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Abstract of the Dissertation

Passive Imaging of a Spherical Inclusion by Elastic Waves

By

Lingxiao Zhang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2016

Professor Knut Sølna, Chair

A method is proposed to detect and estimate the location of the spher-

ical inclusion in the homogeneous isotopic elastic medium. The signals are

emitted by ambient noise sources and recorded by a sensor array. The vector

nature of elastic waves is exploited to find a proper imaging function to detect

and locate the inclusion. We consider imaging of a spherical inclusion using

seismic wave recordings.
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Chapter 1

Introduction

Imaging with waves involves probing an unknown medium with waves and information from

reflection. These waves can be acoustic, elastic or electro-magnetic. They can be generated

by controlled sources or by unknown ambient noise sources. They are recorded by a set of

sensors. Sensor imaging usually involves two steps. The first step is experimental, it consists

in recording the waves generated by sources on a sensor array. The second step is numerical,

it consists in processing the recorded data in order to estimate some relevant featrues of the

medium. In [3, 4, 27], the analysis of passive imaging was proposed.

The theory of wave scattering, as developed in the fields of optics and acoustics, has

been adapted to the case of elasitc waves. The full treatment of elastic wave scattering is

not a simple task, and most seismological studies have employed various approximations in

their use of scattering theory. One method of checking the validity of the approximations

is to compare them with exact analytical solutions. In our study, we consider a spherical

inclusion and exploit the explicit results available for the scattering off of such an object.

The theory of wave scattering, as developed in the fields of optics and acoustics, has been

adapted to the case of elasitc waves. The treatment of the canonical scattering problem for

the spherical inclusion has a long history. Light scattering was analyzed in [18] in terms of

a series of spherical harmonics, and a comprehensive discussion of this topic can be found in

[19]. Elastic scattering by spherical obstacles has also been the subject of many publications

[20, 21, 22, 23, 24]. Our study follows displacement approach in [23, 24]. Details of the

analytical and numerical aspects of the scattering problem for P waves incident upon a

1



spherical inclusion can be found in [25, 26].

In our study, we consider the problem with an source that generate signals and the waves

are recorded at the surface by the receivers. Then the recorded signals are time-reversed

and sent back into the medium. There will be strong correlation between S waves and P

waves around the inclusion. As a result, we can make use of the cross correlation between

P waves and S waves to find the imaging function and then locate the inclusion. The idea

of using the cross correlation of noisy signals to retrieve information was first proposed in

helioseismology and seismology [6, 7, 8]. This idea has been widely applied to background

velocity estimation from regional to local scales [9, 11, 10], petroleum prospecting [15], and

volcano monitoring [12, 14, 13]. In [16], correlation methods for imaging in randomly layered

media are analyzed. When the support of the random noise sources extends over all space

and they are uncorrelated, [17] shows that the derivative of the cross correlation of the

recorded signals is the symmetrized Greens function between the sensors.

The rest of the dissertation is structured as follows. In Chapter 2, we provide a reference

on the important concepts, definitions and theories that we used in our work. In Chapter 3,

we discussed the model configuration and imaging functions in different cases. In Chapter 4,

we presented the resolution analysis with respect to different imaging functions in different

cases. In Chapter 5, we analyzed the stability of imaging functions. In Chapter 6, we

presented numerical results of all the cases in the previous chapters. In Chapter 7, we

summarized our results in tables.
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Chapter 2

Basic Definitions and Theories

In this chapter, we will discuss the basic definitions and theories that used through this work.

2.1 The Elastic Waves

Elastodynamics is the study of elastic waves and involves linear elasticity with variation in

time. An elastic wave is a type of mechanical wave that propagates in elastic or viscoelastic

materials. The elasticity of the material provides the restoring force of the wave. When

they occur in the Earth as the result of an earthquake or other disturbance, elastic waves

are usually called seismic waves.

P-wave is a type of elastic wave, called seismic waves in seismology, that can travel

through a continuum. The continuum is made up of gases, liquids, or solids, including

the Earth. P-waves can be produced by earthquakes and recorded by seismographs. The

name P-wave is often said to stand either for primary wave, as it has the highest velocity

and is therefore the first to be recorded; or pressure wave, as it is formed from alternating

compressions and rarefactions. In isotropic and homogeneous solids, the mode of propagation

of a P-wave is always longitudinal; thus, the particles in the solid have vibrations along or

parallel to the travel direction of the wave energy.

