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MnEdgeNet for accurate 
decomposition of mixed oxidation 
states for Mn XAS and EELS 
L2,3 edges without reference 
and calibration
Zhengran Ji , Mike Hu  & Huolin L. Xin *

Accurate decomposition of the mixed Mn oxidation states is highly important for characterizing 
the electronic structures, charge transfer and redox centers for electronic, and electrocatalytic and 
energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray 
absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. 
To date, although the measurements of the Mn L2,3 edges are straightforward given the sample is 
prepared properly, an accurate decomposition of the mix valence states of Mn remains non-trivial. 
For both EELS and XAS, 2+, 3+, and 4+ reference spectra need to be taken on the same instrument/
beamline and preferably in the same experimental session because the instrumental resolution and 
the energy axis offset could vary from one session to another. To circumvent this hurdle, in this study, 
we adopted a deep learning approach and developed a calibration-free and reference-free method to 
decompose the oxidation state of Mn L2,3 edges for both EELS and XAS. A deep learning regression 
model is trained to accurately predict the composition of the mix valence state of Mn. To synthesize 
physics-informed and ground-truth labeled training datasets, we created a forward model that 
takes into account plural scattering, instrumentation broadening, noise, and energy axis offset. 
With that, we created a 1.2 million-spectrum database with 1-by-3 oxidation state composition 
ground truth vectors. The library includes a sufficient variety of data including both EELS and XAS 
spectra. By training on this large database, our convolutional neural network achieves 85% accuracy 
on the validation dataset. We tested the model and found it is robust against noise (down to PSNR 
of 10) and plural scattering (up to t/λ = 1). We further validated the model against spectral data that 
were not used in training. In particular, the model shows high accuracy and high sensitivity for the 
decomposition of Mn3O4, MnO, Mn2O3, and MnO2. The accurate decomposition of Mn3O4 experimental 
data shows the model is quantitatively correct and can be deployed for real experimental data. 
Our model will not only be a valuable tool to researchers and material scientists but also can assist 
experienced electron microscopists and synchrotron scientists in the automated analysis of Mn L edge 
data.

X-ray absorption spectroscopy (XAS)1 and electron energy loss spectroscopy (EELS)2, 3 are two techniques that 
can probe the unoccupied electronic states providing bonding information of materials. In particular, the L2,3 
edges are widely used to determine the oxidation state of transition metals1, 4, 5. The transition metal L2,3 edges 
probe the unoccupied d orbitals and therefore the edge onset and the edges’ fine structures and shapes are sensi-
tive to the oxidation state of the d-block metal ions, in particular the 3d transition metals, such as V, Ti, Mn, Fe, 
and Ni5–8. For example, using the near-edge fine structures in the Mn L2,3 edges, the oxidation states of Mn ions 
in a material can be determined by decomposing the spectrum into a linear combination of Mn2+, Mn3+, and 
Mn4+ reference spectra9, 10. This decomposition, in principle, is simple but in reality, it is non-trivial because 
the energy axis is not always calibrated, and the instrument/beamline does not always have the instrumental 
broadening. Without proper calibration, an energy offset is present between the experimental spectrum and 
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the references which prevents accurate oxidation state decomposition. In order to avoid the problem, standard 
reference samples such as MnO, Mn2O3, and MnO2 need to be measured in the same experimental session 
to avoid any energy offsets as well as changes in instrumental broadening9, 11. Still, with this procedure, other 
factors could prevent the proper energy axis calibration, for example, temperature fluctuations would result in 
an energy shift in the monochromator for XAS experiments. Basically, if the XAS measurements are separated 
multiple hours in time, the spectra taken could have a slight energy offset. In EELS, the energy offset could change 
more rapidly and is more unpredictable than in XAS. Typically, the energy offset is very sensitive to the DC 
stray field. For example, the passing of a heavy-duty truck or the movement of a nearby elevator could change 
the energy offset if the TEM instrument is not fully shielded. This problem is now mitigated with the dualEELS 
instruments but there are still many single EELS instruments under active service. Moreover, all historical data 
were acquired without the dualEELS correction. In addition, the nonlinearity of the parallel EELS spectrometer 
is present in EELS in a nontrivial way because the nonlinearity is not only present in the dispersion device, i.e., 
the magnetic prism. There is another complex nonlinearity present in the magnification lenses, a series of quad-
rupoles. Therefore, it is extremely difficult to calibrate the energy onset of EELS edges unless strict protocols are 
followed as described by Tan et al.11.

