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Abstract

Capturing & Modifying GPU Binaries in User-mode

Binary instrumentation refers to adding additional instructions to an executable in or-

der to measure or instrument some aspect of the program, such as adding instructions

that count the number of times a certain instruction is executed. This thesis argues that

GPU binary instrumentation and rewriting can be accomplished through user-mode tools

without driver support by presenting a design and implementation of a binary instru-

mentation tool for AMD’s HIP runtime. We compare our design to similar tools such

as PIN for CPUs and NVBIT for NVIDIA GPUs. We provide example applications for

instrumenting GPU code and give an analysis of our design decisions. This thesis eval-

uates the quality of the instrumentation applications and discusses challenges that arose

during their implementation as well as evaluating the costs of the system itself through

measurements of rewrite and instrumentation times. Finally, we give recommendations

for designing future binary instrumentation systems without driver or kernel support.
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Chapter 1

Introduction

1.1 Background and Motivation
Today’s GPUs are essential for applications in machine learning, scientific computing, and

are increasingly used for variety of general purpose computing tasks. As programmers use

GPUs more often and encounter performance problems that are unique to these systems,

it will be useful to implement profiling tools that can find these specific problems.

Programs compiled for modern GPU accelerators use common APIs such as NVIDIA’s

CUDA or AMD’s HIP to launch compute kernels, manage memory, and interact with the

driver. Almost all GPU-accelerated programs use these common APIs since some amount

of driver support is required for these tasks. This provides an opportunity—the behavior

of almost any program can be captured without additional support from the driver. Many

methods exist for “hooking” C library calls, and these mechanisms can be used to capture

and modify the launched GPU programs. And this is possible without access to the

original source code and without additional driver support. One application of capturing

and modifying binaries in this way is binary instrumentation. Binary instrumentation

refers to rewriting an executed binary with additional instructions whose purpose is the

instrumentation of some part of the program. This can be used to collect additional

information about the program’s behavior or performance, much like a profiler. But unlike

a profiler, instrumentation can give information about “in-the-moment” performance. A

profiler may tell you that that 1% of threads experienced divergence—an instrumentation
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tool can tell you which threads those were and give you tools to find them. Some other

examples of this include:

• Adding timers to between individual lines of executed code. This allows a program-

mer to measure the time a specific operation takes without necessarily having to

recompile the original program.

• Identifying memory access behavior and layouts. By adding instructions that log

memory addresses before they are accessed, the programmer can look for certain

access patterns they want to avoid or get a sense of how objects are laid out in

memory.

• Injecting specific types of behavior or errors. For example a floating point error

could be introduced to determine how well the program handles the error when it

propagates to results.

Binary instrumentation offers a great deal of flexibility in the types of profiling tools

that can be created. But this comes with many tradeoffs. It typically requires greater

knowledge of the system being profiled since modifications are being made to compiled

code, and the performance impact of profiling is typically much greater. But since in-

strumentation can be added dynamically, there’s greater flexibility over the granularity of

profiling. If the instrumentation is only needed in some rare scenarios or only for a subset

of the system, its impact won’t be noticed as much.

This thesis argues that a binary instrumentation tool can be built with tools avail-

able to any user due to how GPU programs are executed on modern systems. Hardware

manufacturers could also implement this functionality by adding it to their driver imple-

mentation, but we will show that this isn’t strictly necessary. Thus anyone can create

a tool to add instrumentation to their binaries without depending on additional support

from the driver.

The driver is a program that executes user-compiled programs and communicates

with the device on behalf of the programmer. Rather than compiling a GPU binary and
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configuring the device for its execution, users typically write GPU programs in “single-

source” programs that consist of both CPU and GPU code. These programs are compiled

so that the binary code for both programs is contained in a single file. The driver is then

responsible for untangling these two programs and launching the GPU program when

needed. This design is very powerful and easy for newcomers to grasp, but it makes

observing and interacting with GPU binaries more difficult. Command line tools exist to

untangle the binaries yourself, but it’s often not clear which parts of those binaries are

being used or how a separated binary can be used.

We designed a system that can capture these GPU binaries using standard user-

space functionality on the Linux operating system. We could then modify the binaries

before they are launched, changing the behavior of a GPU program. We utilized this

rewriting functionality to implement a system that instruments the GPU binaries. We

argue that rich instrumentation and profiling techniques are available by simply capturing

the contents of GPU API calls—no additional driver or operating system support was

required to implement new profiling tools.

We designed this system using AMD’s HIP API for GPU computing. In contrast to

NVIDIA’s driver, the source for AMD’s driver and compiler is available online. While

we didn’t have to modify any of this code, we needed it to determine the format of some

structures and behavior of certain API calls. Thus while we did not need driver support,

information about the driver was essential to modify the binaries. Still, we claim that with

a minimal amount of information (which we will highlight when relevant) GPU programs

can be captured and modified in a relatively simple fashion.

We built a proof-of-concept instrumentation tool and several different instrumenta-

tion functions for AMD’s CDNA architecture using our modification system. These in-

strumentation functions allow a programmer to do things like determine the location of

bank conflicts or uncoalesced accesses, and detect how often certain instructions were

executed—things that are helpful for obtaining ideal GPU performance. We found that

an instrumentation tool has several unique advantages over profilers and that when used

in combination with a profiler, the programmer can “zero in” on locations of interest for
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performance. In GPU programs which launch millions of threads, this is incredibly valu-

able. If a single workgroup is slowing down the system, that workgroup can be easily

identified. When improving the performance of a often-running machine learning kernel,

these small optimizations can quickly add up to major cost savings in training.

1.2 Contributions
We present the following contributions:

1. a system for capturing, replaying, and modifying AMD GPU binaries at runtime

and without source code.

2. a method for performing binary instrumentation using our capture and modification

system and proof of concept tools for instruction counting and memory tracing.

3. a comparison of our design with other instrumentation tools that require additional

driver support or compiler engineering

4. a discussion of future work and uses for a GPU binary instrumentation system.

1.3 Thesis Organization
NVIDIA has also released a tool that can instrument arbitrary SASS Assembly binaries. In

Chapter 2, we’ll discuss this tool and others built by Intel and ARM for the same purpose.

We’ll also discuss the various applications of binary instrumentation tools and consider

the potential for future tools. In Chapters 3, 4, and 5 we describe the implementation

of our system. We’ll also discuss the differences between our design and one that relies

on driver support, such as NVIDIA’s. We’ll use this as an opportunity to compare some

in-depth details of the hardware and show how these decisions influence the differences in

our designs.

