
UC Berkeley
UC Berkeley Previously Published Works

Title
Learning likelihood ratios with neural network classifiers

Permalink
https://escholarship.org/uc/item/9mn487gr

Journal
Journal of High Energy Physics, 2024(2)

ISSN
1126-6708

Authors
Rizvi, Shahzar
Pettee, Mariel
Nachman, Benjamin

Publication Date
2024

DOI
10.1007/jhep02(2024)136

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9mn487gr
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Published for SISSA by Springer

Received: July 3, 2023
Revised: January 8, 2024

Accepted: January 22, 2024
Published: February 20, 2024

Learning likelihood ratios with neural network classifiers

Shahzar Rizvi ,a Mariel Pettee b and Benjamin Nachman b,c

aDepartment of Statistics, University of California,
Berkeley, CA 94720, U.S.A.

bPhysics Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, U.S.A.

cBerkeley Institute for Data Science, University of California,
Berkeley, CA 94720, U.S.A.

E-mail: shahzar@berkeley.edu, mpettee@lbl.gov, bpnachman@lbl.gov

Abstract: The likelihood ratio is a crucial quantity for statistical inference in science that
enables hypothesis testing, construction of confidence intervals, reweighting of distributions,
and more. Many modern scientific applications, however, make use of data- or simulation-
driven models for which computing the likelihood ratio can be very difficult or even impossible.
By applying the so-called “likelihood ratio trick,” approximations of the likelihood ratio may
be computed using clever parametrizations of neural network-based classifiers. A number of
different neural network setups can be defined to satisfy this procedure, each with varying
performance in approximating the likelihood ratio when using finite training data. We present
a series of empirical studies detailing the performance of several common loss functionals
and parametrizations of the classifier output in approximating the likelihood ratio of two
univariate and multivariate Gaussian distributions as well as simulated high-energy particle
physics datasets.

Keywords: Jets and Jet Substructure, Parton Distributions

ArXiv ePrint: 2305.10500

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)136

https://orcid.org/0009-0008-6964-365X
https://orcid.org/0000-0001-9208-3218
https://orcid.org/0000-0003-1024-0932
mailto:shahzar@berkeley.edu
mailto:mpettee@lbl.gov
mailto:bpnachman@lbl.gov
https://arxiv.org/abs/2305.10500
https://doi.org/10.1007/JHEP02(2024)136

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Contents

1 Introduction 1

2 Learning likelihood ratios 3

3 Univariate Gaussians 4
3.1 Naïve implementation 5

3.1.1 Motivation 5
3.1.2 Methods 5
3.1.3 Results 6
3.1.4 Discussion 6

3.2 Parametrizing f 7
3.3 Generalized loss families 9

3.3.1 Motivation 9
3.3.2 Methods 10
3.3.3 Results 11
3.3.4 Discussion 11

3.4 Optimized implementation 11
3.5 Simple classifiers 13

3.5.1 Motivation 13
3.5.2 Methods 14
3.5.3 Results 14
3.5.4 Discussion 14

4 Multivariate Gaussians 15
4.1 Parametrizing f 15

4.1.1 Motivation 15
4.1.2 Methods 16
4.1.3 Results 16
4.1.4 Discussion 16

4.2 Generalized loss families 17
4.2.1 Motivation 17
4.2.2 Methods 19
4.2.3 Results 19
4.2.4 Discussion 19

5 Physics data 20
5.1 Parametrizing f 20

5.1.1 Motivation 20
5.1.2 Methods 21
5.1.3 Results 21
5.1.4 Discussion 23

– i –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

5.2 Generalized loss families 23
5.2.1 Motivation 23
5.2.2 Methods 23
5.2.3 Results 23
5.2.4 Discussion 23

6 Conclusions 24

A Non-Gaussian distributions 26

B Multivariate Gaussians 31

C Comparison with BDTs 31

1 Introduction

Claiming a scientific discovery requires a hypothesis test, i.e. a statistical threshold for
claiming that one’s experimental data reject the null hypothesis in favor of an alternative
hypothesis. This might involve two probability densities:

• H0 (the null hypothesis)
• H1 (the alternative hypothesis)

By the Neyman-Pearson lemma [1], the strongest (“uniformly most powerful”) measure
of whether the experimental data x support H0 vs. H1 is a likelihood ratio test. These
tests are particularly widespread in reporting results in High-Energy Physics (HEP), but
are also commonly used for statistical analyses across astrophysics, biology, medicine, and
other scientific domains concerned with hypothesis testing or confidence intervals. The
need for likelihood ratios goes beyond hypothesis testing, too — they can also be used to
reweight a distribution to align with a target distribution, such as reweighting simulation
samples to match real data [2–9].

In the simplest form of a likelihood ratio test, where H0 and H1 are fully-defined by
parameters θ0 and θ1, the background-only hypothesis is either rejected (or not) depending
on the value of the ratio of likelihoods p(θ0 | x) under H0 and p(θ1 | x) under H1 in relation
to the desired significance level.

In practice, however, the probability densities H0 and H1 may not be explicitly known.
Worse, they might be nearly impossible to compute, such as in instances where they are
generated by a complex simulation model. In these cases, we can use machine learning
to directly approximate the likelihood ratio itself, bypassing the need to approximate the
individual probability densities.

A classifier function f(x) (for instance, from a neural network) designed to distinguish
data sampled from H0 (f(x) → 0) vs. H1 (f(x) → 1) can be used to approximate the
likelihood ratio by minimizing a proper loss functional (defined in section 2):

argmin
f

L[f] = p(x | θ0)
p(x | θ1) = L(x). (1.1)

– 1 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

For instance, in the familiar case of training a classifier by minimizing the binary cross-
entropy loss (see 1), the optimal decision function f(x) is:

f(x) = p(x | θ0)
p(x | θ0) + p(x | θ1) . (1.2)

We can then approximate the likelihood ratio with a monotonic transformation of the
neural network output f(x):1

f(x)
1 − f(x) =

p(x|θ0)
p(x|θ0)+p(x|θ1)

1 − p(x|θ0)
p(x|θ0)+p(x|θ1)

(1.3)

= p(x | θ0)
✘✘✘✘✘p(x | θ0) + p(x | θ1) −✘✘✘✘✘p(x | θ0) (1.4)

= p(x | θ0)
p(x | θ1) = L(x). (1.5)

This procedure, sometimes called the “likelihood ratio trick”, is well-known in statistics
(see e.g. [11–13]) and has been frequently used in particle physics [2, 6, 10, 14–26].

A number of different loss functionals beyond binary cross-entropy can be defined to
satisfy this setup, but in practice, not all such classifiers will perform equally well when
approximating the likelihood ratio. In this paper, we perform a series of empirical studies
to understand how different choices of loss functional and parametrization of the resulting
classifier affect the performance of likelihood ratio approximation for pairs of distributions.

Several recent works have investigated some improved configurations for the likelihood
ratio trick in certain scientific contexts. [27] introduces a new likelihood estimation procedure
as an extension of [14] using binary cross-entropy loss with SELU [28] activation. [29] notes
that for one- and two-dimensional toy simulations of particle physics datasets, the maximum
likelihood classifier (MLC) loss performed better than the binary cross-entropy loss when
estimating the likelihood ratio — the first application of MLC loss in particle physics. [10]
directly compares linear and exponential parameterizations of maximum likelihood classifier
loss with binary cross-entropy loss for one-dimensional Gaussians. [14] uses calibrated classifiers
to improve likelihood ratio estimation, and [18, 19] define several different approaches to
likelihood ratio estimation, including augmenting the likelihood ratio trick with score regression
(Rascal, Sally, etc.). [30] introduces modified versions of the cross-entropy loss that show
stronger performance under limited training dataset sizes than the typical cross-entropy loss,
while [31] compares the estimation of the likelihood ratio via mean square loss with ELU [32]
activation, cross-entropy loss with sigmoid activation, and a proposed exponential loss with no
activation function on univariate Gaussian distributions. Still other methods use normalizing
flows to determine the likelihood ratio by modeling the individual densities [33, 34] or to
obviate the need for the likelihood ratio approximation for reweighting distributions [35]. [36]
also proposes a novel l-POP-Exponential loss that performs better than some traditional
losses such as binary cross-entropy loss when estimating the log Bayes factor.

1This notation assumes balanced training sets for simplicity. With imbalanced classes, one would need to
modify the likelihood ratio to include prior factors p(θi), though the likelihood ratio trick will still apply [10].

– 2 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

In light of these existing studies, this work serves as a detailed comparison of a wide
range of configurations of loss functionals and output parametrizations across datasets
including one-dimensional Gaussians, multi-dimensional Gaussians, and simulated high-
energy particle physics datasets. We aim to highlight some best practices and serve as a
guide for approximating likelihood ratios with neural network classifiers in the wider scientific
community, and particularly within the domains of particle physics and astrophysics.

This paper is organized as follows. In section 2, we summarize the theoretical foundation
for learning likelihood ratios with neural network classifiers. In section 3, we present a series
of studies focused on optimizing likelihood ratio estimation for one-dimensional Gaussian
distributions where the true likelihood ratio is exactly known. In section 4, we extend these
studies to multi-dimensional Gaussian distributions. In section 5, we present some more
realistic examples using simulated high-energy physics data where the true likelihood ratio is
approximated using a Normalizing Flow model [33]. Finally, we summarize our conclusions
and recommendations for further studies in section 6.

2 Learning likelihood ratios

Let the parameters θ0 and θ1 define two distributions, p(x | θ0) and p(x | θ1), as described in
section II.A. of [10]. The goal is to determine or approximate the likelihood ratio

L(x) = p(x | θ0)
p(x | θ1) (2.1)

between the two distributions.
Consider the general loss functional that depends on a learnable function f : Rn → R

and rescaling functions A : R → R and B : R → R:

L[f] = −
∫

dx

(
p(x | θ0)A(f(x)) + p(x | θ1)B(f(x))

)
. (2.2)

We can take the functional derivative of the loss functional to show that the extremum can
be transformed to obtain the likelihood ratio:

δL

δf
= − ∂

∂f

(
p(x | θ0)A(f(x)) + p(x | θ1)B(f(x))

)
(2.3)

= −
(

p(x | θ0)A′(f(x)) · f ′(x) + p(x | θ0)B′(f(x)) · f ′(x)
)

(2.4)

= 0 ⇐⇒ −B′(f(x))
A′(f(x)) = p(x | θ0)

p(x | θ1) = L(x). (2.5)

Given that −B′(f)/A′(f) is a monotonic rescaling of f and L[f] is convex, the learned
function f is an optimal classifier.

In this paper, we first consider the four loss functionals defined by the rescaling functions
in table 1. While this is by no means an exhaustive list of all possible loss functionals, it
includes a diverse array of different loss configurations. As detailed in section 3.3, we also
consider generalized forms of two of these four loss functionals.

– 3 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Loss Name A(f) B(f)
Binary Cross-Entropy ln(f) ln(1 − f)
Mean Squared Error −(1 − f)2 −f2

Maximum Likelihood Classi-
fier ln(f) 1 − f

Square Root − 1√
f

−
√

f

Table 1. The rescaling functions A and B used to assemble the four different loss functionals
considered.

