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ABSTRACT 

 

Developing single cell multiomics technologies to understand mammalian 

development 

 

by 

 

Alex James Chialastri 

 

Next generation sequencing has been key in unlocking the ability to detect 

thousands of features at single base resolution in thousands of single cells 

simultaneously in a single experiment. In addition to the DNA bases present, DNA 

sequencing libraries can contain information on RNA transcripts as well as 

epigenetic features central to cellular identity like DNA methylation (5mC), DNA 

hydroxymethylation (5hmC), and DNA accessibility. This dissertation develops 

multiple single cell sequencing methodologies to explore these epigenetic features 

simultaneously from the same cell. We first developed scMspJI-seq to detect 5mC 

from single cells. To investigate 5mC, DNA accessibility, and the transcriptome from 

the same cell we built upon scMspJI-seq to create scMAT-seq. Then by 

incorporating 5hmC detection into this measurement, we gained the ability to 

detection of all 4 features (scMATH-seq) or a subset of them (scMTH-seq). Finally, 

by combining these technologies with more traditional techniques we developed 

scDyad&T-seq to detect the transcriptome and the presence of 5mC on both strands 

of the same piece of DNA. Using these techniques, 4 key areas of human 
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development were investigated: 1. pre-implantation development, 2. gastrulation and 

primordial germ cell (PGC) specification, 3. PGC maturation, and 4. stem cell 

pluripotency. 

Pre-implantation development: The global erasure of 5mC from the parental 

genomes during preimplantation mammalian development is critical to reset the 

methylome of gametes to the cells in the blastocyst, but how this process occurs 

remains unclear. By applying scMspJI-seq, we discover that methylation 

maintenance is active till the 16-cell stage followed by passive demethylation in a 

fraction of cells within the early mouse blastocyst. In human embryos we find slightly 

delayed but similar demethylation dynamics as was found in mice. 

Gastrulation and primordial germ cell specification: Human gastrulation is marked 

by dynamic changes in cell states that are difficult to isolate at high purity, thereby 

making it challenging to map how epigenetic reprogramming impacts gene 

expression and cellular phenotypes. Applying scMAT-seq to 3D human gastruloids, 

we characterized the epigenetic landscape of major cell types corresponding to the 

germ layers and human primordial germ cell-like cells (hPGCLC). Here we find 

hPGCLCs are specified from progenitors which emerge from epiblast cells and show 

transient characteristics of both amniotic- and mesoderm-like cells. Finally, we find 

that during gastrulation DNA accessibility is tightly correlated to both upregulated 

and downregulated genes, while reorganization of gene body DNA methylation is 

strongly related to only genes that get downregulated. 

Primordial germ cell maturation: PGC maturation is marked by global erasure of 

5mC followed by transient high levels of 5hmC. Extended culture systems can 

achieve passive demethylation in a subset of hPGCLCs, but what initiates this 
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heterogenous process is unknown. By applying scMTH-seq to hPGCLCs in 

extended culture we observe that DND1 and SOX15 likely play a role in the initial 

phase of passive demethylation experienced by hPGCLCs. Additionally, we find that 

the hPGCLCs in this system stall in their maturation and do not accumulate high 

levels of 5hmC. 

Stem cell pluripotency: Genome wide erasure of 5mC is associated with the 

acquisition of pluripotency. By applying scDyad&T-seq to different time points of 

mouse embryonic stem cells transitioning from a primed to a naïve state of 

pluripotency, we observe extreme demethylation dominated by passive processes 

and discover this process is highly heterogenous and delayed in some cells. By 

connecting RNA expression from the same cells, we detect a small set of genes 

directly linked to 5mC levels during this transition. Finally, we determine that regions 

of the genome which escape 5mC reprograming do so by retaining high levels of 

5mC maintenance and are associated with specific histone modifications. 
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1. Background and Motivation 

A. The role of epigenetic features and their detection 

1. DNA accessibility 

DNA accessibility is a critical epigenetic feature that drives cell type specific gene 

expression. In eukaryotes, DNA is bundled into collections of nucleosomes, which 

are comprised of an octamer core of two of each of the four core histones: H2A, 

H2B, H3 and H41. Each nucleosome is wrapped by 147 base pairs of DNA and 

separated by linker DNA2. The positioning of nucleosomes can significantly modify 

the in vivo DNA binding ability of transcription machinery and other DNA binding 

proteins, affecting gene expression, DNA repair, replication and recombination2. 

There are at least 80 known covalent modifications to the histone proteins that make 

up a nucleosome, in addition to this, there are numerous histone variants2,3. DNA is 

also highly bound by transcription factors, architectural proteins, and other 

chromatin-binding factors, which results in further complexity in assessing the state 

of the DNA4,5. To profile even a small fraction of these modifications in a single 

system is difficult, time-consuming, and expensive. Fortunately many of these 

features impart a physical characteristic on the local DNA structure, affecting how 

accessible the DNA is for binding4. Thus, obtaining a measurement of DNA 

accessibility or determining the absence or presence of nucleosomes at specific 

locations in the genome allows for the profiling of cellular state and can be used to 

find regulatory regions for a given biological system (Fig. 1.1). 
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Figure 1.1 | Regulatory regions of the genome differ in nucleosome turnover and occupancy, 
impacting DNA accessibility.  

Accessible DNA can be enriched in regions with low nucleosome occupancy and high 
nucleosome turnover, but it can also be high in regions with stable nucleosomes for instance 
insulators marked by CTCF. This figure is adapted from Klemm et al.4 

DNA sequencing is a highly popular method for identifying region specific 

information, as it allows for both base specific and genome wide studies to be 

performed simultaneously. The local DNA accessibility has commonly been 

interrogated using DNase I digestion. The DNA fragments created are enriched in 

open chromatin regions and their genomic location can be identified through 

sequencing (DNase-seq)6,7. Another common technique uses micrococcal nuclease 

to fully digest open chromatin, leaving behind only DNA wrapped in nucleosomes to 

be purified and sequenced (MNase-seq)8. Many DNA accessibility methods rely on 
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similar principles, where open areas of DNA are more accessible to enzymatic 

digestion. These highly accessible regions are also more readily modified by DNA 

modifying enzymes like M.CviPI, which can methylate cytosines in a guanine 

followed by a cytosine (GpC) in the 5’ to 3’ direction context9. Whole genome 

bisulfite sequencing or a variety of other methods which will be discussed in the next 

section, can be used as a read out and endogenous methylation can be split from 

exogenous methylation based on the methylation context, revealing the locations of 

nucleosomes (NOMe-seq10). In addition to these techniques, the binding of DNA to 

nucleosomes can further be leveraged in DNA sequencing library preparation by 

simply crosslinking proteins to the DNA, fractionating the DNA, and using a 

phenol/chloroform extraction to isolate free DNA from DNA crosslinked to proteins 

for sequencing (FAIRE-seq & Sono-seq)11,12. All the techniques discussed so far are 

fairly time consuming, while due to its speed, high efficiency, and ease, a relatively 

new method known as ATAC-seq is now commonly used, where a hyperactive 

transposase (Tn5) is used to cut and insert adaptors into open DNA13. With these 

benefits, it is not surprising that ATAC-seq has been scaled down to the single cell 

level and many aspects have been optimized to increase scale and sensitivity. 

Currently, the use of Tn5 is the dominate methodology to profile DNA accessibility in 

single-cells (scATAC-seq)14–17. While less popular, most of the other methodologies 

discussed here are now also possible at single-cell resolution including scDNase-

seq, scMNase-seq, and scNOMe-seq18–21. 

2. 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and other oxidized 

cytosine derivatives 
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One of the most well-studied epigenetic marks in mammals is DNA cytosine 

methylation, 5-methylcytosine (5mC). It has been found that 5mC primarily occurs in 

mammals in the context of a cytosine followed by guanine (CpG) in the 5’ to 3’ 

direction22. At lower frequencies, 5mC can also occur in other contexts, for example 

cytosine followed by adenine (CpA) in the 5’ to 3’ direction22. Among other roles, 

CpG methylation is critical for maintaining stable repression of target genes, 

establishing parent-specific gene expression, and maintaining cell type specific 

identity22–24. The role of 5mC in maintaining cell type specific identities makes it an 

important epigenetic mark in the study of tissue development. 

Methylation dynamics can be described through active and passive processes25. 

After DNA replication and mitosis, each daughter cells double-stranded DNA 

comprises of one original strand of DNA and one new strand of DNA. During DNA 

replication in the previous cell cycle, the DNA methyltransferase 1 (Dnmt1) protein 

faithfully copies 5mC in a CpG context to the new strand26. If Dnmt1 is 

downregulated and copying of 5mC to the new strand does not occur, then 5mC is 

passively demethylated. Active demethylation involves the oxidation of 5mC to 5-

hydroxymethylcytosine (5hmC) by the Ten-Eleven Translocation (TET) protein family 

members (TET 1, 2, and 3)25. TET family members can further modify 5hmC to 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC), both of which can be 

recognized by DNA repair pathways and be replaced by an unmodified cytosine 

(C)25. The DNA methyltransferase (DNMT) family of proteins catalyze the reaction of 

cytosine to 5mC (Fig. 1.2)27. As previously mentioned, DNMT1 prevents passive 

demethylation from occurring in a CpG context. Unlike DMNT1, other DMNT 
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proteins, DNMT3a and DNMT3b act throughout the cell cycle and can actively 

methylate cytosines in a de novo fashion, primarily in a CpG context27–29.  

 

Figure 1.2 | Cytosine modification dynamics.  

Cytosine can be methylated by the DNMT protein family. TET proteins then further oxidize 5mC 
into 5hmC. Further oxidation by TET can occur to 5fC and 5caC, both of which can be acted upon by 
DNA repair pathways, for example the Thymine-DNA Glycosylase (TDG) and Base Excision Repair 
(BER) pathways, to be replaced with an unmodified cytosine. 

The only known biological route to obtain 5hmC is through the TET family of 

dioxygenases, which can actively oxidize 5mC (Fig. 1.2)30. In most cell types, 

oxidized forms of 5mC are present at very low levels compared to the amount of 

5mC25. Even in embryonic stem cells which have high levels of these oxidized forms 

of cytosine, the levels of 5fC and 5caC are at least an order of magnitude lower than 

the levels of 5hmC31,32. Thus, to understand methylation and demethylation 

dynamics in different biological systems, quantifying 5mC and 5hmC simultaneously 

from the same cell is the most critical. Studies have shown that 5hmC is enriched in 

gene bodies of actively transcribed genes33. Obtaining base pair resolution 
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information of both 5mC and 5hmC combined with gene expression data from the 

same cell would also allow for the direct evaluation of the role of cytosine 

modifications on gene expression. 

In addition to its biological role, a previous studies from our group have shown 

that 5hmC can be used to infer cellular lineages34,35. Lineage can be inferred based 

on a lack of maintenance of 5hmC during cell division, which results in the oldest 

DNA strands having a majority of 5hmC. This lack of maintenance means that the 

relative levels of 5hmC on the two strands of DNA will be anticorrelated for each 

chromosome between daughter cells. This framework has been extended to enable 

probabilistic lineage reconstruction up to the 32-cell stage of mouse 

embryogenesis35. 

To detect 5mC, regions of the genome containing 5mC can be enriched for prior 

to sequencing. 5mC enrichment-based techniques are highly similar to Chromatin 

immunoprecipitation sequencing (ChIP-seq) experiments, except an antibody that 

detects 5mC is used (MeDIP-seq) or a methyl-CpG-binding domain (MBD) coated 

bead is used (MethylCap-seq)36,37. Similar ChIP-seq based methodologies have also 

been developed for 5hmC (hMeDIP-seq), in addition to chemistries to tag 5hmC with 

biotin for enrichment (hMe-Seal)38,39. Unfortunately, these techniques do not give 

base specific resolution. To do this, there are three broad methodologies that are 

commonly used, nucleobase conversion-based techniques, enzymatic detection-

based techniques, and amplification free direct detection with third-generation DNA 

sequencing.  

The gold standard in detecting 5mC is nucleobase conversion though the use of 

sodium bisulfite, where 5mC and 5hmC are unaffected by sodium bisulfite treatment, 
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but unmethylated cytosine converts to uracil, resulting in a point mutation during 

amplifiation40. Using this methodology, bisulfite sequencing of 5mC can be profile on 

the whole genome (WGBS) or bisulfite sequencing can be performed in only CG rich 

regions by using restriction enzymes that cut CG rich motifs giving a cost effective 

reduced representative profile (RRBS-seq and XRBS)41–43. Additionally, bisulfite 

sequencing has also been adapted to investigate methylation patterns on 

complimentary DNA strands using hairpin-bisulfite sequencing. In hairpin-bisulfite 

sequencing, DNA is fragmented and ligated to a hairpin adaptor, which linearly 

connects the two DNA strands. After ligation, the samples are exposed to sodium 

bisulfite to reveal fully methylated or hemimethylated CpG dyads44. 

Although 5mC is present at much higher levels than 5hmC and typically 

represents only a small error in the measurement of 5mC, there have been many 

modifications to the bisulfite procedure to specifically measure only one of these 

epigenetic features25. By first reacting genomic DNA with potassium perruthenate 

(KRuO4) or potassium ruthenate (K2RuO4), 5hmC can be converted to 5fC, 

afterwards bisulfite conversion results in signal only originating from 5mC (Oxy-

BS)45. Similarly, 5hmC can be blocked by enzymatically adding a glucose moiety 

and TET enzymes can be added to oxidize 5mC to 5caC, afterwards bisulfite 

conversion results in signal only originating from 5hmC (TAB-seq)46. Sodium bisulfite 

is not the only reagent available to perform nucleobase conversion reactions. 

Pyridine borane and 2-methylpyridine borane (pic-borane) can be used to selectively 

convert 5fC and 5caC to dihydrouracil, resulting in a point mutation during 

amplifiation47,48. By using TET enzymes before chemical conversion both 5hmC and 

5mC will undergo a point mutation and can be observed (TAPS)47,48. Instead, if 
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5hmC is protected prior to TET usage, only 5mC will undergo a point mutation 

(TAPSβ), conversely if instead KRuO4 or K2RuO4 is initially used prior to conversion, 

only 5hmC will undergo a point mutation (CAPS)47,48. Enzymatic means of 

performing this nucleobase conversion are also possible using members of the 

AID/APOBEC family of enzymes, which can catalyze the deamination of cytosine to 

uracil. APOBEC3A has specifically been useful in DNA sequencing library 

construction because of its ability to deaminate both cytosine and 5mC but not 

5hmC in benign conditions, allowing for the detection of 5hmC (LR-EM-seq)49. 

Adding TET into the protocol allows for the detection of both 5mC and 5hmC, similar 

to bisulfite sequencing (ACE-seq & EM-seq)50,51. Techniques involving nucleobase 

conversion have scaled down to the single cell level and currently mainly involve 

optimized bisulfite library preparations for low input (scBS-seq, scRRBS, scmC-seq, 

scmC-seq2, sci-MET, scWGBS, and scXRBS), but a APOBEC3A based 5hmC 

sequencing technique has also been recently developed (snhmC-seq) 43,52–58. 

The detection of 5mC and 5hmC is also possible though the use of enzymatic 

detection-based sequencing techniques. MspI cuts DNA regardless of methylation 

status while isoschizomer HpaII has the same recognition sequence but cannot cut 

methylated DNA, using these two enzymes during library preparation allows for the 

detection of methylated or unmethylated sites (HELP-seq and MSCC-seq)59–61. This 

methodology can be scaled down for single-cell applications by digesting the DNA 

with HpaII first, ligating specific adapters and then performing a subsequent MspI 

digestion and adapter ligation (DARE-seq) 62. An alternative approach is to instead 

use restriction enzymes with high specificity for only 5mC or 5hmC. The PvuRts1I 

family of restriction enzymes has high affinity for 5hmC and glucosylated 5hmC 
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when compared to 5mC and has been successful used to study 5hmC in single cells 

(scAba-seq)34,63. The MspJI family of enzymes have a similar trait but have high 

affinity for 5mC over 5hmC and only very limited affinity for glucosylated 5hmC, and 

as part of the work described here, we have successfully used MspJI to detect 5mC 

in single-cells (scMspJI-seq)64,65. Both scAba-seq and scMspJI-seq methodologies 

are used in this dissertation as the starting points for further developing single-cell 

multiomics technologies. 

 

3. Detection of mRNA expression in single cells 

There are three widely used methods for measuring gene expression in single 

cells, namely single-molecule mRNA fluorescence in situ hybridization (mRNA-

FISH), single-cell quantitative PCR (qPCR), and single-cell mRNA sequencing66. 

mRNA-FISH is a powerful technique because it retains the spatial information of the 

cell in a tissue as well as its ability to accurately quantify low transcript numbers 

through counting of fluorescent dots under a microscope67. The main limitation of 

this technique is the limited number of genes that can be interrogated 

simultaneously from the same cell. Single-cell qPCR utilizes gene-specific primers to 

amplify and detect single transcripts enabling comparison between cells68. While 

powerful, this technique requires some prior knowledge of genes to compare 

between cells. Single-cell mRNA sequencing allows for the potential detection of all 

transcripts, giving higher dimensional data to discern variability between individual 

cells. 

Single-cell RNA sequencing was first developed in 2009 and since that time 

there has been a vast increase in the number of techniques described in literature69. 
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Most techniques count the detection of transcripts at the 3’ end, but some are used 

to identify the fully length of transcripts for example SMART-seq70. While most 

techniques are relatively low throughput and rely on sorting individual cells into a 

reaction well, extremely high throughput methods have recently been developed 

including those that co-isolate cells with barcoded beads using microfluidic devices 

(Drop-seq, inDrop-seq, and commercially available microfluidic systems for scRNA-

seq like the 10x Genomics system)71,72. Even higher throughput can be achieved by 

removing the necessity to isolate individual cells, instead using the cell as its own 

reaction vessel, permeabilizing it and delivering barcoded sequencings. By pooling 

these cells and performing multiple rounds of barcoding, most cells receive a unique 

barcode sequence and can be computationally demultiplex (sci-RNA-seq and 

SPLiT-seq)73,74. 

The work presented here is based off a single-cell mRNA sequencing technique 

called as CEL-Seq2 (Fig. 1.3). In this technique, mRNA from individual cells is 

reverse transcribed using a primer with an overhang containing a cell-specific 

barcode, a stretch of random nucleotides known as unique molecule identifiers 

(UMI), a part of the 5’ Illumina sequence, and a T7 promoter. After second-strand 

synthesis, the cDNA from individual cells is pooled and amplified using in vitro 

transcription, producing single-stranded amplified RNA (aRNA) that does not contain 

the T7 promoter sequence. The aRNA is then reverse transcribed with a random 

hexamer primer containing a partial 3’ Illumina adaptor. The resulting cDNA is then 

further amplified through PCR, where the full Illumina adapter sequences are 

introduced. CEL-Seq2 is reported to have an efficiency of 19.7%, indicating that if a 

cell had only one transcript of type A, then it would be detected 19.7% of the time75. 
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As such, genes that are transcribed at extremely low levels can be problematic to 

detect, although this method has relatively high sensitivity compared to many others. 

Another drawback of this method is the low throughput when compared to the most 

recently developed droplet and split-and-pool techniques. Lastly all single-cell 

techniques incur the relatively high cost of Illumina sequencing. While there are 

some drawbacks, CEL-Seq (the unoptimized predecessor to CEL-Seq2) has 

previously been combined with genomic DNA sequencing in DR-seq, which enabled 

sequencing both genomic DNA and mRNA from the same cell without the need to 

physically separate the nucleic acids before amplification76. Additionally, the process 

of amplification is the same for CEL-Seq2 as it is in our enzymatic methods for 

quantifying 5mC and 5hmC, thereby making it potentially compatible to make 

multiple measurements from the same cell. 

 

Figure 1.3 | DNA sequencing library schematic in CEL-Seq2.  

mRNA is reversed transcribed into cDNA. Individual cells are then pooled and amplified with IVT 
followed by random priming, PCR amplification and paired end sequencing. Figure adapted from 
Hashimshony et al.27. 

4. Single cell multiomics methods involving 5mC, 5hmC, DNA accessibility and 

RNA 
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Since the starting material in bulk assays can be split into multiple different 

sequencing experiments, multiomics as discussed here applies to single cells or in 

systems where starting material is inherently limited. Recently, there has been an 

explosion in single cell multiomics techniques, specifically those addressing both 

DNA accessibility and RNA. These techniques mainly rely on the activity of a 

hyperactive transposases (Tn5) and work with nearly every technology for 

performing scRNA-seq, such as the Fluidigm C1 plateform (ASTAR-seq), traditional 

plate based (scCAT-seq), higher throughput droplet based (SNARE-seq), and ultra-

high throughput split-and-pooling methodologies (sci-CAR, Paired-seq, SHARE-

seq)77–82. Together, these technologies have shown a strong connection between 

DNA accessibility and RNA expression and have laid the groundwork for what 

multiomics methodologies can provide in terms of greater biological insight than only 

one modality. 

Other single-cell technologies for reading DNA accessibility, have already been 

discussed previously, one technology scNOMe-seq, is particularly interesting 

because it uses a GC methyltransferase for marking open chromatin and then uses 

bisulfite sequencing as the readout, which results in the detection of both DNA 

accessibility and DNA methylation simultaneously from the same single cell21. This 

concept has been enhanced to get high detection in each individual cell and utilize 

the sequencing results to identify the ploidy of the cells involved (scCOOL-seq and 

iscCOOL-seq)83,84. Compared to solutions using Tn5, connecting the transcriptional 

output of a cell with bisulfite sequencing based single-cell techniques has proven 

more difficult. The most notable methods come from techniques first developed to 

assay DNA methylation and the transcriptome from the same cell, and utilize 
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magnetic beads containing a polyT sequence (scM&T-seq, scTEM-seq, and Smart-

RRBS), ultra-centrifugation to separate the nucleus from the cytoplasm (scTrio-seq), 

or simply picking manually picking the nucleus and leaving the cytoplasm behind 

(scMT-seq)85–89. More recently, one technique has been developed to perform this 

feat without physical separation, which was done by incorporating methylated 

cytosine nucleotides into the reverse transcription, thereby allow RNA and DNA to 

be deconvoluted computationally after sequencing using the level of methylation 

observed (snmCT-seq)90. By incorporating these technologies with the GC 

methyltransferase used in scNOME-seq, it is possible to obtain 5mC, DNA 

accessibility and the transcriptome all from the same cell (scNMT-seq, scChaRM-

seq, scNOMeRe-seq, and snmC2T-seq)91–94. Most of these techniques require 

physical separation of the nucleus and cytoplasm and are inherently low throughput, 

limiting processing capabilities to the order of tens of cells per experiment, thus 

limiting their applications to systems where known cell type enrichment techniques 

are available or where the number of cells involved are low. These techniques also 

only profile cytoplasmic RNAs, conversely, the one technique not requiring physical 

separation (snC2T-seq) has only been performed on single-nuclei and thus while 

potentially higher throughput, it only profiles nuclear RNAs. Currently, all the 

described techniques of this type use sodium bisulfite for detection and thus have 

the additional drawback of not being able to differentiate between 5mC and 5hmC. 

Additionally, no multiomics techniques have been developed to connect 5hmC with 

transcription or other epigenetic marks. As such, the field could benefit from the 

development of a modular single-cell technology which could provide any 
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combination of a measurement of 5hmC, 5mC, DNA accessibility and mRNA 

simultaneously from the same single cell. 

B. Biological systems investigated: early mammalian systems and 

pluripotency 

1. Stem Cells 

 The ability of stem cells to self-proliferate and differentiate is central to tissue 

development, homeostasis, and repair. Discerning how stem cells achieve this 

regulation is critical not only to better understand tissue development and repair but 

also to gain insights into dysregulation of these pathways that can lead to both aging 

and cancer95. During development, homeostasis or to repair damaged tissues, stem 

cells must maintain an exquisite balance between controlled differentiation that 

results in the spatially correct placement of specialized cells and self-proliferation for 

use in future events. A quantitative understanding of such systems is critical to 

engineer and control tissue development and repair for regenerative medicine 

applications where stem cells could potentially be used to replace injured or 

diseased tissues of patients. 

 Stem cells dynamically regulate self-proliferation and differentiation through 

two distinct modes of cell division. Symmetric cell divisions produce identical 

progeny, while asymmetric cell divisions result in sister cells with different identities 

(Fig. 1.4a-c). Both cell division strategies can produce differentiating daughter cells 

with a more restricted fate than the mother cell. This differentiation towards a 

terminal state with reduced potency and restriction in fate results from changes in 

the epigenome that regulates gene expression and ultimately cell identity96.  
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Figure 1.4 | Stem cell divisions.  

(a) A symmetric self-proliferation cell division. (b) An asymmetric cell division. (c) A symmetric 
differentiation division. (a-c) black circle refers to a pluripotent cell, while red star indicates a more 
differentiated cell. 

The epigenome including DNA methylation, hydroxymethylation and DNA 

accessibility play a central role in cell identity, cellular reprograming and disease97. 

To address how the epigenome tunes symmetric vs. asymmetric cell divisions during 

development, we would need to quantify symmetric and asymmetric cell divisions 

which requires delineating both the cellular lineage and cell type of cells within a 

tissue. While it is well understood that tissues are composed of a specific distribution 

of terminally differentiated cell types, it remains unclear how populations of stem 

cells communicate and function synergistically to regulate their cell division 

strategies to produce tissues of precise composition and architecture. Thus, this 

fundamental unit of fate decision is key to understanding how tissue composition is 

dynamically regulated, yet it is challenging to make these measurements 

quantitatively in vivo with current technologies. A common technique to reconstruct 

cell lineages uses genetically modified mice, where the expression of a fluorescent 

protein can be tracked98. While this method has been very insightful, it is primarily 

limited to studying clonal dynamics instead of individual cell divisions, requires the 
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generation of complex mouse models for each stem cell of interest and is 

challenging to apply to opaque tissues. Other methods of cellular lineage tracing, 

including viral barcoding or CRISPR-Cas9 based genome editing, suffer from 

precise targeting of stem cells or the need to generate transgenic animals99. These 

limitations can potentially be overcome by employing an endogenous epigenetic 

mark that is differentially inherited by daughter cells, as was recently shown to occur 

for 5hmC34,35. Further, classical microscopy-based methods also approximate cell 

types using a single fluorescent marker, which limit our ability to quantitatively 

discriminate between sister cells, a limitation that is overcome by single-cell mRNA 

sequencing. Therefore, a technology to simultaneously quantify the epigenetic 

features 5hmC, 5mC, and DNA accessibility along with mRNA from a single cell, 

would be useful in understanding how 5mC and DNA accessibility influence 

symmetric and asymmetric cell divisions in vivo. 

2. Pre-implantation mammalian development 

During mammalian preimplantation embryogenesis, a single fertilized egg 

(zygote) gives rise to a transient tissue known as a blastocyst (32- to 64-cell stage 

embryo in mice). The blastocyst contains two distinct cell types, the inner cell mass 

(ICM) that gives rise to the entire embryo and the trophectoderm that contributes to 

extraembryonic tissues like the placenta100. In several biological systems, the 

location and local environment around pluripotent cells have been shown to be 

crucial in maintaining the plasticity of these cells95. However, it remains unclear how 

cell-cell contacts and other signaling cues within the pluripotent cell niche regulate 

these cell division strategies. During this period of early development, it is well 

documented that the cellular identity changes drastically, in part due to genome wide 
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global demethylation (Fig. 1.5). This unique phenomenon is critical to reset the 

methylation status of the egg and sperm cells and renew the cycle of life. While the 

mechanisms regulating demethylation in this process have not been definitively 

determined, it is well known that the TET proteins are expressed at high levels and 

play an important role in actively converting 5mC to 5hmC at this time101–103. New 

technology to assess 5mC and 5hmC from single cells would allow for studying of 

the demethylation dynamics from the zygote to the early blastocyst stage of 

development. A better understanding of preimplantation embryogenesis has 

implications for both regenerative medicine and in vitro fertilization procedures. 

Broadly, the goal of regenerative medicine is to replace and heal damaged or 

diseased tissues by creating new healthy tissues. A potential source for creating 

healthy tissue is embryonic stem cells, which are derived from the ICM of the 

blastocyst104. In addition to regenerative medicine, understanding early embryos has 

implications for in vitro fertilization. In this procedure, eggs and sperm are collected 

from patients and combined in vitro. The resulting fertilized egg develops outside the 

body until the blastocyst stage, after which it is injected into the uterus105. While this 

procedure has been a scientific breakthrough for couples with infertility problems, it 

has been associated with an increase in major birth defects105. Improving our 

understanding of blastocyst development has the potential to reveal the mechanisms 

responsible for this increase in birth defects as well as provide a framework for 

understanding basic tissue development. 
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Figure 1.5 | Global methylation levels during early mouse embryogenesis.  

Mean CpG (black) and CpA (red) methylation per 100 base pairs during early mouse 
embryogenesis. ICM indicates the inner cell mass cells of the blastocyst (approximately the 32-cell 
stage). Adapted from Smith et al.103. 

3. Post-implantation mammalian development and PGCs 

Gastrulation is a critical step in human embryonic development where pluripotent 

cells differentiate into lineage specific precursors. However, due to a lack of access 

to in vivo tissue samples, these early stages of human development are difficult to 

study, limiting our understanding of specific developmental defects and certain 

cancers, such as germ cell tumors106. In mammals, much of what is known about 

post-implantation development comes from observations made in mouse models. In 

mice, after implantation the embryo continues to grow and acquires a cup shape 

with two layers of cells, the inner epiblast and the outer visceral endoderm107. After 

this formation, gastrulation occurs where the embryo comprised of two germ layers 

subsequently becomes comprised of three primary germ layers, the ectoderm, 

mesoderm, and endoderm. The process of gastrulation beings with the formation of 

the primitive streak on the posterior side of the embryo, thus defining the anterior-

posterior axis107. To create a third layer of cells, at the primitive streak, epiblast cells 

undergo an epithelial to mesenchymal transition. These cells then migrate between 
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the epiblast and into the endoderm layer, some migrating cells fill the space between 

the epiblast and definitive endoderm, becoming the mesoderm layer107. While the 

gastrulation process in humans is fairly similar, primates morphology is distinct from 

rodents and pre-gastrulating embryos consist of a bilaminar disc, which becomes a 

trilaminar disc post-gatrulation108.  