Chapter 3 focuses on our method for capturing the binaries and modifying the files.

Chapter 4 dives into how a binary can be rewritten using this modification, accounting

for things like instruction formats and an increase in the number of registers needed.
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And Chapter 5 discusses the implementation of the individual instrumentation tools, ex-

plaining how instruction counting or a memory trace are actually implemented on AMD’s

architecture. We also present results of our instrumentation tools in action and com-

pare them with the equivalent NVIDIA instrumentation tool along with measurements of

rewriting costs and the impact of instrumentation on the final GPU code.

In Chapter 6, we’ll evaluate our overall system, comparing it with the NVIDIA equiv-

alent and CPU instrumentation tools when possible. We discuss the tradeoffs of the

technical and design decisions we made, and illustrate their impact on the ease of use and

quality of our system. We discuss where additional engineering effort can mitigate issues

with our design and discuss what steps need to be taken to address any flaws. And finally,

in Chapter 7, we offer lessons learned from our implementation and provide directions for

future work to take. We hope that these insights, in addition to the tools that we have

built, will provide others with the information necessary to create an instrumentation tool

for their architecture. Or potentially, to improve our instrumentation tools for AMD’s

GPU architecture.
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Chapter 2

Related Works

To discuss our contributions, we compare ourselves to several other tools for alternative

architectures that accomplish the same goals. Both CPU and GPU tools exist for mod-

ifying and rewriting binaries for instrumentation. The CPU-based tools have a longer

history than GPU-based tools, but there is a large amount of literature on the GPU

side as well. We also discuss applications of instrumentation, such as fault tolerance or

program analysis.

2.1 CPU Instrumentation Tools
2.1.1 Intel

The most notable binary instrumentation tool is Intel’s PIN [8]. PIN allows a programmer

to iterate over a series of instructions in a target binary and register callbacks at different

levels of granularity such as every instruction or every function call. Notably, this process

is architecture agnostic—it doesn’t require the programmer to know anything about the

actual instruction set. A program that uses this API is known as a Pintool. Pintools are

inserted into the original executable using just-in-time (JIT) compilation. Specifically,

PIN generates a sequence of instructions that includes the instrumentation, then “com-

piles” this sequence to a more efficient representation. Anytime a branch is encountered,

control is given to PIN first before the executable continues execution. In this way, PIN

is able to add the additional instructions required for a Pintool into the original stream

of instructions.
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This JIT compilation approach is very powerful. It allows optimization to be per-

formed, and when extra registers are required, registers can be reallocated or rearranged.

This means that PIN does a lot of book-keeping by keeping track of jump targets and

relative offsets. They use a virtual machine to track these targets and have several heuris-

tics that can skip using the VM and save performance. The system generates traces of

instructions and then uses the JIT compiler to optimize this trace or sequence. This idea

comes from HP’s Dynamo [1], a system for optimizing native binaries with a runtime JIT

compilation system. It was extended into DynamicRIO [2], which uses this technique to

profile and instrument code. It is worth noting that this JIT compilation technique is

complicated to map to a GPU execution system. A GPU driver expects to know how

many registers a kernel will require before it ever executes, and in the SIMD execution

model, it is inefficient to have one thread responsible for generating and compiling in-

structions while other threads do nothing. Our work does not use a VM to represent the

state of the GPU and instead executes instructions directly. This is simpler, but it gives

less power and flexibility for modifying and optimizing the generated code.

Both PIN and DynamicRIO contain a whole suite of profiling and debugging tools.

Thread sanitizers, memory analysis, and trace generation are just some of the applications

available. These tools have been used to simulate cache behavior, detect memory errors

or multi-threading issues, and for various security applications. We do not have as rich of

a programming interface as PIN, so we don’t support writing nearly as many applications.

In many cases we could improve our API to support some features, however. We discuss

our programming model and its limitations in Chapter 6.

2.1.2 ARM

Similar tools have been written for embedded architectures [4,5]. They use a similar JIT

compilation system, modifying every branch so that the VM remains in control. In ARM

the PC can be used as a source or destination register in any instruction, so extra care

has to be taken for each branch. The applications of such a tool are similar to PIN,

but with the additional mention of compatibility—an instruction can be rewritten for a

new version of the architecture, allowing the original binary to work on the new system
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without recompiling.

2.2 GPU Instrumentation Tools
2.2.1 NVIDIA

NVBIT [12] is, like us, a tool for instrumenting arbitrary GPU binaries. Like PIN, NVBIT

includes several tools like instruction counting and memory tracing. These tools were

mostly designed for hardware simulators and architecture designers. NVIDIA’s focus was

on providing a system that allowed the programmer to write their own instrumentation

functions, so a lot of care was taken to implement a simple interface for writing your own

instrumentation. Our interface requires the programmer to manually insert instructions

for instrumenting the target binary, but they simplify the process through a simpler API

and more thorough integration with the build and compilation systems. NVBIT allows

you to compile an instrumentation function separately and just provide the compiled

version, whereas we have to still hand-modify this assembly before use.

NVBIT also does not utilize the JIT compilation or tracing approach of PIN and

other instrumentation tools. Instead, the GPU binary is modified before it is launched

on the device. Instrumentation points are overwritten with a branch instruction to a

trampoline before then executing the instrumentation function. Thus there’s no tracking

of branch targets or other additional bookkeeping required. NVBIT is integrated with

the driver, which is responsible for creating a new binary from the original code and

instrumentation functions. Since they are part of the driver, they can utilize additional

compilation functionality and obtain better performance for the resulting code. It also

allows them to pick and choose which kernels to rewrite at runtime, rather than rewriting

everything ahead of time.

Many authors went on to publish their own tools that built off the NVBIT base. For

example, NVBITFi [11] and GPU-FPX [7] are tools that use NVBIT to detect floating

point exceptions and the instructions that cause NaNs to percolate through the system.