Another complication is that EELS’ near-edge fine structures change with sample thickness due to plural scat-
tering. As the sample gets thicker, signals close to the edge onset would be multiply scattered to higher energy 
losses. This would result in a shape change of the spectrum11. For example, for the latter 3d transition metals’ L2,3 
edges, as the sample gets thicker, the L2/L3 ratio increases—this problem has rendered the reference-free L2,3 
ratio method inaccurate for EELS11. In addition, for XAS, the background and the near-edge structures could 
be different between the Total Electron Yield (TEY) and Partial Fluorescence Yield (PFY) modes. TEY mode 
measures the total number of emitted electrons resulting from the absorption of X-rays while PFY measures 
the fluorescence emitted by the sample as a result of X-ray absorption. That also renders the L2,3 ratio method 
unreliable. Moreover, for early 3d transition metals, there are no established reference-free methods because of 
the L2,3 anomaly.

For both EELS and XAS spectroscopy, one interesting observation is that human operators with sufficient 
training can identify spectral features and assign oxidation states to transition metal L2,3 edges with high con-
fidence. This points to the direction that deep learning could be successful in solving the L2,3 oxidation state 
decomposition problem. Pate et al. in 2021 discussed using deep learning to denoise high frame rate spectra12. 
Chatzidakis and Botton in 2019 introduced the idea of translation-invariance for classifying EELS edges13. They 
built a convolutional neural network (CNN) for oxidation state classification and showed that with translation-
invariant training, moving the energy axis does not change the Mn2+, 3+, and 4+ oxidation state classification. 
This is a very important step in demonstrating that spectral features are like spatial features in images—they can 
be classified by a CNN network regardless of their absolute energy positions in the spectrum. However, there 
are still problems remained to be resolved: (1) how to quantitatively decompose mixed oxidation states; (2) is 
it possible to build one model that works for both XAS and EELS spectroscopy that have drastically different 
energy resolutions; (3) is it possible to build a model that is not affected by plural scattering, i.e., the thickness 
effect in EELS.

To address the three challenges defined above, in this study, we present a reference-free, calibration-free deep 
learning approach to determine the accurate oxidation states decomposition of 3d transition metal based on the 
L2,3 near-edge fine structures. To demonstrate the validity of the method, we use Mn as an example because Mn 
is technologically important in catalysis, energy storage, and electronic materials. Also, Mn oxides are a good 
case study because their 3 different oxidation states lead to notable variations in fine structures of the Mn L2,3 
edge. Determining the composition of the mixed oxidation states is extremely important for understanding the 
charge transfer phenomenon happening at the device interfaces. The method we present in this study is not a 
simple classification of Mn2+, 3+, and 4+ edges but an accurate and quantitative decomposition of the mixed 
Mn oxidation states. Instead of having a classification/binary type label, we created a three-element ground truth 
vector that quantitatively describes the composition of Mn2+, 3+, and 4+ in each Mn spectrum, i.e. [%Mn2+, 
%Mn3+, %Mn4+].

To achieve this goal, we synthesized a spectrum library from 38 experimental spectra (23 EELS and 15 XAS). 
The library contains 1.2 million spectra 50% of which are synthesized from XAS data and the other 50% are syn-
thesized from EELS data. In building the mixed oxidation state library, we paid special attention to normalizing 
the Mn L2,3 edges correctly, and including experimental-like uncertainties such as both Gaussian and Lorentz-
ian type instrumental broadening, energy offset, and detector noise. To include the plural scattering effect in 
the training library, we developed a forward model to correctly introduce the thickness effect to the L2,3 edges. 
Using this physics-informed large training library, we show that the deep convolutional regression model we 
trained is robust against plural scattering and noise. The overall accuracy of the model in determining the mixed 
valence state reaches 85% on the validation data set. We also validated the data on “unknown unknowns”, i.e., 
Mn3O4 spectra that have never been used for training and validation—the accurate decomposition of Mn3O4 
experimental data shows the model is quantitatively correct and can be deployed for real experimental data.

