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ARTICLE

Bias free multiobjective active learning
for materials design and discovery
Kevin Maik Jablonka 1, Giriprasad Melpatti Jothiappan2, Shefang Wang2, Berend Smit 1✉ & Brian Yoo 2✉

The design rules for materials are clear for applications with a single objective. For most

applications, however, there are often multiple, sometimes competing objectives where there

is no single best material and the design rules change to finding the set of Pareto optimal

materials. In this work, we leverage an active learning algorithm that directly uses the Pareto

dominance relation to compute the set of Pareto optimal materials with desirable accuracy.

We apply our algorithm to de novo polymer design with a prohibitively large search space.

Using molecular simulations, we compute key descriptors for dispersant applications and

drastically reduce the number of materials that need to be evaluated to reconstruct the

Pareto front with a desired confidence. This work showcases how simulation and machine

learning techniques can be coupled to discover materials within a design space that would be

intractable using conventional screening approaches.
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The holy grail of material science is to find the optimal
material for a given application. Finding the optimal
material requires a metric to rank the materials. In case we

have a single objective, our aim is clearly defined: we evaluate the
performance indicator of the materials with respect to this
objective and we can rank our materials. Developing efficient
strategies to find such an optimum with a minimal number of
experiments is an active area of research. In many practical
applications, scientists and engineers are often faced with the
challenge of having to simultaneously optimize multiple objec-
tives. Optimizing one objective alone may come at the cost of
penalizing others1. For example, in drug discovery, scientists have
to balance potency or activity with toxicities and solubility; or in
the field of chemical process design, engineers have to optimize
yields for several process units yet sacrifice, say, the energy con-
sumption. Likewise, in the field of material science, desirable
material properties can be interdependent or even inversely
related. For example, one would like a material that is both strong
and ductile, and as these are inversely correlated, it is challenging
to synthesize new materials that satisfy both criteria at the same
time2. In these cases, there is no unique way to rank the materials.

If one has multiple objectives, a practical solution is to combine the
different performance indicators into a new overall performance
indicator. However, unless such an overall performance indicator is a
unique, well-defined function of different performance indicators
(e.g., costs), the arbitrary combination of performance parameters
obscures the true nature of the optimization problem; there simply is
no material that simultaneously optimizes all target properties. No
single optimum is generally preferred over all the others; hence, the
most valuable information any search in the design space can give is
the set of all possible materials for which none of the performance
indicators can be improved without degrading some of the other
indicators. In statistical terms, these materials are referred to as the set
of all Pareto-optimal solutions (i.e., the Pareto front). In this study,
we address the question of how to efficiently search for this set of
materials and with confidence to not discard a good material. Such a
methodology is particularly important if, because of limited resour-
ces, it is difficult to evaluate an unlimited number of materials.

Recently, there has been quite some research effort to use
machine learning for the design and discovery of new materials3–7.
A naive approach would be to train a machine learning (surrogate)
model to make predictions for all materials in the design space and
then use these predictions to compute the Pareto front. However,
from a practical point of view, such an approach is not so efficient,
as it is not clear how to choose a training set that makes the model
confident in the relevant regions of our design space. A random, or
even diverse set, will probably contain more points than we actu-
ally need and does not consider that we do not need the same
accuracy in all parts of our design space. The question we therefore
need to answer is how we can efficiently train this model to make
confident predictions in the relevant regions of our design space.
An appealing way to do this is active learning8. Here we initialize a
model with a small sample of our design space and then iteratively
add labels, i.e., measurements or simulation results, to the training
set where the model needs them most. This allows us to efficiently
build a model that is able to solve the question of what materials
are Pareto optimal and which ones we should discard for further
investigation.

It is instructive to compare this approach with Bayesian
optimization9–14. In such an optimization, one would like to
know the next best measurement by typically (and implicitly)
assuming that the current evaluation will be the final evaluation15.
Then, we can use an acquisition function to propose the next best
measurement based on the predictions of a machine learning
model. This best measurement can then be added to the training
set and in this way one can selectively improve the predictions of

the model in a potentially promising part of design space.
However, most, if not all, of these optimization techniques rely on
the introduction of a total order in the search space with which
the materials are ranked in terms of performance. This biases the
search (or introduces other technical difficulties, which we discuss
in Supplementary Note 1). In this context, it is important to
realize that, mathematically speaking, Pareto dominance only
defines a partial order in our design space. This means we can
only say if a material is Pareto dominating or not, but we cannot
directly compare them; hence, the introduction of a total order is
nothing more than a (subjective) formula on how to compare
apples and pears16.

