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Abstract

Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting 

the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this 

article, we sought to identify which types of studies are necessary to establish whether astrocytes, 

beyond their well-documented homeostatic and metabolic functions, perform computations 

implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we 

reviewed Systems-like studies that include astrocytes in order to identify computational operations 

that these cells may perform, using Ca2+ transients as their encoding language. The analysis 

suggests that astrocytes may carry out canonical computations in a time scale of sub-seconds to 

seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and 

complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the 

outstanding question of which variables are encoded by such computations. The application of 

statistical analyses based on machine learning, such as dimensionality reduction and decoding in 

the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, are, 

in our view, fundamental undertakings. We also discuss technical and analytical approaches to 
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study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in 

advanced modeling of neural circuits, as well as in theories currently under exploration such as 

predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ 

and brain coding may represent a leap forward towards novel approaches in the study of astrocytes 

in health and disease.

Graphical Abstract
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1. Systems Neuroscience is primarily a neuronal field

The study of the central nervous system (CNS) encompasses different levels of analysis: 

molecular, cellular, anatomical, behavioral, cognitive and systems. Systems Neuroscience 

aims at integrating these former fields, which have mostly grown independently. For 

example, Molecular Neuroscience has traditionally focused on the smallest functional level 

without a connection to cognition, whereas Behavioral Psychology and Psychophysics have 

typically studied cognition separately from its molecular and neuronal underpinnings. The 

overarching goal of Systems Neuroscience is to understand how neural circuits give rise to 

cognitive functions, emotions and behavior by simultaneously recording neuronal activity 

and behavior at the highest spatiotemporal resolution possible.

Systems Neuroscience is arguably a field of neurons. A proof of this can be found in recent 

editions (2015–2017) of the three international conferences dedicated to Systems and 

Computational Neuroscience—here we will not dwell on what is ‘Systems’ and what 

‘Computational’ since the two fields are highly overlapping and complementary. The 

conferences are the ’Conference and Workshop on Neural Information Processing Systems’ 

(NIPS), the ‘Organization for Computational Neurosciences’ (OCNS) and ‘Computational 

and Systems Neuroscience (COSYNE). Of approximately 3000 communications, fewer than 

1% included non-neuronal cells. The pervasive use of the phrase ‘neural circuit’ in the 

programs most of the time refers to computational integration of information embedded in 
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neuronal biophysical substrates. The scarce attention to non-neuronal cells is puzzling, at 

least from the perspective of the astrocyte field, given the evidence that astrocytes contribute 

to circuit-based phenomena at the synaptic (Araque et al., 2014) and network (Poskanzer & 

Yuste, 2016) levels. Although efforts are being made in the US Brain Initiative and the 

European Human Brain Project to develop studies incorporating non-neuronal cells, it seems 

as though progress in astrocyte biology has advanced in parallel to systems neuroscience, 

and astrocytes have been excluded from unified theories of brain function, as previously 

noted (Poskanzer & Molofsky, 2018). Although extensive modeling of astrocytic Ca2+ 

fluxes exists (Manninen et al., 2018), and sporadic studies have explored the application of 

astrocyte-based computations to artificial intelligence (Alvarellos-Gonzalez et al., 2012; 

Porto-Pazos et al., 2011), astrocytes are characteristically missing from advanced in silico 
modeling of neural circuits (Capone et al., 2017; Deneve et al., 2017; Gjorgjieva et al., 2016; 

Markram et al., 2015).

Is this exclusion justified because the mechanisms underlying the well documented impact 

of astrocytes on neural circuits fall within the realm of intercellular signaling, homeostasis 

and metabolism, which, although essential for the maintenance of neural circuits, may not 

qualify as ‘computing’ processes? Or, are astrocytes fundamental to the computational 

foundations of the brain? Later we will elaborate on what is and what is not computation, 

but rather than struggling to define ‘computation’ we ask, instead, whether processes that 

take place in astrocytes participate in the implementation by neural circuits of processes sub-

serving coding, complex behaviors, and higher-brain functions. In other words, if 

computation is an emerging property of a given neural network (Yuste, 2015), do astrocytes 

help to shape such property beyond providing metabolic and homeostatic support? If they 

do, specific questions are whether there are niche(s) in Systems Neurosciences that would 

particularly profit from astrocyte idiosyncrasies, and whether the impressive techniques and 

theoretical armamentarium deployed by Systems Neuroscience could be used—and are 

sufficient—to unravel possible astrocyte-based computations. In an early article in 

Computational Neuroscience, it was argued that anatomical features provide valuable 

insights about how the CNS operates because ‘the nervous system is a product of evolution, 
not design. The computational solutions evolved by nature may be unlike those that humans 
would invent, if only because evolutionary changes are always made within the context of a 
design and architecture that already is in place (Sejnowski et al., 1988). It follows that the 

unique anatomical arrangement between astrocytes and neurons might be part of 

computational solutions refined by evolution that have made the brain a highly efficient task-

performing system. In this article we will explore the possible computations carried out by 

astrocytes. First, we will succinctly describe the fundamentals (section 2) and current 

challenges (sections 3 and 4) of Systems Neuroscience. We will continue by reviewing 

Systems-like studies involving astrocytes (sections 5 and 6). We will then propose a to-do 

list to further integrate astrocytes in Systems Neurosciences, thus helping to dissipate the 

historical and perhaps no longer tenable gap between astrocytes and neurons (section 7). We 

do not touch upon other glial cells because, as discussed earlier (Masgrau et al., 2017), the 

cells grouped under this name are molecularly and morphologically distinct; hence, their 

contribution to higher-brain functions deserves individual attention.

Kastanenka et al. Page 3

Glia. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Computational foundations of the CNS

What is computation?

When we say that the brain computes we mean that it creates and stores representations of 

physical and conceptual entities, and performs operations on these representations in order 

to carry out discrete tasks underlying behavior. The goal of Computational/Systems 

Neuroscience is to describe these processes in mathematical and computational terms. In this 

framework, it is believed that the mathematical treatment of the representations is possible 

precisely because computation implies abstraction, thus permitting generation of internal 

models of the world using biophysical substrates (Marr, 1976). The action of generating 

representations is known as encoding because the brain converts physical and conceptual 

entities into a code, that is, a combination of symbols representing variables. Symbols can be 

discrete, continuous and distributed among numerous neurons and brain areas. A prime 

example of what is and is not computation can be found in action potentials. Their 

generation is caused by fine homeostatic adjustments of membrane voltage that per se may 

not qualify as a computation (Stuart et al., 1997), but complex combinations of action 

potentials constitute the ‘symbols’ of the ‘alphabet’ used by the brain to compute. Examples 

of variables encoded by the brain are the position, color and shape features of a given object 

(Seymour et al., 2010), sound categories (Tsunada & Cohen, 2014), the distance between the 

eyes in face recognition (Chang & Tsao, 2017), and the reward value of a choice during 

decision making (Saez et al., 2018). The information embedded in neural biophysical 

substrates can be decoded and transferred (‘rerouted’), possibly transformed into different 

formats and neural substrates. Examples are the on-line holding of memory during decision 

making (Hasson et al., 2015), and memory replay during memory consolidation (Foster, 

2017). It is worth stressing that the current computational view of the brain is not an 

established truth, but a simplified framework highly influenced by information theory, 

computer science and linguistics to guide experimental testing.

Computation takes place at several hierarchically organized levels.

Levels include from brain areas, nuclei, maps, columns, circuits, single neurons, and sub-

neuronal compartments, such as dendrites, spines, somas and axons (Mesulam, 1998). 

Levels, moreover, interact in specific temporal and topological patterns (Betzel & Bassett, 

2017) (Vidaurre et al., 2017). A hierarchical organization is, in essence, a modular 

organization of computation (D. Meunier et al., 2009), such that a successful general theory 

of the brain will have to explain how tasks performed at one module(s) give rise to tasks 

performed by the larger module(s). Currently, a widely assumed premise is that most 

components of cognition emerge from the level of transiently active circuits—some authors 

prefer to speak about ensembles of neurons or cell assemblies (Buzsaki, 2010)—whose 

dynamics arise, in turn, from complex interactions involving the three classical building 

blocks: neuronal intrinsic excitability, synaptic efficiency, and connectivity (Gjorgjieva et al., 

2016). Simply put, circuit dynamics within the range of millisecond to minutes control fast 

behaviors such as perception and decision making (Khani & Rainer, 2016), whereas synaptic 

changes lasting hours and days control learning and memory (Sweatt, 2016). Connectivity 

includes two main patterns: feed-forward, supporting a unidirectional flow of information, 

and recurrent, composed of positive and negative feedbacks that lead to self-sustained 
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multiple activity patterns (Duarte et al., 2017). Connections are mostly selective but they can 

be random as well, giving rise to complex, slow dynamics that include chaotic interactions 

(Mastrogiuseppe & Ostojic, 2018). Another widely assumed premise is that local circuits, 

however dynamic, are too anatomically fixed to adapt their behavior to contexts that need to 

be globally broadcast, for instance, sleep-wake cycles, mood, reward, and attention during 

perception and decision making. To circumvent this problem, neuromodulation has been 

suggested as a solution. Neuromodulation refers to the relatively rapid (in the range of 

seconds) functional reconfiguration of circuits throughout the brain by acetylcholine, 

dopamine, noradrenaline and serotonin, which are released by subcortical and brainstem 

nuclei: the nucleus basalis of Meynert (NBM), the striatum, the locus coeruleus, and the 

Raphe nucleus (Avery & Krichmar, 2017). Neuromodulation participates in working 

memory, attention, brain state and plasticity (C. N. Meunier et al., 2017; Sara, 2009; Thiele 

& Bellgrove, 2018).

Neural substrates of brain computations.