Methods
In this method section, we will describe (1) how to build a ground-truth oxidation state labeled Mn edge library, 
(2) how to construct the neural network, and (3) how to train it.

For building the library, the technical challenges lie in (1) how to obtain a wide variety of XAS and EELS 
Mn2+, Mn3+, and Mn4+ reference spectra; (2) how to normalize or ratio the 2+, 3+, and 4+ spectra correctly; 
(3) how to include the EELS’s plural scattering effect (thickness effect) into the training sets; (4) how to include 
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the various experimental uncertainties including instrumental broadening, energy offset, detector noise, etc. In 
the following subsections, we will address each aforementioned challenge.

Collection of Mn reference spectra.  To have sufficient varieties of data that can capture the features of 
the EELS and XAS Mn 2+, 3+, and 4+ edges, in this study, we digitized 23 experimental EELS and 13 XAS Mn 
spectra, in total 38, that were documented in 6 literatures using WebPlotDigitizer20. In Fig. 1, we presented all 
spectra that were used for making the training library. (The Mn 2.67+ spectrum was not included in the training 
library). In Table 1, we listed the compounds for which we digitized the spectra and their original references.

Figure 1.   The presentation of the EELS and XAS Mn L2,3 edges included in making the training library. The 
Mn 2.67+ presented is not included in the training library.
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All data are standardized to range from 630.5 eV to 669.4 eV with 0.1 eV increments (338 data points). For 
missing data, the left side of the spectra is padded with zero and the right side is padded with the end value of 
the spectra.

Normalization of 2+, 3+, 4+ reference spectra.  In order to quantitatively combine the 2+, 3+, and 
4+ Mn spectra, they need to be normalized to the correct ratio. To achieve that, we normalize the Mn L3 edge 
according to the d-hole number. Elemental Mn has an electron configuration of [Ar] 3d5 4s2. Therefore, Mn2+, 
3+, 4+ have an electron configuration of [Ar] 3d5, [Ar] 3d4, [Ar] 3d3. Because the d shell can hold 10 electrons, 
the number of holes for Mn 2+, 3+, and 4+ are 5, 6, and 7 respectively. Therefore, the area under the L3 peak 
and above the continuous background shall be proportional to the d-hole number. The continuous background 
under the L2,3 edge can be modeled by two-step functions with a step height that follows the 1:2 population 
ratio. (The filled 2p3/2, and 2p1/2 orbitals have a population ratio of 1:2). The d-hole area can be calculated after 
the background is subtracted from the spectrum (Fig. 2). With this procedure to find the d-hole area, we can 
correctly ratio the 2+, 3+, and 4+ spectra.

Ground truth labeled library.  After the d-hole ratio normalization, we can correctly combine the Mn 2+, 
3+, and 4+ component spectra to form a new spectrum with the known ground truth oxidation state composi-
tion and oxidation state as the following

In making the ground truth labeled spectra, we only combined Mn spectral components that were digitalized 
from the same publication source. The reason is the spectra to be combined shall share the same instrumental 
resolution.

The composition of the training library is detailed in Table 2. A total of 1,200,000 synthetic spectra are 
included in the library.

s = xMn2+ + yMn3+ + zMn4+

where x + y + z = 1

ground truth oxidation state composition =
[

x, y, z
]

ground truth average oxidation state = 2x + 3y + 4z.

Table 1.   The compound information and references of the Mn L2,3 edges.