In this study, we show how to recover without such bias, but
with confidence, a prediction of the Pareto front in the context of
polymers discovery. The rational design and discovery of poly-
mers has been a longstanding challenge in the scientific com-
munity due to its combinatorial chemical and morphological
complexity, which also requires the consideration of multiple
spatiotemporal scales17–19. In our approach, we use machine
learning to predict the next best experiments to systematically
reduce the uncertainty of our prediction of the Pareto front until
all polymers within our design space can be confidently classified.
To reach this goal, we use a modified implementation of the ϵ-
PAL algorithm introduced by Zuluaga et al.20,21, which iteratively
reduces the effective design space by discarding those polymers
from which we know, with confidence from our model predic-
tions (or measurements), that they are Pareto-dominated by
another polymer. To make progress in this search, we evaluate the
polymer with the highest dimensionless uncertainty from the set
of possible polymer candidates, which our model predicts to be
near or at the Pareto optimality. The search terminates when all
points are classified as Pareto efficient or discarded. Overall, this
method has some additional advantages that can be important for
materials design and discovery applications. For example, we
show how we can tune the granularity of the approximation to
the Pareto front in every objective and, in this way, trade off
efficiency with accuracy. Moreover, conventional active learning
methods often require complete data sets, whereas in most
practical applications we are often faced with a situation where we
have a lot of data for one property and much less for another. Our
method can deal by construction, with partially missing data in
the objective functions, i.e., missing one property measurements
for some materials, and also can take into account noise in the
measurements. Therefore, given its broad applicability, we
anticipate that the same workflow will accelerate the design
process in the lab.

Results
The polymers in our study are representative of dispersants that
are typically used in solid suspension systems to prevent the
flocculation of suspended particles, e.g., as means to ensure the
color strength of pigments in coatings applications22. Finding the
optimal polymer for a dispersant-based application is a typical
example of a multiobjective search. One would like to obtain a
polymer that has optimal adhesion strength to the surface of the
particles that need to be suspended. Once on the surface, the
polymers need to repel the other particles and finally, one needs
to ensure that the viscosity of the solution ensures kinetic
stability23. Interestingly, some of these criteria are in competition
with each other. For instance, we can imagine that certain
monomer types will enhance both the binding to the surface and
the attraction between the polymers. In this case, there is no
unique solution and we have to trade binding with the surface
with the repulsion between the polymers. This is a general
observation in many multiobjective problems. We will often find
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natural, completely unavoidable competing goals such as the
strength-ductility trade-off.

In this work, we mimic the design of our dispersant using a
coarse-grained model (see Fig. 1). Our model represents a typical
linear copolymer that is often used as a dispersant. In this coarse-
grained model, we map monomers with different interactions with
the surface and the solvent to different beads, which translates, in
our case, to a design space containing more than 53 million
possible sequences of polymer beads (see Supplementary Note 2).
For a given hypothetical dispersant, we use molecular simulation
techniques to evaluate our three (“experimental”) key perfor-
mance indicators. Although we carry out the synthesis and
experiments in silico, the number of possible dispersants and the
required computational time to evaluate the performance is too
large for a brute-force screening of all 53 million dispersants of
our coarse-grained polymer genome24. Therefore, also for this in
silico example, we are limited by our resources and we aim to
obtain our set of Pareto-optimal materials as efficiently as possible.