These tools are a very effective of use instrumentation because there’s no need to be very

fast or performant.
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2.2.2 Intel

Intel takes a very different approach to perform binary instrumentation on GPUs [6,

10]. Rather than add custom GPU instructions while the GPU is executing, they only

add enough instrumentation to generate an instruction trace. They then emulate that

instruction trace on the CPU, adding any additional profiling and instrumentation on top

of the emulation process. This greatly simplifies designing a system for instrumentation

because they don’t have to care about inserting arbitrary snippets of code anywhere in

the GPU binaries. Instead, they only need to consider how to generate their instruction

traces and once they are emulating these instruction traces on the CPU, it is trivial to

add additional instrumentation. The added instrumentation works at the level of the

emulator, not the underlying architecture. This makes it considerably simpler to add new

tools at the cost of an even larger increase to instrumentation time. It also requires an

existing implementation of the GPU emulator, which is not a trivial engineering task.
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Chapter 3

Binary Capture & Replay

This thesis began with the observation that every GPU program accesses a driver API in

order to allocate memory and launch kernels. Since this driver API is implemented as a

Linux shared library, it can be “hooked”, or redirected, to an alternative implementation

using the quick environment variable. Intended for use by profilers, debuggers, and other

system utilities, LD_PRELOAD is often used for these kinds of tasks. Through hooking the

API, we can capture, modify, or replay the API calls executed by a GPU binary. In this

chapter, we discuss how we accomplished this capture process, how the data we capture

can be modified before being used, and how we can use this to replay GPU binaries without

the original executable. We also discuss the challenges of our design and its limitations

and compare our design with alternative methods for capturing the same data.

3.1 Design
To capture and replay a GPU binary we

1. overload shared library calls.

2. write the program binary to a file when __hipRegisterFatBinary is called.

3. record kernel name and arguments for every call to hipLaunchKernel.

4. record all allocations and frees (hipMalloc and hipFree).
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With this, we can reconstruct the same GPU behavior without access to the original

program.

Every HIP program consists of a series of calls to library functions implemented in

a shared object. We use LD_PRELOAD to overload a function’s definition with our own

implementation. This implementation records some information about the API call (like

the arguments) and then calls the actual implementation in the HIP library. HIP programs

consist of functions that inspect the state of the device, perform memory allocations and

copies, and launch kernels on the GPU. These kernels can be compiled separately or

compiled as part of the same source file as the host code.

At the start of execution of every HIP program, a function called __hipRegister-

FatBinary is called with a pointer to a GPU binary as a the first argument. This GPU

binary is the one obtained by compiling the GPU portion of the source file. We examined

the LLVM source code to determine the format of this structure that is being pointed to,

and found it is what LLVM calls a “bundled” binary—both the host program executable

code and GPU executable code are stored alongside each other. Once we knew the

structure of this object, we could access it through the void pointer argument provided

to __hipRegisterFatBinary. This structure contains a size and a buffer containing the

ELF executable.

When a user wants to launch a kernel, they specify a kernel name using one of

several different syntaxes. Regardless, these different methods compile down to the

hipLaunchKernel API, which takes a function pointer as the first argument. This pointer

corresponds to the kernel located in the binary provided to __hipRegisterFatBinary.

The ELF file also contains a section that has additional information about each kernel,

like how many registers it requires. With this information, the GPU can send the com-

mand to launch the appropriate kernel, specifying its initial arguments and ensuring that

the GPU is setup properly.

To monitor the behavior of these two functions, we wrote our own custom implementa-

tion of both __hipRegisterFatBinary and hipLaunchKernel. In __hipRegisterFatBinary

we record the value of the pointer, access the structure using the information we know

11



about the format of the binary, and then record the contents of the GPU binary. This file

can be used later on by other HIP API functions that use GPU binaries. For example,

the hipModuleLoad function takes a filename and loads the binary for the user. This file

is the same ELF file we obtain from separating the original bundled binary.

In our implementation of hipLaunchKernel, we lookup which kernel is being launched

in the code object we recorded. We examine the .notes section of the file, which is a

MsgPack [9] encoded buffer, to find the size and type of the kernel’s arguments. If the

type is a primitive type, we can simply copy that argument that was passed to the launch

invocation.

By hooking these two functions, we can obtain

1. an ELF executable containing the GPU code that will be executed.

2. a list of every kernel launched and the runtime parameters provided to that kernel.

3. the order that kernels are launched and the number of times that they are executed

(as well as the different compute streams they may be issued on).

3.1.1 Capturing Data

When copies are performed to and from the GPU, we need to save these buffers in order to

recreate the same behavior. These allocations can be very large, from several MBs to GBs

in size. In order to effectively capture all of this data, we utilize a SQLite database. Being

both lightweight and performant, SQLite allows us to quickly record the relatively small

datatypes provided to the API calls (as well as identifiers for the API calls themselves).

Using SQLite also helpfully abstracts away both the file format and asynchronously writ-

ing the data to a file. We don’t necessarily have to block the execution of any API call

while we finish writing the data to disk.

3.1.2 Replay

In Chapter 4 we describe how we use the capture of these two functions to rewrite binaries.

This in turn can be used to implement binary instrumentation tools which we describe

in Chapter 5. But for now let’s consider also hooking the hipMalloc and hipMemcpy
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functions and capturing their arguments. If we do so, we obtain a listing of every memory

allocation performed and the requested size of the memory allocation. If we record the

value of pointers returned by the driver, we can get a mapping of every buffer in use in

GPU memory. This information can be recorded alongside the GPU binary and list of

kernel launches.

From this data that we captured, we can completely recreate the GPU behavior of

many programs without access to the original executable. We simply iterate through

each call to the hipMalloc and hipMemcpy function calls and repeat them. We will obtain

different pointer values from the driver when we execute these functions, but the sizes of

the buffers will be identical since we use the same arguments. If we maintain a mapping

from the original pointer values to the new pointer values that we obtain, we can then

replace any occurrence of the old pointers with the new ones. If a kernel performs pointer

arithmetic, this technique stops working, but we discuss a potential solution in 3.3.

Once the memory allocations and copies have been recreated, we load the GPU bi-

nary with the hipModuleLoad function we mentioned before, and execute the same kernel

launches we recorded in our database. We examine the arguments to the kernel and check

for any pointer types. If we encounter one, we check the mappings between allocations

and replace the pointer with its current counterpart. In this way we are able to execute

the exact same kernels with the same arguments and the same data without access to the

original executable and using techniques that don’t require modifying the driver.

3.2 Difficulties
In implementing this system, we found that determining the formats of binaries and

recording kernel arguments were the most challenging problems to solve. While there is

some documentation, it is not sufficient for working with the binary objects. The bundled

binary is different than what is used by hipModuleLoad, for example. Similarly, kernel

arguments have notes that describe what their purpose is, and there is some documenta-

tion, but it doesn’t explain the meaning of different argument types. As a result, a lot of

this information had to be determined through trial and error.
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3.3 Limitations
Since we use LD_PRELOAD to redirect the function calls, we need to know the exact function

signatures of anything we’d like to redirect. We also needed to investigate the format of

the binary provided at program start, and we depended on this function existing and

behaving the way it does. If there isn’t an equivalent of the __hipRegisterFatBinary

function, then some other way of accessing the GPU binary has to be found.

