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InSAR-based detection method for mapping and monitoring slow-moving landslides in 1 

remote regions with steep and mountainous terrain: An application to Nepal 2 

	3 

Highlights	4 

● A novel method is developed to detect landslides in mountainous terrain 5 

● InSAR time-series is used to identify and monitor slow-moving landslides  6 

● 6 slow-moving landslides in Trishuli, Nepal, unaffected by the Gorkha earthquake 7 

● Landslides have rates between 2-9 cm/yr and likely driven by monsoonal rainfall  8 
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Abstract 26 

Mapping and monitoring landslides in remote areas with steep and mountainous terrain is 27 

logistically challenging, expensive, and time consuming. Yet, in order to mitigate hazards and 28 

prevent loss of life in these areas, and to better understand landslide processes, high-resolution 29 

measurements of landslide activity are necessary. Satellite-based synthetic aperture radar 30 

interferometry (InSAR) provides millimeter-scale measurements of ground surface deformation 31 

that can be used to identify and monitor landslides in remote areas where ground-based 32 

monitoring techniques are not feasible. Here we present a novel InSAR deformation detection 33 

approach, which uses double difference time-series with local and regional spatial filters and 34 

pixel clustering methods to identify and monitor slow-moving landslides without making a priori 35 

assumptions of the location of landslides. We apply our analysis to freely available Copernicus 36 

Sentinel-1 satellite data acquired between 2014 and 2017 centered on the Trishuli River drainage 37 

basin in Nepal. We found a minimum of 6 slow-moving landslides that all occur within the 38 

Ranimatta lithologic formation (phyllites, metasandstones, metabasics). These landslides have 39 

areas ranging from 0.39 to 1.66 km2 and long-term dry-season displacement rates ranging from 40 

2.1 to 8.8 cm/yr. Due to periods of low coherence during the monsoon season (June – 41 

September) each year, and following the 25 April 2015 Mw7.8 Gorkha earthquake, our time 42 

series analysis is limited to the 2014-2015 and 2016-2017 dry seasons (September - May). We 43 

found that each of the landslides displayed slightly higher rates during the 2014 period, likely as 44 

a result of higher cumulative rainfall that fell during the 2014 monsoon season. Although we do 45 

not have high quality InSAR data to show the landslide evolution directly following the Gorkha 46 

earthquake, the similar rates of movement before (2014-2015) and after (2016-2017) Gorkha 47 

suggest the earthquake had negligible long-term impact on these landslides. Our findings 48 
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highlight the potential for region-wide mapping of slow-moving landslides using freely available 49 

remote sensing data in remote areas such as Nepal and future work will benefit from expanding 50 

our methodology to other regions around the world.   51 
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Introduction  52 

Every year thousands of people are killed or impacted by landslide hazards (Kirschbaum 53 

et al., 2015, 2018; Froude and Petley, 2018). Landslides not only cause harm to human life, but 54 

also cause disruption to day to day life and frequently inhibit the transport of goods and services, 55 

resulting in additional economic costs (Oven, 2009). Long-term records suggest that landslide 56 

hazards are increasing through time, with recent changes attributed to ongoing climate change 57 

and population growth (Gariano and Guzzetti, 2016; Froude and Petley, 2018). In addition to 58 

their hazardous impact, landslides dominate erosion and landscape evolution and also affect 59 

downstream aquatic habitat (Kelsey, 1980; Larsen et al., 2010; Korup et al., 2010; May et al., 60 

2013). However, in most regions of the world, the characterization of landslide locations and 61 

impacts remain largely unknown due to the complex morphologies and geographic settings in 62 

which they typically occur and the difficulty of collating and updating inventories. Thus, in order 63 

to better understand how landslides may impact landscapes and communities, it is important that 64 

we continue to develop tools and techniques to identify and monitor these hazards. 65 

Landslides can be mapped and monitored with field observations, digital elevation 66 

models, satellite and airborne imagery. However, because landslides are distributed over large 67 

areas, display a wide variety of behaviors, and occur under different climatic and 68 

geomorphologic regimes, no single observation strategy can be used to map and monitor all 69 

types of landslides. For instance, some landslides display slow creeping motion at meters per 70 

year or less in areas with high seasonal precipitation (e.g. Hilley et al., 2004; Simoni et al., 71 

2013), while other landslides fail catastrophically and move downslope rapidly at rates of meters 72 

per second when triggered by earthquakes or storms (e.g. Dahal and Hasegawa, 2008; Roback et 73 

al., 2018). Remote sensing techniques are well suited for creating landslide inventories for a 74 
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variety of mass movement types (e.g. Nichol and Wong 2005; Kargel et al. 2016;Lacroix 2016), 75 

while field-based mapping is better for detailed high quality measurements over small areas. 76 

Ideally, a data-fusion of both field-based mapping and remote sensing observations could be 77 

used to develop a complete landslide inventory, but this is often logistically challenging, time 78 

consuming, and expensive, especially in remote regions. 79 

Interferometric synthetic aperture radar (InSAR) is a powerful tool used to study earth 80 

surface displacements over larger regions (up to 250 km wide swaths), and at a high spatial 81 

resolution (up to few meters). InSAR has been used frequently for studying earthquake cycle 82 

processes (e.g., Bekaert et al., 2015c; Huang et al., 2016; Fielding et al., 2017), volcanoes (e.g. 83 

Amelung et al., 2000), anthropogenic signals (e.g. Jones et al., 2016; Buzzanga et al., 2020), and 84 

landslides (e.g. Colesanti et al., 2003; Hilley et al., 2004; Handwerger et al., 2013; 2019a; 85 

2019b; Dai et al., 2019; Strozzi et al., 2018; Tantianuparp et al., 2013). Despite the wide 86 

applicability of InSAR to investigate a variety of geophysical phenomena, there are several 87 

challenges that often limit InSAR studies of landslides. Key challenges in using InSAR are 88 

related to decorrelation noise introduced due to radar scattering related landslide properties such 89 

as vegetation, deformation rate, and geometry, as well as superimposed spatially correlated noise 90 

signals introduced by propagation delays in the atmosphere (e.g., Hanssen et al., 2001; Liang et 91 

al., 2018; Murray et al., 2019). Dense vegetation, which is common in landslide-prone regions 92 

with intense rainfall, is especially problematic and leads to increased noise that hinders InSAR 93 

monitoring of landslides. SAR sensors with longer radar wavelengths such as the L-band (24 cm 94 

radar wavelength) JAXA ALOS 1-2 satellites and the upcoming NASA-ISRO Synthetic 95 