Oxidation state Compounds References

2+ MnO (Manganosite), MnV2O4, (LiMnPO4) Lithiophilite, (MnSiO3) Rhodonite, MnF2, (MnCO3) Rhodochrosite, 
YBaMn3AlO7,

EELS
Refs.11, 14

XAS
Refs.15–18

3+ MnOOH(Manganite),  Mn2O3, ((Mn,Fe)2O3) Bixbyite, (Ca4Mn3+
2–3(BO3)3(CO3)(O,OH)3) Gaudefroyite, LaMnO3

4+ SrMnO3, CaMnO3,  MnO2, Todorokite, ((Ni,Co)2-xMn4+(O,OH)4 · nH2O) Asbolan, (ZnMn4+
3O7 · 3H2O)Chalcophanite, 

(Mn4+O2) Ramsdellite, (Mn4+O2) Pyrolusite

2.67+ Mn3O4 (not used for training)

Figure 2.   Schematics showing how to extract the d-hole area under the L3 edge.
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Instrumental broadening.  The instrumental broadening of EELS spectra includes two major contribu-
tions. The first contribution primarily comes from the thermal broadening at the electron source and the first 
crossover due to the space-charge effect. This type of broadening is typically characterized by a Gaussian type 
broadening function. The second contribution happens at the detector. The light diffusion in the sinterlator and 
the optical coupler introduce a long-tail broadening effect which can be characterized by a Lorentzian function. 
For XAS, similar short-range and long-range broadening happens due to the monochromator. Therefore, we 
introduce a two-parameter controlled instrument broadening kernel aka the point spread function, PSF(E) as 
the following.

where ⊗ stands for convolution

and

Basically, the instrumental point spread function is a convolution of a Gaussian function with a Lorentzian 
function. The full width at maximum (FWHM) of the Lorentzian function is w and the FWHM of the Gauss-
ian function is 2

√
2ln(2)σ . The combined FWHM is equal to 

√
FWHMLorentzian + FWHMGaussian . It is worth 

noting that the inclusion of the Lorentzian tails in the point spread kernel is very important for making the 
synthesized spectra resemble the experimental ones. An example of such a broadening effect on a Mn2 + L2,3 
edge is shown in Fig. 3.

Plural scattering in EELS.  If the single scattering probability function is P(E), plural scattering as a func-
tion of thickness, t, in EELS can be described by the following differential equation

PSF(E,w, σ) = L(E,w)⊗ G(E, σ)

L(E,w) =
1

π

1/2w

E2 + (1/2w)2

G(E, σ) =
1

σ
√
2π

e
− 1

2 (
E

σ
√
2
)

dS(E, t)

dt
=

∫

S(E′)P(E − E′)dE′

Table 2.   The composition of the ground truth labeled library.

Components Occurrence Type

Single component
2+, 3+, or 4+ 2.5% 50% EELS and 50% XAS

Two components
(2+, 3 +), (2+, 4+), or (3+, 4+) 48.75% 50% EELS and 50% XAS

Three components
(2+, 3+, 4+) 48.75% 50% EELS and 50% XAS

Figure 3.   An example of the instrumental broadening effect on the Mn L2,3 edge.
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and the boundary condition is S(E, t = 0) = δ(E) in the ideally monochromatic condition. In the practical situ-
ation where the incoming electron has an energy spread, we can use the point spread function given in the last 
section as the initial energy profile, i.e.

Once we obtain a numerical representation of P(E), the spectral function, S(E, t) at any given thickness, t 
can be numerically calculated.

Using this equation, it allows us to calculate the low-loss spectral function numerically. Once we obtain the 
low-loss spectral function, the core-loss spectrum is a convolution of the core-loss single scattering probably 
distribution, Pcore−loss(E) , with the low-loss spectral function, i.e., S(E, t).

Figure 4 shows the change of the low-loss function as a function of normalized thickness ( t/� , � is the inelastic 
mean free path) and how the Mn L2,3 edge evolves.

In this modeling, we use an average plasmon loss energy of 25 eV and approximate the P(E) by an asymmetric 
function where the left side is a Gaussian function, and the right size is a Lorentzian loss function. To be more 
exact, we also modeled the Mn M edge and superimposed it onto the plasmon loss.