S-wave is a type of elastic wave, called secondary wave, or shear wave, which is one of the

two main types of elastic body waves, so named because they move through the body of an

object, unlike surface waves. The S-wave moves as a shear or transverse wave, so motion is

3



perpendicular to the direction of wave propagation. The wave moves through elastic media,

and the main restoring force comes from shear effects.

In our study, we will use the properties of P-waves and S-waves to find the imaging

function, and then find the location of the inclusion.

2.2 The Elastic Wave Equation

The displacement field u must satisfy the equations of motion for a homogeneous isotropic

elastic medium. Here, the displacement is the shortest distance from the initial to the final

position of a point, and the displacement field is also called the vector field. The elastic wave

equation (Appendix A) is as below:

ρutt − δλ,µ = f(t, x)

δλ,µ = (λ+ µ)∇(∇ · u) + µ∆u

where ρ is the density; u is the displacement fro the wave; f(t, x) denotes the source term,

and also we can treat it as the body force; λ,µ are Lame parameters: λ is also called Lame’s

first parameter and µ is the shear modulus or Lame’s second parameter. In homogeneous and

isotropic materials, Lame’s parameters define Hooke’s law in 3D: σ = 2µε + λtr(ε)I, where

σ is the stress, ε the strain tensor, I the identity matrix and tr(·) the trace function.The two

parameters together constitute a parameterization of the elastic moduli for homogeneous

isotropic media.

Also, we can use the following Momentum equation (Appendix A.1) :

ρ
∂2ui
∂t2

=
∂τij
∂xj

+ fi,

where the stress tensor τij is the Cauchy stress tensor which is a second order tensor of a

linear map with nine components τij that completely define the state of stress at a point

inside a material in the deformed placement or configuration. The tensor relates a unit-

length direction vector n to the stress vector T(n) across an imaginary surface perpendicular

to n as Figure ?? in Appendix:
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τ =


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 .
In isotropic medium, the linear stress-strain relaionship (Appendix A.2):

τij = λ
∂uk
∂xk

δij + µ(
∂ui
∂xj

+
∂uj
∂xi

),

then it becomes

ρ
∂2ui
∂t2

=
∂

∂xi
(λdiv u) +

∂

∂xi
(µ
∂ui
∂xj

+ µ
∂uj
∂xi

).

Assume that p is the pressure, and εkl is a part of stess tensor, that is the second term of

τkl, then:

p = λ∇u

εkl = µ(
∂ul
∂xk

+
∂uk
∂xl

).

Plugging in the stress tensor τkl, then:

τkl = p(t, x)δkl + εkl

εk =
∂uk
∂t

.

Thus, we have a symmetric hyperbolic problem for (εi, εij, p), here, i, j = 1, 2, 3 and it is a

10 dimesional system.

2.3 The Cross Correlation

In our study, we consider the problem with an source that generate signals and the waves

are recorded at the surface by the receivers. Then the recorded signals are time-reversed and

sent back into the medium. There will be strong correlation between S waves and P waves

5



around the inclusion. As a result, we can make use of the cross correlation between P waves

and S waves to find the imaging function and then locate the inclusion.

In signal processing, cross-correlation is a measure of similarity of two waveforms as a

function of a time-lag applied to one of them. This is also known as a sliding dot product or

sliding inner-product. It is commonly used for searching a long signal for a shorter, known

feature.

For continuous functions f and g, we define the cross-correlation by:

(f ∗ g)(τ)
def
=

1

T

∫ T
2

−T
2

f̄(t) g(t+ τ) dt,

where f̄ denotes the complex conjugate of f and τ is the time lag; T denotes the period that

the correlation exists.

In our study, we assume that u(t,x1) and u(t,x2) denote the time- dependent wave fields

recorded by two sensors at x1 and x2. Their cross correlation function over the time interval

[0, T ] with time lag τ is given by:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt.