Around the time of gastrulation, in mice, the extra-embryonic ectoderm provides 

critical signaling molecules including bone morphogenetic protein 4 (BMP4) for 

primordial germ cell (PGC) specification, which occurs at day 6.25 post coitus 

(E6.25)109,110. The area of high signaling is restricted to only the most posterior 

region of the embryo by inhibitory signals produced by the anterior visceral 

endoderm, thus resulting in only a handful of specified PGCs111. At E7.5 the 

specified PGCs begin to migrate and soon begin to rapidly proliferate, reaching the 

genital ridge at E10.5 to form the embryonic gonad, eventually giving rise to mature 

germ cells112.  

Germ cells are those cells that give rise to the gametes of a sexually reproducing 

organism. Development of germ cells follows a similar global trend to 

preimplantation mouse embryogenesis where a small group of highly methylated 

cells undergo vast epigenetic changes, including global demethylation113,114. In this 

system, demethylation is known to occur in two phases and is known to have impact 

on cellular identity115–117. The first phase occurs when a small group of nascent germ 

cells actively migrate to the genital ridge. This phase is thought to be dominated by 

passive demethylation where methylation is lost slowly with each cell division as the 

methylation marks are not copied over during replication118,119. Once the PGCs 

reach the genital ridge and begin colonization of the gonads, the second period of 
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demethylation occurs, where methylation is lost quickly through active conversion to 

5hmC (Fig. 1.6)118,119. Immunofluorescence imaging has revealed that 5hmC is 

found to only occur with high frequency on one sister chromatid in E12.5 PGCs, an 

indication that 5hmC accumulation has slowed by this timepoint120. At the end of 

these two waves of demethylation, the genome wide DNA methylation levels are at 

the lowest seen in any point of development119.  

 

Figure 1.6 | Cytosine dynamics in PGC development.  

Demethylation occurs in two phases during PGC development, first a phase dominated by 
passive demethylation followed by rapid active demethylation by the TET proteins. Figure adapted 
from Messerschmidt et al.118. 

The findings of some sister chromatids having low 5hmC by E12.5 suggests 

5hmC could also be used for at least partial cellular lineage reconstruction120. 

Hemimethylated DNA is seen to accumulate in the first phase of demethylation 

giving confidence that at least partial cellular lineage reconstruction may be 
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achievable through single-cell 5mC sequencing as the old DNA strand remains 

highly methylated compared to newer strands121. Additionally in another system, 

hemimethylated DNA has been found to be heritable and stable over many cell 

cycles, indicating it could be more than an intermediate and instead have a 

functional role in PGC development122. Cellular lineage reconstruction during PGC 

development would be key in systematically understanding differences in germ cell 

competency between PGCs. In addition, single-cell 5hmC sequencing will allows the 

detection of genomic localization of 5hmC, which has been seen to transiently 

accumulate in centromeric regions throughout PGC development120. In this system, 

it is crucial to detect 5hmC and 5mC from the same cell to fully appreciate the 

dynamics and role of cytosine modifications during PGC development, and their role 

on cellular identity. 

4. In vitro post implantation organoids and primordial germ cell like cells 

Complex studies of mouse post implantation and PGC development have been 

performed, but these same studies are infeasible in humans123. Morphological 

divergence from mice to humans make it challenging to fully leverage these studies 

for human health and disorders. To complicate matters further, some critical factors 

of PGC development in humans differ from those in mouse. One well studied 

example is the transcription factor Sox17. Sox17 is well regarded for its ability to 

promote endodermal differentiation in mouse embryonic stem cells, but it has also 

been found as a critical factor for human PGC formation but is not critical in mouse 

PGC formation124,125. With such complexity and limited human material availability, in 

vitro alternatives have been developed which use human stem cells and defined 

growth factors to induce gastrulation like behaviors and cellular differentiation126–132.  



 

 22 

Some of the gastrulating organoids developed at this point can induce primordial 

germ cell like cell (PGCLC) formation, and it has become common to create human 

PGCLCs from three-dimensional disorganized aggregates133. Unfortunately, human 

PGCLCs created in this manner can only be grown for a short time and only exhibit 

markers similar to early PGCs133. Our collaborators have developed techniques to 

grow these human PGCLCs for significantly longer, and studies performed in 

collaboration with the tools developed in this thesis have shown that PGCLCs grown 

for an extended period begin to passively demethylated similar to their in vivo 

counterparts134. While there are many obstacles remaining to produce fully 

developed human germ cells in in vitro, these new systems provide attainable 

materials for understanding human PGC development. 

C. Technological and equipment background 

1. Fluorescence-activated cell sorting 

Fluorescence-activated cell sorting (FACS) is a method that can be used to sort 

single cells into individual reaction wells and is described by Tomlinson et al135. 

Briefly, if desired, a single cell suspension is incubated with fluorescent dyes and/or 

fluorescently labeled antibodies. In a cell sorter, individual cells are encapsulated 

into liquid droplets and their fluorescence along with forward and side light scattering 

properties are measured. Based on these signatures from the droplet, it is either 

collected or not collected. This is done by electrically charging each droplet and 

passing them through a deflector plate. FACS is useful for rapidly sorting single cells 

into reaction wells but typically require starting with a large initial number of cells as 

many cells of interest are not captured. In cases where it is important to capture 
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each individual cell, for instance during early mouse embryogenesis, manual cell 

isolation is required. 

2. Next-generation sequencing technologies 

Due to Next-generation sequencing (NGS) technologies, the cost of sequencing 

a human genome is approximately $1,000136. During the infancy of NGS, many 

competing technologies for template amplification and base readout were common. 

A prevalent strategy was sequencing by synthesis (454 pyrosequencing, Ion Torrent, 

GeneReader, and Illumia), although sequencing by ligation (SOLid) was also 

used136. While all sequencing techniques have their merits and drawbacks, at this 

point, NGS has become synonymous with Illumina technology. In Illumina 

sequencing, individual single-stranded DNA templates containing the proper DNA 

sequences at both ends bind to a flow cell, where bridge amplification occurs 

allowing for many copies of the same template to be colocalized136. Specified 

primers along with fluorophore-labeled nucleotides are flown in and in each 

successive round one nucleotide is added, the flow cell is imaged, and then the 

fluorophores are cleaved and washed away, allowing the cycle to continue136. 

Sequencing of this type is the basis of all the methodologies derived in this 

dissertation. 

While dominate, Illumina technology does suffer from some drawbacks, 

specifically it can only produce high quality data for short stretches of DNA (<300 

bases) and requires short initial templates (<1000 bp). New third-generation 

sequencing techniques (SMRT and Nanopore sequencing) have been developed 

which resolve these two issues, but mass adoption has been slow due to initial lower 

throughput and less sequencing accuracy when compared to Illumina136,137. In 
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principle the techniques developed in this dissertation could be adapted for 

sequencing on these third-generation platforms, but it remains to be seen if such 

redesigns would be of practical use. 

D. Thesis goals and organization 

Much is still unknown about early mammalian development, including how 

epigenetics play a role in cell fate, pluripotency, and differentiation. This introduction 

has outlined some of what is known in these systems about the role of 5hmC, 5mC, 

and DNA accessibility, as well as the key involvement in some genes during this 

process. While the large number of technological advancements outlined in this 

introduction have provided key insights into early mammalian development and 

other biological systems, there is still a need for more advanced multiomics 

sequencing techniques which can be efficiently scaled in both the number of 

detected features and the number of cells investigated. This thesis describes the 

develop of new methods fitting this description, with the ability to sequencing 

combinations of 5hmC, 5mC, DNA accessibility and mRNA simultaneously from the 

same single cell. In Chapter 2, an enzymatic detection-based sequencing 

techniques for detecting 5mC (scMspJI-seq) in single cells and its application 

towards early mouse and human embryos is discussed. In Chapter 3, scMspJI-seq 

is expanded to also allow the detection of DNA accessibility and the transcriptome 

simultaneously from the same cell (scMAT-seq), and this technique is applied to 

investigate gastrulation and primordial germ cell development in human gastruloids. 

In Chapter 4, scMspJI is further built upon to provide a measurement of 5hmC and 

the transcriptome from the same single cell (scMTH-seq) to investigate in vitro 

primordial germ epigenetic reprograming and maturation. In Chapter 5, a novel 



 

 25 

technique to detect hemimethylated DNA as well as RNA transcripts from the same 

cell (scDyad&T-seq) is developed and intricacies of 5mC dynamics during changes 

in pluripotency is investigated. In Chapter 6, the goal of detecting of 5hmC, 5mC, 

DNA accessibility and mRNA simultaneously from the same single cell is achieved. 

In addition to this, in this chapter the limitations of the techniques described in this 

dissertation and future directions of the field are discussed. 
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2. Strand-specific single-cell methylomics reveals distinct modes 

of DNA demethylation dynamics during early mammalian 

development 

This chapter has been reproduced from its original publication in Nature 

Communications with differences65. 

A. Introduction 

In mammalian systems, DNA methylation (5-methylcytosine or 5mC) is a key 

epigenetic modification that is typically stably inherited from mother to daughter 

cells138. This property of 5mC plays an important role in facilitating the propagation 

of cellular identity through cell divisions and restricting the developmental potential of 

terminally differentiated cells138,139. Consequently, during preimplantation 

mammalian development, DNA methylation patterns on the terminally differentiated 

paternal sperm and maternal egg genomes are erased post-fertilization at a 

genome-wide scale to revert cellular memory towards an undifferentiated state in the 

blastocyst140. Therefore, understanding the mechanisms underlying global DNA 

demethylation dynamics is central to understanding the emergence of pluripotent 

cells during early development. 

 Removal of 5mC can proceed through two alternate mechanisms – passive 

and active demethylation. Methylated cytosines, within a CpG dinucleotide context 

are typically copied over to the newly synthesized DNA strands during genome 

replication by the maintenance methyltransferase, DNMT1141. Passive demethylation 

relies on loss of 5mC through replicative dilution, in which inhibition of DNA 

methylation maintenance results in a reduction of 5mC levels after cell division and 
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can be detected through asymmetric levels of 5mC on the two DNA strands of a 

chromosome. Alternatively, active mechanisms of 5mC erasure occur via conversion 

of 5mC to 5-hydroxymethylcytosine (5hmC) and other oxidized derivatives, which 

are not recognized by the DNA maintenance methylation machinery and are 

subsequently removed by base-excision repair pathways30,31,142. While early 

immunofluorescence-based studies revealed that the paternal genome undergoes 

active demethylation through conversion to 5hmC in the zygote, the maternal 

genome was presumed to undergo passive demethylation through the lack of 

DNMT1 activity during replication143–146. Advances in biochemistry, next-generation 

sequencing and mass spectroscopy based studies improved upon this coarse 

quantification of methylation dynamics to show that the orthogonal regulation of 

demethylation by active and passive mechanisms for the two parental genomes was 

not as distinct as suggested by these early studies. For example, it was later shown 

that while DNMT1 is mostly cytoplasmic during these early stages of development, 

low levels of a Dnmt1 isoform, DNMT1s, together with UHRF1 is observed in the 

nucleus, raising the possibility that 5mC is maintained on the maternal 

genome103,117,147–152. However, the conclusions in these recent studies were partly 

based on bulk bisulfite-sequencing based methods that could not directly distinguish 

between active vs. passive demethylation, and therefore the relative contribution of 

these two mechanisms to 5mC reprogramming remains poorly understood.  

B. Results 

1. Strand-specific quantification of 5mC using scMspJI-seq 

To distinguish between active and passive mechanisms of demethylation 

requires strand-specific detection of 5mC in single cells. While asymmetric levels of 



 

 28 

5mC between two DNA strands of a chromosome would indicate passive 

demethylation, the global loss of methylation coupled with symmetric levels of 5mC 

between two DNA strands would indirectly imply active demethylation (Fig. 2.1a)153. 

Therefore, to identify the mechanisms regulating DNA demethylation dynamics, we 

developed a new method called scMspJI-seq to strand-specifically quantify 5mC on 

a genome-wide scale in single cells. Single cells are isolated into 384-well plates by 

fluorescence activated cell sorting or manual pipetting. All downstream steps are 

subsequently performed using a liquid-handling platform (Nanodrop II, BioNex 

Solutions). Following cell lysis and protease treatment to remove chromatin, 5hmC 

sites in genomic DNA (gDNA) are glucosylated using T4 phage β-

glucosyltransferase (T4-βGT) (Fig. 2.1b). This modification blocks downstream 

detection of 5hmC and therefore, enables detection of only 5mC in scMspJI-seq. 

Next, the restriction enzyme MspJI is added to the reaction mixture that recognizes 

mCNNR sites in the genome and creates double-stranded DNA breaks 16 bp 

downstream of the methylated cytosines leaving a 4-nucleotide 5’ overhang64. 

Thereafter, double-stranded DNA adapters containing a 4-nucleotide 5’ overhang 

are ligated to the fragmented gDNA molecules. These double-stranded DNA 

adapters, similar in design to those previously developed by us, contain a cell-

specific barcode, a random 3 bp unique molecule identifier (UMI) to label individual 

5mC sites on different alleles, a 5’ Illumina adapter and a T7 promoter34,154. The 

ligated molecules are then amplified by in vitro transcription and used to prepare 

Illumina libraries as described previously, enabling the processing of hundreds to 

thousands of single cells per day (Fig. 2.1b)34,154. 
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Figure 2.1 | Schematic of scMspJI-seq.  

(a) DNA methylation maintenance can be probed using strand-specific quantification of 5mC in 
single cells. Cells displaying symmetric levels of 5mCpG on both DNA strands of a chromosome 
coupled with a global temporal loss of 5mCpG indicates active demethylation whereas loss of 
methylation maintenance with asymmetric levels of 5mCpG between the two DNA strands indicates 
passive demethylation. (b) Single cells isolated by FACS or manual pipetting are deposited into 384-
well plates and lysed. Following protease treatment to strip off chromatin and blocking of 5hmC sites 
by glucosylation, MspJI is used to recognize 5mC sites and cut gDNA 16 bp downstream of the 
methylated cytosine. After ligating double-stranded adapters – containing a cell-specific barcode (CB, 
pink), a random 3 bp unique molecule identifier to label individual 5mC sites on different alleles (UMI, 
green), 5’ Illumina adapter (IL, blue) and T7 promoter (T7, gray) – to the fragmented gDNA, 
molecules from all single cells are pooled and amplified by in vitro transcription. The amplified RNA 
molecules are used to prepare scMspJI-seq libraries and sequenced on an Illumina platform. 

 To validate the method, we first applied scMspJI-seq to single E14TG2a 

(E14) mouse embryonic stem cells (mES) cells. As reported previously, we found 
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that MspJI cuts gDNA 16 bp downstream of the methylated cytosine (Supplementary 

Fig. 2.1)64. We detected between 212,000 to 977,000 unique 5mC sites per cell, with 

a median of 484,000 5mC sites per cell (Supplementary Fig. 2.2). Further, we found 

that 97.2% of the 5mCpG sites detected by scMspJI-seq in single cells overlapped 

with methylated sites observed in bulk bisulfite sequencing of E14 gDNA 

(Supplementary Fig. 2.3a). Similarly, we found that averaged single-cell data from 

scMspJI-seq correlates well with the bulk bisulfite methylome (Pearson r = 0.84) 

(Supplementary Fig. 2.3b)155. Furthermore, while we observed that the genome-wide 

distribution of 5mC over different genomic elements in scMspJI-seq was similar to 

that observed in bisulfite sequencing, we also found that scMspJI-seq shows a slight 

preference for detection of 5mC sites within genomic regions that have a lower 

density of CpG sites (Supplementary Fig. 2.4 and 2.5). This possibly occurs as our 

method is dependent on the digestion of the genome around methylated cytosines, 

reducing the likelihood of detecting closely spaced 5mC sites. However, both 

scMspJI-seq and bisulfite sequencing captured similar genome-wide landscapes of 

5mC at a variety of genomic elements. For example, we observed similar gene body 

methylome profiles as well as the expected hypomethylation of CpG islands (CGI) 

and transcription start sites (TSS) using both methods (Supplementary Fig. 2.6). In 

addition, compared to single-cell bisulfite sequencing that detects a combination of 

5mC and 5hmC sites, a distinct feature of scMspJI-seq is that it can identify only 

5mC in the genome by blocking detection of 5hmC sites using T4-βGT. By 

combining scMspJI-seq data with scAba-seq results, we were able to estimate the 

false-positive detection rate of 5hmC to be around 1.1% (Supplementary Fig. 2.7)34. 

Most importantly, due to the maintenance activity of DNMT1 in E14 cells, we 
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observed similar levels of 5mC on both DNA strands of a chromosome in single 

cells, as expected (Supplementary Fig. 2.8a). To quantify the strand-specific 

distribution of 5mCpG on each chromosome of a single cell, we defined a metric 

called as strand bias (denoted by f), which is the ratio of the number of 5mCpG sites 

detected on the plus strand divided by the total number of 5mCpG sites detected on 

both the plus and minus strands. Finally, to ensure that scMspJI-seq can detect 

differences in 5mCpG distribution between the two strands, and to confirm that the 

observed strand bias of 0.5 in E14 cells results from the maintenance activity of 

DNMT1, we used CRISPR-Cas9 to knockout Dnmt1. We observed a dramatic 

increase in strand bias in E14 cells without Dnmt1, strongly suggesting that our new 

technology provides a sensitive readout of strand-specific methylation and the ability 

to distinguish between passive and active demethylation (Supplementary Fig. 2.8b). 

2. mES cells display heterogeneity in strand-specific 5mC  

During preimplantation development, the maternal and paternal genomes display 

dramatically different 5mC erasure dynamics, and therefore we next wanted to test 

our ability to quantify strand-specific 5mC at the resolution of individual alleles. As 

the single-cell measurements in E14 cells did not provide allele-specific detection of 

5mC for each chromosome, we applied scMspJI-seq to hybrid serum grown mES 

cells (CAST/EiJ x 129/Sv background)154. While the majority of cells displayed 

methylation maintenance as expected, we surprisingly observed a small population 

of cells that showed strong 5mC strand bias (Fig. 2.2). For example, cell 562 

displayed similar levels of 5mCpG on the two DNA strands of chromosomes across 

both alleles (Fig. 2.2a), whereas cell 216 showed substantially different levels of 

5mC on each DNA strand of a chromosome (Fig. 2.2b). Pearson correlation 
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coefficient (r) between the plus and minus strands of individual cells show that while 

a majority of cells displayed high correlation, a small subset of cells were weakly 

correlated, suggesting loss of methylation maintenance in these cells (Fig. 2.2c). 

Allele-specific 5mCpG strand bias further revealed the existence of two 

epigenetically distinct population of mES cells (Fig. 2.2d). Taken together with the 

E14 cells, these results highlight that in the absence of allele-specific 

measurements, strand-specific 5mC quantification is averaged across both alleles, 

potentially obscuring a detailed view of the methylation status of the genome. 

Finally, we find that these two distinct 5mC strand bias patterns are also observed at 

a sub-chromosomal resolution, suggesting this is genome-wide phenomenon that 

potentially arises from differential methylation maintenance between individual mES 

cells (Fig. 2.2e). 
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Figure 2.2 | Cell-to-cell heterogeneity in genome-wide strand-specific methylome landscapes 
in mES cells. 

(a) An example of a mES cell (cell #562) processed by scMspJI-seq shows similar amounts of 
5mCpG on both the plus and the minus strand of each chromosome. (b) Another mES cell (cell #216) 
with asymmetric amounts of 5mCpG between the plus and the minus strand of each chromosome. (c) 
Histogram of Pearson correlations between the 5mCpG levels on the plus and the minus stand over 
all chromosomes in a cell show that while a majority of cells have similar amounts of 5mCpG on both 
strands (high Pearson correlation), a small fraction of cells display unequal levels of 5mCpG between 
the two strands of each chromosome (low Pearson correlation). (d) Ordered heatmap showing 
5mCpG strand bias per chromosome for the maternal and paternal alleles in individual mES cells. (e) 
5mCpG strand bias of cell #526 (top) and cell #216 (bottom) for 10 MB bins along the first 9 
chromosomes are shown with statistically significant (P < 0.05, likelihood ratio test) strand biases 
towards the plus and minus strands shown in red and blue, respectively. Strand biases of bins that 
are not statistically significant are shown in gray (P > 0.05, likelihood ratio test). 
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 To validate this cell-to-cell heterogeneity in 5mC strand bias, we reanalyzed 

data from a recent study that quantified 5mC in single cells using bisulfite 

sequencing, a method that can potentially also be used to infer strand-specific 

5mC42,92. In agreement with our findings using scMspJI-seq, reanalysis of the 

published dataset also revealed hybrid mES cells with similar levels of 5mC on the 

plus and minus strands, and a small fraction of cells with substantially different levels 

of 5mC on the two strands of a chromosome (Fig. 2.3). These results validate our 

previous observation of two distinct mES cell populations with and without 5mC 

strand bias (Fig. 2.2). 

 

Figure 2.3 | Variability in strand-specific 5mCpG profiles in mES cells.  

(a) A representative mES cell (cell #23) with similar amounts of 5mCpG within 10 MB bins on 
both DNA strands. (b) Another representative mES cell (cell #22) with unequal amounts of 5mCpG 
between the two DNA strands for 10 MB bins. (c) Histogram of Pearson correlations between the 
5mCpG levels on the plus and the minus stand over the entire genome (10 MB) in a cell. (d) Ordered 
heatmap showing 5mCpG strand bias per chromosome for maternal and paternal alleles in individual 
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mES cells (n=72). The results in this figure is based on strand-specific reanalysis of single-cell 
bisulfite sequencing data obtained from previous work by Clark et al.92.  

3. Preimplantation embryos display distinct modes of demethylation dynamics 

After establishing this new method, we next used scMspJI-seq to gain a deeper 

understanding of the 5mC erasure dynamics during preimplantation mouse 

development as the mechanistic details regulating this genome-wide reprogramming 

remains unclear from previous work. Early immunofluorescence-based studies 

showed that 5mC marks on the paternal genome are converted to 5hmC in the 

zygote143–146. As 5hmC is not maintained through cell division and can be further 

oxidized to be removed by cytidine deaminase and base excision repair pathways, 

the paternal genome is effectively demethylated from the 1-cell to early blastocyst 

stage (approximately E3.5 or 32-cell stage) of development142. These same studies 

also reported that the maternal genome retains 5mC in the zygote143–146. This 

observation together with reports that DNMT1 is primarily cytoplasmic during these 

early cell divisions, indirectly suggested that the maternal genome is passively 

demethylated through a lack of maintenance methylation156–159. However, later 

studies showed the existence of two isoforms of Dnmt1, with the lowly abundant 

DNMT1s isoform present in the nucleus of blastomeres160–162. Thus, it remains 

unclear the extent to which the maternal genome is passively demethylated during 

these early stages. Further, more recently, bulk 5mC and 5hmC sequencing during 

these early stages have shown that the maternal genome also carries 5hmC marks, 

suggesting that the maternal genome also undergoes partial active demethylation117. 

As the mechanisms underlying this critical process of 5mC erasure during embryonic 
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development remains unclear, we used strand-specific detection of 5mC in single 

cells to probe the dynamics of demethylation more closely. 

 We performed scMspJI-seq on hybrid mouse embryos (CAST/EiJ x C57BL/6 

background) from the 2- to 32-cell stage of development. In contrast to previous 

studies that suggested passive demethylation of the maternal genome due to 

cytoplasmic localization of DNMT1, experiments in 2-cell hybrid mouse embryos 

surprisingly revealed that 5mCpG on the maternal genome shows a tight strand bias 

distribution centered around 0.5, implying similar amounts of the mark of both DNA 

strands and that DNMT1-mediated methylation maintenance is active at this stage 

(Fig. 2.4a and Supplementary Fig. 2.9a). To ensure that this lack of strand bias in 

the maternal genome at the 2-cell stage is not a technical artifact or a consequence 

of high de novo methylation activity of DNMT3a/3b, we quantified the levels of 

5mCpA, the most abundant non-CpG methylation, in these cells. Non-CpG 

methylation is not a substrate for DNMT1 and is deposited on the genome as a 

result of the activity of the de novo methyltransferases, DNMT3a and 

DNMT3b121,163,164. In the 2-cell embryos, we found that 5mCpA on the maternal 

genome showed a bimodal pattern of strand bias distribution, suggesting that the 

lack of strand bias observed for 5mCpG is possibly a result of the maintenance 

activity of DNMT1 and not a consequence of high de novo methylation rates by 

DNMT3a/3b (Fig. 2.4b and Supplementary Fig. 2.9b). Further, we have previously 

shown that bimodal strand bias distributions for 5hmC in 2-cell mouse embryos 

arises from the slow kinetics of Tet activity and can be used to identify sister 

cells34,35. This is because 5hmC is not maintained through cell divisions and new 

DNA strands have lower levels of 5hmC than older strands, resulting in sister cells 
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exhibiting anti-correlated strand bias patterns over all the chromosomes in a cell. 

Similarly, as 5mCpA is not maintained through cell division, we found that the strong 

anti-correlation in 5mCpA between chromosomes of single cells can be used to 

identify sister cells (Supplementary Fig. 2.9c,d). These results further imply that at 

the 2-cell stage of development the kinetics of de novo methylation by DNMT3a and 

DNMT3b is slow (Fig. 2.4b). Taken together, these experiments provide preliminary 

evidence that the similar levels of 5mCpG found on both DNA strands of 

chromosomes in 2-cell blastomeres is a result of DNMT1 maintenance activity. 

 Quantifying the dynamics of demethylation beyond the 2-cell stage, we 

observed for both the maternal and paternal genomes that a majority of 

chromosomes displayed no significant 5mCpG strand bias up to the 16-cell stage 

(Fig. 2.4a and Supplementary Fig. 2.9a). Surprisingly, beyond the 16-cell stage, we 

observed a widening of the 5mCpG strand bias distribution, suggesting reduced 

DNMT1 maintenance activity (Fig. 2.4a and Supplementary Fig. 2.9a). These 

experiments suggest two distinct phases during preimplantation mouse development 

– an initial period of DNMT1-mediated maintenance methylation followed by passive 

demethylation. Finally, we observed that the 5mCpG strand bias distribution at the 

32-cell stage is trimodal. Performing k-means clustering on the 5mCpG strand bias 

in these single cells identified two distinct groups of cells as inferred by the mean 

silhouette scores – a population with no strand bias and another population with a 

bimodal strand bias distribution (Fig. 2.4c,d). Further, within the bimodal population, 

we observed pairs of cells for which all chromosomes were strongly anti-correlated, 

suggesting that these pairs are sister cells (Fig. 2.4e and Supplementary Fig. 2.9e). 

These observations reveal the existence of significant cell-to-cell heterogeneity in 
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the genome-wide methylome landscapes of cells within the early blastocyst. Taken 

together, these results suggest maintenance methylation is active till the 16-cell 

stage and that from the 16- to 32-cell stage, a fraction of cells within the embryo 

show strong 5mCpG strand bias and undergo passive demethylation. 

 Finally, to conclusively demonstrate that the absence of 5mCpG strand bias 

up to the 16-cell stage arises from DNMT1 mediated maintenance methylation, we 

performed bulk hairpin bisulfite sequencing on non-hybrid preimplantation mouse 

embryos. A hallmark of DNMT1 mediated methylation is that both cytosines in a 

CpG dyad are symmetrically methylated and therefore we performed bulk hairpin 

bisulfite sequencing that enables interrogation of the methylation status of CpG 

dyads165. We observed that the fraction of symmetrically methylated CpG dyads in 

the genome is high up to the 16-cell stage, with a dramatic reduction at the 32-cell 

stage (that is matched by an increase in hemi-methylated CpG dyads at this stage), 

thereby demonstrating that maintenance methylation is active initially and is followed 

by passive demethylation at the 32-cell stage (Fig. 2.4f). 
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Figure 2.4 | DNA demethylation dynamics in preimplantation mouse embryos. 

(a) Violin plots of 5mCpG strand bias for both the maternal (left) and paternal (right) genome 
show a tight distribution centered around f = 0.5 till the 16-cell stage and a wider distribution at the 32-
cell stage of development (n=332 single cells from 42 embryos). (b) For the maternal genome (left), 
5mCpA strand bias show a bimodal distribution at the 2-cell stage that moves towards a tight 
unimodal distribution by the 32-cell stage of development. The paternal genome (right) shows a 
unimodal distribution centered at f = 0.5 throughout preimplantation development till the 32-cell stage 
(n=332 single cells from 42 embryos). In panels a and b, the white dot indicates the median, the black 
bar indicates the first and third quartile, and the whiskers indicate the minima and maxima. (c) t-SNE 
map displaying 2 cluster of single cells. These clusters were identified by k-means clustering on the 
5mCpG strand bias for all paternal chromosomes (left). The right panel shows the strand bias 
variance within each cell superimposed on the t-SNE map. (d) The two clusters shown in panel c 
display dramatically different 5mCpG strand bias distributions – one cluster (left) shows a unimodal 
distribution while the other cluster (right) shows a bimodal distribution implying loss of methylation 
maintenance. (e) Strand bias of chromosomes between anti-correlated cell pairs suggesting that 
these pairs are sister cells. (f) Bulk hairpin bisulfite sequencing reveals that the fraction of CpG dyads 
that are symmetrically methylated drops substantially from the 16- to 32-cell stage of development 
(n=2 biologically independent bulk samples). Error bars represent the genome-wide standard 
deviation from the mean methylation maintenance. 