When we record the arguments provided to a launch kernel call, we use information

in the .notes section of the binary to determine what these arguments were. Some

information simply isn’t provided, however. If an argument is a C structure or C++

object, we only know the size of the structure—nothing about its contents. Any pointers

contained in structures are completely unknown to us when we capture in this way.

This problem can be addressed through another layer of indirection—a virtual memory

system. CUDA implements a form of virtual memory that allows allocations to be placed

at any address specified by the user of the library, forcing the allocation at that address

if possible. On AMD this functionality exists within the driver but is not exposed to the

user in any way. There are likely plans to release a virtual memory system similar to

CUDA’s, and this system would allow any binary to be replayed.

We also discuss a variety of downsides to our approach in Chapter 6 in comparison to

tools like NVBIT.
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Chapter 4

Binary Rewriting

In the previous chapter, we discussed how GPU binaries can be captured and replayed. In

this section, we describe how a captured AMD GPU binary can be rewritten with different

instructions, changing the behavior at runtime. We focus on rewriting binaries to execute

additional instructions at certain points in the program. We could also rewrite binaries

to update certain instructions for a new architecture, but we will focus on rewriting for

the sake of instrumentation. The programmer should think of rewriting as editing a

single binary instruction to potentially execute any number of instructions instead. This

is valuable for various binary instrumentation tools. For example, we can replace a load

instruction with code to save the loaded address somewhere, followed by the original load

instruction. We could similarly replace any instruction with instructions that start a clock

or increment a counter.

4.1 Design
To rewrite a section of a program binary, we need to open the executable code, find

the instruction we’d like to rewrite, replace the rewritten instruction with a branch, and

append new code to the end of the program. We choose to append new code rather than

insert it in place since we can avoid adjusting branch and data offsets in the original

code. Relative branches can be broken by inserting instructions in place since the new

instructions can change the distance between branch and target. PIN keeps a record

of branch targets and updates them when it rewrites code, but we’d like to avoid this
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complexity. This branch causes our programs to be less performant since we introduce a

branch to and from a completely different part of the executable.

First, let’s consider opening the program executable. Once a binary is captured and

saved to a file, it is relatively easy to work with. The file format is ELF, just like any

normal executable on the system. In the .text section of the ELF file are the GPU

instructions. Additional information about the kernel is kept in the .notes section of the

binary. It is encoded as a MsgPack formatted buffer, a compact JSON-like encoding. The

information stored here is the kernel names, their properties and the number of registers

used for them. An additional section of the binary known as the kernel descriptor also

stores information about the kernel, but this section is actually used by the driver to setup

the hardware. If the number of registers used is modified in the .notes section, nothing

changes—the modifications need to occur to the kernel descriptor. It appears that the

.notes section is only a listing of additional information that is not actually used for any

purpose, while the kernel descriptor is a part of the setup process.

Suppose we would like to rewrite part of this binary. We simply have to find the

relevant part of the .text section, edit it, and save a new ELF file. We’re also free to

append new data to the .text section. When rewriting it is important to keep program

offsets in mind. Shifting instructions or data can break the behavior of the GPU program

because branches and data can be described with relative offsets, so when rewriting it’s

important to keep the edit to a single instruction.

In order to interpret the instruction data, we use the open-source library DynInst [3],

which can map instruction encodings to the name of the relevant instruction and extract

register identifiers. The LLVM command-line tools and the LLVM library itself can both

be used to accomplish the same task, but they can be more difficult to use—the command-

line tools require the programmer to parse their output and the LLVM library can be

difficult to integrate into an existing project. However, AMD GPU support in DynInst is

also limited, and it is also a complicated library that can be difficult to integrate into an

existing project.

When a binary is rewritten, we need to have instruction data ready to insert into the
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binary. There are many ways to get this inserted instruction data. One could write the

assembly themselves, using the output of an assembler as the data to insert. One could use

the compiler to write a kernel, compile it, and then modify the output by hand to insert

the relevant instructions. Or one can directly use compiled binaries as the rewritten code.

We use the first option, while NVBIT uses the last. It’s much preferred to use NVBIT’s

method, but we were unable to integrate the compiler into our system as successfully.

Instead, we wrote custom assembly whenever we needed to rewrite a binary. We describe

this further in Chapter 6.

When we rewrite, it’s possible that we need additional registers that the original

program did not require. When this happens, we edit the kernel descriptor to change the

number of registers that the kernel uses.

4.2 Limitations
If a kernel already uses the maximum amount of registers, then it is not possible to

increase the number of registers. This is incredibly rare, however. Typically a kernel will

be written in a way to use as few registers as possible since this increases the number of

copies of that kernel that can be executed at any given time. Even if a kernel such as

this is encountered, there are strategies to solve this problem. For example, a stack can

be used if the kernel already uses one or some vector registers can be moved to scalar

registers or vice versa. We could not find a kernel where the maximum number of registers

was in use.

As mentioned earlier, we also simply append new instructions to the executable. We

could affect performance greatly by introducing a branch. Since we simply append the

code, we’re not able to perform any optimizations that consider the original executable

code.
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Chapter 5

Instrumentation & Profiling

In this Chapter we discuss two tools that we implemented, evaluate them when used with

a real program, and compare with NVBIT.

5.1 Implemented Tools
We used our rewriting functionality to implement two tools—a tool for counting instruc-

tions and a tool for obtaining a memory trace of a program. Currently, if we can write a

simple assembly program, we can use it an instrumentation tool. We simply rewrite the

instrumented instruction and append the instrumentation code to the executable. But

this means that all changes have to be very explicit about the assembly code that they

will add. It’s not possible to just directly take the output of the compiler without addi-

tional work that we discuss in Chapter 6, where we also discuss methods for improving

the usability of our system. Below, we describe our implementation, provide results from

their use, and compare with NVBIT’s methods for obtaining the same information.

5.1.1 Instruction Counting

To count the number of times an instruction is executed, we only need a single atomic

counter. We rewrite the binary to increment this atomic before returning the original

execution. We describe the rewrite process in Chapter 4, but to summarize, the instruction

that we would like to count is replaced with an s_branch instruction. Then we append

code to perform the counting operation at the end of the executable. The s_branch
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branches to this new part of the executable, which increments an atomic counter, and

then returns to the original program.