Dispersants design. The model polymers investigated in this
work are representative of dispersants used in solid suspension
systems. That is, each bead in our coarse-grained simulation
represents a monomer in a copolymer (Fig. 1). In practice, dis-
persant performance can be evaluated based on several funda-
mental driving forces. First, the adhesion strength of the polymer
onto a suspended particle surface; second, the steric stability of
the polymer, i.e., the ability to help repel suspended particles
from one another; finally, the viscosity of the polymer solution
which is associated with the kinetic stability of the system23,25.
To characterize such driving forces, we calculate the following
properties (Fig. 2) using coarse-grained dissipative particle
dynamics simulations26: (i) the adsorption free energy (ΔGads)
onto a model surface, quantifying the adhesive strength to the
surface; (ii) the dimer free energy barrier (ΔGrep) between two of

the same polymers, as a metric for the repulsion between the
polymers; and finally (iii) the radius of gyration (Rg), a molecular
property commonly associated with the polymer viscosity27,28,
and which can be experimentally determined using small-angle
X-ray scattering29.

The main objective of this study is to identify polymer
sequences that optimize all three of these molecular properties
from a sequence design space comprising 4 possible monomer
types, with the number of monomers for each type ranging from
4 to 12.

We initially sample our polymer design space (Fig. 3), i.e., the
possible arrangements of monomers, by performing full factorial
experimental design on the monomer types, where each monomer
type contains a selection of monomer counts. This ensures that we
enumerate through all possible combinations of available monomer
counts and types (see “Methods”). Compared to sampling from the
latent space of generative models such as variational autoencoders,
this approach maintains a high level of model interpretability and
does not require a prior database of structures, which are often used
to train autoencoders. Monomer sequences are generated in
random order based on these design points. We then explore the
space sampled with design of experiments using our active learning
algorithm to find the Pareto-optimal polymers. An overview of our
workflow is illustrated in Fig. 1.

Pareto active learning. In this work, we are interested in not only
efficiently, but confidently, identifying an approximation of the
Pareto front. To achieve this, we need two ingredients: first, a way
to discard points or to classify them as Pareto optimal, and sec-
ond, a way to propose the next best sample(s) to evaluate. Our
modified version of the ϵ-PAL algorithm20,21 addresses these
matters by using the uncertainty estimate (σ) of a Gaussian
process regression surrogate model to construct hyperrectangles
for a predicted material (Fig. 4).
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Fig. 1 Overview of the workflow. Using classical design of experiments (DoE), we enumerate representative samples in the design space of monomer
sequences, which we then explore in the active learning loop with the ϵ-PAL algorithm. For this algorithm, Gaussian process surrogate models provide us
with predicted means and standard deviations (SDs) that enable us to decide which designs we can confidently discard, classify as Pareto optimal, and
determine which simulation we should run next to maximally reduce the uncertainty for points near the Pareto front. Models that are trained over the
course of this process can reveal structure–property relationships and can be inverted using genetic algorithms to further explore the design space.
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Let us assume we have two objective functions. In Fig. 4, we
illustrate the working principle of the ϵ-PAL algorithm. We start
with a set of diverse experiments for which we measured the
objectives. Based on these experiments, we can train an initial
model, using features that are simple to compute and are intuitively
related to the chemistry of the polymers (solely based on the
monomer sequence), and can make predictions for all the polymers
that are indicated as black points. For each point, we construct
hyperrectangles, shown in Fig. 4a, around the mean μ (which comes
either from the model predictions or the measurement) with a
width that is proportional to the uncertainty σ (the SD of the
posterior) for the points we did not sample so far and the estimated
uncertainty of the measurement for the sampled points (the exact
width of the uncertainty hyperrectangles is also a function of the
hyperparameters and the iteration, see Supplementary Information
for details). The lower and upper limits of these hyperrectangles are
the respective pessimistic and optimistic predicted performance
estimates for all the objectives.

From the (ϵ)-Pareto dominance relation, we can identify the
points that can be discarded with confidence (gray in Fig. 4b) and
those of which are with high-probability Pareto optimal (colored
blue) as shown in Fig. 4b. If the pessimistic estimate for our

predicted material is greater than a tolerance (defined using the ϵ
hyperparameter) above the optimistic estimate for all other
materials, it will be part of the Pareto front. Our current estimate
of the Pareto front is then the (thick) blue line connecting the
blue points. In addition, we can make a simple estimate of the
accuracy of our current prediction of the Pareto front by
connecting the bottom left corners of hyperrectangles associated
with our current estimate of the front, which gives us the most
pessimistic front (lower blue line). The optimistic front is then
obtained by connecting the upper right corners. For the case of
multiobjective maximization using this algorithm, we can discard
materials with high certainty if the optimistic estimate of the
material is within some set tolerance (ϵ) below the pessimistic
estimate of any other material. We maintain the orange point, as
it cannot be discarded within our set uncertainty (see Fig. 4b).
Hence, we have a simple geometric construction that allows us to
classify whether a predicted material is Pareto optimal or whether
we can discard it with certainty.