We finally extended scMspJI-seq to explore the dynamics of global 

demethylation in human preimplantation embryos, ranging from developmental day 

2 to 7. Studies in human preimplantation embryos have shown temporally slower, 

yet similar developmental dynamics to mouse embryos166. Despite lacking allelic 

information, our results suggest that the mouse and human 5mCpG demethylation 

dynamics are similar, with an initial phase till the 16-cell stage displaying a tight 

5mCpG strand bias distribution centered around 0.5, followed by an increase in 

strand bias in a small fraction of cells from the 32- to 128-cell stage (Fig. 2.5a and 

Supplementary Fig. 2.10a). This is consistent with previous immunostainings in 

human preimplantation embryos that show a decrease in DNMT1 protein levels 

between Day 5 and Day 6 blastocysts167,168. Further, 5mCpA strand-bias 

distributions of human preimplantation embryos appear to be similar to the trend 

observed in mouse embryos with a majority of cells till the 16-cell stage displaying 

5mCpA strand bias (Fig. 2.5b and Supplementary Fig. 2.10b). Finally, upon closer 
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inspection of 5mCpA strand bias per cell, we observed three sister pairs in Day 3 

embryos with a mirrored pattern of strand bias along the entire genome 

(Supplementary Fig. 2.10c). 

 

Figure 2.5 | DNA demethylation dynamics in preimplantation human embryos. 

(a) Violin plots showing 5mCpG strand bias from the 4- to 128-cell stage of human 
embryogenesis. In the absence of allele specific information, the strand bias represents an average 
over both alleles. Similar to mouse embryos, human embryos initially show no 5mCpG strand bias 
followed by an increase at the 16-cell stage of embryogenesis. (b) Violin plots showing 5mCpA strand 
bias from the 4- to 128-cell stage of human embryogenesis. 5mCpA strand bias dynamics in human 
embryos is similar to that observed in mouse embryos in Figure 2.4b. In these panels, the white dot 
indicates the median, the black bar indicates the first and third quartile, and the whiskers indicate the 
minima and maxima. 

C. Conclusion 

 In summary, we have developed a new cost effective and easy to implement 

strand-specific method that enables us to detect 5mC on a genome-wide scale in 

single cells. When applied to serum grown mES cells, we found substantial cell-to-

cell variability in strand-specific 5mC landscapes, revealing the existence of 

chromosome-wide heterogeneity in the methylome of mES cells. Reanalysis of a 

previous single-cell bisulfite sequencing study further confirmed these results92. 

Furthermore, in addition to exploring strand-specific 5mC heterogeneity in single 
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cells, scMspJI-seq also enables systematic investigation of the mechanisms 

regulating demethylation dynamics. In preimplantation mouse embryos, we 

surprisingly discovered two distinct phases of methylation dynamics – an initial 

phase till the 16-cell stage where methylation maintenance is active, followed by loss 

of maintenance in a fraction of cells within the early blastocyst at the 32-cell stage. 

These results further highlight the presence of strand-specific 5mC heterogeneity 

between individual cells during early mammalian development. In the future, we plan 

to explore how this genome-wide heterogeneity in the methylome regulates lineage 

commitment during development. Finally, despite the reduced resolution due to lack 

of allelic information, we found similar demethylation dynamics in preimplantation 

human embryos. Thus, scMspJI-seq presents a new single-cell strand-specific 

technology that potentially can be used to probe the dynamics of methylation during 

development, cancer progression, aging and in other biological systems.  
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D. Supplementary figures 

 

Supplementary Figure 2.1 | Nucleotide composition around methylated cytosine in scMspJI-
seq and bisulfite sequencing.  

(a) Panel shows the nucleotide composition that was observed downstream of the MspJI cut site. 
In agreement with previous reports, MspJI was found to cut gDNA 16 bp downstream of the cut site64. 
In scMspJI-seq, an average of 44.0% (with a range of 31.0% to 59.9% in individual cells) of the 
methylated cytosines were found in a non-CpG context. (b) Analysis of nucleotide composition 
downstream of the methylated site in previously published single-cell whole-genome bisulfite 
sequencing52. In the bisulfite sequencing data, an average of 31.5% (with a range of 23.4% to 53.1% 
in individual cells) of the methylated cytosines were found in a non-CpG context. Both scMspJI-seq 
and bisulfite sequencing data are for E14 mESCs. 
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Supplementary Figure 2.2 | Number of unique 5mC sites detected in scMspJI-seq.  

The figure shows the number of unique 5mC sites detected per cell as a function of the 
sequencing depth. The number of unique 5mC sites detected per cell ranged from 212,000 to 
977,000, with a median of 484,000 5mC sites per cell. The number of unique 5mC sites detected per 
cell is increasing monotonically with the sequencing depth, suggesting that more unique sites could 
be detected per cell by sequencing the Illumina libraries deeper. The figure shows data from E14 
mESCs. 

 

Supplementary Figure 2.3 | Comparison of scMspJI-seq to bulk bisulfite sequencing.  

(a) Venn diagram shows that 97.2% of the 5mCpG sites detected in single E14 cells by scMspJI-
seq is also found in bulk bisulfite sequencing of E14 gDNA. (b) Number of DNA methylation marks 
detected within 1 MB bins in scMspJI-seq correlates well with the bulk bisulfite sequencing 
methylome (Pearson r = 0.84). 
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Supplementary Figure 2.4 | Distribution of 5mC over different genomic elements.  

(a) Pie chart showing the distribution of 5mC sites over promoters, 5’ UTRs, exons, introns, 3’ 
UTRs, and intergenic regions in scMspJI-seq. (b) Pie chart showing the distribution of 5mC sites over 
the same genomic elements in whole-genome bisulfite sequencing52. The figure shows data from E14 
mESCs. 

 

Supplementary Figure 2.5 | Distribution of 5mCpG sites over genomic regions of varying CpG 
density. 

The red curve shows the distribution of CpG sites over 5 kb bins of the mouse genome. The black 
and blue curves show the distribution of 5mCpG sites that are detected in genomic bins of different 
CpG densities in scMspJI-seq and scWGBS, respectively52. scMspJI-seq is slightly biased towards 
the detection of 5mCpG within genomic regions that have lower CpG density. The figure shows data 
from E14 mESCs. 
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Supplementary Figure 2.6 | Genome-wide DNA methylation landscapes. 

(a,b) Panels showing hypomethylation at CpG islands in scMspJI-seq and scWGBS, 
respectively52. (c,d) Panels showing hypomethylation at transcription start sites (TSS) in scMspJI-seq 
and scWGBS, respectively. (e,f) Gene body DNA methylation profiles obtained from scMspJI-seq and 
scWGBS, respectively. Shaded red regions indicate standard deviations in the distribution of 5mC. 
The figure shows data from E14 mESCs. 
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Supplementary Figure 2.7 | False positive detection rate of 5hmC in scMspJI-seq.  

The panel shows that the variance of the simulated strand bias distribution increases with higher 
rates of 5hmC false positive detection in scMspJI-seq (blue line). The dashed black line indicates the 
experimental strand bias variance obtained from applying scMspJI-seq to E14 mESCs. Data from 
scMspJI-seq and scAba-seq were combined to quantify the false positive detection rate of 5hmC in 
scMspJI-seq34. For different efficiencies of 5mC vs. 5hmC detection, a mathematical model was built 
where 5mC and 5hmC sites were drawn from a binomial distribution and distributed on the two DNA 
strands of a chromosome using the strand bias distributions from scMspJI-seq and scAba-seq34. By 
comparing the variance of the experimental strand bias distribution to that obtained from the 
simulations, the false-positive detection rate of 5hmC was estimated to be around 1.1%. 

 

Supplementary Figure 2.8 | Strand-specific detection of 5mC in single cells using scMspJI-
seq. 

(a) Chromosomes in E14 cells show a tight strand bias distribution centered around 0.5. (b) 
CRISPR-Cas9 mediated knockout of Dnmt1 in E14 cells results in a dramatic increase in the width of 
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the strand bias distribution indicating loss of maintenance methylation and the ability of scMspJI-seq 
to quantify strand-specific 5mC in single cells. 

 

Supplementary Figure 2.9 | DNA demethylation dynamics in preimplantation mouse embryos. 

(a) Heatmap shows 5mCpG strand bias for all maternal and paternal chromosomes from the 2- to 
32-cell stage of development. The data shows a dramatic increase in 5mCpG strand bias from the 
16- to 32-cell stage of development. (b) Heatmap shows 5mCpA strand bias for all maternal and 
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paternal chromosomes from the 2- to 32-cell stage of development. For a majority of cells at the 2- 
and 4-cell stage, the maternal genome displays 5mCpA strand bias that deviates from 0.5. (c) 
Heatmap shows Pearson correlation for the maternal 5mCpA strand bias between pairs of cells at the 
2-cell stage of development. (d) Pairs of cells in c that display strongly anticorrelated 5mCpA strand 
bias are shown here, suggesting that we can use this method to identify sister cells at the 2-cell stage 
of development. (e) Heatmap shows Pearson correlation for the paternal 5mCpG strand bias between 
pairs of cells (within the bimodal strand bias distribution) at the 32-cell stage of development. Strongly 
negative Pearson correlations indicate that we can identify sister cells within 32-cell stage embryos. 

 

Supplementary Figure 2.10 | DNA demethylation dynamics in preimplantation human embryos.  

(a) Heatmap shows 5mCpG strand bias for all chromosomes from the 4- to 128-cell stage of 
human development. (b) Heatmap shows 5mCpA strand bias for all chromosomes from the 4- to 128-
cell stage of human development. 5mCpA strand bias deviates from 0.5 for a large number of 
chromosomes till the 16-cell stage. (c) An example of a pair of cells that display strongly anti-
correlated 5mCpA strand bias along the entire genome. 
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3. Integrated single-cell sequencing reveals principles of epigenetic 

regulation of human gastrulation and germ cell development in a 

3D organoid model  

A. Introduction 

Regulation of gene expression in mammalian systems is tightly regulated by 

several layers of the epigenome that ensure precise cell type specific programs97. 

Therefore, mapping the genome-wide epigenetic landscape of critical features such 

as DNA accessibility and DNA methylation (5-methycytosine or 5mC) is central to 

understanding how these regulatory factors tune complex cellular phenotypes in 

dynamic systems such as early post-implantation mammalian development. While 

the role of epigenetic reprogramming in mouse gastrulation has been extensively 

studied, it remains unclear how reorganization of DNA accessibility and 5mC are 

coupled with the emergence of cell types during human gastrulation123. Further, 

most current methods for quantifying these epigenetic features rely on the ability to 

isolate the desired cell type at high purity that is achieved either using cell type 

specific fluorescent reporters in genetically modified organisms or through access to 

high-quality cell type specific antibodies. However, the former approach cannot be 

extrapolated to humans, and many cell types also lack well-defined and unique cell 

surface markers and/or high-quality antibodies. Furthermore, antibodies can fail to 

capture transient cell states that do not present the necessary antigen, and thus 

these approaches are not ideally suited for studying complex systems like early 

human embryogenesis, that is characterized by a series of rapidly transitioning cell 

states169. 
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B. Results 

1. Tri-omic quantification using scMAT-seq in hESCs 

To overcome these limitations, we present a single-cell multiomics method 

scMAT-seq to simultaneously quantify DNA methylation, DNA accessibility, and the 

transcriptome from the same cell, thereby providing a marker-free approach to map 

the epigenetic landscape during human gastrulation using an organoid model of 

development. While two recent methods have been developed to make all three 

measurements from the same cell, these techniques rely on the physical separation 

of DNA and RNA prior to amplification, resulting in low throughput and a potential 

loss of material, limiting its usefulness92,123,170. To resolve this, single cells in scMAT-

seq are sorted into 384-well plates and the following two steps are performed 

simultaneously – mRNA is reverse transcribed using a poly-T primer with an 

overhang containing a cell- and mRNA-specific barcode, a unique molecule identifier 

(UMI), the 5’ Illumina adapter and a T7 promoter; and the methyltransferase M.CviPI 

is used to methylate cytosines in a GpC context within open chromatin (Fig. 3.1a). 

Performing these two steps simultaneously is critical to minimize mRNA degradation 

and to ensure that the in vivo state of chromatin can be captured immediately after 

cell lysis. Next, second strand synthesis is used to generate cDNA, chromatin is 

stripped off gDNA using proteases, and 5-hydroxymethycytosine (5hmC) sites in the 

genome are glucosylated to block downstream detection by the restriction enzyme 

MspJI. Thereafter, MspJI is added, which recognizes methylated cytosines in the 

genome and creates double-stranded DNA breaks that are ligated to adapters 

containing a cell- and gDNA-specific barcode, a UMI, the 5’ Illumina adapter and a 

T7 promoter65. Following this step, all molecules are tagged with cell- and molecule-
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of-origin-specific barcodes, and contain a T7 promoter, allowing samples to be 

pooled and amplified by in vitro transcription (IVT). As described previously, Illumina 

libraries are then prepared, enabling simultaneous quantification of mRNA, 5mC and 

DNA accessibility from the same cell without requiring physical separation of the 

nucleic acids34,65,171. Finally, depending on the context of the methylated cytosine in 

the sequencing data, gDNA reads are either assigned to the methylome (CpG 

context) or DNA accessibility (GpC context) dataset for each individual 

cell92,123,170,172.  

To successfully implement scMAT-seq, we optimized two important steps of this 

method. First, we evaluated different buffer conditions (1x first strand buffer, 1x GC 

buffer, or 50:50 ratio of each) to ensure that the simultaneous reverse transcription 

of mRNA and marking of open chromatin by M.CviPI is efficient. While the number of 

transcripts and the total number of methylated cytosines detected were similar 

across all buffer conditions (Supplementary Fig. 3.1a-c), we found that the ratio of 

exogenous to endogenous methylated cytosines was significantly lower in the 1x 

first strand buffer, indicating inhibition of M.CviPI in this buffer (Supplementary Fig. 

3.1d). Therefore, we used a 50:50 buffer ratio for all further experiments 

(Supplementary Fig. 3.1e). Next, a consequence of making three different 

measurements from the same cell without physical separation of nucleic acids prior 

to amplification is that detection of the less abundant type of molecule requires 

sequencing the libraries to higher depths, thereby increasing the cost of the method. 

For example, in our initial implementation of scMAT-seq, only 4.2% of molecules in 

the library derived from mRNA, requiring higher sequencing depths for cell type 

identification (Supplementary Fig. 3.2a), a limitation we also observed in our 
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previous single-cell multiomics measurements154. To overcome this, we developed 

an mRNA enrichment protocol after IVT where poly-A mRNA derived amplified RNA 

molecules were selectively separated from other molecules using biotinylated poly-A 

primers and streptavidin coated magnetic beads (Fig. 3.1a). To maximize mRNA 

enrichment, we tested four commercially available beads, and found that C1 and 

M270 beads provided the best enrichment, with a significant increase in the number 

of transcripts and genes detected (Supplementary Fig. 3.2b-d). Additionally, we 

found that library preparation could be performed directly on beads without 

impacting efficiency, thereby simplifying the enrichment protocol (Supplementary 

Fig. 3.2e,f). After enrichment, we observed a 9.4 fold increase in mRNA-derived 

molecules (40.0%), along with a significant increase in gene detection at levels 

comparable to other single-cell mRNA sequencing techniques (Fig. 3.1b and 

Supplementary Fig. 3.2a)171. Finally, the transcriptome obtained after enrichment 

was highly correlated (Pearson’s r = 0.95) to the non-enriched transcriptome, 

showing that the mRNA enrichment protocol does not introduce biases in quantifying 

gene expression (Supplementary Fig. 3.2g). 

As proof-of-concept, we first applied scMAT-seq to H9 human embryonic stem 

cells (hESC). Comparison with previously published DNase I hypersensitivity sites 

(DHS) showed that, as expected, more accessible sites were associated with larger 

peaks and greater domain spreading in scMAT-seq (Fig. 3.1c)173. Similarly, results 

from scMAT-seq displayed a highly monotonic relationship with DHS scores 

(Spearman’s p = 0.99), showing that scMAT-seq faithfully reproduces a widely used 

technique for profiling DNA accessibility (Supplementary Fig. 3.3a). Furthermore, 

while DNA accessibility profiling is typically performed on fresh samples to maintain 
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chromatin structure, we tested if scMAT-seq could be extended to frozen samples. 

When compared to freshly processed cells, we found that sorted cells stored at -

80°C produced similar genome-wide profiles of DNA accessibility at DHS and 

transcription start sites (TSS), demonstrating that scMAT-seq can be applied to a 

larger spectrum of cryopreserved samples (Supplementary Fig. 3.4a-c). Next, we 

validated how accurately scMAT-seq captures the methylome of single cells. 

scMAT-seq builds upon a method we recently developed (scMspJI-seq), where we 

showed that scMspJI-seq is an alternate approach to single-cell bisulfite 

sequencing65. As with scMspJI-seq, we find that greater than 97% of the 5mC sites 

detected by scMAT-seq overlapped with published bulk bisulfite sequencing 

(Supplementary Fig. 3.3b)174. In addition, we observed global demethylation at CpG 

islands (CGI), consistent with hypomethylation at most CGIs within mammalian 

genomes (Fig. 3.1d)175. To verify that scMAT-seq can capture the relationship 

between DNA accessibility and DNA methylation, and its impact on gene 

expression, we segregated genes based on their expression level to find that 

increasing levels of gene expression are associated with more open chromatin and 

reduced DNA methylation at TSSs (Fig. 3.1e). Interestingly, when compared directly 

at the single-cell level, we observed higher correlations between gene expression 

and DNA accessibility that is computed over both the promoter and gene body 

instead of just the promoter alone (Fig. 3.1f). Further, as seen previously by Clark et 

al., the pseudo-bulk correlation between gene expression and DNA accessibility in 

the promoter region is higher than the average of individual cells (Pearson’s r of 0.80 

and 0.28, respectively), likely due to the small size of the promoter region which 

limits the detection of reads in these regions in single cells92. Together, these results 
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demonstrate that scMAT-seq can be used to quantify DNA accessibility, DNA 

methylation and the transcriptome from the same cell. Finally, to demonstrate that 

scMAT-seq can be used to identify distinct cell types and construct cell type-specific 

epigenetic landscapes, we performed scMAT-seq on HEK293T cells. As expected, 

RNA expression data from scMAT-seq could be used to easily distinguish between 

the two cell lines H9 and HEK293T (Fig. 3.1g). Similarly, the cell lines could be 

segregated by the first principal component for both DNA accessibility and DNA 

methylation, suggesting that scMAT-seq can successfully capture cell type-specific 

epigenetic profiles (Fig. 3.1h,i). 
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Figure 3.1 | Joint profiling of DNA methylation, DNA accessibility, and the transcriptome from 
the same cell using scMAT-seq.  
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(a) Workflow of scMAT-seq, where the first step involves simultaneous reverse transcription of 
mRNA and marking of open chromatin with M.CviPI. After second strand synthesis, protease and T4-
BGT treatment, methylated cytosines in the genome are digested using MspJI. The barcoded cDNA 
and gDNA molecules are then pooled and amplified using IVT. This is followed by mRNA enrichment 
and Illumina library preparation. In the schematic, RNA is shown in purple, DNA in black, cell- and 
mRNA-/gDNA-specific barcodes in red, Illumina read 1 sequencing primer in blue, and T7 promoter in 
green. (b) Violin plot shows the number of genes detected per cell with or without RNA enrichment. 
Dots represent individual cells. (c,d) Averaged single-cell DNA accessibility (blue) and DNA 
methylation (red) profiles at DNase I hypersensitivity sites, split by previously reported signal strength 
(c), or CpG islands (d)173. Shaded area indicates the standard deviation across single cells. (e) 
Averaged single-cell DNA accessibility (blue) and DNA methylation (red) profiles at TSS, segregated 
by gene expression levels: High (solid), medium (dashed), low (dotted), or undetected (dash dot). (f) 
Boxplot of Pearson’s correlation between gene expression and indicated epigenetic features for 
individual cells (black) at cis regulatory elements. Blue dot indicates averaged single-cell correlation, 
and red square indicates pseudo-bulk correlation. Data in panels (b)-(f) are obtained by applying 
scMAT-seq to individual H9 hESCs. (g, h, i) H9 (purple) and HEK293T (orange) cells can be 
separated based on their transcriptome (g), DNA accessibility (h), or DNA methylation (i). 

2. The epigenetic landscape of major cell types corresponding to the germ 

layers and primordial germ cell-like cells 

Next, we applied scMAT-seq to study early events in post-implantation human 

development. While epigenetic regulation of gene expression during post-

implantation development and gastrulation have recently been characterized using a 

similar multiomics single-cell technique in mice, similar studies in human embryos 

have not been possible despite their fundamental importance to human health and 

disorders123. Further, morphological divergence from mice makes it challenging to 

directly extrapolate the emergence and maturation of different cell types during this 

period to human development. Therefore, to study human embryogenesis, we used 

an organoid model that mimics post-implantation amniotic sacs that can induce early 

germ layer lineages, similar to previous systems (Fig. 3.2a)126–132. As expected, 

analysis of the transcriptome from scMAT-seq identified epiblast-like cells (EPILC) 

expressing pluripotency markers POU5F1, NANOG, SOX2 and DPPA4, as well as 

amniotic ectoderm-like cells (AMLC) expressing TFAP2A, GATA3, HAND1, BMP4, 
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and CDX2 (Fig. 3.2b,c). Further, EPILCs in these asymmetric cysts have previously 

been shown to undergo epithelial to mesenchymal transition, mimicking gastrulation 

and presenting features of posterior primitive streak-/mesoderm-like cells 

(PPSLC)126,130. In agreement with those observations, we found cells expressing 

markers of the posterior primitive steak, including T, EOMES, LHX1, MESP1, 

MESP2, GATA6, LEF1, SNAI1 and SNAI2, suggesting that PPSLCs are also 

derived in our system (Fig. 3.2b,c). Unlike the other organoid models previously 

developed, we unexpectedly found a small number of anterior primitive streak-

/endoderm-like cells (APSLC) within the same organoid system, expressing high 

levels of NODAL, FOXA2, SOX17, OTX2, CXCR4, and even expressing genes 

related to the organizer cell fate including GSC and signaling inhibitors DKK1 and 

CER1 (Fig. 3.2b,c). The emergence of these APSLCs indicates an area of relatively 

high Activin/Nodal signaling and low BMP signaling within the organoid176. In human 

embryos, in addition to its role at the anterior primitive streak, SOX17 is a critical 

regulator of primordial germ cells (PGC) specification and unlike in mice, it is 

upregulated before the commonly used PGC marker PRDM1 (also known as 

BLIMP1)125. Interestingly, a subset of cells were found to express both SOX17 and 

PRDM1, together with other PGC markers, including NANOG, POU5F1, NANOS3, 

and TFAP2C (also known as AP2-gamma), indicating the emergence of human 

primordial germ cell-like cells (hPGCLC) in our system (Fig. 3.2b,c). 

In addition to discovering cell types corresponding to the early germ layer 

lineages and hPGCLCs, we discovered an unexpected population of cells with high 

expression of SOX2, PAX6 and PAX3, reminiscent of neuroectoderm cells, which 

typically arise later in development (Supplementary Fig. 3.5a,b)177. To investigate 



 

 59 

the origin of this population of cells, we performed a simpler experiment to test the 

differentiation potential of the starting induced pluripotent stem cells (iPSCs) by 

treating them with the GSK-3 inhibitor CHIR99021 for 24 hours (+CHIR), which is 

known to activate the WNT pathway, causing differentiation towards the mesodermal 

lineage in iPSCs178. iPSCs with or without CHIR treatment were probed with scMAT-

seq, and clustering based on the transcriptome revealed 3 groups of cells – a 

pluripotent population within untreated cells expressing SOX2, POU5F1, NANOG, 

and DNMT3B, a mesodermal CHIR-treated population expressing T, EOMES, and 

NODAL, and a neuroectoderm-like cell (NELC) population present in both CHIR 

treated and untreated cells, expressing SOX2, PAX6, and PAX3, similar to that 

observed in the organoid (Supplementary Fig. 3.5c,d). These results indicate 

heterogeneity within the iPSC population, with a subset of cells that are biased 

towards the neuroectoderm lineage. Further, as this pre-existing population of 

NELCs was not responsive to CHIR treatment and displayed limited differentiation 

potential, it was removed from downstream analysis, highlighting the benefits of 

performing single-cell measurements on complex biological systems.  

We next focused attention on the epigenomes of the different cell types identified 

in the gastruloid. Together with the rapid emergence of different cell types within a 

48-hour window in the organoid, we found that the DNA accessibility and 5mC 

landscapes were reprogrammed, with distinct profiles for each cell type. Further, 

both genome-wide epigenetic features could be independently used to accurately 

cluster cells by cell type (Fig. 3.2d,e). Further, when comparing differentially 

expressed genes (DEGs) between different cell types, higher gene expression was 

generally associated with higher DNA accessibility (Fig. 3.2f and Supplementary Fig. 
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3.6a,b). In contrast, changes in gene expression were significantly correlated to 

changes in gene body DNA methylation in only a subset of cell types (Fig. 3.2f and 

Supplementary Fig. 3.6c). Together, these results indicate that reprogramming of 

DNA accessibility is a major driver of changes in gene expression and the 

emergence of distinct cell types during in vitro gastrulation, whereas gene body 

methylation plays a more limited role in tuning gene expression by regulating select 

genes and cell types. To gain better understanding of the dynamics of DNA 

methylation turnover during gastrulation, we observed that the expression level of 

the de novo DNA methyltransferase DNMT3B was lower in more differentiated cell 

types, especially PPSLC, PGCLC and AMLC, compared to EPILC, consistent with 

previous observations that DNMT3B is associated with pluripotency and is 

responsible for the high levels of non-CpG methylation in hESCs that drops 

substantially during differentiation (Fig. 3.2c and Supplementary Fig. 3.7a)164. In 

agreement with this, we observed that the levels of 5mCpA relative to 5mCpG 

dropped for PPSLC, PGCLC and AMLC compared to EPILC (Supplementary Fig. 

3.7b). Further, similar to our recent work, scMAT-seq enables strand-specific 

quantification of DNA methylation, which provides insights into DNA methylation 

dynamics as increasing levels of asymmetric 5mCpA between the two strands of 

DNA implies a reduction in the rates of de novo methylation65. We found that 

PPSLC, PGCLC and AMLC showed greater strand-specific asymmetry in 5mCpA 

compared to EPILC, consistent with the expression levels of DNMT3B, suggesting 

that in vitro gastrulation is marked by a drop in genome-wide non-CpG methylation 

and pluripotency, arising from a global reduction in the rates of de novo methylation 

(Fig. 3.2g and Supplementary Fig. 3.7c). 
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While changes in DNA accessibility and gene expression were generally 

correlated across all cell types, fold changes in the expression of individual DEGs 

did not always result in proportional fold changes in DNA accessibility (Fig. 3.2f and 

Supplementary Fig. 3.6a,b). To investigate this further, changes in DNA accessibility 

of DEGs were split into three groups, and as expected, larger increases in DNA 

accessibility were on average associated with larger increases in gene expression 

(Fig. 3.2h). However, interestingly we observed outlier genes in all groups that 

showed fold changes in expression that were significantly higher than the mean, with 

the group containing genes with the most open chromatin displaying a longer tail of 

highly DEGs compared to the other two groups. These results suggest that for a 

subset of genes, other epigenetic features potentially drive changes in gene 

expression that do not directly alter DNA accessibility within the promoter and gene 

body, highlighting that the combinatorial action of epigenetic regulators can non-

additively tune gene expression. 
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Figure 3.2 | scMAT-seq maps the epigenome and transcriptome of cell types during human 
gastrulation using a 3D organoid model.  

(a) Schematic for the in vitro generation of 3D post-implantation amniotic sac organoids. 
Representative immunofluorescence staining of cross sections of the organoids 48 hours post BMP4 
addition is shown for SOX2 (green), SOX17 (red), and Brachyury (blue). (b) UMAP visualization of 
the gastruloid based on the single-cell transcriptomes obtained from scMAT-seq. Cell types are 
assigned to clusters based on established marker genes. (c) Heatmap of z-scores for expression of 
marker genes for different cell types identified in the gastruloid. (d,e) Principal component projections 
show that cell types identified in the human gastruloids can also be distinguished using their DNA 
accessibility landscapes (d) or DNA methylation landscapes (e). Panels also show the corresponding 
dendrograms. A square border around dots indicate cell type identification by the transcriptome that 
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differs from the epigenetic feature. (f) Boxplot of single-cell averaged log2 fold change in gene 
expression levels, promoter and gene body DNA accessibility levels, and gene body DNA methylation 
levels, for DEGs between two cell types. Dots indicate individual DEGs. Note that the log2 fold 
change in RNA is computed by taking the ratio of expression in a cell type where the gene is 
expressed at a higher level than in the other cell type. The log2 fold change in DNA accessibility and 
DNA methylation is shown for the same corresponding pair of cell types.  ** indicates a statistically 
significant change (p < 0.01, based on bootstrapped distributions from non-differentially expressed 
genes) in the log2 fold change of the epigenetic features for DEGs relative to non-differentially 
expressed genes. (g) Violin plot of non-CpG methylation strand bias for each cell type. Strand bias is 
defined as the ratio of non-CpG methylated sites detected on the plus strand of a chromosome over 
all non-CpG methylated sites detected on a chromosome. Dots represent individual chromosomes in 
single cells. (h) Violin plot of log2 fold change in gene expression for DEGs partitioned by the relative 
change in DNA accessibility. Black dots indicate individual DEGs. Red dot indicates the mean of the 
distribution. ** indicates a statistically significant change (p < 0.01, two-sided Mann-Whitney U test) 
between the distributions. 

