCB size. All of the GPU kernel code resides outside of the TEE because the

kernel code is only configured by the CPU.
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5.7.1 Inference Latency

We run inferencing experiments for all of our benchmark models at least 10 times to measure

the average latency using 16MB of secure memory. This is a sufficient amount of memory to

support the minimal TCB within the TEE (OP-TEE’s kernel is typically a few MB [opt])

as well as an on-demand table with 1M entries.

Overall latency. We run the inference experiments for each model using SecDeep with

GPU acceleration, unsecure GPU acceleration, unsecure CPU acceleration, and no accel-

eration. We compute the average inference latency for each model under each of these

scenarios and summarize the results in Figure 5.9. Our experiment shows that, although

SecDeep is slower than unsecure GPU acceleration, it is still comparable to unsecure CPU

acceleration—it is even faster than unsecure CPU acceleration for the Inception BN model.

Most importantly, SecDeep is significantly faster than the case where no acceleration is en-

abled. This result also shows that the inference latency is not fully proportional to the size

of the model. For example, MobileNet V2 is only about one-fifth of Yolo Tiny’s model size,

but MobileNet V2’s inference latency is slower than Yolo Tiny. This is because MobileNet

V2 generates more intermediate results and the table hit ratio is lower, resulting in more

decryption computations.

Acceleration ratio. In terms of acceleration ratio, Figure 5.10 shows that, for the best

case (ResNet-50), SecDeep is able to accelerate up to 172 times more than the case with

no acceleration. Even in the worst case (MobileNet V2), SecDeep is able to accelerate

16 times faster than when no acceleration is enabled. Our results have shown that using

SecDeep can achieve both acceptable latency and enable secure protection.

Overhead breakdown. We further break down the overhead of SecDeep introduced for

different layers of a deep learning model. As shown in Figure 5.11, we accounted for the

overhead in each of SqueezeNet’s layers. The results show that the overhead of SecDeep

5This only counts the GPU acceleration code.
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Figure 5.12: SecDeep latency of different AES key lengths for MobileNet V1.

mainly comes from the TrustZone execution, i.e., the world context switch time and the

encryption. Furthermore, the first few layers have higher overhead than the last several

layers. This discrepancy is due to the fact that the last few layers generate less intermediate

data and because the cached table hit rate is high. Further, the overhead of SecDeep is

not completely proportional to the size of the tensor input of each layer. For example, if

the input tensor size of fire4 and the input tensor size of fire3 are both 55 × 55 × 128,

but the latency of fire4 is significantly smaller than the latency of fire3. These results

also demonstrate that future optimizations could focus on how to store the values of the

encrypted data in a table such that the table hit rate can be high enough to benefit the

overall performance.

Varying the encryption key length for FPE. Our experiments use AES with CTR

mode as the format-preserving encryption method. Although our key length is 128-bits, we

run the inference experiment with all three different sizes of AES key lengths, i.e., 128 bits,

192 bits and 256 bits, for MobileNet V1. Our results—summarized in Figure 5.12—have

shown that even if we use the highest AES security standard with a 256-bit key, the overall

latency has only increased 13.7% with the lowest AES security standard that uses 128-bit

keys. Our SecDeep design has validated that the data confidentiality can be very robust

without sacrificing much computation latency.
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5.7.2 Table size options.

Although the table is dynamically created, we observed that some of the table contents are

hardly hit in the future. Hence, they waste the already-limited secure memory. In this

experiment, we test the hit rate for tables with varying upper limits for the table size as

shown in Figure 5.13. The results show that the hit rate significantly reduces after 3 million

entries. Hence, for the best performance, 3 million entries should be used to ensure that the

memory will not be significantly wasted while providing good performance.

5.7.3 Model Loading Latency

We evaluate the model loading time using and without using SecDeep. The model loading

time refers to loading the model into memory and converting the model to a graph that

ARM NN understands for further execution. We implement the MD5 hashing mechanism

to check whether the model has been tampered with before loading it to the nonconfidential

computing base. Our results in figure 5.14 show that the hash checking has introduced

marginal overhead when loading the model in comparison to the unsecure GPU acceleration’s

model loading time. For the lightweight and mediumweight models, the model loading

overhead of SecDeep is less than 4%, while the model loading overhead for the heavyweight
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on a GPU-enabled device.
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Figure 5.15: Comparing energy consumption when inferencing with and without SecDeep.

models is less than 7.8%.

5.7.4 Energy Consumption

The last evaluation we characterized is power consumption. Because these are mobile and

IoT devices, energy management is a critical concern. To measure the power consumption

of the inference process under the aforementioned scenarios, we connect the Monsoon power

monitor [Mon] to our HiKey960 reference board. Figure 5.15 summarizes the results for

each benchmark model. Our experiments show that although GPU is more power-hungry,
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the overall latency of GPU acceleration is much smaller. Hence, less power consumption is

achieved when using GPU acceleration. Although SecDeep consumes slightly more energy

than unsecure CPU accelerations in most cases, it still consumes significantly less energy

than without using acceleration as illustrated in Figure 5.16. Our experiments demonstrate

that SecDeep can achieve acceptable performance and energy consumption.

5.8 Discussion and Future Work

In this section, we will analyze the security guarantees, discuss the limitations of SecDeep

as well as the future research directions.

5.8.1 Security Analysis

SecDeep is able to protect the attacks from stealing raw sensor data to infer private user

information from malicious applications and operating systems. Specifically speaking, when

an application needs to get the inference results from the sensor data, it is only fed with
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the final results from a deep learning rather than the raw data. In this situation, the risk

of leaking private user data is mitigated. Moreover, when the OS is malicious, SecDeep

utilizes the characteristics of hardware TEE to protect the sensors such that the OS cannot

obtain the sensor data.

Since SecDeep does not trust the operating system, any attacks that can maliciously

obtain privileged access to the OS (e.g., CVE-2018-8781, CVE-2018-14634,CVE-2019-8635,

CVE-2019-17666, CVE-2018-1087, CVE-2018-1068, CVE-2019-0808, and CVE-2019-1159)

are diminished in terms of the attacking deep learning execution on the edge—where both

the data confidentiality and accuracy can be guaranteed from the sensor digitization to the

DL results via TEEs.

5.8.2 Limitations

One of the assumptions SecDeep makes is that the TEE is always secure and trusted.

Possible side-channel vulnerabilities for TEEs may hinder the assumptions of SecDeep.

For example, the CPU cache attacks towards Intel SGX [KHF19, LSG18, HCP17, GES17,

SGF17, BMD17] and ARM TrustZone [KHF19, LSG18, AL17, CZK18, BLL18, ZSS16] can

diminish the protections of SecDeep. Although side-channel attacks are out of this paper’s

scope, extra protection mechanisms [OTK18, CZR17, KKS19, KKS18] could be implemented

to reduce the effects from side-channel attacks.

5.8.3 Future Work

Training at the Edge. Although SecDeep focuses on deep learning inference at the

edge, another direction SecDeep is targeting is secure training on the edge [ZLD20]. Given

that sensors are increasingly deployed at the edge, models need to be updated frequently to

improve accuracy.

Pruning the Model. To increase performance, future works can focus on optimizing deep

111



learning models to adapt to the associated hardware, e.g., such as deep compression [HMD15]

or AutoML techniques [HLL18]. However, although the model size is reduced, such pruning

does not solve the biggest constraints of running a secure deep learning inference framework

on the edge—limited secure memory.