The ultimate goal of Systems/Computational Neuroscience is to explain how electrical and 

chemical signals are used in the brain to represent and process information (Sejnowski et al., 

1988). Currently, a widely accepted assumption is, as noted, that external variables are 

encoded into action potentials. Theories and empirical evidence point to firing rates (average 

number of action potentials per unit of time)(Gerstner et al., 1997), action-potential timing 

(length of time between action potentials) (Panzeri et al., 2001), population coding (joint 

activity of several neurons) (Panzeri et al., 2015), and neural dynamics (the way electrical 

activities evolve with time and space) (Shenoy et al., 2013), as potential features of action 

potentials that, in infinite amount of combinations, have enough breadth to constitute the 

basis of the brain code(s). A key implication of the multi-level organization of the brain is 

that code(s) are multi-level, too. This means that external variables are encoded by the 

collective activity of numerous simpler elements, which carry either synergistic or 

complementary information (Panzeri et al., 2015). This principle is the driving premise in 

population and dynamic coding, and has informed the development of methods for recording 

from large populations of neurons, including multi-electrode arrays, which can record up to 

103 neurons (Einevoll et al., 2012), Ca2+ imaging, which can simultaneously record over 104 

neurons (Sofroniew et al., 2016)(Pachitariu et al., 2016), and functional resonance magnetic 

imaging (fRMI), which makes use of BOLD (blood-oxygen-level contrast imaging) to 

unravel functional connectivity among regions encompassing over 105 neurons (Fox & 

Raichle, 2007). It is worth stressing that the measurable signals in the latter two approaches 

are not action potentials, but single-cell Ca2+ rises and regional oxygen consumption, 

respectively. Although the premise for using large-scale Ca2+ imaging in neurons is that 

single-neuron Ca2+ signals represent slower non-linear encoding of the underlying action 

potentials (Vogelstein et al., 2010) (Lutcke et al., 2013), non-electrical signals, as well as 

global voltage oscillations measured with field potentials and electroencephalograms, 

plausibly carry additional information that is computationally relevant. For example, it has 

been proposed that synaptic facilitation mediated by neuronal Ca2+ signals sustains working 

memory (Mongillo et al., 2008). All in all, biophysical substrates of brain computations 

other than the ones directly or indirectly based on neuronal activity will plausibly arise in the 

future, including, we posit, astrocyte-based computations.
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Contemporary brain theories.

According to the number of publications, one of the most influential brain frameworks is 

predictive coding, which aim to account for core principles underlying adaptive circuit 

remodeling. The key tenets of predictive coding are the following. First, representationalism, 

the brain operates by building models of the outer world, conceptual categories and expected 

outcomes of actions. Second, evaluation of new information against embedded models is at 

the core of many brain operations besides decision making, including perceptual 

discrimination, voluntary selective attention and learning. Third, the nature of such 

evaluations is probabilistic, since the underlying algorithms weigh in pros and cons and 

similarity of the novel information with respect to internal models. A central notion is that 

‘organisms care less about representing what is actually out there in the world than about 
how this reality conflicts with their predictions about what should be there’ (Fitch, 2014). 

An apparent virtue of this strategy is minimization of data storage since it takes fewer bits to 

represent the mean and deviations from it than to attempt de novo representations (Fitch, 

2014). Fourth, the brain tries to minimize its prediction errors such that internally-generated 

predictions are constantly optimized with external inputs in an iterative process. In 

predictive coding, neuromodulation is proposed as computing part of the statistics of errors 

made by predictions (Lau et al., 2017; Stephan et al., 2015). The bulk of empirical support 

for predictive coding lies in the domains of perception, reward learning, and decision 

making, as documented in humans, monkeys, and rodents (Summerfield et al., 2008; 

Wacongne et al., 2011) (Kok & de Lange, 2014; Markov et al., 2014) (Diederen et al., 2017; 

Nasser et al., 2017) (Leinweber et al., 2017), whereas the framework appears to be under 

exploration in memory consolidation (Cross et al., 2018) and emotion (Barrett, 2017). Other 

general CNS frameworks worth mentioning are global workspace theory, which describes 

the basic circuit from which consciousness emerges (Baars, 2005), and liquid computing, 

which states that neural circuits have the capacity to store information of previous 

perturbation(s), analogous to the ripples generated on the surface of a pond when stones are 

thrown into it (Maass et al., 2002). Finally, influential theoretical constructions about basic 

operative principles of the brain—compatible with global frameworks—include brain 

oscillations (Buzsaki & Draguhn, 2004), efficient coding (Chalk et al., 2018), energy-

efficient coding (Laughlin, 2001), neural integrators (Mazurek et al., 2003), inhibitory/

excitatory balance (Brunel, 2000; Litwin-Kumar & Doiron, 2012), noise (Arieli et al., 1996), 

and circuit degeneracy (Sporns, 2013).

3. Challenges, obstacles, and growth areas in Systems Neuroscience.

Despite the progress in the last decade, understanding brain computations remains a central 

challenge of modern Neuroscience. The readily observable behavioral variables that are used 

experimentally to study brain encoding, for instance, rewards, choices and stimulus features, 

represent the tip of the iceberg, because the vast majority of variables used by the brain in 

complex behaviors and higher-brain functions, are typically latent. However, this should not 

distract us from the impressive predictive power that analytical tools are achieving in 

Systems Neuroscience. Examples of success can be found in neuroprosthetics, where the 

electrical activity of the brain of a human user is decoded into motor commands (Cangelosi 

& Invitto, 2017); decision-making, in which decision outputs can be predicted from action 
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potentials with 80% accuracy in monkeys before a response is observed (Kiani et al., 2014), 

and with 70% accuracy in rats, even before stimulus onset (Nogueira et al., 2017), and face 

recognition. Here, the face seen by a Rhesus monkey can be reproduced with 90% accuracy 

by tracking neuronal activity in the inferior temporal cortex (Chang & Tsao, 2017). 

Although the achievements are remarkable, there is still room to improve these numbers. In 

the workflow of Systems Neuroscience from signal capture to deciphering the brain code, 

areas of improvement include signal recording, signal processing, data analyses, and 

astrocyte-focused studies (Fig. 1). Key issues are briefly described next.

Data load in large-scale recordings.

The trend of improving predictions by simultaneously recording more neurons has created a 

serious challenge: the ever-increasing size of the data seriously hampers storage, processing 

and analysis. In order to simplify and reduce data size of recordings, several methods exist to 

extract low-dimensional mathematical representations from multi-neuronal electrical 

recordings (Aljadeff et al., 2016; Cunningham & Yu, 2014). The obstacle is all the more 

complex in Ca2+ imaging, which has become a dominant method for recording from large 

populations of neurons, because special methods are necessary to extract the coarse-grained 

and noisy Ca2+ data prior to data analysis. Algorithms such as Suite2p (Pachitariu, 2016), 

and CNMF (Constrained and/or nonnegative matrix factorization, (Pnevmatikakis et al., 

2016)), represent advances in the simplification of imaging data processing prior analysis. 

Caveats of current calcium imaging data processing are discussed in (Stringer & Pachitariu, 

2018). Alternatively, shot-gun statistics unravels network connectivity information from 

recording at only 10% of the neurons at a given time, thus simplifying the experimental load 

of large-scale recordings (Soudry et al., 2015). Data-sharing and collaborative solutions have 

been proposed as well to manage the surge of data (Paninski & Cunningham, 2018).

Statistical tools for understanding data.

The standard problem is to determine how behavioral variables are encoded by neurons, and 

how this information is decoded, either by downstream neurons, or by an external observer. 

Different statistical tools address encoding and decoding. For encoding, generalized linear 

models (GLMs), a generalization of multiple linear regression, regress neuronal activity 

against behavioral variables to determine the set of variables that explain more neuronal 

activity (Aljadeff et al., 2016) (Nogueira et al., 2017). Decoding techniques, typically linear 

classifiers (Arandia-Romero et al., 2017; Quian Quiroga & Panzeri, 2009), as well as more 

recent artificial neural networks (ANNs) (Paninski & Cunningham, 2018) are used to 

predict, trial-by-trial, values of behavioral variables from neuronal activity, either using 

single neuronal activity, or the individual activity of large neuronal populations recorded 

from multi-electrode-arrays or Ca2+ imaging. These methods are supervised machine 

learning tools because both behavioral and neuronal variables are preselected and labelled. 

Also, unsupervised tools such as dimensionality reduction have been developed, and used in 

parallel, in order to reduce data complexity by identifying low-dimensional latent factors, 

where relevant behavioral variables could be represented (Cunningham & Ghahramani, 

2015). Of note, detection of relevant subspaces of neuronal activity, and optimal selection of 

behavioral features to regress against neuronal data, will facilitate the discovery of 

computational principles. An elegant example is the aforementioned study by (Chang & 
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Tsao, 2017), in which successful face identification in non-human primates was possible 

with 50-dimensional data, and recordings of 200 neurons. Likewise, feature selection can be 

adaptively improved with artificial intelligence (Yamins & DiCarlo, 2016). As with signal 

processing, data load is a challenge in signal analysis, for the number of observations per 

condition does not necessarily grow in parallel with the growth of complexity and number of 

dimensions of the data. For example, recording 20 neurons for 30 min produces the same 

number of observations per neuron than recording 1000 neurons during the same amount of 

time, but the number of dimensions increases 50-fold with the larger neuronal population. 

This means that encoding, decoding and dimensionality reduction techniques need to be 

constrained by specific structural and anatomical knowledge of the neural substrates to be 

operationally useful.

Optogenetics and chemogenetics.