3. Time resolved epigenetic reprograming during gastrulation and PGCLC 

development 

Finally, we focused attention on the population of hPGCLCs that we identified 48 

hours post BMP4 addition. Due to a lack of availability of human embryos at these 

stages of development, the precursors that specify human primordial germ cells 

(hPGCs) in vivo remain unclear108,179. In mice, it is well-established that mPGCs 

emerge from epiblast cells, and similar results have been found in the developing 

porcine embryo; however, in the nonhuman primate cynomolgus macaques, PGCs 

have been found to arise from the extra-embryonic dorsal amnion180,181. Further, 

there is significant divergence between human and mouse in the transcription factor 

network that is responsible for commitment towards the germ cell lineage, and 

therefore, the identity of the progenitors that specify hPGCs in humans remain 

unknown108,179. The hPGCLCs that we identified 48 hours post BMP4 addition 

expressed well-established markers of hPGCs, including SOX17, TFAP2C, PRDM1, 

NANOG, POU5F1, and NANOS3; however, they were found to not display any 

genome-wide erasure of DNA methylation, a characteristic feature of PGC 
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maturation, suggesting these cells were pre-migratory PGCs that had recently 

undergone specification (Fig. 3.2c and Supplementary Fig. 3.7c)108,125. Therefore, to 

investigate the early events involved in germ cell specification, we systematically 

characterized younger organoids 20 and 36 hours post BMP4 addition. Using RNA 

expression data and Monocle 3, individual cells sequenced from the organoid were 

assigned a pseudotime to indicate the position of a cell along a differentiation 

trajectory (Fig. 3.3a)182. In general, we found the pseudotime assignment to 

correspond well with organoid age, providing confidence that it accurately described 

progress along a differentiation lineage (Fig. 3.3b). Similarly, as expected, one of the 

trajectories from EPILCs was found to bifurcate into two paths, developing into either 

PPSLCs or APSLCs (Fig. 3.3a). Strikingly, we found that the hPGCLCs and AMLCs 

bifurcate from a common progenitor population, which suggested the emergence of 

a precursor within 20 hours after treatment with BMP4. Compared to the EPILCs, we 

discovered that this progenitor population expressed genes related to the amnion 

(TFAP2A, GATA3 and CDX2) as well as gastrulating cells (EOMES and T), and 

downstream targets of BMP4 signaling (BAMBI, ID1-3 and MSX2) (Fig. 3.3c, 

Supplementary Fig. 3.8a and Supplementary Fig. 3.9). Notably, this was consistent 

with another recent observation in a disorganized 3D aggregates based system 

where hPGCLCs were found to emerge from a TFAP2A+ progenitor population183. 

Comparison with this system showed that the progenitors in our organoids are 

closest to day 1 cells post BMP4 addition in the disorganized aggregates, while 

hPGCLCs in our system are closest to day 2 cells in the disorganized aggregates 

(Fig. 3.3d). Further, we investigated DEGs characterizing the mesoderm, amnion 

and germ cells to find that these genes were more accessible and contained higher 
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levels of gene body methylation in the progenitor population compared to EPILCs, 

suggesting that the progenitors are primed towards conversion to AMLCs and 

PGCLCs (Supplementary Fig. 3.8b-d). Overall, these results suggest that the 

progenitor population first emerges from EPILCs within 20 hours of BMP4 addition, 

with transient characteristics of both amniotic- and mesoderm-like cells, before 

getting specified towards hPGCLCs.  

Finally, to systematically map changes in the epigenome along all differentiation 

trajectories during gastrulation, we grouped genes that varied throughout 

pseudotime into gene modules based on their expression similarity. In all 

trajectories, we found that changes in promoter and gene body DNA accessibility 

closely varied with changes in RNA trajectory (Fig. 3.3e and Supplementary Fig. 

3.10). In contrast, gene body DNA methylation was associated to a lesser extent 

with the transcriptome (Fig. 3.3e and Supplementary Fig. 3.10). To quantify this 

relationship across all trajectories, gene modules were split into two groups – one 

that is downregulated (Off) and the other that is upregulated (On) through 

differentiation. We found that reprogramming of DNA accessibility was highly 

correlated to changes in gene expression for both genes turning Off and On (Fig. 

3.3f). Surprisingly however, while gene body DNA methylation changes were 

generally well correlated to expression changes for genes that turn Off across all 

differentiation trajectories, we found a wide range of correlations, depending on the 

trajectory, for genes that turn On (Fig. 3.3f). Similarly, direct comparison of DNA 

accessibility and DNA methylation showed high correlation for genes that are 

downregulated while the correlation was lower, and trajectory dependent, for genes 

that are upregulated during differentiation (Fig. 3.3f). Previous work has shown that 



 

 66 

more open chromatin in highly expressed genes is linked with greater access for the 

de novo methylation machinery, resulting in higher gene body methylation184. We 

hypothesize that the high correlation between DNA accessibility and gene body DNA 

methylation for genes that are turning Off is possibly due to these regions being 

inaccessible and therefore, independent of the expression level of the de novo DNA 

methyltransferases. In contrast, for genes that are turning On, we observe a wide 

range of trajectory-dependent correlations, with differentiation towards AMLCs 

displaying lower correlation than APSLC and PPSLC lineages, possibly due to the 

lower expression of DNMT3B resulting in reduced de novo methylation activity within 

gene bodies of AMLCs (Fig. 3.3f, 3.2c and Supplementary Fig. 3.7a). Together, this 

suggests that increasing DNA accessibility and not gene body methylation is 

required for gene activation, and that while high DNA accessibility in gene bodies 

could lead to high DNA methylation, this correlation is decoupled by low de novo 

methyltransferase activity. 
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Figure 3.3 | scMAT-seq characterization of time course experiment on gastruloids reveals the 
identity of hPGCLC progenitors.  

(a) (Left) UMAP visualization of the single-cell transcriptomes of the gastruloid at different 
timepoints, 20 hours (blue), 36 hours (tan), and 48 hours post BMP4 addition (ruby). The solid black 
line shows the inferred differentiation trajectory of cells from Monocle 3. (Right) Assignment of cell 
types to clusters identified in the time course experiment. (b) Relationship between predicted 
pseudotime trajectory and gastruloid age for different differentiation lineages. (c) Violin plots for select 
genes, highlighting that the progenitor population expresses markers of the amnion (TFAP2A and 
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GATA3), gastrulating cell fate (EOMES and T), and downstream targets of BMP4 signaling (BAMBI 
and MSX2). (d) Heatmap of Spearman’s correlation coefficient comparing gene expression of 
hPGCLCs and progenitors identified in this study to that found in disorganized aggregates previously 
described by Chen et al.183. D1 to D4 indicates day 1 to day 4 post BMP4 addition in the disorganized 
aggregates. (e) Heatmap of z-scores for DEG-derived gene modules along the AMLC and hPGCLC 
pseudotime trajectory, together with the corresponding changes in DNA accessibility and DNA 
methylation. The color bar indicates position along the pseudotime, with the progenitor in green, 
AMLC in pink, and hPGCLC in light green. (f) Boxplot of Pearson’s correlation between the indicated 
variables along pseudotime with gene modules being divided into two groups – those that are 
upregulated (On) or those that are downregulated (Off) with pseudotime. 

C. Conclusion 

In this report, we developed a multiomics single-cell method scMAT-seq to 

simultaneously quantify DNA accessibility, DNA methylation and mRNA from the 

same cell without requiring physical separation of the nucleic acids prior to 

amplification, enabling efficient and high-throughput mapping of cell types and their 

corresponding epigenetic profiles in silico. When applied to human gastruloids, we 

show that both the transcriptome and the epigenetic features can be used to identify 

different cell types. Notably, we discovered that the progenitor population that gives 

rise to hPGCLCs emerge from EPILCs with transient epigenetic and transcriptional 

signatures of both amnion- and mesoderm-like cells. In summary, scMAT-seq 

provides an integrative approach to investigate the role of epigenetic features in 

regulating gene expression and cell fate decisions in complex and dynamic 

biological systems. 
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D. Supplementary figures 

 

Supplementary Figure 3.1 | Optimization of buffer conditions in scMAT-seq.  

(a) Violin plot of the number of transcripts detected per cell in each buffer condition. (b) Violin plot 
of the number of synthetic ERCC RNA spike-in molecules detected in individual cells for different 
buffer conditions. (c) Violin plot of the total number of methylated cytosines detected, including both 
endogenous and exogenously introduced DNA methylation, in individual cells for different buffer 
conditions. (d) Violin plot of the ratio of methylated cytosines detected in different sequence contexts, 
comparing DNA accessibility (GCH) to endogenous CpG methylation marks (WCG), in individual cells 
for different buffer conditions. (e) Bar plot comparing detection of methylated cytosines in scMspJI-
seq and scMAT-seq using optimized buffer conditions. The relative fractions of DNA accessibility 
(GCH), endogenous CpG methylation (WCG), and endogenous non-CpG methylation (WCH) are 
shown in blue, yellow, and orange, respectively. * and ** indicate p < 0.05 and p < 0.01, respectively 
(two-sided Mann-Whitney U test, Bonferroni-corrected p-values). 
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Supplementary Figure 3.2 | Optimization of mRNA enrichment in scMAT-seq.  

(a) Bar plot of the relative fraction of mRNA- and gDNA-derived reads in scMAT-seq without 
mRNA enrichment (No enrichment), with mRNA enrichment (RNA enriched), or the remaining 
flowthrough after mRNA enrichment (RNA depleted). (b-d) Violin plots of the number of transcripts 
(b), ERCC spike-in molecules (c), and genes (d) detected per cell using different magnetic 
streptavidin coated beads for mRNA enrichment. (e,f) Violin plots of the number of transcripts (e) and 



 

 71 

ERCC spike-in molecules (f) detected per cell after dissociating (heat denatured) or retaining (on 
bead) the aRNA on the magnetic streptavidin C1 beads. (g) Scatterplot comparing single-cell 
averaged gene expression with and without RNA enrichment from the same scMAT-seq sample. * 
and ** indicate p < 0.05 and p < 0.01, respectively (two-sided Mann-Whitney U test, Bonferroni-
corrected p-values). 

 

Supplementary Figure 3.3 | scMAT-seq successfully reproduces DNA accessibility and DNA 
methylation profiles in hESCs.  

(a) Scatterplot shows that single-cell averaged DNA accessibility in scMAT-seq is highly 
correlated to DNase I hypersensitivity scores (Spearman’s p = 0.99)173. (b) Pie chart shows that 
greater than 97% of DNA methylation sites detected in single cells using scMAT-seq (green) are also 
detected in bulk bisulfite sequencing (pink)174. 
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Supplementary Figure 3.4 | scMAT-seq can accurately capture the genome-wide DNA 
accessibility and DNA methylation landscapes after cryopreservation of sorted samples.  

(a) Averaged single-cell DNA accessibility (blue) and DNA methylation (red) profiles from 
cryopreserved hESCs at DNase I hypersensitivity sites, split by previously reported signal strength. 
Shaded areas indicate standard deviation across single cells173. (b) Scatterplot shows that averaged 
single-cell DNA accessibility in scMAT-seq from cryopreserved hESCs is highly correlated to DNase I 
hypersensitivity scores (Spearman’s p = 0.99)173. (c) Averaged single-cell DNA accessibility (blue) 
and DNA methylation (red) profiles in cryopreserved hESCs at TSS, segregated by gene expression 
levels: High (solid), medium (dashed), low (dotted), or undetected (dash dot). 
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Supplementary Figure 3.5 | Characterizing neuroectoderm-like cells during differentiation of 
iPSCs.  

(a) UMAP visualization of single cells in the gastruloid 48-hour post BMP4 addition. Based on 
established marker genes, a cluster resembling NELCs is detected. (b) For the gastruloid 
characterized in (a), violin plots for select genes are shown, highlighting high expression of 
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neuroectoderm genes (SOX2, PAX6, and PAX3) and low expression of pluripotency genes (POU5F1, 
DNMT3B, and NANOG) within the NELC population when compared to all other cells in the organoid. 
(c) UMAP visualization of untreated iPSCs (no treatment) and cells after treatment of iPSCs with 
CHIR99021 for 24-hours (24hr CHIR). Three populations of cells were detected, NELCs, iPSCs, and 
+CHIR cells. (d) For the system depicted in (c), violin plots for select genes are shown, highlighting 
high expression of pluripotency genes (POU5F1, DNMT3B, and NANOG) in iPSCs, high expression 
of mesodermal genes (T, EOMES, and NODAL) in the +CHIR cells, and high expression of 
neuroectoderm genes (SOX2, PAX6, and PAX3) in NELCs. 
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Supplementary Figure 3.6 | The epigenetic landscape of cell types identified in the human 
gastruloids 48 hours post BMP4 addition.  

(a) Log2 fold change in gene expression for DEGs in one cell type (DE in) compared to another 
cell type (vs). Note that the log2 fold change in mRNA is computed by taking the ratio of expression in 
a cell type where the gene is differentially expressed at a higher level compared to the other cell type. 
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(b) Log2 fold change in DNA accessibility (promoter and gene body combined) for the genes depicted 
in (a). (c) Log2 fold change in gene body DNA methylation for the genes depicted in (a). Note that 
some of the genes shown in (a) are not depicted in (b) or (c) due to low detection across all cells. * 
and ** indicate a statistically significant change (p < 0.05 and p < 0.01, respectively, based on 
bootstrapped distributions from non-differentially expressed genes) in the log2 fold change of the 
epigenetic features for DEGs relative to non-differentially expressed genes. 

 

Supplementary Figure 3.7 | DNA methylation dynamics in human gastruloids.  

(a) Violin plot of gene expression levels for the de novo DNA methyltransferase DNMT3B for 
different cell types detected in the human gastruloid 48 hours post treatment with BMP4. Dots 
represent individual cells. (b) Violin plot of the ratio of 5mCpA to 5mCpG for different cell types. Black 
points represent individual cells, and the red point indicates the mean of the distribution. (c) Violin plot 
showing the distribution of 5mCpG strand bias in different cell types. 5mCpG strand bias is defined as 
the ratio of the number of 5mCpG sites detected on the plus strand of a chromosome over all 5mCpG 
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sites detected on a chromosome. The panel shows that no 5mCpG strand bias is detected in any of 
the cell types. 
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Supplementary Figure 3.8 | hPGCLC and AMLCs bifurcate from a common progenitor 
population.  

(a) Violin plots of gene expression levels of select genes for cell types identified in the human 
gastruloids at different timepoints after BMP4 addition. Genes shown here include targets of BMP4 
signaling (ID1-3), an amnion related gene CDX2, genes related to pluripotency (POU5F1 and 
NANOG), and genes related to hPGCLC fate (TFAP2C, PRDM1, and NANOS3). (b) log2 fold change 
in gene expression for Progenitor cells compared to EPILCs for genes that are differentially 
expressed in the amnion (AMLC DEGs), hPGCLCs (hPGCLC DEGs) or PPSLCs (PPSLC DEGS) 
when compared to all other cell types. (c) log2 fold change in DNA accessibility (promoter and gene 
body combined) for the genes depicted in (b). (d) log2 fold change in gene body DNA methylation for 
the genes depicted in (b). ** indicates p < 0.01 (one-sample Wilcoxon signed rank test). 
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Supplementary Figure 3.9 | DEGs between EPILCs and Progenitor cells.  

Gene expression heatmap of z-scores for DEGs found between EPILC and Progenitor cells in 
human gastruloids 20 hours after treatment with BMP4. 
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Supplementary Figure 3.10 | APSLCs and PPSLCs arise from the EPILCs.  

Heatmap of z-scores for DEG-derived gene modules along the APSLC and PPSLC pseudotime 
trajectory, together with the corresponding changes in DNA accessibility and DNA methylation. The 
color bar indicates position along the pseudotime, with EPILC in dark blue, APSLC in light blue, and 
PPSLC in yellow. 
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4. scMTH-seq: Connecting 5-methylcytosine, the transcriptome, 

and 5-hydroxymethylcytosine from the same single cell reveals 

processes responsible for human primordial germ cell maturation 

and DNA methylation erasure 

A. Introduction 

There are numerous methods to assess the status of cytosines in the genome185. 

One of the most common method involves bisulfite treatment of DNA to convert 

unmethylated cytosines to uracils40. This technique is very robust and can be 

adapted to obtain whole genome methylation information or a reduced methylome 

can be obtained through enzymatic digestion of CG rich sites41,186. A drawback of 

bisulfite sequencing is that it cannot discern between 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC), making it less applicable to systems where 5mC 

dynamics are rapid and transient, like early embryogenesis and primordial germ cell 

(PGC) development153. Traditional bisulfite sequencing has been modified to assess 

only 5hmC through TAB-seq. In this method, 5hmC is glycosylated, protecting it from 

TET assisted oxidation of other cytosine modifications to 5caC which is followed by 

bisulfite sequencing46. While powerful, these types of techniques inherently cannot 

be used to observe both 5mC and 5hmC from the same sample in a single 

measurement. During PGC development where only a few hundred cells exist and 

the genome is at least in part actively demethylated through the conversion of 5mC 

to 5hmC, new technologies are needed119. To understand the dynamics between 

these two related epigenetic features in PGC development, here we have developed 
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a technique to detect 5mC and 5hmC simultaneously from the same cell (scMH-

seq). Additionally, to further connect these epigenetic features to transcription and 

cell identity, we have incorporated scRNA-seq into this methodology (scMTH-seq) 

and apply this technique to in vitro derived human PGCs. 

B. Results 

1. 5hmC and non-CpG 5mC are inherited from parental DNA strands at similar 

rates in hESCs 

In our group and others, restriction enzymes that specifically recognize cytosine 

modifications have been used to create sequencing libraries. To interrogate 5mC, a 

restriction enzyme MspJI, which specifically recognizes methylated cytosines can be 

used when preparing a DNA library for sequencing65,187. Similarly, AbaSI specifically 

recognizes 5hmC and can be used for DNA library preparation to quantify 

5hmC34,188. Digestion with MspJI generates a 4 nucleotide 5’ overhang 16 

nucleotides downstream from a methylated cytosine, while digestion with AbaSI 

creates a 2 nucleotide 3’ overhang 11-13 base pairs downstream from a 5hmC site. 

Due to the differences in cutting modality, highly specific ligation of barcoded 

adapters to distinguish between the two enzymatic digestions is possible even at the 

single-cell level35. In scMH-seq we use both MspJI and AbaSI to specifically digest 

and capture DNA containing 5mC and 5hmC respectively. While in scMTH-seq, a 

reverse transcription and second strand synthesis step is performed prior to 

enzymatic digestion to capture RNA transcripts (Fig. 4.1a). After digestion, 

corresponding sticky end adaptors containing a T7 promoter, part of the Illumina 5’ 

adaptor, a cell barcode, and for 5mC a unique molecule identifier (UMI) are ligated 

on. These ligated molecules are amplified, and Illumina libraries are prepared as 
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described previously34,65. Because each molecule contains a barcode indicating its 

epigenetic feature and cell of origin, reads from each type can be segregated in 

silico and putative 5mC or 5hmC sites are called for each cell by identification of the 

enzyme cut site from sequences mapped to a reference genome. 

To investigate the dynamics of 5hmC conversion from 5mC in pluripotent cells, 

we successfully applied scMH-seq to 79 human embryonic stem cells and scMTH-

seq to an additional 197 human embryonic stem cells and find that multiomics 

detection levels are similar to those detected in scRNA-seq, scMspJI-seq and 

scAbaSI-seq alone (Fig. 4.1.b,c)34,65,189. 5hmC is known to be a rare epigenetic 

feature occurring at much lower rates than 5mC in most systems, here we find on 

average 5hmC is at levels 3.1% that of 5mC in a CpG context (Fig. 4.1.d). 

Interestingly, the coefficient of variation observed for the level of 5hmC is greater 

than that of 5mCpG (0.61 vs 0.52 respectively) (Fig. 4.1b,c). 5mC in a CpG context 

is known to be highly maintained and is likely found a similar levels for these cells, 

although the measurement will be noisy due to differences in amplification between 

cells190. Both measurements are made in a similar fashion and so both 

measurements should have similar levels of noise, thus the higher coefficient of 

variation observed with 5hmC is likely due to high variability in 5hmC levels due to 

inheritance of varying levels of 5hmC. Because scMH-seq and scMTH-seq are 

strands specific, this hypothesis can be directly tested by assessing the strand bias 

of each epigenetic feature. Strand bias of a region for either epigenetic mark is 

defined as the number of that mark on the plus strand divided by the total detected 

in the region. A strand bias of 0.5 indicates that both strands of DNA have equal 

levels of the epigenetic mark of interest. Strand biases deviating from 0.5 indicates 
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differences between the old strand of DNA and the more recently synthesized DNA 

strand. This observable difference between complimentary DNA strands is the 

framework for lineage reconstruction by single-cell 5hmC sequencing and can 

provide insight into the rate at which an epigenetic mark is accumulating34,35. Here 

we find that 5hmC has high levels of strand bias while the maintained 5mCpG mark 

deviates very little from 0.5 (Fig. 4.1e). This observed pattern is similar to previous 

observations using individual 5hmC and 5mC measurements in mouse embryonic 

stem cells (Supplementary Fig. 4.1).  

In human embryonic stem cells, non-CpG methylation was found to have high 

strand bias, a feature not robustly observed in mouse embryonic stem cells (Fig. 

4.1e and Supplementary Fig. 4.1). Non-CpG methylation can potentially show strand 

bias because DNA methylation maintaince machinery is known to only have a strong 

preference for hemi-methylated CpG191. Like what is seen with 5hmC, the newly 

synthesized DNA strand has very low levels of non-CpG methylation and if the rates 

of accumulation of non-CpG methylation are slow relative to the cell cycle, 

differences between the two strands will be observed. In support of this mechanism, 

coinciding high levels of strand bias within a cell for both 5hmC and non-CpG 5mC 

was found (Fig. 4.1.f). Because the inherited DNA strand for any cell will be 

decorated by high levels of 5hmC and non-CpG 5mC relative to the new DNA 

strand, this implies that the strand bias of 5hmC and that of non-CpG 5mC would 

deviate in the same direction about 0.5. Our experimental results confirm this is the 

case, with a high correlation between 5hmC strand bias and non-CpG strand bias 

(Pearson’s correlation (r) of 0.91, 0.78, and 0.42 for 5mCpA, 5mCpT, and 5mCpC 

respectively), but a correlation near zero between 5hmC strand bias and 5mCpG 
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strand bias (r of 0.05) (Fig. 4.1.g and Supplementary Fig. 4.2a-c). Interestingly we 

also see that the slope of the best fit line between the strand bias of 5hmC and non-

CpG methylation differs with a slope of 0.59, 0.28, and 0.12 for 5mCpA, 5mCpT, and 

5mCpC respectively. We reasoned that if the rates of accumulation of each 

epigenetic feature was the same then the slope of this best fit line would be equal to 

1. It is well established in embryonic stem cells that 5mCpA is the most abundantly 

methylated non-CpG dinucleotide, a feature also observed in our data (Fig. 4.1c.)192. 

Since the slope between the strand bias of 5hmC and 5mCpA is below 1 and 

reduces for 5mCpT and 5mCpC, we conclude that 5mCpA accumulates in human 

embryonic stem cells more slowly than 5hmC, but more quickly than other non-CpG 

methylation. To further test this conclusion, we performed the same analysis on 

each cell individually, and compared the results to in silico cells with each epigenetic 

feature randomly derived from other cells (Fig. 4.1h,i). A very high slope and 

Pearson’s correlation is seen between 5hmC strand bias and 5mCpA for all cells, 

although a slope greater than 1 is never observed, confirming that 5hmC always 

accumulates at a faster rate than 5mCpA in this system (Fig. 4.1h,i). For 5mCpT 

most cells have strong correlations, while for 5mCpC the correlation is lower (Fig. 

4.1.i). The low Pearson’s correlation for 5mCpC, the most slowly accumulating 

feature measured here maybe due to high levels of noise when measuring this lowly 

abundant mark. To further confirm the characteristics observed here are related to 

the rates of accumulation, we performed stochastic modeling on 5hmC and non-

CpG methylation to estimate the turnover rate of each epigenetic mark. Turnover 

rate is the summation of the forward and reverse reaction rate creating and 

removing an epigenetic mark and has previously been used to evaluate reaction 
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rates for 5hmC34. In agreement with our previous analysis, we find the turnover rate 

to be fairly low for both 5hmC and 5mCpA, but much higher for 5mCpT and 5mCpC 

(average value of 0.98, 2.70, 5.72, and 6.22 per cell division respectively) 

(Supplementary Fig. 4.3).  
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Figure 4.1 | Dynamics between 5hmC and non-CpG methylation in H9 human embryonic stem 
cells detected by scMH-seq and scMTH-seq.  

(a) Schematic of scMTH-seq. Cell and detected species specific barcodes are shown in red, 
brown, and gold for mRNA, 5mC, and 5hmC respectively. The Illumina read 1 sequencing primer is in 
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blue, and the T7 promoter is in green. (b) Detection levels for 5mCpG, 5hmCpG and mRNA 
transcripts from H9 cells. (c) Detection levels for 5mCpG, non-CpG 5mC and 5hmCpG in individual 
cells. (d) The relative ratio of 5hmCpG detection to 5mCpG detected in individual cells. (e) Strand 
bias for 5mCpG, non-CpG 5mC and 5hmCpG. Each dot represents a single chromosome. (f) 
Heatmap of the variance in the strand bias distribution from all autosomal chromosomes of a single 
cell for 5mCpG, non-CpG 5mC and 5hmCpG. (g) A comparison of 5hmCpG and 5mCpA strand bias 
for the same chromosome of all single cells assessed. (h,i) A comparison of 5hmCpG and all other 
5mC strand bias for the same chromosome. Each point indicates the slope (h) or correlation (i) from 
one cell. Grey dots indicate a in silico cell, where strand bias of each feature was randomly assigned 
from two different cells in the data set. 

2. DND1 and SOX15 expression are promising triggers for passive 

demethylation and cell cycle arrest in maturing hPGCLCs 

We find that in human embryonic stem cells, because 5mCpG is maintained, 

there is no connection between its strand bias and that of 5hmC (Fig. 4.1h,i). DNA 

methylation maintenance is a characteristic of most cell types, but notably the 

mechanisms involved are inhibited during early preimplantation embryogenesis and 

PGC development, leading to global methylation loss193. Until recently, the ability to 

create human PGC like cells (hPGCLCs) has been limited to PGCLCs with features 

akin to recently specified PGCs which have yet to undergo this global demethylation 

phenomena194. The limited ability to achieve mature PGCLCs is in part due to 

inadequate in vitro culture conditions, which only allow for a few days of PGCLC 

growth. Recently we have derived a system to support long-term growth of PGCLCs 

and have shown some cells in this culture under passive demethylation134. The role 

of active demethylation and the effect of 5mC erasure on cell identity in this system 

are currently unknown. Due to the mixed population present, this understanding 

cannot be gained using current techniques to evaluate each modality separately. To 

investigate this, we applied scMTH-seq to PGCLCs 4 days after induction (D4) and 

PGCLCs cultured for an additional 10 or 21 days after D4 in long term culture 
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conditions (D4C10 and D4C21 respectively). Unlike undifferentiated stem cells, in all 

PGCLC conditions we find a subset of cells where high variance in 5hmC strand 

bias co-occurs with high variance in 5mCpG strand bias, an indicator that passive 

demethylation is occurring in at least a subset of cells (Fig. 4.2.a). Interestingly only 

D4 PGCLCs experienced high variance in non-CpG methylation (Fig. 4.2.a). The 

slope and Pearson’s correlation between 5hmC and non-CpG strand bias was 

accordingly very low for all but D4 PGCLC 5mCpA methylation, indicating very slow 

non-CpG methylation dynamics in PGCLCs (Supplementary Fig. 4.4a,b). While a 

limited connection was seen between 5hmC and non-CpG methylation, high 

correlations were seen between 5hmC and 5mCpG strand bias, a clear indication 

that 5mC is not being maintained in a subset of cells (Supplementary Fig. 4.4b). We 

find that our measurements of 5mCpG strand bias using scMTH-seq correspond 

well to previous measurements using scMspJI alone (Fig. 4.2b)134. Using all data 

sets, we then grouped cells as being maintained (MnT) or unmaintained (UmnT) by 

using the observed level of 5mCpG strand bias variance in human embryonic stem 

cells which do not experience passive demethylation as a cutoff. Doing this, we find 

a large portion of PGCLCs are passively demethylating, with a trend for more 

passively demethylating cells with longer culturing times (Fig. 4.2b).  
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Figure 4.2 | Long term culturing of PGCLCs results in a heterogenous population containing a 
non-cycling, transcriptionally distinct population that has passively demethylated.  
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(a) Heatmap of the variance in the strand bias distribution from all autosomal chromosomes of a 
single cell for 5mCpG, non-CpG 5mC and 5hmCpG, discretized by PGCLC culture conditions. (b) 
Comparison of the variance in the strand bias distribution from all autosomal chromosomes of a 
single cell for 5mCpG. Grey line indicates the maximal level seen in H9 human embryonic stem cells, 
which were found to have maintaince of DNA methylation. Cells above this line were considered as 
UmnT. Cells below this line were considered as MnT. Percent values indicate percent of cultured 
cells in the UmnT group for a given condition. (c) Detection of 5hmC spike-in molecules in each cell 
for the MnT and UmnT groups. (d,e) UMAP projection of PGCLC transcriptome discretized by culture 
condition (d) or gene expression based clustering (e). (f) Normalized expression in each condition of 
key PGC genes, SOX17, PRDM1 (aka BLIMP1), TFAP2C, and NANOS3. (g) Methylation 
maintenance condition of cells in long-term culture gene expression groups 1 and 2 (LT1 and LT2 
respectively). (h,i) Normalized expression of genes found to be differentially expressed between LT1 
and LT2. (h) PGC related genes DND1 and SOX15. (i) Cell cycle related genes TOP2A and MKI67. 
(j) UMAP projection of PGCLC transcriptome discretized by predicted cell cycle stage (G1/G0, G2/M, 
or S phase) (k) Predicted cell cycle phase of cells in long-term culture gene expression groups LT1 
and LT2. 