Generalizing to cloud settings. Although SecDeep mainly targets the mobile and IoT

edge devices, the design concepts of SecDeep can be extended to cloud settings. Our

framework could theoretically leverage accelerators in the cloud as long as the cloud service

providers are able to provide TEEs that can restrict access to the accelerators–as is done in

ARM TrustZone.

Autonomous confidential annotation. Ideally, developers would employ annotations

for functions as confidential or nonconfidential from the start. However, as was done in this

paper, we envision existing frameworks would have to be retroactively annotated. Future

work can focus on autonomously or semi-autonomously annotating the code that requires

access to plaintext tensor values. An analogous semi-autonomous solution has been presented

in the context of annotating secure labels for code that interacts with secrets [WRP19].

5.9 Related Work

In this section, we will discuss the related works of SecDeep.

Secure machine learning. Previous works have explored securing deep learning frame-

works algorithmically when the machine learning models are offloaded to cloud environments.

Occlumency [LLP19] leverages Intel SGX to secure deep learning inferencing in cloud en-

vironments to preserve data privacy without trusting the cloud service provider. Similarly,

Ohrimenko et al. [OSF16b] use trusted enclaves to collect sensitive data from distributed

clients and run oblivious machine learning training processes. Chiron [HSS18] also lever-

ages SGX to host microservices for machine learning (ML-as-a-Service) in the cloud to both

train and deploy machine learning models in a light and easy fashion. Slalom [TB19] uses
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Intel SGX by partially offloading linear layers of DNNs to untrusted CPUs to obtain high

performance without sacrificing the data privacy. DeepEnclave [GHZ18] uses cloud-assisted

SGX for inferencing to overcome the shortage of secure memory on the edge and, hence,

reduce the secure memory consumption on the edge devices. Privado [TGS18] uses Intel

SGX to load different models into an enclave and defend the side-channel attack through

access patterns. However, unlike SecDeep, the above works do not provide a secure path

to use the available accelerators such as GPUs for the inference. They were also designed

for cloud environments that are less resource-constrained.

TrustZone applications on the edge. ARM TrustZone has been widely adopted in dif-

ferent designs to achieve the security requirement of an app or a system in the research

field. Ginseng [YZ19] uses secure registers to hide sensitive variables. However, it’s NP

computation complexity is problematic for our design that has many sensitive variables.

TZ-RKP [ANS14] uses ARM TrustZone to monitor whether the OS is compromised. How-

ever, TZ-RKP is unable to protect the integrity of the applications running on the OS.

Liu et al. [LSW12b], AdAttester [LLC15], TLR [SRS14], SeCloak [LSD18b], [BKL16b],

TrustOtp [SSW15a], VirtSense [LS18] split applications into sensitive code and insensitive

code. PROTC [LS17], uses ARM TrustZone to sanitize drone control commands running

inside the TEE. These approaches only trust the sensitive code and do not provide protec-

tions for the insensitive code. TrustShadow [GLX17] runs an entire secure application inside

a TEE, but is not feasible for the large DL models we are considering.

5.10 Conclusion

We propose the SecDeep DL model computation framework that securely uses available

accelerators to provide performant on-device inferencing on the edge.SecDeep leverages

the benefits of TEEs to achieve both high performance and a small TCB size with limited

secure memory. We prototype the design SecDeep on a HiKey 960 dev board using ARM
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TrustZone technology, and our experiments show that SecDeep can achieve up to 172X

model inference acceleration while using only 16MB of secure memory and while minimizing

the TCB by 92.4%.
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Part III

Providing Remedial Actions for

Actuation Conflicts
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CHAPTER 6

RemedIoT: Remedial Actions for Internet-of-Things

Conflicts

6.1 Introduction

The proliferation of the Internet-of-Things (IoT) has enabled sensors and actuators across

several facets of society for the purpose of automating and optimizing our daily tasks. As hu-

mans settle into smart environments, the collection of data and automation of associated pro-

cesses draw concerns of safety, security, and privacy [Sta14, LYZ17, ABC12]. IoT program-

ming platforms such as IFTTT [SAB17a], Zapier [Zap], and Samsung SmartThings [Sam]

have eased the configuration process of smart environment devices, but they placed the bur-

den of addressing those aforementioned concerns on both the IoT application developers and

the application users who are configuring the environment.

Previous works have attempted to alleviate this burden by checking potential IoT config-

urations against policies, which are rule specifications of a particular system with respect to

some objective function such as safety or utility. An example policy may aim at preventing

racing conditions between two applications that may turn a device on or off. Policy-based

mechanisms have been proposed to enforce policies that avoid unsafe or unsecure states for

smart environments. Solutions such as IoTGuard [CTMa] will raise an alert to the user if

a particular policy is violated and block the associated action. The general focus of these

mechanisms has been to determine inter or intra-app safety, security, and privacy conflicts

for either explicitly defined relationships amongst devices [LKL15b, DH18, FPR16] or for im-
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plicit relationships that are learned based on the device behavior [MMH17, BVN15, HOW13].

Although these solutions provide promising approaches to conflict detection, they typi-

cally do not have a means of taking the right course of action once a conflict is detected–they

usually only block the conflicting actions [CFP18]. Several of these conflicts may be in the

context of a safety-critical application and require immediate remediation, i.e., an automated

solution to resolve the conflict without deadlocking any critical applications. For example, an

IoT application may specify that if the concentration of CO2 is high, an immediate ventila-

tion action needs to be performed by opening the windows. Meanwhile, another thermostat

application ensures that the windows remain closed in cold weather to save energy. If the

indoor CO2 accumulates to a dangerous level in winter, a conflict may arise. The current

state of the art conflict protection mechanisms, however, may block the safety-critical ven-

tilation actuation. In this case, a remedial action would resolve the conflict by finding an

alternative or redundant path that implements the same utility, e.g., an HVAC system would

be used instead of the smart window for ventilation. However, finding alternative or redun-

dant realizations for commodity IoT utilities can be difficult. Implemented as traditional

device drivers, IoT device interfaces are typically monomorphic and, as such, cannot be eas-

ily realized by alternative means. We, therefore, need a method to provide a polymorphic

interaction interface such as polymorphic programming abstractions for those devices that

facilitate such remedial actions.

Polymorphic abstractions for sensors and actuators have been employed by IoT macropro-

gramming frameworks that suggest high-level commands for distributed IoT frameworks [NTG19].

These frameworks rely on the notion that they can specify what should be sensed or actuated

as opposed to how sensing or actuation is carried out. Preliminary works show the possibil-

ity of raising abstractions via inference graphs for sensors[SSP16], e.g., a “fitness activity”

sensor abstraction may be realized by either an inertial movement sensor or a heart rate

monitor. However, the same notion has yet to be realized for actuation as it is difficult to

reason about the utility of an actuator based on the user’s intention.
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In this chapter, we present RemedIoT, a remedial action engine framework for resolving

the conflicts (i.e., policy violations) of IoT-based smart environments. RemedIoT helps the

application users remediate conflicts when they configure the smart environment through

smart application platforms. We introduce a key component, actuation graphs, that allows

raised, polymorphic abstractions of both IoT actuators and sensors. RemedIoT leverages

the IoT actuation graphs to provide alternative realizations of sensors and actuators for

smart environments. Safety, security, and privacy policies can then be specified with respect

to these raised high-level sensor and actuator abstractions. RemedIoT then uses a conflict

detector to determine if a given IoT actuation or control command triggers any conflicts.