The NVBIT equivalent of this tool is very similar. Again a single counter is incre-

mented every time the instruction is executed. NVBIT has also extended this functionality

to an execution trace, where they keep separate counters for every instruction and incre-

ment them as execution proceeds through the program. Instrumentation does not need to

be placed on every single instruction in order to compute an instruction trace. Counters

need only be placed at the start of basic blocks since it’s known that every instruction

between them will be executed.

The program has to be further modified to allocate the atomic on the host side of

execution. This is done when the binary is first rewritten, and then the address of the

atomic is directly used in the rewrite operations—the memory address is placed directly

in the assembly file. This allocation can also be done at the time the kernel is launched.

Then when the program is finished executing, we copy the counter back from the device,

and provide the value to the user.

5.1.1.1 Results

To evaluate our ability to count instructions, consider the simple HIP program in Fig-

ure 5.1 that adds two vectors and stores the result. To ensure that we don’t access the

array beyond its bounds, a conditional check is included that checks whether the thread

index is outside the bounds of the arrays. If we examine the assembly code generated

by the compiler (Figure 5.1.1.1) we can see that on line 13 a condition is evaluated and

if all threads fail the condition, on line 14 we branch to the end of the program (if only

some of the threads fail the condition, the failed threads are masked out and execution

continues). We would thus expect that if launch this kernel with too many threads, some

thread groups would take the branch and the instructions on line 15 and beyond would

be executed less.

Let N be the size of the vectors we are adding. When we place an instrumentation

point on line 13 in Figure 5.2a, and launch with N threads, we obtain the expected

execution count, N . When we launch with more threads than the size of the array, we see
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1 __global__ void vectoradd_float(float* a,

2 const float* b,

3 const float* c,

4 int width, int height)

5 {

6 int x = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;

7 int y = hipBlockDim_y * hipBlockIdx_y + hipThreadIdx_y;

8

9 int i = y * width + x;

10 if (i < (width * height)) {

11 a[i] = b[i] + c[i];

12 }

13 }

Figure 5.1: A simple GPU program that contains a branch.

the count increase. Instrumentation placed after line 15, however, always has an execution

count of N as expected.

Figures 5.2b and 5.3 show the assembly code after instrumentation is added. Note

that the instruction on line 13 is changed to an s_branch instruction to beyond the end

of the program at line 35. In Figure 5.3, the instrumentation code can be seen. Registers

are setup in lines 36–47, the address of the atomic is stored in lines 50–54, and the atomic

that stores the count is incremented in line 56. After restoring the original registers, the

original instrumented instruction is executed on line 71 before returning to the original

program.

Using NVBIT to compute the same information is considerably simpler. They include

a pre-written instruction counting tool written as a GPU device function. The tool also

increments an atomic corresponding to the instruction that was executed, but this data

and program logic is entirely separate to the details of rewriting the binary. Our system

is much more tightly coupled—changes to the tools require changes to the hooked API
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1 s_load_dword s2, s[4:5], 0x2c

2 s_load_dwordx2 s[0:1], s[4:5], 0x18

3 s_waitcnt lgkmcnt(0)

4 s_lshr_b32 s3, s2, 16

5 s_mul_i32 s7, s7, s3

6 v_add_u32_e32 v1, s7, v1

7 v_mul_lo_u32 v1, v1, s0

8 s_and_b32 s2, s2, 0xffff

9 s_mul_i32 s6, s6, s2

10 s_mul_i32 s0, s1, s0

11 v_add3_u32 v0, s6, v0, v1

12 v_cmp_gt_i32_e32 vcc, s0, v0

13 s_and_saveexec_b64 s[0:1], vcc

14 s_cbranch_execz END

15 s_load_dwordx2 s[6:7], s[4:5], 0x10

16 s_load_dwordx4 s[0:3], s[4:5], 0x0

17 v_ashrrev_i32_e32 v1, 31, v0

18 v_lshlrev_b64 v[0:1], 2, v[0:1]

19 s_waitcnt lgkmcnt(0)

20 v_mov_b32_e32 v3, s7

21 v_add_co_u32_e32 v2, vcc, s6, v0

22 v_addc_co_u32_e32 v3, vcc, v3, v1, vcc

23 v_mov_b32_e32 v5, s3

24 v_add_co_u32_e32 v4, vcc, s2, v0

25 v_addc_co_u32_e32 v5, vcc, v5, v1, vcc

26 global_load_dword v6, v[4:5], off

27 global_load_dword v7, v[2:3], off

28 v_mov_b32_e32 v2, s1

29 v_add_co_u32_e32 v0, vcc, s0, v0

30 v_addc_co_u32_e32 v1, vcc, v2, v1, vcc

31 s_waitcnt vmcnt(0)

32 v_add_f32_e32 v2, v6, v7

33 global_store_dword v[0:1], v2, off

34 END s_endpgm

(a) Before

1s_load_dword s2, s[4:5], 0x2c

2s_load_dwordx2 s[0:1], s[4:5], 0x18

3s_waitcnt lgkmcnt(0)

4s_lshr_b32 s3, s2, 16

5s_mul_i32 s7, s7, s3

6v_add_u32_e32 v1, s7, v1

7v_mul_lo_u32 v1, v1, s0

8s_and_b32 s2, s2, 0xffff

9s_mul_i32 s6, s6, s2

10s_mul_i32 s0, s1, s0

11v_add3_u32 v0, s6, v0, v1

12v_cmp_gt_i32_e32 vcc, s0, v0

13s_branch INST

14RET s_cbranch_execz END

15s_load_dwordx2 s[6:7], s[4:5], 0x10

16s_load_dwordx4 s[0:3], s[4:5], 0x0

17v_ashrrev_i32_e32 v1, 31, v0

18v_lshlrev_b64 v[0:1], 2, v[0:1]

19s_waitcnt lgkmcnt(0)

20v_mov_b32_e32 v3, s7

21v_add_co_u32_e32 v2, vcc, s6, v0

22v_addc_co_u32_e32 v3, vcc, v3, v1, vcc

23v_mov_b32_e32 v5, s3

24v_add_co_u32_e32 v4, vcc, s2, v0

25v_addc_co_u32_e32 v5, vcc, v5, v1, vcc

26global_load_dword v6, v[4:5], off

27global_load_dword v7, v[2:3], off

28v_mov_b32_e32 v2, s1

29v_add_co_u32_e32 v0, vcc, s0, v0

30v_addc_co_u32_e32 v1, vcc, v2, v1, vcc

31s_waitcnt vmcnt(0)

32v_add_f32_e32 v2, v6, v7

33global_store_dword v[0:1], v2, off

34END s_endpgm

35INST s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)

36v_mov_b32_e32 v8, v0 // Setup registers

37v_mov_b32_e32 v9, v1

38v_mov_b32_e32 v10, v2

(b) After

Figure 5.2: The corresponding assembly listing for the program in Figure 5.1 before and
after instrumentation. We place an instrumentation point on line 13 before the branch
occurs. With another instrumentation point on line 15, we can see how many threads
took this branch. The branch jumps to the instrumentation at line 35, which saves off
registers before returning. Figure 5.3 shows the remaining instrumentation code.