A temporally regulated wave of active demethylation is known to occur after a 

period of passive demethylation in PGCs. Using the detection of endogenous 5hmC 

compared to spike in molecules we find that the PGCs created in this system are 

relatively immature and do not exhibit robust active demethylation as is seen in vivo 

(Fig 4.1.c). We then turned our attention to the transcriptome of these cells and 

found that D4 PGCLCs distinctly separate from those in long term culture conditions 

(D4), but within long-term culture conditions, two transcriptional states are present, 

LT1 and LT2 (Fig. 4.2d,e). While levels of key PGC genes like SOX17, PRDM1 (aka 

BLIMP1), TFAP2C and NANOS3 are expressed in all PGCLCS, some differences 

are seen between the three transcriptional groups, with the largest changes between 

the D4 and long-term culture groups (Fig. 4.2f). This transcriptional analysis confirms 

prior bulk RNA-seq and immunofluorescence data describing the ability of long term 

culture conditions to maintain a PGCLC state134. 

While these long-term culture conditions maintain a PGCLC state, there is clear 

heterogeneity within epigenetic state, MnT vs UmnT, and transcriptional state, LT1 

and LT2. We hypothesized that these two states may be linked, and indeed we find 
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the LT2 transcriptional state is highly enriched for UmnT cells (Fig. 4.2g). Because 

PGCs demethylate a few days after being specified, it is likely that cells in the LT2 

transcriptional group are more mature PGCLCs. In agreeing with this, differentially 

expressed genes between the two transcriptional states within long term culture, LT1 

and LT2, are highly similar between LT1 and D4 PGCLC groups, suggesting that the 

LT1 group is more transcriptionally like the D4 PGCLCs which have not experienced 

extended culture (Supplementary Fig. 4.5). As such, these differentially expressed 

genes are also putative genes for PGC maturation and the initiation of passive 

demethylation. Notably, DND1 and SOX15 are highly expressed in LT2 when 

compared to LT1. Both DND1 and SOX15 have been shown to be crucial for proper 

PGC development in mice, with major losses in PGC numbers occurring after 

specification in mutants lacking wild type protein expression195,196. Additionally, 

DND1 expression in Xenopus directly regulates NANOS1, a key regulator of PGC 

fate in this organism197,198. Interestingly, DND1 has also been strongly implemented 

in the downregulation of active cell cycle genes, with a mutant form of DND1 causing 

gonadal teratoma formation in mice199. Consistent with this role of DND1, we find 

active cell cycle genes TOP2A and MKI67 down regulated in the LT2 population, 

which also expresses DND1 (Fig. 4.2h,i). Cell cycle analysis reveals that most cells 

in LT2 are non-cycling cells in either G1 or G0 phase, likely at least in part due to 

high levels of DND1 (Fig. 4.2j,k). The LT2 group occurring mainly in a non-dividing 

phase, while simultaneously being passively demethylated, suggests that the cells 

were dividing previously (Fig. 4.2g,k). Because the LT1 group is cycling, they likely 

give rise to the LT2 population after a cell division where 5mCpG maintaince is 

impaired. While more study is needed to fully understand how this more mature 
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population of PGCLCs arises, it is likely that some of the genes identified here are 

key regulators of this process (Supplementary Fig. 4.5). 

C. Conclusion 

Here we have combined two powerful single cell techniques, scAba-seq and 

scMspJI-seq into scMH-seq, which is able to identify both 5mC and 5hmC 

simultaneously from the same cell. Using scMH-seq we identified passive dilution of 

non-maintained epigenetic marks is a major regulator of the epigenome, with the 

potential for inherited DNA strands to be highly decorated with 5hmC and non-CpG 

methylation. Furthering this work, by creating scMTH-seq, we added the ability to 

obtain the transcriptome from the same single cell as well. We then applied scMTH-

seq to a heterogenous PGCLC population under long-term culture conditions where 

passive demethylation of CpG methylation had been found previously134. Under 

these conditions we observed two transcriptionally distinct sets of cells, one of which 

was passively demethylating. This same group of cells also exhibited high levels of 

DND1 and SOX15, two genes critical in PGC development. The expression of DND1 

may have induced their more mature state but may have also force these cells out of 

the active cell cycle. The further investigation of the role of these genes in PGC 

develop and epigenome remodeling in this system and other PGC model systems 

will be critical for understanding the maturation process in human primordial germ 

cells and the formation of germ line tumors. 



 

 94 

D. Supplementary figures 

 

Supplementary Figure 4.1 | 5hmC and 5mC strand bias in mouse embryonic stem cells.  

Detection of 5hmC and 5mC were performed in separate cells. Strand bias of 5hmC was 
detected by scAba-seq. Strand bias of 5mC marks in different dinucleotide context was detected by 
scMspJI-seq. Data from Sen et al. and Mooijman et al.34,65. 
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Supplementary Figure 4.2 | 5hmC and non-CpG methylation accumulate together on parental 
DNA strands.  

(a-c) A comparison of 5hmCpG and 5mC strand bias for the same chromosome of all single cells 
assessed. The comparison to 5hmCpG strand bias was made for 5mCpT (a), 5mCpC (b), and 
5mCpG (c) strand bias. 
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Supplementary Figure 4.3 | Turnover rate for 5hmCpG and non-CpG methylation in H9 human 
embryonic stem cells.  

The turnover rate estimated using model IV described previously by Mooijman et al.34. Boxplots 
indicate the results from 100 simulations. 
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Supplementary Figure 4.4 | Comparison of 5hmCpG and other 5mC strand bias in hPGCLCs.  

(a,b) A comparison of 5hmCpG and all other 5mC strand bias for the same chromosome. Each 
point indicates the slope (a) or correlation (b) from one cell. Grey dots indicate a in silico cell, where 
strand bias of each feature was randomly assigned from two different cells in the data set. Cells were 
split and plotted separately based on their culture condition as indicated. 
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Supplementary Figure 4.5 | Gene expression differences between hPGCLCs populations in 
long term culture.  

Heatmap of differentially expressed genes found between the two cell populations in long term 
culture, LT1 and LT2. Color indicates z-score for normalized transcript expression across all PGCLCs 
sequenced. 
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5. scDyad&T-seq: heterogenous global demethylation in naïve 

embryonic stem cells results from differences in DNA methylation 

maintenance in single cells 

A. Introduction 

Epigenetic remodeling, including genome wide erasure of 5-methylcytosine 

(5mC) is associated with the acquisition of pluripotency in mammalian primordial 

germ cells development and during early preimplantation embryogenesis. In addition 

to low de novo methylation rates and high 5mC oxidation by TET proteins, during 

these developmental stages cells exhibit passive demethylation, where 5mC is not 

faithfully copied to newly synthesized DNA during replication. Recently, we have 

shown that the genome wide erasure of 5mC in early mouse and human 

embryogenesis is heterogenous, with a subset of cells experiencing global passive 

demethylation65. Additionally, while most DNA methylation accumulates on the newly 

synthesized DNA strand very quickly, some fraction of sites remain demethylated for 

hours after replication and local differences in 5mC levels can affect this 5mC 

maintenance process200,201. These findings indicate that tools to investigate passive 

demethylation of 5mC are critical in understanding pluripotency. Currently, passive 

demethylation can be identified through hairpin-bisulfite sequencing, where 

complimentary DNA strands are physically connected44,165. In fact, this concept has 

even been extended to alternative forms of bisulfite conversion202. But, due to the 

nature of physically connecting the two opposing strands, extensions of these 

techniques could not be employed to directly investigate the presence of 5hmC on 

one strand and 5mC on the other strand of a single DNA molecule. Here we 
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describe CpG Dyad-sequencing (Dyad-seq) which combines enzymatic detection of 

modified cytosines and traditional nucleobase conversion techniques to identify the 

presence of hemimethylation or hemihydroxymethylation at the resolution of a single 

CpG dyad site. We then scale this technique down and allow for the simultaneous 

detection of RNA transcripts all from the same single cell. 

B. Results 

1. Detecting 5mC and 5hmC on both strands of the same piece of DNA using 

Dyad-seq 

Dyad-seq describes a generalized method for detecting modified or unmodified 

cytosines on both strands of a single piece of DNA. We present 4 versions of Dyad-

seq, two where the presence of 5mC is known on one strand through the digestion 

of DNA with MspJI (M-M-Dyad-seq and M-H-Dyad-seq), and two where the 

presence of 5hmC is known on one strand through the digestion of DNA with AbaSI 

(H-M-Dyad-seq and H-H-Dyad-seq)34,65 (Fig. 5.1a). Digested molecules are captured 

by ligation of the bottom strand to a double stranded adapter containing a sample 

barcode, UMI, PCR amplification sequence, and corresponding overhang. Next 

unmodified cytosines are converted enzymatically using APOBEC3A or by using 

sodium bisulfite to uracil (M-M-Dyad-seq and H-M-Dyad-seq)50. These methods 

measure a combined signal from 5mC and 5hmC, slight modification in the 

conversion step can result in only the detection of only 5hmC (M-H-Dyad-seq and H-

H-Dyad-seq)46–49,51. The bottom strand of the adapter is devoid of cytosine and thus 

it is unaffected by cytosine conversion56. Next, random primer extension is used to 

incorporate part of the Illumina read 2 adapter sequence. The resulting molecules 

are then PCR amplified and subjected to next generation sequencing. Due to the 
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use of a 5mC or 5hmC specific endonuclease, the presence of the epigenetic 

feature can be inferred on the non-amplified strand, while the methylation status of 

the opposing CpG site can be determine directly from the sequencing results 

(Supplementary Fig. 5.1a,b). These techniques provide a measurement of 5mC or 

5hmC maintenance at single CpG dyad resolution, as well as 5mC or 5hmC percent 

at single base resolution, as is typically obtained in bisulfite sequencing. Additionally, 

M-H-Dyad-seq and H-M-Dyad-seq allow for the direct detection of differing 

epigenetic marks on opposing DNA strands, which is not possible with hairpin 

bisulfite-based techniques. 

To validate M-M-Dyad-seq, we compared mESCs grown with or without 

Decitabine. Decitabine is a cytosine analog known to directly interact with DNMT1, 

the 5mC maintenance protein, causing its depletion203. Treatment with Decitabine for 

24 hours caused global loss of 5mC as well as global loss of 5mCpG maintenance, 

demonstrating that M-M-Dyad-seq can be used to measure changes in 5mC 

maintenance as well as global 5mC levels (Supplementary Fig. 5.2a,b). Additionally, 

in both conditions CpHpG maintenance was very low, consistent with DNMT1s 

preference for CpG sites and the known phenomena that only CpG sites are 

maintained in mammalian cells (Supplementary Fig. 5.2c). 

After validating technique, we applied Dyad-seq to Mouse embryonic stem cells 

(mESCs) in an in vitro model of epigenetic reprograming during changes in 

pluripotency. mESCs can exist in a primed or naïve state of pluripotency depending 

on the culture conditions. Primed mESCs exist when cultured in serum containing 

conditions supplemented with leukaemia inhibitory factor (LIF) (SL), while naïve 

mESCs exist when cultured in serum free media containing two inhibitors, GSK3i 
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(CHIR99021) and MEKi (PD0325901), in addition to LIF (2i)204. These two states of 

mESCs are interconvertible, and mESCs in SL are highly methylated and become 

hypomethylated when transitioned to 2i155. There are three potential causes of this 

demethylation, 1) active demethylation of 5mC to 5hmC induced by ten-eleven 

translocation (TET) methylcytosine dioxygenases, 2) reduced de novo DNA 

methylation by DNMT3a and DNMT3b, or 3) passive demethylation from lack of 

5mC maintenance upon cell division. Indeed, in this system it has been shown that 

all three play a role, with passive demethylation likely being the main contributor205–

207. To further investigate the role of passive demethylation in the transition from SL 

to 2i, we transitioned SL mESCs to media containing each component of the 2i 

media for 48 hours and performed all sub-types of Dyad-seq. 

The change from SL to the basal media of 2i (No) induced spontaneous 

differentiation and rapid increase in 5mCpG maintenance (Fig. 5.1b). The addition of 

LIF into this basal media (BL), as well as the addition of both LIF and GSK3i (G) 

resulted in limited changes to 5mCpG maintenance (Fig. 5.1b). Basal media 

containing LIF and MEKi (M) induced an even larger decrease in maintenance than 

2i media induced (Fig. 5.1b). Interestingly even as the rate of 5mCpG maintenance 

decreased in M and 2i, it was rare for dyads containing 5mC to be pair with 5hmC 

(Fig. 5.1c). In fact, 5hmC was found to rarely occur opposing other 

hydroxymethylated sites (Fig. 5.1d). In contrast to 5hmC/5hmC levels, 5hmC sites 

had high levels of 5mC on the opposing DNA strand, which varied similarly to the 

global levels of 5mC among conditions (Fig. 5.1e,f and Supplementary Fig. 5.3a). 

These results match well with single-molecule fluorescence resonance energy 

transfer experiments, which while lacking loci specific information, globally identified 
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roughly 60% of 5hmCs exist in a 5hmC/5mC state in mESC208. Some experiments 

have demonstrated that TET has a high preference for fully methylated sites over 

hemimethylated ones, yet, contradictory to this, the crystal structure of TET indicates 

the non-reactive cytosine is not involved in protein DNA contacts209,210. Similar levels 

of 5hmC/5mC sites compared to genome wide 5mC detection implies that in serum 

grown mESCs, TET has no preference for fully methylated sites over 

hemimethylated sites (Fig. 5.1e,f and Supplementary Fig. 5.3a). 

In greater than 95% of regions, reduced 5mCpG maintenance and reduced 

5mCpG percent were co-observed between SL and 2i, indicating that passive 

demethylation plays a major role in the hypomethylation observed in 2i mESCs 

(Supplementary Fig. 5.3b). Global levels of 5hmC were similar across conditions, 

and no increase was seen for M and 2i, providing further evidence that passive 

demethylation is the key factor regulating the methylome during this transition (Fig. 

5.1g and Supplementary Fig. 5.3c). 2i and M involve the inhibition of the MAPK/ERK 

pathway, which has been previously shown to induce loss of the 5mCpG 

maintenance protein (DNMT1) in multiple systems, including in mESCs transitioned 

from SL to 2i207,211,212. To investigate other potential causes of this passive 

demethylation, we performed RNA-seq on all conditions, where we found each 

condition to be transcriptionally unique (Supplementary Fig. 5.4a,b). We reasoned 

that since passive demethylation was observed in the M and 2i conditions, but an 

increase in 5mCpG maintenance was seen in the No condition, putative causal 

genes could be identified as those which are highly or lowly expressed in M and 2i 

when compared to No, but are expressed at intermediate levels in G, BL, and SL. 

Using this criterion, we observe 61 putative genes. Of these, 39 were highly 
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expressed in the 2i and M condition with enrichment in pathways associated with 

pluripotency, negative cell cycle regulation, blastocyst development and the 

regulation viral life cycle (Fig. 5.1h & Supplementary Fig. 5.4c). The remaining 22 

genes were highly expressed in the No Condition and were enriched in pathways 

such as those associated with negative regulation of ERK1 and ERK2 cascade and 

mesenchymal cell differentiation (Fig. 5.1h & Supplementary Fig 5.4d). Notably, 

Dppa3 (developmental pluripotency associated 3 gene) was found to be highly 

expressed in the M and 2i condition (Fig. 5.1h and Supplementary Fig. 5.4b). 

Previous studies have found that ectopic expression of Dppa3 lead to global 

hypomethylation, while Dppa3 knockout leads to global hypermethylation206,213. 

Dppa3 has even been shown to directly bind the PHD domain of UHRF1 (Ubiquitin 

like with PHD and ring finger domains 1), a critical partner of DNMT1 for 5mCpG 

maintenance, and displaces it from chromatin, thus inhibiting 5mCpG 

maintenance206. These results show that by combining Dyad-seq with RNA-seq it is 

possible to identify critical factors driving DNA demethylation and thus changes in 

pluripotency. 

While DNA hypomethylation is a global phenomenon in the naïve state, we and 

others find intracisternal A particles (IAPs) are protected from 5mC erasure in 2i 

(Supplementary Fig. 5.5)205,214. Interestingly, the elevated 5mC levels of IAPs 

relative to other genomic locations is also true in M and SL, indicating IAPs are 

associated with high methylation regardless of cell state (Supplementary Fig. 5.5). 

High levels of methylation are likely due to higher levels of 5mCpG dyad 

maintenance found in IAPs relative to other regions (Fig. 5.1i). Recent works have 

found that DNMT1 maintenance is positively impacted by high levels of methylation 
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surrounding an individual CpG dyad, suggesting a positive feedback loop between 

5mC levels and 5mC maintenance201. Further investigating the SL condition, we also 

found that high methylation level led to high 5mCpG maintenance, with a more 

pronounced affect in regions with higher CpG density such as CpG Islands 

(Supplementary Fig. 5.6a-d). 

Having discovered 5mCpG maintenance can be impacted by regional 

differences, we hypothesized that histone modifications could play a role in this 

process. We find that regardless of the histone modification, high methylation rates 

are associated with high 5mC maintenance (Fig. 5.1j). At low methylation rates we 

find regions enriched with H3K9me2/3, enhancers marked by H3K4me1 or 

H3K27ac, and active promoters marked by H3K9ac have increased 5mC 

maintenance (Fig. 5.1j). Interestingly, Uhrf1 is critical to 5mC maintenance and its 

ability to bind H3K9me2/3 with high affinity is well established, providing rational for 

higher maintenance seen in these regions215–217. Other interactions with 5mC 

maintenance machinery may explain elevated maintenance in these other regions, 

but surprisingly, while H3K4me3 also marks active promoters and is well correlated 

with H3K9ac, we find that H3K4me3 as well as H3K36me3 and H3K27me3, had 

similar levels of 5mC maintenance to genome wide levels (Fig. 5.1j)218. 
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Figure 5.1 | Dyad-seq enables detection of 5mC or 5hmC on both strands of the same piece of 
DNA.  

(a) Schematic describing 4 versions of Dyad-seq. M-M-Dyad-seq profiles 5mC on one strand and 
C or 5mC on the opposing strand. M-H-Dyad-seq profiles 5mC on one strand and C or 5hmC on the 
opposing strand. H-H-Dyad-seq profiles 5hmC on one strand and C or 5hmC on the opposing strand. 
H-M-Dyad-seq profiles 5hmC on one strand and C or 5mC on the opposing strand. (b) 5mCpG 
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maintenance as detected by M-M-Dyad-seq. (c) The percent of 5mCpGs Dyads with 5hmC on the 
opposing DNA strand detected by M-H-Dyad-seq. (d) The percent of 5hmCpGs Dyads with 5hmC on 
the opposing DNA strand detected by H-H-Dyad-seq. (e) The percent of 5hmCpGs Dyads with 5mC 
on the opposing DNA strand detected by H-M-Dyad-seq. (f) M-M-Dyad-seq detected 5mC in a CpG 
context from non-Dyad sites. (g) M-H-Dyad-seq detected 5hmC in a CpG context from non-Dyad 
sites. (b,f) 100 Kb bin size, (c-e,g) 1 Mb bin size. (h) Heatmap of differentially expressed genes with 
a putative role in passive 5mCpG demethylation. (i) Detection of maintenance at repetitive elements 
as detected by M-M-Dyad-seq. (j) Detection of 5mCpG maintenance for levels of non-dyad 5mCpG 
percent at regions enriched for various histone marks. Bracketed numbers indicate total number of 
regions analyzed. 

2. mESC display heterogenous 5mC maintaince based on their transcriptional 

state 

The development of Dyad-seq allowed us to characterize the heterogeneity in 

5mC maintenance across the genome with the resolution of a single CpG site, but 

the heterogeneity of 5mCpG maintenance within a sample is still difficult to quantify. 

M-M-Dyad-seq has some similarities to our previous sequencing technique, 

scMspJI-seq, thus we hypothesized that unlike currently available hairpin bisulfite 

techniques, M-M-Dyad-seq could be scaled down to the single cell level65. Indeed, 

single cell 5mC/5mC Dyad-seq (scDyad-seq) is possible and to validate its 

accuracy, cells treated with Decitabine for 24 hours were analyzed. Most cells 

experiencing global loss of 5mC and extremely low 5mCpG maintenance but limited 

changes in 5mCpHpG, validating the method (Supplementary Fig. 5.7a,b). 

Other single-cell workflows have benefited greatly from capturing the 

transcriptome in addition to the epigenome85,92. Here in bulk, we also have shown 

the power of transcriptome analysis when paired with Dyad-seq, so after validating 

scDyad-seq works in single-cells, we further enhanced the technique by 

simultaneously identifying the transcriptome (scDyad&T-seq) using a post in vitro 

transcription amplified mRNA enrichment strategy we previously developed in 
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scMAT-seq (chapter 3). We applied scDyad&T-seq to 106 serum grown mESCs 

cells, detecting on average 24,384 transcripts, covering 49,626 5mCpG dyads and 

covering an additional 317,088 CpGs where there is no associated dyad information 

(Fig. 5.2a). Surprisingly, even when considering regions of similar 5mC content, very 

high heterogeneity is observed in both 5mCpG maintenance and non-dyad 5mC 

levels, indicating single-cell resolution can be highly beneficial (Fig. 5.2b). Not 

surprisingly, since 5mC plays a key role in cell identity and gene expression, we also 

identify heterogeneity in gene expression.  

Using the transcriptome, we identify two subpopulations in our serum grown 

mESCs, one population that is high in Nanog, Rex1, and Esrrb (Nanog High) and 

one that is low in these genes (Nanog Low) (Fig. 5.2c, Supplementary Fig. 5.8 and 

5.9). It is well established that mESCs grown in serum are transcriptionally 

heterogenous with bimodal expression of key pluripotency genes, but how their 

epigenomes regulate these differences is less well studied85,219. We find that the 

Nanog High population is globally hypomethylated and has lower 5mCpG 

maintenance compared to the Nanog Low group, p-value 8x10-6 and 3.6x10-4 

respectively (Fig. 5.2.d,e). mESCs can switch from a high to low Nanog state or vice 

versa stochastically with low frequency219. Our results suggest that this stochastic 

event is connected with changes in DNA methylation, which in turn are established 

in part by underlying rates of 5mCpG maintenance. 

In addition to cell identity, here we have found that histone modifications can 

impact 5mCpG maintenance. Consistent with bulk findings, H3K9me2/3, H3K4me1, 

H3K27ac, and H3K9ac tend to have high maintenance related to their 5mC level 

(Fig 5.2.d,e). Surprisingly, regardless of histone modification, Nanog High cells have 
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lower 5mCpG maintenance, revealing that cell state is extremely important in 

governing passive demethylation and can at least in part overcome potential positive 

interactions between histone marks and DNA maintenance machinery (Fig 5.2.d,e). 

While here we have used scDyad&T-seq to understand the heterogeneity of 

5mCpG Maintaince in serum grown mESCs cells, this heterogeneity has been 

previously explored using scMspJI-seq and single cell bisulfite sequencing65. These 

techniques use strand specific 5mC information to calculate strand bias, which is the 

number of methylated cytosines on the plus strand divided by the total detected in a 

region65. As such, deviations from a strand bias of 0.5 indicate passive 

demethylation is occurring. Because strand bias is a regional technique, it is 

inherently limited in its detection of demethylation. Additionally, in most cells it is 

difficult to discriminate between maternal and paternal DNA which can result in 

strand bias being obscured and results in an inability to detect passive 

demethylation in bulk. Strand bias in scDyad&T-seq is equivalent to scMspJI-seq 

and so we compared the resolution afforded by strand bias vs 5mCpG maintenance. 

Generally, strand bias does a good job in detecting cells that are experiencing a high 

level of passive demethylation but struggles to detect cells with more modest 

passive demethylation (Fig. 5.2f). For one cell (P7L4.78) experiencing high levels of 

demethylation (average 5mCpG maintenance of 30.7%), very little strand bias was 

found, while another cell (P7L3.69) experiencing similar levels of demethylation 

(average 5mCpG maintenance = 25.4%) the cell was found to be highly biased (Fig. 

5.2g).  

In good agreeance between both measurements, in most serum grown mESCs 

with high 5mCpG maintenance, no strand bias was observed (Fig. 5.2f and 
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Supplementary Fig. 5.10a,b). Additionally, a computational method for estimating 

passive demethylation from nucleobase conversion based 5mC sequencing reads 

also trended well with the measured 5mCpG maintenance (Supplementary Fig. 

5.10c). Together these results indicate that scDyad&T-seq is a highly sensitive 

method for assessing the maintenance status of individual 5mCpG dyads, the 

methylation level of non-dyad interrogated CpGs and the transcriptome from the 

same single cell, allowing for the connection between epigenetic dynamics and cell 

state. 
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Figure 5.2 | scDyad&T-seq connects cell identity to demethylation dynamics in single cells.  
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(a) Coverage of 5mCpG dyads, non-dyad CpGs, and total transcripts in single cells. (b) 
Methylation and 5mCpG maintenance levels at fully methylated regions (FMR), lowly methylated 
regions (LMR), and unmethylated regions (UMR) as observed by Stadler et al., each dot represents 
detection in one cell220. (c) UMAP visualization of serum grown mESCs based on the single-cell 
transcriptomes obtained from scDyad&T-seq. (d) Non-dyad 5mCpG levels in regions of enriched 
histone marks. (e) 5mCpG maintenance levels in regions of enriched histone marks. (d,e) Cells split 
by groupings in (b). (f) Heatmap of 5mCpG maintenance by chromosome indicates an increased level 
of sensitivity in detecting demethylation when compared to strand bias for the same cell. 
Transcriptional group and genome wide 5mCpG methylation levels are also reported for the same 
cells. (g) MspJI detection on each strand of a chromosome for two passively demethylating cells from 
(h), cell P7L4.78 and P7L3.69. A low Persons correlation indicates deviations from a strand bias of 
0.5. Point color describes the detected 5mCpG maintenance percent. 

3. Heterogenous loss of 5mC maintaince is observed when mESC transition to 

the naïve state 

To further investigate the effect of cell state on DNA maintenance, we applied 

scDyad&T-seq to mESCs 3, 6, and 10 days after transitioning from serum containing 

media (Serum) to 2i media (2iD3, 2iD6, and 2iD10 respectively). While 2i cells are 

remarked for their homogeneity relative to serum grown mESCs, surprisingly we 

found that the epigenetic reprograming to the naïve state is highly heterogenous with 

many cells retaining high levels of methylation and 5mCpG maintenance even after 

10 days in 2i (Fig 5.3a,b). Using hierarchical clustering, cells were classified as 

highly or lowly methylated (mCHi and mCLo), and highly or lowly maintained (MntHi 

and MntLo), leading to 4 distinct categories of methylation state (Supplementary Fig. 

5.11 and 5.12). We find that during the primed to naïve transition, cells begin 

generally highly methylated and highly maintained. Passive demethylation then 

begins, and cells lose 5mC until they reach a lowly methylated and lowly maintained 

phase, after which, cells remain lowly methylated but the 5mC that still remains is 

highly maintained (Fig. 5.3c,d). Consistent with this result, regions previously 

identified as retaining high methylation in the 2i state consistently have higher 

methylation and maintenance in all timepoints even in serum grown cells155 (Fig 
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5.3e,f). These regions were shown to correlate with the presence of H3K9me3, 

which is located in highly similar regions for serum and 2i grown mESC155,221. 

Together this, along with our previously identified correlation between H3K9me3 and 

high 5mCpG maintenance, these results indicate that the global impairment to 

5mCpG maintenance machinery in 2i grown mESC is partially restored in regions of 

H3K9me3 likely due to interactions with UHRF1 and enhanced activity of DNMT1 at 

regions containing high 5mC. 

While large epigenetic heterogeneity was observed, we find most cells in 2i are 

transcriptionally similar and distinct from serum grown cells (Supplementary Fig. 

5.13a). Cells grown in 2i did not strongly separate by timepoint, indicating the naïve 

transcriptional programing is quicky activated once the media is changed (Fig. 5.3g 

& Supplementary Fig. 5.13a-e). While two broad transcriptional groups were 

observed, further clustering revealed 4 populations, with two groups related to serum 

grown cells as discussed previously, Nanog low serum (NanLo) and Nanog high 

(NanHi), and two groups related to 2i cells (2i-1 and 2i-2) (Fig. 5.3h).  

Interestingly, a handful of cells in the 2iD3 condition cluster with the Nanog low 

SL cell population and are likely derived from these cells. Nanog low serum grown 

cells are less likely to survive the transition to 2i when compared to Nanog high 

cells222. This low survival rate is likely due to an epigenetic barrier, as this 2iD3 

group contains high 5mCpG maintenance and thus retains high 5mC relative to 

successfully transitioned 2iD3 cells (Supplementary Fig. 5.14a,b). These non-

transitioning cells express low levels of Pou5f1, a similar phenomenon found in other 

recent work describing these non-transition cells (Supplementary Fig. 5.14c)222. In 

addition, they appear to have undergone spontaneous differentiation to 
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neuroectoderm lineage and are expression Sox1, but do not survive long term 

culture and are no longer present by day 10 (Fig. 5.3g,h and Supplementary Fig. 