Aperture Radar (NISAR) mission can penetrate vegetation and are better suited for monitoring 96 

landslides in vegetated areas. In addition, the ability to observe landslides using InSAR is limited 97 
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by shadow and layover effects in steep terrain, due to the one dimensional viewing geometry of 98 

the radar sensor, which restricts displacement measurements to the radar look direction, and by 99 

the large changes in the ground surface from landslide deformation.  It is possible to overcome 100 

some of these limitations by using SAR data from ground-based or airborne instruments. For 101 

instance, airborne instruments, such as the NASA/JPL UAVSAR, allow for targeted data 102 

collection that can be optimized for ground displacement sensitivity (Scheingross et al., 2013; 103 

Delbridge et al., 2016; Bekaert et al., 2019; Handwerger et al., 2019b). Although InSAR has 104 

been used for mapping and monitoring of landslides around the world , it is rarely applied to map 105 

landslides without prior knowledge of their location. However, with the availability of regularly 106 

acquired and freely available data, such as those from the Copernicus Sentinel-1 satellites, it is 107 

now possible to search for active landslide signals over entire mountain ranges (e.g., Dehls et al., 108 

2017).  109 

Here, we develop new InSAR analysis strategies to identify active slow-moving 110 

landslides in the steep mountainous terrain of Western Nepal. While recent studies (Collins and 111 

Jibson, 2015; Kargel et al., 2015; Zekkos et al., 2017; Roback et al., 2018; Tsou et al., 2018) 112 

have identified tens of thousands of landslides triggered by the April and May 2015 Gorkha 113 

earthquakes, there is also evidence of numerous slow-moving deep-seated landslides in the 114 

region that pre-date the earthquake (Tsou et al., 2018). We define slow-moving landslides as 115 

those having rates < 1.6 m/yr (Hungr et al., 2014). Despite these low rates, the hazardous and 116 

disruptive impact of these slow-moving landslides should not be neglected. Slow-moving 117 

landslides can display large displacements over periods of years (e.g., Coe et al., 2009; Booth et 118 

al., 2018; Carrière et al., 2018; Nereson and Finnegan, 2018) that can damage infrastructure 119 

such as roads, bridges, railways, dams, settlements, and pipelines (Merriam, 1960; Mansour et 120 
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al., 2011). Because slow-moving landslides are difficult to detect without high resolution 121 

monitoring, it is common for communities to develop on or near the landslides (Geertsema et al. 122 

2009; Mansour et al., 2011; Herrera et al., 2013; Dille et al., 2019). It is also common for faster-123 

moving landslides to develop from within or immediately below the unstable ground associated 124 

with slow-moving landslides (e.g., Reid et al. 2003), and furthermore, slow-moving landslides 125 

have the potential to move rapidly or fail catastrophically due to  rainfall or earthquakes (e.g., 126 

Carrière et al., 2018; Guerriero et al. 2017; Handwerger et al., 2019a; Schulz and Wang, 2014). 127 

Therefore one primary goal of this paper is to address the potential hazard of slow-moving 128 

landslides that are potentially impacting communities in the mountainous regions of Nepal.   129 

In this manuscript, we use freely available InSAR data from the Copernicus Sentinel-1 130 

satellites between 2014 and 2017 to identify and monitor slow-moving landslides in the Trishuli 131 

River catchment, Western Nepal. We develop a new methodology to identify landslides (and 132 

other localized deformation features) in challenging terrain with no prior knowledge of their 133 

location. We quantify the landslide metrics (area, length, width, slope, velocity) and explore 134 

relations between landslide activity and precipitation, and lithology. We also consider how these 135 

slow-moving landslides behave before and after the 2015 Gorkha earthquake. 136 

Study area  137 

Our study area covers ~1230 km2 in the Himalayas centered on the Trishuli River 138 

catchment (Figure 1). The elevation ranges from approximately 0.45 to 4.9 km with a mean 139 

elevation of approximately 2.2 km. The hillslope angle ranges from 0 to 65 degrees with a mean 140 

of 26 degrees (including valleys). The Trishuli River valley is V-shaped with steep inner gorges 141 

with a break in slope and more gentle slope angles moving towards the hilltops (Figure S1). The 142 



8 
 

area is underlain by various lithologic units including the Galyang (slates, carbonates), 143 

Ghanpokhara (carbonaceous phyllites, slates, shales, limestones), Naudanda (quartzites), Ulleri 144 

(gneisses), and Ranimatta (phyllites, metasandstones, metabasics) formations (Figure S2; Dhital, 145 

2015). The Main Central Thrust (MCT) runs through our field area and marks the transition 146 

between the Greater and Lesser Himalaya lithologic zones. Average annual rainfall between 147 

2014 and 2018 was 1.4 m/yr (calculated from the Global Precipitation Measurement (GPM); 148 

Huffman, 2017) and occurs primarily during the monsoon season (June – September). Much of 149 

the area is vegetated, except for the locations that are terraced for agriculture, which are often 150 

those areas draped with landslide deposits. There is also a rapidly growing road network 151 

(MacAdoo et al, 2018), which predominantly consists of earthen roads, that traverse the valley 152 

walls connecting nearby villages .  153 

The Himalayas are tectonically active due to the continental convergence between the 154 

Indian and Eurasian plates. The convergence rate is ~45 mm/yr with roughly 50% 155 

accommodated by the Main Himalayan Thrust (MHT) (Lave and Avouac, 2000; Sella et al., 156 

2002; Bilham, 2004). The MHT has hosted a number of large earthquakes, the most recent of 157 

which was the Mw7.8 Gorkha event, which occurred on April 25, 2015 and ruptured a 140 km 158 

long section of the fault. This event was followed by a Mw 7.2 aftershock on May 12, 2015. The 159 

total loss of life from these events was ~9000 people with an economic loss in billions of dollars 160 

(Zhao, 2015). The Gorkha earthquakes triggered a large number of landslides (Collins and 161 

Jibson, 2015; Kargel et al., 2016; Martha et al., 2016; Zekkos et al., 2017; Roback et al., 2018; 162 

Tsou et al., 2018). Roback et al. (2018) documented a minimum of 25,000 coseismic landslides, 163 

hundreds of which occurred in the Trishuli River catchment, and found that the highest density 164 

of landslides occurred in areas with relatively steeper slopes (mean slope angle 39 ± 9.1 165 
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degrees), higher annual precipitation, and that were proximal to the deepest sections of the fault 166 

rupture.  167 

Our field area experienced significant shaking during the 2015 earthquakes. Peak ground 168 

acceleration during the Mw7.8 event was estimated at ~0.8g (Figure 1). Previous work along the 169 

Trishuli River catchment by Tsou et al., (2018) explored the role of topography and geology in 170 

controlling the landslides triggered by these earthquakes. Using digital elevation models, satellite 171 

and aerial photos, lithologic maps, and field work, Tsou et al., (2018) identified 912 coseismic 172 

landslides. They found that these landslides primarily occurred along the steeper V-shaped inner 173 

gorges underlain by gneiss and quartzite. They also identified 155 slow-moving, or dormant 174 

landslides along more gentle hillslopes located above the inner gorges (Figure S1). Tsou et al. 175 

(2018) refer to these landslides as “coherent landslides” and in the absence of any kinematic 176 

monitoring data, we refer to them as “potential slow-moving landslides”. These landslides 177 

appeared mostly unaffected by the 2015 earthquakes, although many smaller yet catastrophic 178 

landslides were sourced from within these larger features (Figure S1).  179 
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Figure 1:  Elevation (meters above sea level) draped over a hillshade of the topography. 