A neural network parametrizes the learned function f as ϕ(z), where z is the pre-activation
output of the network and ϕ is the final activation function. For the binary cross entropy
(BCE) and mean squared error (MSE) losses,

L(x) = −B′(f)
A′(f) = f

1 − f
, (2.6)

so the likelihood ratio is the odds ratio of the learned function. That is, minimizing the
BCE and MSE losses defines a classifier that computes

argmin
f

L[f] = p(x | θ0)
p(x | θ0) + p(x | θ1) ∈ (0, 1). (2.7)

To parametrize f such that the likelihood ratio is non-negative, we require that ϕ : R → (0, 1).
However, for the maximum likelihood classifier (MLC) and square root (SQR) losses,

L(x) = −B′(f)
A′(f) = f, (2.8)

so the likelihood ratio is the learned function, without transformation.

argmin
f

L[f] = p(x | θ0)
p(x | θ1) (2.9)

In this case the loss-minimizing classifier computes the likelihood ratio L(x) ∈ (0,∞). The
requirement on ϕ is that ϕ : R → (0,∞).

3 Univariate Gaussians

In our first case study, we consider two Gaussian distributions with slightly different means
and unit variances: X0 ∼ Normal(+0.1, 1) and X1 ∼ Normal(−0.1, 1). We also considered
univariate Beta and Gamma distributions — these results can be found in appendix A.

While one could in principle use Boosted Decision Trees (BDTs) instead of neural networks
for the classifiers, we found that neural networks outperformed BDTs across a variety of test
cases, as shown in appendix C. All of our classifiers are therefore implemented as neural
networks using Keras [37] with a TensorFlow [38] backend and Adam [39] optimizer. Each
classifier consists of three hidden layers with 64, 128, and 64 nodes, sequentially. Rectified

– 4 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Linear Unit (ReLU) activation functions are used for the intermediate layers, with the
activation for the output layer depending on the loss used to train the neural network and
the parametrization being tested. Each of the three hidden layers is followed by a dropout
layer with dropout probability of 10%.

Unless otherwise stated, the networks were trained with 1,000,000 samples (750,000 used
for training and 250,000 used for validation). 100,000 separate samples were used to evaluate
the networks’ performances (in particular, to calculate their mean absolute errors). Each
network was trained for up to 100 epochs with a batch size of 10%, as in [10]. If the validation
loss did not decrease for 10 consecutive epochs, the training was stopped (early stopping
with a patience of 10). No detailed hyperparameter optimization was done.

3.1 Naïve implementation

3.1.1 Motivation

The naïve parametrization for ϕ(z) in the case of the BCE and MSE losses is ϕ = σ, the
logistic function commonly used as the activation for classification tasks. In the case of the
MLC and SQR losses, the most common parametrization would be ϕ = ReLU, the rectified
linear unit activation. We chose these parametrizations for our naïve implementation.

To better understand how these common parametrizations of the classifiers affect their
ability to learn the likelihood ratio, we implemented neural network architecture with each
of the four losses, trained them to classify between the two Gaussian distributions. Since
the true likelihood ratio is known, we can compare how well each of the four classifiers
learns the likelihood ratio function.

3.1.2 Methods

We implemented each classifier using an identical neural network architecture, differing only
in the final activation, which acted as either the logistic (for the BCE and MSE classifiers) or
ReLU (for the MLC and SQR classifiers) parametrizations for the learned function.

We then trained each of the four classifier architecture on the dataset 100 times each,
using the classifier’s corresponding loss functional. Each classifier was evaluated on the
interval (−6, 6) and transformed into the likelihood ratio over that same interval using the
appropriate transformation from equations (2.6) and (2.8). We averaged the resulting 100
predictions for the likelihood ratio.

To numerically compare the performances of different classifiers in learning the likelihood
ratio, we computed their empirical mean absolute errors over 100,000 samples. For L̂ the
estimated likelihood ratio, the mean absolute error is defined as

MAE[L̂] = E
[∣∣L(X) − L̂(X)

∣∣] . (3.1)

We computed this for each classifier as an empirical average over the 100 different likelihood
ratio predictors to get a numerical measure of how well each predictor approximated the
likelihood ratio.

Next, we examined how varying the amount of data upon which the classifiers were
trained affected their performance. In particular, for each loss, we trained 100 classifiers
for each N ∈ {102, 103, 104, 105, 106, 107}. For each value of N , 0.75N observations were

– 5 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

1

2

3

4

L(
x

)

Näıve Implementation

Exact

BCE

MSE

MLC

SQR

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

Figure 1. Average likelihood ratio fits for the four different losses. The MAEs are 0.0083, 0.0081,
0.0150, and 0.0254, for the BCE, MSE, MLC, and SQR likelihood ratio models, respectively.

used for training and 0.25N observations were used for validation. The value of N = 106

corresponds to our default sample size. As before, 100,000 samples were used to estimate
the MAE for each value of N .

3.1.3 Results

Figure 1 displays the likelihood ratio fits averaged over 100 models for each of the four
classifiers, compared against the true likelihood ratio. The largest deviations here are in
regions far outside the bulk of the training data, where the models will largely be extrapolating.
We are primarily concerned with evaluating the likelihood ratio approximation where the
data has good coverage: approximately x ∈ [−3, 3].

In figure 2, we show how the expected error for classifiers trained with each choice of
loss functional decreases as the sample size increases.

3.1.4 Discussion

The four losses result in similarly performing fits near x = 0; however, the MLC and SQR
losses rapidly diverge from the true likelihood ratio in regions for which there is little data
coverage. By comparison, the BCE and MSE perform much better, staying within 3% of the
true likelihood ratio even in regions far outside the bulk of the data (|x| > 4).

The performance of these classifiers varies with the size of the training dataset N . For
relatively small training sample sizes (N < 1000), the scale of the mean absolute error is
dominated by the inductive bias present in each activation function: BCE and MSE losses
(both using σ(z) activation) are nearly identical in the magnitude of their MAE, while MLC
and SQR losses (both using ReLU(z) activation) are similarly clustered. As N increases,
the MLC and SQR classifier performances approach those of the BCE and MSE classifiers.
However, even for values of N larger than 105, the SQR classifier’s MAE remains at least
0.015 above the average performance of the BCE/MSE classifiers.

– 6 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

102 103 104 105 106 107

N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
A

b
so

lu
te

E
rr

or

Näıve Implementation

BCE

MSE

MLC

SQR

Figure 2. Mean absolute errors computed for the four different losses trained with increasingly larger
sample sizes N .

3.2 Parametrizing f

The parametrization of the learned function can be adjusted. In the naïve implementation,
the BCE and MSE neural networks use a logistic activation function, while the MLC and
SQR neural networks use a ReLU activation function.

Let z(x) be the function that the neural network represents. Then f = ϕ(z) is our
classifier, where ϕ is some parametrization of the learned function. In the cases described
before, we have either f = σ(z) (for BCE and MSE) or f = ReLU(z) (for MLC and SQR).

However, for BCE and MSE, any function ϕ : R → (0, 1) will suffice. Two readily available
such functions are the Gaussian CDF and arctangent, adjusted to the appropriate range:

f(z) = Φ(z) =
∫ z

0

1√
2π

e−
1
2 x2 dx, (3.2)

f(z) = 1
π

(
arctan z + π

2

)
. (3.3)

In figure 3, we show the likelihood ratio fits, averaged over 100 models, for the logistic,
Gaussian CDF, and arctangent parametrizations of the BCE and MSE classifiers. In both
cases, the default logistic parametrization performs the best, followed closely by the Gaussian
CDF and arctangent parametrizations. This result is not surprising, as the logistic function
is known to be well-suited for classification.

For the MLC and SQR losses, we instead require any function ϕ : R → (0,∞). While
the ReLU function is the default, there are other functions with such ranges, including:

f(z) = z2, (3.4)
f(z) = exp z. (3.5)

– 7 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0

1

2

3

4

L(
x

)
BCE Classifier Parametrizations

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

1

2

3

4

L(
x

)

MSE Classifier Parametrizations

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 3. Parametrizations of f for the BCE and MSE losses. (a) The average likelihood ratio fits of
the logistic, Gaussian CDF, and arctangent parametrizations for the BCE loss, with mean absolute
errors 0.0081, 0.0113, and 0.0089, respectively. (b) The average likelihood ratio fits of the logistic,
Gaussian CDF, and arctangent parametrizations for the MSE loss, with mean absolute errors 0.0081,
0.0110, and 0.0010, respectively.

0

1

2

3

4

L(
x

)

MLC Classifier Parametrizations

Exact

ReLU(z)

z2

exp z

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

1

2

3

4

L(
x

)

SQR Classifier Parametrizations

Exact

ReLU(z)

z2

exp z

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 4. Parametrizations of f for the MLC and SQR losses. (a) The average likelihood ratio fits
of the ReLU, square, and exponential parametrizations for the MLC loss, with mean absolute errors
0.0148, 0.0684, and 0.0083, respectively. (b) The average likelihood ratio fits of the ReLU, square,
and exponential parametrizations for the SQR loss, with mean absolute errors 0.0367, 0.6756, and
0.0075, respectively.

– 8 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

p

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
ea

n
A

b
so

lu
te

E
rr

o
r

p-MSE Losses

σ(z)

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

r

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
ea

n
A

b
so

lu
te

E
rr

o
r

r-SQR Losses

exp z

(b)

Figure 5. (a) The mean absolute errors averaged over models trained on the generalized MSE loss
family for the logistic parametrization. The mean absolute error is minimized at p∗ = 1.08, but we
choose the second-lowest value (p∗ = 1.24) for stability, i.e. avoiding the steep increase in MAE near
p = 1. The arrow indicates the typical choice of p = 2 for MSE loss. (b) The mean absolute errors
averaged over models trained on the generalized SQR loss family for the exponential parametrization.
The mean absolute error was smallest at r∗ = 0.018. The arrow indicates the typical choice of r = 1
for SQR loss.

Figure 4 displays the results of comparing the performances of the MLC and SQR losses
in training classifiers with these parametrizations. The performances of the three parametriza-
tions between the two losses are the same: in this case, the exponential parametrization
performs remarkably better than the ReLU parametrization, and square parametrization
performs the worst amongst all three. It is worth noting that exponentially parametrizing
the neural network is identical to training a neural network to learn the log likelihood ratio.

3.3 Generalized loss families

3.3.1 Motivation

The MSE and SQR loss functionals are easily generalizable to a parametric family of loss
functionals. While there are several possible parametrizations2 to choose from, we select the
following for simplicity: for the MSE loss, we consider a power parameter p ∈ R, where p = 2
is the default value, and for the SQR loss, we consider a root parameter r ∈ R, where r = 1
is the default value. This yields the two families of losses presented in table 2.

Since the rescaling functions A and B have changed, the likelihood ratio recovered
from f changes as well.

2For example, to enforce non-singular behavior at r = 0 for SQR, one could consider A(f) = (1 − f− r
2)/|r|

and B(f) = (1−f
r
2)/|r|. Another interesting parametrization is A(f) = (fq−1)/q and B(f) = 1−f (q+1)/(q+1),

which is minimized at q = 1.