Other augmentations: energy shift and noise.  Both EELS and XAS are subject to the issues of inac-
curate energy axis. To take this into account, we apply a random shift augmentation of the energy axis for the 
ground truth labeled spectra. With this augmentation, the model becomes translation invariant—it is only sensi-
tive to the spectral shape and it is insensitive to the absolute energy onset of the L2,3 edge.

For noise, we have modeled the noise as white noise (Gaussian noise) with a salt and pepper noise (impulse 
noise). Both noises are additive to the spectrum. We use the linear definition of PSNR as:

Summary of augmentation
In Table 3, we summarize the augmentation operations done to the ground truth labeled library.

Network structure.  How our brains process or identify a spectral feature is very similar to recognizing spa-
tial features in an image. Inspired by this, we adopted the convolution layers that are used in image classification 
for feature extraction. Then we connected the features with a fully connected layer (also known as dense layers) 
for composition regression. The input is the one-dimensional spectrum, and the output is a 3-element composi-
tion vector (Fig. 5). We call this network a convolutional regression net (CRN). Different from a classification 
network, a regression network’s outputs are continuous numbers rather than binary numbers. Therefore, we 
used the mean square error function as the loss function.

S(E, t = 0) = PSE(E,w, σ)

PSNR =
Max Signal

√
Mean Sequare Error

Figure 4.   The modeling of the plural scattering for Mn-containing compound and its effect on the spectral 
shape of Mn L2,3 edges.

Table 3.   A summary of the augmentation operations and occurrences.

Type of augmentation Probability of application Parameters

Instrumentation broadening 80% Gaussian: FWHM uniformly distributed between 0.01 and 1.5 eV
Lorentzian: FWHM uniformly distributed between 0.1 and 0.4 eV

Plural scattering 80% Normalized thickness t/� uniformly distributed between 0 and 1

Shifts 100% Uniformly distributed between -4 eV and + 4 eV

Noise 50% PSNR ranges from 10 to 30
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For feature extractions, we use three convolutional layers followed by leaky ReLU and maxpooling. The final 
layer outputs 41*128 = 5248 filtered features. In the regression layers, we used three fully connected layers with 
2048, 512, and then 3 neurons with leaky ReLU in between. The final output is a softmax normalization of the 
final 3-neuron layer to ensure that the sum of the composition vector is equal to 1.

Training.  In Table 4, we summarized the technical information of the training process.

Figure 5.   The structure of the convolutional regression net for mixed oxidation state decomposition.

Table 4.   Technical information for training.

Parameter Value

Framework PyTorch

GPU NVIDIA GeForce GTX 1080 Ti

Training time 3.53 h

Optimizer Adaptive moment estimation (Adam)

Learning rate 0.00008

Loss function Mean squared error loss (MSELoss)

Max Epochs 4

Batch Size 32

Figure 6.   The MSE loss as a function of epochs processed.
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All spectra are subtracted by the mean and divided by the standard deviation before entering the network. 
Dropouts are added to each layer before maxpooling with a dropout rate of 0.1. Adam, an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order 
moments was used for learning. The learning rate is set at 8E-5. The batch size is 32. As shown in Fig. 6, the model 
converges quickly; therefore, only 4 epochs of training were used to avoid overfitting.

Validation.  We performed an 80/20 split of the ground truth labeled library to split it into 80% of training 
and 20% of validation datasets. The accuracy of the model is evaluated on the validation set. An accurate predic-
tion is defined as the predicted oxidation state falling in the range of ± 0.1 of the ground truth oxidation state.

We also evaluated our model on reference data and testing data. Reference data are the data we digitized from 
the literature, used to build the library. The testing data are new experimental and literature data that were never 
used for the construction of the training data.

Figure 7.   The scatter plot of the model’s predicted average oxidation state versus the ground truth.

Table 5.   CRN’s decomposition performance on validation spectra.