After this classification, we can, with certainty, discard all
experiments of which the hyperrectangles are completely below
the most pessimistic front. This significantly reduces our design
space. In terms of Bayesian optimization, this can be thought of as
the exploitation step.

Following this classification, the next step is to determine the
next material to run experiments on. The next material to
characterize should be the one that reduces our uncertainty in
classifying points as Pareto optimal. For this, we assume that the
uncertainties are normalized by the predicted mean such that the
area of our hyperrectangles represents the relative error (i.e., we
use the coefficient of variation). We then simply improve the
information gain of our model the most if we reduce the
uncertainty of the largest rectangle among points presumed near
or at the Pareto front. In Fig. 4c, the biggest area corresponds to
the orange point and adding an extra point will improve the
accuracy of our model in that part of the Pareto front. As a result,
we obtain a more accurate estimate (see Fig. 4d). We can continue
this procedure by sampling the next largest hyperrectangle(s)
until our prediction of the Pareto front has reached the desired
accuracy. The model is then retrained using all sampled points,
including those that have been discarded.

It is interesting to note that all the points we discard are with
high probability not part of the ϵ-Pareto front. Hence, we do not
need to sample points from this region of design space even though
those points may contain the largest uncertainty regions out of the
entire set. Interestingly, by choosing the hyperparameters properly,
we can also obtain theoretical guarantees on the quality of the
Pareto front. That is, given a kernel of a predictive Gaussian process
regression (GPR) model and proper scaling parameters of the
hyperrectangles, ϵ will be the maximum error of our Pareto front
with probability δ (see Supplementary Note 10)20. Setting a larger
tolerance ϵ will speed up the classification of the design space but
increase the errors. In practice, it is reasonable to set ϵ to be larger
than the error of the experiment/simulation.

a

surface

∆Gads

b

∆Grep

c

Rg

Fig. 2 Schematic illustration of the polymer performance descriptors that we calculate using coarse-grained simulations. a ΔGads is the single-molecule
free energy of adsorption onto a model surface. b ΔGrep is the dimer repulsion energy. c Rg is the radius of gyration, an indicator of polymer viscosity.
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Fig. 3 Illustration of the DoE approach. The beads of our coarse-grained
model have different interactions with the solvent. The “[W]” bead
corresponds to a polymer in a good solvent, the “[R]” bead to a polymer in
a bad solvent, and the “[Ta]” and “[Tr]” beads to polymers in a theta
solvent. “[Tr]” and “[Ta]” differ from each other in their interaction with the
surface. For each DoE point, which specifies the composition of a polymer,
we sample five arrangements of monomers. This results in a design space
of 3125 polymers in total. Note that the polymers that we sampled had at
minimum 4 units of each monomer.
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Here we use this algorithm to efficiently choose which
simulations to run, although, in principle, one can apply the same
algorithm to efficiently choose the experiments—e.g., in self-driving
laboratories30 or in other related multiobjective materials discovery
problems, where we would like to recover the Pareto front within
some level of granularity ϵ.

For this study, we have performed brute-force simulations and
obtained property estimates for all of the design points generated
from our DoE approach so that we can evaluate the effectiveness
of the algorithm. This allows us to recover the true Pareto front
(in the space sampled with DoE) and compare it to our predicted
Pareto front obtained after each active learning cycle. Figure 5
presents the property estimates, Pareto-optimal points, and the
sampled points in property space.