Black dashed rectangle shows the study area along the Trishuli River. Blue line highlights 

the segment of the Trishuli River that lies within our field area. Dark gray contours show 

peak ground acceleration as a percentage of gravity (%g) for the Mw 7.8 Gorkha 

earthquake with red star showing epicenter. Black polygons show coseismic landslides 

mapped by Roback et al. (2018) and Tsou et al. (2018). Dotted red line shows the Main 

Central Thrust (MCT) fault. Elevation data from SRTM. Earthquake data from the USGS. 

  180 
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Data 181 

For our study, we use Sentinel-1 C-band (5.6 cm radar wavelength) SAR data acquired between 182 

October 2014 and March 2017 by the European Space Agency under the European Commission 183 

Copernicus program. The Sentinel-1 constellation consists of two complementary satellites, one 184 

launched in March 2014 and one in April 2016, each having a 12-day repeat. Using data from 185 

both satellites provides a minimum 6-day repeat acquisition. All data are available free of charge 186 

from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/) and from the NASA 187 

Distributed Active Archive Center at the Alaska Satellite Facility 188 

(https://earthdata.nasa.gov/eosdis/daacs/asf). Figure 2 shows the temporal distribution of 189 

Sentinel-1 acquisitions (black circles) between October 2014 and March 2017 in our study area 190 

(also summarized in Table S2). Data were collected with a 12 to 24 day repeat between October 191 

2014 and September 2015, and a 6 to 12 day repeat between August 2016 and March 2017. 192 

Between September 2015 and August 2016 the repeat interval was reduced to ~1.5 months on 193 

average. We generated interferometric pairs spanning the three nearest acquisitions in time, 194 

while dropping interferograms that were too noisy to reveal any noticeable signal from the 195 

analysis. The lines shown in Figure 2 represent the Sentinel-1 interferograms that we used in our 196 

Small Baseline time-series analysis, with the color representing the local average phase noise for 197 

each interferogram calculated as part of time-series analysis by removing spatially correlated 198 

noise sources and those correlated with perpendicular baseline in an iterative procedure (Hooper 199 

et al., 2012). The main sources of data noise in our study area is related to monsoonal 200 

precipitation, vegetation and snow, which causes decorrelation noise. The highest phase noise 201 

can be observed during the monsoon period (June-September), following the Gorkha 202 

earthquakes, and for those interferograms with longer temporal baselines. Given the high noise 203 
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between June 2015 and August 2016, we are unable to recover the ground displacement time-204 

series over our full study period. Therefore, we examine the data in the two periods with minimal 205 

noise, October 2014 to April 2015 and September 2016 to March 2017, which we refer to as the 206 

“pre-Gorkha” and “post-Gorkha” as they are separated by the April 2015 Gorkha Earthquake. 207 

 208 

 

Figure 2: Perpendicular baseline plot of Sentinel-1 data (bottom panel) in the Trishuli River 

catchment, Nepal. Black circles represent individual SAR data acquisitions and lines show 

interferogram pairs with colors representing the average local phase noise for each 

interferogram as computed during time-series processing (Hooper et al., 2012). Higher phase 

noise can be observed in periods with sparse acquisition density immediately following the 

Gorkha earthquake and during the monsoon period. Daily precipitation total (average over 

our study area) is shown in the top panel from the Global Precipitation Measurement (GPM) 

mission (Huffman et al. 2017).  
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 209 

Methods  210 

In this work we demonstrate a new methodology for analysis and detection of landslides using 211 

InSAR over a large region without prior knowledge of the location of landslides. Our 212 

methodological approach effectively handles the spatially-correlated longer-wavelength InSAR 213 

noise  (e.g., atmospheric and regional tectonic signals), which are typically superimposed over 214 

the InSAR data, by performing a spatial double difference time-series analysis (e.g., Bekaert et 215 

al., 2019). This methodology is also of value in the automation and operational monitoring of 216 

landslides and other geophysical phenomena with localized deformation patterns (i.e., sharp 217 

deformation gradient) using SAR data.  218 

Our approach (summarized in supplemental Table S3)  consists of the following steps: 219 

first, we generate a stack of Sentinel-1 SAR images coregistered and resampled with respect to a 220 

master acquisition by using the Sentinel-1 stack processor (Fattahi et al., 2017) included in the 221 

InSAR Scientific Computer Environment (ISCE) (Rosen, 2012). Next, we perform a time-series 222 

analysis using the Small Baseline (SB) method in StaMPS (Hooper et al., 2012), leveraging the 223 

ISCE to StaMPS capability in ISCE to ingest our Sentinel-1 coregistered stack (Bekaert et al., 224 

2017), to down-select pixels, and improve the signal to noise ratio in the data. Other approaches 225 

such as Persistent Scatterer (e.g., Ferretti et al., 2001; Hooper et al., 2004), SqueeSAR (e.g. 226 

Ferretti et al., 2011), and the Sequential Estimator (e.g., Ansari et al., 2017) could be leveraged 227 

as well for pre-processing and to down-select pixels. The unwrapping of the interferograms is 228 

not a trivial step. To focus our analysis, we mask out pixels over flat terrain (slope < 5 degrees), 229 

as these are unlikely to contain landslides, and additionally remove  as well as pixels that are in 230 
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shadow or lay-over (e.g., Hanssen 2001), as the signal in such pixels is a superposition of the 231 

signal coming from multiple distinct geographical locations .  We leverage StaMPS’ iterative 232 

phase closure approach (Hussain et al., 2016) and its 3D unwrapping capabilities (Hooper et al., 233 

2012) followed by a visual inspection of the interferograms to limit phase unwrapping errors.  234 