5.14d). 

Those cells which did successful transfer into 2i culture could be split into two 

transcriptionally distinct populations, 2i-1 and 2i-2. The 2i-2 population highly 

expressed endogenous retrovirus RLTR45 and RLTR45-int, as well as Khdc3 (also 

known as Filia) known to be involved in safeguarding genomic integrity of mESCs 

and preimplantation embryos223,224 (Fig. 5.3i). Additionally, in this same population, 

we found high expression of Dppa3, which as previously discussed has been 

implemented in DNA demethylation (Fig. 5.3i). Together this suggests the 2i-2 

transcriptional population is experiencing high levels of DNA demethylation resulting 

in the loss of retroviral silencing and genomic instability, likely due to loss of DNA 

maintenance. Indeed, 2i-2 cells are highly demethylated while the 2i-1 population of 

cells, which expresses these transcripts at lower levels retains mainly highly 

methylated (Fig. 5.3j). The two populations also drastically differ in their 5mCpG 

maintenance with the 2i-2 having lower global 5mCpG maintenance (Fig. 5.3k). 

Surprisingly, the two transcriptional populations within the 2i cells appear to be only 

weakly related to the culturing duration in 2i, as we observe a slight bias for later 

timepoints to be in the 2i-2 transcriptional group (Supplementary Fig. 5.15a). 

Instead, as the global levels suggest, we find that the 2i-2 transcriptional group is 

largely comprised of cells in a methylation state identified as mCLo and MntLo, while 

the 2i-1 group still consists of many cells in a mCHi and MntHi state (Fig. 5.3l). 

Because we see that the methylation state of mCHi and MntHi is reduced over time, 

this suggests that the transcripts expressed by the 2i-2 transcriptional group maybe 
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important in the long term reprograming to the naïve pluripotency state (Fig. 5.3d). 

While it is well known that DNA methylation and gene expression become highly 

decoupled during the transition to the naïve state, we find that this is not true for at 

least 22 genes and 2 transposable elements (Supplementary Fig. 5.15b). While the 

transcriptional differences between the two populations are fairly limited, further 

study is needed to investigate if the epigenetic differences observed in 2i cells lead 

to differences in differentiation potential and cell fate outcome, as was seen here for 

the Nanog low serum cells when transitioned to 2i. 
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Figure 5.3 | The transition to naïve pluripotency involves transient loss of 5mCpG 
maintenance, leading to expression of select genes and transposable elements.  

(a,b) 5mCpG methylation (a) and 5mCpG maintenance (b) levels for each cell while transitioning 
to 2i conditions. (c,d) Cells transition from highly methylated and highly maintained to a lowly 
methylated and highly maintained state. (c) Overall 5mCpG methylation and 5mCpG maintenance 
levels for each cell while transitioning to 2i conditions. (d) Cells discriminated by measured 5mC 
dynamics while transitioning to 2i conditions, as described by Supplemental Fig. 5.11 and 5.12. (e,f) 
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Methylation and 5mCpG maintenance levels at region of high DNA methylation in mESCs grown in 
long term in 2i (5mC high) as observed by Habibi et al. and at all other regions (Other loci), each dot 
represents detection in one cell155. (g,h) UMAP visualization of cells transiting to 2i based on the 
single-cell transcriptomes obtained from scDyad&T-seq, discriminated by time in 2i (g) or by 
transcriptome-based clustering (h). (i) Gene expression of select genes and transposable elements 
found highly expressed in the 2i-2 population, Dppa3, Khdc3, RLTR45, and RLTR45-int. (j,k) 5mCpG 
methylation (j) and 5mCpG maintenance (k) levels for each cell, discriminated by transcriptional 
cluster shown in (h). (i) Measured 5mC dynamics, as described by Supplemental Fig. 5.11 and 5.12, 
for cells in the 2i transcriptional populations 2i-1 and 2i-2 described in (h). Bracketed numbers 
indicate total number of cells in that group (d,i). 

C. Conclusion 

In summary, we developed Dyad-seq which is a general technique for profiling 

epigenetic marks on opposing DNA strands. One sub type of Dyad-seq, H-M-Dyad-

seq was used to observed that 5hmCs are commonly found duplexed with 5mC, an 

observation that could not be detected with conventional hairpin bisulfite techniques. 

We then focused our attention to M-M-Dyad-seq and the transition of mESCs from 

serum to 2i. Here together with RNA-seq, we identified putative genes likely 

responsible for the passive loss of 5mC. One such gene was Dppa3, which has 

previously been implemented in this transition and is well known to directly interact 

with UHRF1, a critical piece of the 5mC maintenance machinery206. We then 

developed scDyad&T-seq by scaling down M-M-Dyad-seq and simultaneously 

implementing RNA seq on the same single-cells. Using scDyad&T-seq we identified 

two populations in serum grown mESCs differing in DNA maintenance, 5mC levels, 

as well as gene expression. Furthermore, when using scDyad&T-seq on mESCs 

transitioning from serum to 2i, we found the epigenetic reprograming process to be 

highly heterogenous, with transcription being decoupled from DNA methylation 

except for a select handful of genes including Dppa3. Further, we show that in 

addition to cell identity, DNA methylation levels, and histone modifications can 
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influence the accuracy of the 5mCpG maintaince machinery. Specifically, during the 

transition to 2i, we find that mESCs retain high 5mC in some areas because of high 

levels of DNA maintenance which are in part elevated due to H3K9me3 enrichment 

in these areas155,221. Overall, scDyad-seq is an enhancement to both scMspJI-seq 

and scBS-seq, enabling high resolution detection of passive demethylation and 

global 5mC levels in thousands of single-cells and optionally with scDyad&T-seq, the 

method can be easily adapter to obtain transcriptional data from the same cells 

simultaneously (Supplementary Fig. 5.16a,b). 



 

 120 

D. Supplementary figures 

 

Supplementary Figure 5.1 | Schematic of Dyad-seq methodologies.  

(a) Describes detection of CpG dyads through MspJI digestion and subsequent nucleobase 
conversion as used in M-M-Dyad-seq, M-H-Dyad-seq and scDyad&T-seq. (b) Describes detection of 
CpG dyads through AbaSI digestion and subsequent nucleobase conversion as used in H-M-Dyad-
seq and H-H-Dyad-seq. 
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Supplementary Figure 5.2 | M-M-Dyad-seq accurately captures demethylation induced by 24-
hour Decitabine treatment.  

(a) M-M-Dyad-seq detected 5mC in a CpG context from non-Dyad sites for SL and Decitabine 
treated (D) mESCs. (b) 5mCpG maintenance as detected by M-M-Dyad-seq. (c) 5mCpHpG 
maintenance as detected by M-M-Dyad-seq. 
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Supplementary Figure 5.3 | Global epigenetic response to 48-hour mESC growth in 2i media 
components.  

(a) H-M-Dyad-seq detected 5mC in a CpG context from non-Dyad sites. (b) Reduction of 5mCpG 
maintenance and non-Dyad 5mCpG percent is co-observed when transition from SL to 2i, each dot 
represents genomic tilling of 100 kb. (c) H-H-Dyad-seq detected 5hmC in a CpG context from non-
Dyad sites. 
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Supplementary Figure 5.4 | Transcriptome response to 48-hour mESC growth in 2i media 
components.  

(a) RNA-seq principal component plot. (b) Heatmap of genes related to active and passive 
demethylation processes. (c,d) Gene enrichment analysis for differentially expressed genes 
performed using Metascape225. (c) Gene set that was highly expressed in the 2i and M condition, 
lowly expressed in No, and not differentially expressed across SL, BL, and G. (d) Gene set that was 
highly expressed in the No condition, lowly expressed in 2i and M, and not differentially expressed 
across SL, BL, and G. 
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Supplementary Figure 5.5 | IAPs are resistant to demethylation in the primed to naïve 
pluripotency transition.  

Detection of non-dyad 5mCpG percent at repetitive elements after 48-hours in the indicated 
condition as detected by M-M-Dyad-seq. 
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Supplementary Figure 5.6 | High 5mCpG maintenance occurs in regions with high 5mC levels.  

(a) 5mCpG maintenance in 1 kb genomic bins split by the number of CpGs in the bin as well as 
the detected non-dyad 5mC level. Low 5mC indicates methylation levels lower than 20%, medium 
5mC indicates levels between 20% and 80%, and high 5mC indicates levels greater than 80%. (b) 
5mCpG maintenance in 1 kb genomic bins split by non-dyad 5mC level. (c) 5mCpG maintenance at 
fully methylated regions (FMR), lowly methylated regions (LMR), and unmethylated regions (UMR) as 
observed by Stadler et al.220. (d) 5mCpG maintenance at CpG islands split by non-dyad 5mC levels. 
Methylated indicates CpG islands with greater than 20% methylation, mixed indicates methylation 
levels between 10 and 20%, and unmethylated indicates CpG islands with less than 10% methylation. 
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Supplementary Figure 5.7 | scDyad-seq accurately captures demethylation induced by 24-hour 
Decitabine treatment in single K562 cells.  

(a) Methylation and maintenance levels of single-cells with or without 24-hour 0.6 µM Decitabine 
treatment. (b) 5mCpHpG maintenance levels of single-cells with or without 24-hour 0.6 µM Decitabine 
treatment. 

 

Supplementary Figure 5.8 | Serum grown mESCs are heterogenous, containing a Nanog high 
and a Nanog low population of cells.  

Detection of Nanog, Rex1, and Esrrb expression in the two classified groups based on gene 
expression (Fig. 5.2c). 
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Supplementary Figure 5.9 | Serum grown mESCs contain two subpopulations. 

Differentially expressed genes in the two classified groups detected in serum grown mESCs (Fig. 
5.2c). 

 

Supplementary Figure 5.10 | Comparison of scDyad&T-seq to scMspJI strand bias 
measurement in serum grown mESCs.  

(a) 5mCpG detection by MspJI on the plus and minus strand for each chromosome of a 
representative highly maintained cell (P7L3.67, see Fig. 5.2f). Point color shows the detected 5mCpG 
maintenance percent of the chromosome. (b) Chromosomal 5mCpG strand bias observed in the 
detection by MspJI compared to observed 5mCpG maintenance percent. (c) Cell wide concordance 
of methylation calls compared to observed 5mCpG maintenance percent. Concordance was defined 
as the fraction of reads with at least 5 CpG’s covered where 90% or greater of the sites were 
methylated (b,c) Point color describes the detected 5mCpG percent. 
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Supplementary Figure 5.11 | Hierarchical cluster of 5mCpG levels in cells transition to 2i 
conditions.  

Based on genome wide 5mCpG levels, cells are clustered into either a 5mC low or 5mC high 
group, mCLo or mCHi respectively. 
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Supplementary Figure 5.12 | Hierarchical cluster of 5mCpG maintenance levels in cells 
transition to 2i conditions.  

Based on genome wide 5mCpG maintenance levels, cells are clustered into either a low 
maintenance or high maintenance group, MntLo or MntHi respectively. 
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Supplementary Figure 5.13 | Broad transcriptional reprograming occurs quickly once mESCs 
are transitioned to 2i conditions.  

(a) UMAP visualization of cells transiting to 2i based on the single-cell transcriptomes obtained 
from scDyad&T-seq, discriminated by broad transcriptome-based clustering. The cluster names, 2i 
like and Serum like were assigned based on expression of key marker genes of mESCs in 2i or SL 
conditions respectively. (b) Expression of key pluripotency genes known to be similar between SL 
and 2i culture226. (c) Expression of genes known to be highly expressed in 2i mESCs when compared 
to those grown in SL conditions226. (d) Expression of genes known to be highly expressed in SL 
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mESCs when compared to those grown in 2i culture226. (e) Evaluation of transcriptome assignment 
accuracy based on known cellular grown conditions, SL or 2i. Bracketed numbers indicate total 
number of cells in that group. 

 

Supplementary Figure 5.14 | Epigenetic barriers prevent 2i transition in some cells.  

(a,b) 5mCpG methylation (a) and 5mCpG maintenance (b) levels for 2iD3 cells categorized by 
broad transcriptional group described in Supplementary Fig. 5.13a. (c-d) Gene expression of select 
genes, pluripotency marker Pou5f1 (aka Oct4) (c) and early neuroectoderm lineage marker Sox1 (d). 
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Supplementary Figure 5.15 | mESCs in 2i exhibit two transcriptionally distinct groups.  

(a) 2i grown mESC transcriptional groups described in Fig. 5.3h, discriminated by time in 2i. 
Bracketed numbers indicate total number of cells in that group. (b) Gene expression of differentially 
expressed genes between the 2i-1 and 2i-2 population. 
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Supplementary Figure 5.16 | scDyad&T-seq connects cell identity to demethylation dynamics 
in single cells transitioning from SL to 2i. 



 

 135 

(a) Coverage of 5mCpG dyads, non-dyad CpGs, and total transcripts in single cells transition 
from SL to 2i. (b) Heatmap of 5mCpG maintenance by chromosome indicates an increased level of 
sensitivity in detecting demethylation when compared to strand bias for the same cell. Culture 
conditions and genome wide 5mCpG methylation levels are also reported for the same cells. 
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6. scMATH-seq: Detecting 5-methylcytosine, DNA accessibility, 

RNA transcripts, and 5-hydroxymethylcytosine from the same 

single cell  

A. scMATH-seq in human embryonic stem cells 

It is well understood that epigenetic features can drive or repress gene 

expression. Exactly how these epigenetic features can alter gene expression and 

cell identity is not fully understood. Even more, the interaction between different 

epigenetic features in many cases is unknown and needs further study. While many 

novel techniques are emerging, the lack of modularity and limited number of features 

detected in one assay severely limits the ability to study epigenetic features and 

RNA simultaneously from the same single cell227. To bridge this gap, we present 

scMATH-seq a sequencing method to detect the methylome, DNA accessibility, the 

transcriptome, and the hydroxymethylome simultaneously from the same single-cell. 

This methodology builds upon the previously described scMAT-seq and scMTH-seq. 

Apart from the DNA accessibility measurement requiring the methylome to be read 

simultaneously, the methodology is highly flexible and allows any combination of 

detection of these four features from the same single cell (Fig. 1a). To do this, 

individual cells are isolated into reaction wells. Reverse transcription and GpC 

methylation of open DNA is then performed simultaneously. Next, second strand 

synthesis of the mRNA into cDNA is performed and then 5hmC sites are 

glucosylated. Following these steps, genomic DNA is digested sequentially with 

AbaSI and then MspJI. Digested DNA will be ligated to complimentary adaptors, the 

reaction wells are then pooled followed by in vitro transcription and PCR 
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amplification for Illumina library preparation. After sequencing, the cell and feature 

specific barcodes are used to distinguish between mRNA derived reads, 5-

methylcytosine (5mC) derived reads, and 5-hydroxymethylcytosine (5hmC) derived 

reads. Finally, endogenous methylation will be deconvoluted from sequence-specific 

exogenously induced methylation, enabling quantification of the methylome and 

DNA accessibility. 

B. Current limitations and the future of the single cell multiomics 

technology 

scMATH-seq can detect each feature with high quality, rivaling the detection 

observed for each mark individually (Fig. 1b)34,65. While this method is highly 

promising, it has yet to be tested in a dynamic system and incurs a drawback of 

needing high sequencing depths per cell, a feature common to multiomics 

sequencing techniques. The high sequencing depth needed is due to differing initial 

levels and potentially differences in capture efficiency between the various 

detectable features. Notably low detection of RNA transcripts occurs in scMATH-seq 

and can be problematic in all members of the scMATH-seq methodology family (Fig. 

1c). In scMAT-seq, an mRNA derived molecule enrichment strategy was created 

that is performed after sample amplification, leading to less dropouts and lower 

sequencing depths required to achieve high quality data. This same approach is 

applied to scMATH-seq, enriching the library for mRNA derived molecules, resolving 

the discussed issue (Fig. 1c). Like the mRNA derived molecules, in scMATH-seq, 

5hmC derived molecules make up a very low fraction of the sequenced molecules 

even when compared to scMH-seq, necessitating the derivation of an enrichment 

strategy to significantly lower the sequencing costs to achieve high quality 5hmC 
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data (Fig. 1c). Such enrichment strategies are possible but would likely entail a 

redesign of the double stranded adapters currently used. Some promising 

methodologies include adding stretches of known sequence, or using alternative 

promoter sequences, for instance a T3 promoter sequence. If a different stretch of 

known sequence was added to each double stranded adapter type, it could be 

designed in a way for optimal biotin-based pulldown (as is done currently in the 

enrichment of mRNA derived molecules). Alternatively, each could also be designed 

with a restriction enzyme site for depletion with an endonuclease or with a 

protospacer adjacent motif (PAM) site for depletion with a CRISPR Cas9 based 

system228,229. Likely other promising enrichment strategies will be developed 

specifically for low input applications. As single cell multiomics as a field grows, 

foresight into enrichment strategies will be key for the practicality of the 

methodologies proposed. 

 In addition to this limitation, the scMATH-seq family of methods is currently 

cumbersome and requires multiple days of processing for detection in a few 

thousand cells. Many new multiomics methodologies have leveraged techniques first 

developed for scRNA-seq, including droplet based single-cell barcoding, and 

combinatorial barcoding techniques including split-and-pool227. The scaling of these 

technologies vastly outnumbers that of scMATH-seq but integration of so many 

epigenetic features has proven difficult with these techniques, specifically for 

detection of 5mC and 5hmC. It is likely that methods like scMATH-seq will be part of 

the first wave of techniques to investigate epigenetic marks like 5mC and 5hmC 

without traditional bisulfite sequencing. I am hopeful that scMATH-seq and the other 

techniques derived in this manuscript will be a starting point for future researchers to 
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improve detection in single cell multiomics techniques. I believe that researchers will 

soon have the ability to profile multiple epigenetic marks and the transcriptome from 

hundreds of thousands of cells with relative ease, and that this innovation will drive 

the development of computational tools which can take advantage of the newly 

developed scale. It is unimaginable the insights into human development, health, 

and disease that will be uncovered using these techniques, but it is almost certain 

that our current understanding of the epigenome will be transformed. 
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Figure 1 | Detection of 5mC, DNA accessibility, RNA transcripts, and 5hmC simultaneously 
from the same single cell using scMATH-seq.  
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(a) Schematic of scMATH-seq. Cell and detected species specific barcodes are shown in red, 
brown, and gold for mRNA, 5mC, and 5hmC respectively. The Illumina read 1 sequencing primer is in 
blue, and the T7 promoter is in green. (b) Detection level for each epigenetic mark in H9 human 
embryonic stem cells. Each cell is represented in the same x-axis position in all plots, from top to 
bottom, 5mCpG, DNA accessibility (Gp5mC), gene transcripts, and 5hmCpG. (c) Molecule type of 
origin detected in raw sequencing data for scMATH-seq (scMATH), the RNA enriched scMATH-seq 
library (scMATH RNA+), and for scMH-seq (scMH). 
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Appendix 

A. Chapter 2 Methods 

1. Cell culture 

E14tg2a mouse embryonic stem cells were obtained from American Type Culture 

Collection (ATCC CRL-182) and the hybrid 129/Sv:CAST/EiJ mouse embryonic 

stem cells were obtained from Jop Kind’s group (Hubrecht Institute). Both lines were 

tested for mycoplasma contamination. Cells were grown on 0.1% gelatin in ES cell 

culture media; DMEM (1x) high glucose + glutamax (Gibco), supplemented with 10% 

FCS (Greiner) 100 µM β-mercaptoethanol (Sigma), 100 µM non-essential amino 

acids (Gibco), 50 µg/mL Pen/Strep (Gibco) and 1000 U/mL ESGRO mLIF (Millipore). 

Cells were split every 2 days and media changed every day. Cells were harvested 

before FACS by washing 3 times with 1x PBS with calcium and magnesium and 

incubated with 0.05% Trypsin (Life Technologies). Cell were resuspended in ES 

culture media and cell clumps were removed by passing the cells through a BD 

Falcon 5 mL polystyrene tube with a filter top.  

2. Crispr-Cas9 Dnmt1 knockout 

Six gRNA sequences targeting three exons of mouse Dnmt1 were used as 

described previously230. Phosphorylated BbsI compatible restriction overhangs were 

added to gRNA top and bottom oligos and resuspended at 100 μM in nuclease-free 

water. Annealing of the oligos was performed in 1x ligation buffer (NEB) using the 

following program: 97°C for 5 minutes, ramp down by 1°C per 1 minute to 20°C. The 

pX330 CRISPR-Cas9-GFP gRNA plasmid was a kind gift from Eva van Rooij and 

mixed with 0.1 μM gRNA oligo. The reaction was simultaneously digested with BbsI 
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(NEB) and ligated with T4 DNA ligase (NEB) overnight at 16°C. Ligation reactions 

were transformed into DH5α competent cells and subsequently sequenced using 

Sanger dideoxy sequencing to confirm the correct insert. All six pX300-gRNA 

plasmids were pooled and 1 μg was transfected into 2 million E14tg2a cells using 

Lipofectamine (Life Technologies). A separate pX300 empty vector was also 

transfected into E14tg2a to serve as a negative control. Two days later, single GFP 

positive cells were sorted into 384-well plates (BioRad) and subjected to scMspJI-

seq. 

3. Preimplantation mouse embryo isolation 

CAST/EiJ x C57BL/6 hybrid mouse embryos were obtained from four 3-month-

old superovulated B6 mothers (injected with pregnant mare serum gonadotropin 

(PMSG) and human chorionic gonadotropin (HCG) 22 h later), isolated using 

hyaluronic acid (Sigma), and incubated in M16 medium at 37°C and 5% CO2. The 

mice were housed at temperatures of 20-24°C, humidity of 45-65%, and a light/dark 

cycle of 14/10 hours. Individual cells were isolated using Tyrode’s solution (Sigma) 

and trypsin (Life Technologies) and manually deposited into 384-well plates 

containing lysis buffer and Vapor-lock. Plates were subsequently centrifuged at 

1,000 rpm for 1 minute to ensure that cells reach the aqueous phase and then 

subjected to scMspJI-seq. All animal experiments were approved by the Royal 

Netherlands Academy of Arts and Sciences and were performed according to the 

animal experimentation guidelines of the KNAW. 

4. Preimplantation human embryo isolation 

Supernumerary cryopreserved human embryos were obtained for research from 

patients undergoing in vitro fertilization (IVF) using standard clinical protocols, at the 
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Department for Reproductive Medicine, Ghent University Hospital. Cleavage stage 

embryos, cryopreserved on day 2 or 3 of development, were warmed using 

EmbryoThaw™ media (Fertipro, Belgium), as outlined by the manufacturer. 

Blastocyst stage embryos, vitrified on day 5 or 6 of development, were warmed 

using the Vitrification Thaw kit (Irvine Scientific, Netherlands), as described231. 

Embryos were transferred to either Cook Cleavage or Cook Blastocyst Medium 

(COOK, Ireland) depending on their developmental stage, and cultured in 20 μL 

medium droplets under mineral oil (Irvine Scientific, Netherlands) at 37°C, 6% CO2 

and 5% O2. When required, embryos were briefly treated with Acidic Tyrode’s 

Solution (Sigma-Aldrich, Belgium) for removal of the zona pellucida. All embryos 

were washed and subsequently dissociated by gentle mechanical dissociation in 

TrypLE Express Enzyme (Life Technologies, Belgium) using glass capillaries. Single 

blastomeres were washed and manually deposited into 384-well plates containing 

lysis buffer and Vapor-Lock. Plates were subsequently centrifuged at 1,000 rpm for 1 

minute and stored at -80 °C until further processing. This study was approved by the 

Ghent University Institutional Review Board (EC2015/1114) and the Belgian Federal 

Commission for medical and scientific research on embryos in vitro 

(ADV_060_UZGent). All embryos were donated following patients’ written informed 

consent. 

5. scMspJI-seq 

Prior to FACS or manual isolation of single cells, 384-well plates (BioRad) are 

prepared as follows: 4 μL of Vapor-Lock (Qiagen) is manually added to each well 

using a multichannel pipette followed by 2 μL of lysis buffer (0.2 μL of 25 μg/μL 

Qiagen Protease, 0.2 μL of 10x NEB Buffer 4 and 1.6 μL of nuclease-free water) 
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using the Nanodrop II liquid-handling robot (BioNex Solutions). All downstream 

dispensing steps are performed using the liquid-handling robot. After spinning down 

the 384-well plates, single cells are deposited into each well of the plate and 

incubated at 50oC for 15 hours, 75oC for 20 minutes and 80oC for 5 minutes. 5hmC 

sites in the genome are then glucosylated to block downstream recognition by MspJI 

by dispensing 0.5 μL of the following reaction mixture: 0.1 μL of T4-BGT (NEB), 0.1 

μL of UDP-Glucose (NEB), 0.05 μL of 10x NEB Buffer 4 and 0.25 μL of nuclease-

free water. After incubation at 37oC for 16 hours, 0.5 μL the following reaction 

mixture is added: 0.1 μL of 25 μg/μL Qiagen Protease, 0.05 μL of 10x NEB Buffer 4 

and 0.35 μL of nuclease-free water. The plate is then incubated at 50oC for 5 hours, 

75oC for 20 minutes and 80oC for 5 minutes. Thereafter, gDNA is digested by the 

restriction enzyme MspJI by the addition of 0.5 μL of the following reaction mixture: 

0.02 μL of MspJI (NEB), 0.12 μL of 30x enzyme activator solution (NEB), 0.05 μL of 

10x NEB Buffer 4 and 0.31 μL of nuclease-free water. The digestion is performed at 

37oC for 5 hours followed by heat inactivation of MspJI at 65oC for 20 minutes. Next, 

0.2 μL of cell-specific double-stranded adaptors are added to individual wells and 

these adapters are ligated to the fragmented gDNA molecules by adding 0.8 μL of 

the following reaction mixture: 0.07 μL of T4 DNA ligase (NEB), 0.1 μL of T4 DNA 

ligase buffer (NEB), 0.3 μL of 10 mM ATP (NEB) and 0.33 μL of nuclease-free 

water. The ligation is performed at 16oC for 16 hours. Next, wells containing unique 

cell-specific adapters are pooled using a multichannel pipette and incubated with 

0.8x Agencourt Ampure (Beckman Coulter) beads for 30 minutes, washed twice with 

80% ethanol and resuspended in 6.4 μL of nuclease-free water. Thereafter, in vitro 
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transcription and Illumina library preparation is performed as described previously in 

the scAba-seq protocol34.  

6. scMspJI-seq adapters 

The double-stranded scMspJI-seq adapters are designed to contain a T7 

promoter, 5’ Illumina adapter, 3 bp UMI, 8 bp cell-specific barcode, and a random 4-

nucleotide 5’ overhang. The general design of the top and bottom strand is shown 

below: 

 

Top oligo: 

5’ – CGATTGAGGCCGGTAATACGACTCACTATAGGGGTTCAGAGTTCTACA 

GTCCGACGATCNNN [8 bp cell-barcode] – 3’ 

 

Bottom oligo:  

5’ – NNNN [8 bp cell-barcode] NNNGATCGTCGGACTGTAGAACTCTGAACC 

CCTATAGTGAGTCGTATTACCGGCCTCAATCG – 3’ 

 

The sequence of the 8 bp cell-specific barcode is provided in Supplementary 

Table 2.1. The protocol for phosphorylating the bottom strand and for annealing the 

top and bottom strands to generate the double-stranded adapters is described 

previously in the scAba-seq protocol34. 

7. scMspJI-seq analysis pipeline 

scMSpJI-seq libraries were sequenced on an Illumina NextSeq 500 platform. 

Reads containing the correct cell-specific barcode were mapped to the mouse 

(mm10) or human (hg19) genome using the Burrows-Wheeler Aligner (BWA) and 



 

 172 

filtered for uniquely mapping reads to the genome. Custom scripts written in Perl 

were then used to demultiplex the data, identify 5mC position, strand information, 

and remove PCR duplicates. Custom code for analyzing scMspJI-seq data and the 

accompanying documentation is provided with this work65. 

8. Strand-specific scNMT-seq analysis pipeline  

Bisulfite sequencing data from published scNMT libraries (GSE109262) were 

processed as described previously52,92. The first nine bases of the raw reads were 

trimmed using Trim Galore (v0.5.0) and mapped using Bismark (v20) to the mouse 

genome (mm10) with the 129/CAST background. SNPs specific to 129/CAST mouse 

genome were prepared using SNPsplit (v0.3.2) and a list of known variant call files 

from the Mouse Genomes Project (www.sanger.ac.uk/resources/mouse/genomes/). 

After mapping with Bismark, duplicate sequences were removed and CpG 

methylation calls were extracted with strand-specific information. Further data 

analysis and visualization of the methylation calls used custom scripts that will be 

made available upon request. 