Compound Predicted [2+, 3+, 4+] decomposition (%) Predicted oxidation state Ground truth

Mn2O3 [0.98, 98.5, 0.52] 3.0 3.0

MnF2 [99.69, 0.31, 0.0] 2.0 2.0

MnF3 [0.66, 98.87, 0.48] 3.0 3.0

MnO [98.05, 1.85, 0.1] 2.02 2.0

MnO2 [0.45, 4.67, 94.88] 3.94 4.0

MnO [99.6, 0.37, 0.03] 2.0 2.0

MnV2O4 [99.42, 0.21, 0.37] 2.01 2.0

MnOOH [0.18, 98.03, 1.79] 3.02 3.0

CaMnO3 [0.0, 2.4, 97.6] 3.98 4.0

MnO2 [0.0, 0.01, 99.98] 4.0 4.0

SrMnO3 [0.0, 0.06, 99.94] 4.0 4.0

75% Mn3 + OOH
 + 
25%Mn4+ O2

[0.09, 73.45, 26.46] 3.26 3.25

75% Mn3 + OOH
 + 
25% SrMn4+ O3

[0.25, 70.55, 29.2] 3.29 3.25

60% Mn4+ O2
 + 
40% SrMn4+ O3

[0.0, 0.02, 99.98] 4.0 4.0
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Result and discussion
Performance of the model on the validation set.  On the validation set, the trained model reports an 
accuracy of 85%. Figure 7 shows the scatter plot of the prediction versus the ground truth (2000 spectra were 
randomly selected from the validation set). The result shows that the model performs reasonably well on the 
validation data.

To more closely look at the performance of the predicted decomposition, we provide a table of the predicted 
composition as shown in Table 5. It shows that the decomposition is reasonably accurate on the validation dataset.

Plural scattering.  To show how the model performs with the interference of plural scattering, we tested 
the thickness effect on MnO, Mn2O3, and MnO2. As shown in Table 6, the results are accurate up to 1.5 inelastic 
mean free path (λ) which is larger than the maximum augmentation range used in the training dataset.

Performance with noise.  To show how the model performs with the interference of noise, we tested the 
effect on MnO, Mn2O3, and MnO2. As shown in Table 7, the model is robust down to PSNR = 20. At PSNR = 10, 
2+ and 4+ are more stable than 3+.

Validation of the model on testing data.  Validation of testing data is critical for understanding the 
accuracy and robustness of a machine learning model.

Testing on Mn3O4.  One of the compounds, for which we have experimental data on, but was not used for 
training was Mn3O4. It has a mixed oxidation state of Mn2+ and Mn3+ with a theoretical ratio of 1:2. It gives an 
average oxidation state of + 2.67. Figure 8 shows the predicted oxidation state as a function of thickness and the 
oxidation state decomposition is shown in Table 8. The model predicts the correct ratio between 2+/3+ with a 

Table 6.   Testing of CRN’s decomposition robustness against plural scattering on validation data.

Thickness Predicted decomposition (%) Predicted oxidation state

MnO

0 [99.6, 0.37, 0.03] 2.0

0.1 [99.49, 0.5, 0.01] 2.01

0.3 [99.41, 0.58, 0.01] 2.01

0.5 [99.28, 0.71, 0.01] 2.01

0.8 [98.94, 1.04, 0.02] 2.01

1 [98.64, 1.33, 0.03] 2.01

1.5 [97.28, 2.57, 0.16] 2.03

2 [94.27, 4.14, 1.59] 2.07

2.5 [88.33, 4.42, 7.25] 2.19

3 [80.74, 3.14, 16.12] 2.35

Mn2O3

0 [0.66, 99.13, 0.21] 3.0

0.1 [0.57, 99.21, 0.22] 3.0

0.3 [0.6, 99.19, 0.21] 3.0

0.5 [0.69, 99.07, 0.24] 3.0

0.8 [1.25, 98.46, 0.28] 2.99

1 [2.2, 97.54, 0.26] 2.98

1.5 [12.87, 86.66, 0.48] 2.88

2 [43.15, 55.66, 1.19] 2.58

2.5 [52.78, 44.89, 2.33] 2.5

3 [59.93, 36.5, 3.57] 2.44

MnO2

0 [0.0, 0.01, 99.98] 4.0

0.1 [0.0, 0.03, 99.97] 4.0

0.3 [0.01, 0.04, 99.95] 4.0

0.5 [0.01, 0.06, 99.93] 4.0

0.8 [0.01, 0.11, 99.88] 4.0

1 [0.02, 0.21, 99.77] 4.0

1.5 [0.11, 1.75, 98.14] 3.98

2 [0.57, 10.88, 88.55] 3.88

2.5 [3.33, 23.44, 73.23] 3.7

3 [16.82, 20.4, 62.78] 3.46
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Table 7.   Testing of CRN’s decomposition robustness against noise on validation data.