While down-selecting pixels during time-series processing improves the signal to noise ratio, it 235 

does not address the issue of spatially correlated noise-sources superimposed on landslide 236 

signatures, such as those originating from tectonic processes (e.g., Ader et al., 2012) and 237 

atmospheric propagation delays due to the ionosphere (e.g., Liang et al., 2018) and troposphere 238 

(e.g., Hanssen 2001; Bekaert et al., 2015a). Different strategies can be used to reduce these 239 

superimposed noise-terms including the application tropospheric mitigation tools (e.g., Jolivet et 240 

al., 2011; Bekaert et al., 2015b), ionospheric correction estimated from the data (e.g., Liang et 241 

al., 2018; Liao et al., 2018), and correcting for tectonic noise using a forward model (e.g., 242 

Bekaert et al., 2018). However, these model based corrections can introduce additional noise in 243 

the data. For example, tropospheric corrections from weather models are likely to introduce 244 

turbulent noise (e.g., Hanssen 2001), while the assumption of a phase-based linear correction 245 

might not hold over large regions with complex topography as mountains could be blocking 246 

weather dynamics (e.g. Bekaert et al., 2015a). Existing time-series packages often leverage a 247 

spatial and temporal filter to reduce contamination of atmospheric noise or simply apply a low 248 

pass filter to remove any longer-wavelength signals (e.g., Hooper et al., 2004).  As InSAR is a 249 

relative measurement, all pixels are moving with respect to a pre-defined spatial reference point. 250 

The selection of this reference point is not trivial, as the above mentioned noise sources can 251 

make it challenging to select a stable reference area for InSAR because uncertainty due to 252 

atmospheric noise increases with distance from the reference area. Additionally, these noise 253 
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sources can make it challenging to identify meaningful landslide signatures over large regions 254 

from an individual average velocity map (Figure 3A).  A more direct approach for investigating 255 

localized deformation patterns is to apply a double difference method between two closely 256 

located pixels, which cancels out spatially correlated signals at distances exceeding the 257 

separation between these pixels. Such an approach is regularly applied as a post-processing step 258 

to show and visualize how a feature, such as a landslide (e.g., Dille et al,. 2019; Handwerger et 259 

al., 2019a; 2019b) or critical infrastructure (e.g., Bekaert et al., 2018), is deforming compared to 260 

its surrounding stable area (i.e. a local reference point), but is rarely applied as part of the 261 

processing of the time-series itself to reveal localized signals in the first place. 262 

We implemented the double differencing approach as part of our time-series processing 263 

workflow over the full study area. First, we spatially filter each interferogram by differencing the 264 

output of a regional and local averaging filter kernel, where we use a smaller radius for the local 265 

kernel compared to the regional kernel. By differencing both kernels, we have defined the 266 

regional pixels (whose extent is fixed by the regional kernel) to act as the reference area for the 267 

local pixels.  Both the regional and local kernels could also be combined into a single more 268 

complex filter, but for illustrative reasons and simplicity we kept them separate. Second, we 269 

apply conventional time-series analysis in which we estimate an average linear velocity map  270 

from these filtered interferograms  (Figure 3B) with corresponding uncertainties estimated from 271 

bootstrapping the InSAR time-series (Figure 3C) . Given that the filtering step is applied to the 272 

complete image, the result reveals regions with a strong localized signal will have a positive and 273 

negative alternation in the estimated rate (e.g., see location A in Figure 3B). One of the key 274 

items for investigation is the sensitivity of the kernel size of the filters as well as the shape of the 275 

kernels. The larger the averaging kernel, the more sensitive our analysis becomes to the longer-276 
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wavelength processes and thus leads to an increased uncertainty in the time-series. We tested 277 

various combinations of filter sizes including varying the local kernel from 100 m to 200 m, and 278 

the regional filter from 1 km to 2 km. For the local kernel we fixed its shape to be a disk and for 279 

the regional filter we used a disk- and a donut-shaped kernel but did not find noticeable 280 

differences in identifying hotspots of localized deformation using these different shapes (see 281 

Figure S4).  282 

We use this double-difference filtering approach to identify slow-moving landslides that 283 

are moving during our study period. Active slow-moving landslides tend to display episodic or 284 

continuous downslope motion, which can be approximated as a linear trend in time, with short 285 

term or seasonal variations in velocity driven by changes in stress conditions (e.g., rainfall and 286 

snowmelt)  (Merriam 1960; Handwerger et al., 2013; 2019a;b; Cohen-waeber et al., 2018; Dille 287 

et al., 2019). Both the rate and uncertainty are considered together when assessing whether a 288 

certain localized deformation feature is moving with confidence. We therefore derive another 289 

mask with only pixels that experience a significant rate, where the magnitude of the rate over the 290 

observation period |𝑣| needs to be at least two times larger than the uncertainty of the rate 𝜎$  291 

(i.e. %𝛥𝑉()*% − 2𝜎-./01>0). We note that pixels for which the displacement history is nonlinear in 292 

time have a larger uncertainty. Thus, our method is best-suited for identifying landslides that are 293 

active during the full study period and that are less impacted by seasonal effects. Finally, we 294 

apply a clustering algorithm that requires a minimum of 3 pixels per cluster to reveal larger 295 

localized features and help reduce noise (Figure 3D). The mask of significant rates allows us to 296 

rapidly narrow down the regions that would benefit from a closer inspection (i.e., landslides).  297 

To identify active landslides from the clusters shown in Figure 3D, we manually 298 

examined the clusters to find those with the highest velocity (i.e. largest signal to noise ratio) and 299 
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largest spatial signal, which we could confidently identify as landslides. It is possible that some 300 

of the clusters removed from our analysis (and possibly some of the pixels removed before 301 

clustering) may correspond to active landslides (i.e., true positives). However, these removed 302 

clusters are small in spatial scale and have small displacement magnitudes that are close to our 303 

detection limit. Similarly, some clusters just meeting our detection threshold are likely a mixture 304 

of small landslides and leakage of high-frequency tropospheric noise that varies over spatial 305 

scales of a few 100’s of meters.  After we selected the active landslides, we used a 10 meter 306 

digital elevation model (DEM) made available by the NASA High Mountain Asia project (Shean 307 

et al., 2016; 2017), blending DEMs derived from high-resolution WorldView imagery (<1 m) 308 

with that of the ASTER (30 m), and Google Earth images to map the boundaries and measure the 309 

geometry (area, length, width, mean slope angle) of each landslide (Figure 4; Table S1). We 310 

also compared the landslide motion and InSAR data quality to rainfall data from the Global 311 

Precipitation Measurement (Huffman, 2017).  312 
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 313 

 

Figure 3: InSAR landslide analysis for pre-Gorkha period between October 2014 and April 

2015. For post-Gorkha period see Figure S3. (A) Average line-of-sight (LOS) rate map over 

the period of observation. The image contains various signals including tectonic deformation, 

atmospheric noise, and local deformation signals due to human impact and landslides. (B) 

LOS rate map after applying double difference method. Our double difference method using a 
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local and regional detector kernels reveals localized deformation signals (𝛥𝑉()*) cancelling 

out the long wavelength tectonics and atmospheric noise signals. The filter size as shown in the 

legend is drawn to scale. (C) Corresponding local rate uncertainties (𝜎-./01) estimated from 

bootstrapping the time-series of local deformation. (D) Yellow pixels show significant local 

rates (%𝛥𝑉()*% − 2𝜎-./01>0) with a minimum 3-pixel cluster filter applied. Key clusters (i.e. 

landslides) A-F are highlighted by the black boxes . Variation of the filter size and shape does 

not impact the identified significant clusters (Figure S4). 