If a conflict is detected, the Remedial Action Engine suggests alternative realizations of a

user’s intended application that can be installed to avoid such a conflict. Once a remedial

action has been selected, the same conflict runtime executes the remedial action scheme.

We evaluate RemedIoT on Samsung SmartThings applications and IFTTT applets by

extracting 195 possible automation logics and generating 74 sample applications with 11

policies. For these applications, we utilized state of the art conflict detector approaches to

detect 102 possible conflicts. We show that RemedIoT is able to remediate ∼ 80% of the

conflicts that would normally be blocked by prior solutions. We show how remedial actions

can be optimized against abstraction cost functions such as power consumption and device

profiling. We further discuss the efficacy and scalability of RemedIoT in the context of

smart city environments.

Contributions. Our contributions are summarized as follows.

• We provide actuation graph abstractions for actuators in IoT smart environments.

• We present RemedIoT, a remedial action engine framework that utilizes alternative

realizations of IoT applications to provide remedial actions for a given IoT policy

conflict.

• We evaluate RemedIoT on a set of Samsung SmartThings applications and IFTTT
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Table 6.1: The two general categories of policies: the policies defined by Celik et al. [CTMa]

and user-defined policies.

Types of Policies 

P1: Mutually exclusive states must not exist in the environment. P2: User-defined rules. 

Racing Events Cyclic Events E.g.: Doors and windows must be locked is user is not home 
E1: user-away -> user-away-mode-on 
E2: user-away-mode-on, temp-high -> windows-on 

E1: CO2 density-high -> turn-on-fan 
E2: temp-low -> turn-off-fan 

E1: user-home, lights-on -> lights-off 
E2: user-home, lights-off -> lights-on 

 
 
 
 
 

   

  

CO2 density-high  

temp-low turn-off-fan 

turn-on-fan 

temp-high open-windows 

P: <user-not-home, doors-lock, windows-lock> User-home 
lights-on lights-off 

applets and show how RemedIoT can remediate ∼ 80% of conflicts that would nor-

mally be blocked by previous solutions.

• We show how remediation can be optimized for providing automated remedial actions

based on abstraction metadata.

Our source code and datasets are available online:

https://github.com/nesl/buildsys-19-code

6.2 Background

In this section, we provide the preliminary information necessary to understand the rest of

this paper. We first discuss the state-of-the-art for IoT event service platforms. We then

discuss the state-of-the-art for conflict detection across different IoT services along with their

limitations.

6.2.1 IoT Event Service Platforms

The current programming paradigms for commodity IoT smart environments typically facil-

itate IoT device interaction through a control hub, e.g., Samsung SmartThings [Sam], Apple
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HomeKit [Appa], and the Microsoft Azure IoT Edge [Mic].

Recently, programming paradigms have emerged that allow users to interact with IoT

devices through event services. Instead of having the user manually control IoT devices

through a control hub, these services abstract away the complexities of automation. These

mechanisms automate user control processes through events,i.e., user-defined trigger-action

schemes for IoT environments. For instance, event service platforms such as IFTTT (If-this-

then-that) [SAB17a] and Zapier [Zap] provide a more convenient way to execute an action

when a user-defined condition or set of conditions is satisfied. The user only needs to set an

“if” condition (i.e., event trigger condition), and the corresponding IFTTT rule will interact

with the control hub to execute the associated event action. Although these paradigms

generally provide a convenient means of programming IoT domains, we will show that their

limitations reside in their sensor and actuator programming abstractions.

Generalized system model. The system model we consider in this chapter has a control

hub that may be running one of the hub services mentioned above. A user may have direct

access to a device via an application interface or can write an event for the smart environment

using a commodity IoT event service platform. Each event consists of a condition or a set

of conditions and an associated action(s). The condition is an expression that specifies the

state of the smart environment, and the action is the actuation command that changes the

environment state(s). The device state-space representation for both conditions and actions

is domain-specific and depends on the API provided by the IoT event service platform, e.g.,

a smart bulb being on or off. A policy will also be domain-specific as it defines the sets of

allowed and disallowed state-space transitions for an IoT system [CTMa]. Our model allows

a policy to be specified by whoever is configuring the IoT system. In this paper, we seek

to provide conflict remediation, i.e., policy violation resolution, for the system model and a

number of defined events. The remediation, in essence, is a set of new events suggested for

replacing some old ones in order to resolve conflicts in the event set. We first enumerate

the limitations of current conflict detection methods and formalize the conflicts considered
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in this paper.

Conflict types. We define a conflict as a violation of policy. We consider two general

categories of policies: user-defined policies and the class of policies introduced by Celik et

al. that do not allow mutually exclusive states to exist in an environment [CTMa]. The

latter category can be decomposed into racing events and cyclic events. Racing events stand

for two or more events that are triggered at the same time while having conflicting actions,

and cyclic events represent two or more events consist of a set of conditions and a set of

actions that mutually trigger each other continuously. Table 6.1 summarizes the types of

policy violations we consider with illustrative examples.

As was previously pointed out, any forms of conflict resolution from prior works have been

limited to simply blocking a prospective action or reporting the conflict to the user[CFP18].

The bottleneck for providing remedial actions for such conflicts resides in the current state-

of-the-art for obtaining the user’s intention since the current IoT actuation programming

abstractions hide such information. These premises allow us to provide an overview of the

RemedIoT framework.

6.2.2 Related Work

We now discuss the relevant works directly related to RemedIoT. Conflict Detection.

Several works have already focused on the problem of detecting conflicts between IoT events.

BuildingRules [NRB18] proposes an occupant customized building configuration system.

Surbatovich et al. [SAB17b] builds an information-flow model to analyze how IFTTT recipes

violate the integrity, and it then categorizes what damages the IFTTT recipes could cause

for the user. IoTSAT [MAH16] models the cyber-physical behaviors of IoT devices based

on the factors including the network, device configurations, and user policies to analyze

the possible or potential vulnerability of the IoT network. Danger-system [PPN15] detects

the smart building environment conflicts through mobile crowd sensing. Ma et al. [MPT]

and CityGuard [MPS17] provide runtime detection for the specific conflicts in the smart
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city through an intermediate layer of watchdog. IoTMon[DH18] uses data mining and NLP-

based technology to analyze how the applications affect physical environments, which further

suggests the risks of the applications. IoTGuard [CTMa] enforces a set of policy rules on IoT

applications by injecting monitor code into the target app, and it blocks any unsafe states.

Soteria [CMT18] builds a static analysis system from the application descriptions to infer

whether there are potential safety or security issues of the app. SIFT (Liang et al.) [LKL15b]

proposes a safety-centric programming platform for connected devices in IoT environments

to safely verify that there are no conflicts when the developers compile the applications.

Miettinen et al. [MMH17] introduced a technique for IoT device-type identification used for

security enforcement based on device-fingerprinting. Trimananda et al. [TAC20] introduces

a cyber-physical modeling method to exhaustively check the conflicts among smart home

applications.

All of the above works have focused on analyzing or detecting conflicts or security viola-

tions. However, none of them has yet provided a way to resolve such conflicts or violations

except for simply reporting them to the user. Nextly, we introduce some other works showing

how conflicts can be debugged.

Conflict Debugging. CityResolver [MSF18] uses Integer Linear Programming (ILP) method

to find the most optimal conflict resolution in a given set of resolutions. Meanwhile, Reme-

dIoT provides a means of automatically generating the resolutions. Liang et al. [LBL16]

provides an automated debugging tool for the IFTTT platform by adjusting the clauses or

the parameters of IFTTT rules. However, such modifications might not lead to the original

desired state that the user wants. RemedIoT focuses on providing an alternative path to

get to the exact original desired states without violating any policies or conflicting with other

events.

