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RESEARCH ARTICLE Open Access

“Nested” cryptic diversity in a widespread marine
ecosystem engineer: a challenge for detecting
biological invasions
Peter R Teske1,2,3,4*, Marc Rius5,6, Christopher D McQuaid3, Craig A Styan7,8, Maxine P Piggott9, Saïd Benhissoune10,
Claudio Fuentes-Grünewald11, Kathy Walls12, Mike Page13, Catherine RM Attard2, Georgina M Cooke2,
Claire F McClusky7, Sam C Banks9, Nigel P Barker4 and Luciano B Beheregaray1,2

Abstract

Background: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become
invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat.
Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem
engineers represents a major obstacle to correctly identifying them as being either native or introduced. We
address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates
coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently
evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional
population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary
unit.

Results: Extensive sampling in Africa, Australasia and South America revealed the existence of “nested” levels of
cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages.
The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for
both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of
the native versus introduced status of the evolutionary units within Pyura stolonifera in the different coastal
communities they dominate.

Conclusions: This study illustrates the degree of taxonomic complexity that can exist within widespread species
for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between
indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single
geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic
zones as possible when attempting to identify the source region of a putative invader. “Nested” cryptic diversity,
and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for
managing biodiversity.

Background
Biological invasions are a major global threat that can
fundamentally and irreversibly modify native commu-
nities [1,2]. Particularly when a biological invasion
involves an ecosystem engineer, the consequences for an
invaded ecosystem can be catastrophic [3]. Ecosystem

engineers monopolise space, accumulate biomass and
have strong effects on species interactions by increasing
architectural complexity of ecosystems and moderating
environmental extremes [4]. Non-indigenous species
that function as ecosystem engineers are of major con-
cern because they can replace indigenous habitat-form-
ing species [5,6] and drastically alter an invaded habitat
[7,8]. To maintain the diversity and integrity of biotic
habitats, it is thus of great importance that such species
are correctly identified and managed.
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Coastal environments are among the most threatened
ecosystems, with invasions of coastal assemblages across
and between oceans facilitated by the movement of
ocean-going ships and aquaculture [9-11]. However, in
many of the world’s coastal regions, a large proportion
of marine species cannot be clearly identified as being
either native or introduced due to a lack of systematic,
biogeographic and historical evidence [12]. The increas-
ing availability of DNA sequence data has improved this
situation to some extent, resulting in an exponential
increase in the identification of cryptic biodiversity [13].
Particularly in the case of poorly studied marine inverte-
brate groups, genetic methods can enable researchers to
differentiate between recently introduced exotic species
that should be monitored and controlled, and long-
established, cryptic species that may have been pre-
viously overlooked and that may even require
protection.
The ascidians (Chordata: Urochordata) are a group of

sessile, filter feeding marine invertebrates that include
both important ecosystem engineers and aggressively
invasive species [14,15]. Many ascidians are major occu-
piers of primary space along temperate coasts, where
they provide habitat for numerous other organisms
[16,17] by enhancing habitat complexity when aggre-
gated [18]. Although ascidians have low natural dispersal
potential because their lecithotrophic larvae remain in
the plankton for very short periods of time (minutes to
hours in most species) [19,20], several species are recog-
nised as pests on a global scale, occurring on multiple
continents [21-23]. Dispersal on smaller scales may
occur naturally as larvae attach themselves to floating
objects that are moved around by currents, but adults
attached to vessel hulls are considered to be the most
likely vectors facilitating the worldwide spread of these
species [24-26]. As for many other marine invertebrate
groups, the taxonomy of some ascidians is poorly
resolved [22,27], and recent genetic studies have indi-
cated that several supposedly cosmopolitan species are
in fact comprised of two or more genetic lineages that
should be treated as distinct species [28-32].
Here we examine the large, solitary ascidian Pyura sto-

lonifera (Heller, 1878), which is an important foundation
species particularly in temperate coastal regions of the
southern hemisphere [16,18,33]. The taxonomic status
and origin of the species are unclear, and have gener-
ated an extensive debate [34-38]. It remains uncertain
whether populations in Africa, Australasia and South
America are the fragmented remains of a pan-Gondwa-
nan species [35,36] or whether the species originated in
one region and was recently been introduced to the
other two regions [34,39]. It is also disputed whether P.
stolonifera is a single species [36] or a species complex
[34]. We study genetic patterns between regional

populations to determine a) levels of cryptic diversity, b)
the invasive or native status of each regional population
and c) the most appropriate sampling design for identi-
fying the boundaries of each evolutionary unit. Our
findings indicate the presence of multiple genetic
lineages within regions, which, together with inadequate
sampling, can seriously hinder our capacity to detect
invasive populations.

Methods
Study taxon
Pyura stolonifera is particularly common in southern
Africa and Australia [35], but localised populations have
also been reported from South America [16,40], north-
western Africa [37,38] and, most recently, New Zealand
[39]. The taxon is an important ecosystem engineer that
dominates intertidal and subtidal habitats in Africa
[17,37,41], Australia and New Zealand [39], and interti-
dal areas in Chile [15], where it achieves among the
highest biomasses ever reported in such environments
[16]. Pyura stolonifera forms extremely large aggrega-
tions, resulting in aggressive monopolisation of the
available substratum [15].