9. Hairpin Bisulfite Sequencing 

Hairpin bisulfite sequencing was performed on bulk mouse embryos samples (2- 

to 64-cell stage mouse embryos). The embryos were treated with protease (1 μL of 

25 μg/μL Qiagen Protease, 1 μL of 10x NEB Buffer 4, and 8 μL of nuclease-free 

water). Then, 0.5 ng of genomic DNA was digested with 20 μL of MspI master mix (1 

μL of MspI (NEB), 2 μL 10x NEB CutSmart Buffer in a total volume of 20 μL) and 

incubated at 37oC for 1 hour. After digestion, the fragmented genomic DNA was 

ligated with 1 μL of 10 μM phosphorylated hairpin oligo mix (1 μL of NEB T4 ligase, 

1 μL of 10x NEB T4 Ligase buffer, 2 μL of 10mM ATP, 5 μL of nuclease-free water) 
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and incubated overnight at 16oC. The hairpin oligo was prepared as follows: The 

oligo (5’ - G/iMe-dC/iMe-dC/G/iMe-dC/iMe-dC/GG/iMe-dC/GG/iMe-dC/AAG/iBiodT/ 

GAAG/iMe-dC/iMe-dC/G/iMe-dC/iMe-dC/GG/iMe-dC/G – 3’) was resuspended in 

100 μM of Low-TE. The hairpin oligo was then phosphorylated (1 μL of 100 μM 

hairpin oligo, 3 μL of 10x T4 Ligase Buffer, 1 μL T4 PNK and 5 μL of nuclease free 

water) and incubated at 37oC for an hour. Subsequently, the phosphorylated oligo 

was heated at 94oC and placed in ice water to generate the loop. For purification of 

the ligation mixture, Dynabeads™ M-280 Streptavidin beads were used following the 

recommended manufacturer’s protocol with the following changes: the bead-ligation 

mixture was incubated for 1 hour at RT on a rotator and a cold 10 mM Tris-HCl wash 

step was included. Subsequently, we performed bisulfite sequencing on the sample 

using the protocol described previously232. After sequencing the libraries on a Miseq 

300 bp or NextSeq 500 75 bp pair-end run, we used HBS-tools and custom Perl 

scripts to analyze the methylated CpG dyads233. 

10. Data Availability 

Accession code GEO: GSE139984. 

Figures associated with raw data: Figure 2.2a-e; Figure 2.3a-d; Figure 2.4a-f; 

Figure 2.5a,b; Supplementary Figure 2.1a,b; Supplementary Figure 2.2; 

Supplementary Figure 2.3a,b; Supplementary Figure 2.4a,b; Supplementary Figure 

2.5; Supplementary Figure 2.6a-f; Supplementary Figure 2.7; Supplementary Figure 

2.8a,b; Supplementary Figure 2.9a-e; Supplementary Figure 2.10a-c. 

There are no restrictions on data availability. 

11. Code Availability 
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Custom code for analyzing scMspJI-seq data and the accompanying 

documentation is provided online with this work65. 

B. Chapter 3 Methods 

1. Mammalian cell culture 

All mammalian cells were maintained in incubators at 37°C and 5% CO2. 

HEK293T cells were cultured on tissue culture treated plastic in high glucose DMEM 

(Gibco, 10569044) containing L-Glutamine and sodium pyruvate, supplemented with 

10% FBS (Gibco, 10437028) and 1x Penicillin-Streptomycin (Gibco, 15140122). H9 

cells and hiPSCs (Allen Cell Collection, line AICS-0024) were grown feeder-free on 

Matrigel (Fisher Scientific, 08-774-552) coated plates in mTeSR1 medium 

(STEMCELL Tech., 85850). Cells were routinely passaged 1:6 once they reached 

75% confluency using 0.25% trypsin-EDTA (Gibco, 25200056) for HEK293T cells, 

Versene solution (Gibco, 15040066) for H9 cells, and ReLeSR (STEMCELL Tech., 

100-0484) for hiPSCs. For FACS sorting, a single-cell suspension was made using 

0.25% trypsin-EDTA. The trypsin was then inactivated using serum containing 

medium. Afterwards, the cells were washed with 1x PBS before being passed 

through a cell strainer and sorted for single cells into 384-well plates. 

2. hiPSC derived mesoderm cell culture 

Mesoderm differentiation was performed on hiPSCs (Allen Cell Collection, line 

AICS-0024). For mesodermal differentiation, the media was replaced with mTeSR1 

supplemented with 5 uM of CHIR99021 (STEMCELL Tech., 72052) for 24 hours. 

Afterwards, the cells were dissociated into a single cell suspension using TrypLE 

reagent (Gibco, 12563011), and gentle pipetting. TrypLE was then inactivated using 
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a serum containing medium. Next, the cells were washed with 1x PBS before being 

passed through a cell strainer and sorted for single cells into 384-well plates. 

3. Post-implantation amniotic sac organoid culture 

The development of micropatterned 3D stem-cell cultures with a single lumen is 

described in Karzbrun et al.132. We applied the protocol here as follows: 

Microfabrication of PDMS stamps: PDMS stamps were created with circular 

features 250 μm in diameter. Stamps were prepared using standard soft-lithography 

techniques on a four-inch wafer. One layer of photoresist (Microchem, SU-8 2075) is 

spun onto a silicon wafer at a thickness of 100 μm. Photoresist is exposed to 

ultraviolet light using a mask aligner (Suss MicroTec, MA6) and unexposed 

photoresist is developed away to yield multiple arrays of posts. A 

trimethylchlorosilane layer is vapor deposited on the developed wafer to prevent 

adhesion. A 10:1 ratio of PDMS and its curing agent (Dow Corning, SYLGARD 184 

A/B) is poured onto the wafers and cured at 65°C overnight. The PDMS layer is then 

peeled off the silicon mold and individual stamps are cut out using a razor blade for 

future use. 

Micro-contact printing: Sterile PDMS stamps and 35 mm diameter custom-made 

glass-bottomed culture dishes are plasma treated for 1 minute on high setting 

(Harrick Plasma, PDC-32G) to activate both surfaces. Stamps are pressed features-

side to the glass surface and held in place. To passivate the glass surface in 

nonpatterned regions, 0.1 mg/mL PLL-g-PEG solution (SuSoS AG, Switzerland) is 

added to the petri dish immediately after securing stamps to the glass surface and 

incubated for 30 minutes. Stamps are then carefully removed and stamped glass 

dishes are rinsed several times with PBS containing calcium and magnesium 
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(PBS++). Laminin-521 (STEMCELL Tech., 77003) is added at a dilution of 5 μg/mL 

in PBS++ to incubate overnight at 4°C. The following day, stamped glass dishes are 

rinsed with PBS++ to remove excess unbound, laminin and used within 1-2 weeks. 

Stem-cell seeding, lumen formation and differentiation: On Day 1: hiPSCs (Allen 

Cell Collection, line AICS-0024) are released from well-plate surfaces using non-

enzymatic agitation following manufacturer’s instructions (ReleSR, STEMCELL 

Tech.). Cells are resuspended as a single-cell suspension at densities of 750K-1M 

cells/mL in mTeSR1 containing 10 μM ROCK inhibitor Y27632 (Abcam, ab120129). 

200 μL of cell suspension is then pipetted onto prepatterned dishes and allowed to 

settle for 15 minutes before adding 1 mL of mTeSR1 and allowing cells to settle for 

10 additional minutes. Excess media is aspirated, leaving enough liquid to cover 

patterns and is replaced with fresh 2 mL of mTeSR1. On day 2: mTESR1 media is 

exchanged with mTESR1 media containing Matrigel (4%, v/v). This triggers lumen 

formation over 24 hours. On Day 3: Micropatterned colonies have formed a lumen. 

mTESR1 is exchanged with the addition of 5 ng/ml Recombinant Human BMP4 

(Fisher Scientific, 314BP010). Exposure to BMP4 triggers differentiation of cells and 

is considered 0 hours for experimental purposes. On Day 4 or 5: Samples were 

collected for single cell sequencing at either 20, 36, or 48 hours post BMP4 

supplementation. Samples were dissociated into a single-cell suspension using 

TrypLE, and gentle pipetting. TrypLE was then neutralized using a serum containing 

medium. Next, the cells were washed with 1x PBS before being passed through a 

cell strainer. Finally, single cells were sorted into 384-well plates using FACS. 

4. scMAT-seq 
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4 µL of Vapor-Lock (QIAGEN, 981611) was manually dispensed into each well of 

a 384-well plate using a 12-channel pipette. All downstream dispensing into 384-well 

plates were performed using the Nanodrop II liquid handling robot (BioNex 

Solutions). To each well, 100 nL of uniquely barcoded 7.5 ng/µL reverse 

transcription primers containing 4 nucleotide unique molecule identifiers (UMI) was 

added. The reverse transcription primers used here were previously described in 

Grun et al.234. Next, 100 nL of lysis buffer (0.175% IGEPAL CA-630, 1.75 mM 

dNTPs, 1:1,250,000 ERCC RNA spike-in mix (Ambion, 4456740), and 0.19 U 

RNase inhibitor (Clontech, 2313A)) was added to each well. Single cells were sorted 

into individual wells of a 384-well plate using FACS. Unless cryopreserved, after 

sorting, plates were heated to 65°C for 3 minutes and returned to ice. Next, 150 nL 

of reverse transcription GC tagging mix (0.7 U RNAseOUT (Invitrogen, 10777-019), 

1.17x first strand buffer, 11.67 mM DTT, 3.5 U Superscript II (Invitrogen, 18064-

071), 0.19 mM SAM, 1.17x GC reaction buffer, 0.1 U M.CviPI (NEB, M0227S)) was 

added to each well and the plates were incubated at 37°C for 1 hour, 4°C for 5 min, 

65°C for 10 min, and 70°C for 10 min. Thereafter, 1.75 µL of second strand 

synthesis mix (1.74x second strand buffer (Invitrogen, 10812-014), 0.35 mM dNTP, 

0.14 U E.coli DNA Ligase (Invitrogen, 18052-019), 0.56 U E.coli DNA Polymerase I 

(Invitrogen, 18010-025), 0.03 U RNase H (Invitrogen, 18021-071)) was added to 

each well and the plates were incubated at 16°C for 2 hours. Following this step, 400 

nL of protease mix (6 µg protease (Qiagen, 19155), 6.25x NEBuffer 4 (NEB, 

B7004S)) was added to each well, and the plates were heated to 50°C for 15 hours, 

75°C for 20 minutes, and 80°C for 5 minutes. Next, 500 nL of 5hmC-blocking mix (1 

U T4-BGT (NEB, M0357L), 6x UDP-glucose, 1x NEBuffer 4) was added to each well 
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and the plates were incubated at 37°C for 16 hours. Afterwards, 500 nL of protease 

mix (2 µg protease, 1x NEBuffer 4) was added to each well, and the plates were 

heated to 50°C for 3 hours, 75°C for 20 minutes, and 80°C for 5 minutes. Next, 500 

nL of MspJI digestion mix (1x NEBuffer 4, 8x enzyme activator solution, 0.1 U MspJI 

(NEB, R0661L)) was added to each well and the plates were incubated at 37°C for 

4.5 hours, and 65°C for 25 minutes. Unless otherwise noted, to each well, 320 nL of 

uniquely barcoded 125 nM double-stranded adapters were added. The double-

stranded adapters have previously been described in Sen et al.65. Next, 680 nL of 

ligation mix (1.47x T4 ligase reaction buffer, 5.88 mM ATP (NEB, P0756L), 140 U T4 

DNA ligase (NEB, M0202M)) was added to each well, and the plates were incubated 

at 16°C for 16 hours. After ligation, reaction wells receiving different barcodes were 

pooled using a multichannel pipette, and the oil phase was discarded. The aqueous 

phase was then incubated for 30 minutes with 1x AMPure XP beads (Beckman 

Coulter, A63881), placed on a magnetic stand and washed twice with 80% ethanol 

before eluting the DNA in 30 µL of nuclease-free water. After vacuum concentrating 

the elute to 6.4 µL, library preparation was performed as previously described in the 

scAba-seq and scMspJI-seq protocols34,65. Libraries were sequenced on an Illumina 

NextSeq 500 or an Illumina Hiseq 4000, sequencing a minimum of 75 bp on read 1 

to detect methylated cytosines. A minimum of 25 bp on read 1 and 50 bp on read 2 

was used to detect mRNA. Additionally, unless otherwise stated, detection of mRNA 

was only performed on RNA enriched samples and detection of methylated 

cytosines was performed only on unenriched samples. 

5. Optimizing buffer for simultaneous reverse transcription and GpC methylation 

tagging  
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In all experiments, 200 nL of the reverse transcription GC tagging mix was used 

and the 384-well plate was incubated at 37°C for 1 hour, 4°C for 5 minutes, 65°C for 

10 minutes, and 70°C for 10 minutes. For the first strand buffer experiment, this 

reverse transcription GC tagging mix consisted of 0.7 U RNAseOUT, 2x first strand 

buffer, 20 mM DTT, 3.5 U Superscript II, 0.16 mM SAM, and 0.1 U M.CviPI. For the 

GC buffer experiment, this mix consisted of 0.7 U RNAseOUT, 3.5 U Superscript II, 

0.16 mM SAM, 2x GC reaction buffer, 0.1 U M.CviPI, and 6 mM of MgCl2. For the 

50:50 experiment, this reverse transcription GC tagging mix consisted of 0.7 U 

RNAseOUT, 1x first strand buffer, 1x GC reaction buffer, 10 mM DTT, 3.5 U 

Superscript II, 0.16 mM SAM, and 0.1 U M.CviPI. Following this, all other library 

construction steps were similar to the optimized scMAT-seq procedure. The volume 

of some reactions were altered as follows. Second strand synthesis was performed 

by adding 1.3 µL of second strand synthesis mix. The initial protease step was 

performed by adding 300 nL of protease mix. No 5hmC-blocking mix or secondary 

protease mix was added. After MspJI digestion, 200 nL of uniquely barcoded 1 nM 

or 200 nM double-stranded adapters were added. Afterwards ligation was performed 

by adding 800 nL of ligation mix. All other steps of library construction were 

unchanged. 

6. RNA enrichment 

After in vitro transcription, 6 µL of amplified RNA product (aRNA) was combined 

with 2 µL of 1 µM biotinylated polyA primer (Integrated DNA Technologies, standard 

desalting, 5’- AAAAAAAAAAAAAAAAAAAAAAAA/3BioTEG/ -3’) and incubated for 

10 minutes at room temperature. During this incubation, Dynabeads MyOne 

Streptavidin C1 beads (Invitrogen, 65001) were made RNase-free following the 
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directions of the manufacturer. In addition, 2x and 1x B&W solution was made 

according to the manufacturer’s directions. After establishing RNase-free conditions, 

the beads were resuspended in 8 µL of 2x B&W solution. After the 10-minute 

incubation of aRNA with the biotinylated polyA primer, the beads were mixed in with 

the solution and incubated for 15 minutes at room temperature with constant shaking 

at 300 rpm using a thermomixer. Using a magnetic stand, the beads were separated 

from the supernatant, and the supernatant was discarded. The beads were washed 

twice with 1x B&W solution. After washing, the beads were resuspended in 10 µL of 

nuclease-free water. For on-bead processing, this product was taken to reverse 

transcription. For heat denatured processing, this product was heated to 70°C for 2 

minutes, then a strong magnet was used to quickly separate the beads from the 

supernatant, and the supernatant was transferred to a new tube. In both cases, 5 µL 

of RNA enriched product was used for reverse transcription, and following this step, 

library preparation was performed as previously described in the scAba-seq and 

scMspJI-seq protocols34,65. For experiments using other bead types, the C1 beads 

were exchanged for other streptavidin beads, M270, M280, or T1 (Invitrogen, 

65801D), with no other changes. 

7. scMAT-seq analysis pipeline 

The scMAT-seq analysis pipeline was performed as described previously in Sen 

et al. with minor adjustments65. The custom Perl script used to identify 5mC 

positions in the genome was modified to interrogate the base prior to the called 5mC 

mark. Called 5mC marks preceded by a G were assigned to the DNA accessibility 

dataset, and due to the potential off target activity of M.CviPI, only those preceded 

by an A or T were assigned as endogenous 5mC marks, that were further split by 
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their context (5mCpG, 5mCpA, 5mCpC, or 5mCpT). Custom codes for analyzing 

scMAT-seq data and the accompanying documentation is available upon request. 

 The transcriptome analysis pipeline was similar to that described previously in 

Grün et al. with the following minor adjustments234. The right mate of paired-end 

reads was mapped in the sense direction using BWA (version 0.7.15-r1140) to the 

RefSeq gene model based on the human genome release hg19, with the addition of 

the set of 92 ERCC spike-in molecules. Any read mapping to multiple loci were 

distributed uniformly across those loci. Gene isoforms were consolidated into a gene 

count, and the UMIs were used to deduplicate reads and provide single-molecule 

transcript counts for each gene in individual cells234. Genes that were not detected in 

at least one cell were removed from any downstream analysis. 

8. Comparison of scMAT-seq to established techniques 

DNase I hypersensitivity sites for H9 and HEK293T cells were downloaded from 

UCSC table browser and sites were grouped based on detection scores173. 

Additionally, the genomic coordinates of CpG islands were downloaded from the 

UCSC table browser. To compare across datasets, the data was normalized to 

counts per million and a 75 base pair moving average was plotted for each region of 

interest. When comparing differing genomic regions within a sample, each region 

was further normalized by methylated cytosines that were detected when MspJI-seq 

was performed on bulk H9 gDNA that had been GpC methylated after stripping off 

chromatin. To do this, H9 gDNA was isolated using the DNeasy Blood & Tissue Kit 

(Qiagen, 69504). To 1.2 µg of purified H9 gDNA, 10 µL of protease mix (100 µg 

protease (Qiagen, 19155), 1x GC reaction buffer) was added, and the sample was 

heated to 50°C for 15 hours, 75°C for 20 minutes, and 80°C for 5 minutes. Next, 10 
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µL of GC tagging mix (8 U M.CviPI, 640 µM SAM, 1x GC reaction buffer) was added, 

and the sample was incubated at 37°C for 4 hours. Immediately after, 10 µL of 

additional GC tagging mix (4 U M.CviPI, 960 µM SAM, 1x GC reaction buffer) was 

added, and the sample was incubated at 37°C for 4 hours and 65°C for 20 minutes. 

Afterwards, 100 ng of this DNA was directly used as input to a scaled-up version of 

the scMspJI-seq protocol65. 

 5mC sites detected by scMAT-seq in H9 cells were compared to bulk bisulfite 

sequencing (GSM706061)174. A site was considered methylated if any level of 5mC 

was detected in the bulk bisulfite or pseudo-bulked scMAT-seq sequencing data. 

Overlapping 5mCpG sites were counted and compared to the number of non-

overlapping sites. 

9. Cluster calling for genome-wide detection of DNA accessibility and 5mC in 

scMAT-seq 

DNA accessibility and 5mC were quantified within 5 kb bins and then converted 

to binary scores. Further, pseudobulk profiles were generated using the assigned 

cell type from the transcriptome. For comparison between H9 and HEK293T cell 

lines, the top 2% most variable bins between groups were retained. For comparison 

in the post-implantation amniotic sac organoid, the top 1% most variable bins 

between groups were retained. After removal of bins with low variance, principal 

component analysis was performed on the remaining bins for individual cells, and 

hierarchical clustering was used to assign clusters. Cluster identification was 

performed through comparison to transcriptome derived cell types, where high 

similarity was observed between cluster calling for all 3 measurements. 
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10. Promoter and gene body DNA accessibility and gene body 5mC analysis in 

scMAT-seq 

For the quantification of DNA accessibility and 5mC in individual cells, a small 

pseudo-count was added prior to estimating the number of UMIs per million counts 

for each gene. The promoter of a gene was considered as 2,000 base pairs 

upstream of the transcription start site. Genes with low detection in all cells were 

removed from downstream analysis for that epigenetic feature. 

11. Gene expression analysis 

The standard analysis pipeline in Seurat (version 3.1.5) was used for single-cell 

RNA expression normalization and analysis235. For H9 and HEK293T cell lines, cells 

containing more than 1,000 genes and more than 1,000 unique transcripts, as well 

as less than 20% ERCC spike-ins, were used for downstream analysis. For the post-

implantation amniotic sac organoid, cells containing more than 1,000 genes and 

more than 4,000 unique transcripts, as well as less than 20% ERCC spike-ins, were 

used for downstream analysis. The default NormalizeData function was used to log 

normalize the data. In post-implantation amniotic sac organoids, the cluster identified 

as NELCs was removed from downstream analysis except where otherwise stated. 

When analyzing the time course data from the organoid, the FindIntegrationAnchors 

and IntegrateData functions were used to remove batch- and technique-specific 

effects. Thereafter, principal components were obtained from the 2,000 most 

variable genes and the elbow method was used to determine the optimal number of 

principal components used in clustering. UMAP based clustering was performed by 

running the following functions, FindNeighbors, FindClusters, and RunUMAP. After 

clustering, cell types were assigned to groups using known expression markers. To 
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identify DEGs, the FindAllMarkers or FindMarkers function was used. The Wilcoxon 

rank sum test was used to classify a gene as differentially expressed, requiring a 

natural log fold change of at least 0.25 and an adjusted p-value of less than 0.05. 

12. Pseudotime analysis 

UMAP coordinates and normalized gene expression data for highly variable 

genes was imported from Seurat to Monocle3 (version 0.2.1.5)182. Trajectories were 

built using the learn_graph function. Cells involved in the four observed trajectories 

were isolated separately using the choose_graph_segments function. Due to the 

bifurcation seen in the trajectories, some cells appeared in more than one of the 

trajectories. For each trajectory, the roots of the trajectories were chosen using the 

order_cells function to best correspond with cells from the 20-hour post-implantation 

amniotic sac organoids. After assigning a pseudotime to each cell, the genes varying 

over each pseudotime were determined using the graph_test function, with genes 

with a q-value under 0.01 and a Moran’s I value above 0.15 considered significant. 

Significantly varying genes for each trajectory were grouped into gene modules 

using the find_gene_modules function using a resolution value of 0.05. z-scores for 

gene expression of each gene module was calculated using the 

aggregate_gene_expression function. The corresponding z-score for DNA 

accessibility and 5mC was found and a 10-cell moving average was computed 

based on the pseudotime. For averaging and plotting, only cells passing quality 

controls for RNA expression, DNA accessibility and 5mC were considered. 

13. Data availability 

Sequencing data have been deposited in the Gene Expression Omnibus (GEO) 

database accession code GEO: GSE181724. 
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C. Chapter 4 Methods 

1. Mammalian cell culture 

H9 human embryonic stem cells were grown as described previously in scMAT-

seq (chapter 3). 

2. PGCLC formation and long-term culture 

UCLA2 human embryonic stem cells were cultured and induced into PGCLCs 

using an incipient mesoderm-like cell intermediate and the creation of disorganized 

3d aggregates, as previously described236. After 4 days in 3d culture, PGCLCs were 

sorted and cultured in extended culture conditions containing FR10 medium, as 

described previously134. TRA-1-85 positive single hPGCLCs were isolated into each 

reaction well of a 384-well plate for scMTH-seq, as described previously134. 

3. scMTH-seq 

scMTH-seq processing is like that described in scDyad&T-seq up until the 

second protease step (chapter 5). One minor difference is that the 5hmC-blocking 

mix also contained 200 fg of mouse brain DNA (VWR, 76020-078) as a spike-in for 

estimating 5mC and 5hmC levels between cells. After the second protease step, 500 

nL of glucosylated 5hmC digestion mix was added (1x NEBuffer 4 (NEB, B7004S), 1 

U AbaSI (NEB, R0665S)) to each well and the plates were incubated at 25°C for 90 

minutes, and 65°C for 25 minutes. Next 250 nL of a third protease mix was added (2 

µg protease (Qiagen, 19155), and 1x NEBuffer 4) was added to each well, and the 

plates were heated to 50°C for 3 hours, 75°C for 20 minutes, and 80°C for 5 

minutes. Next, 500 nL of MspJI digestion mix (1x NEBuffer 4, 9.5x enzyme activator 

solution, and 0.1 U MspJI (NEB, R0661L)) was added to each well and the plates 

were incubated at 37°C for 4.5 hours, and 65°C for 25 minutes.  
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To each well, 200 nL of uniquely barcoded 20 nM phosphorylated scAba-seq 

compatible double-stranded adapters were added. Then to each well, 120 nL of 

uniquely barcoded 125 nM phosphorylated scMspJI-seq compatible double-stranded 

adapters were added. The sequences of scAba-seq and scMspJI-seq compatible 

double-stranded adapters have previously been reported34,65. Next, 680 nL of 

ligation mix (1.47x T4 ligase reaction buffer, 6.99 mM ATP (NEB, P0756L), and 140 

U T4 DNA ligase (NEB, M0202M)) was added to each well, and the plates were 

incubated at 16°C for 16 hours. After ligation, reaction wells receiving different 

barcodes were pooled using a multichannel pipette, and the oil phase was 

discarded. Library preparation and DNA sequencing for mRNA enriched and non 

mRNA enriched samples was performed as in scMAT-seq (chapter 3). 

4. scMTH-seq analysis pipeline 

All sequencing reads were trimmed to 76 bases. Then 5mC, 5hmC, and 

transcriptome-based reads were separated based on feature specific barcodes. 

After this, the scMTH-seq analysis pipeline was performed as described previously 

in Sen et al. and Mooijman et al.34,65. Hg19 and mm10 were used for mapping, with 

5mC marks attributed to the mouse genome considered spike-in detections. The 

transcriptome analysis pipeline was previously described in scMAT-seq. Each 

feature, 5mC, 5hmC and gene expression were separately analyzed for data quality. 

If a cell contained at least 30,000 5mC, 300 5hmC, 4,000 transcripts and 1,000 

detected genes it was considered successfully amplified in all features. In some 

cases, a cell only contained high quality information from one or two of these 

features and so it was used in the analysis only when the cell had high quality data 

for the feature being analyzed. 
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5. Gene expression analysis 

The standard analysis pipeline in Seurat (version 3.1.5) was used for single-cell 

RNA expression normalization and analysis235. Cells containing more than 1,000 

genes and more than 4,000 unique transcripts, as well as less than 20% ERCC 

spike-ins, were used for downstream analysis. The default NormalizeData function 

was used to log normalize the data. Thereafter, principal components were obtained 

from the 2,000 most variable genes and the elbow method was used to determine 

the optimal number of principal components used in clustering. UMAP based 

clustering was performed by running the following functions, FindNeighbors, 

FindClusters, and RunUMAP. After clustering, cell types were assigned to groups 

using known expression markers. To identify DEGs, the FindAllMarkers or 

FindMarkers function was used. The Wilcoxon rank sum test was used to classify a 

gene as differentially expressed, requiring a natural log fold change of at least 0.3 

and an adjusted p-value of less than 0.01. Cell cycle analysis was performed as 

described in the Seurat cell cycle vignette using cell cycle genes derived 

previously237. 

6. Turnover rate modeling 

The turnover of each feature (5hmC, 5mCpA, 5mCpT, 5mCpC) was modeled 

separately using autosomal chromosome detection data. Features were modeled 

using model IV described previously by Mooijman et al.34. For each feature, 100 

simulations were performed. 

7. Code availability 

Codes for analyzing scMTH-seq data and the accompanying documentation has 

been described previously by Sen et al. and Mooijman et al.34,65. 
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D. Chapter 5 Methods 

1. Mammalian cell culture 

All mammalian cells were maintained in incubators at 37°C and 5% CO2. Mouse 

embryonic cell line ES-E14TG2a (E14) were grown on gelatin (Millipore Sigma, ES-

006-B) coated tissue culture plates. Media was created using high glucose DMEM 

(Gibco, 10569044), 1% non-essential amino acid (Gibco, 11140050), 1% Glutamax 

(Gibco, 35050061), 1x Penicillin-Streptomycin (Gibco, 15140122), and 15% stem 

cell qualified serum (Millipore Sigma, ES-009-B). The media was frozen in aliquots 

and used for a maximum of 2 weeks after thawing, kept constantly at 4°C. Once 

thawed, 1 µL of beta-mercaptoethanol (Gibco, 21985023), and 1 µL of LIF (Millipore, 

ESG1106) were added for every 1 mL of thawed media. Daily, the cells were 

washed with 1x DPBS (Gibco, 14190250) and the media was exchanged. Cells were 

routinely passaged 1:6 once they reached 75% confluency using 0.25% trypsin-

EDTA (Gibco, 25200056). E14 cells grown under these conditions also describe the 

SL experimental group. For FACS sorting, a single-cell suspension was made using 

0.25% trypsin-EDTA. The trypsin was then inactivated using serum containing 

medium. Afterwards, the cells were washed with 1x DPBS before being passed 

through a cell strainer and sorted for single cells into 384-well plates. 

K562 cells were grown in RPMI (Gibco, 61870036) with 10% serum (Gibco, 

10437028) and 1x Penicillin-Streptomycin. When cells reached a density of 

approximately 1 million cells per mL, they were split and resuspended at a density of 

200,000 cells per mL. Cells were washed and FACS sorted as described for E14. 

2. 24-hour Decitabine culture 
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E14 mouse embryonic stem cells were cultured as described. Upon passage of 

the E14 cells, SL media was supplemented with 0.05 µM of Decitabine. After 24 

hours, cells were lifted using 0.25% trypsin-EDTA. The trypsin was then inactivated 

using serum containing medium. The cells were washed with 1x DPBS and then 

resuspended in 200 µL of DPBS. Genomic DNA was extracted using the DNeasy kit 

(Qiagen, 69504) according to the manufacturer’s recommendations. 

K562 cells were cultured as described. Upon passage the media was 

supplemented with 0.6 µM of Decitabine. After 24 hours the cells were washed and 

FACS sorted as described previously here. 

3. 48-hour 2i media component experiment 

E14 mouse embryonic stem cells were cultured as described. Upon passage, 

cells were resuspended in the following media according to their condition. 

Commercial 2i media containing LIF (Millipore, SF016-200) was used for BL, G, 2i, 

and M experiments. For 2i, all components were used according to the 

manufacturer's recommendations. For G and M, only the GSK3B inhibitor and 

MEK1/2 inhibitor was added respectively. For BL, no inhibitors were introduced. For 

No, commercial 2i media without LIF (Millipore, SF002-100) was used with no 

inhibitors introduced. After 24 hours, the cells were washed with 1x DPBS and the 

media was exchanged. 48 hours after the initial media switch, the cells were 

collected using 0.25% trypsin EDTA, quenched using serum containing media, 

washed in 1x DPBS and finally resuspended in 1x DPBS. The sample was then split 

in half. One half was resuspended in 200 µL of DPBS and had its genomic DNA 

extracted as described previously. The other half was resuspended in 500 µL of 
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TRIzol reagent (Invitrogen, 15596018) and total RNA was extracted according to the 

manufacturer’s recommendations. Each condition was performed in triplicate. 