IoT programming abstractions Beam [SSP16] abstracts sensors into modules based on

the inference that can be made from the sensory data. Such abstraction is realized using

inference graphs, and then the developers only need to focus on sensing capabilities rather
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Figure 6.1: An overview of the RemedIoT framework.

than choosing particular sensors. However, Beam does not deal with the abstraction of

actuators that might cause conflicts among the devices. ExPat [YPH19] proposes a formal

specification programming language to ensure that the rules in the smart environment can

be varified by the user’s intention without conflicting with other rules. However, it does

not provide any solutions to the conflicts. HomeOS [DMA12, DMA10] and BOSS [DKT13]

provide an operating system for smart home environments so that programming or accessing

the IoT devices at home can be done through an OS-like interface, i.e., device drivers.

However, like all other traditional operating system, HomeOS simply puts a lock on the

device when other processes are trying to access it. It does not make attempts to find

conflicts or resolve them.

6.3 RemedIoT Overview

RemedIoT is a dynamic and context-based mediator for IoT event services. RemedIoT

aims to provide a set of meaningful remedial actions for conflicting actions rather than
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merely block the actions. For example, an application user may configure an event that

opens the window when the temperature is too high, but this configuration may violate a

safety policy which states that all windows and doors should be closed when the user is not

home. RemedIoT would provide a remedial action to suggest the user turn on the HVAC

instead of opening the window as the former provides the same utility. Figure 6.1 shows

the design overview and the workflow of how RemedIoT interacts with the aforementioned

system model.

At configuration time, a user may attempt to install a third-party IoT safety policy

through a policy interface or configure an event service ( 1 ) that can be analyzed by the

conflict detector ( 2 ). The conflict detector will check if the prospective event conflicts with

any installed events or policies. If conflicts do not exist, the new event will be installed. If a

conflict exists, it will send the set of conflicting events to the RemedIoT Remedial Action

Engine ( 3 ) that will analyze the conflict and see if any remedial actions can be installed to

prevent conflicting actions from being triggered at the same time. The remedial actions will

then be suggested to the user ( 4 ). After the remedial actions are selected by the user, they

will then be written back to a database for future use ( 5 ). When such a conflict happens

during runtime, the remedial action from the database will be executed. At runtime, all

events from the installed event services are examined in case an event is conflicting with a

policy( 6 ). If a conflict exists, the appropriate remedial action is carried out if available.

Otherwise, the action is blocked ( 7 ).

Although conflict detection is a part of the system, the core contribution of this chapter

resides in the Remedial Action Engine. However, in order to realize such a tool, we need to

design appropriate programming abstractions first.
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Figure 6.2: A sample smart home control application and its associated actuation graph.

6.4 RemedIoT Programming Abstractions

The main goals of RemedIoT’s programming abstraction design are to not only increase

the usability of distributed applications for dynamic smart environments, but to also ease

the development effort for application developers with respect to safety and security. The

abstractions enable the application developers to specify high-level programming intentions

of an application instead of focusing on which devices will realize the application utility.

For example, if a developer wants to develop an application that lowers the temperature

of a space, he or she only needs to specify ”cooling down” rather than selecting an HVAC

or a smart fan realization. RemedIoT maintains the dynamic realization of these high-

level intentions through lower-level device abstractions–where the lowest level abstractions

will be the monomorphic device drivers. Such a design provides an inherent redundancy

for abstractions that provide the core of RemedIoT’s remedial action engine. Previously,

Beam [SSP16] presented a framework to provide such a hierarchical structure for sensors

called an inference graph. RemedIoT couples this notion of an inference graph with an

actuation graph to abstract the actuators of the system.
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6.4.1 Actuation Graph

RemedIoT’s actuation graph–provided by the programming environment developers –maintains

how an actuation should be realized. The graph is built as a directed graph where each node

stands for an actuation module that indicates how to perform actuation or sensing tasks by

combining other submodules or devices either collaboratively or independently. Each actua-

tion module can have different implementation units–which are hidden from the application

developers–to realize the module. The direction of the actuation graph corresponds to the

dependency relationship among the actuation modules. With the assistance of the actu-

ation graph, RemedIoT can easily infer the intentions of an application user by looking

at which module is used. The actuation graph subsumes the notion of Beam’s inference

graph [SSP16] because it encapsulates the sensing dependencies of actuators. Moreover, the

actuation graph is highly customized and developed differently for each smart environment.

Although abstraction modules enable RemedIoT to reason about a user’s high-level

intentions as well as to provide alternative actuation realizations, RemedIoT conversely

needs a mechanism to expose the capabilities of physical devices. It is necessary to build

device-level abstractions that are then used to realize the higher-level modules. As such, we

introduce a device abstractor module that allows developers to interface devices with abstrac-

tion modules. For clarity, we will present the aforementioned actuation graph components

in an illustrative example.

Motivating example: home control application. Figure 6.2 shows an actuation graph

used by a home control application. The home control application has two installed events:

1. If dangerous incidents are detected, then send notification to the user.

2. If the temperature of a room is higher than 80 degrees, then cool it down.

The first rule will require the actuation graph to provide a detection module for ”dangerous

incidents” and a ”notification” module such that the user can be appropriately notified.
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The second rule needs to have a ”temperature” module to sense the ambient temperature

as well as a ”cool down” module that lowers the ambient temperature. In the associated

actuation graph, the sensing module temperature requires the data from a smart thermal

sensor installed in the room to infer the temperature. Those data are hidden from the

application developer’s perspective. The actuation module cooling down needs to access

either a smart window or the air conditioner–where the application developers need not

worry about which device to use. However, in order to be compatible with existing IoT

systems such as SamSung SmartThings and Apple HomeKit, our programming model also

allows event services to directly access the devices without going through high-level sensing

or actuation modules. In any case, the abstraction modules are designed to account for all

possible conflicts that may exist in the network.

We now describe the attributes of an abstraction module required to maintain the actu-

ation graph.

6.4.1.1 Abstraction Module

The abstraction module is a programming interface of a sensing or actuation functionality

performed by specific implementations. An abstraction module may also be realized by other

abstraction modules. Each module is implemented through implementation units, where the

module provides a template of the attributes to be defined. The implementation units

encapsulate the actuation or sensing algorithms of the associated modules. For instance,

the aforementioned cool down abstraction module is generally associated with lowering the

ambient temperature of a space, while the actuation graph developers may be able to develop

different cooling down implementation units for a specific smart home environment, such as

cooling down through an air conditioner, or cooling down by opening the windows or doors.

The following attributes are necessary to realize an abstraction module for our actuation

graph:
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• Module name. The module name is the label for the abstraction modules, which

summarize the characteristics of that module, e.g., ”cooling down”.

• Implementation unit name. The implementation unit name summarizes the func-

tion of an actual implementation unit that may realize the associated abstraction

module. For instance, “turn on AC” or “open the window”. Each abstraction module

may correspond to multiple implementation units.

• Module type. The module type indicates whether the abstraction module is a sensing

module, an actuation module, or both.

• Implementation prerequisites. The prerequisites refer to the implementation unit’s

dependent modules. Each implementation unit needs to specify what it may depend on

in order to be realized. For instance, one of the implementation units of the notification

module might depend on a send text module, and another implementation unit of the

notification module might depend on a send email module. Different implementation

units can have different prerequisites under the same module.