Sampling and amplification of genetic markers
A total of 518 ingroup samples were collected in all
regions from which there are reliable reports of Pyura
stolonifera, except Senegal. Within each region, samples
were collected at several sites that span the taxon’s
entire range, including 16 sites in Africa, 26 sites in
Australia, seven sites in New Zealand and one site in
Chile (Table 1). A small piece of mantle tissue (< 1
cm3) from each individual sampled was preserved in a
solution containing 70% ethanol and 30% TE buffer.
This medium was replaced on a daily basis until it no
longer changed color and until the tissue had become
completely white. Obtaining high quality DNA proved
difficult, and even an extraction protocol developed to
eliminate contaminants present in ascidian tissues and
tested specifically on Pyura stolonifera [42] did not pro-
duce better results than standard extraction protocols.
We consequently used a salting-out protocol to extract
DNA [43].
We amplified one mitochondrial DNA (mtDNA) mar-

ker, the cytochrome oxidase subunit I gene (COI), and
three nuclear DNA (nrDNA) markers: 18S (a compo-
nent of the 40S cytoplasmic small ribosomal subunit in
eukaryotes) and two nuclear genes containing introns,
namely ATP synthase subunit a (ATPSa) and Adenine
Nucleotide Transporter (ANT, also known as ADP/ATP
translocase) (Table 2). We also used unpublished COI
sequence data generated previously by some of our col-
laborators, and incorporated some published sequence
data (Table 1). The COI gene was the primary marker
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Table 1 Sample localities and number of sequences generated for four different markers