– 9 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Loss Name A(f) B(f)

p-MSE −(1 − f)p −fp

r-SQR −f− r
2 −f

r
2

Table 2. The generalization of the MSE and SQR loss functionals to entire families of losses. Values
of p = 2 and r = 1 correspond to the original definitions of the loss functionals.

For the p-MSE losses, for p /∈ (0, 1),

L(x) = −B′(f)
A′(f) = − −pfp−1 · f ′

p(1 − f)p−1 · f ′ (3.6)

=
(

f

1 − f

)p−1
. (3.7)

We exclude the case where p ∈ (0, 1) since the corresponding loss functional is not convex,
and as such the likelihood ratio trick no longer works.

And for the r-SQR losses, for r ̸= 0,

L(x) = −B′(f)
A′(f) = −

− r
2f

r
2−1 · f ′

r
2f− r

2−1 · f ′
(3.8)

= f r. (3.9)

The case where r = 0 is excluded since the corresponding loss functional is not strictly con-
vex.

A whole family of losses arises from both of the two original losses, each loss still
maintaining the property that the function that minimizes the corresponding functional can
recover the likelihood ratio. In addition to comparing how the four original losses performed
against one another, we can compare among the losses in each of these two loss families.

3.3.2 Methods

Since we were working over an uncountably infinite set of loss functionals, we decided to
constrain our investigation to just the interval [−2, 2]. We scanned along the interval [−2, 2];
for each value p which we looked at, we trained 20 logistically-parametrized models on the
p-MSE loss functional corresponding to that value of p. Then we averaged the mean absolute
errors of the 20 models together.

We did the same for values of r in the interval [−2, 2] as well; in that case, the models
were parametrized with the exponential activation function instead.

We expect that near p∗ = 1 and r∗ = 0, where the generalized loss functionals will
resemble the MAE loss, the figure-of-merit of MAE will likely be minimized, too. Due to
this intrinsic relationship between the choice of loss functional and figure-of-merit, we also
considered two additional figures-of-merit for evaluating these scans: the Mean Ratio and

– 10 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

the Null Statistic, defined as:

Mean Ratio[L̂] = E
[
L̂(X)/L(X)

]
(3.10)

Null Statistic[L̂] =
∣∣∣E0[L(X)] − E0[L̂(X)]

∣∣∣ (3.11)

We found that the overall trends reported here using MAE were similar across these alternative
figures-of-merit, though the trends were less dramatic when we used the Mean Ratio figure-
of-merit.

3.3.3 Results

In figure 5, we show the performance of the classifiers trained by these losses when modifying
their power and root parameters. The values p∗ and r∗ minimizing the MAE were p∗ =
1.08, 1.24 (with p∗ = 1.24 having a similar performance to that of p∗ = 1.08 while being
more numerically stable) and r∗ = 0.018.

3.3.4 Discussion

In 5(a), we observe vertical features for p ∈ (0, 1). This is to be expected, as the likelihood
ratio trick does not apply in the range where the corresponding loss functional is non-convex.
Similarly, the vertical feature in 5(b) is due to the fact that for r = 0, our loss functional
is constant (L[f] = 1), and thus it is not strictly convex; therefore the likelihood ratio
again does not work.

Values of p slightly less than 0 or slightly greater than 1 resulted in the smallest mean
absolute errors, while values of r close to 0 resulted in the smallest mean absolute errors.

This result was further investigated in section 3.5 in a simple, two-dimensional clas-
sifier model.

3.4 Optimized implementation

Altering the parametrization of the learned function f or using a more generalized loss
functional yielded considerable increases in performance from the initial parametrizations
and loss functionals.

In figures 6 and 7, we chose the best-performing parametrization for each loss (logistic for
BCE and MSE; exponential for MLC and SQR), and, for the MSE and SQR, chose the best-
performing loss functional from each loss family (p∗ = 1.24 for MSE and r∗ = 0.018 for SQR),
and trained classifiers with each “optimized” parametrization and loss. This was done 100
times for each parametrization/loss, and the resulting likelihood ratio models were averaged.

In the naïve implementation, the BCE and MSE models performed the best, while
the SQR model had an average error at least 0.015 larger than the other losses, even for
large N . In the optimized implementation with N = 106, all four loss functionals perform
approximately the same, as shown in figure 6. Figure 7 shows that for N > 105, the four
optimized loss functionals continue to perform approximately equally well, but the new loss
functionals p∗-MSE and r∗-SQR perform significantly better, reaching mean absolute errors
about 2 to 4 times smaller than the other losses. The strong influence of the inductive bias
of the activation function is also mitigated in the optimized implementation, as the losses
are no longer grouped by activation function.

– 11 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0

1

2

3

4

L(
x

)

Optimized Implementation

Exact

BCE

MSE

MLC

SQR

p∗-MSE

r∗-SQR

−6 −4 −2 0 2 4 6

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

Figure 6. Average likelihood ratio fits for the different loss categories. The MAEs are 0.0079, 0.0045,
0.0077, 0.0034, 0.0046, and 0.0034, for the BCE, MSE, MLC, SQR, p∗-MSE, and r∗-SQR likelihood
ratio models, respectively.

102 103 104 105 106 107

N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
A

b
so

lu
te

E
rr

or

Optimized Implementation

BCE

MSE

MLC

SQR

p∗-MSE

r∗-SQR

Figure 7. Mean absolute errors computed for the different loss categories trained with increasingly
larger samples.

– 12 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−1.0

−0.5

0.0

0.5

1.0

bL[f]

r = 0.1 r = 0.25 r = 0.5 r = 1

1.98

2.06

2.14

2.22

−1.0 −0.5 0.0 0.5 1.0
a

−1.0

−0.5

0.0

0.5

1.0

bMAE[f]

−1.0 −0.5 0.0 0.5 1.0
a

−1.0 −0.5 0.0 0.5 1.0
a

−1.0 −0.5 0.0 0.5 1.0
a

0.00

0.42

0.84

Figure 8. Contour plots of the losses and MAEs of the two-dimensional SQR classifier f(x) =
exp (ax + b) over [−1, 1]2. The first row plots the value of the loss functional L[f], obtained through
numerical integration, on a grid of (a, b) pairs over [−1, 1]2 for various values of r, with contours
curves at increments of 0.02. The second row plots an empirically computed absolute error, MAE[f],
over the same grid of points, for the same values of r, with contour curves at increments of 0.05.

3.5 Simple classifiers

3.5.1 Motivation

To better understand the behavior of the generalized loss models in section 3.3, we examined
a much simpler classifier than the multi-layer fully-connected network used to train the
models in this paper. This allows us to visualize the dynamics of each model, using numerical
integration to compute the loss. The model is

f(x) = ϕ(ax + b), (3.12)

where a and b are the two weights of the model and ϕ is its activation.
In the case of the p-MSE model with the logistic parametrization,

fMSE(x) = σ(ax + b) (3.13)

L̂MSE(x) =
(

σ(ax + b)
1 − σ(ax + b)

)p−1
=
(
eax+b

)p−1
. (3.14)

The exponentially-parametrized r-SQR model is

fSQR(x) = eax+b

L̂SQR(x) =
(
eax+b

)r
.

As a result, only the analysis of one of the two models is necessary, since the resulting
likelihood ratio model is the same for r = p − 1. In particular, we will analyze the r-SQR
model, keeping in mind that for the model MAEs, the results will be identical for p = r + 1.

– 13 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

We continue working with X0 ∼ Normal(+0.1, 1) and X1 ∼ Normal(−0.1, 1). The exact
likelihood ratio is given by

L(x) = e0.2x, (3.15)

so the two-dimensional classifier will yield an exact solution at

a∗ = 0.2
r

, b∗ = 0. (3.16)

3.5.2 Methods

To better understand how the parameter r affects the optimization landscape, we first created
a grid with fineness 0.005 of (a, b) pairs in the box [−1, 1]2:

B = 1
200Z

2 ∩ [−1, 1]2. (3.17)

The loss functional for a particular value of r, Lr is given by

Lr[f] =
∫

dx

(
p(x | θA)f(x)−

r
2 + p(x | θB)f(x)

r
2

)
(3.18)

Then, we visualized the loss landscape as the contour plot of Lr over the set of classifiers
F = {(eax+b)r : (a, b) ∈ [−1, 1]2} for different values of r. The loss functional Lr was
computed via numerical integration.

3.5.3 Results

Figure 8 displays in the first row the resulting contour plots for r ∈ {0.1, 0.25, 0.5, 1}. Drawn
over each plot, in white, are level sets of the loss at increments of 0.02.

3.5.4 Discussion

While the actual values of the losses are not comparable between different values of r, since
each value of r corresponds to a different loss functional, it is clear that the loss functional
becomes increasingly steep as r increases. As expected, as r → ∞, a∗ → 0, and as r → 0,
a∗ → ∞. In particular, the loss landscape of r = 0.1 is shaped like an extremely shallow
pool, indicating that there is a large space of classifiers with close to optimal performance.
The minimum value a∗ = 2 is not visible in the box, since small values of r correspond to
large values of a∗. On the other hand, the loss landscape of r = 1 is much steeper, with a
minimum at a∗ = 0.2 around which the landscape quickly increases to high loss values.

However, since loss values between values of r are incomparable, it is unclear how the
loss reflects the actual performance of the likelihood ratio model. In particular, given two
classifiers f and g with Lr[f] < Ls[g], r ̸= s, we cannot be sure that f will yield a better
likelihood ratio model than g, since Lr and Ls are different loss functionals.

To this end, we visualized the error landscape as the contour plot of MAE over the
same set of classifiers F = {(eax+b)r : (a, b) ∈ [−1, 1]2}. Since the MAE is computed only
from the expected absolute difference between a predicted likelihood ratio L̂ and the true
likelihood ratio L, we can compare across different values of r to see which values of r result
in easily obtainable well-performing classifiers.

– 14 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

The second row of figure 8 displays these error contour plots; indicated in white are
the level sets of the error at increments of 0.05. For each of these, we can see that the
error is zero at (a∗, 0) and increases radially outwards from the minimum. The shape of
the loss landscapes reflect the true nature of the performance of the classifiers; for r = 0.1,
we still have a shallow pool of many well-performing classifiers, whereas for r = 1, there
is a small set of well-performing classifiers around which the classifiers begin to perform
much worse. That is to say, for small values of r, there are many classifiers that perform
well at modeling the likelihood ratio. It may be harder to find the true minimum, but most
classifiers have comparable performance. On the other hand, for large values of r, the loss
landscape is steep with few classifiers with decent performance. Slight perturbations around
the minimum correspond to large errors.

4 Multivariate Gaussians

4.1 Parametrizing f

4.1.1 Motivation

A natural extension from the univariate Gaussians analysis in the previous section would be to
multivariate Gaussians, wherein the setting is complicated by the higher dimensions, but we
still have knowledge of the true likelihood ratio. To this end, we first established five different
case studies of different Gaussian arrangements to examine in our multivariate analysis.

The first case study, labeled “Vertical,” corresponds to independent Gaussians with
variance 1, and means at a distance of 0.2, as in the univariate case.

In this case, the background distribution is more likely over the right half-plane, whereas
the signal distribution is more likely over the left half-plane.

