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Summary

The goal of the present paper is to understand the impact of numerical schemes for
the reconstruction of data at cell faces in finite-volume methods, and to assess their
interaction with the quadrature rule used to compute the average over the cell vol-
ume. Here, third-, fifth- and seventh-order WENO-Z schemes are investigated. On a
problem with a smooth solution, the theoretical order of convergence rate for each
method is retrieved, and changing the order of the reconstruction at cell faces does
not impact the results, whereas for a shock-driven problem all the methods collapse
to first-order. Study of the decay of compressible homogeneous isotropic turbulence
reveals that using a high-order quadrature rule to compute the average over a finite-
volume cell does not improve the spectral accuracy and that all methods present
a second-order convergence rate. However the choice of the numerical method to
reconstruct data at cell faces is found to be critical to correctly capture turbulent
spectra. In the context of simulations with finite-volume methods of practical flows
encountered in engineering applications, it becomes apparent that an efficient strat-
egy is to perform the average integration with a low-order quadrature rule on a fine
mesh resolution, whereas high-order schemes should be used to reconstruct data at
cell faces.
KEYWORDS:
Turbulence, Compressible Flows, Shocks, Finite-VolumeMethods, High-OrderMethods,WENO,Numer-
ical Analysis

1 INTRODUCTION

There are many misconceptions in Computational Fluid Dynamics (CFD) pertaining to the accuracy of numerical methods on
finite meshes. Indeed, it is often assumed that the theoretical convergence rate of the numerical error of a scheme fully describes
the accuracy for a finite mesh (see the discussion in1). Therefore, one would assume that high-order methods reach a desired
solution faster than low-order methods because they would require fewer grid points.
In a previous work, Motheau and Wakefield2 investigated this subject in the context of finite-volume methods by performing

a fair (i.e. with consideration of computational cost) comparison between low (second-order) and high-order (fourth-order or
greater) schemes for a set of finite meshes up to what is required to resolve physical scales. It is emphasized that there are
a plethora of different numerical strategies to solve partial differential equations, but in the context of CFD, especially for
complicated applications encountered in engineering, finite-volume methods are often preferred because they are intrinsically
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2 Motheau and Wakefield

conservative, shock-capturing, and flexible enough to handle both unstructured and structured meshes. Further they are well-
suited to use in Adaptive Mesh Refinement (AMR) through re-fluxing across multi-grids to achieve conservation properties.
The study presented in2 shows that for a problem involving a smooth solution, the high-order method performs better than the

second-order ones and that the theoretical order of convergence rate is retrieved. However, when the solution contains a shock
all the methods collapse to a first-order convergence rate. In the context of the decay of compressible homogeneous isotropic
turbulence with shocklets, which is representative of the turbulent activity in a realistic compressible flow, the actual overall
convergence rate of the methods reduces to second-order. Furthermore, one of the main outcome of this work was to demonstrate
that in terms of turbulent spectra, all the numerical methods provide similar results and that virtually the same physical solution
can be obtained much faster by refining a simulation with the second-order method rather than running a coarse high-order
simulation.
It becomes clear that evaluating the accuracy of a numerical method for turbulent flows should also consider its spectral

dissipation and dispersion properties on meshes of interest in addition to its theoretical formal order of convergence. Moreover,
as mentioned in Motheau and Wakefield2, the theoretical order of convergence is often not proven for these methods as it is
the result of the combination of different numerical schemes together to perform different tasks. In the finite-volume context,
numerical integration is performed with two major steps. First, the physical state is reconstructed cell faces in order to evaluate
fluxes. Second, a quadrature rule is applied to compute the average at the cell center. The numerical properties of the scheme
employed for the reconstruction of data at cell faces may interact with the one employed for the quadrature rule used to compute
the average at cell center in complex ways.
In thework ofMotheau andWakefield2, two different numerical strategies were tested and compared: a second-order Godunov

method with PPM interpolation, as well as the fourth-order finite-volume WENO method proposed by3. The Godunov method
used to compute fluxes is indeed second-order, but in this work the reconstruction of data at cell faces is performed either with
fourth-order interpolation (as the original PPM method4) or by fifth-order WENO interpolation5. In the strategy of3, the same
fifth-order WENO scheme is employed to evaluate fluxes at faces, but a fourth-order quadrature rule is employed to compute
the integral over a cell.
The goal of the present paper is to understand the impact of numerical schemes for the reconstruction of data at cell faces and