A key metric for evaluating the quality of the Pareto front is the
so-called hypervolume indicator. This indicator measures the size of
the space enclosed by the Pareto front and a user-defined reference
point (in two dimensions, this would equate to the enclosed area),
and is commonly used to benchmark Bayesian optimization
algorithms. In general, a better design will always have a larger
hypervolume16. Using this indicator, we analyze how accurately and
rapidly our active learning approach recovers the true Pareto front.
In addition, we compare our approach with random sampling. It is
noteworthy that random sampling might seem like a naive
approach; however, it has been shown to be an efficient search
method, e.g., for outperforming grid search in many optimization
problems31. Hence, it is a relevant baseline.

Figure 6a illustrates the working principle and effectiveness of the
algorithm. It attempts to classify the polymers in the design space as
fast as possible into either an ϵ-accurate Pareto optimal or to a
discarded polymer. Each iteration corresponds to the (in silico)
synthesis of a new dispersant and subsequent evaluation of the three
key performance indicators: the adsorption free energy (ΔGads), the
dimer free energy barrier (ΔGrep), and the radius of gyration (Rg).
The data show that already after ten iterations the algorithm
confidently discards many polymers (orange region) and finds many
ϵ-accurate Pareto-optimal polymers (blue region). In Fig. 6b, we
compare the performance of the algorithm with random search and
use the hypervolume error—the relative error with respect to the
maximum hypervolume of the design space—to quantify the quality
of the estimated Pareto front. We can observe that ϵ-PAL achieves
the target error (ϵ= 0.01) with >89% fewer iterations compared to
random exploration of the design space (153 with our approach,
1421 with random search).

An extension of our approach is a case in which we have missing
data. Often in experimental data sets, data are missing for a property
that is more difficult to measure. In our case, the calculation of the
dimer repulsion energy requires significantly more computational
time than the other properties. Hence, it would be interesting to see
how such an algorithm performs if, say, 30% of the data is lacking for
one of the properties (i.e., one of the properties is immeasurable for
some of these materials). Figure 6b presents the performance of the
algorithm for when a third of the dimer repulsion energies are
missing. In this situation, using independent Gaussian processes for
each objective and running a subsequent experiment with a missing
datum would not improve model predictions for that property. The
idea is that we capture correlations between our various objectives by
means of coregionalized Gaussian process models32. These models
allow us to predict multiple objectives using a single surrogate
Gaussian process model and provide us better estimates for missing
objectives, if one (or more) of the objectives is missing while all other
are present for a given design point (see “Methods”).

Chemical insights. Interestingly, we can not only use our surrogate
models as part of the design loop to expedite the discovery process
but we can also obtain some understanding of structure–property
relationships.

We use the SHapley Additive exPlanations (SHAP) technique
to obtain chemical insights into what the models learned during
the discovery process. This method can reveal how the features
used by the model influence the predictions and how those
features interact with one another33. In our case, we use SHAP to
understand the structure–property relationships. In Fig. 7, we list
the five features that, according to our machine learning model,
are most important for every target in order of relevance.

Let us first focus on the radius of gyration (Fig. 7a). The most
important feature for the prediction of the radius of gyration is
the degree of polymerization, followed by the number of good
solvent segments ([W]), the number of bad solvent segments
([R]), the number of theta solvent beads ([Tr]), and the relative
entropy of the monomer sequence. From Flory’s scaling relation,
we know that the radius of gyration scales with the chain length
N: Rg ~Nν, where ν is the Flory exponent34. We find that our
model detects this direct proportionality between chain length
and the radius of gyration. This showcases that our model
captures theoretically consistent relationships during the active
learning process. More interestingly, we can see that the SHAP
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analysis on the last two features already highlights a key
difference between the theory and our model: our model provides
us with insights into what happens when we change the
composition (e.g., increase the ratio of [W] or [R]). For example,
if we increase the fraction of good solvent beads ([W]), we have a
higher radius of gyration, whereas the radius decreases if we

increase the number of bad solvent beads ([R]). Hence, our model
closely recovers our intuition and additionally, allows us to
quantitatively capture these effects.