X0 ∼ Normal
([

+0.1
0

]
,

[
1 0
0 1

])
(4.1)

X1 ∼ Normal
([

−0.1
0

]
,

[
1 0
0 1

])
(4.2)

The next case study, “Slant,” simply rotates the vertical case study by 45◦. This results
in the same likelihood ratio as the vertical case, except rotated by 45◦.

X0 ∼ Normal

+ 0.1√

2

− 0.1√
2

 ,

[
1 0
0 1

] (4.3)

X1 ∼ Normal

− 0.1√

2

+ 0.1√
2

 ,

[
1 0
0 1

] (4.4)

In “Circle,” we consider the case where the background distribution has low variance in
comparison to the signal distribution. As a result, values close to the origin are more likely

– 15 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

to be from the background, whereas values far from the origin are more likely to be from
the signal. This likelihood structure is visualized in figure 9.

X0 ∼ Normal
([

+0.1
0

]
,

[
1 0
0 1

])
(4.5)

X1 ∼ Normal
([

−0.1
0

]
,

[
2 0
0 2

])
(4.6)

The “Hyperbola” case study looks at the case when both the background and the
signal have different variances in each coordinate. This results in a hyperbola-like likelihood
structure, as visualized in figure 9.

X0 ∼ Normal
([

+0.1
0

]
,

[
1 0
0 2

])
(4.7)

X1 ∼ Normal
([

−0.1
0

]
,

[
2 0
0 1

])
(4.8)

Finally, “Checker” looks at the case where the coordinates for the background are
correlated and the coordinates for the signal are correlated.

X0 ∼ Normal
([

+0.1
0

]
,

[
2 −1

4
−1

4 1

])
(4.9)

X1 ∼ Normal
([

−0.1
0

]
,

[
2 +1

4
+1

4 1

])
(4.10)

4.1.2 Methods

The methodology was similar to that done in section 3. For each case study, we implemented
all four classifiers with each of the three parametrizations. Each resulting classifier architecture
was trained 100 times to minimize the corresponding loss functional. We evaluated each
classifier on the box [−2, 2]2, and we averaged the resulting 100 predictions for the likelihood
ratio over that box. We used the MAE as the performance metric, again as an empirical
average over 100,000 samples.

4.1.3 Results

The resulting MAEs are shown in figure 10. Some contour plots of the mean absolute errors
of some of the different parametrizations are presented in figure 9; the remaining contour
plots are provided in appendix B.

4.1.4 Discussion

In the univariate case, we found that the logistic and exponential parametrizations were
uniformly the best parametrizations for the BCE/MSE and MLC/SQR losses, respectively.
This trend is largely consistent with the results for these higher-dimensional cases. In all
but one of the cases (Hyperbola), the logistic parametrization performed the best for the
BCE/MSE losses. The exponential parametrization performed the best for all the cases
for the MLC/SQR losses.

– 16 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Figure 9. Two of the five multivariate Gaussian cases we examined, as well as some of the likelihood
ratio model fits. The first row corresponds to the circle case, while the second row corresponds to the
hyperbola case. The first column plots the likelihood structure of each case; red regions are regions
where L(x) ≤ 1, and blue regions are regions where L(x) > 1. The second and third columns display
contour plots of the mean absolute error for some models trained with the various losses to learn the
likelihood ratios. The plot is suggestively colored to show how the structure of the data corresponds
to the structure in the likelihood ratio models.

Unlike in section 3, once the optimal parametrizations are chosen for each of the four
loss functionals, some differences persist in the performance of each loss. Across all five cases,
the SQR loss yields the largest errors. For the Vertical and Slant cases, all four optimized
loss functionals perform equally well, overlapping within one standard deviation. For the
remaining cases (Checker, Circle, and Hyperbola), the optimized MLC loss with exponential
parametrization performs significantly better than the other three optimized losses.

It is striking to note that the MLC loss with exponential parametrization emerges as
the best-performing loss configuration in some of the more complex datasets considered for
these studies. The typical choice for a neural network classifier loss is arguably BCE. For
the purposes of the likelihood ratio trick, however, we are interested in reinterpreting the
classifier output to approximate the likelihood ratio, so it is possible that optimizing for raw
classification performance alone is misguided. The MLC loss has the advantage of explicitly
relating the signal and background probability distributions; in particular, the MLC loss can
be intuitively understood to maximize the likelihood of L̂(x) with respect to p(x | θ0) subject
to the constraint that L̂(x)p(x | θ1) is a probability distribution [10]. Therefore, it may be a
more natural choice for this particular application than the default BCE loss.

4.2 Generalized loss families

4.2.1 Motivation

By treating the square in the MSE loss and the root in the SQR loss as parameters p and r,
respectively, we were able to generalize those loss functional to entire continuous parametric
families of losses. We saw in the univariate case that we can optimize over p and r, and

– 17 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Vertical Slant Circle Checker
0.00

0.01

0.02

0.03

0.04

0.05

M
A

E
(1

0
0

T
ri

a
ls

)

σ

Φ(z)
1
π

(arctan(z) + π
2

)

Hyperbola
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Binary Cross-Entropy

Vertical Slant Circle Checker
0.00

0.05

0.10

0.15

0.20

0.25

M
A

E
(1

00
T

ri
al

s)

ReLU(z)

z2

exp(z)

Hyperbola
0.0

0.2

0.4

0.6

0.8

Maximum Likelihood Classifier

Vertical Slant Circle Checker
0.00

0.01

0.02

0.03

0.04

0.05

M
A

E
(1

0
0

T
ri

a
ls

)

σ

Φ(z)
1
π

(arctan(z) + π
2

)

Hyperbola
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean Squared Error

Vertical Slant Circle Checker
0.0

0.2

0.4

0.6

0.8

1.0

M
A

E
(1

00
T

ri
al

s)

ReLU(z)

z2

exp(z)

Hyperbola
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Square Root

Figure 10. Mean absolute errors are compared for the four different losses considered (binary
cross-entropy, mean squared error, maximum likelihood classifier, and square root), each with 3
different activation functions. For each loss, five different multivariate normal cases are studied:
“Vertical”, “Slant”, “Circle”, “Checker”, and “Hyperbola”. For each case study, the best performing
parametrization for each loss is shown in either red or blue. Errors represent the standard deviation
across 100 independent model trainings.

Vertical Slant Checker
0.00

0.01

0.02

0.03

0.04

M
ea

n
Ab

so
lu

te
 E

rr
or

 (1
00

 T
ri

al
s)

BCE
MSE
p ∗ -MSE
MLC
SQR
r ∗ -SQR

Circle
0.00

0.02

0.04

0.06

Hyperbola
0.0

0.2

0.4

0.6

Figure 11. Mean absolute errors are compared for the four different losses considered (binary
cross-entropy, mean squared error, maximum likelihood classifier, and square root), each with their
respective optimal parametrizations. For each loss, five different multivariate normal cases are studied:
“Vertical”, “Slant”, “Circle”, “Checker”, and “Hyperbola”. Errors represent the standard deviation
across 100 independent model trainings.

– 18 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Case p∗ r∗

Vertical 1.12 0.018
Slant 1.16 0.018
Circle 1.28 −0.1
Hyperbola −0.44 −0.2
Checker 1.6 −0.1

Table 3. The optimal values for p∗ and r∗ for the five different multivariate Gaussian cases. Note
that in the univariate Gaussian case, the optimal values chosen were p∗ = 1.24 and r∗ = 0.018.

were even able to see, through examining the landscapes of the different loss functionals in a
simple case, what kinds of values of p and r will correspond to “better” loss functionals.

We now continue this investigation in the situation of multivariate Gaussians to get a
sense of how much the trend we observe continues into more complex situations.

4.2.2 Methods

We used the same methods as in section 3.3; in this case, however, we worked with the five
different multivariate Gaussians cases rather than the single univariate Gaussians case.

4.2.3 Results

In table 3, we list the optimal values p∗ and r∗ in each of the five cases. An overall comparison
of the four loss functionals with optimized parameterizations alongside p∗-MSE and r∗-SQR
losses is shown in figure 11. The plots of the MAE for the various values of p and r are
presented in appendix B.

4.2.4 Discussion

The simpler multivariate cases considered (Vertical, Slant) result in very similar values to
those found in the univariate Gaussian case: p∗ and r∗ are close to 1.24 and 0.018, respectively.

In the more complex multivariate cases (Circle, Hyperbola, and Checker), the optimal
values of p∗ are also between 1 and 2, with the expection of Hyperbola, for which p∗ = −0.44.
It’s possible that an equally-performing value of p larger than 2 could also exist, but our
studies did not scan far enough to probe the asymptotic behavior in that direction. The
optimal values r∗ are all negative. However, it is worth noting that the MAE landscapes
for the r-SQR are symmetric, and the corresponding MAEs for |r∗| are small, so the signs
of these values is likely due to random chance. For these cases, the optimal values of r∗

are less than 1, as in the univariate case, but very small values of r∗ (|r∗| < 0.01) are too
numerically unstable to consistently yield useful outputs.

Overall, as shown in figure 11, if one chooses only from the four loss functionals as defined
in table 1, but with optimized parametrizations, all four show equally good performance
for the simpler cases (Vertical, Slant), but the MLC loss is significantly better than the
other three choices in the more complex cases (Circle, Hyperbola, Checker). However, if
one chooses p∗ and r∗ by scanning along these generalized loss families, the improvements

– 19 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0.000

0.025

0.050

m
[G

eV
]

0

50

M

Monte Carlo

Data

Monte Carlo Flow

Data Flow

0.0

0.2

0.4

0.6

w

−10

−5

ln
ρ

0.0

0.5

1.0

τ
(β

=
1
)

2
1

0 50

m [GeV]

0

500

p
T

[G
eV

]

0 50

M

0.0 0.5

w

−10 −5

ln ρ

0 1

τ
(β=1)
21

0 500

pT [GeV]

Figure 12. A corner plot indicates the correlations of the six features. Blue and red contours
correspond to the particle-level and the detector-level data, respectively.

are immense: for all cases except Hyperbola, the optimized r∗-SQR MAE is between 30%
and 50% smaller than the optimized MLC MAE.

5 Physics data

5.1 Parametrizing f

5.1.1 Motivation

In our final case study, we extended our comparison of classifier parametrizations and loss
functionals to simulated high-energy particle physics datasets [40]. While there are a number
of observables present in the datasets, in our analysis we considered six observables in
total: the jet mass m, constituent multiplicity M , jet width w, the jet mass after Soft
Drop grooming ln ρ = ln (m2

SD/p2
T), the n-subjettiness ratio τ21 = τ

(β=1)
2 /τ

(β=1)
1 , and the

transverse momentum pT .
The datasets consist of particle-level and detector-level simulated QCD jets originating

from Z + jets events. Z + jets events from proton-proton collisions generated at
√

s = 14 TeV
were simulated using Herwig 7.1.5 [41–43] with the default tune and Pythia 8.243 [44–46]

– 20 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

tune 21 [47] (ATLAS A14 central tune with NNPDF2.3LO). We call the Pythia simulation
“Monte Carlo” and Herwig “data”. For the generated events, the pT of the Z boson is
required to be larger than 150 GeV. Events then are passed through the Delphes 3.4.2 fast
detector simulation [48] of the CMS detector. The datasets consist of the highest-momentum
jet from Z boson events with pT ≥ 200 GeV. This process ultimately yields about 1.6 million
jets for each simulation. Figure 12 displays histograms of each of the six observables for
both the “Monte Carlo” and the “data”.