Results 314 

The quality of the Sentinel-1 InSAR data varies significantly over the 2.5 year study period. 315 

InSAR analysis in steep and mountainous regions, like Nepal, are often plagued by noise due to 316 

precipitation, vegetation, and atmospheric effects, and from large surface changes due to slope 317 

deformation. We find there is a large increase in phase noise in the time-series between June 318 

2015 and August 2016 (Figure 2), which is likely a result of vegetation growth and changes in 319 

the ground surface properties during the monsoon (June-September) and from the Gorkha 320 

earthquake. In addition, the relatively infrequent Sentinel-1 revisit time between September 2015 321 

and August 2016 further restricts our ability to recover the ground displacement time-series 322 

during our study period. As described in the Methods section above, we therefore perform our 323 

landslide analysis by comparing October 2014 to April 2015 (labeled “pre-Gorkha”) and 324 

September 2016 to March 2017 (labeled “post-Gorkha”).  325 

Our clustering approach reveals multiple regions to have significant local displacement 326 

rates (Figure 4D) both prior to and after the 2015 earthquakes. In our analysis we focused our 327 
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attention on those clusters that have the highest local displacement rates (Figure 4B). We 328 

identified 6 slow-moving landslides that are moving during both the pre-Gorkha period (Figure 329 

4) and post-Gorkha period (Figure S3). The landslides are large features with lengths ranging 330 

from 490 to 2748 m, widths from 605 to 795 m, areas from 0.39 to 1.66 km2, and mean slope 331 

angles from 17 to 28° (summarized in Table S1). Each landslide occurs within the Ranimatta 332 

Formation, which is composed of phyllites, metasandstones, metabasics (Figure S2). Our 333 

displacement time series shows that each landslide exhibits slow but apparently near-continuous 334 

average rates of motion (Figure 5). Although we have no high-quality InSAR data during the 335 

monsoon season, we assume that the landslide motion is in part driven by intense and sustained 336 

precipitation that falls during that time period and infiltrates into the landslide body and increases 337 

the pore-water pressure. Our study site received ~1.3 m of rainfall between June-October 2014 338 

and ~1.1 m of rainfall between June-October 2016. We fit linear functions to the displacement 339 

time series to characterize the dry season landslide velocity between October 2014 - April 2015 340 

and October 2016 - April 2017. The LOS displacement rate ranges from -88 mm/yr to -21 341 

mm/yr, with a negative value referring to ground surface motion away from the radar. All of the 342 

landslides were moving faster during 2014 - 2015 time period than the 2016 - 2017 time period. 343 

The increased velocities in 2014 likely result from the increased rainfall during the 2014 344 

monsoon when compared to 2016.  345 

As described above, we performed our InSAR analysis without prior knowledge of active 346 

landslides in the Trishuli River catchment. Our goal was to develop a methodology that could be 347 

applied to areas with no landslide inventory. Once we mapped the active landslides, we 348 

compared our results to a previously published landslide inventory from Tsou et al. (2018) 349 

(Figure 4) to provide an independent check on our ability to detect landsliding. Tsou et al. 350 
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(2018) mapped landslides using stereo-pair aerial photos and field validation. They identified 351 

landslides by mapping deformation features such as scarps or ground offsets. We find that 352 

landslides B-F lie within previously mapped “coherent” or potentially slow-moving landslide 353 

boundaries (Figure 4), which provides additional evidence that we have identified landslides. 354 

Our InSAR analysis also reveals that many of the other previously mapped landslides contain 355 

some minor deformation signals (i.e. high LOS velocity; Figure 4). However, we do not map 356 

these as active landslides because these features did not meet our landslide detection criteria 357 

(described in Methods) and we believe that further investigation is required to determine their 358 

state of activity. 359 

Our field site experienced significant ground accelerations (up to 80% g according to the 360 

USGS ShakeMap) during the 2015 Gorkha earthquake (Figure 1), yet landslides A-F were not 361 

significantly impacted in that they did not fail catastrophically and displayed relatively similar 362 

velocities during the pre-Gorkha and post-Gorkha periods. It is possible (and likely) that the 363 

landslides displayed a period of accelerated slip immediately following the earthquakes, which 364 

has been observed in other settings (Lacroix et al., 2014; 2015; Bontemps et al., 2020); however, 365 

we are unable to reliably measure surface displacements for 2.5 years following the Gorkha 366 

earthquake.   367 

  368 
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 369 

 

Figure 4. Landslide inventory map and InSAR line-of-sight (LOS) velocity for the pre-

Gorkha period (October 2014-April 2015) draped over a hillshade of the topography. 

Regional scale inventory shown in panel (A) and close up view of landslides shown in 

panels (B-D). A velocity value of 0 corresponds to pixels that have been masked out but is 

set to yellow color for viewing purposes. Black polygons show the landslides identified using 

our InSAR methodology. Gray polygons show potentially slow or “coherent” landslides 

mapped by Tsou et al. (2018).  Black circles show the local  stable reference point for each 

landslide as used for generating the time-series histories in Figure 5. . Note that the stable 

reference point for landslide A lies just outside the clipped frame. Black dashed line shows 

the Main Central Thrust. Black arrows show the satellite LOS and flight direction (Vsat). 

Blue line corresponds to the Trishuli river and white lines show the road network.  