These anatomically precise and reversible tools allow establishing cause-effect relationships 

between the electrical activity of single neurons, or neuronal populations, and behavioral 

parameters. Optogenetics is based on the expression of light-sensitive regulators of 

transmembrane conductance (ion channels and chloride pumps) coupled with fiber optic- 

and laser diode-based light delivery (Boyden et al., 2005; Li et al., 2005). Cell type 

specificity is accomplished by targeting the light sensitive channels with cell-type specific 

promoters. Light-activation of neurons expressing channels like channelrhodopsins (ChR1, 

ChR2) result in neuronal depolarizations due to import of cations such as Na+, K+, and Ca2+

—the latter at trace levels. By contrast, optical stimulations of archaerhodopsin (Arch) and 

halorhodopsins (NpHR) pumps cause hyperpolarization of neurons by exporting H+, or by 

importing chloride ions, respectively. An alternative approach to classic opsins is the light-

sensitive G-coupled receptor, also called OptoGq/Gs, which modulates receptor-initiated 

biochemical signaling pathways (Airan et al., 2009). Chemogenetics is based on the use of 

Designer Receptors Exclusively Activated by Designer drugs (DREADDs), a family of G 

protein-coupled receptors (GPCRs) that are solely activated by a pharmacologically inert 

drug, clozapine N-oxide (CNO) (Alexander et al., 2009). DREADDs can also be targeted to 

neurons with viral or transgenic delivery systems using neuron-specific promoters. Relevant 

insights into behavior, cognition and basic brain homeostasis have been gained with neuron-

targeted optogenetic and chemogenetic approaches (Deisseroth, 2015) (Roth, 2016).

Subcellular computations.

Increasing the number of recorded neurons may not be the only solution for obtaining better 

data. Insofar each and every neuron must integrate and convert thousands of synaptic inputs 

into a single output (London & Hausser, 2005), concerns have been raised about the 

oversimplification of neurons as ‘integrate-and-fire’ nodes in large-scale recordings and in 
silico simulations, and a plea exists to pay renewed attention to the great computational 

potency of single neurons (Fitch, 2014). Spine computations and biophysical substrates are 

reviewed in (Yuste, 2013), and a recent example of the computational relevance of dendritic 

shafts is the finding that non-linear dynamics based on dendritic conductance can help 

sharpen time and rate codes in grid cells, thereby improving the accuracy of space 

representation (Schmidt-Hieber et al., 2017). In the context of imaging, voltage dyes 

represent a growth area allowing for recording at subcellular resolution at multiple points 
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along dendrites and axons (Xu et al., 2017). The data, combined with whole-cell 

reconstructions with electron microscopy (Vishwanathan et al., 2017), will arguably improve 

the understanding of dendritic computations and network connectivity.

A need for theoretical frameworks and modeling.

The wealth of descriptive data will not advance knowledge unless analyses are guided by 

hypotheses and complemented with modeling. Computational/Systems Neuroscience is thus 

engaged in a virtuous cycle whereby data generate models, and models make predictions 

that can be tested ad infinitum against new proposed experiments. The trade-offs of 

increasing the realism of models by incorporating more biophysical variables versus 
developing simplifying models, as discussed in (Sejnowski et al., 1988), are still debated 

(Marder, 2015). Whatever the approach, in vivo models, and their in silico counterparts, 

need to be informed by large-scale hypotheses combined with simpler questions, in order to 

advance on the outstanding question of how the brain processes information with such 

energetic efficiency. We discussed the remarkable production of studies informed by 

predictive coding and other theoretical constructions. Other theories will plausibly arise in 

the future.

4. Astrocyte-based computations as a growth area in Systems 

Neuroscience.

We posit that variables used in brain coding may be partially embedded in astrocyte 

biophysical substrates, such that the incorporation of astrocytes as computational building 

blocks in neural circuits may help advance Systems Neurosciences. Significant gaps of 

knowledge, however, exist. First, there is no evidence that astrocytes gate, transform, store 

and reroute information in the brain by carrying out processes that can be described in 

abstract mathematical terms. Astrocytes do participate in brain state (Poskanzer & Yuste, 

2016), neuromodulation (Magistretti & Morrison, 1988) (Paukert et al., 2014) (Srinivasan et 

al., 2015), and in a wide variety of naturally-occurring recurrent circuits, where they have 

been proposed as carrying out spatiotemporal integration of multicellular inputs (Araque et 

al., 2014). Examples indeed exist of discrimination and integration of synaptic information 

by astrocytes (Perea & Araque, 2005), but the underlying algorithms and their behavioral 

correlates remain undetermined. Second, if astrocytes compute, are Ca2+ transients a 

biophysical substrate of astrocyte-based computations? The intuition that they are already 

exists in the field, resting on a wealth of studies that, since the 1990s, have used Ca2+ 

imaging to assess astrocyte activation at increasing spatiotemporal resolution, thanks to the 

unremitting refinement of fluorescent indicators and optical imaging (reviewed in 

Kastanenka et al.(K. V. Kastanenka, Arbel-Ornath, M., Hudry, E., Galea, E., Xie, H., 

Backskai, B.J., 2016) and (Bazargani & Attwell, 2016)). However, although in silico 
modeling documents that astrocytes can encode extracellular cues into variables in Ca2+ 

transients (De Pitta et al., 2008), the statistical methods currently used to encode and decode 

neuronal action potentials (Section 3) have not been applied to astrocyte data obtained in 
vivo. Third, it is not known whether the subcellular Ca2+ microdomains in astrocytes would 

carry out different functions within distinct circuits associated with different complex 

behaviors, nor whether astrocytes would perform similar computations throughout the brain, 
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or are as functionally heterogeneous as neurons. It is worth mentioning that in the last 

decade controversies have arisen concerning the regulation and consequences of Ca2+ 

signaling in astrocytes. Specifically, whether Ca2+ comes from endoplasmic reticulum and 

mitochondria, or from the extracellular milieu, the very notion of Ca2+-dependent 

gliotransmission, the role of astrocytes in long-term potentiation (LTP), and whether D-

serine is a gliotransmitter have been debated—reviewed in (Bazargani & Attwell, 2016; 

Savtchouk & Volterra, 2018). Currently, the prevailing notion reconciling these 

discrepancies is that Ca2+ responses are highly complex and context-dependent, such that 

the signaling leading to Ca2+ rises, the sub-cellular source of such Ca2+, the speed of 

transients, as well as the downstream effects, are dependent on the subcellular astrocyte 

compartment(s), and the neural circuit (Savtchouk & Volterra, 2018). In this piece we do not 

focus on mechanistic issues, but rather on whether and how astrocytes may perform 

computations using Ca2+ transients.

5 Systems-like studies in astrocytes

A prototypical study in Systems Neuroscience includes three components: (i) recording of 

electrical activity in multiple neurons, (ii) computerized analysis to decode information 

embedded in action-potential firings, and (iii) simultaneous measurement of a cognitive or 

behavioral function. The statistical analyses reveal correlations and, increasingly often, 

causal relationships between changes in patterns of neuronal-population firing and specific 

behavioral or cognitive responses (Sections 2 and 3). There are no studies, to our knowledge, 

recording the Ca2+ activity of multiple astrocytes, followed by analysis with GLM or 

decoders in the context of a behavioral paradigm defined by distinct features that can be 

correlated with patterns of astrocytic Ca2+ activity. Among studies linking astrocytes and 

behavior (for reviews (Oliveira et al., 2015; Santello et al., 2019)), in section 5.1 we discuss 

the ones closer to the neuron-focused experimental design in Systems Neuroscience, for they 

include recordings of Ca2+-based astrocyte excitability, as well as electrical or optical 

recordings of neuronal activity, in the context of complex behaviors or neuromodulation. 

Conversely, in Section 5.2 we focus on studies showing modulation of local brain circuits 

associated with complex behaviors, or brain state, by transient optogenetic or chemogenetic 

astrocyte activation. In section 6, we extract computational lessons from these studies, and 

identify gaps of knowledge, taking into account, when appropriate, previous and recent 

studies that, although lacking any of the aforementioned components, support our 

computational insights. Table 1 summarizes the analysis. In Fig. 1 we highlight in red 

approaches within the general workflow of Systems Neuroscience including signal capture, 

processing and analysis that could be used with astrocytic data.

5.1. Activation of Ca2+ transients in astrocytes by sensory stimulation and 
neuromodulation

Studies in the mouse barrel cortex have shown activation of Ca2+ in astrocyte somata after 

whisker stimulation using fluorescent Ca2+ dyes (X. Wang et al., 2006) (Takata et al., 2011) 

and genetically-encoded Ca2+ indicators (Stobart et al., 2018). Astrocytic Ca2+ increases are 

delayed with respect to Ca2+ rises in neurons (Stobart et al., 2018). Also, astrocytic Ca2+ 

rises are dependent on whisker stimulation frequency, and they are blocked by inhibitors of 
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metabotropic glutamate receptors, indicating that they are caused by glutamate released from 

neurons (X. Wang et al., 2006). Whisker stimulation-dependent Ca2+ rises in astrocytes are 

detected as early as at 2 s when dyes are used, and at 120 ms in the case of faster, genetically 

encoded indicators, although peak responses range between 3–12 s regardless of the Ca2+ 

indicator. Likewise, visual stimulation triggers neuron-dependent somatic Ca2+ transients in 

astrocytes in the visual cortex of ferret, with a delay of 1–3 s and a peak at 6 s (Schummers 

et al., 2008). Importantly, the latter study demonstrates that astrocyte activation is highly 

tuned to orientation maps at a single-cell resolution, and documents that astrocytes mediate 

hemodynamic signals in the visual cortex, which was confirmed in another study in the 

barrel cortex (Stobart et al., 2018). The study by (Takata et al., 2011) is also relevant because 

it demonstrates the following. First, cholinergic neuromodulation originating in the NBM 

potentiates the activation of local field potentials elicited by whisker stimulation. Second, 

neuromodulation is strictly dependent on Ca2+ rises in astrocytes, as shown by the 

disappearance of neuronal-activity potentiation in mice lacking IP3R2-dependent signaling. 

Crucially, abrogation of Ca2+ signaling in astrocytes in these mice shifts brain state to a 

desynchronized mode, as assessed with local field potentials in cortex. The impact of 

cholinergic neuromodulation on astrocyte Ca2+ responses is also documented in 

hippocampus. Specifically, the increase in Ca2+ rises triggered by somatosensory stimulation 

in rat hippocampal astrocytes is mediated by cholinergic neurotransmission, since it is 

blocked by the cholinergic inhibitor atropine (Navarrete et al., 2012). Astrocyte activation, in 

turn, induces the long-term potentiation (LTP) of field EPSPs in CA3-CA1 synapses 

(Navarrete et al., 2012). These data support the notion that, in addition to setting circuit 

dynamics for attention in sensory processing, cholinergic neuromodulation participates in 

the encoding of new information during memory formation (Hasselmo & McGaughy, 2004). 