Region Site Site No. GPS coordinates COI ANT ATPSa 18S

South Africa

SW Langebaan 1 33°01’07’’S, 17°56’48’’E 7 16 3 3

SW Yzerfontein 2 33°20’49’’S, 18°09’06’’E 13 26 2 2

SW False Bay 3 34°07’14’’S, 18°27’31’’E 1 6 1 1

S Mossel Bay 4 34°10’42’’S, 22°08’41’’E 1 0 1 1

S Knysna 5 34°03’17’’S, 23°03’46’’E 4 10 3 3

S Plettenberg Bay 6 34°05’56’’S 23°22’45’’E 4 0 0 0

S Tsitsikamma 7 33°58’52’’S 23°38’32’’E 2 0 0 0

S Port Elizabeth 8 33°57’59’’S, 25°38’04’’E 5 4 0 0

SE Haga-Haga 9 23°46’15’’S, 28°14’16’’E 2 2 1 1

SE Morgan Bay 10 32°42’39’’S 28°20’27’’E 27 12 3 3

SE Mngazana 11 31°41’41’’S 29°25’27’’E 1 6 0 3

E Park Rynie 12 30°19’S 30°44’E 3 2 0 0

E St Lucia 13 28°15’41’’S, 32°29’47’’E 6 12 3 3

Mozambique Ponta do Ouro 14 26°50’40’’S 32°53’43’’E 2 4 0 0

Morocco La Madrague 15 30°30’54’’N, 9°44’48’’W 14 6 0 0

Immesouane 16 30°50’20’’N, 9°49’23’’W 18 6 0 0

Australia

NSW Fingal Head 17 28°11’56’’S 153°34’16’’E 20 38 1 1

Ballina 18 28°52’05’’S 153°35’36’’E 19 0 0 0

Port Macquarie 19 31°25’47’’S 152°55’24’’E 21 0 0 0

Black Head 20 32°04’15’’S 152°32’55’’E 20 0 0 0

Kiama 21 34°40’31’’S 150°51’30’’E 14 0 0 0

Ulladulla 22 35°21’35’’S 150°29’11’’E 17 0 0 0

Eden 23 37°04’01’’S 149°54’47’’E 16 0 0 0

VIC Mallacoota 24 37°34’14’’S 149°45’52’’E 18 0 0 0

Cape Conran 25 37°48’52’’S 148°43’36’’E 21 28 0 0

Port Albert8 26 38°40’S 146°41’E 5 0 0 0

Port Welshpool 27 38°42’04’’S 146°27’54’’E 8 20 1 1

Walkerville8 28 38°51’49’’S 146°00’08’’E 5 0 0 0

Kilcunda8 29 38°33’23’’S 145°28’50’’E 30 30 1 2

Stoney Point8 30 38°22’21’’S 145°13’30’’E 4 0 0 0

Hastings8 31 38°18’30’’S 145°11’57’’E 5 0 0 0

Mornington8 32 38°12’49’’S 145°02’04’’E 3 0 0 0

Portsea8 33 38°19’07’’S 144°42’44’’E 8 0 0 0

Marengo Bay8 34 38°46’41’’S 143°39’60’’E 3 0 0 0

Portarlington8 35 38°06’45’’S 144°39’06’’E 4 0 0 0

TAS Beauty Point 36 41°09’S 146°49’E 8 22 3 3

Two Tree Point 37 43°20’S 147°19’E 2 8 0 0

Taroona Beach9 38 42°57’S 147°21’E 0 4 0 0

SA Henley Beach 39 34°55’11’’S 138°29’31’’E 8 6 3 3

Largs Bay8 40 34°47’48’’S 138°29’04’’E 4 0 0 0

Brighton Beach8 41 35°01’03’’S 138°30’46’’E 4 0 0 0

WA Albany 42 35°01’57’’S 117°53’25’’E 10 6 3 3

New Zealand N Twilight Beach9 43 34°29’22’’S 172°40’56’’E 0 8 0 2

S Twilight Beach9 44 34°30’32’’S 172°41’59’’E 0 6 0 1

Tauroa Peninsula9 45 35°10’12’’S 173°06’22’’E 0 20 0 0

N Herekino9 46 35°15’13’’S 173°07’11’’E 0 20 0 0

The Bluff9 47 34°41’06’’S 172°53’23’’E 0 20 0 0

Te Werahi Beach9 48 34°28’10’’S 172°39’26’’E 0 6 0 0

Tarawamaomao Pt.9 49 34°26’12’’S 172°40’30’’E 0 4 0 0
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used for identifying genetic lineages due to its high
variability. ANT was the most variable nuclear marker.
It was primarily used to confirm genetic structure iden-
tified using COI by amplifying a sub-set of samples, to
study genetic diversity in selected populations, and to
provide an alternative for COI in the few cases where
this marker did not amplify due to a possible mutation
in the primer annealing region (two samples from Tas-
mania and all samples from New Zealand, Table 1).
ATPSa and 18S were less informative and for that rea-
son were only used for phylogeny reconstructions.
Most of the primers used are universal. The ANT

gene did not amplify readily using published primers
[44], and a forward primer was designed to amplify it in
Stolidobranchia ascidians (StolidoANT-F) in conjunction
with a universal reverse primer (Table 2). This primer
combination proved particularly useful for both phyloge-
netic and phylogeographic work, as the PCR product
amplified reliably and contained a long, variable intron.
The primer combination developed here amplified the
ANT gene not only in Pyura spp., but also in other gen-
era within the order Stolidobranchiata, including

Botrylloides (GenBank accession number JF962229),
Botryllus (JF962231) and Styela (JF962232).
PCR reaction conditions comprised 1 μl of template

DNA (~150 ng), 3 μl of reaction buffer (Promega), 6 μl
of dNTP mixture containing 125 mM of each dNTP, 1.2
μl of each primer (5 mM dilutions), 1 unit of Taq DNA
polymerase (Promega, Madison, USA) and ddH20 to a
final volume of 30 μl. Concentrations of MgCl2 differed
for each marker (Table 2). PCR profiles consisted of an
initial denaturing step (94°C for 3 min), 35 cycles of
denaturing (94°C for 30 s), annealing (45 s at a primer-
specific annealing temperature, Ta; Table 2) and exten-
sion (72°C for 45 s), and a final extension step (72°C for
10 min). The problem of PCR reactions being affected
by low purity of DNA extractions could be circum-
vented by diluting DNA templates, which supposedly
reduced potential inhibitors to a level at which they no
longer interfered with the PCR reaction. Nonetheless, a
quality screening procedure was applied in which sam-
ples were excluded when the quality of their trace files
was too low to identify each nucleotide with absolute
certainty in three successive sequencing runs. As ANT

Table 1 Sample localities and number of sequences generated for four different markers (Continued)

Chile Antofagasta 50 23°42’25’’S 70°25’51’’E 151 52 3 3

Outgroup

Pyura dura 12 0 1 14

P. haustor 0 0 0 15

P. spinifera 1 1 1 1

P. squamulosa 13 0 0 16

Total no. sequences: 403 4117 34 40

COI sequences were generated for most specimens. The ANT gene was primarily used to confirm genetic structure identified using COI and to study genetic
diversity in selected populations. The less informative ATPSa and 18S were used for phylogeny reconstructions only in conjunction with COI and ANT. 1For
calculations in Table 3, 6 COI sequences generated in Castilla et al. [34] were included; sequences downloaded from GenBank (not included in the total number
of sequences generated): 2FJ528618, 3FJ528625, 4FM244856, 5AY90392, 6FM897341; 7ANT sequences were generated for 206 individuals. Both phases were
resolved (except in the outgroup species P. spinifera), resulting in a total of 411 ANT sequences. 8Sites from which previously generated, unpublished COI
sequences were incorporated into this study. 9Sites for whose samples no COI sequences could be generated, possibly due to a mutation in the primer
annealing site. Acronyms: E = East, N = North, NSW = New South Wales, S = South, SA = South Australia, SE = south-east, SW = south-west, TAS = Tasmania, VIC
= Victoria, W = West, WA = Western Australia.