  370 
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Figure 5: Line-of-Sight (LOS) displacement history for landslides A-F with respect to their 

local stable reference (black circle marker in Figure 4), for pre-Gorkha (top) and post-

Gorkha (bottom) periods. Displacement histories for each landslide are offset arbitrarily on 

the y-axis for visualization purposes, and thus do not allow for absolute comparison 

between them. However, the rate at which displacements vary in time can be compared. A 

radius of 250 m is used for averaging both the reference point and landslide center. Daily 

precipitation for the pre-Gorkha and post-Gorkha time periods are shown in the top and 

bottom panel, respectively. The Gorkha earthquake event is indicated by the red line in the 
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top-axis. Reported rate uncertainty corresponds to 1-sigma. 2D cumulative displacement 

time-series for each landslide are included as supplemental Figure S6-S7 for respectively the 

before and aftter Gorkha periods.  

  372 

Discussion 373 

The Trishuli River catchment is well known for its landslide activity, however, most 374 

recent research has focused on catastrophic landslides triggered by the 2015 earthquakes (e.g., 375 

Roback et al., 2018; Tsou et al., 2018). Slow-moving landslides in Nepal also pose a major 376 

hazard (Caine and Mool, 1982; Mansour et al. 2011; Tsou et al., 2018) because they 1) can 377 

remain active for many years or decades and thus can accumulate large deformations (e.g., Coe 378 

et al., 2009; Nereson and Finnegan, 2018), 2) can display “surges” or short periods of rapid 379 

motion at relatively high rates (102-103 m/yr) (e.g., Hungr et al., 2014; Guerriero et al. 2017; 380 

Carrière et al., 2018), and 3) have the potential to fail catastrophically (e.g.,  Handwerger et al., 381 

2019a;      Inrieri et al., 2018; Kilburn and Petley, 2003). The resulting displacements can 382 

damage infrastructure such as roads, bridges, railways, dams, settlements, and pipelines. Given 383 

that landslides A and D-F cut across the road network (Figure 4), and are moving at rates 384 

between ~20-90 mm/yr, (Figure 5), using the scale proposed by Mansour et al. (2011), these 385 

landslides will or have likely already caused moderate damage and disruption to the road 386 

network. . In addition, many of the slow-moving landslides, given their loose and relatively 387 

easily tillable nature, are terraced for agriculture (Figure 4), which leads people to develop, and 388 

even live on their surfaces. Furthermore, damaging and potentially life threatening fast-moving 389 
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landslides, such as debris flows, can initiate from within the disrupted mass of active slow-390 

moving landslide body (e.g., Reid et al., 2003; Booth et al., 2018), suggesting a need for these 391 

areas to be identified as part of a geohazards assessment.      Following the Gorkha earthquake, 392 

Tsou et al. (2018) found that 912 earthquake-induced landslides were triggered along the steep 393 

(slope angle > 35 deg) inner gorges of the Trishuli River. They also found that the “coherent” 394 

(i.e., slow-moving or dormant) landslides exhibited no obvious signs of reactivation by the 395 

earthquakes, however, many  of the rapid landslides in their inventory initiated from within 396 

larger coherent landslide bodies. We note that from our inventory, only landslide B and landslide 397 

E contain mapped rapid landslides (Figure S1) from the Gorkha earthquake (Tsou et al., 2018). 398 

However, our main findings show that the active slow-moving landslides along the Trishuli 399 

River occur on the more gentle slopes (slope angle ~ 22 deg) above the steep inner gorges and 400 

are thus less likely to be subject to rapid catastrophic failures 401 

 Due to data limitations (i.e., low coherence) following the earthquakes, we were unable 402 

to analyze the coseismic or immediate post-seismic deformation of landslides A-F. However, our 403 

findings suggest that these landslides were not accelerated, and rather were perhaps decelerated 404 

by the 2015 earthquakes. Yet, given that strong ground motion occurred along the Trishuli River 405 

(Figure 1), these landslides may have accelerated for a short time period following the 406 

earthquakes or in the subsequent monsoon season that started approximately three weeks after 407 

the earthquakes. Similar landslide behaviors have been observed at the Maca landslide in Peru, 408 

where slow-moving landslides accelerated in response to a Mw 6.0 earthquake and then 409 

decelerated back to its pre-earthquake rates over the following 35 days (Lacroix et al., 2014; 410 

Bontemps et al., 2020). These behaviors suggest that the rate-strengthening frictional 411 

mechanisms may inhibit runaway acceleration of these landslides (Wang et al., 2010; Lacroix et 412 
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al., 2014; Handwerger et al., 2016; Agliardi et al., 2020). Despite no significant acceleration 413 

impact from the recent major earthquakes, strong ground motion may influence the long term 414 

stability and evolution of these landslides (Bontemps et al,. 2020).  415 

 416 

The data volume from SAR has grown rapidly with the launch of Sentinel-1, and will further 417 

expand with observations made from the Canadian Radarsat Constellation Mission (RCM) and in 418 

future the NISAR mission. The regular acquisition repeat interval and global mapping of these 419 

new sensors enables the use of time-series InSAR for long-term monitoring of landslides. 420 

Specifically, the European Commision has committed to operate the Sentinel-1 constellation 421 

until at least 2030, which will enable monitoring of hillslopes from weeks to decades. Our 422 

developed methodology approach allows wide area mapping of slow-moving landslides without 423 

prior assumption where landslides occur. This also allows for ongoing monitoring of slopes and 424 

for a rapid expansion of slow-moving landslides in existing inventories. By increasing the 425 

number of observations of slow-moving landslides in catalogues, a larger statistical dataset will 426 

be available to investigate the correlation with physical drivers such as precipitation and 427 

snowmelt, which will allow for an improved understanding of the mechanisms that control these 428 

types of landslides. 429 

 430 

 431 

Conclusions 432 

In this study, we investigated hillslope deformation along the Trishuli River catchment in Nepal, 433 

where hundreds of coseismic landslides were triggered during the 25 April 2015 Mw7.8 Gorkha 434 
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earthquake. We used time-series InSAR from the Copernicus Sentinel-1 satellites to identify 435 

active landslides. We presented a novel method for the detection of landslides (and other 436 

localized deformation) over a large region without prior assumptions of the geographical location 437 

of any landslide. Our method consists of a local double difference approach, implemented 438 

through a filtering step that is applied to the individual interferograms prior to time-series 439 

estimation. Our approach effectively cancels out long-wavelength noise processes (e.g., tectonic 440 

processes, ionospheric and tropospheric noise) and reveals localized deformation patterns. We 441 

further narrow down the search for landslides by examining clusters of neighboring pixels that 442 

exhibit significant displacement rates, here defined as rates twice the uncertainty. Our new 443 

approach allowed us to identify a minimum of 6 large, slow-moving landslides within our study 444 

area where continuous deformation is likely driven by monsoonal precipitation. Most of these 445 

landslides are proximal to roads and infrastructure and thus will likely cause damage and 446 

disruption that will impact the local communities.  447 

While we were unable to examine the immediate response of these landslides to the 2015 448 