In a homogeneous medium, if the source of the waves is a space-time stationary random field

that is also delta correlated in space and time, it has been shown that

∂

∂τ
CT (τ,x1,x2) ∼ −[G(τ,x1,x2)−G(−τ,x1,x2)],

where G is the Green’s function. This approximate equality holds for T sufficiently large

and provided some limiting absorption is introduced to regularize the integral. The main

point here is that the time-symmetrized Green’s function can be obtained from the cross

correlation if there is enough source diversity. In this case the wave field at any sensor is

equipartitioned, in the sense that it is a superposition of uncorrelated plane waves of all

directions. We can recover in particular the travel time τ(x1,x2) from the singular support

of the cross correlation.
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Chapter 3

Passive Imaging

Consider a two-part isotropic medium(as Figure 3.1) consisting of a spherically symmetric

inclusion V1(part ν = 1) with radius r = R having elastic parameters λ1, µ1 and density ρ1

which is embedded in a homogeneous elastic surrounding medium (part ν = 2) having elastic

parameters λ2, µ2 and density ρ2. The inclusion V1 may contain a number of internal shells

which are bounded by spherical interfaces where the material properties or their spatial

derivatives are radially discontinuous. Also, P waves and S waves pass through V1 with

different velocities. The boundary conditions on such interfaces as well as those at the surface

r = R are linear and homogeneous. Here, homogeneity and heterogeneity are concepts

relating to the uniformity in a substance. A material that is homogeneous is uniform in

composition or character; one that is heterogeneous is distinctly nonuniform in one of these

qualities.

We assume that all elastic displacement fields under consideration have harmonic time

dependence of the form eiωt where ω is the angular frequency. Joint Cartesian {x, y, z} and

spherical {r, θ, φ} coordinate systems with the origin at the center of the inclusion will be

used.

Incident from medium ν = 2 is a harmonic disturbance with a displacement field given

by

Ũ0 = U0(x, y, z)eiωt.

The interaction of this incident wave with the inclusion gives rise to additional displacement

7



Figure 3.1: The Medium with Inclusion

fields both inside and outside the inclusion, and these are denoted by

Uν = Uν(x, y, z). (ν = 1, 2)

Since we will be primarily interested in the properties of the additional disturbance outside

the inclusion, this field with subscript 2 will be referred to as the scattered field Usc = U2.

Thus, the total field U in the outer medium ν = 2 is a sum of the incident wave and scattered

field

U = U0 + Usc.

The field U, as well as both of its individual components, must satisfy the equation of motion

for a homogeneous isotropic elastic medium:

(λ+ µ)∇(∇ · U) + µ∆U + ρω2U = 0.

We denote the velocities of the compressional and shear waves and their ratio by

v(ν)
p =

√
λν + 2µν

ρν
, v(ν)

s =

√
µν
ρν
,

with the understanding that no superscript implies the surrounding medium, vp = v
(2)
p ,

8



(a)Wave Propagation (b): Search Point

Figure 3.2: The Model Configuration

vs = v
(2)
s . We require that the scattered field satisfy a radiation condition at large distances

from the inclusion

Usc ≈
Ap(θ, φ)

r
e−ikpr +

As(θ, φ)

r
e−iksr, r →∞,

where the wavenumber kp = ω/v
(2)
p and ks = ω/v

(2)
s . The functions Ap(θ, φ) and As(θ, φ)

will be referred to as scattering diagrams of compressional and shear waves, respectly. The

above formula shows that the sources must be sources, not sinks of energy; the energy which

is radiated from the sources must scatter to infinity; no energy may be radiated from infinity

into the field.

Figure 3.2(a) shows our model: There are several receivers on the x-axis. The inclusion

with radius of R is in the homogeneous isotopic elastic medium. The source plane wave prop-

agates in the direction ~µ. Our goal is to detect and estimate the location of the spherically

symmetric inclusion by using the recorded data from receivers.

9



3.1 Modeling of the Source

We assume that the source field is:

U0 = e−ikp(~x·~µ−l0)v̂(ω)~µ,

where kp = ω/cp, and ~µ = (− sin(φ), 0, cos(φ)). Here, v(t) is a stationary stochastic process.

In our study, we suppose that v(t) ∼ N(0, C(0)), where C(h) = cov(v(t), v(t + h)), with

C(·) satisfies:C(0) ≥ 0;|C(h)| ≤ C(0); C(h) = C(−h). Actually, the harmonic disturbance

of displacement field is:

Ũ0 = U0e
iωt.

3.2 Conversion at the Scatterer

From [2], scattering of an arbitrary elastic wave incident upon a spherically symmetric in-

clusion is considered and solutions are developed in terms of the spherical vector system

of Petrashen, which produces results in terms of displacements rather than displacement

potentials and in a form suitable for accurate numerical computations.