to assess their interaction with the volume integration method. The present study takes advantage of the hybrid PPM/WENO
strategy that has been developed in2. Whereas the whole integration scheme is a second-order Godunov method with PPM
interpolation, the reconstruction of data at cell faces can be performed by any WENO scheme. Here, third-, fifth- and seventh-
order WENO-Z schemes are investigated. Note that instead of the original WENOmethod5, the WENO-Z variant6 is employed
because its superior performance and robustness in the context of compressible turbulent flows was demonstrated in2. Further-
more, in order to assess the influence of the volume integration rule, results are compared to the fourth-order finite-volume
method3 with fifth-order WENO-Z schemes for reconstruction at cell faces.
Three test cases of increasing complexity are investigated in the present paper. First, the convection of a smooth vortex

is considered, followed by the simulation of a classical shock-driven Shu-Osher problem. Finally, the decay of compressible
homogeneous isotropic turbulence (HIT) with shocklets is investigated. Results are consistent with the work of Motheau and
Wakefield2. On a problem with a smooth solution, the theoretical order of convergence rate for each method is obtained and
changing the accuracy of the reconstruction of data at the cell face does not impact the results. Again, for the Shu-Osher problem
all the methods collapse to first-order. The HIT problem shows interesting results; whereas all methods present a second-order
convergence rate for the physical data, analysis of the turbulent spectra reveals that the choice of a numerical scheme for the
reconstruction of data at cells has a significant strong impact on the spectra, and that it does not depend on the volume integration
quadrature rule.
Overall, the present study reveals that using a high-order method for the integration rule over a finite-volume cell does not

improve the spectral accuracy. The choice of the numerical method to reconstruct data at cell faces is however critical to correctly
capture turbulent spectra. Because high-order methods for the integration over a cell require a significant number of evaluations
of face data reconstruction, it becomes clear that an efficient strategy for finite-volume methods is to choose a low-order method
to perform the average integration over the cells on a fine mesh discretization, and that high-order accurate schemes should be
used to reconstruct data at cells face.
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2 NUMERICAL METHODS

The present study is performed with the PeleC code, which is a second-order AMR finite-volume solver for reacting and non-
reacting fluid simulations with complex geometry and support for Lagrangian spray particles. The simulations performed in the
present paper only use a fraction of the capability of the software, namely the Godunov-based hybrid PPM/WENO integration
procedure on a single level mesh grid. Note that PeleC is part of the Pele Suite of codes, which are publicly available and may
be freely downloaded1, and that all the test cases investigated in the present paper are available from the PeleC distribution and
can be reproduced. Also, the spectral and temporal analysis performed in section 3.3 can be reproduced with the tools provided
in the PeleAnalysis repository of the Pele Suite. Furthermore, in order to provide comparisons with a high-order finite-volume
integration scheme, the RNS code is also employed. RNS implements the Adaptive Multi-Level Spectral Deferred Correction
(AMLSDC) method, which is fourth-order in time7, as well as the fourth-order finite-volume WENO method3.
Whereas both codes were initially developed for the simulation of combustion problems and solve the multicomponent

reacting Navier-Stokes equations, only non-reacting problems with no specific mixture are investigated in the present study.
Consequently, both codes solve the same system of simplified equations, which is given by

)�
)t
+ ∇ ⋅ (�u) = 0, (1)

)�u
)t

+ ∇ ⋅ (�u⊗ u) + ∇p = ∇ ⋅ � , (2)
)�E
)t

+ ∇ ⋅ [(�E + p)u] = ∇ ⋅ (�∇T ) + ∇ ⋅ (� ⋅ u) , (3)
where � is the density, u is the velocity, p is the pressure, E = e + u ⋅ u∕2 is the total energy, T is the temperature and � is the
thermal conductivity. The viscous stress tensor is given by