The importance of neuromodulation via astrocytic Ca2+ in sensory cortical processing has 

also been reported for the locus coeruleus (Ding et al., 2013) (Paukert et al., 2014) 

(Srinivasan et al., 2015). This brain-stem nucleus amplifies as well the effect of locomotion 

on Ca2+ rises in Bergman glia in the cerebellum (Paukert et al., 2014). Timewise, 

neuromodulation-elicited Ca2+ rises in astrocytes occur in the range of a few seconds, with 

regards to both onset and peak after sensory stimulation (Ding et al., 2013) (Srinivasan et al., 

2015).

5.2. Modulation of behavior and brain state by optogenetic and chemogenetic stimulation 
of astrocytes

As in neurons, important insights into causal relationships between astrocytic Ca2+ signals 

and behavioral outcomes are emerging from optogenetics and chemogenetic studies. These 

technologies allow temporally-precise and reversible modulation of astrocyte activity, in 

contrast to permanent loss- or gain-of-function genetic manipulations. In mice, optogenetic 

stimulation of astrocytes using ChR½, Arch and OptoGq has been reported to modulate 

breathing according to pH changes in the respiratory system (Gourine et al., 2010), induce 

long-term depression in Purkinje cells and motor behavior (Sasaki et al., 2012), modulate 

response selectivity of the visual cortex (Perea et al., 2016), inhibit food intake (Sweeney et 

al., 2016), induce sleep (Pelluru et al., 2016), promote a switch to the slow-oscillation state 

by triggering the UP state of slow waves (Poskanzer & Yuste, 2016), and enhance memory 

acquisition (Adamsky et al., 2018).
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A key issue is that the downstream consequences of optogenetic activation of astrocytes are 

not well understood. In the case of neurons, since they are excitable cells that can operate via 
all-or-nothing changes in membrane voltage driven by fast-acting voltage-gated channels 

(although they also have subthreshold voltage fluctuations), the probability of neuronal 

firing is decreased by activation of NpHR and Arch, and increased upon activation of ChR2 

(Yizhar et al., 2011). However, astrocytes are not as electrically excitable as neurons. In the 

first report of successful modulation of neuronal activation (with no behavioral 

consequences) upon optogenetic manipulation of nearby ChR2-expressing astrocytes, it was 

assumed, but not shown, that the response was mediated by Ca2+ fluxes through ChR2 

(Gradinaru et al., 2009). Two subsequent studies confirmed Ca2+ rises using Ca2+ indicator 

dyes (Perea et al., 2014) (Pelluru et al., 2016), yet it is unclear how these rises can occur, 

considering that ChR2 has a relatively low Ca2+ permeability, is only open during a few 

milliseconds —decay constant is ~10 ms—, and presents depolarization-dependent slowing 

of deactivation (Nagel et al., 2003; Yizhar et al., 2011). One possibility is that it is the entry 

of Na+ through ChR2 that causes Ca2+ uptake by reverse activity of the Na+/Ca+ exchanger 

(J. Yang et al., 2015). Further, the possibility exists that the effects of ChR2 activation are 

due to undetected Ca2+ rises in astrocyte processes, of which somatic Ca2+ might be a 

consequence (Bernardinelli et al., 2011). In this regard, the use of Arch combined with 

genetically-encoded Ca2+ indicators represents a technical refinement because this opsin 

induces, after 5 s of photo-stimulation in the mouse cortex, fast Ca2+ transients in astrocyte 

arbors reminiscent of spontaneous activity (Poskanzer & Yuste, 2016). Still, how such a 

brief photo-stimulation of Arch, whose decay constant is ~9 ms (Yizhar et al., 2011), 

translates into ~20-s-long Ca2+ rises after a delay of ~10 s is unclear (Poskanzer & Yuste, 

2016). Plausibly, Arch-elicited hyperpolarization engages voltage-sensitive elements in 

astrocyte processes. All in all, optogenetics clearly activates astrocytes, although 

clarification of underlying mechanisms will help optimize this approach for Systems-level 

basic and clinical studies.

A DREADD receptor that successfully triggers Ca2+ transients in astrocytes is hM3Dq 

(Bonder & McCarthy, 2014; Chen et al., 2016). Studies using hM3Dq in astrocytes have 

shown: (i) changes in neuronal activity, either reduced or increased firing, in the mouse 

arcuate nucleus with opposing effects on feeding behavior, perhaps stemming from CNO 

dose differences, which, in turn, might launch complex feedback loops leading to 

paradoxical data (Chen et al., 2016; L. Yang et al., 2015), (ii) regulation of excitatory and 

inhibitory neurotransmission in the amygdala, with a net effect of reduced fear expression in 

a fear-conditioning paradigm (Martin-Fernandez et al., 2017); and (iii) potentiation of the 

amplitude of evoked EPSC and, when chemogenetic activation is carried out at specific 

stages during learning paradigms, improvement of contextual and spatial memory 

acquisition (Adamsky et al., 2018). As with optogenetics, caution has to be exerted about the 

resemblance of the Ca2+ signaling elicited by chemogenetics to physiological signaling. 

Also, the CNO metabolite clozapine, and not CNO, might be the real activator of DREADD, 

as shown with radioligand receptor occupancy measurement, and in vivo positron emission 

tomography (Gomez et al., 2017). Since clozapine has multiple targets, this recent evidence 

raises doubts about the specificity of DREADD-based approaches (Gomez et al., 2017). 

That said, these studies offer several computational insights, to be discussed below.
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6. Computational lessons learned from Systems-like studies in astrocytes

First, time scales of Ca2+ responses and filtering effect.

According to Ca2+-based dynamics, the time scale of astrocyte activation after a 

physiological input ranges from hundreds of milliseconds to tens of seconds, while the 

earliest reported effect on nearby neurons after optogenetic stimulation of astrocytes is at 

500 ms (Gourine et al., 2010). The onset of hemodynamic response is within 1–3 s from the 

onset of Ca2+ responses (Otsu et al., 2015). Upon sensory stimulation, astrocytes are 

activated after neurons in cortex, suggesting that neurons reroute information to astrocytes. 

The observation that Ca2+ response curves in astrocytes are qualitatively similar but 

narrower than those in neurons, as shown by local field potentials (Schummers et al., 2008; 

X. Wang et al., 2006), suggests that astrocytes filter neuronal activity. Filtering can be either 

in terms of rectification (high pass filtering), cut-off (low pass filtering) or both (band pass 

filtering). The latter appears to be the case since astrocytes are not responsive to the highest 

and lowest frequencies of neuronal input. Interestingly, adaptive modulation of breathing by 

pH is the only context in which astrocytes directly compute external stimuli, for astrocytes 

sense changes in pH, even if local neurons are inactivated with tetrodotoxin (Gourine et al., 

2010). In other paradigms, astrocyte activation is either secondary to neuronal activation 

(section 5.1), or the result of gain-of-function induced by optogenetics and chemogenetics in 

the context of already active circuits (section 5.2).

Second, existence of short- and long-term modalities in Ca2+ responses.

The computational and homeostatic functions of astrocytes manifest themselves in at least 

two broad modalities, depending on time range, nature of inputs, and the intracellular 

location of Ca2+ rises. One modality is the fast rising Ca2+ signals that originate within 0.2–

5 s from stimulus onset, are short-lived (up from 0.3–10 s), are usually reported in peripheral 

processes and end-feet (e.g., (Stobart et al., 2018), and are sufficiently fast to locally mediate 

task-relevant regulation of blood flow (Otsu et al., 2015), metabolic coupling, and 

neurotransmitter supply (Agarwal et al., 2017; Otsu et al., 2015; Tani et al., 2014), as well as 

short-term modulation of synaptic efficacy (Perea et al., 2016). The second modality 

corresponds to robust somatic Ca2+ transients that can last tens of seconds, have a slow rise 

time, and have been reported in the context of cholinergic (Navarrete et al., 2012; Takata et 

al., 2011) and noradrenergic (Ding et al., 2013) (Paukert et al., 2014) (Srinivasan et al., 

2015) neuromodulation, as well as upon ChR2-based optogenetics and by chemogenetics 

(Adamsky et al., 2018). In hippocampus, the functional consequences of this modality are 

long-lasting effects on synaptic connections (Adamsky et al., 2018; Navarrete et al., 2012), 

plausibly associated with memory formation. In cortex, we reason that astrocytic Ca2+ rises, 

as reported by (Takata et al., 2011), participate in a well-accepted role of neuromodulation: 

control of arousal and attention, which involves recruitment of large, spatially-distributed 

neuronal populations (Thiele & Bellgrove, 2018). Importantly, the two modalities reveal the 

existence of threshold heterogeneity in Ca2+ responses in astrocytes, which might be of 

computational importance. Consider, for example, the relative ease with which minimal 

synaptic stimuli trigger Ca2+ transients in astrocytic processes (Haustein et al., 2014; 

Panatier et al., 2011), which is consistent with a relatively low threshold for activation. This 

suggests that, in microdomains, the number of synaptic inputs may be of little importance, 
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so that a microdomain could invariantly get activated, either by individual synapses or by an 

ensemble thereof, akin to the logical OR function. Conversely, the phenomenon of 

coincidence detection in which activation of cortical sensory neurons (Paukert et al., 2014; 

Takata et al., 2011) and postsynaptic hippocampal neurons (Navarrete et al., 2012), needs to 

coincide with neuromodulation to trigger somatic Ca2+ transients, and, similarly, the 

requirement for high inter-neuronal activity to promote astrocytic Ca2+-dependent 

facilitation of excitatory synaptic transmission in the hippocampus (Perea et al., 2016), may 

be regarded as examples in which the threshold for astrocytic activation is high, and 

astrocytes will become activated only if multiple inputs impinge together on them, akin to 

the logical AND function. Density of IP3R2 (De Pitta et al., 2018) and baseline Ca2+ levels 

(Zheng et al., 2015) may be among the factors setting thresholds of stimulation. Plausibly, 

the described modalities of astrocytic Ca2+ responses are the extremes of a context-

dependent spectrum, encompassing mixed regimes in terms of number of astrocytic domains 

involved, and short versus long-term effects. Key questions emerge: how are different 

astrocytic microdomains recruited, which neural circuits are activated as a consequence of 

different response modalities, and, finally, do specific computations, other than thresholding, 

operate in different modalities? In section 7, we propose gaining insight into these questions 

by treating single astrocytes as mini-circuits, and by identifying relevant patterns of Ca2+ 

responses with dynamical-systems statistics approaches such as dimensionality reduction.