Table 2 Genetic markers, primer sequences, and primer-specific annealing temperatures (Ta) and MgCl2 concentrations

Marker Primer names Primer sequences (5’-3’) Ta
(°C)

MgCl2 (mM) References

COI LCO1490
HCO2198

TAAACTTCAGGGTGACCAAAAAATCA
GGTCAACAAATCATAAAGATATTGG

50 6 [91]
[91]

ANT StolidoANT-F
ANTr1

CAGGGTATCATTGTRTACMGAG
CCAGACTGCATCATCATKCGRCGDC

60 3 This study
[44]

ATPSa ATPSaf1
ATPSar1

GAGCCMATGCAGACTGGTATTAAGGCYGT
CTGTGGTAGTAGTTGGTCTTCKCNAAGTT

55 3 [44]
[44]

18S 5’F
557F
1262R
3’R

TYCCTGGTTGATYYTGCCAG
GCCAGCAGCCGCGGT
GGTGGTGCATGGCCGTY
TGATCCATCTGCAGGTYCACCT

54 3 [92]
[93]
[93]
[92]
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tended to amplify more reliably than COI, this explains
why at some sites, more ANT sequences than COI
sequences were generated, even though only a fraction
of samples was sequenced using this marker (Table 1).
PCR products were purified using the UltraCleanTM 15
DNA Purification Kit (MO BIO Laboratories, Inc.,
Carlsbad, CA, USA), sequenced in both directions using
Big Dye terminator chemistry version 3.1 (Applied Bio-
systems, USA) and run on a 3130xl Genetic Analyser.

Phase determination and alignment
In heterozygous individuals whose two ANT alleles dif-
fered in length, we used CHAMPURU v1.0 [45] to
determine each phase. In cases where there were no
length differences, each sequence was deduced using
default settings for multi-allelic loci without stepwise
mutation in PHASE v2.1 [46]. Whenever there were
multiple possible phases, we selected the two alleles hav-
ing the highest probability, which tended to be an order
of magnitude greater than the probabilities of all other
sequence pairs. Using alternative phases made no
obvious difference in terms of estimates of genetic diver-
sity and phylogenetic reconstructions.
COI and 18S sequences were aligned by eye in

MEGA4 [47]. The nuclear genes containing introns
were aligned using the multiple sequence alignment pro-
gram T-COFFEE[48] at the BIOHPC website (http://
cbsuapps.tc.cornell.edu). Poorly aligned regions were
eliminated using GBLOCKS[49] by specifying the least
stringent conditions at the GBLOCKS server (http://
molevol.cmima.csic.es/castresana/GBLOCKS_server.
html).

Phylogeny reconstructions
Phylogenetic relationships among lineages of Pyura sto-
lonifera were reconstructed using an aligned data-set
from combined sequence data of four loci, totaling 2611
bp in length. After exploring the phylogenetic signal of
data-sets from each locus, phylogenetic trees based on
combined sequence data were reconstructed using no
more than two representatives per lineage and region
(14 ingroup taxa and four outgroup taxa). In several
cases, regional lineages identified were excluded from
the combined analyses because sequence data were not
available for all four loci (Table 1). Three methods of
phylogenetic reconstruction were employed and results
compared: minimum evolution and parsimony, both
employed in MEGA4, and Bayesian inference employed
in MRBAYES 3.1 [50]. Support for nodes in the mini-
mum evolution and parsimony trees was assessed by
means of 10 000 bootstrap replications. In Bayesian
inference, four chains of three million generations each
were run simultaneously and trees were sampled every
100 generations. After removing the first 10% of trees as

burn-in, posterior probabilities of nodes were assessed
by constructing a 50% majority rule consensus tree. To
check for consistency of results, the analyses were
repeated three times. For Bayesian inference, the data-
set was divided into 14 partitions: codon positions 1-3
of COI (534 bp), 18S (1703 bp), codon positions 1-3 for
the ANT exon (81 bp) and the ATPSa exon (105 bp),
ANT intron (137 bp), ATPSa intron (51 bp), ANT
indels (19 characters) and ATPSa indels (8 characters).
Rates were allowed to vary among nucleotide partitions,
and the GTR+I+Γ model was specified for each. Infor-
mation from indels was only incorporated when these
that had clearly defined alignment boundaries.
In several cases, lower-level phylogenetic relationships

were inferred using sequence data from single loci by
either constructing neighbour-joining trees [51] in
MEGA4 using maximum composite likelihoods [52] of
Tamura-Nei distances [53] or by constructing median-
joining haplotype networks in NETWORK4516 (2009
version) [54]. Indels were coded as single nucleotide dif-
ferences irrespective of their length.

Population comparisons
In populations that were not clearly differentiated on the
basis of being comprised of monophyletic clades or clus-
ters in haplotype networks, we estimated genetic diver-
sity indices and calculated fixation indices to determine
whether their allele frequencies differed. We used our
two most variable markers, COI and ANT, to calculate
the following statistics in ARLEQUIN v3.5 [55]: h (hap-
lotype or gene diversity), π (nucleotide diversity), and
pairwise fixation indices as a measure of population dif-
ferentiation (FST for COI and FST for ANT). In addi-
tion, we estimated observed and expected heterozygosity
of ANT sequences in each population.
We used molecular dating to determine whether