� = �(∇u + (∇u)T ) + (& − 2
3
�)(∇ ⋅ u)I, (4)

where � and & are the shear and bulk viscosities.
The system is closed by an equation of state (EOS) that specifies p as a function of � and T . An ideal gas mixture for the EOS

is assumed:
p = �Tℜ, (5)

where ℜ is the specific gas constant. Here we set Cp and Cv the heat capacity at constant pressure and volume, respectively, to
follow an ideal gas law proportional to the ratio of the specific heats  so that equation (5) is equivalent to the following relation:

e =
p

 − 1
� (6)

where e is the specific internal energy and  is set to  = 1.4.
To keep the present paper as simple and concise as possible, the spatial and temporal integration schemes are not presented

here, but all the details can be found in the reference2 for the hybrid PPM/WENO method implemented in the PeleC code, as
well as3 and7 for the fourth-order finite-volume WENO method and the fourth-order AMLSDC implemented in the RNS code,
respectively.
The present paper investigates the reconstruction of data at cell faces with WENO-Z schemes with three different orders of

accuracy. Recall that for a given cell i, the principle of a WENOmethod is to provide a high-order approximation of the variable
q interpolated on the left and right side of a face, denoted q̂L

i+ 1
2

and q̂R
i− 1

2

. Thus, a (2r− 1)-th order polynomial approximation of
q̂i± 1

2
is constructed as a convex combination of interpolants yielded by varied stencils k of the values denoted q̂k

i± 1
2

:

q̂i± 1
2
=

r−1
∑

k=0
!kq̂

k
i± 1

2

(7)
where !k are chosen with the goal of selecting the smoothest such combination. Consequently, a third-order WENO scheme
will lead to k = 0, 1, 2, while a fifth- and a seventh-order scheme will lead to k = 0, 1, 2, 3 and k = 0, 1, 2, 3, 4, respectively.
In equation (7), !k are the non-linear weights balancing the contribution of each stencil, and the challenge is to find the best

values to capture shocks the most accurately while preserving the resolution of the spectrum of a solution. The weights !k are

1https://amrex-combustion.github.io/

https://amrex-combustion.github.io/
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defined as
!k =

�k
∑r−1
l=0 �l

, �k =
dk

(

�k + �
)a , (8)

where dk are the so-called optimal weights because they reconstruct the upstream (2r − 1)-th order central scheme, �k are the
smoothness indicators, �k are the un-normalized weights, and � is a parameter set to avoid a division by zero. The parameter a
controls the adaptation rate. In order to keep the present paper simple and the most concise as possible, the numerical expressions
of dk, �k and q̂k

i± 1
2

will not be reproduced here, but can be found in the following references:5 for the third- and fifth-order
schemes, and in8 for the seventh-order scheme. According to9, a large value of a leads to unnecessary dissipation in smooth
regions of the flow. In the present study, the parameter is set to a = 2 for all the test cases and � is set to � = 10−40, whatever
the order of accuracy of the WENO scheme.
A well-known issue with the original WENO method is that the smoothness indicators �k employed to compute the weights

!k fail to recover the maximum order of the scheme at critical points when the derivatives of flux function vanish. Borges et
al.6 propose a different approach to overcome the issues of the original WENO method by acting directly on the smoothness
indicator �k with a very simple formulation. The so-called WENO-Z method is given by

!(z)k =
�(z)k

∑2
i=0 �

(z)
i

, with �(z)k = dk

(

1 + �
�k + �

)a

, (9)

where � is the absolute value of the difference between �0 and �r−1, such that � = |�0−�1| for the third-order WENO-Z scheme,
and � = |�0 − �2| and � = |�0 − �3| for the fifth- and seventh-order schemes, respectively.

3 RESULTS

In this section, different order of accuracy of the WENO-Z reconstruction scheme at faces are implemented within the second-
order hybrid PPM/WENO method, and compared to the fourth-order finite-volume WENO method with fifth-order WENO-Z
reconstruction at faces edges. Table 1 summarizes the different combination of numerical schemes investigated in the present
study.

TABLE 1 Summary of the combination of numerical methods investigated for volume integration and data reconstruction at
faces.