We use the same machine learning model to predict the two
other key performance parameters—the interaction with the surface
and repulsion between the dispersants—and also use SHAP to
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Fig. 5 Representation of polymers in property space. Simulations have been performed on the entire experimental design, to determine the three key
performance indicators: the adsorption free energy (ΔGads), the dimer free energy barrier (ΔGrep), and the radius of gyration (Rg). Each gray point
corresponds to the performance of a unique polymer. Points that have been sampled or classified as ϵ-Pareto optimal by the ϵ-PAL algorithm are marked in
magenta and blue, respectively. Pareto-optimal points have also been projected on their respective 2D planes. The schematic drawings of the polymers
indicate that the Pareto-optimal materials in our design space have vastly different compositions, e.g., showing a large difference in the degree of
polymerization (see Supplementary Note 8).
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Fig. 6 Classified points and hypervolume error as a function of the number of iterations. a The ϵ-PAL algorithm classifies polymers after each learning
iteration with ϵi= 0.05 for every target and a coregionalized Gaussian process surrogate model. The Gaussian process model was initialized with
60 samples that were selected using a greedy farthest point algorithm within feature space. It is noteworthy that the y-axis is on a log scale. b Hypervolume
errors are determined as a function of iteration using the ϵ-PAL algorithm with ϵi= 0.01 and 0.1 for every target. A larger ϵi makes the algorithm much
more efficient but slightly degrades the final performance. For ϵi= 0.01, we intentionally leave out a third of the simulation results for ΔGrep from the entire
dataset. The method for obtaining improved predictions for missing measurements with coregionalized Gaussian process models is discussed in more
detail in Supplementary Note 7. Hypervolume error for random search with mean and SD error bands (bootstrapped with 100 random runs) is shown for
comparison. For the ϵ-PAL algorithm, we only consider the points that have been classified as ϵ-accurate Pareto optimal in the calculation of the
hypervolume (i.e., with small ϵ, the number of points in this set will be small in the first iterations, which can lead to larger hypervolume errors). All search
procedures were initialized using the same set of initial points, but vary substantially after only one iteration step due to the different hyperparameter
values for ϵ. It is noteworthy that the x-axis is on a log scale. Overall, the missing data increase the number of iterations that are needed to classify all
materials in the design space.
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extract the feature importance. Here we see that by increasing the
ratio of [W], we decrease the interaction with the surface but
increase the repulsion between the polymers. Interestingly, we find
that for the dimer repulsion energy, increasing the relative sequence
entropy of the monomers increases the repulsion between dimers.
This implies that if one plans to maximize the repulsion between
the polymers, one should increase the disorder of the arrangement
of the monomers, i.e., avoid blocks. Importantly, we also see that
the feature relevance varies between targets, highlighting why a
multiobjective search—in contrast to independent single objective
search—is pertinent when aiming to accelerate the multiobjective
materials discovery process.

Inverse design. To investigate whether our algorithm missed
potentially better performing polymers that we did not consider
in our experimental design, we invert the machine learning
models that were trained on-the-fly during the active learning
cycle. To do so, we use elitist genetic algorithms (GAs) to find
novel polymer structures that maximize the output of our models,
while biasing the generation of polymers to ones that are different
from the monomer sequences that we considered in the DoE (by
adding explicit novelty terms into the loss function, see Supple-
mentary Note 11). This exploits our machine learning model’s
ability to capture relevant regularities from the design space.

Figure 8 shows the property distribution of the best performing
polymers we found based on the output of the GA compared to
our original results. We find that independent of whether we bias
the GA towards exploration or exploitation, we cannot find
polymers that Pareto-dominate the points that we found using
our combination of the DoE and ϵ-PAL approaches.

Discussion
In materials design, one typically has to balance different objec-
tives and the proper weighting of these objectives is usually not
clear in the early design stages. This insight raises the need for a
method that can identify the Pareto-optimal points efficiently,
while not discarding interesting materials. Using key thermo-
dynamic descriptors derived from molecular simulations for a
large polymer design space, we show that our materials design
approach can be used to explore polymer genomes that would be
intractable using conventional screening methods. Our approach
finds the relevant polymers in a fraction of the evaluations that

are needed using traditional approaches and provides us with
predictive models and structure–property relationships on-the-
fly, while being robust to missing data. This showcases how the
coupling between data-driven and conventional materials design
approaches, such as simulations or experiments, can greatly
enhance the rate with which we discover or optimize materials,
while concurrently giving us insights into structure–property
relationships.