divergence of closely related populations that are repre-
sented in different regions likely occurred during histori-
cal times (i.e. as a result of a human-mediated
introduction) or whether they have more ancient origins
(i.e. divergence > 2000 years ago). Divergence times
among several pairs of populations were estimated
under the isolation-with-migration model [56] using the
program IMa [57]. We limited ourselves to populations
that were either significantly differentiated on the basis
of fixation indices, or that were comprised of recipro-
cally monophyletic sister clades. As two of the markers
(ATPSa and 18S) showed little or no differentiation at
the lowest taxonomic level, we used either a combina-
tion of COI and ANT, or COI only when ANT showed
too little genetic variation to estimate divergence times.
The population from New Zealand is represented by a
single allele that was not found in its genetically most
similar population in Australia (see Results) but is likely
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to be present there (see Discussion). For that reason, we
did not estimate divergence times in this taxon. The
HKY model [58] was selected as the best-fitting model
for both markers by FINDMODEL[59], inheritance sca-
lars of 0.25 for COI and 1 for ANT were specified, and
a generation time of one year was assumed [60]. To our
knowledge, there are as yet no published evolutionary
rates for the COI gene of ascidians, but evolutionary
rates between 0.5 and 1.5% per million years (Myr-1) are
assumed in most studies on other marine invertebrate
taxa [61,62]. To incorporate uncertainty, we specified a
COI rate of 1% Myr-1 and incorporated a range from
0.5-1.5% Myr-1. The program does not require evolu-
tionary rates to be specified for all markers included in
an analysis. To check for the consistency of results, IMa
runs were repeated three times using the following com-
mand line specifications: -l 25 000 (25 000 trees, with
trees sampled every 100th generation, i.e. a total of 2.5
× 106 generations) -b 100 000 (deletion of the first 100
000 generations as burn-in), -q1 500 (maximum θ =
effective population size parameter scaled to evolution-
ary rate), -t 2 (maximum divergence time scaled to evo-
lutionary rate), -m1 20 (migration into population 1)
-m2 20 (migration into population 2), -f g -n 80 -g1
0.999 -g2 0.3 (geometric heating scheme with 80 heated
chains and heating parameters of 0.999 and 0.3).

Results
Identification of evolutionary lineages
A total of 888 DNA sequences were generated, includ-
ing 403 COI sequences, 411 ANT sequences, 34 ATPSa
sequences and 40 18S sequences (Table 1). Most
sequences (excluding some ANT sequences that were <
200 bp in length) were submitted to GenBank (accession
numbers JF961754 - JF962415, see Additional File 1).
Complete data-sets of aligned sequences are available in
the following additional files: COI: Additional File 2;
ANT: Additional File 3; ATPSa: Additional File 4 and
18S: Additional File 5. Additional File 6 contains com-
bined sequence data used for phylogeny reconstruction.
Six monophyletic clades were recovered with high sup-
port (bootstrap values and Bayesian posterior probabil-
ities ≥ 99%, Figure 1b). Taxonomic descriptions exist for
four of these clades (see Discussion for details). The
African species Pyura stolonifera sensu stricto and P.
herdmani formed a well-supported clade, and we also
found strong support for the monophyly of two clades
comprised of samples from Australasia and Chile (P.
praeputialis and Pyura sp., Figure 1b). The placement of
a third species present in Australasia (P. dalbyi, western
and southeastern Australia) remains unresolved (Figure
1b). Support for its monophyly with the other two Aus-
tralasian species was high in phylogenies of two of the
more slowly-evolving partitions (e.g. ANT gene,

Minimum Evolution Bootstrap support: 96%, 18S: 96%)
and such a taxonomic placement is also supported by
morphological data (see Discussion).
Regional sub-structuring was identified within Pyura
herdmani and Pyura sp. on the basis of phylogenetic
trees or haplotype networks constructed using sequence
data from single markers. Pyura herdmani was com-
prised of four distinct lineages on the basis of mtDNA
COI sequences (Figure 1d), although the more slowly-
evolving nrDNA ANT sequences showed little differen-
tiation among regions (Figure 1c), possibly due to
incomplete lineage sorting. One of the lineages recov-
ered using COI sequences is confined to Morocco, two
occur in temperate South Africa, and the fourth is
restricted to subtropical and tropical regions of southern
Africa (south-eastern and eastern South Africa, and
southern Mozambique). We included representatives of
only two lineages in the phylogenetic tree based on
combined sequence data (Figure 1b) to indicate that
genetic differentiation among them is not much lower
than among the taxa we considered to be distinct spe-
cies, but it is important to note that there is presently
not enough data to recognise any additional species
within P. herdmani. The Australasian species Pyura sp.
was comprised of two closely related ANT lineages of
which one is found in Australia (Victoria, Tasmania and
South Australia) and the other occurs both in Australia
(Victoria and Tasmania) and in New Zealand (Figure
1e). Genetic diversity in Australia was high (13 unique
alleles in 32 specimens), whereas all 42 individuals from
New Zealand had the same ANT allele. We identified
four heterozygous individuals in Australia having alleles
from both lineages, suggesting that these are not distinct
species.