In this more complex setting, we no longer have access to the true likelihood ratio,
as we do not know the underlying distributions generating these datasets. To allow for
a more complete comparison of the different parametrizations’ ability to model the “true”
likelihood ratio, we therefore fit Normalizing Flows [49] to each sample. These flows estimate
the generating distribution of the samples, and thus allow us to compute “true” likelihood
ratios for these datasets.

5.1.2 Methods

We first trained a Normalizing Flow [49] for each of the “Monte Carlo” and “data” simulated
samples. All flows were implemented in PyTorch [50] using the nflows package [51].
The flow networks consisted of five layers with a layer size of 8, and were trained for 107

epochs. Each layer consisted of a reverse permutation transform followed by a masked affine
autoregressive transform. The flows were optimized to maximize the log likelihood of the
data using the Adam [39] optimizer. For each of the 100 models with the lowest overall
loss, an additional classifier was trained to distinguish between events from the flow and the
simulated data. The model with the lowest classifier AUC was then selected as a proxy for
the underlying distributions of these datasets. New training and testing datasets were then
constructed by sampling 107 and 105 events, respectively, from the selected flows that fell
within the ranges of the relevant simulated observables.

The methodology following this point closely follows the methodology established in
section 3. We implemented all four classifiers with each of the three parametrizations on
the dataset, training 100 independent copies of each classifier architecture to minimize the
corresponding loss functional. We used the MAE as the performance metric, computed as in
equation (3.1). In particular, it was computed with the true likelihood ratio L(X) from the
flows and the model likelihood ratio L̂(X) averaged over the 100 copies of each classifier. As
before, the MAE was computed as an empirical average over 100,000 samples.

5.1.3 Results

The distributions of the “data” and “Monte Carlo” learned by the flows are plotted along
side the empirical distributions in figure 12. To quantify the quality of the flows’ learned
distributions, we trained classifiers to try to distinguish between proxy datasets sampled
from the flows and the original datasets; for the “Monte Carlo”, the AUC was 0.5094, and
for the “data”, the AUC was 0.5100. These AUCs close to 0.5 indicate that the classifier
has difficulty distinguishing between these two distributions, and therefore that the flows
have performed reasonably well at reflecting the target distributions.

– 21 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

BCE MSE
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s) σ(z)

Φ(z)
1
π

(arctan(z) + π
2

)

MLC SQR
0.0

0.2

0.4

0.6

0.8

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s) ReLU(z)

z2

exp(z)

(a) Comparing Parametrizations.

Physics Simulation
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s)

BCE

MSE

p∗-MSE

MLC

SQR

r∗-SQR

(b) Comparing Optimized Losses.

Figure 13. The MAEs are compared for the Pythia/Herwig + Delphes particle physics jet
datasets [40] for the four different losses considered. Errors represent the standard deviation across
100 independent model trainings. In (a), each loss is shown with 3 different parametrizations. In
(b), the best-performing parametrization is chosen for each loss, and these optimized losses are then
directly compared.

−2 −1 0 1 2 3

p

0.468

0.470

0.472

0.474

0.476

0.478

0.480

M
ea

n
A

b
so

lu
te

E
rr

or
(2

0
tr

ia
ls

)

p-MSE Losses (Physics)

−2 −1 0 1 2

r

0.468

0.470

0.472

0.474

0.476

0.478

0.480

M
ea

n
A

b
so

lu
te

E
rr

or
(2

0
T

ri
al

s)

r-SQR Losses (Physics)

exp z

Figure 14. (a) The mean absolute errors averaged over logistically-parametrized models trained
with the generalized MSE loss family. The mean absolute error is minimized at p∗ = 1.64. The
arrow indicates the typical choice of p = 2 for the standard MSE loss. (b) The mean absolute errors
averaged over exponentially-parametrized models trained with the generalized SQR loss family. The
mean absolute error was smallest at r∗ = 1.1. The arrow indicates the typical choice of r = 1 for the
standard SQR loss.

– 22 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

5.1.4 Discussion

The observed trend in the Gaussian studies that the logistical and exponential parametrizations
were the best for the BCE/MSE and MLC/SQR losses, respectively, also holds in the physics
case, as shown in figure 13. Of the four optimized loss functionals, the MLC loss with
exponential parametrization performs better than the other three loss configurations.

5.2 Generalized loss families

5.2.1 Motivation

In the previous studies with univariate and multivariate Gaussians, we found that the
performances of likelihood ratio models trained with losses from the generalized families
of p-MSE and r-SQR losses followed a similar structure across various cases. In order to
examine the robustness of this observed structure, we repeated the same study with the
high energy particle physics dataset.

5.2.2 Methods

The methodology for this study was similar to that of the previous studies. We scanned over
values of p and r in the intervals [−2, 3] and [−2, 2]. For each increment of p, we trained
20 models with the p-MSE loss functional defined by that value of p and averaged together
their mean absolute errors. Likewise, for each increment of r, we trained 20 models with the
r-MSE loss functional defined by that value of r and averaged together their mean absolute
errors. We parametrized the p-MSE classifiers with logistic activation functions and the
r-SQR classifiers with exponential activation functions. All models were trained on the same
set of one million samples from the flows fit to the distributions of the physics data.

5.2.3 Results

The plots of the MAEs of the likelihood ratio models for the loss functionals are provided
in figure 14. As before, we observe vertical features in the plots when the loss functional
is no longer strictly convex (p ∈ (0, 1) and r = 0). The MAE was minimized at p∗ = 1.64
and r∗ = 1.1. A comparison of the p∗-MSE and r∗-SQR losses with these chosen values
alongsize the other four losses with optimized parametrizations is shown in figure 13 and
summarized in table 4.

5.2.4 Discussion

The shape of the p and r scans looks approximately similar to those observed in the previous
case studies (e.g. figure 5); however, since the MAE landscape is flat away from the non-
convex regions (p ∈ (0, 1) for p-MSE and r = 0 for r-SQR), the best choices p∗ = 1.64
and r∗ = 1.1 perform about the same as the unoptimized choices of p = 2 and r = 1.
In this particular case, the evidence does not suggest that changing p∗ or r∗ from their
default values of 2 and 1, respectively, would yield a significant benefit in reducing the mean
absolute error. It is possible that better values exist beyond the ranges of r, p considered
here. Overall, as shown in figure 13 and table 4, the best-performing loss is MLC with
exponential parameterization. Pairing the MLC loss with a suboptimal activation function,
however, introduces additional penalties for the MAE compared with the optimal choice
of ez: +8% for ReLU(z) and +20% for z2.

– 23 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

Loss σ(z) Error Φ(z) Error tan−1(z) Error
BCE 0.4291 0.0002 0.4300 0.0003 0.4294 0.0002
MSE 0.4294 0.0002 0.4297 0.0003 0.4297 0.0002
p∗-
MSE 0.4309 0.0002 — — — —

Loss ReLU(z) Error z2 Error ez Error
MLC 0.4656 0.0006 0.5351 0.0153 0.4287 0.0002
SQR 0.5086 0.0082 0.8896 0.0262 0.4294 0.0002
r∗-
SQR — — — — 0.4291 0.0002

Table 4. Mean absolute errors are computed for various loss functional configurations in the
classification of two simulated high-energy physics datasets. 100 independent and identical classifiers
were trained for each configuration to calculate the uncertainties. Errors represent one standard
deviation. The activation functions in the first column represent the typical choices for each loss
functional.

6 Conclusions

The likelihood ratio L(x) = p(x|θ0)
p(x|θ1) is a statistical quantity essential for characterizing whether

an experimental dataset x better supports one of two hypotheses defined by sets of parameters
θ0 and θ1. It is used beyond hypothesis testing, too, for applications such as reweighting
high-dimensional distributions for background estimation and more. In contexts where
calculating the likelihood ratio is impossible or very tedious, researchers can use the “likehood
ratio trick”, leveraging a neural network classifier to approximate the likelihood ratio.

Often, the likelihood ratio trick is implemented by minimizing a typical choice of loss
functional for a classifier: the binary cross-entropy loss. However, many loss functionals
satisfy the likelihood ratio trick setup.

In this paper, we presented detailed studies comparing four choices of loss functionals:
binary cross-entropy (BCE), mean squared error (MSE), maximum likelihood classifier (MLC),
and square root (SQR). For each of these four loss functionals, we also explored a suite of
choices of final activation functions for parametrizing the neural network output. For the
MSE and SQR losses, we performed a scan along the exponential parameter (replacing 2 → p

for MSE and replacing 1
2 → r

2 for SQR) to understand the behavior of these generalized
families of loss functionals.

As a result of these studies, we present the following recommendations for optimized
implementations of each of these loss functionals in the likelihood ratio trick:

Loss Activation

Binary Cross-Entropy (BCE) σ(z)

Mean Squared Error (MSE) σ(z)

Maximum Likelihood Classifier (MLC) exp(z)

Square Root (SQR) exp(z)

– 24 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

For MLC and SQR losses, we find that choosing small, nonzero values of r (and,
correspondingly, p = r + 1) tend to result in smaller mean absolute errors than the default
choices (r = 1 and p = 2) for these loss functionals. As we illustrate by mapping the
loss landscape of a simple neural network, this is because smaller values of r can yield
shallower loss landscapes where many values are nearly optimal, while larger values of r

have steeper landscapes for models to traverse, with a much smaller proportion of the phase
space corresponding to optimum values of the loss.

The loss landscape will vary with each new application, so we recommend that future
researchers perform a scan along p or r to find an optimum value as part of hyperparameter
optimization. If a scan over p or r is not feasible, we recommend comparing the default
selections (i.e. p = 2 and r = 1) with our alternative recommendations derived from the
average optimum values across our various trials p∗ = 1.25 and r∗ = 0.1, or:

LMSE∗ [f] = −
∫

dx

(
(1 − f)1.25p(x | θ0) + f1.25p(x | θ1)

)
LSQR∗ [f] = −

∫
dx

(
f−0.05p(x | θ0) + f0.05p(x | θ1)

)
.

Across the majority of the various datasets we considered, these choices tend to have
significantly smaller mean absolute errors than the default selections while maintaining good
numerical stability across multiple trainings. An interesting future investigation would be to
consider how to dynamically optimize p and r as learned parameters during training.

When tested on univariate Gaussians and simple multivariate Gaussians (Vertical and
Slant cases), all four loss implementations with optimized parametrizations perform similarly
when approximating the desired likelihood ratio. For larger datasets (N > 105), choosing
different exponents in the definitions of MSE and SQR loss functionals results in an additional
≥ 50% reduction in errors for these cases.