• Cost and utility metrics. Each abstraction module may be associated with a cost

or utility metric that will establish how implementation units should be prioritized

when RemedIoT is suggesting remedial actions. For instance, the utility metric of

a ”cooling down” abstraction can be defined as to how efficiently an implementation

unit may lower the ambient temperature, while a cost metric may be associated with

the power consumption of a unit.

Defining each of the attributes mentioned above will be domain specific, and it is up to the

programming environment developer to ensure that all of the components of the actuation

graph are compatible with each other. The first step in doing so is to implement a device

abstractor module.
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6.4.1.2 Device Abstractor Module

The device abstractor is a type of special abstraction module that handles the details of

a particular device’s metadata so that the high-level information is exposed to the devel-

oper. In particular, the abstractor module characterizes and implements the connection to

the device through the device driver and the network. Every physical device corresponds

to an implementation unit, but each device abstractor module might have one or more de-

vice implementation units. For example, if there are three installed cameras, each of them

will have one corresponding implementation unit, and only one device abstractor module

”RGB camera” is needed to encapsulate all the three implementation units. Similar to

HomeOS [DMA12], RemedIoT dynamically handles the connections and disconnections

of devices in the network. When a device is disconnected from RemedIoT, RemedIoT

updates the actuation graph accordingly. Moreover, if a new type of device is connected,

RemedIoT creates a new device abstractor instance and updates the graph if other abstrac-

tion modules depend on it.

To provide context of these abstractions, we describe how a an example abstraction

module may be implemented.

6.4.2 Programming Example

Listing 6.1: Sample Inference Module

# Import the e x i s t i n g modules

from ActuationGraph import ∗

# Implementation o f coo l i ng down module v ia AC

class ACTurnOn( ImplementationUnit ) :

def init ( s e l f ) :

ImplementationUnit . init ( . . . )

acDA = ACDeviceAbstractor ( ) #dev ice a b s t r a c t o r

super (ACTurnOn, s e l f ) . appendChi ldDeviceAbstractor (acDA)

def performFunc ( s e l f , ∗ args ) :
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# Perform the s p e c i f i c ac t ion to turn on AC

. . .

# Cool Down Module

class CoolDownModule (Module ) :

def init ( s e l f ) :

Module . init ( . . . )

acTurnOn = ACTurnOn( ) # Implementation Unit

fanTurOn = FanTurnOn ( ) # Implementation Unit

super (CoolDownModule , s e l f ) . addImplUnit ( acTurnOn)

super (CoolDownModule , s e l f ) . addImplUnit ( fanTurnOn )

To develop an implementation unit of a module in the actuation graph, the actuation

graph developers need to follow the template of the module and implementation units. More-

over, each actuation module can only allow prerequisites on either device abstractor modules

or other general actuation modules for its implementation units. The device abstractor mod-

ules and the general actuation modules cannot simultaneously be the prerequisites of one

actuation module. For instance, in Figure 6.2, the send text module and computer abstrac-

tor module cannot be the prerequisites of notification module at the same time. This is to

ensure that all prerequisites of one module have the same level of hierarchy.

Listing 6.1 shows an example implementation of how a CoolDownModule class may be

implemented as a base abstraction module associated with device modules that can cool

down the ambient temperature. We show an example implementation unit of this module

called ACTurnOn that may define the behavior associated with turning on an air conditioning

unit.

Given the aforementioned programming abstractions, we now show how prior notions of

a policy file can be augmented to incorporate abstraction modules.
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〈policy-set〉 ::= 〈statement〉; (〈statement〉;)* EOF

〈statement〉 ::= 〈restrict-clause〉 | 〈allow-clause〉

〈restrict-clause〉 ::= RESTRICT : 〈state-transition〉

〈allow-clause〉 ::= ALLOW: 〈state-transition〉

〈state-transition〉 ::= 〈transition〉 (, 〈transition〉)* : 〈state〉 (,〈state〉)*

〈state〉 ::= 〈abstraction-module〉 . 〈abstraction-attr-id〉 (.〈abstraction-attr-id〉)*

〈logical-operator〉 〈attr-value〉

Figure 6.3: Policy grammar for IoTGuard [CTMa] augmented with RemedIoT’s program-

ming abstractions.

6.4.3 Policy Grammar Definition

We show how policy grammars for conflict detectors in previous works can be augmented

to incorporate our abstraction modules. For instance, IoTGuard [CTMa] defined a Backus-

Naur Form (BNF) policy grammar to allow developers to define rules regarding the sets of

allowed and restricted state transitions for IoT devices. The same policy grammar can be

augmented to define the allowed and restricted state transitions for abstraction modules, as

shown in Figure 6.3. The semantics would remain the same as long as abstraction module

attributes are syntactically correct.

These programming abstractions, along with a conflict detector that utilizes an associated

augmented policy grammar, allow us to realize the RemedIoT remedial action engine.
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6.5 Remedial Action Engine

As discussed in Section 6.3, RemedIoT’s runtime remedial action engine takes as its input a

conflict generated by a conflict detector and attempts to resolve the the conflict by utilizing

a configured remedial action for the particular conflict. If no remedial action exists, the

conflicting events will be blocked. To provide the design details of this system, we first

discuss how these remedial actions are configured and installed prior to runtime.

6.5.1 Remedial Action Configuration

Remedial actions are configured upon encountering a new conflict from the conflict detector.

New conflicts may arise during the installation of either event services or policies. Algorithm

1 describes the remedial action configuration process for a candidate event e. The first step

is to detect whether the candidate event conflicts with any existing event services or policies.

Conflict detection. RemedIoT ensures that any candidate events or policies are first

passed through the conflict detector (Line 4) to see if any conflict exists with other installed

events or policies. Because the state space for event services considered by RemedIoT is

limited to two states (on or off ), the set of conflicts that arise, Econf , can then be divided

into two sets: the singleton set with the candidate event and the set of all events that have

a conflicting action with e. Further, we only care about remediating the conflicts for the set

of events with lower priority, where “priority” refers to the aforementioned cost and utility

metrics of an abstraction module. The higher priority set should always take precedence for

executing a particular action at runtime. Therefore, RemedIoT will first generate the full

set of conflicting events Econf (Line 4), sort the events based on priority (Line 5), and then

extract the lower priority set of conflicting events E ′conf (Line7). Given this extracted set,

RemedIoT will attempt to find a remedial action for each conflict.

Remedial action generation. RemedIoT first iterates through each conflicting event

service, econf , and prompts the user (Line 10) for the intended abstraction module of the
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Algorithm 1 Remedial Action Configuration

1: Input: candidate event e, actuation graph Gact, policy database DBpolicy, event

database DBevent, remedial action database DBrem;

2: Output: updated event database DB′event, updated remedial action database

DB′remedial;

3: //Get conflicting events for given event.