Population comparisons
Two pairs of geographically distant populations were
not recovered as being distinct on the basis of phyloge-
netic trees or haplotype networks: Australian vs. Chilean
representatives of Pyura praeputialis (Figure 1b) and
Western Australian vs. southeastern Australian repre-
sentatives of P. dalbyi (Figure 1f). Genetic diversity sta-
tistics were similar for all four populations of P.
praeputialis investigated (three populations from Aus-
tralia and one from Chile, Table 3). In most cases,
genetic diversity estimates for the supposedly recently
introduced population from Antofagasta, Chile, were the
second highest of all the populations studied, and het-
erozygosity of this population at the diploid, intron-con-
taining ANT gene was not lower than that of the
Australian populations. On the basis of both pairwise
FST values among the mtDNA COI haplotypes and
pairwise FST values among the alleles of the nuclear
ANT gene, we found significant structure between a site
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in southeastern Australia (Kilcunda) and all other sites,
including the Chilean site Antofagasta. Significant struc-
ture between southeastern Australia and the two other
regions, but not between the Australian east coast and
Antofagasta, was also found when using a larger COI
data-set that included samples from additional sites in
eastern (sites 18 - 24 in Table 1) and southeastern (sites
28, 33 and 34) Australia for which no ANT data were
generated (N = 232; southeast coast vs. east coast: FST

= 0.070, P < 0.01, southeast coast vs. Antofagasta: FST =
0.070, P < 0.01; east coast vs. Antofagasta: FST = -0.003,
P = 0.51). This supports the idea that the significant
genetic structure found between the two eastern Austra-
lian sites and the one southeastern Australian site is not
an artifact of small samples sizes.
No structure was identified between representatives of

P. dalbyi from Western Australia vs. southeastern

Australia (FST = 0.06, P = 0.18), and diversity indices
were similar (Western Australia: h = 1.000 ± 0.045, π =
0.005 ± 0.003, southeastern Australia: h = 1.000 ± 0.017,
π = 0.004 ± 0.003; COI sequence data only).
A divergence time estimate of 1.1 million years ago

(95% confidence interval: 0.4 - 2.4 million years ago)
was estimated for the Moroccan population of P. herd-
mani and its temperate southern African sister lineage
(Figure 1c). Although the eastern and southeastern Aus-
tralian populations of P. praeputialis shared haplotypes,
they were also estimated to have diverged prior to the
historical period (150 thousand years ago with a 95%
confidence interval of 79 - 420 thousand years).

Discussion
In the present study, we show that the widespread asci-
dian Pyura stolonifera is a species complex that

Figure 1 Genetic lineages within the Pyura stolonifera species complex. A) regions in which members of the species complex were
collected for this study (see Table 1 for details); B) minimum evolution tree based on combined sequence data from 4 loci; support for nodes is
indicated as bootstrap values (≥ 50%) from minimum evolution and parsimony analyses, and as posterior probabilities (≥ 95%) from Bayesian
inference; C) haplotype network constructed from ANT sequences of P. herdmani and D) linearised neighbor-joining phylogeny based on
sequences of the COI gene of P. herdmani; bootstrap values are indicated, and P. stolonifera was used as outgroup (not shown); E) haplotype
network of ANT sequences of Pyura sp. and F) haplotype network of COI sequences of P. dalbyi. (Acronyms: ANT = nuclear Adenine Nucleotide
Transporter gene; COI = mitochondrial cytochrome oxidase subunit I gene; SE = southeastern).
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comprises at least five distinct species. Within some of
these, we found additional genetic structure at regional
scales, and we identified three populations that are likely
to be non-indigenous. The species associated with the
species complex are ecosystem engineers that create
habitat complexity, compete with other sessile species
for food and space and tend to be highly abundant once
established [15,63]. As introduced ascidians can funda-
mentally alter both the structure and composition of
benthic communities [15,64], reduce the diversity of
native species [65] and threaten economically important
species [39,66], it is imperative to define whether they
are native or introduced in any particular region. How-
ever, phylogenetic and phylogeographic information may

often be insufficient to determine this conclusively, even
in conspicuous species such as the members of the P.
stolonifera species complex.

Species within Pyura stolonifera
In the taxonomic literature, three species associated with
the Pyura stolonifera species complex have traditionally
been considered, namely Pyura stolonifera sensu stricto,
P. herdmani (Drasche, 1884) and P. praeputialis (Heller,
1987), but the validity of the latter two has been chal-
lenged [35,36] and their species names are not consis-
tently applied [67]. For example, Castilla et al. [34]
found genetic differentiation between the African P.
herdmani (probably misidentified as P. stolonifera [see
67]), and populations from eastern Australia and Chile,
and recommended referring to the latter as P. praepu-
tialis. However, most subsequent studies continued to
refer to the eastern Australian population as P. stoloni-
fera, e.g. [68-77]. We found that P. stolonifera sensu
stricto is restricted to temperate southern Africa (Figure
1) and that its range overlaps with that of P. herdmani,
which occurs in temperate, subtropical and tropical
southern Africa, as well as Morocco (Table 4). Confirm-
ing the findings of Castilla et al. [34], we found that P.
praeputialis is both morphologically [67] and genetically
(this study) distinct from its African congeners. The
extensive sampling in Australasia revealed the existence
of two more species within the species complex, namely
P. dalbyi Rius & Teske, 2011 [67] and Pyura sp. (Vic-
toria, South Australia, Tasmania and New Zealand),
which has yet to be formally described.
Three of the species identified (Pyura herdmani, P.

praeputialis and Pyura sp.) can be further subdivided
into regional genetic lineages on the basis of reciprocal
monophyly or differences in allele frequencies, and the
populations at several localities are likely to be the pro-
duct of long-distance dispersal. These issues are dis-
cussed in the following two sections.