Software Finite volume integration Face reconstruction

RNS 4th-order WENO 5th-order WENO-Z
PeleC 2nd-order PPM 3rd-order WENO-Z

5th-order WENO-Z
7th-order WENO-Z

Three different test cases are considered in this work:
• the convection of a smooth compressible vortex in a periodic domain is a simple, standard, and efficient test case to recover

and highlight the theoretical order of accuracy of a numerical method;
• the classic Shu-Osher problem, which represents the extreme opposite of the smooth vortex test case. The Shu-Osher

problem is very difficult to solve numerically, because a shock wave is propagating in an oscillating entropy field, and the
challenge is to capture the shock while resolving the phase and amplitude of the fluctuating entropy. As it will be shown,
all the methods perform correctly, but for all of them the rate of convergence collapses to first-order;
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• the decay of compressible homogeneous isotropic turbulence in the presence of eddy shocklets. This test case can be
viewed as a combination of the two previous test case, because it contains both shocks and discontinuities, as well
as smooth turbulence structures that lie in a large-bandwidth turbulent spectrum. More specifically, this test case is
representative of flows that are encountered in practical CFD applications (see10 for an example).

3.1 2D convection of a smooth compressible vortex
The following test case consists of the convection of a 2D compressible vortex in a periodic domain so as to accumulate numerical
errors from the discretization schemes. This test case exhibits a smooth solution and weak compressibility effects, which allows
numerical schemes to perform near their asymptotic limit11,2. Simulations are performed with increasing mesh resolution and
the time-step is computed based on the mesh resolution via a constraint on the CFL number, set to 0.7. At the end of a simulation,
convergence is measured using the 1-norm of the difference of the x-velocity between the final computed solution and the
initial solution, and is denoted "u.
The configuration is a single vortex superimposed on a uniform diagonal flow field along the x- and y-directions. The stream

function Ψ of the initial vortex is given by
Ψ = Γ exp

(

−r2

2R2v

)

, (10)

where r =
√

(

x − xv
)2 +

(

y − yv
)2 is the radial distance from the center of the vortex located at [xv, yv

] (the center of the
domain), while Γ and Rv are the vortex strength and radius, respectively. The velocity field is then defined as

u = u0 +
)Ψ
)y
, v = u0 −

)Ψ
)x
. (11)

The initial pressure field is expressed as

p (r) = pref exp

(

−

2

(

Γ
cRv

)2

exp
(

− r
2

R2v

)

)

, (12)

and the corresponding density field is given by
� (r) =

p (r)
Tref

, (13)
where Tref is assumed constant and  = 1.4.
The computational domain is a square of dimension L = 0.01 m. The reference temperature Tref and pressure pref are set to

300K and 101320 Pa, respectively. Parameters are set to Γ = 0.11m2/s andRv = 0.1L. The initial flow velocity is u0 = 100m/s.
In the present test case, only the Euler equations are solved; there is no diffusion.
The simulations are performed over a physical time of 5 ms, corresponding to 5 flow through times (FTT), in order to

accumulate numerical errors from the spatial discretization.
Results are shown in figure 1. The solid and dotted grey lines represent second- and fourth-order slopes, respectively. As

expected, because the solution is smooth, all the numerical methods show convergence at their maximum theoretical order of
accuracy. The fourth-order finite-volume method is indeed converging towards a fourth-order asymptotic limit, whereas the
hybrid PPM/WENO method is second-order. The present simulations show that the order of accuracy of the reconstruction of
data at face edges does not impact the overall accuracy of the method. Because the solution is smooth, numerical errors at edges
are very small and the errors are caused by the volume integration performed by the second-order PPM method.

3.2 Shock-driven test case: the Shu-Osher problem
The so-called Shu-Osher test case simulates the one-dimensional propagation of a normal shock wave interacting with a fluctu-
ating entropy wave, generating a flow field containing both small scale structures as well as discontinuities. The initial conditions
are given by:

(�, u, p) =

{

(3.857143, 2.629369, 10.3333) , if x ⩽ 1,
(1 + 0.2 sin (5x) , 0, 1) , otherwise. (14)

The length of the computational domain is x ∈ [0, 10] and the solution is advanced in time to t = 1.2. For all numerical methods
investigated, the mesh is progressively refined fromNx = 256 toNx = 2048. The convergence is measured using the 1-norm
of the difference in density between the final computed solution and a reference solution defined to be the solution computed
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O(2)	slope
O(4)	slope
2nd	order	PPM	/	WENO-Z	3
2nd	order	PPM	/	WENO-Z	5
2nd	order	PPM	/	WENO-Z	7
4th	order	FV	/	WENO-Z	5
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FIGURE 1 Convection of a vortex, evolution of the 1 norm of the error of the x−velocity for different mesh sizeNx.