Third, regulation of neuronal gain.

This appears to be a computation carried out by astrocytes throughout a variegated collection 

of circuits and behavioral contexts. Signal coincidence detection of sensory stimulation and 

neuromodulation by cortical astrocytes is one example that may have implications in 

attention (Paukert et al., 2014; Takata et al., 2011). Computationally, attention consists of a 

gain change (in amplitude of response or contrast) that results in the prioritization of relevant 

inputs over irrelevant information (Thiele & Bellgrove, 2018). Input prioritization is called 

top-down (or inside-out) because the process is shaped by internal models and goals 

conveyed to the sensory areas by neuromodulators (Thiele & Bellgrove, 2018)—note the 

influence of predictive coding in this assumption. The modulation of gain is facilitated by a 

normalization mechanism whereby neurons’ responses are reduced in proportion to the 

activity of neighboring neurons by the joint activation of inhibitory and excitatory neurons 

(Reynolds & Heeger, 2009). Instructed by signal coincidence detection, astrocytes might 

help prioritize information by regulation of gain via modulation of excitatory synaptic drive 

by Ca2+-dependent glutamate uptake (Schummers et al., 2008), gliotransmission (Takata et 

al., 2011), intrinsic neuronal excitability (Sasaki et al., 2012), and co-modulation of 

excitatory and inhibitory neurotransmission (Perea et al., 2014).

In the case of brain state, a gain change might account for the transition from an 

asynchronous to a synchronous mode through a change in the network’s ratio of excitation 

versus inhibition, according to the general theory of neural networks (Brunel, 2000). Hence, 

a possible mechanism whereby astrocytes might synchronize brain state through gain control 

is regulation of excitatory-synaptic strength, either by reducing glutamate uptake (Poskanzer 

& Yuste, 2016), releasing ATP/adenosine and glutamate in a Ca2+ dependent manner 
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(Halassa et al., 2009) (Fellin et al., 2009), or taking up GABA via GAT-3 transporters 

(Shigetomi et al., 2011).

Memory-related tasks in hippocampus can also be interpreted as a phenomenon of gain 

control. Thus, chemogenetic and optogenetic stimulations of hippocampal astrocytes result 

in increased frequency and potency of mEPSCs in local neurons, leading to long-term 

potentiation of excitatory synaptic connections (Adamsky et al., 2018). Significantly, 

astrocyte-mediated NMDA-dependent long-term potentiation appears to be: (i) task-specific 

insofar as fear-conditioned mice, but not home-caged ones, show synaptic potentiation, and 

(ii) stage-selective, for it very precisely affects distinct phases along the memory-formation 

continuum, such as memory allocation. Likewise, the interneuron-induced potentiation of 

excitatory neurotransmission mediated by astrocytes might be one example of neuronal gain 

(Perea et al., 2016). Intriguingly, a dual mechanism in which astrocyte-mediated depression 

of excitatory synapses combines with potentiation of inhibitory ones seems at play in 

afferents to neurons in the medial central region of the amygdala (Martin-Fernandez et al., 

2017). The ensuing net increase of inhibitory drive to these neurons (i.e., a case of negative 

gain) was then shown to correlate with transient reduction of fear conditioning and anxiety

Finally, the role of astrocytes in reflex homeostatic behaviors modulating feeding and 

breathing can be explained in terms of use of gain modulation to adapt behavior to stimuli 

intensity. Thus, the presence of food modulates the synaptic efficacy of neurons in the 

hypothalamus (Chen et al., 2016; L. Yang et al., 2015), whereas pH acidification induces 

adaptive neuronal firing in the brain stem which, in turn, activates breathing (Gourine et al., 

2010).

Fourth, decoding and rerouting of information.

Coincidence detection of sensory cortical and neuromodulatory subcortical neuronal inputs 

(Takata et al., 2011) (Paukert et al., 2014), transformation of inhibitory neurotransmission 

into synaptic facilitation in hippocampus (Perea et al., 2016), and the transformation of 

neuronal inputs into potentiation or inhibition, depending on the duration and frequency of 

the inputs (Covelo & Araque, 2018), might be three examples of decoding of neuronal 

signals by astrocytes, and rerouting of decoded information to other neurons. Plausibly, the 

information rerouted by astrocytes is gliotransmitter-dependent (Covelo & Araque, 2018). 

Since neuronal action potentials and astrocytic Ca2+ transients have utterly different 

temporal resolutions, it is improbable that variables represented in trains of action potentials 

are represented in astrocytic Ca2+ without significant loss of information. Rather, we posit 

that what astrocytes ‘hear’ from neurons are instructions to ‘tell’ other neurons to modify 

their activity via canonical computations. In computational science, canonical computations 

are fundamental operations carried out in circuits in a variety of contexts. We have hitherto 

identified a few: signal filtration, thresholding (implicating AND/OR functions and 

coincidence detection), gain, and control of the balance between excitation and inhibition. It 

is not clear whether synaptic scaling should be added, because this function might be 

performed by microglia rather than astrocytes (Stellwagen & Malenka, 2006). In the 

roadmap we propose to use decoding approaches from machine learning to identify possible 

variables encoded by astrocyte computations.
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Fifth, astrocytes could act as switches in brain state transitions.

The causal implication of astrocytes in cortical slow oscillations (<1 Hz) (Takata et al., 

2011) (Poskanzer & Yuste, 2016) supports the relevance of astrocytes in network activity 

beyond tripartite synapses. Slow waves have been hypothesized to represent the default 

mode of cortical network activity (Sanchez-Vives et al., 2017). During UP states, there is 

synchronization in beta and gamma frequencies, synaptic gain modulation, modulation of 

replay and memory formation, and some cortical features might inform about transitions 

between unconsciousness and consciousness (reviewed in (Sanchez-Vives et al., 2017)). An 

intriguing paradox exists in that astrocytes induce a synchronized state, but also mediate 

cholinergic and noradrenergic neuromodulations, which are characteristically associated 

with asynchronous, high-rate activity that facilitates sensory processing (Lee & Dan, 2012). 

We posit that astrocytes might act as switches whose default action is to sustain UP states, 

whereas neuromodulation-driven attention renders astrocytes independent of the cortical 

oscillator, and shifts their action towards short-term plasticity related to sensory processing. 

Indeed, network theory predicts that a key parameter in setting asynchronous versus 
synchronous network activity, as well as the frequency of eventual oscillations, is afferent 

synaptic activity (Brunel, 2000; Ledoux & Brunel, 2011). Coincidence detection can be thus 

regarded as a scenario of afferent stimulation—specifically mediated by neuromodulation—

whereby astrocytes induce the network’s transition to the asynchronous state. Finally, 

although astrocytes are particularly attuned to slow oscillations because their internal 

dynamics, as judged by Ca2+ transients, fall within a time scale of seconds, they are also 

involved in the generation of faster waves such as theta (4–12 Hz) and slow gamma (30–50 

Hz) (Perea et al., 2016; Sardinha et al., 2017). The effect of astrocytes on fast waves may be 

due to cross-frequency coupling, a mechanism whereby global slow oscillations modulate 

local fast oscillations, usually their amplitude (Canolty & Knight, 2010), which happens to 

be the predominant effect of astrocytes on fast waves (Perea et al., 2016; Sardinha et al., 

2017). By regulating fast waves, astrocytes will have an impact on neuronal encoding, 

because fast rhythms provide temporal reference frames for local and large-scale 

computations (Hawellek et al., 2016). Dimensionality reduction (below) may reveal specific 

astrocytic Ca2+ regimes associated with coincidence detection, oscillations, and brain state 

transitions.

7. A roadmap to advance the integration of astrocytes into Systems 

Neuroscience

7.1. Theoretical and conceptual improvements

Is there a minimal astrocyte-neuronal circuit?—Anatomical, molecular and 

functional factors matter when considering astrocytes from a computational point of view. 

From an anatomical perspective, a single astrocyte can be regarded by itself as a ‘mini-

circuit’, in light of the subcellular compartmentalization of calcium signals (Bazargani & 

Attwell, 2016), along with the consideration that one astrocytic anatomical domain may 

comprise numerous neurons, dendrites and synapses. Estimations in the mouse hippocampus 

are: 1–20 neurons (Halassa et al., 2007), 300–600 dendrites (Halassa et al., 2007), and 

140,000 synapses in (Bushong et al., 2002) and 50,700–75,200 in (Chai et al., 2017). 
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Recently, a FRET-based study reports dynamic interactions of astrocytic distal processes 

with different types of synaptic inputs (Octeau et al., 2018). Moreover, because astrocytes 

are characteristically territorial, they give rise to a tiled arrangement of the brain space, 

which can be then seen as a patchwork of mini-circuits. The function of tiling is an 

outstanding question. From a molecular perspective, according to single-cell gene profiling, 

and unbiased hierarchical clustering in mouse brains, astrocyte populations are not as 

functionally heterogeneous as neuronal populations (Zeisel et al., 2015). Thus, in the mouse 

somatosensory cortex and hippocampal CA1 region, there are 29 types of neurons including 

pyramidal cells, glutamatergic neurons, and interneurons, as opposed to just two types of 

astrocytes (Zeisel et al., 2015). This suggests that, although both neurons and astrocytes are 

molecularly specialized cells, additional and extensive sub-specialization exists among 

neurons but not astrocytes. On the other hand, the lack of molecular definition may provide 

astrocytes with greater adaptive capacity to operate in a variety of circuits (Poskanzer & 