4: Econf ← conflictDetector(e, DBevent, DBpolicy, DBrem);

5: Sort conflict events Econf based on priority;

6: // Extract lower priority set of conflicts to remediate:

7: E ′conf ←getLowerPrioritySet(Econf )

8: for all econf ∈ E ′conf do

9: // Get user to select the intended non-conflicting module:

10: intendedModule← getIntentionFromUser(econf ,Gact);

11: // Given intended module with pruned impl. units, prompt

12: // user to select a non-conflicting rem. action impl. unit:

13: arem ←getRemActionFromUser(intendedModule, Gact);

14: // Map each conflict pair to its remedial action in database:

15: for all e{ ∈ Econf\E ′conf do

16: DBrem →add(
〈(
econf , e

{
)
, arem

〉
);

17: end for

18: end for

19: //Add candidate event to event database:

20: DBevent →add(e);
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conflicting implementation unit by utilizing the actuation graph, Gact. If there is more than

one conflict, RemedIoT ensures each of the possible options prompted to the user does

not introduce new conflicts by using the conflict detector. For instance, in Figure 6.2, if

the conflicting implementation unit was the “Window Controller”, the user may confirm

that the intended abstraction module was the parent “Cooling Down” module. If the user

declines to use the parent abstraction module, then RemedIoT will block this action upon

detecting a conflict at runtime. RemedIoT ensures that any parent abstraction module

that is presented to the user will have a set of non-conflicting implementation units, i.e.,

any implementation units from the actuation graph Gact that will cause a new conflict are

pruned. Given the intended abstraction module, RemedIoT then prompts the user to select

an alternative implementation unit (Line 13), e.g., the aforementioned example will prompt

the user to select the “Air Conditioner” implementation unit. If the user selects a suggested

remedial action, the action is stored in a remedial action database DBremedial by mapping

each conflicting event pair, i.e., econf and the complementary e{ for all events in the higher

priority set Econf\E ′conf , to its associated remedial action arem (Line 15). If no remedial

action is chosen, then the default action will be to block the conflicting event. Once all

remedial actions have been generated, RemedIoT can now add the candidate event e to

the event database DBevent.

6.5.2 Runtime Remediation

At runtime, RemedIoT runs alongside the event service platform. IoT event service plat-

forms such as IFTTT typically check the trigger conditions of all installed event services

periodically. When a new event is activated, RemedIoT will utilize the conflict detector

mentioned in Algorithm 1 to check if the new event has conflicts with other events that are

currently active. If a conflict exists, it will query the remedial action database DBrem to

select the appropriate action.

Each of the aforementioned components will have engineering challenges which we address
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in the subsequent section.

6.6 Implementation

In order to implement RemedIoT’s core utilities, we first demonstrate how an existing con-

flict detector can be instrumented to interface with the RemedIoT remedial action engine.

We first describe the conflict detector instrumentation and then discuss the implementation

for both the abstraction graph module support as well as the RemedIoT action engine.

6.6.1 Conflict Detector Instrumentation

We implement the framework for the conflict detector as a directed graph–as was done in

the conflict detector for IoTGuard [CTMa]1. Within the graph, an event can be described as

two nodes and one directed edge. Each node stands for a set of device (or module) states and

each directed edge indicates a trigger-action relationship. Note that one node may contain

a cascade of conditions (actions) instead of only one module state. A conflict arises when a

collection of compatible conditions, i.e., conditions that can be satisfied at the same time,

can simultaneously cause a set of incompatible actions, i.e., lead to mutually exclusive states

of the same device.

When a new event is added, the conflict detector2 traverses the graph nodes to determine

all the compatible conditions nodes as well as all the incompatible actions nodes. We then

perform a reachability analysis to determine if a path exists between these two sets. Any

detected path will be considered as a potential conflict and removed from the graph. If

any conflicts arise, these conflicts, along with the new event, are delivered to the remedial

1We implemented our own conflict detector inspired by IoTGuard since the source code was not available

at the time this paper was written.

2The conflict detector module was implemented in Python with 400 LoC and is available in the repository.
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action engine to generate the associated remedial actions. If no direct conflicts are observed

in this stage, the new event will be added to the graph. Finally, we employ a depth-first

search-based algorithm to find all the loops inside the dependency graph. All discovered

conflicts and loops are forwarded to the Remedial Action Engine.

Given a conflict detector, we now describe how we implement the core components of

RemedIoT. Before we can describe the implementation of the remedial action engine, we

first describe the implementation of the actuation graph module support that enables the

remediation.

6.6.2 Actuation Graph Module Support

We implement a generic API for IoT programming environments to support the aforemen-

tioned actuation graphs. The graph support is implemented as a base abstract class in

Python with a domain-specific implementation. We illustrate how an actuation graph can

be constructed in Section 6.7. The actuation graph support enables the remediation of

conflicts.

6.6.3 Remedial Action Engine

The Remedial Action Engine is also implemented in Python based on Algorithm 1. We

implement a proof-of-concept interface to allow the user to select the proper remedial action,

as illustrated in figure 6.4. The remedial action, event, and policy databases are implemented

and maintained as dictionaries in Python. The Remedial Action Engine also utilizes the

aforementioned conflict detector both at configuration time and at runtime. We now detail

our evaluation with illustrative examples.
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Do you want to REDUCE VENTILATION?

E1: CO2 density-high -> turn-on-fan               E2: temp-low -> turn-off-fan
Conflicts Detected

Intention Confirmation

OK

Remedial Actions 

Cancel

TURN ON HEATER

OK Cancel

Do you want to  INCREASE TEMPERATURE?

Can you

NONE OF THE ABOVE

NONE OF THE ABOVE

Figure 6.4: An example interface for RemedIoT that suggests a remedial action to the user

when a conflict is detected.

6.7 Evaluation

To illustrate a domain-specific implementation, we evaluate RemedIoT on Samsung Smart-

Things and IFTTT applets. We first describe how we manually extract events and policies

for the platforms in order to perform an evaluation.

6.7.1 Event and Policy Realization

We manually extract a large set of events from both programming platforms. Although we do

not obtain all possible events from both platforms, we try to choose the most representative

actions from each application3. When we extract the events from the platforms, we format

the input events as ”IF conditions THEN actions[,priority]”, where the priority can be one

of three categories (highest to the lowest): safety, energy, and utility. By default, each event

is designated as a utility. The priority is used to determine which event is more important

3All the events we select are available in the github repo.
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Figure 6.5: The simulated smart home environment with artificially placed IoT devices

utilized in our evaluation.

when a conflict is detected. For example, in a Samsung SmartThings safety application,

we manually extract an event as ”if co2.density >= 50 then vent fan.state = on,

safety”. The extracted event is then parsed and passed to the conflict detector as an input.

Further, all policies are implemented as special events to our system. For our evaluation,

each specific policy has been assigned to a category – house safety, energy economy, or user

comfortability. For example, P.1 in table 6.3 is implemented as ”if user.home = 0 then

doors.state = 1 and windows.state = 1,safety”. We now discuss the environmental setup for

our experiments.

6.7.2 Environment Setup

We first describe how we set up our experimental environment. We simulate a smart home

environment, as shown in figure 6.5. It has 13 different smart devices. We run our experiment

on an Intel Nuc desktop equipped with an Intel Core i7-6770HQ. For this smart environment,

we have to construct an actuation graph for the associated IoT modules.

Actuation graph modules. We construct an actuation graph that implements 13 dif-

ferent devices through 8 actuation modules that cover all situations in our selected events.
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Table 6.2: The actuation modules and their associated implementation units we considered

in our evaluation.