with the fourth-order finite-volume WENO method and with a very fine meshNx = 32768. In all simulations the CFL number
is set to 0.5.
The density field at t = 1.2 computed with Nx = 256, 512, 1024, and 2048 is shown in figures 2 to 5, respectively. In

these figures, the black line is the reference solution, while the red circle, blue diamond and green square symbols represent
the solution computed with the second-order hybrid PPM/WENO method and with the reconstruction at face performed with
the third-, fifth- and seventh-order WENO-Z schemes, respectively (see legend in figure 2b). Note that the panels (a) and (b)
in figure 2, figure 3 and figure 4 present the full domain and an inset detailing selections of the domain, respectively, while
figure 5 shows only that selection of the domain. Note there is no relation between the symbols and the number of grid points.
Several symbols have been removed from the figures for clarity purposes.
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(a) Full domain

Reference	4th	order	FV	/	WENO-Z	5
2nd	order	PPM	/	WENO-Z	3
2nd	order	PPM	/	WENO-Z	5
2nd	order	PPM	/	WENO-Z	7
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(b) Zoom

FIGURE 2 Shu-Osher test case: profile of density forNx = 256.

As it can be seen in figure 2, for a coarse resolution of the mesh (Nx = 256) the accuracy of the reconstruction of the data
at edge faces is crucial, whereas the whole order of accuracy of the integration is theoretically second-order. The third-order
WENO-Z scheme performs poorly and totally miss the wave of density as well as the shock profile. Both fifth- and seventh-
order schemes are able to capture the overall correct shape of the wave, and the latter one provides a better estimation of the
amplitude. In the interest of clarity, the solution for this mesh size with the fourth-order finite volume method has been omitted
but can be found in our previous work2. It is emphasized that such a solution is similar to the one computed with the hybrid
PPM/WENO and the fifth-order WENO-Z scheme (blue curve in figure 2b).
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FIGURE 3 Shu-Osher test case: profile of density forNx = 512.
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FIGURE 4 Shu-Osher test case: profile of density forNx = 1024.

All methods, regardless of the order of accuracy with which values at cell faces are reconstructed, provide acceptable results
for a refinement of the mesh by a factor 2 (Nx = 512), as shown in figure 3. The third-order WENO-Z underestimates the
amplitudes of the wave and the shock, but the shape is consistent with the reference solution. Both fifth- and seventh-order
schemes better capture the oscillations trailing the shock, with an advantage to the seventh-order scheme as expected. As shown
in figure 4 and figure 5, the fifth- and seventh-orderWENO-Z schemes provide nearly identical results very close to the reference
solution and the third-order WENO-Z scheme underestimates slightly the amplitude of the wave. Interestingly, the third-order
scheme fails to recover the strong gradient located at x ≈ 4.25, even with such a fine resolution.
The evolution of the 1-norm of the error on the density (denoted "�) is depicted in figure 6, and the global convergence rate

computed with a best-fitting curve method is reported in table 2. Whereas rising the order of accuracy of the reconstruction
scheme at faces provides less numerical error, which is consistent with the analysis performed above, all the methods investigated
collapse to a first-order convergence rate.
Overall, the present study suggests that the theoretical second-order accuracy of the spatial integration method, which was

clearly demonstrated for a smooth solution in the previous section section 3.1, has a significantly smaller impact in the present
shock-containing case. It is shown here that the accuracy of the reconstruction of the data at cell faces is crucial for accuracy in
smooth regions, though this order of accuracy does not appear in the numerical analysis.
In the following section, a more realistic three-dimensional compressible turbulent flow is simulated to investigate the impact

of the numerical accuracy of the different numerical schemes, as well as their effective cost in terms of mesh resolution, when
both shocks and small turbulence structures interact in the same domain.
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FIGURE 5 Shu-Osher test case: profile of density forNx = 2048.
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Nx
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FIGURE 6 Shu-Osher test case: 1-norm of the error on the density.

TABLE 2 Shu-Osher test case: convergence rate of the 1-norm of the error on the density.