4. Chip-seq data processing 

The following published ChIP datasets were used in this study (GEO 

accessions): GSM1000123 (H3K9ac), GSE74055 (H3K9me1 and H3K27ac), 

GSE23943 (H3K4me3, H3K9me3, H3K27me3, and H3K36me3), and GSE77420 

(H3K9me2). For all, the processed data file was downloaded from GEO and further 

processed if needed. For GSE74055, in 1kb bins the bigwigCompare tool on Galaxy 

(version 2.1.1.20160309.6) was used to compare enriched datasets to the input 

data, bins with a log2 enrichment score greater than 2 were considered enriched 

regions. For GSE23943, peak calling was performed using MACS2 on Galaxy, the 

resulting narrow peaks file was used as enriched regions. For GSE77420, in 2kb 

bins the enrichment score for serum grown H3K9me2 was compared to the input 

serum score. Regions were considered enriched if the H3K9me2 score was greater 

than the input score for both replicates. When applicable, enriched regions were 

converted from mm9 to mm10 using the UCSC genome browser LiftOver tool.  

5. Dyad-seq Adapters 

The double stranded Dyad-seq adapters are designed to be devoid of cytosine 

on the bottom strand. They contain a PCR sequence, a 4-base pair UMI, and a 10-

base pair cell-specific barcode. For Dyad-seq using MspJI as a restriction enzyme 

(M-M-Dyad-seq and M-H-Dyad-seq), the adapters contain a 4 base pair 5’ overhang.  

For bulk Dyad-seq, cell-specific barcodes were used as replicate specific 

barcodes. 
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Top oligo: 5’- NNNN [10 base pair barcode] HHWHCCAAACCCACTACACC -3’ 

Bottom oligo: 5’- GGTGTAGTGGGTTTGGDWDD [10 base pair barcode] -3’ 

 

The sequence of the 10 base pair cell-specific barcode for scDyad&T-seq is 

provided in Supplementary Table 5.1. This design and the first three barcodes were 

also used for M-H-Dyad-seq. 

For M-M-Dyad-seq, a prototype of this design was used consisting of a 3-base 

pair UMI and an 8 base pair sample-specific barcode (Supplementary Table 5.2). 

 

Top oligo: 5’- NNNN [8 base pair barcode] HHHCCAAACCCACTACACC -3’ 

Bottom oligo: 5’- GGTGTAGTGGGTTTGGDDD [8 base pair barcode] -3’ 

 

The sequence of the 8 base pair cell-specific barcode for M-MDyad-seq is 

provided in Supplementary Table 5.2.  

For Dyad-seq using AbaSI as a restriction enzyme (H-H-Dyad-seq and H-M-

Dyad-seq), the adapters instead contain a 2 base pair 3’ overhang. 

 

Top oligo: 5’- [10 base pair barcode] HHWHCCAAACCCACTACACC -3’ 

Bottom oligo: 5’- GGTGTAGTGGGTTTGGDWDD [10 base pair barcode] NN -3’ 

 

The sequence of the 10 base pair cell-specific barcode for H_M-CpG-Dyad-seq 

and H_H-CpG-Dyad-seq is provided in supplementary Table 5.3. 
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All adapters were left unphosphorylated. The protocol for annealing the top and 

bottom strands to create double-stranded adapters is described previously in scAba-

seq34. 

6. Bulk CpG-Dyad-seq 

For all bulk CpG-Dyad-seq 100 ng of purified genomic DNA was resuspended in 

20 µL of 5hmC blocking mix (1x CutSmart buffer (NEB, B7204S), 2.5x UDP-glucose, 

10 U T4-BGT (NEB, M0357L)) and the samples were incubated at 37°C for 16 

hours. Afterwards, 10 µL of protease mix (100 µg protease (Qiagen, 19155), 1x 

CutSmart buffer) was added to each sample, and the samples were heated to 50°C 

for 5 hours, 75°C for 20 minutes, and 80°C for 5 minutes. After this point, samples 

differed based on sub-type of CpG-Dyad-seq used. 

For M-M-Dyad-seq, 10 µL of MspJI digestion mix (2 U MspJI, 1x enzyme 

activator solution, 1x CutSmart buffer) was added to each sample and the samples 

were heated to 37°C for 5 hours, and 65°C for 20 minutes. Next 1 µL of barcoded 1 

µM M-M-Dyad-seq adapter was added. Then 9 µL of ligation mix (1.11x T4 ligase 

reaction buffer, 4.44 mM ATP (NEB, P0756L), 2000 U T4 DNA ligase (NEB, 

M0202M)) was added to each sample, and the samples were incubated at 16°C for 

16 hours. 

For M-H-Dyad-seq, all steps were the same as M-M-Dyad-seq with the exception 

that 1 µL of barcoded 1 µM M-H-Dyad-seq adapter was added instead of the M-M-

Dyad-seq adapter. 

For H-M-Dyad-seq and H-H-Dyad-seq, 10 µL of AbaSI digestion mix (10 U AbaSI 

(NEB, R0665S), 1x CutSmart buffer) was added to each sample and the samples 

were heated to 25°C for 2 hours, and 65°C for 20 minutes. Next 1 µL of barcoded 1 
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µM AbaSI-Dyad adapter was added. Then 9 µL of ligation mix (1.11x T4 ligase 

reaction buffer, 4.44 mM ATP (NEB, P0756L), 2000 U T4 DNA ligase (NEB, 

M0202M)) was added to each sample, and the samples were incubated at 16°C for 

16 hours. 

After ligation, up to three barcoded libraries of the same type were pooled and all 

Dyad-seq types were subjected to a 1x AMPure XP bead cleanup (Beckman 

Coulter, A63881), and eluted in 40 µL of water. 

For M-M-Dyad-seq and H-M-Dyad-seq were then evaporated to a total of 28 µL 

and subjected to nucleobase conversion using the NEBNext enzymatic methyl-seq 

conversion module (NEB, E7125S) according to the manufacturer’s 

recommendations apart from doing the final elution step in 40 µL of water. Bisulfite 

conversion can also be used but results in less complex sequencing libraries (data 

not shown).  

For M-H-Dyad-seq and H-H-Dyad-seq nucleobase conversion was performed 

using the NEBNext enzymatic methyl-seq conversion module similarly to what has 

been described previously49. Briefly, samples were evaporated to a total of 17 µL. 

Then 4 µL of formamide (Sigma-Aldrich, F9037-100ML) was added and the samples 

were heated to 85°C for 10 minutes before being quenched on ice. APOBEC 

nucleobase conversion was performed as described by the manufacturer except the 

incubation was held at 37°C for 16 hours. After which the manufacturer’s 

recommendations were followed apart from doing the final elution step in 40 µL of 

water. 

To the nucleobase converted libraries all Dyad-seq types were subjected to one 

round of linear amplification. To do this, 9 µL of amplification mix was added (5.56x 
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NEBuffer 2.1 (NEB, B7202S), 2.22 mM dNTPs (NEB, N0447L), and 2.22 uM Linear 

amplification 9-mer: 5’- GCCTTGGCACCCGAGAATTCCANNNNNNNNN -3’) and 

the samples were heated to 95°C for 45 seconds before being quenched on ice. 

Once cold, 100 U of high concentration Klenow DNA polymerase (3’-5’ Exo-) (fisher 

scientific, 50-305-912) was added. Then samples were quickly vortexed, spun down 

and then incubated at 4°C for 5 minutes, followed by an increase of 1°C every 15 

seconds at a ramp rate of 0.1°C per second until the samples reach 37°C which was 

then held for an additional 1.5 hours. Afterwards a 1.1x AMPure XP bead cleanup 

was performed, and the samplers were eluted in 40 µL of water before being 

evaporated down to 10 µL. The entire sample was then used in a linear PCR 

reaction by adding 15 µL of solution (1.67x high-fidelity PCR mix (NEB, M0541L) 

and 0.67 µM Extended RPI primer: 5’- 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGACGA

TCGGTGTAGTGGGTTTGG-3’) and performing PCR as follows, an initial denaturing 

of 98°C for 30 seconds, followed by 16 cycles of 98°C for 10 seconds, 59°C for 30 

seconds, and 72°C for 30 seconds, after these cycles the samples were held at 

72°C for 1 minute. Next 5 µL of linear PCR product was amplified further in a 

standard Illumina library PCR reaction, incorporating a unique indexed i7 primer. 

The remaining linear PCR product was stored at -20°C. Two 0.825x AMPure XP 

bead cleanups were performed in the sequencing libraries with a final elution of 15 

µL of water. The libraries were then quantified on an Agilent Bioanalyzer and Qubit 

fluorometer. Finally, libraries were subjected to Illumina sequencing on the HiSeq 

plateform obtaining 150 bp reads from both ends. 

7. Bulk RNA-seq 
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Total RNA was extracted using TRIzol (Ambion, 15596018). 50 ng of total RNA 

was heated to 65°C for 5 minutes and returned to ice. Afterwards it was combined 

with 9 uL of reverse transcription mix (20 U RNAseOUT (Invitrogen, 10777-019), 

1.11x first strand buffer, 11.11 mM DTT, 0.56 mM dNTPs (NEB, N0447S), 100 U 

Superscript II (Invitrogen, 18064-071), and 25 ng of barcoded reverse transcription 

primer) and the sample was incubated at 42°C for 75 minutes, 4°C for 5 minutes, 

and 70°C for 10 minutes. Each replicate received a different barcoded reverse 

transcription primer. The reverse transcription primers used here were described 

previously238. Afterwards, 50 µL of second strand synthesis mix (1.2x second strand 

buffer (Invitrogen, 10812-014), 0.24 mM dNTPs (NEB, N0447S), 4 U E.coli DNA 

Ligase (Invitrogen, 18052-019), 15 U E.coli DNA Polymerase I (Invitrogen, 18010-

025), 0.8 U RNase H (Invitrogen, 18021-071)) was added to each sample and the 

samples were incubated at 16°C for 2 hours. The barcoded replicates were then 

pooled, and a 1x AMPure XP bead (Beckman Coulter, A63881) cleanup was 

performed, eluting in 30 µL of water, which was subsequently evaporated to 6.4 µL. 

The molecules were amplified with IVT and an Illumina sequencing library was 

prepared as described in CEL-Seq2171. Libraries were subjected to Illumina 

sequencing on the HiSeq plateform obtaining 150 bp reads from both ends. 

8. Bulk RNA-seq analysis 

Bulk RNA-seq data was processed as described previously (scMAT-seq, chapter 

3) with the following modification, reads were mapped to the RefSeq gene model 

based on the mouse genome release mm10, with the addition of the set of 92 ERCC 

spike-in molecules. 
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DESeq2 was used for normalization and differential gene expression calling239. 

Each condition was compared pairwise and adaptive shrinkage was used to adjust 

the log fold change observed240. For differential gene calling an adjusted p-value 

cutoff of 0.01 and a shrunken log fold change cutoff of 0.75 was used. For 

visualization and clustering, variance stabilizing transformation was performed and 

batch effects from differing reverse transcription primer barcodes was removed 

using the removeBatchEffect function in the limma package241. 

9. scDyad&T-seq 

4 µL of Vapor-Lock (QIAGEN, 981611) was manually dispensed into each well of 

a 384-well plate using a 12-channel pipette. All downstream dispensing into 384-well 

plates were performed using the Nanodrop II liquid handling robot (BioNex 

Solutions). To each well, 100 nL of uniquely barcoded 7.5 ng/µL reverse 

transcription primers containing 6 nucleotide unique molecule identifiers (UMI) was 

added. The reverse transcription primers used here were previously described in 

Grun et al. with the exception that a UMI length of 6 was used234. Next, 100 nL of 

lysis buffer (0.175% IGEPAL CA-630, 1.75 mM dNTPs (NEB, N0447S), 1:1,250,000 

ERCC RNA spike-in mix (Ambion, 4456740), and 0.19 U RNase inhibitor (Clontech, 

2313A)) was added to each well. Single cells were sorted into individual wells of a 

384-well plate using FACS and stored at -80°C until used. To begin processing, 

plates were heated to 65°C for 3 minutes and returned to ice. Next, 150 nL of 

reverse transcription mix (0.7 U RNAseOUT (Invitrogen, 10777-019), 2.33x first 

strand buffer, 23.33 mM DTT, and 3.5 U Superscript II (Invitrogen, 18064-071)) was 

added to each well and the plates were incubated at 42°C for 75 minutes, 4°C for 5 

minutes, and 70°C for 10 minutes. Thereafter, 1.5 µL of second strand synthesis mix 
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(1.23x second strand buffer (Invitrogen, 10812-014), 0.25 mM dNTPs (NEB, 

N0447S), 0.14 U E.coli DNA Ligase (Invitrogen, 18052-019), 0.56 U E.coli DNA 

Polymerase I (Invitrogen, 18010-025), 0.03 U RNase H (Invitrogen, 18021-071)) was 

added to each well and the plates were incubated at 16°C for 2 hours. Following this 

step, 650 nL of protease mix (6 µg protease (Qiagen, 19155), 3.85x NEBuffer 4 

(NEB, B7004S)) was added to each well, and the plates were heated to 50°C for 15 

hours, 75°C for 20 minutes, and 80°C for 5 minutes. Next, 500 nL of 5hmC-blocking 

mix (1 U T4-BGT (NEB, M0357L), 6x UDP-glucose, 1x NEBuffer 4) was added to 

each well and the plates were incubated at 37°C for 16 hours. Afterwards, 500 nL of 

protease mix (2 µg protease, 1x NEBuffer 4) was added to each well, and the plates 

were heated to 50°C for 3 hours, 75°C for 20 minutes, and 80°C for 5 minutes. Next, 

500 nL of MspJI digestion mix (1x NEBuffer 4, 8x enzyme activator solution, and 0.1 

U MspJI (NEB, R0661L)) was added to each well and the plates were incubated at 

37°C for 4.5 hours, and 65°C for 25 minutes. To each well, 280 nL of uniquely 

barcoded 250 nM unphosphorylated double-stranded adapters were added. Next, 

720 nL of ligation mix (1.39x T4 ligase reaction buffer, 5.56 mM ATP (NEB, P0756L), 

140 U T4 DNA ligase (NEB, M0202M)) was added to each well, and the plates were 

incubated at 16°C for 16 hours. After ligation, reaction wells receiving different 

barcodes were pooled using a multichannel pipette, and the oil phase was 

discarded. The aqueous phase was then incubated for 30 minutes with 1x AMPure 

XP beads (Beckman Coulter, A63881), placed on a magnetic stand and washed 

twice with 80% ethanol before eluting the DNA in 30 µL of nuclease-free water. After 

vacuum concentrating the elute to 6.4 µL, in vitro transcription (IVT) was performed 

as previously described in the scAba-seq and scMspJI-seq protocols34,65. RNA 
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enrichment from IVT product was performed as described in scMAT-seq (chapter 3) 

with the following modifications. The entire IVT product was used for enrichment, 4 

µL of biotinylated polyA primer, and 8 µL of Dynabeads MyOne Streptavidin C1 

beads (Invitrogen, 65001) were used and resuspended in 24 µL of 2x B&W solution 

after establishing RNase-free conditions. Additionally, the supernatant of material 

after combining all three components was saved for additional processing. 

The supernatant of the RNA enrichment contains unamplified barcoded scDyad-

seq DNA molecules. A 1x AMPure XP bead cleanup was performed using a 30 

minute incubation and was eluted in 40 µL of water. Samples were then evaporated 

to 28 µL and nucleobase conversion was performed as described for bulk M-M-

Dyad-seq. Samples were then subjected to four rounds of linear amplification. The 

first round was the same as described for bulk Dyad-seq. In subsequent rounds 

samples were first heated to 95°C for 45 seconds before being quenched on ice. 

Once cold, 5 µL of amplification mix was added (1x NEBuffer 2.1 (NEB, B7202S), 2 

mM dNTPs (NEB, N0447L), 2 uM Linear amplification 9-mer, and 10 U of high 

concentration Klenow DNA polymerase (3’-5’ Exo-) (fisher scientific, 50-305-912)). 

Then samples were quickly vortexed, spun down and then incubated the same as 

performed in the first round of linear amplification. After 4 rounds of linear 

amplification, sequencing libraries were prepared the same way as described for 

bulk Dyad-seq. Libraries were subjected to Illumina sequencing on the HiSeq 

plateform obtaining 150 bp reads from both ends. 

scDyad-seq is performed similarly to scDyad&T-seq, except the initial reverse 

transcription and second strand synthesis steps are replaced with dispenses of 1x 
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NEBuffer 4. Additionally, because the transcriptome is not captured, IVT is not 

performed and steps involving aRNA enrichment and processing are omitted. 

10. Dyad-seq analysis pipeline 

CpG dyads containing potential information from both DNA strands was analyzed 

separately from non-dyad methylation or hydroxymethylation levels. To analyze CpG 

dyads, read 1 was trimmed to 86 base pairs, and then exact duplicates were 

removed using Clumpify from BBTools. Next, reads containing the correct PCR 

amplification sequence and correct barcode were extracted. These reads were then 

trimmed using the default settings of TrimGalore. For mapping, Bismark was used in 

conjunction with Bowtie2 v2.3.5 to map to MM10242. For experiments using K562 

cells, hg19 was used. After mapping, Bismark was used to further deduplicate 

samples based on UMI, cell barcode and mapping location. For library preparation 

using MspJI, a custom Perl script was used to identify 5mC positions in the genome 

as detected by MspJI and interrogate the methylation status of the opposing 

cytosine in a CpG or CpHpG dyad context from the nucleobase conversion. For 

library preparation using AbaSI, a custom Perl script was used to identify 5hmC 

positions in the genome as detected by AbaSI and interrogate the methylation status 

of the opposing cytosine in a CpG dyad context from the nucleobase conversion. To 

analyze non-dyad methylation or hydroxymethylation, the cell barcode and UMI were 

transferred from read 1 to read 2. Read 1 was trimmed using TrimGalore in paired 

end mode. The 5’ end of read 1 was clipped by 20 bases to remove potential bias 

from enzymatic digestion. The 5’ end of read 2 was clipped by 9 bases to remove 

potential bias from the linear amplification 9-mer. The 3’ end of read 1 was also hard 

clipped 9 bases after detection of the Illumina adapter was performed. The 3’ end of 
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read 2 was hard clipped 34 bases after detection of the PCR amplification sequence 

CCACATCACCCAAACC, removing any potential bias from the enzymatic digestion 

as well as removing bases corresponding to barcodes and UMIs. Each read was 

mapped separately to MM10 using Bismark. Using Bismark, both resulting sam files 

were deduplicated further using UMI, cell barcode and mapping location. The 

bismark_methylation_extractor tool was then used to extract detected cytosines. 

After which custom Perl code was used to connect detected cytosines to their 

respective cell. CpG detection files from the same DNA strand for read 1 and read 2 

were then combined and any duplicate detections where the same cytosine was 

read in both read 1 and read 2 were removed using the UMI. Custom codes for 

analyzing Dyad-seq data and the accompanying documentation is provided with this 

work (Supplementary Software). To threshold between successful and 

unsuccessfully sequenced cells, a minimum detection threshold of at least 25,000 

non-dyad covered CpG sites was used. Cells that passed the threshold of detection 

for 5mC or the transcriptome were considered in the analysis of that feature. For 

downstream anlysis, genomic regions with extremely low or high coverage were 

excluded as they likely result from mapping artifacts. Afterwards, for clustering 

binned dyad and non-dyad methylation levels were subjected to hierarchical 

clustering and the optimal number of clusters was assigned using silhouette scores. 

11. scDyad&T-seq gene expression analysis 

Read 2 was trimmed using the default settings of TrimGalore. After trimming, 

STARsolo (STAR aligner version 2.7.8a) was used to map the reads to MM10 using 

the gene annotation file from Ensembl. The reads were again mapped to MM10 

using the transposable elements annotation file described in TEtranscripts243. 
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Transcripts with the same UMI were deduplicated, transcripts detected from genes 

or transposable elements were analyzed together and any that were not detected in 

at least one cell were removed from any downstream analysis. 

The standard analysis pipeline in Seurat (version 3.1.5) was used for single-cell 

RNA expression normalization and analysis235. Cells containing more than 500 

genes and more than 2,000 unique transcripts, were used for downstream analysis. 

The default NormalizeData function was used to log normalize the data. The top 

2,000 most variable genes were used for making principal components and the 

elbow method was used to determine the optimal number of principle components to 

use in clustering. UMAP based clustering was performed by running the following 

functions, FindNeighbors, FindClusters, and RunUMAP. To identify DEGs, the 

FindAllMarkers or FindMarkers function was used. The Wilcoxon rank sum test was 

used to classify a gene as differentially expressed, requiring a natural log fold 

change of at least 0.1 and an adjusted p-value of less than 0.05. 

E. Chapter 6 Methods 

1. Mammalian cell culture 

H9 human embryonic stem cells were grown as described previously in scMAT-

seq (chapter 3). 

2. scMATH-seq 

scMATH-seq processing is like that described in scMTH-seq with minor 

differences. No spike-in molecules were added, and the reverse transcription step is 

replaced by a simultaneous reverse transcription and GC tagging step. To do this 

step, 150 nL of reverse transcription GC tagging mix (0.7 U RNAseOUT (Invitrogen, 

10777-019), 1.17x first strand buffer, 11.67 mM DTT, 3.5 U Superscript II 
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(Invitrogen, 18064-071), 0.19 mM SAM, 1.17x GC reaction buffer, and 0.1 U M.CviPI 

(NEB, M0227S)) was added to each well and the plate was incubated at 37°C for 1 

hour, 4°C for 5 min, 65°C for 10 min, and 70°C for 10 min. After this point, second 

strand synthesis and all further library preparation steps are as described in scMTH-

seq. DNA sequencing for mRNA enriched and non mRNA enriched samples were 

performed as in scMAT-seq (chapter 3). 

3. scMATH-seq analysis pipeline 

All sequencing reads were processed as described in scMTH-seq (chapter 4) 

with the minor change that 5mC based reads were further processed to investigate 

the presence of GpC methylation as described in scMAT-seq. Each feature, 5mC, 

5hmC and gene expression were separately analyzed for data quality. If a cell 

contained at least 10,000 5mCpG, 10,000 Gp5mC, 300 5hmC, and 1,000 transcripts 

was considered successfully amplified in all features. 
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Supplementary Tables 

1. Chapter 2 

Supplementary Table 2.1 | Table listing 8 bp cell-specific barcodes used in scMspJI-seq 

 

Cell barcode Sequence 
1 GCGAGATT 
2 CATTCCAC 
3 CCGATGAT 
4 AGCTTAGC 
5 CGTTACTG 
6 TTCGCTTG 
7 CTACTGCT 
8 AAGAGAGC 
9 AACTGTGG 

10 CACATCAG 
11 AGTCAGTC 
12 CGTTGTCA 
13 TAGGAACG 
14 CCTGATCT 
15 AACGAGCA 
16 GCAGTAAC 
17 TTCTCGAC 
18 GTCCAATC 
19 AACTCACC 
20 CTGCGAAT 
21 ACGTTACC 
22 AGTTGCAC 
23 AATAGCCG 
24 ACCTCTAC 
25 TTCGACGT 
26 TTGATCCG 
27 GTACAGGT 
28 ACCACCTT 
29 GGATTCGA 
30 CCGTTAAG 
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31 GTTCGGAA 
32 CCACCATT 
33 CGATCGAT 
34 GTCTGTAC 
35 ACGCCTTA 
36 CAGGATTC 
37 GGAAGATC 
38 TCAGACGA 
39 TGCGCTAA 
40 GAGAATGC 
41 TTAGCGTG 
42 TGAAGGCT 
43 CTTAGCAG 
44 AAGCTACC 
45 ACATCTGC 
46 CGCATTAC 
47 CCTAGATC 
48 CATCCAGA 
49 GGTCTTGA 
50 GACAGATG 
51 GAACAGCT 
52 ACGAGCAA 
53 TCCTTCTC 
54 GCGTGTAA 
55 CAGCCATA 
56 GAATTGCC 
57 AATCAGCC 
58 CTCAACAC 
59 GCAGATAC 
60 TCGCTTGT 
61 AGTCTTCG 
62 TAGAGGCA 
63 CCTTGGTT 
64 AGAACGCA 
65 GTATACGC 
66 ACTGCTAG 
67 ATCGGTGA 
68 GACCATGA 
69 TCCAAGGT 
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70 GCCAACAT 
71 GCGTCAAT 
72 AGCCAAGT 
73 ACGTCAGA 
74 TCACCTGA 
75 GCAATCCT 
76 AATTCGCC 
77 TGAAGCTC 
78 GTCCGATA 
79 CCTGTAGT 
80 CAGACTGT 
81 TGTAGCCT 
82 GATGCCAT 
83 AACGGCAT 
84 GATAGCAC 
85 TACGGTTC 
86 TGGTTGGA 
87 TCGTGTAC 
88 TAGCGGAA 
89 CTAGGCTA 
90 GCTGTGTA 
91 CAGGTCTT 
92 AAGAGCCA 
93 GCATGACT 
94 TTACGGTC 
95 ACGCATAC 
96 GATGCAAC 

 

2. Chapter 5 

Supplementary Table 5.1 | Double stranded adapter barcodes used in scDyad&T-seq.  

Barcodes described 5’ to 3’ for the bottom adapter. Top adapter barcode sequences are the 
reverse compliment of those listed. Barcodes 1, 2 and 3 are also used in M-H-Dyad-seq. 

Cell barcode Cell barcode 
1 AGAGATGGAA 
2 TTGGATGGTA 
3 TGTTTGTAGG 
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4 TGAAGAGAAG 
5 AGTGTGAAGT 
6 AAGTTGATGG 
7 GAATGGTGAT 
8 AGGTTGAGTT 
9 GATTAGGTGA 

10 GAAGATTGGT 
11 AGAGGAAGAA 
12 TGGTGTTATG 
13 GAGAAGAAGA 
14 GATATGGAAG 
15 GTTAGGTAAG 
16 GTTAGTAGAG 
17 TGGTGTATGA 
18 AGGAAAGTAG 
19 GAGATAAAGG 
20 TTGAAGGAGT 
21 AGTGTGAGAA 
22 GTAGATAGAG 
23 AAGTGTTGAG 
24 GTGAGTAGTT 
25 AGAGGTTAGA 
26 TGGTTGAAGA 
27 ATGATGAAGG 
28 AGTTGAGGAA 
29 GAAAGTGATG 
30 AAGGTTGGAA 
31 GAATGGTATG 
32 GAAGAGAAAG 
33 AGGTTGAAAG 
34 TAGGATGGAT 
35 TAGGTGAAGT 
36 ATGAGTGGAA 
37 TAGATGTAGG 
38 GATATGAGGT 
39 GAAGAAAGTG 
40 ATGAGAGTGA 
41 AGGAGTATAG 
42 GTGATAGATG 
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43 TGAGGTAGTA 
44 GTGTGTAGAA 
45 GAGAGTTGTA 
46 GAGAAAGGTA 
47 TTGATGGAAG 
48 TGTATGGATG 
49 AAGTAGGAAG 
50 TGTGATGAAG 
51 GATTGTGGTA 
52 GATAGATAGG 
53 GTATGGAAAG 
54 GAGAAAGAAG 
55 AGTGAAAGGA 
56 TGATTGTGTG 
57 TGAGATATGG 
58 TAGTTTGAGG 
59 AAGGTAGAAG 
60 AGAGAGAAGA 
61 GTTGGAAGAA 
62 GAAGGATGTA 
63 GTAAAGGAAG 
64 ATGGAGAGTA 
65 AGGAAGTTGT 
66 TGATGGAGAT 
67 TGAATGGTAG 
68 GTTTGAAGGT 
69 AGTTTGTGGT 
70 AGATGTGAAG 
71 AGATATGTGG 
72 GAGAATAGTG 
73 TTGGAAGAAG 
74 TGGTTGTTAG 
75 TGTTGAGATG 
76 TAGGTTGTAG 
77 GTGGTAAAGT 
78 GAAGGAAAGA 
79 GATAATGAGG 
80 ATGTTGGTAG 
81 GAGTGATAAG 
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82 AAGGTGAATG 
83 TAGGAGTAAG 
84 GTGAGATGAT 
85 TGAGGTTAAG 
86 TGAGAAAGGT 
87 AGAGTTGATG 
88 TTGGAAAGTG 
89 GTTAGGAAGA 
90 AGGATTGAAG 
91 TAGAAGAGGT 
92 GTGAAAGAGA 
93 GTATGAGGAA 
94 TGAAAGAGTG 
95 GTTGTGAAAG 
96 GAAAGAAGGT 

 

Supplementary Table 5.2 | Double stranded adapter barcodes used in M-M-Dyad-seq.  

Barcodes described 5’ to 3’ for the bottom adapter. Top adapter barcode sequences are the 
reverse compliment of those listed. 

Barcode # Cell barcode 
1 ATATGGAG 
2 AGGGATTG 

86 TGGTTGGA 
 

Supplementary Table 5.3 | Double stranded adapter barcodes used in H-M-Dyad-seq and H-H-
Dyad-seq.  

Barcodes described 5’ to 3’ for the bottom adapter. Top adapter barcode sequences are the 
reverse compliment of those listed. 

Barcode # Cell barcode 
1 GAGAATGTGT 
2 AGGTAAGATG 
3 TGTAAGTGAG 
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