The vision behind our approach is that in a multiobjective
optimization task, the only rigorous result one can obtain is the
set of Pareto-optimal materials. Hence, one should focus on an
algorithm that systematically improves the accuracy of the esti-
mated Pareto front. Ranking the materials in a multiobjective
optimization task introduces, by definition, a bias and detailed
studies have been made to identify how such bias can impact the
optimization (see ref. 35 and Supplementary Note 1). However,
one can make a bias-free ranking of the experiments that improve
the accuracy of the Pareto front the most. This observation can be
translated into an ϵ-PAL machine learning algorithm and our
case study shows that significant gains in efficiency can be
achieved.

As multiobjective optimization is such a general problem, we
expect that this approach can be adapted to those cases in which
efficiency is essential.

Methods
Coarse-grained model. In our model, the polymer bead diameters are assumed to
be greater than the Kuhn length, i.e., polymers follow the ideal chain behavior. In
total, there are four different polymer bead types in addition to one solvent and two
surface bead types. Each bead type, [W]—“weakly attractive,” [R]—“repulsive,”
[Ta]—“theta attractive”, and [Tr]—“theta repulsive”, was created based on their
solvent [S] interaction. Bead types [Ta] and [Tr] are representative of beads for
homopolymers in a theta solvent, but differ based on their attractive or repulsive
interaction with the surface monolayer bead type [S2]. Bead type [R] is the most
adsorptive onto our model surface, whereas bead type [W] is the least attractive.
More details on the interaction parameters are provided in Supplementary Note 4.

Design of experiments. The first step in the workflow involves the generation of
polymers based on our experimental design space. To effectively sample from this
design space, we used a full factorial experimental design with the number of
factors equal to the number of bead types (4), the number of levels equal to the
number of possible bead count variations (5 possible: 4, 6, 8, 10, 12), and 5 unique
monomer sequences for each point. Although this is certainly not representative of
the entire sequence design space of our polymers, we assume for the purposes of
this work that sequence effects come secondary to monomer content. We find this
assumption to be a reasonable approximation as noted in Supplementary Note 3.

Fig. 7 Influence of the feature values on the predictions. SHAP summary plots for the models for our three objectives based on the models obtained after
running the ϵ-PAL algorithm in Fig. 6. a SHAP summary plot for the radius of gyration. b SHAP summary plot for the adsorption energy. c SHAP summary
plot for the dimer repulsion energies. We used all the sampled points from the run of the ϵ-PAL algorithm as background data for the SHAP analysis. Red
points correspond to a high feature value, whereas blue points correspond to low feature values. The width of the violin shown on the x-axis corresponds to
the density of the distribution of SHAP values and indicate how the features impact the model output. A negative SHAP value means that the specific
feature value decreases the predicted value, with respect to the baseline prediction. SHAP values were computed for a coregionalized model with a
Matérn-5/2 kernel and ϵ= 0.05.
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Overall, we obtain a total of 3125 unique linear polymer molecules represented by
their monomer sequence. Experimental design was created using pyDOE36.

Simulation protocol. All simulations were set up using Enhanced Monte Carlo
(EMC) version 9.4.437,38 and were run with Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) version 2018/03/1639. Monomer sequences
for coarse-grained polymers were directly ported into LAMMPS input files
using EMC.

Free energy calculations. Free energy calculations were performed using the
LAMMPS plugin provided in Software Suite for Advanced General Ensemble
Simulations version 0.8240. Steered molecular dynamics simulations41 were first
performed to generate initial configurations for each polymer–surface or
polymer–polymer center of mass separation distances of a given polymer26.
Umbrella sampling was subsequently performed and analyzed using the weighted
histogram analysis method42, to estimate both the adsorption-free energies of the
dispersants onto the model dispersion surface and the dimer-free energies of
dispersants.

Machine learning
Featurization. We calculated features such as the degree of polymerization, the
relative sequence entropy, the nature of the end groups (one-hot encoded), sum-
med interaction parameters, and the nature of clusters based on the monomer
sequence.

All features were z-score standardized using the mean and SD of the training set
(using the scikit-learn Python package43). More details can be found in
Supplementary Note 6.