WENO-Z scheme 
(

��
)

3rd-order 0.90
5th-order 0.95
7th-order 0.99

3.3 Three-dimensional isotropic compressible turbulence decay
The present test case consists on the simulation of the decay of a compressible isotropic turbulent field with the presence of
eddy shocklets. Originally a physical study of turbulence in the work of Lee et al.12, this framework of simulations has been
employed in13,2 to study the properties of numerical schemes to capture turbulence spectra and the decay of physical quantities.
The simulation is controlled by two non-dimensional parameters: the turbulent Mach number

Mt,0 =

√

< u0 ⋅ u0 >
c0

(15)
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where c0 is the sound speed in the initial solution, and the Taylor-scale Reynolds number defined as
Re ,0 =

�0 0urms,0
�0

(16)
where

urms,0 =
√

< u0 ⋅ u0 >
3

,  0 =
2
k0
. (17)

The u0 term is a solenoidal velocity field constructed to satisfy the following relation

E (k) ∼ k4 exp
(

−2
(

k∕k0
)2
)

,
3u2rms,0
2

=
< u0 ⋅ u0 >

2
=

∞

∫
0

E (k) dk (18)

where k0 is the most energetic wavenumber and is set to k0 = 4 in the present study.
The study presented here is identical to the one in2. In order to allow weak shock waves to develop spontaneously from

the turbulent motion, the turbulent Mach and Reynolds numbers are set to Mt,0 = 0.6 and Re�,0 = 100, respectively. This
allows numerical convergence for relatively coarse mesh grids so as to keep the computational cost reasonable. OnceMt,0 and
Re ,0 are set, urms,0 can be deduced from equation (15) with the known sound speed, and the viscosity �0 can be deduced from
equation (16) and is held constant throughout the simulation. Moreover, a constant thermal conductivity is set according to

�0 =
�0Cp
Pr

(19)
where Cp is the specific heat capacity, set to Cp = 1.173 kJ/kg.K and the Prandtl number Pr is set to Pr = 0.71. Finally, the
initial temperature and pressure in the flow are set to T0 = 1200 K and p0 = 1 atm.
In the present study, an initial velocity field is generated on a grid of Nx = 512 and employed for all the simulations, which

are performed over a non-dimensional time set to t∕� = 4 where � =  0∕urms,0. Several mesh resolutions are investigated:
Nx = 64,Nx = 128,Nx = 256 andNx = 512, and the CFL number is kept constant at 0.5.
In order to assess the impact of the accuracy of numerical schemes for volume integration and face reconstruction, a reference

solution is generatedwith the very high-order code SMC14 that employs eighth-order accurate centered finite-difference schemes
for the spatial discretization, and a fourth-order Runge-Kutta algorithm for the time advancement. A convergence study for the
reference solution is presented in2. This reference solution will be depicted with a black solid line in the remainder of the paper.
Figure 7 presents the temporal evolution of the kinetic energy and the enstrophy from t = 0 to t∕� = 4. It can be seen that

significant compressibility effects are generated quickly after the beginning of the simulation, suggesting the generation of eddy
shocklets in the domain until t∕� ≈ 0.5. After t∕� ≈ 1, compressible shocks are no longer generated and they start to decay in a
monotone manner. Figure 8 presents the spectra taken at t∕� = 4 for the vorticity. In these figures, the circle symbol represents
the solution computed with the fourth-order finite-volume WENO method (RNS code), while the dotted, dashed and solid
colored lines represent the solutions computed with the second-order hybrid PPM/WENO method (PeleC code) with faces data
reconstructed with the third-, fifth- and seventh-order WENO-Z schemes, respectively. The red, blue, green and orange colors
represent simulations performed with Nx = 64, Nx = 128, Nx = 256 and Nx = 512, respectively. These figures contain a
significant number of curves. For clarity, the legend is recalled in figure 10 and the spectra for each mesh resolution are extracted
in separated panels in figure 9 for each mesh resolution. Note that the behavior of the numerical methods highlighted in figure 9
is virtually the same for the spectra of other physical quantities, not shown in the present paper but available in2 for a more
detailed analysis of the hybrid PPM/WENO strategy.
One of the most natural physical quantity to investigate when studying turbulence is the evolution of the kinetic energy.