On more complex datasets, including multidimensional Gaussians (Checker, Hyperbola,
Circle) as well as simulated high-energy physics data, the Maximum Likelihood Classifier
(MLC) loss with exponential parametrization performs the best out of the four default losses
considered. Compared with this choice, other combinations of loss functionals and activation
functions saw increased MAE values of between 0.5% and 82%. Choosing different exponents
in the definitions of MSE and SQR loss functionals additionally results in between 30%
and 50% smaller errors for the Checker and Circle cases. For the Hyperbola and simulated
high-energy physics case, choosing alternate p∗ and r∗ values in the range [−2, 3] does not
yield a significant performance improvement, though it is possible that better values could
exist outside of this range. Overall, the results are clear that the choice of loss functional
and activation function is one that should be taken carefully, as there are potentially large
penalties for the MAE associated with a suboptimal selection.

While these configurations performed well in our chosen case studies, these results should
not be read as a guarantee that these choices will result in optimal performance for any
dataset. We therefore recommend that other researchers compare the results of several of the
optimized losses described in this work to yield the most effective setup for a given dataset.

There remain several open questions in this line of inquiry. For instance, can an analytical
analysis of these loss functionals explain some of the performance differences observed? How

– 25 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

much can we further characterize the uncountably many possible loss functionals that satisfy
this setup? How else can we generalize certain loss functionals? Further investigations could
include a more involved parametrization of the loss functionals, such as by splines, which
covers more loss functionals than the ones explored by the p and r scans here. Pursuing
these threads can help achieve even better scientific measurements enabled by machine
learning in the near future.

Code availability. A codebase with instructions on how to reproduce each of the plots in
this paper is located at https://github.com/shahzarrizvi/reweighting-schemes.

Acknowledgments

We are grateful to Jesse Thaler for very helpful feedback about figures-of-merit and ways to
generalize our loss functions. We thank Dag Gillberg for the suggestion to compare NNs with
BDTs and Vinicius Mikuni for the idea of using normalizing flows to model the LR of the
physics datasets. We thank Lindsey Gray for his idea of exploring the space of loss functionals
via parametrizations with splines. M.P. thanks Shirley Ho and the Flatiron Institute for their
hospitality while preparing this paper. S.R., M.P., and B.N. are supported by the Department
of Energy, Office of Science under contract number DE-AC02-05CH11231.

A Non-Gaussian distributions

As an extension to our studies on univariate Gaussians in section 3, we also examined two
non-Gaussian univariate distributions: Beta and Gamma distributions.

Our first case study considered two Gamma distributions with different shape parameters
and identical unit rates: X0 ∼ Gamma(6, 1) and X1 ∼ Gamma(5, 1). We conducted the same
parametrization study on them as in section 3.2. The resulting likelihood ratio approximations
are displayed in figure 15 and 16. Figure 18a) directly compares the performances of the
different parametrizations of each of the four loss functionals.

For the MSE and BCE loss functionals, the arctangent parametrization performed the
best, but only by a small amount; the next best for both was the logistic parametrization, with
an MAE less than 6% greater than the arctangent parametrization’s MAE. The performance
for the SQR loss aligned with previous observations: the square parametrization performed
worst, followed by the ReLU parametrization; and the exponential performed the best.
Interestingly, for the MLC loss, the ReLU parametrization performed noticeably better than
the exponential parametrization, with about a 40% reduction in MAE. This is likely due
to the fact that for Gamma-distributed data, the true likelihood ratio is a linear function:
L(x) = 1

5x; as a result, the better performance of the ReLU parametrization here for the
MLC loss is likely due to inductive bias.

In addition, we examined the performance of the generalized p-MSE And r-SQR losses
for learning the likelihood ratio of the Gamma distributions. The methodology was identical
to that of 3.3. Figure 17 plots the MAE averaged over 20 models for models trained with
values of p (for p-MSE) and r (for r-SQR) in the interval [−2, 2]. We found optimal values of

– 26 –

https://github.com/shahzarrizvi/reweighting-schemes

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0

2

4

6

8

10

L(
x

)

BCE Parametrizations (Gammas)

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

2

4

6

8

10

L(
x

)

MSE Parametrizations (Gammas)

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 15. Parametrizations of f for the BCE and MSE losses. (a) The average likelihood ratio fits
of the logistic, Gaussian CDF, and arctangent parametrizations for the BCE loss, with mean absolute
errors 0.0168, 0.0179, and 0.0162, respectively. (b) The average likelihood ratio fits of the logistic,
Gaussian CDF, and arctangent parametrizations for the MSE loss, with mean absolute errors 0.0170,
0.0196, and 0.0161, respectively.

0

2

4

6

8

10

L(
x

)

MLC Parametrizations (Gammas)

Exact

ReLU(z)

z2

exp z

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

2

4

6

8

10

L(
x

)

SQR Parametrizations (Gammas)

Exact

ReLU(z)

z2

exp z

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 16. Parametrizations of f for the MLC and SQR losses. (a) The average likelihood ratio fits
of the ReLU, square, and exponential parametrizations for the MLC loss, with mean absolute errors
0.0165, 0.126, and 0.0275, respectively. (b) The average likelihood ratio fits of the ReLU, square,
and exponential parametrizations for the SQR loss, with mean absolute errors 0.0343, 0.761, and
0.0285, respectively.

– 27 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

p

0.00

0.01

0.02

0.03

0.04

0.05

M
A

E
(2

0
tr

ia
ls

)
p-MSE (Gammas)

σ(z)

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

r

0.00

0.01

0.02

0.03

0.04

0.05

M
ea

n
A

b
so

lu
te

E
rr

or
(2

0
tr

ia
ls

)

r-SQR Losses (Gammas)

exp z

(b)

Figure 17. (a) The mean absolute errors averaged over models trained on the generalized MSE
loss family for the logistic parametrization with gamma-distributed data. The mean absolute error is
minimized at p∗ = 1.44. The arrow indicates the typical choice of p = 2 for MSE loss. (b) The mean
absolute errors averaged over models trained on the generalized SQR loss family for the exponential
parametrization with gamma-distributed data. The mean absolute error was smallest at r∗ = −0.046.
The arrow indicates the typical choice of r = 1 for SQR loss.

p∗ = 1.44 and r∗ = −0.046. These results align with our other observations that values of p

slightly above 1 and values of r close to 0 work well for attaining a good likelihood ratio fit.
Figure 18b) compares the best performing parametrization of the losses against each other:

the arctangent parametrizations for the BCE and MSE losses, the ReLU parametrization
for the MLC loss, and the exponential parametrization for the SQR loss. Also included are
the p∗-MSE and r∗-SQR losses. The overall best-performing loss is the MLC loss with the
ReLU parametrization, followed closely by the r∗-SQR loss.

Our final univariate case study considered two different Beta distributions: X0 ∼
Beta(3, 2) and X1 ∼ Beta(2, 3). We conducted the same parametrization study on them as in
section 3.2. The resulting parametrization fits are displayed in figure 19 and 20. Figure 22a)
compares the performances of the different parametrizations of each of the four loss functionals.

In this case study, the best performing classifier parametrization for the BCE and MSE
losses was the logistic parametrization, outperforming the other parametrizations by at least
13%. For both the MLC and SQR losses, the exponential parametrization performed the best.

We also examined the performance of the generalize p-MSE And r-SQR losses for learning
the likelihood ratio of our Beta distributions. The methodology was identical to that of 3.3.
Figure 21 plots the MAE averaged over 20 models for models trained with values of p (for
p-MSE) and r (for r-SQR) in the interval [−2, 2]. We found that p∗ = −0.2 and r∗ = 0.15.
The value of r∗ is consistent with our observation that values of r close to 0 work well. While
the value of p∗ does not align with the recommendation of values of p slightly above 1, it
is similar to the values of p∗ found for some of the more difficult cases we studied, such as
with the Hyperbola case study or with the simulated high-energy physics data.

– 28 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

BCE MSE
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s) σ(z)

Φ(z)
1
π

(arctan(z) + π
2

)

MLC SQR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s) ReLU(z)

z2

exp(z)

(a) Comparing Parametrizations.

Gamma Data
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s)

BCE

MSE

p∗-MSE

MLC

SQR

r∗-SQR

(b) Comparing Optimized Losses.

Figure 18. The MAEs are compared for gamma-distributed data for the four different losses
considered. Errors represent the standard deviation across 100 independent model trainings. In (a),
each loss is shown with 3 different parametrizations. In (b), the best-performing parametrization is
chosen for each loss, and these optimized losses are then directly compared.

0

2

4

6

8

10

L(
x

)

BCE Parametrizations (Betas)

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

2

4

6

8

10

L(
x

)

MSE Parametrizations (Betas)

Exact

σ(z)

Φ(z)
1
π

(
arctan z + π

2

)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 19. Parametrizations of f for the BCE and MSE losses. (a) The average likelihood ratio
fits of the logistic, Gaussian CDF, and arctangent parametrizations for the BCE loss, with mean
absolute errors 0.220, 0.250, and 0.257, respectively. (b) The average likelihood ratio fits of the logistic,
Gaussian CDF, and arctangent parametrizations for the MSE loss, with mean absolute errors 0.259,
0.285, and 0.302, respectively.

– 29 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0

2

4

6

8

10

L(
x

)
MLC Parametrizations (Betas)

Exact

ReLU(z)

z2

exp z

0.0 0.2 0.4 0.6 0.8 1.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(a)

0

2

4

6

8

10

L(
x

)

SQR Parametrizations (Betas)

Exact

ReLU(z)

z2

exp z

0.0 0.2 0.4 0.6 0.8 1.0

x

0.95

1.00

1.05

L̂(
x

)/
L(
x

)

(b)

Figure 20. Parametrizations of f for the MLC and SQR losses. (a) The average likelihood ratio
fits of the ReLU, square, and exponential parametrizations for the MLC loss, with mean absolute
errors 0.452, 0.466, and 0.257, respectively. (b) The average likelihood ratio fits of the ReLU, square,
and exponential parametrizations for the SQR loss, with mean absolute errors 0.674, 1.171, and
0.288, respectively.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

p

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E
(2

0
tr

ia
ls

)

p-MSE (Betas)

σ(z)

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

r

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E
(2

0
tr

ia
ls

)

r-SQR (Betas)

exp z

(b)

Figure 21. (a) The mean absolute errors averaged over models trained on the generalized MSE
loss family for the logistic parametrization with beta-distributed data. The mean absolute error is
minimized at p∗ = −0.2. The arrow indicates the typical choice of p = 2 for MSE loss. (b) The mean
absolute errors averaged over models trained on the generalized SQR loss family for the exponential
parametrization with beta-distributed data. The mean absolute error was smallest at r∗ = 0.15. The
arrow indicates the typical choice of r = 1 for SQR loss.

– 30 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

BCE MSE
0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

ea
n

A
b

so
lu

te
E

rr
or

(1
00

tr
ia

ls
)

σ(z)

Φ(z)
1
π

(arctan(z) + π
2

)

MLC SQR
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
tr

ia
ls

)

ReLU(z)

z2

exp(z)

(a) Comparing Parametrizations.

Beta Data
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
A

b
so

lu
te

E
rr

or
(1

00
T

ri
al

s)

BCE

MSE

p∗-MSE

MLC

SQR

r∗-SQR

(b) Comparing Optimized Losses.