The two components of the scattered field UP
P and UP

S in the spherical {r̂, θ̂, φ̂} coordinate

system are as below:

UP
P = A

{
−1

2

3
2
(λ1 − λ2) + µ1 − µ2

1
2
(3

2
λ1 + µ1) + µ2

+ (
ρ1

ρ2

− 1) cosφ+
2

3
(
µ1

µ2

− 1)
γ2

D
(1− 3 cos2 φ)

}
r̂(3.1)

UP
S = B

{
−(
ρ1

ρ2

− 1) sinφ+ (
µ1

µ2

− 1)
γ

D
sin 2φ

}
θ̂.(3.2)

Here,

A =k2
p

V

4πh
e−ikp(r+l̃)v̂(ω), B = k2

s

V

4πh
e−i(ksr+l̃kp)v̂(ω),

V =
4

3
πR3, D = 1 +

2

15
(
µ1

µ2

− 1)(3 + 2γ2),

where v̂(ω) is the Fourier transform of the source term; R is the radius of the inclusion; V is

10



the volume of the inclusion; kp and ks are wave numbers for P waves and S waves: kp = ω
vp

and ks = ω
vs

; l̃ is the distance between the source and the inclusion; r is the distance between

the inclusion and the receiver; γ denotes the ratio of the velocity of P waves and the velocity

of S waves, that is, γ = vs
vp

=
√

µ
λ+2µ

.

In the following sections, we will make use of the above equations to represent the scat-

tering P waves and S waves, and show the correlation between them.

3.3 Imaging Function

In this section, we presented imaging functions for different cases with respect to different

assumptions.

Before presenting imaging functions, we simplified the scattering components under some

assumptions. The observed data U = U0 + Usc, where Usc = UP
P + UP

S . See Figure 3.2(b),

suppose that the coordinates of the inclusion is (0, 0, 0), the coordinates of the search point

is (∆x, 0,∆z) and the coordinates of the receiver is (a, 0, h). Under the scaling assumption:

a� h, we can have the following approximation, and also, a,∆x,∆z � 1. Then the distance

between inclusion and the receiver is:

r(a) =
√
h2 + a2 ∼ h+

a2

2h
,

where a ∈ [−A
2
, A

2
]. In Figure 3.2(b), suppose that the coordinates of the inclusion is (0, 0, 0),

the coordinates of the search point is (∆x, 0,∆z) and the coordinates of the receiver is

(a, 0, h). Then the distance between inclusion and the receiver is:

r(a) =
√
h2 + a2 ∼ h+

a2

2h
,(3.3)

where a ∈ [−A
2
, A

2
]. In Figure 3.2(b), there is a search region which contains the location of
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the inclusion. The distance between the search point and the receiver is defined as:

r∆(a) =
√

(h−∆z)2 + (a−∆x)2 ∼ (h−∆z) + (a−∆x)2/2(h−∆z)

∼ (h−∆z) + a2/2h− a∆x/h+ a2∆z/2h2

+O(∆x2, a∆x∆z, a2∆z2).

Thus, by (3.3) we can approximately rewrite (3.1) and (3.2) into:

UP
P ∼ ω2C1(φ)e−ikp(l̃+h+a2

2h
)v̂(ω)~e3,

US
P ∼ ω2C2(φ)e−iks(h+a2

2h
)−ikp l̃v̂(ω)~e1,(3.4)

where Ci(φ) are constant terms related to φ as below:

C1(φ) =
R3

3hv2
p

{
−1

2

3
2
(λ1 − λ2) + µ1 − µ2

1
2
(3

2
λ1 + µ1) + µ2

+ (
ρ1

ρ2

− 1) cosφ+
2

3
(
µ1

µ2

− 1)
γ2

D
(1− 3 cos2 φ)

}
C2(φ) =

R3

3hv2
s

{
−(
ρ1

ρ2

− 1) sinφ+ (
µ1

µ2

− 1)
γ

D
sin 2φ

}
.

In the following sections, we will utilize (3.4) to represent the scattering P waves and the

scattering S waves, and they are important components in imaging functions.

3.3.1 With Known Sources

In Known Source Case, we suppose that the location and the properties of the source are

known, then we can get the imaging function by computing the correlation between incident

waves and the backpropagated scattering waves. In this section, there are two subsections:

With One Sensor; With Many Sensors.