As depicted in figure 7a, for a coarse resolution (Nx = 64) all the numerical methods over dissipate the kinetic energy over
time, but it can be see that for the second-order Godunov method, the third-order WENO-Z reconstruction scheme for faces
data introduces a severe dissipation. It is also interesting to note that for such coarse discretization, the fifth- and seventh-order
WENO-Z schemes are able to produce results close to the fourth-order finite-volume method, whereas the whole integration
scheme is theoretically second-order. When the mesh resolution is refined, virtually all the numerical methods collapse to the
reference solution, at the exception of the second-order PPMmethod with third-order reconstruction at faces, which still provide
significant extra diffusion forNx = 128.
It would be a mistake to only consider the kinetic energy as the main metric and to draw conclusions about the convergence

of the solution respect to the discretization size. Indeed, figure 7b reveals that capturing the correct evolution of the enstrophy is
challenging and that an acceptable solution is not reached below a mesh resolution ofNx = 256. The qualitative observation of
figure 7a and figure 7b can be misleading about the actual rate of convergence of the solution. In order to provide a quantitative
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FIGURE 7 Temporal evolution of the kinetic energy and enstrophy for simulations performed with different mesh resolution
and WENO-Z reconstruction methods. Legend is recalled in the text and in figure 10.
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FIGURE 8 Spectra of vorticity for simulations performed with different mesh resolution andWENO-Z reconstruction methods.
Legend is recalled in the text and in figure 10.

analysis, the relative error between solutions computed with the WENO-Z schemes and the 8th-order reference solution (SMC
code) are evaluated for the enstrophy and the kinetic energy at t∕� = 4, denoted �

⟨!i!i⟩
and �

⟨uiui⟩, respectively. The convergencerates of �
⟨!i!i⟩

and �
⟨uiui⟩ are gathered in table 3. It can be seen that all the numerical methods, whatever their theoretical

asymptotic order of accuracy, exhibit roughly a second-order rate of convergence. This is also confirmed by computing the
convergence rate of the 1-norm of the error on the velocity at t∕� = 4, denoted "u, with results gathered in table 4. The fourth-
order finite-volume WENO method, as well as the second-order hybrid PPM/WENO method with reconstruction at faces with
fifth- and seventh-order WENO-Z schemes exhibit an overall second-order rate of convergence. These results are consistent
with the analysis performed previously at 3.1 and 3.2. Indeed, in the present compressible homogeneous isotropic turbulence
test case the theoretical convergence rate, valid for smooth solutions, is not recovered because of the presence of shocklets that
introduce first-order errors in the solution. The more surprising result is the poor performance of the reconstruction at faces with
a third-order WENO-Z scheme.
The behavior of the numerical methods can also be observed by analyzing the spectra of the turbulence. It can be seen from

figure 8 and figure 9 that for coarse mesh resolutions (Nx = 64 and Nx = 128), all the numerical methods provide roughly
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FIGURE 9 Extracted panels of the spectra of vorticity in figure 8 for results computed with different mesh resolutions.
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FIGURE 10 Legend.

the same results, despite the third-order WENO-Z that brings more dissipation over the spectra. However, as long as the mesh
resolution is refined, each numerical method starts to exhibit a different behavior in the high frequency range. As shown in
figure 9c forNx = 256, reconstruction at faces with third- and fifth-order WENO schemes present an energy pile-up in the high-
frequencies. The seventh-order WENO scheme presents a better slope, closer to the reference solution. As shown in figure 9d,
such behavior is exacerbated for a fine mesh resolution (Nx = 512). Despite the finer mesh resolution, the third-order WENO-
Z scheme still starts to diverge at the wave number k ≈ 64, and because significant errors are introduced by this scheme in
the interfacial reconstruction, refinement of the mesh does not help to capture the spectra of the turbulence. The seventh-order
WENO-Z scheme performs the best, with a spectra very close to the reference solution. The fifth-orderWENO-Z scheme presents
an intermediate solution, and interestingly enough, it can be seen that the volume integration scheme does not impact on the
spectra. In other words, performing the volume integration over cells with a second-order Godunov method or a fourth-order
finite-volumeWENOmethod provide the same spectra. This suggests that in order to correctly capture the turbulent spectra, the
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crucial piece is the numerical method employed for the reconstruction at cell faces, not the quadrature method used for volume
integration.

TABLE 3 HIT test case: convergence rates of the relative error for the enstrophy and kinetic energy at t∕� = 4.