PSNR SNR Predicted decomposition (%) Predicted oxidation state

MnO

None None [99.6, 0.37, 0.03] 2.0

PSNR = 30 SNR = 7.5 [99.97, 0.02, 0.01] 2.0

PSNR = 20 SNR = 5 [99.99, 0.0, 0.0] 2.0

PSNR = 10 SNR = 2 [99.68, 0.3, 0.03] 2.0

PSNR = 5 SNR = 1.25 [99.74, 0.26, 0.0] 2.0

PSNR = 3 SNR = 0.75 [99.95, 0.05, 0.0] 2.0

Mn2O3

None None [0.25, 99.59, 0.16] 3.0

PSNR = 30 SNR = 7.5 [0.94, 98.08, 0.98] 3.0

PSNR = 20 SNR = 5 [1.58, 98.41, 0.01] 2.98

PSNR = 10 SNR = 2 [22.09, 77.91, 0.0] 2.78

PSNR = 5 SNR = 1.25 [89.7, 9.85, 0.44] 2.11

PSNR = 3 SNR = 0.75 [0.0, 0.0, 99.99] 4.0

MnO2

None None [0.0, 0.01, 99.98] 4.0

PSNR = 30 SNR = 7.5 [0.0, 0.05, 99.95] 4.0

PSNR = 20 SNR = 5 [0.0, 0.0, 100.0] 4.0

PSNR = 10 SNR = 2 [0.09, 10.54, 89.37] 4.0

PSNR = 5 SNR = 1.25 [4.73, 0.13, 95.14] 3.89

PSNR = 3 SNR = 0.75 [0.0, 0.0, 100.0] 3.9

Figure 8.   Validation on Mn3O4 as a function of thickness.

Table 8.   Testing of CRN’s decomposition robustness against plural scattering on testing data(Mn3O4).

Thickness Predicted decomposition (%) Predicted oxidation state

0.0 [32.03, 64.39, 3.59] 2.72

0.1 [32.00, 64.02, 2.99] 2.7

0.3 [33.81, 63.79, 2.4] 2.69

0.5 [34.31, 63.67, 2.02] 2.68

0.8 [34.39, 64.03, 1.59] 2.67

1.0 [34.16, 64.1, 1.74] 2.68

1.5 [32.28, 64.1, 1.74] 2.73

2.0 [30.24, 58.1, 11.67] 2.81

2.5 [27.73, 53,69, 18.57] 2.91

3.0 [28.38, 49.6, 22.02] 2.94
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Figure 9.   The Mn3O4 spectra from testing data as a function of noise.

Table 9.   Testing of CRN’s decomposition robustness against noise on testing data(Mn3O4).

PSNR SNR Predicted decomposition (%) Predicted oxidation state

30 7.5 [29.41, 67.05, 3.54] 2.74

20 5 [36.23, 63.76, 0.01] 2.64

10 2 [38.01, 61.75, 0.24] 2.62

5 1.25 [47.8, 52.09, 0.1] 2.52

3 0.75 [66.91, 21.65, 11.45] 2.45

Figure 10.   The EELS Mn L2,3 edges of bulk Mn3O4 vs nanosized Mn3O4.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14132  | https://doi.org/10.1038/s41598-023-40616-5

www.nature.com/scientificreports/

small error. The prediction starts to deviate from the ground truth at t/λ = 1.5 which is larger than the maximal 
augmentation used for training. Therefore, reduced performance is expected.