Module Description Implementation Unit  Description 

Cooling 
down 

Cool down the 
house 

Window Opening Low Open the window when outside temp. is lower 

AC Turning On Turn on Air Conditioner to cool down 

Fan Turning On Turn on cooling fans 

Heating up Heat up the house 

Window Opening High Open the window when outside temp. is higher 

Heater Turning On Turn on the heater to heat up 

Fireplace On Light up the fireplace to heat up the house 

Ventilation 
Ventilate the air 

of the house 

Fan Turning On Turn on the fan to ventilate 

Window Opening Open the windows to ventilate 

Door Opening Open the doors to ventilate 

Illumination 
Brighten up the 

house 
Light Bulbs On Turning on the light bulbs 

Curtain Opening Open the curtain when outside is brighter 

Green 
Energy 

Save the energy of 
the house 

High-Power Devices Off Turn off the high power consumption devices 

Low Power Mode On Set low power mode for the devices 

Movement 
Detect movement 

at home 

Camera Detection Detect the motion through cameras 

Motion Sensors Detect the motion through motion sensors 

Warning 
Notification 

Send the warning 
info to the user 

Text Warning Text the warning message to the user 

Speaker Warning Play warning sounds through speaker 

Flashlight Warning Display flashlight using the lightbulbs 

Increasing 
Humidity 

Increase the 
humidity 

Fan Turning Off Turn off the ventilation fan 

Humidifier On Turn on the humidifier 
 

Moreover, each module provides 2 to 3 different paths (implementation units) to achieve the

desired state specified by the module. Table 6.2 summarizes the modules and the implemen-

tation units we provide.

The cost of each module or implementation is simply the energy it might consume using

a hard-coded value. For example, turning on the AC has a higher cost than opening the

window4. Given this environmental setup, we now describe the set of microbenchmarks used

to evaluate RemedIoT.

6.7.3 Microbenchmarks

We propose a set of benchmarks extracted for real Samsung SmartThings applications and

IFTTT applets. The goals of our benchmarks are to determine how many conflicts–which

4Although power consumption profiles can be made for devices, we simply set relative values to ensure

the devices are sorted correctly according to their expected power consumption for a proof-of-concept.
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Table 6.3: The policies used to evaluate RemedIoT on Samsung SmartThings and IFTTT

applets.

Category Index Policy Description 

General P.0 Mutually exclusive states must not exist in the environment. 

House Safety 

P.1 The doors and the windows must be locked when the user is not home. 

P.2 The emergency alarming system must be on. 

P.3 The security cameras must be on when the users are not home. 

P.4 The electronic devices must be off when fire sprinklers are on. 

Economic 
Energy 

P.5 The heater and the AC must not be on at the same time. 

P.6 The sprinklers must be off when it rains. 

P.7 The dryer and the humidifier must not be on at the same time. 

User 
Comfortability 

P.8 The non-emergency sound system must be off when users are sleeping. 

P.9 The curtains must be closed when private mode is on. 

P.10 The lights must be off while the users are sleeping. 
 

Table 6.4: The aggregated results for conflict detection and remediation using RemedIoT

in the context of the Samsung SmartThings and IFTTT applets.

# Apps # Events # Conflicts % Conflicts 
(Out of Events) 

% Blocked Events 
(Out of Conflicts) 

% Remedial Actions 
(Out of Conflicts) 

74 195 102 52.31% 19.61% 80.39% 
 

would normally be blocked by prior works–can be remediated. We achieve this by essentially

trying to configure as many events as possible in our simulated smart environment. We

further want to show the configuration time overhead to illustrate the efficacy and usability

of RemedIoT. In total, we collect 195 representative events from 74 applications. More-

over, we propose ten specific policies ranging from housing safety to user comfort and one

general policy, as illustrated in table 6.3. We implement eight different modules with 20

implementation units, as shown in table 6.2, to support the Remedial Action Engine.

6.7.4 Results

The aggregated results for installing the set of events are shown in Table 6.4. Based on 195

extracted events from 74 sample applications and 11 policies, we detect 102 conflicts, i.e.,

52.31% of all events conflicted with each other upon configuration. By using the RemedIoT
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Table 6.5: Ten selected remedial actions provided by RemedIoT after running the mi-

crobenchmarks.

Index Event Conflict Remedial Action 

C.1 

home temp >= 60 & outside temp < 60  open window 

window is on and off at the same time 

home temp >= 60 & outside temp < 60  vent. fan on 

user away  user away mode on Not Applicable 

user away mode on   close window Not Applicable 

C.2 
vacation mode on   all lights off  

Lights on and off at the same time 
Not Applicable 

motion detected   lights on motion detected  text the user 

C.3 
home mode on  turn on TV 

TV on and off at the same time 
Not Applicable 

energy saving mode on  turn off TV energy saving on  TV low power mode 

C.4 

home temp >= 70  ac on 

AC on and off at the same time 

home temp >= 70  fan on 

home temp >= 75  ac on home temp >= 75  fan on 

user away mode on  ac off Not Applicable 

C.5 light lux <= 1500  open curtain P.9 Light lux <= 1500  light on 

C.6 
user away mode on  camera on 

P.3 ; camera on and off at the same time 
Not Applicable 

user away mode on  camera off user away mode on  motion sensor on 

C.7 

CO2 density > 50  fan on 

Fan on and off at the same time 

Not Applicable 

light on  fan on Not Applicable 

time scheduled  fan on Not Applicable 

humidity <= 50  fan on Not Applicable 

home temp >= 70 & outside temp <= 65 & ac off  fan on Not Applicable 

home mode on & home temp > 75  fan on Not Applicable 

smoke detected  fan on Not Applicable 

user shower  fan on Not Applicable 

humidity <= 50  fan off humidity <= 50  humidifier on 

C.8 
home temp >= 71  heater off 

Heater on and off at the same time 
Not Applicable 

home mode on  heater on home mode on  window open 

C.9 
motion detected   lights on 

Lights on and off at the same time 
Motion detected  play sound on speaker 

sleep mode on  light off Not Applicable 

C.10 

arrive home  door open 

Door open and close at the same time 

Not Applicable 

CO2 high  door open Not Applicable 

home mode  door close home mode  fan on 
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framework, 80.39% of the conflicts can be sought for remedial actions. These remedial actions

highlight the contributions of our paper: in previous conflict detecting systems, theses conflict

events are simply blocked. RemedIoT provides a set of substitution events that can realize

the same function for 80.39% of the conflicts, i.e., 82 of the 102 events could be configured

without worrying about possible conflicts. Table 6.5 describes ten selected remedial actions

suggested by RemedIoT framework. For instance, for conflict C.1, one event is trying to

close the window when the user is away, and the other is trying to open the window to

cool down the house. Because the former event has a higher priority for safety, the smart

fan is chosen to realize the cooling abstraction. We now discuss the feasibility of deploying

RemedIoT in a real environment.

6.7.5 Configuration Time Overhead

Because RemedIoT might be deployed in large scale smart environments such as smart

cities, we evaluate the scalability of RemedIoT. In particular, we calculate the overhead in-

duced by RemedIoT when constructing the actuation graphs. We investigate the execution

time of actuation graph construction against the number of its associated actuation mod-

ules. For each different number of actuation modules, we average the execution time over 50

runs. Figure 6.6 shows a nearly logarithmically linear relationship between the number of

assembled modules and the time consumed. Given the fact that the number of smart devices

is limited, the time to construct the actuation graph can be ignored. Further, the actuation

graph only needs to be constructed once before runtime, so configuration time may be a

moot point.

We also obtain the overhead time of running our Remedial Action Engine by generating

different quantities of remedial actions on different sizes of the actuation graph. We again

run each experiment for 50 iterations to get the average overhead as well as the error range.

As illustrated in figure 6.7, the performance of the Remedial Action Engine is irrelevant to

the number of actuation modules in the actuation graph, which means that simply increasing
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the number of devices will not incur more overhead. The computation time logarithmically

increases with the number of remedial actions that need to be proposed. Our results5 show

that a personal desktop can easily enable constructing 100000 modules while suggesting up

to 10000 remedial actions at runtime, highlighting RemedIoT’s scalability. Our results also

validate the scalability of RemedIoT even if more complex policies are added, i.e., more

conflicts are triggered.