Molofsky, 2018), which may explain phenotypical differences of astrocytes from region to 

region (Martin et al., 2015) (Chai et al., 2017). We thus argue that neurons imprint 

functional signatures on networks by encoding, for example, odors, position, images, words, 

abstract categories and executive functions, whereas the size, anatomical arrangement and 

molecular makeup of astrocytes suggest that they might be designed to operate canonical 

computations (Section 6, Table 1) in local mini-circuits within larger-scale networks—as 

well as homeostatic and metabolic support. Support for the hypothesis that astrocytes 

perform canonical computations comes from studies showing that astrocyte-based 

computations such as synaptic potentiation, a type of gain control, improve the performance 

of ANNs (Alvarellos-Gonzalez et al., 2012; Porto-Pazos et al., 2011). Additional support 

comes from recent theoretical studies in computer science, and formal language theory, 

which showed that canonical filtering of synaptic transmission by astrocytes (described as 

‘astrocyte-like control’) facilitates the generation of the so-called logic gates (Song et al., 

2017), which are basic building blocks in neural circuits performing logic Boolean 

operations such as AND, OR, NOT, XOR and NAND (Binder et al., 2007). According to 

these studies, simple ensembles of astrocytes and synapses reminiscent of our mini-circuits 

might account for all elementary logical functions and, properly combined, allow, in 

principle, computation of any real-world function in a scalable manner (Song et al., 2017). It 

should be kept in mind that multiple strategies are likely at play across species in shaping 

astrocytic mini-circuits, and their possible computational functions. For example, although 

single-cell genomics is not yet available in humans, the fact that human astrocytes are larger, 

more complex (including 270,000–2 million synapses), and present more morphological 

variants than mouse astrocytes (Oberheim et al., 2009), together with the striking 

observation that engraftment of human astrocytes into mouse brains enhances synaptic 

plasticity and learning (Han et al., 2013), suggests that more complex astrocytic mini-

circuits are present in humans, possibly underpinning a larger variety of canonical 

computations. All in all, it appears that in order to reinforce the presence of astrocytes in 

Systems Neuroscience, we must zoom out at astrocyte populations as well as zoom into 

single-astrocyte mini-circuits. This is akin to neuron-focused studies that, as noted, should 

cover both systems-wide and sub-cellular computations. Indeed, the latter should be 

considered as part of the computations within astrocyte mini-circuits, for spines and 

dendrites are inextricably embedded in an astrocyte ‘matrix’.
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Where might the ‘slow’ spatiotemporal dynamics of astrocytic Ca2+ enter 
Systems Neuroscience?—The question of which time scales are relevant for neuronal 

computations has long been debated. Action potentials of individual neurons are 

characteristically fast and short-lived voltage depolarizations in the range of 1–2 ms. The 

speed and all-or-nothing nature of these responses, as well as their lack of attenuation due to 

axonal myelination, makes them well suited to transmitting information throughout the brain 

in milliseconds. Currently, the minimal temporal resolution of the neuronal code appears to 

be on a millisecond time scale, as shown in sensory processing in the auditory system of 

mammals (Butts et al., 2007) (Kayser et al., 2010), and in basic human cognitive 

capabilities, including semantic abstract categorization of images (e.g., identifying an image 

as a ‘dog’)(Vanmarcke et al., 2016). This means that stimuli arriving within intervals of a 

few milliseconds are distinguished as individual entities by neurons that fire individual, 

millisecond-long spikes in response to each stimulus. Clearly, if astrocyte Ca2+ transients are 

the astrocytic substrate of neural computing—and they are the best candidate thus far—they 

are too slow to encode ultrafast representations. However, the brain characteristically 

operates in parallel on a gradient of time scales that are nested and hierarchically organized 

(Murray et al., 2014). Thus, attention and decision making can last seconds, emotions can 

arise within seconds, and mood changes in minutes. In prediction coding, the slow 

contextual changes in the prefrontal brain under which fast sensory representations are 

interpreted require seconds (Kiebel et al., 2008). Also, there are circadian time scales 

affecting sleep and global homeostasis, and very long time scales in the range of hours, 

weeks, or years affecting learning and memory (Hari & Parkkonen, 2015). This means that, 

complex operations ought to exist prolonging the effect of ultrafast (up to 10 ms) and fast 

(<100 ms) neuronal time scales up to minutes, which precludes structural changes caused by 

gene expression. Working memory during decision making is a prototypical example of the 

need for sustained activity in the short-term scale. The question is how several discrete, 

millisecond-long events related are engaged in a continuum of network activities that last up 

to hundreds of seconds (Hasson et al., 2015). Since there is no external input during delays 

(time between input and action), working memory must arise from the intrinsic dynamics of 

neural circuits. Computational neuroscience identified this problem over 20 years ago 

(Seung, 1996), and has since struggled to provide answers using realistic neuronal 

parameters (Chaudhury and Fiete, 2016). Answers include: (i) biophysical properties of 

neurons such as the slow ‘membrane-time constant’, which reflects the time during which 

information can be maintained by neuronal voltage without a substantial leak, estimated to 

last between 5–20 ms, (ii) intervention of NMDA receptors, which are ideally suited to 

enlarge ‘memory’ capabilities of neurons beyond their membrane time constants because 

they are active around 100 ms after the synaptic input (X. J. Wang, 1999), (iii) short-term 

synaptic plasticity (Abbott & Regehr, 2004), (iv) an effective computational solution called 

long short-term memory (Hochreiter & Schmidhuber, 1997), and (v) sustained firing rate of 

neurons, or ‘persistent activity’, achieved upon the exquisite tuning of recurrent circuits such 

that an input re-entering a synapse exactly matches the decay of the neuron, keeping its 

firing rate for a prolonged time (Goldman-Rakic, 1995) (Renart et al., 2007). These 

solutions present limitations. Slow time constants need to be reset, and, at present, slow time 

constants in neurons do not seem to have that capability. The time constant of the NMDA 

receptor is appropriate to maintain memories up to 1–5 s, but not longer. Long short-term 
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memory works very well in current machine learning applications, but its application to 

natural circuits is unclear. Finally, it is also unclear how the exact timing of feedback loops 

in persistent activity is achieved. Clearly, additional solutions are in order, perhaps including 

astrocytes.

Inclusion of astrocytes in current theoretical frameworks and circuit-operating 
principles.—The temporal dynamics of Ca2+-based excitability make astrocytes suitable to 

operate in circuit computations running in the sub-second to a supra-second scale, including 

the ones already mentioned such as short-term plasticity, neuromodulation, and slow 

rhythms. Interestingly, computations such as signal-coincidence detection and oscillation 

control imply detection of the order and interval of arrival of time-varying signals, 

suggesting that astrocytes might encode time. Theoretical models of timing in the brain such 

as oscillators (Goel & Buonomano, 2014) and liquid state (or liquid computing) (Maass et 

al., 2002) may be useful to explore this idea. Astrocytes might also have a role in predictive 

coding. As shown in silico renditions (Deneve et al., 2017), the core idea of the framework is 

that neural circuits are error-driven, such that differences between predictions and new 

inputs are computed as prediction errors, which might be transformed (i.e., ‘rerouted’) into 

changes in synaptic strength by short-term plasticity. The greater the error, the more synaptic 

changes would be needed in order to ‘update’ circuit information. The quality of prediction 

errors is computed by the variable ‘precision’, which is akin to the standard error in the t-

Student test, and is hypothesized to occur in a scale of seconds, and to be encoded by 

neuromodulators (Friston, 2009; Stephan et al., 2015). Since astrocytes participate in 

neuromodulation (Navarrete et al., 2012; Takata et al., 2011) (Ding et al., 2013) (Paukert et 

al., 2014), the possibility emerges that astrocytes might encode precision, perhaps by 

temporally decoding prediction errors from multiple synapses in the astrocyte mini-circuit, 

in order to ensure sufficient statistics. It is tempting to speculate that the aforementioned 

canonical computations carried out by astrocytes are manifestations of computation of error-

related statistics and/or time in different contexts. These computations would be canonical, 

for they would occur throughout the brain. Decoding analyses (below) may provide 

information about the specific computations carried out by astrocytes in complex behaviors 

where issues like timing, temporal holding of information, and error between predictions 

and real outcomes, are particularly prominent.

Astrocytes and energy-efficient coding.—Circuit modeling and biophysical analyses 

support the idea that neuronal circuits are designed to produce energy-efficient codes 

because action potentials are energetically demanding; hence, energy supply becomes a 

relevant constraint in information processing (Laughlin, 2001). Three reasons justify a 

revision of the adjustment of coding to energy constraints from the perspective of astrocytes. 

First, astrocytes may lessen the metabolic constraint by facilitating lactate to neurons during 

task-elicited glutamatergic neurotransmission (Magistretti & Allaman, 2015). Of note, 

lactate qualifies as a gliotransmitter, and hence may be harvested for computational 

signaling tasks, because it instructs memory acquisition (Suzuki et al., 2011), and stimulates 

neurons by a mechanism independent of its uptake, perhaps receptor-mediated (Tang et al., 

2014). Second, as noted in (Magistretti & Allaman, 2015), the anatomical arrangement of 

local neurons, projections from neuromodulatory nuclei and astrocytes within cortical 
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columns, points to optimized circuit design to facilitate energetic coupling between neurons 

and astrocytes. Here we extend this notion to astrocyte mini-circuits, and argue that they 

might represent a coding strategy to optimize energy utilization, for example, by integrating 

sparse coding, which is coding distributed among many synapses to reduce individual 

computational load, and has been described as a solution to energy limitations (Laughlin, 

2001). Third, whether energy is also a constraint in Ca2+based computations in astrocytes is 

an outstanding question. There is currently no estimation of the energy demand of 

Ca2+signaling in astrocytes. ATP-consuming steps are: (i) in the context of IP3R2-mediated 

Ca2+-release, re-uptake of cytosolic Ca2+ back into the endoplasmic reticulum via Ca2+/

ATPase pumps, which are crucial in dictating the period of Ca2+ fluctuations/oscillations, as 

well as their shape and duration; (ii) the plasmalemma Ca2+/ATPase pump involved in 

capacitive Ca2+ entry/flux; (iii) Na+/K+-ATPase activity dependent on glutamate uptake 

(Pellerin & Magistretti, 1997), which appears to critically influence Ca2+ rises in sensory 

processing (Schummer et al., 2018); (iv) V-ATPase dependent uptake of Ca2+ into acidic 

stores; and (v) neuronal-activity dependent Ca2+ rises in astrocytic microdomains in distal 

processes, as shown in mice with membrane-anchored GCaMP3 (Agarwal et al., 2017). This 

study documents a critical link between energy metabolism and Ca2+-based excitability, 

because it shows that Ca2+ rises in microdomains are the result of Ca2+ efflux from 

mitochondria, which, in turn, is triggered by short events (‘mitoflashes’) of superoxide 

production during oxidative phosphorylation. Still, the need for ATP for several critical 

processes is an open question, a prime example of which is gliotransmission: the exact 

source of gliotransmitters such as ATP, glutamate, and D-serine, and the energy expenditure 

involved in their production, is unknown. All in all, it is worth stressing that fatty acids are a 

fuel for oxidative metabolism in astrocytes (Eraso-Pichot et al., 2018). Since fatty-acid 

oxidation yields over 50 times more ATP molecules than glycolysis, astrocyte metabolism 

might be optimized to undertake costly computations from the point of view of energy 

requirements.