With One Sensor

Suppose we have one sensor only, then the incident waves (we consider P waves only) propa-

gate to the inclusion and then are scattered by the inclusion, later, we receive the scattering

P waves and S waves at the sensor. After that, we backpropagate the received signals, then

12



Figure 3.3: The Configuration for One Sensor

we should get the maximal correlation at inclusion, not other search points. Figure 4.5 shows

the model configuration for this special case. In Figure 3.4, we compare the signals with

received data at inclusion, at sensors and backpropagated scattering waves. The red line

denotes the signal, and the blue line denotes the incident waves at inclusion in Figure 3.4a;

the blue line denotes the received data at sensors in Figure 3.4b; the blue line denotes the

backpropagated scattering waves at the search point in Figure 3.4c. To amplify the details

in Figure 3.4, we can find the curve for scattering waves is the curve for soruce signals with

several units of shift. See Figure 3.5.

Assume that v(t) denotes the source signals, then v(t + l̃
cp

) denotes the incident waves

at inclusion, where l̃ is the distance between the source and the inclusion. We can find that

it is a time-lag beween the source signals and the incident waves at inclusion (Figure 3.5a).

Similary,v(t+ l′

cp
) denotes the incident waves at search point, where l′ is the distance between

the source and the search point. v(t+ l̃
cp

+ r(a)
cp

) denotes the received P component scattering

waves at sensor (Figure 3.5b), where r(a) is the distance between inclusion and the sensor.

Also, v(t+ l̃
cp

+ r(a)
cp
− r∆(a)

cp
) denotes the backpropagated scattering P waves at search point,

where r∆(a) is the distance between the search point and the sensor.
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Figure 3.4: Comparing Signals with Received Data at Different Locations
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Figure 3.5: More Details for Comparing Signals with Received Data at Different Locations
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In the frequency domain, at search point, by using the Fourier Transform,

Incident Waves ∝ v̂(ω)e−ikpl
′

Backpropagated Waves ∝ v̂(ω)e−ikp l̃e−ikpr(a)eikpr
∆(a)

If e−ikpl
′

= e−ikp l̃e−ikpr(a)eikpr
∆(a), then the incident waves and backpropagated waves will

share same curve, and the correlation beween them will achieve the maximal values. Thus,

when the above equation can be satisfied, we can achieve the maximal correlation between

incident waves and backpropagated waves. To simplify the above equaion, we can get

kp(l
′ − l̃ − r(a) + r∆(a)) = 2kπ,

where k is an integer. We can find that the solution to this equation depends on the location

of the sensor, i.e. when the location of the sensor differs, we will get the maximal values

along different curves. It was showed in Figure 6.4.

Assume that the sensor is located at (a, 0, h), the inclusion is at (0, 0, 0) and the source is

at (l̃ sinφ, 0,−l̃ cosφ), then the solution to the above equation will be achieved on a ellipse.

More details and figures will be in the Simulation Section. As a result, we can make use

of the correlation between incident waves and backpropagated waves to find our imaging

function. If we use P component scattering waves only, the imaging function for this case:

I(∆x,∆z) =

∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)dt

=

∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dω,

where F denotes the Fourier transform, and F(v̄(t+ l′

cp
)) = ¯̂v(ω)eikpl

′
and F(v(t+ l̃

cp
+ r(a)

cp
−

r∆(a)
cp

)) = v̂(ω)e−ikp l̃ω2e−ikpr(a)eikpr
∆(a).
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The above imaging function is as below:

I(∆x,∆z) ∼
∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dω

∼
∫

¯̂v(ω)eikpl
′
v̂(ω)e−ikp l̃ω2e−ikpr(a)eikpr

∆(a)dω

∼
∫

¯̂v(ω)v̂(ω)ω2eikpl
′−ikp l̃−ikpr(a)+ikpr∆(a)dω.

Here, v̄ denotes the conjugate of v; v̂(ω)e−ikp l̃ denotes the received signals at inclusion;

v̂(ω)e−ikpl
′

denotes the received signals at search point; v̂(ω)e−ikp l̃ω2e−ikpr(a) denotes the

received P component scattering waves at the sensor; v̂(ω)e−ikp l̃ω2e−ikpr(a)eikpr
∆(a) denotes

the backpropagated scattering P waves at search point. In Figure 4.5, it shows the model

configuration for one sensor case.

Similarly, if we use S component scattering waves only, then the imaging function is:

I(∆x,∆z) =

∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dt

=

∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dω.

With Many Sensors

Instead of one sensor only, we suppose that we have many sensors in an array. Then similarly,

the incident waves propagate to the inclusion and then are scattered by the inclusion, later,

we receive the scattering waves at the sensors. After that, we backpropagate the received

signals from sensors, then we should get the maximal correlation at inclusion, where we have

coherence from all sensors.