21



36 v_mov_b32_e32 v8, v0 // Setup registers

37 v_mov_b32_e32 v9, v1

38 v_mov_b32_e32 v10, v2

39 v_mov_b32_e32 v11, v3

40 v_mov_b32_e32 v12, v4

41 v_mov_b32_e32 v13, v5

42 v_writelane_b32 v14, s0, 0

43 v_writelane_b32 v15, s1, 0

44 v_writelane_b32 v16, s2, 0

45 v_writelane_b32 v17, s3, 0

46 v_writelane_b32 v18, s4, 0

47 v_writelane_b32 v19, s5, 0

48 s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)

49 s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)

50 s_mov_b32 s2, 0x9fc00000

51 s_mov_b32 s3, 0x7f6b

52 v_mov_b32_e32 v0, 1

53 v_mov_b32_e32 v1, 0

54 v_mov_b32_e32 v2, 0

55 s_waitcnt lgkmcnt(0)

56 global_atomic_add_x2 v[0:1], v2, v[0:1], s[2:3] glc

57 s_waitcnt vmcnt(0)

58 v_mov_b32_e32 v0, v8

59 v_mov_b32_e32 v1, v9

60 v_mov_b32_e32 v2, v10

61 v_mov_b32_e32 v3, v11

62 v_mov_b32_e32 v4, v12

63 v_mov_b32_e32 v5, v13

64 v_readlane_b32 s0, v14, 0

65 v_readlane_b32 s1, v15, 0

66 v_readlane_b32 s2, v16, 0

67 v_readlane_b32 s3, v17, 0

68 v_readlane_b32 s4, v18, 0

69 v_readlane_b32 s5, v19, 0

70 s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)

71 s_and_saveexec_b64 s[0:1], vcc

72 s_branch RET

Figure 5.3: Continued listing from Figure 5.2b of the instrumented assembly program.
The program finishes saving registers, increments an atomic stored in memory on line 56,
and returns to the original program on line 72.
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calls, whereas NVBIT abstracts all of this into a single source file.

5.1.2 Memory Tracing

A memory trace is a sequence of addresses accessed by a program. A memory trace can

be used for cache simulators, architecture design, and for getting a sense of the structure

of a program’s memory accesses. To obtain a memory trace for a single instruction, we

rewrite the binary to increment an atomic as before, but we now use this atomic as an

index into a buffer which stores a memory address. The binary is examined to determine

which register holds the address and that register’s contents are stored in the buffer

at the atomic index. The NVBIT version of this tool is very similar except that their

implementation is written in CUDA C++ and is able to record additional information

like the thread and block index that corresponds to every memory access.

5.1.2.1 Results

When we set an instrumentation point on the first store instruction and print addresses,

we find that each memory address accessed by this instruction is accessed equally likely.

This is expected for the program in Figure 5.1. Each thread only writes to a single element

of the array.

When using NVBIT for a similar program, we obtained the same results as expected.

In the NVBIT program, we were able to use any compiler features or additional data

structures that we wrote. In the memory trace example, it’s useful to have each thread

write some additional information like the thread and block index.

Since we used a handwritten assembly program, we found it difficult to add additional

information as easily. In our case, the thread index can be clobbered by a later operation,

overwriting its value which meant our instrumentation functions could not access it. We

could work around this by storing the thread index and other information as soon as the

kernel starts, but this method is not as flexible as just accessing the values in source code.

It’s also possible that the thread index is kept in a special register or accessible by other

means, but we were unable to determine any such capability on AMD’s hardware.
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5.2 Runtime Costs
In this section we summarize the costs of using our instrumentation tools in the two

examples above. We measure both the time taken to capture and rewrite the binary (the

cost on the host) and the time taken to execute the new binary (the cost on the device).

When possible we compare with a similar example that uses NVBIT.

APP KERNEL TIME % CHANGE TOTAL TIME % CHANGE

HIPTRACER vectoradd 0.0113 ms – 302 ms –

w/ INSTR_COUNT 0.197 ms 1643% 1014 ms 235.76%

w/ MEMTRACE 0.208 ms 1740% 1024 ms 239.07%

NVBIT vectoradd 0.0064 ms – 182 ms –

w/ INSTR_COUNT – – 341 ms 87.36%

w/ MEMTRACE – – 352 ms 93.41%

Table 5.1: Table of kernel execution times and total execution times when using instru-
mentation tools. NVIDIA profiling tools cannot be run with NVBIT, so it’s not possible
to see kernel execution times in those cases.

5.2.1 Rewriting Cost

In Table 5.2 we show the increase in total execution time for both our application and

an application instrumented with NVBIT. We attempted to use as similar an application

as possible. The runtime cost can be used to estimate the rewriting cost. Since it’s

not possible to isolate the rewriting portion of NVBIT’s execution, this is our only way

to measure their rewriting time. Note that we have a more significant increase in total

execution time than NVBIT, increasing the total runtime by 235% for instruction counting

instead of only 87%. We can see that the majority of this cost must be from rewriting

since the new kernel execution time is only 0.2 ms. This is because we save rewritten

binaries to disk and then have to load them again when they’re launched whereas NVBIT

performs all of its rewriting in memory.
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5.2.2 Kernel Execution Cost

We were also able to measure the impact on kernel execution for our binaries. This wasn’t

possible for NVBIT since they prevent multiple profiling tools from working together. But

on AMD’s GPUs, we were still able to profile the instrumented kernel as well. We found

that before instrumentation, the kernel ran in 0.0113 ms but after adding the instruction

count tool it was 0.197 ms (and 0.208 ms with memory tracing). We believe this increase

is due to the introduction of the s_branch and s_wait instructions. These operations

will disrupt the optimizations performed by the compiler and will have a large impact on

performance. We’re aren’t able to measure how NVBIT affects performance in this way,

but we speculate that it is not as significant since as part of the driver, they’re able to

call the compiler if necessary which should produce more optimal code.

5.3 Future Tools
In this section we describe potential tools that can be built as extensions of our existing

tools.