Figure 22. The MAEs are compared for gamma-distributed data for the four different losses
considered. Errors represent the standard deviation across 100 independent model trainings. In (a),
each loss is shown with 3 different parametrizations. In (b), the best-performing parametrization is
chosen for each loss, and these optimized losses are then directly compared.

Figure 22b) compares the BCE and MSE losses with a logistically-parametrized model,
the MLC and SQR losses with exponentially-parametrized models, and the p∗-MSE and
r∗-SQR losses all against one another. The best performing loss was the r∗-SQR loss, followed
by the MLC loss with an exponential parametrization.

B Multivariate Gaussians

The contour plots of the three different parametrizations for each of the four loss functionals
for each of the five cases examined in the multivariate Gaussians case study are presented
in figures 23, 24, and 25.

Additionally, the plots of the MAEs of the p-MSE and r-SQR loss families are provided
in figure 26.

C Comparison with BDTs

In this appendix, we compare the performance of a neural network (NN) likelihood ratio
method with that of a gradient-boosted decision tree (BDT) method. While we parametrized
the learned function f as a neural network throughout all of our case studies, this is not
a requirement. BDT methods generally are very well-performing, general-purpose, robust
classifiers.

In particular, we examined the performances of neural network and BDT methods as the
dimension of the data on which the models were trained increased. In our first case study,
we extended the Slant data from the multivariate Gaussians study to d ∈ {1, 2, 4, 8, 16, 32}

– 31 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−2

−1

0

1

2

x
2

σ(z) σ(z) ReLU(z) ReLU(z)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

Vertical Φ(z) Φ(z) z2 z2

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

exp z

−2 −1 0 1 2
x1

BCE MSE MLC SQR

exp z

−0.10

−0.05

0.00

0.05

0.10

−2

−1

0

1

2

x
2

σ(z) σ(z) ReLU(z) ReLU(z)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

Slant Φ(z) Φ(z) z2 z2

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

exp z

−2 −1 0 1 2
x1

BCE MSE MLC SQR

exp z

−0.10

−0.05

0.00

0.05

0.10

Figure 23. The likelihood ratio fits of the Vertical and Slant cases we examined in the multivariate
Gaussians case studies. The first column plots the likelihood structure of each case; red regions are
regions where L(x) ≤ 1, and blue regions are regions where L(x) > 1. Each row corresponds to a
different loss functional, and each column corresponds to a different parametrization. The first three
rows display the likelihood ratio fits for the Vertical case study and the second three rows display
the likelihood ratio fits for the Slant case study. The plot is suggestively colored to show how the
structure of the data corresponds to the structure in the likelihood ratio models.

– 32 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−2

−1

0

1

2

x
2

σ(z) σ(z) ReLU(z) ReLU(z)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

Circle Φ(z) Φ(z) z2 z2

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

exp z

−2 −1 0 1 2
x1

BCE MSE MLC SQR

exp z

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−2

−1

0

1

2

x
2

σ(z) σ(z) ReLU(z) ReLU(z)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

Hyperbola Φ(z) Φ(z) z2 z2

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

exp z

−2 −1 0 1 2
x1

BCE MSE MLC SQR

exp z

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Figure 24. The likelihood ratio fits of the Circle and Hyperbola cases we examined in the multivariate
Gaussians case studies, organized and colored as in 23.

– 33 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

−2

−1

0

1

2

x
2

σ(z) σ(z) ReLU(z) ReLU(z)

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

Checker Φ(z) Φ(z) z2 z2

−2 −1 0 1 2
x1

−2

−1

0

1

2

x
2

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

1
π

(
arctan z + π

2

)

−2 −1 0 1 2
x1

exp z

−2 −1 0 1 2
x1

BCE MSE MLC SQR

exp z

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Figure 25. The likelihood ratio fits of the Checker case we examined in the multivariate Gaussians
case studies, organized and colored as in 23.

dimensions as follows:

X0 ∼ Normal

+ 1√

d

0.1
...

0.1

, Id

(C.1)

X1 ∼ Normal

− 1√

d

0.1
...

0.1

, Id

(C.2)

As in 3, we trained 100 classifiers with N ∈ {102, 103, 104, 105, 106, 107} samples from
the Slant case. For each value of N , a random assortment of 75% of the samples were used
for training and the remaining 25% were used for validation. A total of 100, 000 samples
were used for estimating the MAE for each value of N .

The NN architectures were identical to those used throughout all of our previous studies,
as was the training procedure and optimization. The BDT classifiers were implemented using
Scikit Learn [52] with the default learning rate of 0.1 and early stopping with a patience
of 10. No detailed hyperparameter optimization was done.

– 34 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

0.00

0.01

0.02

0.03

M
A

E
(2

0
tr

ia
ls

)

Vertical

σ(z)

Vertical

exp z

0.00

0.01

0.02

0.03

M
A

E
(2

0
tr

ia
ls

)

Slant

σ(z)

Slant

exp z

0.00

0.02

0.04

0.06

0.08

0.10

M
A

E
(2

0
tr

ia
ls

)

Circle

σ(z)

Circle

exp z

0.00

0.25

0.50

0.75

1.00

M
A

E
(2

0
tr

ia
ls

)

Hyperbola

σ(z)

Hyperbola

exp z

−2 −1 0 1 2

p

0.00

0.02

0.04

0.06

M
A

E
(2

0
tr

ia
ls

)

Checker

σ(z)

−2 −1 0 1 2

r

Checker

exp z

Figure 26. The mean absolute errors averaged over models trained on the generalized p-MSE and r-
SQR loss families for the various multivariate Gaussian case studies. The classifiers were parametrized
with the logistic and exponential activations for the p-MSE and r-SQR losses, respectively. The
minimizing values of p∗ and r∗ are reported in table 3. The arrows indicates the typical choice of
p = 2 and r = 1 for the MSE and SQR losses, respectively.

– 35 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

102 103 104 105 106 107

N

0.00

0.02

0.04

0.06

0.08

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 1)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

0.20

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 2)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 4)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

b
so

lu
te

E
rr

or

NNs vs BDTs (d = 8)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

b
so

lu
te

E
rr

or
NNs vs BDTs (d = 16)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

b
so

lu
te

E
rr

or

NNs vs BDTs (d = 32)

NN

BDT

Figure 27. The mean absolute errors of the neural network (NN) and boosted decision tree (BDT)
classifiers for increasing sample size and dimension for the Slant classification problem. The mean
absolute error of a classifier parametrization for each sample size was computed by averaging over
the empirical mean absolute errors of 100 models. The shaded regions correspond to one standard
deviation in the mean absolute errors of the 100 models.

Figure 27 displays how the mean absolute error between the two classifier parametrizations
compares as the sample size increases for the Slant dataset in increasingly higher dimensions.
While the BDT tends to have a smaller variance than the NN, the NN always outperforms the
BDT. Moreover, in higher dimensions, the NN performs significantly better than the BDT.

Next, we compared the two parametrizations’ performances on the physics dataset from 5.
The d = 1 dataset consisted of just the transverse momentum pT , the d = 2 dataset consisted
of the transverse momentum pT and the rapidity y, and the d = 4 dataset consisted of the
transverse momentum pT , the rapidity y, the azimuthal angle ϕ, and the mass m. Each
dataset was generated by training a Normalizing Flow [33] on the appropriate variables
from the original physics dataset.

Once the datasets were generated, the methodology used was identical to the previous
case study with the Slant dataset. Figure 28 displays how the two parametrizations compare
against one another at different sample sizes and dimensions. We again see that the BDT
is lower variance than the NN. Moreover, in this case, the BDT outperforms the NN at all
sample sizes in the d = 1 case. However, in d = 2 and d = 4, the NN outperforms the BDT.

Across each of these two datasets, our results indicate that despite the generally strong
performance of BDTs, NNs are still preferable in the context of the likelihood ratio trick.

– 36 –

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

102 103 104 105 106 107

N

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 1)

NN

BDT

102 103 104 105 106 107

N

0.00

0.05

0.10

0.15

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 2)

NN

BDT

102 103 104 105 106 107

N

19.8

20.0

20.2

20.4

M
ea

n
A

b
so

lu
te

E
rr

o
r

NNs vs BDTs (d = 4)

NN

BDT

Figure 28. The mean absolute errors of the neural network and boosted decision tree classifiers
for increasing sample size and dimension for the Pythia/Herwig + Delphes particle physics jet
datasets. The mean absolute error of a classifier parametrization for each sample size was computed
by averaging over the empirical mean absolute errors of 100 models. The shaded regions correspond
to one standard deviation in the mean absolute errors of the 100 models.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J. Neyman and E.S. Pearson, On the Problem of the Most Efficient Tests of Statistical
Hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289 [INSPIRE].

[2] A. Andreassen et al., OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev.
Lett. 124 (2020) 182001 [arXiv:1911.09107] [INSPIRE].

[3] A. Rogozhnikov, Reweighting with Boosted Decision Trees, J. Phys. Conf. Ser. 762 (2016)
012036 [arXiv:1608.05806] [INSPIRE].

[4] D. Martschei, M. Feindt, S. Honc and J. Wagner-Kuhr, Advanced event reweighting using
multivariate analysis, J. Phys. Conf. Ser. 368 (2012) 012028 [INSPIRE].

[5] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised
Machine Learning in Particle Physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720]
[INSPIRE].

[6] A. Andreassen and B. Nachman, Neural Networks for Full Phase-space Reweighting and
Parameter Tuning, Phys. Rev. D 101 (2020) 091901 [arXiv:1907.08209] [INSPIRE].

[7] LHCb collaboration, Observation of the decays Λ0
b → χc1pK− and Λ0

b → χc2pK−, Phys. Rev.
Lett. 119 (2017) 062001 [arXiv:1704.07900] [INSPIRE].

[8] ATLAS collaboration, Search for pair production of higgsinos in final states with at least three
b-tagged jets in

√
s = 13 TeV pp collisions using the ATLAS detector, Phys. Rev. D 98 (2018)

092002 [arXiv:1806.04030] [INSPIRE].

[9] L. Fischer, R. Naab and A. Trettin, Treating detector systematics via a likelihood free inference
method, 2023 JINST 18 P10019 [arXiv:2305.02257] [INSPIRE].

[10] B. Nachman and J. Thaler, Learning from many collider events at once, Phys. Rev. D 103
(2021) 116013 [arXiv:2101.07263] [INSPIRE].

[11] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer (2009)
[DOI:10.1007/978-0-387-84858-7] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1098/rsta.1933.0009
https://inspirehep.net/literature/1750762
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1911.09107
https://inspirehep.net/literature/1766424
https://doi.org/10.1088/1742-6596/762/1/012036
https://doi.org/10.1088/1742-6596/762/1/012036
https://arxiv.org/abs/1608.05806
https://inspirehep.net/literature/1482753
https://doi.org/10.1088/1742-6596/368/1/012028
https://inspirehep.net/literature/1194213
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1804.09720
https://inspirehep.net/literature/1670172
https://doi.org/10.1103/PhysRevD.101.091901
https://arxiv.org/abs/1907.08209
https://inspirehep.net/literature/1744598
https://doi.org/10.1103/PhysRevLett.119.062001
https://doi.org/10.1103/PhysRevLett.119.062001
https://arxiv.org/abs/1704.07900
https://inspirehep.net/literature/1596892
https://doi.org/10.1103/PhysRevD.98.092002
https://doi.org/10.1103/PhysRevD.98.092002
https://arxiv.org/abs/1806.04030
https://inspirehep.net/literature/1677389
https://doi.org/10.1088/1748-0221/18/10/P10019
https://arxiv.org/abs/2305.02257
https://inspirehep.net/literature/2656204
https://doi.org/10.1103/PhysRevD.103.116013
https://doi.org/10.1103/PhysRevD.103.116013
https://arxiv.org/abs/2101.07263
https://inspirehep.net/literature/1841836
https://doi.org/10.1007/978-0-387-84858-7
https://inspirehep.net/literature/2730878

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

[12] M. Sugiyama, T. Suzuki and T. Kanamori, Density Ratio Estimation in Machine Learning,
Cambridge University Press (2012) [DOI:10.1017/cbo9781139035613].