Gorkha earthquake, we found that their deformation rates before and 2.5 years after the 449 

earthquake were similar, which suggests that, despite experiencing significant ground 450 

accelerations, these landslides were largely unaffected by the earthquake over annual timescales. 451 

One of the main advantages of our InSAR-based approach is that it provides an opportunity to 452 

monitor ground surface deformation in remote areas. An area of future research is to couple the 453 

Sentinel-1 data with additional data acquisitions from other SAR sensors such as Cosmo-454 

SkyMed, RadarSat Constellation Mission, ALOS-2, and NISAR. Combining data from multiple 455 

satellites with different radar wavelengths may provide further insight into the complex 456 

dynamics of landslides. We will also seek to test this method elsewhere (such as the Western 457 
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United States) where the morphologies, failure modes, and orientation of landslides may 458 

highlight additional opportunities and challenges using our methodology.  459 

  460 
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Supplemental figures: 486 

 

Figure S1: Topographic slope map and landslide inventory in the Trishuli Valley. Panel A 

shows the landslide polygons for catastrophic landslides (blue and magenta) triggered by the 

Gorkha earthquake sequence and the “coherent” landslides mapped by Tsou et al., (2018). 



31 
 

Panel B shows the slope map with the catastrophic landslide inventory removed for clarity 

Most catastrophic landslides occurred along the steep inner gorges. We find the deep-seated 

landslides to occur on the intermediate slopes between 16.5° and 27.5°. 

 487 

 

Figure S2: Lithologic map for section the Trishuli River catchment shows units of Galyang 

(slates, carbonates), Ghanpokhara (carbonaceous phyllites, slates, shales, limestones), 

Naudanda (quartzites), Ulleri (gneisses), and Ranimatta (phyllites, metasandstones, 

metabasics) formations (Dhital, 2015). Landslide polygons for catastrophic landslides (blue 

and magenta) triggered by the Gorkha earthquake sequence and the “coherent” landslides 

mapped by Tsou et al., (2018).  

 488 
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Figure S3:  InSAR landslide analysis for post-Gorkha period between September 2016 and 

May 2017. For pre-Gorkha period see Figure 3. (A) Average line-of-sight (LOS) rate map 

over the period of observation. The image contains various signals including tectonic 

deformation, atmospheric noise, and local deformation signals due to human impact and 

landslides. (B) LOS rate map after applying double difference method. Our double difference 

method using a local and regional detector kernels reveals localized deformation signals 

(𝛥𝑉()*) cancelling out the long wavelength tectonics and atmospheric noise signals. The filter 
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size as shown in the legend is drawn to scale. (C) Corresponding local rate uncertainties 

(𝜎-./01) estimated from bootstrapping the time-series of local deformation. (D) Yellow pixels 

show significant local rates (%𝛥𝑉()*% − 2𝜎-./01>0) with a minimum 3-pixel cluster . Key 

clusters (i.e. landslides) A-F are highlighted by the black polygons. 

  489 
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Figure S4:  Sensitivity analysis for filter kernel size and shape for the pre-Gorkha period 

(October 2014 and April 2015). Each row shows the analysis for a different kernel filter as 

shown in the legend. The filter size as shown in the legend is drawn to scale. First column shows 

the line-of-sight (LOS) rate estimated filtered with local and regional kernel filter to reveal 

localized rate signals (𝛥𝑉()*). Second column shows the local rate uncertainties (𝜎-./01) 

estimated from bootstrapping the spatially filtered time-series. Third column shows the 

significant local rates (%𝛥𝑉()*% − 2𝜎-./01>0) with a minimum 3-pixel clusters. Changes in the 

filter kernel size and shape does not appear to have a strong impact on the identified clusters. 

Key clusters (i.e. landslides) A-F are highlighted by the black polygons. 
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 497 

 

Figure S5: Field photos of landslides C, D, and E  (see Figure 4 for location). Photos of 

landslide E are provided from two perspectives. The photos provide a ground based view of 

the landslides and show agriculture and ground surface deformation that is impacting the 

Trishuli highway (Photos courtesy of Jack G. Williams, Durham University). 
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 500 

 

 

Figure S6: Line-of-sight displacement time-series for landslides A-F (located by the magenta 
marker) with respect to their stable reference point (white diamond) for the pre-Gorka period. 
Time-series shows cumulative displacement relative to 24 March 2015, where 6.28 radians 
corresponds to approximately 2.6 cm of displacement in the radar line-of-sight. Boxes are 
approximately 4 km by 4 km in size.  
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Figure S6: Cont. 
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Figure S6: Cont. 
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 508 

 

Figure S7: Line-of-sight displacement time-series for landslides A-F (located by the magenta      
marker) with respect to their stable reference point (white diamond) for the post-Gorka period. 
Time-series shows cumulative displacement relative to 7 December 2017, where 6.28 radians 
corresponds to approximately 2.6 cm of displacement in the radar line-of-sight. Boxes are 
approximately 4 km by 4 km in size.  

 509 
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Figure S7: Cont. 
 512 
  513 



43 
 

 514 

 

 

Figure S7: Cont. 
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Supplemental Tables 517 

Table S1: Landslide statistics. Planform area (km2) is calculated as the area within the landslide 518 

polygon (Figure 4). Length (m) is calculated as the distance from the top to the bottom of the 519 

landslide along the longitudinal axis. Average width (m) is calculated as Area/Length.  520 

 521 
Landslide
name 

Area 
(km2) 

Length 
(m) 

Width 
(m) 

Mean 
Elevation 
(km) 

Mean 
Slope 
(deg) 

Min 
Slope 
(deg) 

Max 
Slope 
(deg) 