As a result, if we use P component scattering waves only, the imaging function for this

case:

I(∆x,∆z) =A−1T−1

∫∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)dtda

=A−1T−1

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dωda.
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Similarly, if we use S component scattering waves only, then the imaging function is:

I(∆x,∆z) =A−1T−1

∫∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dtda

=A−1T−1

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dωda.

There is no big difference of the form of imaging function between One-sensor Case and

Many-sensor case, but later, we can find they are totally different in the simulation. For

One-sensor Case, we cannot find the unique maximum values, but for Many-Sensor case, we

can find the unique maximum values for the imaging function.

3.3.2 With Unknown Sources

In Unknown Source Case, we suppose that the location and the properties of the source

are unknown, then we can get the imaging function by computing the correlation between

the backpropagated scattering P waves and S waves. In this case, we have to use the

scattering P waves and S waves both. Without knowing the location of the source, we do

not have information to derive the function to denote the incident waves at search points, as a

result, we cannot achieve the correlation between the incident waves and the backpropagated

scattering waves at search points. In this section, there are two subsections: With One

Sensor; With Many Sensors.

One Sensor

Suppose we have one sensor only, then the incident waves (P waves only) propagate to the

inclusion and then are scattered by the inclusion, later, we receive the scattering P waves

and S waves at the sensor. The process of wave propagation is similar to the Known Source

Case. After that, we backpropagate the received signals, then we should get the maximal

correlation between the backpropagated scattering S waves and P waves at inclusion, not

other search points.

Assume that v(t) denotes the source signals, since the distance between the source and

the inclusion l̃ is unknown, we cannot find the incident waves at inclusion. However, we
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can receive the scattering S waves US
P and the scattering P waves UP

P . In the time domain,

v(t+ l̃
cp

+ r(a)
cp
− r∆(a)

cp
) denotes the backpropagated scattering P waves at search point, where

r(a) is the distance between inclusion and the sensor and r∆(a) is the distance between the

search point and the sensor. Similarly, v(t + l̃
cp

+ r(a)
cs
− r∆(a)

cs
) denotes the backpropagated

scattering S waves at search point.

In the frequency domain, the backpropagated scattering P waves

Usc · ~e3(t− r∆(a)/cp) ∼
∫
UP
P e
−iω(t−r∆(a)/cp)dω

∼
∫
ω2Cp(φ)e−ikp(r(a)+l̃)v̂(ω)e−iω(t−r∆(a)/cp)dω,

where UP
P denotes the scattering P waves as (3.1).

In the other hand, the backpropagated scattering S waves

Usc · ~e1(t− r∆(a)/cs) ∼
∫
US
P e
−iω̃(t−r∆(a)/cs)dω̃

∼
∫
ω̃2Cs(φ)e−ik̃sr(a)−ik̃p l̃v̂(ω̃)e−iω̃(t−r∆(a)/cs)dω̃,

where US
P denotes the scattering S waves as (3.2).

By the definition of the cross correlation, we can untilize the correlation between the

backpropagated scattering S waves and P waves to get the imaging function in the Unknown

Source case with one sensor:

I(∆x,∆z) = T−1

∫ T/2

−T/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dt,

where Usc · ~e3 is the scattering P waves and Usc · ~e1 is the scattering S waves; Usc · ~e3(t −

r∆(a)/cp) and Usc · ~e1(t− r∆(a)/cs) are backpropagated scattering P waves and S waves as

above.

Assuming that ω = ω̃, if e
−iω(t+ l̃

cp
+
r(a)
cs
− r

∆(a)
cs

)
= e

−iω(t+ l̃
cp

+
r(a)
cp
− r

∆(a)
cp

)
, then the backprop-

agated S waves and P waves will share same curve, and the correlation beween them will

achieve the maximal values. Thus, when the above equation can be satisfied, we can achieve

the maximal correlation between the backpropagated P waves and S waves.
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To simplify the above equaion, we can get

(kp − ks)(r(a)− r∆(a)) = 2kπ,

where k is an integer. We can find that the solution to this equation depends on the location

of the sensor, i.e. when the location of the sensor differs, we will get the maximal values

along different curves. It was showed in Figure 6.9.