[13] B.K. Miller, C. Weniger and P. Forré, Contrastive Neural Ratio Estimation, arXiv:2210.06170
[INSPIRE].

[14] K. Cranmer, J. Pavez and G. Louppe, Approximating Likelihood Ratios with Calibrated
Discriminative Classifiers, arXiv:1506.02169 [INSPIRE].

[15] B. Nachman, A guide for deploying Deep Learning in LHC searches: How to achieve optimality
and account for uncertainty, SciPost Phys. 8 (2020) 090 [arXiv:1909.03081] [INSPIRE].

[16] A. Andreassen et al., Parameter estimation using neural networks in the presence of detector
effects, Phys. Rev. D 103 (2021) 036001 [arXiv:2010.03569] [INSPIRE].

[17] J. Hollingsworth and D. Whiteson, Resonance Searches with Machine Learned Likelihood Ratios,
arXiv:2002.04699 [INSPIRE].

[18] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining Effective Field Theories with
Machine Learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].

[19] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A Guide to Constraining Effective Field
Theories with Machine Learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020] [INSPIRE].

[20] J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: Machine learning-based inference
for particle physics, Comput. Softw. Big Sci. 4 (2020) 3 [arXiv:1907.10621] [INSPIRE].

[21] F.A. Di Bello et al., Efficiency Parameterization with Neural Networks, Comput. Softw. Big Sci.
5 (2021) 14 [arXiv:2004.02665] [INSPIRE].

[22] A. Andreassen, B. Nachman and D. Shih, Simulation Assisted Likelihood-free Anomaly Detection,
Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].

[23] M. Erdmann et al., Adversarial Neural Network-based data-simulation corrections for jet-tagging
at CMS, J. Phys. Conf. Ser. 1525 (2020) 012094 [INSPIRE].

[24] R.T. D’Agnolo et al., Learning multivariate new physics, Eur. Phys. J. C 81 (2021) 89
[arXiv:1912.12155] [INSPIRE].

[25] S. Diefenbacher et al., DCTRGAN: Improving the Precision of Generative Models with
Reweighting, 2020 JINST 15 P11004 [arXiv:2009.03796] [INSPIRE].

[26] H1 collaboration, Unbinned deep learning jet substructure measurement in high Q2ep collisions
at HERA, Phys. Lett. B 844 (2023) 138101 [arXiv:2303.13620] [INSPIRE].

[27] K. Kong, K.T. Matchev, S. Mrenna and P. Shyamsundar, New Machine Learning Techniques for
Simulation-Based Inference: InferoStatic Nets, Kernel Score Estimation, and Kernel Likelihood
Ratio Estimation, arXiv:2210.01680 [INSPIRE].

[28] G. Klambauer, T. Unterthiner, A. Mayr and S. Hochreiter, Self-Normalizing Neural Networks,
Adv. Neural Inf. Process. Syst. 30 (2017) 1 [https://proceedings.neurips.cc/paper_files/paper/2
017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf].

[29] R.T. D’Agnolo and A. Wulzer, Learning New Physics from a Machine, Phys. Rev. D 99 (2019)
015014 [arXiv:1806.02350] [INSPIRE].

[30] M. Stoye et al., Likelihood-free inference with an improved cross-entropy estimator,
arXiv:1808.00973 [INSPIRE].

[31] G.V. Moustakides and K. Basioti, Training Neural Networks for Likelihood/Density Ratio
Estimation, arXiv:1911.00405.

– 38 –

https://doi.org/10.1017/cbo9781139035613
https://arxiv.org/abs/2210.06170
https://inspirehep.net/literature/2164560
https://arxiv.org/abs/1506.02169
https://inspirehep.net/literature/1377273
https://doi.org/10.21468/SciPostPhys.8.6.090
https://arxiv.org/abs/1909.03081
https://inspirehep.net/literature/1753098
https://doi.org/10.1103/PhysRevD.103.036001
https://arxiv.org/abs/2010.03569
https://inspirehep.net/literature/1821952
https://arxiv.org/abs/2002.04699
https://inspirehep.net/literature/1779859
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://inspirehep.net/literature/1670936
https://doi.org/10.1103/PhysRevD.98.052004
https://arxiv.org/abs/1805.00020
https://inspirehep.net/literature/1670939
https://doi.org/10.1007/s41781-020-0035-2
https://arxiv.org/abs/1907.10621
https://inspirehep.net/literature/1746275
https://doi.org/10.1007/s41781-021-00059-x
https://doi.org/10.1007/s41781-021-00059-x
https://arxiv.org/abs/2004.02665
https://inspirehep.net/literature/1789783
https://doi.org/10.1103/PhysRevD.101.095004
https://arxiv.org/abs/2001.05001
https://inspirehep.net/literature/1775741
https://doi.org/10.1088/1742-6596/1525/1/012094
https://inspirehep.net/literature/1811524
https://doi.org/10.1140/epjc/s10052-021-08853-y
https://arxiv.org/abs/1912.12155
https://inspirehep.net/literature/1773254
https://doi.org/10.1088/1748-0221/15/11/P11004
https://arxiv.org/abs/2009.03796
https://inspirehep.net/literature/1815628
https://doi.org/10.1016/j.physletb.2023.138101
https://arxiv.org/abs/2303.13620
https://inspirehep.net/literature/2645683
https://arxiv.org/abs/2210.01680
https://inspirehep.net/literature/2159850
https://proceedings.neurips.cc/paper_files/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf
https://doi.org/10.1103/PhysRevD.99.015014
https://doi.org/10.1103/PhysRevD.99.015014
https://arxiv.org/abs/1806.02350
https://inspirehep.net/literature/1676805
https://arxiv.org/abs/1808.00973
https://inspirehep.net/literature/1684960
https://arxiv.org/abs/1911.00405

J
H
E
P
0
2
(
2
0
2
4
)
1
3
6

[32] D.-A. Clevert, T. Unterthiner and S. Hochreiter, Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs), arXiv:1511.07289 [INSPIRE].

[33] I. Kobyzev, S.J.D. Prince and M.A. Brubaker, Normalizing Flows: An Introduction and Review
of Current Methods, IEEE Trans. Pattern Anal. Machine Intell. 43 (2021) 3964
[arXiv:1908.09257] [INSPIRE].

[34] B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101 (2020)
075042 [arXiv:2001.04990] [INSPIRE].

[35] M. Algren et al., Flow Away your Differences: Conditional Normalizing Flows as an
Improvement to Reweighting, arXiv:2304.14963 [INSPIRE].

[36] N. Jeffrey and B.D. Wandelt, Evidence Networks: simple losses for fast, amortized, neural
Bayesian model comparison, Mach. Learn. Sci. Tech. 5 (2024) 015008 [arXiv:2305.11241]
[INSPIRE].

[37] F. Chollet et al., Keras, https://github.com/fchollet/keras.

[38] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv:1603.04467.

[39] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980
[INSPIRE].

[40] A. Andreassen, P. Komiske, E. Metodiev, B. Nachman and J. Thaler, Pythia/Herwig + Delphes
Jet Datasets for OmniFold Unfolding, (2019) [DOI:10.5281/zenodo.3548091].

[41] M. Bähr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639
[arXiv:0803.0883] [INSPIRE].

[42] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196
[arXiv:1512.01178] [INSPIRE].

[43] J. Bellm et al., Herwig 7.1 Release Note, arXiv:1705.06919 [INSPIRE].

[44] T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys.
Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[45] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)
026 [hep-ph/0603175] [INSPIRE].

[46] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159
[arXiv:1410.3012] [INSPIRE].

[47] ATLAS collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, CERN,
Geneva (2014).

[48] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic
collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

[49] D.J. Rezende and S. Mohamed, Variational Inference with Normalizing Flows,
arXiv:1505.05770 [INSPIRE].

[50] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library,
arXiv:1912.01703 [INSPIRE].

[51] C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, nflows: normalizing flows in PyTorch,
DOI:10.5281/zenodo.4296287.

[52] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res. 12 (2011)
2825 [arXiv:1201.0490] [INSPIRE].

– 39 –

https://arxiv.org/abs/1511.07289
https://inspirehep.net/literature/2727090
https://doi.org/10.1109/tpami.2020.2992934
https://arxiv.org/abs/1908.09257
https://inspirehep.net/literature/2729524
https://doi.org/10.1103/PhysRevD.101.075042
https://doi.org/10.1103/PhysRevD.101.075042
https://arxiv.org/abs/2001.04990
https://inspirehep.net/literature/1775739
https://arxiv.org/abs/2304.14963
https://inspirehep.net/literature/2655327
https://doi.org/10.1088/2632-2153/ad1a4d
https://arxiv.org/abs/2305.11241
https://inspirehep.net/literature/2661289
https://github.com/fchollet/keras
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1412.6980
https://inspirehep.net/literature/1670744
https://doi.org/10.5281/zenodo.3548091
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://arxiv.org/abs/0803.0883
https://inspirehep.net/literature/780833
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://inspirehep.net/literature/1407976
https://arxiv.org/abs/1705.06919
https://inspirehep.net/literature/1600591
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://inspirehep.net/literature/764903
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://inspirehep.net/literature/712925
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/literature/1321709
http://cds.cern.ch/record/1966419
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/literature/1244313
https://arxiv.org/abs/1505.05770
https://inspirehep.net/literature/2727019
https://arxiv.org/abs/1912.01703
https://inspirehep.net/literature/2722582
https://doi.org/10.5281/zenodo.4296287
https://arxiv.org/abs/1201.0490
https://inspirehep.net/literature/1451725

	Introduction
	Learning likelihood ratios
	Univariate Gaussians
	Naïve implementation
	Motivation
	Methods
	Results
	Discussion

	Parametrizing f
	Generalized loss families
	Motivation
	Methods
	Results
	Discussion

	Optimized implementation
	Simple classifiers
	Motivation
	Methods
	Results
	Discussion

	Multivariate Gaussians
	Parametrizing f
	Motivation
	Methods
	Results
	Discussion

	Generalized loss families
	Motivation
	Methods
	Results
	Discussion

	Physics data
	Parametrizing f
	Motivation
	Methods
	Results
	Discussion

	Generalized loss families
	Motivation
	Methods
	Results
	Discussion

	Conclusions
	Non-Gaussian distributions
	Multivariate Gaussians
	Comparison with BDTs