2014 Mean 
LOS 
Velocity 
(mm/yr) 

2016 Mean 
LOS 
Velocity 
(mm/yr) 

A 1.14 1552 736 2.31 16.6 10.5 29.1 -88.5±7.9 -66.6±7.0  

B 0.5 728 695 2.01 24.6 16.2 33.4 -56.2±4.5  -47.6±3.7  

C 1.37 2045 669 2.17 25.5 18.3 34.4 -30.9±6.5  -23.3±6.9  

D 0.39 490 795 2.23 25.8 22 31 -39.0±6.5  -28.2±3.5  

E 1.66 2748 605 1.75 27.5 18.1 50.1 -36.9±2.1  -36.2 ± 3.0  

F 0.85 1296 652 2.05 23.2 13.8 29.2 -26.8±6.0  -21.1±4.0  

 522 

 523 

  524 
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Table S2: Overview of interferometric pairs and their corresponding perpendicular baseline as 525 

used in our time-series InSAR analysis. 526 

 527 
ID Interferogram pair Perp. Baseline  ID Interferogram pair Perp. Baseline 

1 20141007-20141019 -36.42  75 20160306-20160610 -67.69 

2 20141007-20141031 -113.68  76 20160330-20160517 -5.87 

3 20141019-20141031 -77.26  77 20160330-20160610 -7.98 

4 20141019-20141112 2.3  78 20160330-20160728 -89.39 

5 20141019-20141124 125.98  79 20160517-20160610 -2.11 

6 20141019-20141206 84.84  80 20160517-20160728 -83.52 

7 20141019-20141218 50.53  81 20160517-20160821 69.59 

8 20141031-20141112 79.56  82 20160610-20160728 -81.41 

9 20141031-20141124 203.24  83 20160610-20160821 71.7 

10 20141031-20141206 162.1  84 20160610-20160914 25.58 

11 20141112-20141124 123.68  85 20160728-20160821 153.11 

12 20141112-20141206 82.54  86 20160728-20160914 106.99 

13 20141112-20141218 48.23  87 20160728-20160926 156.52 

14 20141112-20150111 66.6  88 20160821-20160914 -46.12 

15 20141124-20141206 -41.14  89 20160821-20160926 3.41 

16 20141124-20141218 -75.45  90 20160821-20161008 -18.71 

17 20141124-20150111 -57.08  91 20160914-20160926 49.53 

18 20141124-20150123 1.01  92 20160914-20161008 27.41 

19 20141206-20141218 -34.31  93 20160914-20161014 27.83 

20 20141206-20150111 -15.94  94 20160926-20161008 -22.12 

21 20141206-20150123 42.15  95 20160926-20161014 -21.7 

22 20141206-20150216 -60.4  96 20160926-20161020 -88.4 

23 20141218-20150111 18.37  97 20161008-20161014 0.42 

24 20141218-20150123 76.46  98 20161008-20161020 -66.28 
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25 20141218-20150216 -26.09  99 20161008-20161101 42.01 

26 20150111-20150228 -119.74  100 20161014-20161020 -66.7 

27 20150123-20150216 -102.55  101 20161014-20161101 41.59 

28 20150216-20150228 -75.28  102 20161014-20161107 23.51 

29 20150216-20150312 -104.36  103 20161020-20161101 108.29 

30 20150216-20150324 -45.16  104 20161020-20161107 90.21 

31 20150216-20150405 12.47  105 20161020-20161113 63.03 

32 20150216-20150417 -9.23  106 20161101-20161107 -18.08 

33 20150228-20150312 -29.08  107 20161101-20161113 -45.26 

34 20150228-20150405 87.75  108 20161101-20161201 -0.8 

35 20150312-20150405 116.83  109 20161107-20161113 -27.18 

36 20150324-20150417 35.93  110 20161107-20161201 17.28 

37 20150429-20150511 -44.99  111 20161107-20161207 -17.93 

38 20150429-20150523 -55.18  112 20161113-20161201 44.46 

39 20150429-20150604 41.26  113 20161113-20161207 9.25 

40 20150511-20150523 -10.19  114 20161113-20161219 26.59 

41 20150511-20150604 86.25  115 20161201-20161207 -35.21 

42 20150511-20150628 124.26  116 20161201-20161219 -17.87 

43 20150523-20150604 96.44  117 20161201-20161225 -17.74 

44 20150523-20150628 134.45  118 20161207-20161219 17.34 

45 20150523-20150710 -118.77  119 20161207-20161225 17.47 

46 20150604-20150628 38.01  120 20161207-20161231 91.77 

47 20150604-20150710 -215.21  121 20161219-20161225 0.13 

48 20150604-20150722 -64.54  122 20161219-20161231 74.43 

49 20150628-20150710 -253.22  123 20161219-20170112 26.13 

50 20150628-20150722 -102.55  124 20161225-20161231 74.3 

51 20150628-20150815 -99.34  125 20161225-20170112 26 

52 20150710-20150722 150.67  126 20161225-20170118 -64.31 
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53 20150710-20150815 153.88  127 20161231-20170112 -48.3 

54 20150710-20150827 181.34  128 20161231-20170118 -138.61 

55 20150722-20150815 3.21  129 20161231-20170124 -125.61 

56 20150722-20150827 30.67  130 20170112-20170118 -90.31 

57 20150722-20150908 -13.16  131 20170112-20170124 -77.31 

58 20150815-20150827 27.46  132 20170112-20170205 -85.76 

59 20150815-20150908 -16.37  133 20170118-20170124 13 

60 20150815-20151107 -61.98  134 20170118-20170205 4.55 

61 20150827-20150908 -43.83  135 20170118-20170211 104.88 

62 20150827-20151107 -89.44  136 20170124-20170205 -8.45 

63 20150827-20160211 -78.77  137 20170124-20170211 91.88 

64 20150908-20151107 -45.61  138 20170124-20170301 -36.44 

65 20150908-20160211 -34.94  139 20170205-20170211 100.33 

66 20150908-20160306 38.59  140 20170205-20170301 -27.99 

67 20151107-20160211 10.67  141 20170205-20170313 70.78 

68 20151107-20160306 84.2  142 20170211-20170301 -128.32 

69 20151107-20160330 24.49  143 20170211-20170313 -29.55 

70 20160211-20160306 73.53  144 20170211-20170325 -96.59 

71 20160211-20160330 13.82  145 20170301-20170313 98.77 

72 20160211-20160517 7.95  146 20170301-20170325 31.73 

73 20160306-20160330 -59.71  147 20170313-20170325 -67.04 

74 20160306-20160517 -65.58     

  528 
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Table S3: Processing workflow. Star indicates processing steps that are carried out for the pre- and post Gorkha earthquake 529 

periods separately. 530 

Step Processing Description Data Output  

1 ISCE TOPS Stack processor Coregistered SLC stack 

2* ISCE2StaMPS 

Unwrapped Small Baseline Interferograms 
 3* StaMPS Small Baseline method up to unwrapping stage 

4* Mask out pixels over flat terrain (slope < 5 degrees) and those that 
are in shadow or lay-over 

5* Local and regional filtering of SB interferograms Double differenced unwrapped Small 
Baseline Interferograms 

6* StaMPS time-series analysis  
Double Difference “rate”(𝛥𝑉()*) and “rate 
uncertainty” (𝜎-./01) 

7* 
Thresholding to only show significant local processes %𝛥𝑉()*% −
2𝜎-./01>0 

Cluster map of significant local processes 

8* Clustering requiring minimum of 3 pixels per cluster 

 531 

  532 
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