Assume that the sensor is located at (a, 0, h) and the inclusion is at (0, 0, 0), then the

solution to the above equation will be achieved on a circle. More details and figures of

simulations will be in Chapter 6. As a result, we can make use of the correlation between

the backpropagated P waves and S waves to find our imaging function. Under the assumption

ω = ω̃, the imaging function with one sensor only in the Unknown Source case:

I(∆x,∆z) =

∫
v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dt

=

∫
F(v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dω,

where F denotes the Fourier transform, then F(v̄(t+ l̃
cp

+ r(a)
cp
− r∆(a)

cp
)) = ¯̂v(ω)eikp l̃ω2eikpr(a)e−ikpr

∆(a)

and F(v(t+ l̃
cp

+ r(a)
cs
− r∆(a)

cs
)) = v̂(ω)e−ikp l̃ω2e−iksr(a)eiksr

∆(a).

The above imaging function is as below:

I(∆x,∆z) ∼
∫
F(v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dω

∼
∫

¯̂v(ω)eikp l̃ω2eikpr(a)e−ikpr
∆(a)v̂(ω)e−ikp l̃ω2e−iksr(a)eiksr

∆(a)dω.

Here, v̄ denotes the conjugate of v; v̂(ω)e−ikpl
′

denotes the received signals at search point;

v̂(ω)e−ikp l̃ω2e−ikpr(a) denotes the received P component scattering waves at the sensor; v̂(ω)e−ikp l̃ω2e−ikpr(a)eikpr
∆(a)

denotes the backpropagated scattering P waves at search point; v̂(ω)e−ikp l̃ω2e−iksr(a)eiksr
∆(a)

denotes the backpropagated scattering S waves at search point.
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With Many Sensors

Instead of one sensor only, we suppose that we have many sensors in an array. Then we have

the similar wave propagation process. After that, we backpropagate the received signals from

sensors, then we should get the maximal correlation at inclusion, where we have coherence

from all sensors.

By using the above formulas and the definition of the cross correlation, we can get the

imaging function:

I(∆x,∆z) = T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda,

where Usc · ~e3 is the scattering P waves and Usc · ~e1 is the scattering S waves; Usc · ~e3(t −

r∆(a)/cp) and Usc · ~e1(t − r∆(a)/cs) are backpropagated scattering P waves and S waves.

Then, the imaging function can be written as

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃v̂(ω)¯̂v(ω̃)eikpr
∆(a)e−ik̃sr

∆(a)e−iωteiω̃t dtdadωdω̃.

Suppose that ω = ωc = const, by using the properties of the Fourier transform,

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)T−1A−1

∫ A/2

−A/2
da

∫ T/2

−T/2
E[v(t−r(a)− r∆(a)

cp
)v(t−r(a)− r∆(a)

cs
)]dt.

Assume that the correlation C( τ
l
) = E[v(t)v(t + τ)], where l is the correlation length and

l = 1
C(0)

∫∞
−∞C(h)dh. Then, by the property of the stationary stochastic process,

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da.

After achieving the above function, we can do the resolution analysis in the following chapter.
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3.3.3 Image Contribution of Incident Waves

In this section, we consider a new case. Assume that the source is unknown, however, when

we received the scattering P waves and the scattering S waves in the sensors, actually, we can

also receive incident P waves. Since the incident P waves and the scattering P waves are both

P waves and they behave in the same way, it is impossible to seperate the scattering P waves

and the incident P waves in the received data. As a result, we need to consider the image

contribution of the directly transmitted waves, that is, the incident waves’ contribution. To

build the imaging funcion, we will have to use both the scattering P waves and the incident

P waves, then the final imaging function in the simulation consist of two components: the

correlation between backpropagated incident P waves and the backpropagated scattering S

waves; the correlation between backpropagated scattering P waves and the backpropagated

scattering S waves. By using the received data, our imaging function will be:

Isim = I + Iincident.

Here, I is the imaging function we mentioned in the above sections; Iincident is the correlation

between backpropagated incident P waves and the backpropagated scattering S waves. In

the simulation, the imaging function Isim is the correlation between the backpropagated

scattering S waves and the backpropagated P waves which includes backpropagated incident

P waves and backpropagated scattering P waves because of the seperation issue.

In the above sections, we get some results without considering the incident wave term.