6.8 Future Works

There are several future directions enabled by the RemedIoT.

Automating remediation. One limitation is that RemedIoT relies on at least one redun-

dancy path to achieve the same functionality. A future direction of this work is to automate

such a process so that RemedIoT system is able to dynamically learn and make adjust-

ments based on the application user’s behaviors. Techniques such as reinforcement learning,

crowdsourcing, and collaborative filtering can facilitate the usability of RemedIoT.

Modeling sensors and actuators. Currently, the state space for sensors and actuators

are binary, i.e. on or off. Cyber-physical modeling techniques can be utilized to better

model different types of sensors and actuators. Further, we can dynamically optimize how

an implementation unit implements an abstraction module at runtime. For instance, if an

abstraction module performs human detection, a camera would be more effective than a

microphone for certain environments.

5Although our implementation of the conflict detectors cannot detect large scale conflicts, we use a

simulated program to generate many conflicts for evaluation purposes manually.
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6.9 Conclusion

In this chapter, we proposed RemedIoT, a remedial action framework for resolving IoT

conflicts. We evaluated the efficacy of RemedIoT on Samsung Smarthings and IFTTT

applets in the context of a simulated smart home environment and showed that for a large

set of applications, RemedIoT is able to resolve ∼ 80% of conflicts. We further show the

scalability of RemedIoT for generalizing to smart city environments.
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CHAPTER 7

Conclusion and Future Research

This dissertation study and present a secure and safe framework for the usage of sensors

and actuators at the edge under multi-tenant edge systems. We conclude the dissertation by

summarizing the works done to build the framework and discuss the possible future directions

of the research works.

7.1 Conclusion

The first part of the thesis presents PROTC and VirtSense to have runtime security for

sensors and actuators under the untrusted execution environment with the help of hardware

TEE. Furthermore, this part only introduces Aerogel that can achieve the same level of

security for bare-metal IoT devices that have no hardware TEE by using Wasm. The second

part of the thesis presents SecDeep that secures an edge-accelerators enabled deep learning

inference framework at the edge. The third part of this dissertation presents RemedIoT, a

runtime framework that can solve IoT actuation conflicts.

7.1.1 Securing Sensors and Actuators at Runtime

7.1.1.1 PROTC

PROTC is the framework for IoT devices that can protect the essential actuating services

under an untrusted environment using hardware TEE, such as ARM TrustZone. The decisive

part of this framework is to confirm that an actuation command is from the actual user
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without being modified but not from a malicious application or OS. We implement PROTC

for the UAV system on Raspberry Pi 3 with OP-TEE OS, and our results show that the

average overhead of PROTC is about 143 ms.

7.1.1.2 VirtSense

VirtSense is a secure framework to protect IoT devices’ essential sensing services under an

untrusted execution environment through hardware TEE. The core design of VirtSense is

to have a virtual sensing management unit inside TEE such that only authorized sensing

requests can get the sensor data. Meanwhile, since different sensing requests might need

the data at different frequencies, the virtual sensing management unit also satisfies those

requests by reconstructing the sampled sensor data. We implement VirtSense on Raspberry

Pi 3 using OP-TEE OS, and our results indicate an average overhead of 16ms.

7.1.1.3 Aerogel

Aerogel provides the runtime sensors and actuators protection for bare-metal IoT devices

where the resources are constrained, and the hardware TEE is not available. Aerogel utilizes

the memory isolation characteristics of Wasm to provide memory protection for sensors

and actuators at runtime. Moreover, Aerogel also enables fine-grained access control to use

resource-constrained bare-metal IoT devices such as the power consumption of sensors and

actuators. We evaluate Aerogel using Wasm Micro-runtime and Zephyr OS on nRF52840, a

cortex-M4 based development board. Our results show that Aerogel introduces at little as

0.19% to 1.04% runtime overhead and consumes 18.8% to 45.9% extra energies.
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7.1.2 Securing Inferencing from Sensor Data at the Edge

7.1.2.1 SecDeep

SecDeep presents a new secure and performant deep learning inference framework at the

edge. SecDeep utilizes TEE to secure the data confidentiality from the sensors. Moreover,

SecDeep also uses available edge accelerators to speed up the deep learning inference. We

implement and validate SecDeep by interfacing the ARM NN DL framework with ARM

TrustZone on Hikey 960 board that has ARM Cortex A74 CPUs with ARM Mali G71 MP8

embedded GPU. Our evaluation shows that we can securely run inference tasks with 16× to

172× faster than CPU-based approaches by leveraging edge-available accelerators.

7.1.3 Providing Remedial Actions for Actuation Conflicts

7.1.3.1 RemedIoT

We provide remedial actions for IoT actuation conflicts through RemedIoT. In RemedIoT,

we design an actuation graph that represents the purposes of using IoT devices. Based on the

information provided by the actuation graph, RemedIoT can understand the user’s intentions

of using different IoT devices. Hence, RemedIoT can suggest possible remedial actions

when there are actuation conflicts based on policies that define the allowable and restricted

state-space transitions. We evaluate RemedIoT on Samsung SmartThings applications and

IFTTT applets and show that for 102 detected conflicts across 74 sample applications with

11 policies, RemedIoT can remediate ∼ 80% of the conflicts found in the environment,

which would normally be blocked by prior solutions. We further demonstrate the efficacy

and scalability of our approach for smart city environments.
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7.2 Future Research

Although this dissertation has addressed several challenges of multi-tenant edge systems from

the aspects of security and safety, there still exist many interesting open research questions

that can be answered in the future. Next, we list some possible future directions for the

multi-tenant edge systems.

7.2.1 Prevention From Side-channel Attacks

Our design towards securing sensors and actuators heavily depends on the security fea-

tures of hardware TEE. However, side-channel attacks such as Spectre [KHF19] and Melt-

down [LSG18] towards TEE are still severe threats for data’s confidentiality. Moreover,

cyber-physical attacks such as GPS spoofing attack directly target on the sensors or actu-

ators will affect data accuracy that might lead to severe consequences. In the future, we

should have a more secure system that can protect the confidentiality of sensor data and the

integrity of both sensors and actuators against possible side-channel attacks.

7.2.2 Prevention From Machine Learning Adversary Attacks

SecDeep protects edge deep learning inference, where SecDeep trusts the machine learn-

ing model that will not leak the privacy information from its inferenced results. However,

researchers have found that adversary attacks can reverse the raw input data from the in-

ferenced results in some deep learning models. Future research could utilize both TEE and

adversary-attack-proof algorithms to strengthen raw data confidentiality and user privacy.

7.2.3 Increase Automation Capabilities of Actuation Conflict Resolution

Although our designed RemedIoT framework can provide remedial actions for actuation

conflicts, RemedIoT still requires the users’ interceptions to choose their intentions correctly.

149



Ideally, if the framework can learn user’s habits from their past events, it will not require

the user to choose his or her intentions, but make the decisions automatically. The future

research direction of RemedIoT should be integrated with machine learning algorithms such

as complex events detection to learn what the user’s true intentions are when a conflict is

detected. Moreover, we still need manual configurations of safety policies for RemedIoT.

Future work could be focusing on learning the unsafe behaviors from the past experience

through transfer learnings such that the framework can automatically generate safety policies

in any smart environment.
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