5.3.1 Measuring Coalescing of Loads & Stores

From a memory trace with thread and block index information, we can determine which

loads and stores are from the same thread group. We can then examine these addresses

to determine if the loads and stores are able to coalesce. Coalescing refers to memory

accesses that can be combined because they lie in the same cache line sector as another

access. Rather than issuing two loads for the data, the hardware can determine that they

can be combined, reducing the bandwidth required. This tool can be implemented entirely

as a script that scans the memory trace, or it can be implemented as an instrumentation

tool itself, examining the addresses at runtime. The most challenging aspect of this is

simply ensuring that the coalescing rules are correct.

When bank conflicts are reported, it could be helpful to add some additional debugging

information to the results, so that a user can see which source lines in their program

don’t coalesce very well. This is achievable by interpreting the debug format of the GPU

binaries. This is an involved engineering task since the format is DWARF, but it is
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achievable with some additional effort.

5.3.2 Detecting Bank Conflicts

Bank conflicts can be detected in a manner similar to coalescing. A memory trace is

collected and a script can run to inspect the memory addresses for bank conflicts. The

most challenging aspect of writing such a tool is correctly detecting the conflicts. Each

memory address is assigned one of 32 different memory banks. A bank conflict occurs

when a thread group executes a memory access instruction, and two memory addresses

correspond to the same bank. When this occurs, the memory loads or stores have to be

serialized, increasing the cost of the memory instruction. We can again use a script to

interpret the memory trace results and check for bank conflicts. It is again potentially

useful to report these issues at runtime with additional debugging information. It can be

difficult for a programmer to determine which of their memory instructions actually has

bank conflicts, even if they are aware that the kernel has them frequently.

5.3.3 Cache Reuse Distance

By again interpreting the results of the memory trace, we can compute the average cache

reuse distance or the average distance between usage of data in the same cache line. We

simply need to count the number of accesses between any two accesses to the same cache

line. This information can again be obtained by running a script over the memory trace.

An entry is created for every cache line and a running average of the number of accesses

can be updated as the script iterates over memory accesses in the memory trace.
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Chapter 6

Insights & Evaluation

We now attempt to evaluate our system in comparison with other, similar systems, such

as NVBIT. We discuss the shortcomings of our design and note what design decisions led

to these shortcomings. We then make recommendations for fixing these issues in future

work and note areas where our system can be improved through additional engineering

effort. We will compare and evaluate overall capabilities, shortcomings, the programming

model for inserting instrumentation, and the potential for future applications. We will

also evaluate the potential performance implications of our design decisions.

6.1 Capabilities & Shortcomings
Both hiptracer and NVBIT have similar potential for instrumenting binaries. Any addi-

tional instructions that a programmer would like to be added can be. But in NVBIT and

PIN’s case, the programmer doesn’t have to know anything about the underlying ISA in

order to make an addition. They just write a CUDA or C function that will get “inserted”

at a certain instruction. In our case, the programmer does have to know AMD’s RDNA

assembly language to capably use the system because our interface only allows adding the

instructions directly. It’s possible for us to reach the same level of abstraction as NVBIT

and PIN, but it requires additional understanding of compiling “remote” (not inlined)

device functions for AMD’s architecture. We struggled to manage the complexity of all of

the features that must be considered to make this workflow possible. It’s not clear what

‘setup’ has to be done before a function can be called. NVIDIA has complete understand-
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ing of what goes into one compiling these device functions, and since they’re operating

inside the driver, they have access to any information they might need to perform this

setup. And in some cases, they would know what parts of setup aren’t required to insert

the function into the instrumented program. This is ultimately a major shortcoming of

our approach. Since we can only obtain information that is output by compiler tools or

able to be reverse-engineered, we don’t have the same ability to easily insert a function

anywhere. But this doesn’t mean we can’t insert them. It just requires a lot of effort

to understand each feature, when it’s needed, when it’s not, and exactly how it works.

This information has to be discovered through trial and error and through instrumenting

a large variety of programs that utilize all of the hardware’s features and expose any

oddities of the instruction set.

Our system has a few capabilities that NVBIT lacks entirely. Since our system started

as a way to capture and replay kernels, we have maintained that capability throughout

the process of implementing binary instrumentation. This means that all the information

needed to replay a kernel can be saved to disk. NVBIT and other tools don’t look at

the problem this way, so they don’t provide this sort of capability. For CPU tools, it’s

unnecessary as the binary already exists as a single file. But for GPU programs it can be

valuable to see exactly which kernels were launched and what their arguments were. Then

this subset of the binary can be replayed exactly as it was originally. This can be very

valuable for debugging, program analysis, and profiling because you can get a consistent

run to judge a program’s performance by. We think that a lot of value exists from looking

at GPU programs this way, even without any sort of instrumentation added.

Another shortcoming of our work is its overall functionality at this point. We are

unable to instrument any program outside of very simple examples due to bugs and

misunderstandings of the assembly. We’ve attempted to resolve these issues the best that

we can and have coordinated with AMD to better understand the ISA, but the level of

complexity is high. We believe an issue is the modification of kernel descriptors to increase

the number of registers being used in a kernel launch. Checking the kernel descriptor is

not straightforward, and there’s no way to confirm the resulting descriptor is still valid
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when the kernel is launched. There is technical documentation available, but it’s dense

and difficult to understand. But overall, we believe that these issues can be resolved

through more thorough reverse-engineering of the GPU assembly programs.

6.2 Programming Model
Our programming model is similar to tools like NVBIT and PIN, but we lack an abstrac-

tion over the architecture-specific details. We require the programmer to either write

assembly or use the output of the compiler themselves, and we require them to know the

size and contents of instructions. We offload some of this responsibility to DynInst, but

the programmer is still expected to keep track of a great deal.

NVBIT avoids this problem by abstracting away their binary ISA, SASS, and by

allowing users to directly use compiled device functions. In NVBIT’s case, the device

function is compiled with the CPU code for instrumentation. Then the driver can see the

code in the same executable, and combine it with the program to be instrumented. We

could support a similar programming model with additional information about how these

device functions work on AMD’s architecture, but it will never be quite as easy since we

work external to the driver and don’t have the same information available. For example,

if a compiled instrumentation function requires a stack, then we’ll need to modify the

original program to use a stack. The driver can easily allocate this stack and know its

memory address, but we would have to allocate something separately or depend upon it

already being allocated (and then we would need to know the memory address).

6.3 Extendability
Since our program operates without driver support, it is easier to extend the capabili-

ties. Everything is freely modifiable and external to the packages produced by others.