Gaussian process regression surrogate models. Intrinsic coregionalizated Gaussian
process regression models (ICM)32 (of rank 1) were built using the GPy Python
library44 based on Matérn-5/2 kernels. In Supplementary Note 7, we show that
coregionalization improves the predictive performance in the low-data regime, i.e.,
the initial setting of the algorithm. The ICM models assume that the outputs are
scaled samples from the same GPR (rank 1) or weighted sum of n latent functions
(rank n). A higher rank is connected to more hyperparameters and typically makes
the model more difficult to optimize. We provide a performance comparison of
rank 1 and rank 2 models in Supplementary Note 7. Hyperparameter optimization
was performed with random restarts and in regular intervals as training points
were added. More details can be found in Supplementary Note 7. The predictive
performance of the models is illustrated in Supplementary Fig. 12.

Feature importance analysis. We used the SHAP technique marginalized over the
full DoE dataset (summarized with weighted k= 40 means-clustering) to calculate
model interpretations33 and the full DoE dataset to calculate SHAP values. For the
GPR surrogate models, we apply the “KernelExplainer” method. Model inter-
pretations for runs with different ϵ are qualitatively consistent, the plot shown in
the main text was computed for ϵ= 0.05, and a coregionalized model with Matérn-
5/2 kernel.

Pareto active learning. We implemented a modified version ϵ-PAL algorithm20 in
our Python package, PyePAL. Our algorithm differs from the original ϵ-PAL
algorithm by using the coefficient of variation as the uncertainty measure rather
than the predicted SDs. Moreover, our implementation does not assume that the
ranges (ri) of the objectives are known. That is, instead using ϵi ⋅ ri for the

computation of the hyperrectangles, we use ϵi ⋅ ∣μi∣ (see Supplementary Note 10).
PyePAL generalizes to an arbitrary number of dimensions as opposed to the ori-
ginal MATLAB code provided by Zuluaga et al.45 (limited to 2) and, by default, sets
the uncertainty of labeled points to the experimental uncertainty or the modeled
uncertainty. In addition to supporting standard and coregionalized Gaussian
processes surrogate models, our library interfaces with other popular modeling
techniques with uncertainty quantification such as quantile regression and neural-
tangent kernels. It also offers native support for missing data, e.g., when using
coregionalized Gaussian processes, support for both single point (as done in this
work) and batch sampling, and the option to exclude high variance points from the
classification stage.

Implementation details and hyperparameter settings in this work are provided
in Supplementary Note 10. Initial design points used to train the zeroth iteration
model were selected using greedy farthest point sampling in feature space46.
Hypervolume errors shown in the main text were calculated using the nadir point
as our reference point.

Our code makes use of the following Python packages: GPy44, jupyter47,
lightgbm48, matplotlib49, neural-tangent,50 nevergrad51, numba52, numpy53,
pandas54, scipy55, and scikit-learn43.

Inverting the GPR models. To invert the GPR model, we trained Gradient Boosted
Decision Tree surrogate models with reduced feature set (e.g., dropping the relative
entropy of the monomer sequence) on the predictions of the GPR models. An
elitist GA56 was then used to maximize the output of the model, while being
penalized for creating invalid polymer features, i.e., features that cannot be con-
verted to a valid monomer sequence using a backtracing algorithm or features that
are very similar to those already present in our dataset. More details can be found
in Supplementary Note 11.

Data availability
The input files for the molecular simulations and the analysis results of the simulations
are available on the Materials Cloud57 Archive (https://doi.org/10.24435/
materialscloud:8m-6d). Correspondence and requests for additional materials should be
addressed to brian.yoo@basf.com or berend.smit@epfl.ch.

Code availability
Code for the machine learning part (including the featurization and genetic algorithm) of
this study is available as part of the dispersant_screener Python package (archived on
Zenodo 10.5281/zenodo.4256868 and developed on GitHub github.com/byooooo/
dispersant_screening_PAL). A general-purpose implementation of the ϵ-PAL algorithm,
which can be used with other models such as quantile regression, is available as the
PyePAL package (archived on Zenodo 10.5281/zenodo.4209470 and developed on
GitHub github.com/kjappelbaum/pyepal).
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