Long-distance dispersal
Based on our genetic data, four populations may be the
product of long-distance colonisation events, as they are
genetically very similar to populations that are isolated
from them by large geographic distances. These include
the populations in Chile, New Zealand, Morocco and
Western Australia. However, these populations differ
considerably from each other both in terms of genetic
diversity and in terms of how genetically distinct they
are from their putative source populations.
Castilla et al. [34] found that the populations in east-

ern Australia and Antofagasta, Chile, are genetically very
similar, but we considered this to be insufficient to con-
clude that the Chilean population has recently been
introduced, as it could also indicate incomplete lineage

Table 3 Genetic diversity at four sites inhabited by Pyura
praeputialis, and tests for genetic structure among them

Marker Statistic Sampling site

1
Fingal

2
Cape Conran

3
Kilcunda

4
Antofagasta

COI h 0.968
± 0.028

0.965
± 0.024

0.835
± 0.037

0.971
± 0.024

π 0.007
± 0.004

0.006
± 0.003

0.005
± 0.003

0.007
± 0.004

FST 1

2 0.001

3 0.060* 0.103**

4 -0.024 0.005 0.087**

ANT h 0.949
(± 0.017)

0.849
(± 0.033)

0.864
(± 0.041)

0.904
(± 0.023)

π 0.014
(± 0.009)

0.009
(± 0.006)

0.011
(± 0.007)

0.013
(± 0.008)

Hobs 0.153
(± 0.141)

0.214
(± 0.151)

0.156
(± 0.151)

0.205
(± 0.146)

Hexp 0.197
(± 0.186)

0.305
(± 0.162)

0.161
(± 0.149)

0.245
(± 0.178)

FST 1

2 -0.002

3 0.085** 0.044*

4 -0.004 0.007 0.061*

Site numbers refer to: 1 - Fingal (northern east coast of Australia); 2 - Cape
Conran (southern east coast of Australia, east of the former Bassian Isthmus);
3 - Kilcunda (southeastern Australia, west of the former Bassian Isthmus); 4 -
Antofagasta (Chile). Number of sequences generated for each site and genetic
marker: Fingal: COI = 20, ANT = 38; Cape Conran: COI = 21, ANT = 28;
Kilcunda: COI = 30, ANT = 30; Antofagasta: COI = 21 (including 6 sequences
from Castilla et al. [34]), ANT = 52. Statistics include: h - haplotype or gene
diversity; π - nucleotide diversity; FST - pairwise fixation index among sites
based on mtDNA COI haplotypes; FST - pairwise fixation index among sites
based on nrDNA ANT alleles; Hobs and Hexp - observed and expected mean
heterozygosity based on ANT sequence data. Asterisks indicate significant
fixation indices (*P < 0.05, **P < 0.01) and values in brackets are standard
deviations.
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sorting among significantly differentiated populations. It
was thus considered necessary to obtain larger sample
sizes from each population and to compare genetic
diversity of the different populations. Lack of genetic
structure between P. praeputialis from sites in eastern
Australia and Chile supports the idea that the Chilean
population is the product of a recent introduction,
despite its high genetic diversity. Invasive marine inver-
tebrates can show high genetic diversity due to multiple
introductions of large numbers of individuals from dif-
ferent sources, e.g. [78,79] and the Chilean population
includes a random sample of haplotypes found in east-
ern Australia. A very different result was found for

Pyura sp., which has only recently been reported from
New Zealand [39]. All 42 individuals from New Zealand
had the same ANT allele, indicating loss of diversity
through genetic drift or a strong bottleneck effect. The
allele found in New Zealand is part of a cluster of hap-
lotypes present in southeastern Australia, and the popu-
lation in New Zealand clearly does not represent a
distinct species. The Western Australian population of
P. dalbyi was probably recently founded by individuals
from southeastern Australia. Distribution records indi-
cate that this species is absent from the Great Australian
Bight [36] and thus has a disjunct distribution typical of
an introduced species, with c 2500 km between its two
regional populations. Even more compellingly, while P.
dalbyi is common in Victoria (Table 1), it seems to be
confined to only two Western Australian sites that are
more than 1000 km apart [36]. At one of these (Albany),
it has been found exclusively inside the harbour, sug-
gesting that it has failed to spread beyond this point of
introduction.
Thus we have at least three populations (in Chile,

New Zealand and Western Australia, Table 4) that have
apparently been recently introduced through human
activities and that should be controlled if possible, even
though they may provide biogenic habitat for other
species.
Lastly, the Moroccan population of P. herdmani was

recovered as a distinct lineage with high nodal support
using the most quickly evolving marker used in this
study, mtDNA COI. Molecular dating indicated that,
like several other marine invertebrates with similar anti-
tropical distributions [80,81], it diverged from its south-
ern African sister lineage prior to the Holocene.