Estimated Order

Software Method Enstropy ⟨!i!i⟩ Kinetic Energy ⟨uiui⟩

RNS 4th-order / WENO-Z 5 2.26 2.7
PeleC Hybrid PPM/WENO-Z 3 2.24 1.8
PeleC Hybrid PPM/WENO-Z 5 2.29 2.27
PeleC Hybrid PPM/WENO-Z 7 2.21 2.35

TABLE 4 HIT test case: convergence rate of the 1-norm of the error on the velocity at t∕� = 4.

Software Method Estimated Order

RNS 4th-order / WENO-Z 5 2.22
PeleC Hybrid PPM/WENO-Z 3 1.43
PeleC Hybrid PPM/WENO-Z 5 2.05
PeleC Hybrid PPM/WENO-Z 7 1.98

Another aspect to take into account is the computational burden. As explained in2, the major advantage of the hybrid
PPM/WENO strategy is that a given similar solution can be achieved 200 times faster than if the costly fourth-order finite-
volume WENO method3 is employed. The main reason is that the hybrid PPM/WENO strategy only requires one WENO
evaluation by face, rather than the fourth-order finite-volume that require a significant number of WENO evaluations for each
point of the Gaussian quadrature rule. Indeed, as explained in2, it is evaluated that for three dimensions and for only one com-
ponent, achieving fourth-order accuracy requires 14 times more interpolation procedures by cell than with the PPM algorithm.
Some methods15,16,17 have been developed to avoid integration of flux over the cell face while maintaining high order accuracy
by implicit solutions for a polynomial interpolation within each cell. However, some of the methods mentioned are partially
implicit. In16 it is acknowledged that, for nonlinear fluxes, a great deal of time is spent solving these (local) problems. In17 a
global implicit solve is required. All of these methods would be interesting to implement and compare in a future study, however
it is out of scope of the present paper.
In Motheau and Wakefield2, only the fifth-order WENO-Z scheme was employed throughout the whole study. Here, the

computational cost for each variation of accuracy of the WENO-Z scheme is studied in the context of theNx = 64 case. Results
are reported in table 5. The computational cost of one WENO evaluation and the total computational time are reported in the
third and last columns respectively. The 3rd- and 5th-order WENO-Z scheme have a very similar cost, whereas the 7th-order
scheme is slightly more costly. The second-order hybrid PPM/WENO strategy is computationally inexpensive, making use of a
7th-order WENO-Z scheme attractive in the context of adaptive mesh refinement.
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TABLE 5 HIT computational time forNx = 64

WENO-Z scheme WENO evaluation time [s] Total CPU time [s]

3rd-order 0.078854 134.08
5th-order 0.087210 137.66
7th-order 0.10913 164.41

4 CONCLUSION

The present paper investigates the accuracy of numerical schemes in finite-volume methods. More specifically, the impact of
the third-, fifth- and seventh-order WENO-Z schemes for the reconstruction of data at cell faces has been investigated to assess
their interaction with the quadrature rules employed to compute the flux over a cell face.
The accuracy of numerical methods is sometimes evaluated on canonical problems that are not representative of practical

flows encountered in engineering applications. Other times, the theoretical order of convergence is viewed as the sole metric of
accuracy, but the dissipation, dispersion, and computation time for finite meshes are often neglected.
Three test cases of increasing complexity have been investigated in the present work. It has been shown that on a problem with

a smooth solution, the theoretical order of convergence for each method is retrieved and changing the accuracy of the scheme
for the reconstruction of data at cell faces does not significantly impact the results. Furthermore, it has been demonstrated that
for a shock-driven problem, all the methods collapse to first-order.
The temporal and spectral study of the decay of compressible homogeneous isotropic turbulence has revealed that using a

high-order quadrature rule to compute the average over a finite-volume cell does not improve the spectral accuracy and that all
methods present an actual second-order convergence for the meshes required to resolve physical scales. However it has been
found that the choice of the numerical scheme to reconstruct data at cell faces is critical to correctly capture turbulent spectra.
The outcome of the present paper is that in order to achieve an accurate solution of a practical turbulent flow with finite-

volume methods, it is more efficient to choose a fine mesh discretization and use a combination of a high-order reconstruction
at cell faces and a low-order quadrature rule than to use a traditional high-order finite volume method.
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