Ca2+-independent computations.—Although productive, the adoption of Ca2+ 

signaling as a readout of astrocyte excitability should not blind us to the possibility that, 

similar to Ca2+ transients in neurons following action potentials, the astrocytic Ca2+ 

response might be a late manifestation of yet undiscovered signals. If we recover classic 

perspectives of biophysics (Barlow, 1996; Destexhe, 1999), many components of the 

astrocytic response could potentially encode stimulations and perform computations. This is 

the case of second messenger molecules such as IP3 or cAMP that are conventionally 

associated with GPCR-mediated astrocytic Ca2+ signaling (DePittà, 2019) but also other 

ion-based signals. Among the latter, Na+ is an emerging candidate because it presents 

activity-dependent fluctuations, although advanced fluorescent probes are necessary to fully 

establish this ion as a novel readout of astrocyte excitability (Rose & Verkhratsky, 2016).

7.2. Technical and analytical improvements

7.2.1. Zooming into astrocyte mini-circuits

Dimensionality reduction of Ca2+ data.: We posit that single-astrocytes and astrocyte 

populations are dynamical systems governed by function-specific regimes resulting from 

coordinated changes in Ca2+ signaling. At the single-astrocyte level, the local and global 
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activation modalities described earlier might be the extremes of a spectrum of possible 

regimes. Dimensionality reduction is a statistical method developed in machine learning to 

facilitate analysis of the characteristically multidimensional (i.e., multivariate) dynamical 

systems. What dimensionality reduction does is to identify key variables determining 

relationships within the data (the so-called latent variables), thereby reducing input data to 

low-dimensional representations defined by such latent variables. In Systems, 

dimensionality reduction has been applied to neuron-population recordings in decision 

making, movement, odor perception, working memory, visual attention, audition, rule 

learning, and speech (reviewed in (Cunningham & Yu, 2014). The complex spatiotemporal 

patterns of spontaneous and evoked Ca2+ transients in single astrocytes, which now can be 

measured with 3-dimensional Ca2+-imaging (Bindocci et al., 2017), represent a 

multidimensional data set that will benefit from dimensionality reduction techniques. Thus 

far, Ca2+ transients in astrocytes have been simplified for quantification purposes by using a 

single Ca2+ readout (Perea et al., 2014), the average of calcium signals detected in multiple 

ROIs pooled from a population of astrocytes (Poskanzer & Yuste, 2016), the categorization 

of these signals by spatial location and averaging within subcellular compartments (Chai et 

al., 2017), and machine-learning based identification of true signals (Agarwal et al., 2017). 

Although these approaches have already yielded useful insights into correlations between 

astrocytic and neuronal activities and behaviors—as described in Section 6—they have not 

revealed possible canonical spatiotemporal computations within and between astrocytes, in 

distinct experimental paradigms. Dimensionality reduction will thus facilitate detection of 

noise (stochastic Ca2+ transients), indicate whether some of the manually selected ROIs 

based on visual inspection are not independent, and hence can be considered as the same 

ROI, and reveal correlations and anti-correlations of distant regions belonging to the same 

ROI. The latter can occur when distant regions are synchronized due to oscillations or 

synchronous inputs that regularly occur in those regions. Thus, dimensionality reduction of 

single-astrocytes may help to reveal and select dimensions, that is, the minimum number of 

ROIs (e.g., 5–10 from up to 200 original ones), in which fluctuations are more pronounced 

and meaningful, thus paving the way for population analyses, which will require the 

simplification of Ca2+ signals per astrocyte with the minimal loss of relevant information. 

Linear methods for dimensionality reduction that can be used in astrocytes include simple 

principal component analysis (PCA), the prime linear method (Cunningham & Yu, 2014), as 

well as factor analysis, as used with neuronal Ca2+ (Paninski & Cunningham, 2018).

Machine learning.: Non-linear methods such as ANNs are increasingly being used to 

replace stages in signal processing and analysis in neuronal populations, as well as a method 

for dimensionality reduction (Paninski & Cunningham, 2018). Thus, ANNs could a priori 
uncover latent variables that best account for Ca2+ data from astrocyte mini-circuits, and are 

non-linearly related. Current ANNs appear well-suited to extract latent variables from Ca2+ 

imaging of large populations of neurons (Paninski & Cunningham, 2018), and their 

application to multidimensional astrocytic Ca2+ data should be explored. Conversely, ANNs 

can be also used as generative models, that is, models that infer classes of inputs from a low 

number of latent variables (Dosovitskiy, 2015). Another statistical tool of machine learning 

that holds promise is Bayesian hierarchical modeling (Bishop, 2006). The general idea is to 

build a graph that hierarchically and probabilistically relates relevant variables related to 

Kastanenka et al. Page 21

Glia. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ca2+ and to other data from connectomics. Indeed, if the graphs are well-informed about the 

connectome within mini-circuits, they can be used as an inverted model to infer the values of 

the latent variables accounting for Ca2+ signals. One advantage of these methods is that the 

number of free parameters is typically lower than in standard ANNs, which might require 

massive amounts of data for training.

Connectomics.: Providing an accurate picture of the synaptic contacts within astrocyte 

mini-circuits, in rodents and humans, and in different brain regions, is necessary to help 

interpret and model in silico Ca2+-based regimes defined by dimensionality reduction, and to 

identify constraints that could be incorporated into machine-learning algorithms. Specific 

questions are the density of excitatory and inhibitory synapses (and subtypes of the latter), 

their functional interplay in distinct astrocyte regimes defined by Ca2+. For example, 

astrocyte mini-circuits might adopt feed-forward, recurrent or mixed patterns, depending on 

the behavioral task, and present hierarchical organizations between astrocytic and neuronal 

elements, as well as topological/functional ‘motifs’ and wiring rules—as shown in the 

analysis of small neuronal networks (Schroter et al., 2017). Tools for connectomics include 

graph theory (Fornito, 2016), Bayesian hierarchical modeling (Bishop, 2006), and 

topological tools (Kanari et al., 2018; Reimann et al., 2017). In all these approaches, both 

morphological and functional readouts could serve as input data. Morphological readouts of 

the synaptic architecture of astrocyte mini-circuits at meso- and micro-scales can be 

obtained with array tomography, a form of light microscopy based on the serial sectioning of 

ultrathin (hundreds of microns) sections, which permits 3D reconstructions at a micrometer/

nanometer resolution (Micheva et al., 2010). Array tomography can be complemented with 

automated 3D electron microscopy techniques, such as serial block-face ANNs electron 

microscopy (SBFSEM). Crucially, fixation methods must not distort contacts within mini-

circuits (Korogod et al., 2015). Functional analyses are more challenging, for they will 

require development of improved optical tools and probes to simultaneously monitor the 

activities of excitatory and inhibitory neuronal populations, as well as those of astrocytes. 

The emerging combination of 2-photon calcium imaging with SBFSEM for examining 

neural circuits at cellular resolution may pave the way for subcellular analyses 

(Vishwanathan et al., 2017). Finally, recent multiplex Ca2+ imaging at a single synapse-

astrocyte interface (J. P. Reynolds et al., 2018), application of nanotechnology to voltage 

recording in neurons (Jayant et al., 2017), and FRET-based analysis of contacts between 

synapses and astrocytes (Octeau et al., 2018), are advances towards integrating structure and 

function in astrocyte mini-circuits.