NVBIT and PIN support writing additional tools using their API, but we also support

the expansion of this API with additional features.

Since we use LD_PRELOAD to implement our system, any of the driver functions can be

redirected with the same mechanism. If we wanted to enable instrumentation only for

a very specific launch, or only if a certain condition is triggered, this is a lot easier to
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implement in our system. NVBIT supports enabling instrumentation on specific launches

by exposing a callback that is called before and after every launch, but they can’t support

this for every single GPU driver function like we can.

The most obvious way to extend functionality is the same for both systems—the cre-

ation of additional instrumentation tools. We discuss our tools in Chapter 5 and propose

some tools that could be implemented in the future, such as detecting coalescence and

bank conflicts—tools that would be very specific to GPU applications. Like NVBIT and

PIN, we want to support the creation of additional tools like this. But as we discussed in

Section 6.2, our programming model does not directly support compiled device functions.

A lot of additional work has to be done by the programmer to manipulate a compiled

program into a suitable form for being an instrumentation function.

6.4 Performance Implications
Our design also has different performance implications than PIN and NVBIT. In Chap-

ter 5, we conducted some simple experiments on overall impact of rewriting on the pro-

gram’s execution time. We found that compared to NVBIT, we add significantly more

time to execution. This is because we save a copy of the binary file to disk and have the

driver load it from disk. Since we are not part of the driver, we have use the hipModule

functions to load the binary even though we are able to make all of our modifications in

memory. This implies that we will always have a higher one-time cost for modification

than NVBIT or PIN. It’s possible that an alternative design that does not use these

functions and instead finds some other mechanism to load the binary is faster.

In terms of an instrumented kernel’s performance, we also will have more of an impact

on the original program than NVBIT. This is due to a quirk of AMD’s ISA, the s_wait

instructions. These instructions tell the system to wait for a certain number of memory

operations to complete before resuming execution. The compiler is very aggressive about

this form of optimization in AMD’s kernels since it allows a lot of work to be pipelined

while long-running memory operations finish completion. When we add instrumentation,

we have to ensure that the previous vector memory instructions have completed before
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we overwrite their registers. This means we always have to introduce an s_wait that

has to wait for all outstanding memory operations to complete. NVBIT does not have to

perform any such operation, so we always have to pay a higher price when instrumentation

is performed. Also, if the programmer is trying to measure the impact of placing s_wait

instructions in a certain location or modify the number of operations to wait, they won’t

see any change in an instrumented binary. Working around this issue would require

implementing an algorithm for determining the ideal placement of an additional s_wait

that waits for as few operations as possible.

Overall we feel that many of our shortcomings can be worked around, but there are

fundamental issues to creating a tool like this outside of the driver, and we believe that

the impact can be most seen in performance and in the increased effort in engineering

when some information is unavailable.
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Chapter 7

Conclusion and Future Work

Through the previous chapters we have shown that a system for capturing and modifying

GPU activity can be completely implemented without driver support from GPU vendors.

We have shown that these tools are functional, that the method of capturing and replaying

binaries is sensible, and that rewriting and thus instrumenting these binaries is all feasible

within these restrictions. We have compared the system we implemented with other

systems that accomplish the same goals without the same restrictions and found that

while our tools fall short in a myriad of ways, these shortcomings are mostly addressable.

In some cases the problem needs to worked around, while in other cases small features

which are useful for all users need to provided. In this section, we’ll discuss the potential

of future work, and talk about what needs to be fixed in order to make further progress.

We’ll then close with some final thoughts on our system.

7.1 Next Steps
Various shortcomings of our system are already discussed in Chapter 6. We believe the

most helpful first step in addressing these shortcomings is some mechanism for interacting

with kernel descriptors and determining whether they are being correctly modified for

kernels with more registers than our simple examples. These more complex kernels will

also employ additional hardware features that will be useful for stressing the system’s

functionality.

After a more thorough set of kernels is supported, the next step is simplifying the
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programming model for adding an instrumentation function. As we mentioned, we require

the programmer to specify the function as compiled assembly code, which does not make

adding new functions easy. Writing assembly or modifying the assembly of a compiled

program by hand is incredibly error-prone. To accomplish this, a better understanding

of AMD’s process for using remotely compiled device functions is required. Reverse-

engineering compiled binaries to determine which features have to be set up and the

proper process for setting them up is required. Many of these features are described

in AMD’s official documentation, but it’s difficult to understand how they should be

accounted for in an instrumentation system.

Once any kernel written in C can be used as an instrumentation function, the pos-

sibilities for further instrumentation tools become numerous. We mentioned detecting

coalescence and bank conflicts—this information can be combined with debugging infor-

mation to give the programmer specific line numbers of bank conflicts. It may also be

useful to instrument other GPU-specific constructs like shared memory usage.

Visualizing memory access patterns or the usage of resources may also be valuable.

Since a memory trace can produce a list of all memory accesses, this information could be

visualized in a grid and used to determine if memory access patterns are ideal or whether

resources are scattered across the memory space.

We believe that these tools can be combined in rich and interesting ways to answer

specific questions about GPU programs. While a traditional profiler offers a coarse view

of the entire system, these sorts of instrumentation tools can be much more fine-grained,

allowing a programmer to measure only specific threads or thread groups and look for

very specific patterns.

The capture functionality of our system can also be built upon. By using a virtual

memory system, any kernel should be able to be captured and replayed. At some point

this feature should be released by AMD, but it’s also possible to implement a virtual

memory system yourself using the lower level constructs available in AMD’s HSA. We

believe this has significant value for debugging and profiling tasks since it allows a perfect

reproduction of some subset of GPU work. As systems become more heterogeneous, it
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will be valuable to have a representation of ‘just’ the GPU work, so the whole program

doesn’t have to be profiled together.

7.2 Closing Thoughts
Regardless of whether others continue to build upon this system, we believe that it proves

that capturing, modifying, replaying and instrumenting binaries is all possible at the user

level. No kernel or driver support is needed. There may be additional challenges, and the

effort required to implement the same functionality may be increased. But programmers

have a lot more power to inspect the performance of a GPU system than they may think.

They’re less dependent on hardware manufacturers than they may believe. Powerful tools

that measure all kinds of detailed information about the system can be created. It may

require a lot of reverse-engineering and tinkering, but it is possible, and these tools can

be immensely valuable. We hope to see others build off this work either directly or by

creating their own instrumentation tools for their system in the future and hope that the

lessons we learned will be valuable to their efforts.
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