Cryptic divergence within regions
In several cases, we identified genetic sub-structure
within individual taxa (Pyura herdmani, P. praeputialis
and Pyura sp.) that may point to the existence of addi-
tional cryptic species. While there is no evidence that
any of these have become invasive elsewhere, their exis-
tence highlights the importance of sampling throughout
the entire native range of a taxon suspected of having
become invasive. Failure to capture all of the genetic
diversity present within a particular region will result in
a recently introduced species being mistaken for an indi-
genous species that was previously overlooked.
The most clear-cut example of cryptic divergence was

found in Pyura herdmani between the temperate and
subtropical/tropical provinces in southern Africa, which
are inhabited by distinct lineages whose ranges overlap
on the southeast coast. Phylogeographic disjunctions
that coincide with water temperature have been docu-
mented in this region for various other marine organ-
isms, and claims that the genetic lineages identified

Table 4 Regional genetic lineages identified in this study,
names used in species description that match their
morphology best, and assessment whether they are
likely to be native or introduced in each region

Species/Lineage Region Sites1 Native/Introduced

Pyura stolonifera South Africa

SW 2,3 Native

S 4,6-8 Native

SE 9 Native

Pyura herdmani South Africa

(Temperate) SW 1,2 Native

S 5,6,8 Native

SE 10 Native

Pyura herdmani South Africa

(Subtropical/ SE 10,11 Native

Tropical) E 12,13 Native

Mozambique 14 Native

Pyura herdmani Morocco 15,16 Native

(Moroccan)

Pyura praeputialis Australia

NSW 17-23 Native

VIC 24,25,28,29,33,34 Native

Chile 50 Introduced

Pyura dalbyi Australia

VIC 27,30-32,35 Native

WA 42 Introduced?

Pyura sp. Australia

VIC 26,27 Native

TAS 36-38 Native

SA 39-41 Native

New Zealand 34-49 Introduced
1Site numbers and acronyms correspond to those used in Table 1.
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constitute cryptic species could in several cases be sup-
ported by morphological and physiological data [82-84].
In Pyura sp., two closely related lineages were identified.
The fact that both were present at the same sites in Vic-
toria and Tasmania and that several individuals had
ANT alleles from both lineages, indicates that if regional
genetic structure ever existed, it has almost completely
eroded as a result of subsequent high levels of gene
flow. Lastly, in P. praeputialis we found a very recently
established genetic disjunction (based on allele fre-
quency differences) across the Bass Strait. Phylogeo-
graphic breaks in this region have been documented for
a large number of marine species [85,86] and in most
cases, allopatric speciation due to the rise of the former
Bassian Isthmus that connected Tasmania with the Aus-
tralian mainland during periods of low sea-level has
been invoked [85].

Conclusion
Distinguishing a putative invader from a previously
overlooked cryptic species can be a challenging task.
Our results highlight the importance of extensive sam-
pling to differentiate between native and introduced
ranges in widespread marine invertebrates and illustrate
the difficulty of correctly identifying non-indigenous
species in marine invertebrates with poorly resolved
taxonomy.
When attempting to match a population that is sus-

pected of having been recently introduced to a source
population, samples meant to represent a particular
region usually originate from only a small portion of a
species’ local range, e.g. [28,34,87]. As there may be con-
siderable variation in habitat quality along the range of
widely distributed coastal species [88], such a sampling
design can result in incorrect conclusions being drawn
on whether populations are exotic or native when multi-
ple genetic lineages are present within regions. In our
case, some of the species identified have a preference
for sheltered conditions (Pyura herdmani, P. dalbyi and
Pyura sp.), whereas others can also be found at exposed
sites on the open coast (P. stolonifera and P. praeputia-
lis) [67]. Even more importantly, the fact that co-distrib-
uted coastal invertebrates in Australia, South Africa and
North America tend to have congruent phylogeographic
patterns that are often linked to well-documented mar-
ine biogeographic disjunctions, e.g. [84-86,89,90], indi-
cates that it is crucial to collect samples in all
biogeographic provinces in which a widespread species
is represented (e.g. P. herdmani). To achieve good sam-
pling cover, it is thus necessary to collect samples at as
many sites as possible rather than obtaining large num-
bers of samples from a small number of sites. The latter
approach is commonly used in population genetic stu-
dies in order to accurately estimate genetic diversity at

each site, but such information is of little value when
the aim of a study is to identify the source population of
a putative invader.
Failure to identify and control a non-indigenous spe-

cies could lead to habitat monopolisation at the expense
of native species (e.g. in our study the populations in
Chile, New Zealand and Western Australia), while the
removal of an organism mistakenly identified as being
invasive would constitute habitat destruction and may
even result in the extinction of a native species (e.g.
Pyura herdmani in Morocco). An inadequate sampling
design, in which large numbers of sequences are gener-
ated but not all of the evolutionary lineages present in a
particular region are recovered, can give researchers a
false sense of confidence about the alien or indigenous
status of poorly known marine organisms. This may
obstruct management efforts aimed at controlling an
introduced species during the critical early stages of an
invasion.
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