7.2.2. Zooming out to astrocyte populations

Decoding astrocytes in complex behavioral tasks.: The identification of a astrocytic Ca2+-

based code is a prime objective that, importantly, can be started with current statistical tools 

developed to study neuron-based encoding and decoding. Moreover, we argue that the 

increased interest in neuronal Ca2+ as a tool to decipher the brain code (the reason being that 

the number of neurons recorded with optical tools is one order of magnitude higher than 

with multi-electrode arrays, see Section 2) benefits the analysis of Ca2+-based astrocyte 

computations. For simplicity, here we focus on decoding approaches, which specifically 

seek to predict external variables from signal patterns, although tools to study encoding can 
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be also considered (Section 3). Decoding astrocyte signals entails measuring Ca2+ activity 

populations in behavioral paradigms in which several time scales, including those in the 

range of action defined for Ca2+-based signaling in astrocytes (hundreds of milliseconds to 

tens of seconds), are relevant for the task at hand. One such paradigm is reward-associated 

decision making over variable contexts in which an animal must associate stimuli with 

choices (responses) to obtain an immediate reward. The association can be abruptly 

reversed, as in the case of reversal learning, where in a given context 1, stimulus A leads to 

reward and stimulus B does not lead to reward, whereas in another context 2, stimulus B 

predicts reward (Schoenbaum et al., 2002). The performance in such varying contexts 

involves tracking variables at both fast and slow time scales. Variables such as ‘immediate 

reward’, ‘confidence’, ‘option values’ and ‘choice’ are fast, represented in the millisecond 

time scale, whereas the deliberation occurring before a decision is taken lasts hundreds of 

milliseconds to seconds, and even up to minutes if this deliberation involves inference about 

the current context. During this time, the brain computes correlations between fast variables, 

and represents differences between the prediction based on previous experience and the real 

outcome as ‘error’. We argue that the precise computation of prediction error is key in the 

identification of a true association between stimulus and reward, such that varying contexts 

plausibly require more complex computations. Frontal areas are expected to track the 

mixture of relevant variables in the form of ‘cognitive maps’. In rat, the orbitofrontal cortex 

encodes the millisecond-long fast variables (Rolls et al., 1996) (Nogueira et al., 2017). It is 

unclear, however, how transitions between contexts and associated deliberations are 

represented at the much slower time scale of seconds. We posit that the network may use 

astrocytes as a buffer to help represent the prior history of rewards and choices, which is 

necessary to infer the true nature of the current context. Specifically, astrocytes may 

temporally integrate error signals, or somehow influence behavior based on accumulated 

information through canonical computations such as gain modulation. Along these lines, 

dopaminergic neuromodulation, which signals reward prediction error (O’Doherty et al., 

2017), might serve to gate information from neurons to astrocytes, and vice versa.

Technical and analytical challenges associated with large-scale recordings of Ca2+ rises 
in astrocytes and neurons.: The specific experimental design we propose involves the 

simultaneous recording of Ca2+ activity in astrocytes with 2-photon microscopy in awake 

animals (Srinivasan et al., 2015), and Ca2+ or electrophysiological responses in neurons 

(Poskanzer & Yuste, 2016). From previous work indicating that with tens of neurons it is 

possible to predict animal choices with high accuracy (Kiani et al., 2014; Nogueira et al., 

2017), we reason that tens of astrocytes will suffice to observe statistically significant trends 

that can be used to guide subsequent recordings and analyses. At this time, optimal selection 

of paradigms and analytical methods may be more helpful to make significant leaps towards 

understanding astrocyte-based computations than massively increasing the number of 

astrocytes recorded. Data acquisition, signal processing and increased dimensionality of the 

data present additional challenges when there is a need to perform recordings of two cell 

types with different Ca2+ dynamics. As to data acquisition, although recent advances have 

pushed the boundaries of multi-photon imaging, with significant improvements that enable 

imaging in multiple brain areas, across laminae, and in non-head-fixed configurations (Yang 

& Yuste, 2017), since these imaging methodologies have been developed specifically to 
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record the activity of neuronal populations, they may not always be translatable to astrocyte 

populations. For example, many of the technologies used to carry out 3D two-photon 

imaging rely on source separation algorithms that assume the Ca2+ signals are non-

propagative and spatially static. While this is true for Ca2+ imaging of neuronal somata, 

astrocyte Ca2+ imaging data obviously do not obey these rules. Thus, new 2-photon imaging 

methodologies born from an astrocytic perspective, particularly those that allow imaging 

multiple laminae simultaneously, are necessary to advance our understanding of these cells 

within larger, meso-scale circuits. Another area of improvement for large-scale Ca2+ 

recording in astrocytes and spike-recording in neurons is the development of new 

electrophysiological approaches, including flexible polymer probes (Chung et al., 2018) and 

clear electrode arrays (Thunemann et al., 2018), to solve the current problem posed by the 

large equipment necessary to carry out single-neuron recordings, which precludes astrocyte 

imaging. Despite the advances in Ca2+ imaging, single-neuron electrophysiological 

measurements are preferable, for Ca2+ transients lack temporal resolution to reveal single-

action potentials. With regards to signal processing, we described earlier the state-of the-art 

in signal processing in large-scale recordings in neurons, including methods to denoise, 

demix and simplify Ca2+ data. As to astrocytes, readouts to be assessed per astrocyte are 

Ca2+ signals in microdomains measured in dynamic ROIs (Wang et al., 2016) (Agarwal et 

al., 2017), and/or processed with dimensionality reduction techniques as explained above. A 
priori, dimensionality reduction and decoding techniques can be used with data from 

astrocyte and neuronal populations. Possible experimental scenarios are paired Ca2+ imaging 

from both cell types (e.g., low-dimensional data per astrocyte could be paired with one 

optical or electrophysiological signal per neuron). Dimensionality reduction may reveal 

pools of neurons interacting with specific astrocytes. Similarly, linear and non-linear 

decoders could be trained to predict relevant behavioral variables from neuron-astrocyte 

networks, and to study which sets of neurons and astrocytes are more relevant for that 

decoding. Linear decoding techniques could be used even if the amount of behavioral data is 

not massive, such that around ten trials per stimulus-choice condition might suffice to obtain 

a description of astrocyte-neuronal interactions at behaviorally relevant time scales.

7.3. Translation: Clinical Systems Neuroscience

When it comes to treatments for CNS diseases, molecular and cellular approaches should 

not be abandoned, because they have successfully led to current therapeutic venues. For 

example, in multiple sclerosis, relapses are mitigated by immunotherapy against specific 

populations of immune cells (Torkildsen et al., 2016), and in Alzheimer’s disease, promising 

anti-β−amyloid treatments are being tested in clinical trials (K. V. Kastanenka et al., 2016; 

Sevigny et al., 2016). However, there are no effective preventive or disease-modifying 

treatments for neurodegenerative and psychiatric disorders, suggesting that reductionist 

approaches aimed at fighting disease one molecule or one cell at a time might be 

insufficient. Moreover, degeneration of neuromodulatory nuclei (Kelly et al., 2017; Liu et 

al., 2015), as well as large-scale network disarrangement (Westerberg et al., 2012), are 

hallmarks of psychiatric and neurodegenerative diseases. Clearly, brain diseases are 

associated with dysfunction of neural systems. Although the outstanding question persists of 

whether such dysfunction is cause, consequence, or epiphenomenon, the notion that 

Systems-oriented research will prove more fruitful than traditional approaches to 
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discovering, and thus manipulating, the biological underpinnings of diseases, has already 

been voiced for autism (Rosenberg et al., 2015), and motivates therapeutic approaches such 

as deep brain stimulation in Parkinson’s disease (Ashkan et al., 2017). We anticipate that 

optogenetic and chemogenetic stimulations will be the most productive avenues in the 

emerging field of Clinical Systems Neuroscience (K. V. Kastanenka, Herlitze, S., Boyden, 

E.S., Tsai, L-H and Bacskai, B.J., 2017). First, these approaches offer the advantage of 

selective actions at the network and cellular levels—critically allowing the assessment of 

neuronal versus astrocytic effects—since viral vectors may be targeted at specific regions 

through stereotaxic surgery. Second, they enable preclinical research in rodents and primates 

to demonstrate causality between network dysfunction and disease hallmarks (K. V. 

Kastanenka et al., 2017). Third, advances in viral vector technology for gene transfer 

significantly reduce vector-associated cytotoxicity and immune responses (Lundstrom, 

2018), rendering chemogenetics and optogenetics amenable for clinical use in human 

patients.

8. Concluding remarks

We started this perspective article by posing several questions to guide the analysis of the 

role of astrocytes within Systems Neurosciences. We looked for initial answers in available 

studies that include measurements of astrocyte Ca2+ activity, targeted optogenetic and 

chemogenetic manipulations, and complex behaviors or neural networks. We asked whether 

astrocytes are as functionally heterogeneous as neurons. We contend that they are not. We 

put forth anatomical, molecular, and computational arguments in support that astrocytes may 

operate modules akin to mini-circuits in large scale networks, performing canonical 

computations throughout the brain. Mathematical analyses of in vivo data together with in 
silico modeling will be necessary to firmly establish the existence, and nature, of astrocytic 

computations, and whether they encode specific variables. We may get closer to the answer 

using decoding approaches in reward-associated decision making over variable contexts, a 

complex behavioral paradigm in which the brain needs to perform difficult computations 

within the slow time scale of astrocytic Ca2+ signals. Another question was whether 

astrocytes use Ca2+ to carry out spatiotemporal integration of multicellular signals. A first 

insight is that there is behavior-dependent integration in a time scale of sub-seconds to 

supra-seconds, perhaps driven by signal thresholding and timing control. We propose to use 

dimensionality reduction, a tool developed in the context of machine learning, to identify the 

minimum amount of ROIs that carry independent information in Ca2+ transients in different 

contexts. This is a mandatory step towards finding structure in these transients, with the 

assumption that astrocytic Ca2+ responses behave like a dynamical system that can adopt 

multiple regimes. Thus, the question of whether subcellular compartments in astrocytes 

perform different functions ought to be reformulated to whether there are function-specific 

Ca2+ regimes. Further, we identify technical and analytical shortages in joint astrocyte- and 

neuron-population imaging, and ensuing data processing algorithms. Finally, we point to 

theoretical frameworks used by Systems Neurosciences that might benefit from the inclusion 

of astrocytes. Many avenues of exploration remain. To cite two, we have the role of 

astrocyte-based computations in long-term processes underlying memory, perhaps by 

intervening in memory replay in the so-called resting brain, and the failure of neural circuits 
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including astrocytes in neurodegenerative and psychiatric diseases. Decoding astrocytes may 

represent a leap forward towards novel approaches in the study of astrocytes in health and 

disease.
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Main points

• Astrocytes may use Ca2+ signals to perform canonical computations in 

complex behaviors on a time scale of sub-seconds to seconds.

• Statistical tools from Systems Neuroscience could be used to unravel 

variables and algorithms encoded by astrocytic Ca2+.
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Figure 1. Workflow in Systems Neuroscience.
A central problem in Neuroscience is to explain how electrical and chemical signals are used 

in the brain to represent and process information. The workflow depicts the stages and tools 

currently used to decipher neuronal codes. In red squares we highlight the elements that are 

relevant to the study the role of astrocytic Ca2+ in neuronal coding.
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