Further testing on the influence of noise.  The noise-contaminated Mn3O4 spectra are shown in Fig. 9. 
The predicted oxidation state decomposition is shown in Table 9. The ratio between 2+ and 3+ stays close to 1:2 
for PSNR down to 10 (SNR down to 2). When PSNR is below 10 (SNR is below 2), the composition ratio starts 
to deviate from the theoretical ground truth as expected (the noise augmentation range is PSNR = [10,30]).

Sensitivity and accuracy validation on Mn3O4 with vacancies on the tetrahedral sites.  We 
tested the accuracy and sensitivity of our model using two Mn3O4 EELS spectra documented in Ref.9. The two 
spectra are shown in Fig. 10. The predicted oxidation state decomposition is given in Table 10. The small differ-
ence in the L3 edge indicates that the nanosized Mn3O4 has slightly more Mn2+ and less Mn3+ than the bulk 
Mn3O4. The documented ratio of Mn3+/Mn2+ is 2 for the bulk sample and 1.6 for the nanosized sample in 
Ref.9. Our model accurately captures this change. For the nanosized sample, our model’s predicted decomposi-
tion clearly shows the reduction of Mn3+ composition and increase of Mn2+ composition. The ratio of Mn3+/
Mn2+ is predicted to be 1.59 which is almost the same as the documented value. This test shows that our model 
is accurate and sensitive to small changes in the spectrum.

More on testing data.  To further test the model on testing data. We collected more EELS and XAS data 
from literature and experiments with very different energy resolutions. All data shown in Fig. 11 were not used 
for training. The EELS data shown are from references5, 19 and the XAS data are from our own experimental 
collection at NSLSII and Taiwan Light Source. Figure 11 shows the oxidation decomposition of the EELS/XAS 
Mn L2,3 edge inferred by our model. All predictions are within reasonable errors of the ground truth. It is worth 
noting that the model is effective on both XAS and EELS spectra. The XAS and EELS have very different energy 
resolutions. Within the XAS, the TEY and PFY also have noticeable differences in fine structures. In addition, 
the energy onsets are all different. However, as shown, our model remains translation invariant and is robust 
enough to correctly decompose their oxidation states.

Conclusion
In this work, we built a regression deep learning network to accurately decompose the mix valence state of Mn for 
both EELS and XAS spectra. By passing the Mn L2,3 edge spectra into the neural network, the ratio of Mn2+, 3+, 
and 4+ can be predicted. To train the network, we also created a forward model for synthesizing the mix valence 
state of Mn L2,3 edge spectra. Plural scattering, instrumentation broadening, noise, and energy axis offset were 
taken into account when creating the forward model. A 1.2 million spectral dataset was synthesized for network 
training and validation using the forward model. The network was also tested on the testing spectra, real spectra 
collected from experiments, which were not used in the dataset synthesis. The robustness of the network was 
examined against noise and plural scattering. The high accuracy of the network on both validation and testing 
spectra suggested it can accurately decompose Mn L2,3 edges. The robustness of the network against noise (PSNR 
down to 10) and plural scattering (t/λ up to 1) demonstrated the high sensitivity and stability of our network. 
Furthermore, the network performed quantitively well on common compounds such as MnO, Mn2O3, Mn3O4, 

Table 10.   Testing of CRN’s decomposition sensitivity on testing data(Mn3O4).

PSNR Predicted decomposition (%) Ratio documented in Ref.9 (%)

Bulk [33.92, 64.33, 1.75] [33, 67, 0]

Nano [38.1, 60.51, 1.39] [40, 60, 0]

Figure 11.   Validation of CRN’s decomposition sensitivity on data not used for training.
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and MnO2 which means our model can be deployed and trusted in real experiments. This work showed that it is 
possible to accurately decompose mix valence state of Mn L2,3 edge spectra for both EELS and XAS without ref-
erence and calibration using deep learning algorithms. In the future, the method described in this work can also 
be generalized to other transition metals such as Fe, since their similar chemistry property to Mn. This work pro-
vided a new angle to study the fine structure of L2,3 edges and the development of AI-driven autonomous TEM.

Data availability
Data and code are available from the corresponding author upon request.
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