In this section, we will do the similar simulation with considering the incident wave term.
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Then, our imaging function with the incident wave component term is as below:

Isim(∆x,∆z) =T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)

+ U0 · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda

=T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃t

+ ω̃2Cs(φ)e−ikp l̂(a)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃tdtdadωdω̃.(3.5)

3.3.4 With Unknown Pulse Source Case

In this case, the source is unknown but it is pulse source instead of gaussian source. Suppose

that our source is a continuous pulse source:

(3.6) ρ(t) = cos(ω0t) ∗ e−( t
t0

)2/2
,

where ω0 and t0 are parameters and ω0 � 1
t0

. The above pulse function is the product of

the cosine function and the Gaussian kernal. The source gennerated a continuous pulse, and

scattered at inclusion, then we can receive scattering P waves and S waves. Since our source

is also unknown, based on the unknown source case, our imaging function in the continous

pulse source case:

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃ρ̂(ω)¯̂ρ(ω̃)eikpr
∆(a)e−ik̃sr

∆(a)e−iωteiω̃tdtdadωdω̃.(3.7)

Similarly, if we have a rectangular pulse source, then we will have a similar imaging function.
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Chapter 4

Resolution Analysis

To quantify the imaging resolution we compute the point spread function (PSF), which is

the spatial profile of the imaging functional centered at a point reflector. The cross range

resolution and the range resolution are the widths of PSF in the transverse and longitudinal

directions, respectively. In our study, we need to use the analysis of PSF to find the region

for search points.

4.1 With Known Sources Case

In this section, we will show the resolution analysis in the Known Source Case.

Proposition 4.1.1. Suppose we have a known source which is a stationary stochastic process,

based on the imaging function in the known source case, we have the following:

1. Considering P component scattering waves only, then

PSF ∼
∫ A/2

A+h sinφ

−A/2
A+h sinφ

e−|∆z̃
′
+∆x̃

′
a
′ |da

′
,

where φ is the acute angle between z axis and the direction in which signals propagate

from the source to the inclusion. In addition, the transverse radius of the focal spot is

λp
A
h

+sinφ
and the longitudinal radius of the focal spot is λp√

2−2 cosφ
.
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2. Considering S component scattering waves only, then

PSF ∼
∫ Acp/2

Acp+hcs sinφ

−Acp/2
Acp+hcs sinφ

e−|∆z̃
′
+∆x̃

′
a
′ |da

′
.

In addition, the transverse radius of the focal spot is 1
A
hλs

+ sinφ
λp

and the longitudinal

radius of the focal spot is

√
( sinφ
Aλp
hλs

+sinφ
)2+1

1
λs
− cosφ

λp

.

Proof. From the last section, if we use P component scattering waves only, the imaging

function is:

I(∆x,∆z) =

∫∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)dtda

=

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dωda.

Approximately, it is equivalent to

E[I(∆x,∆z)] ∼ T−1A−1

∫ A/2

−A/2
da

∫ T/2

−T/2
E[v(t+

l′

cp
)v(t+

l̃

cp
+
r(a)− r∆(a)

cp
)]dt.

Suppose that C( τ
l
) = E[v(t), v(t+τ)], where l is the correlation length and l = 1

C(0)

∫∞
−∞C(h)dh.

Then,by the property of the stationary stochastic process,

E[I(∆x,∆z)] ∼ A−1

∫ A/2

−A/2
daC(

l′−l̃
cp
− r(a)−r∆(a)

cp

l
),

where l′ =
√

(l̃ sinφ−∆x)2 + (−l̃ cosφ−∆z)2; r(a) =
√
h2 + a2; r∆(a) =

√
(a−∆x)2 + (h−∆z)2.

In Figure 4.5, the inclusion is at (0, 0, 0), the sensors are located at (a, 0, h) (a ∈ [−A
2
, A

2
]),

the search point is at (∆x, 0,∆z), the source location is known, that is, (l̃ sinφ, 0,−l̃ cosφ),

where φ is the acute angle between z axis and the direction in which signals propagate from

the source to the inclusion. Since ∆x,∆z � a� h, l′ ≈ l̃ −∆x sinφ + ∆z cosφ. Similarly,

r(a) ≈ h+ a2

2h
and r∆(a) ≈ h−∆z+a2/2h−a∆x/h+a2∆z/2h2 ≈ h−∆z+a2/2h−a∆x/h.
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Therefore, the imaging function is approximately equal to

E[I(∆x,∆z)] ∼ A−1

∫ A/2

−A/2
daC(

l′ − l̃ − r(a) + r∆(a)

lcp
)

∼ A−1

∫ A/2

−A/2
daC(

−∆x sinφ+ ∆z cosφ− (∆z + a∆x/h)

lcp
)

= A−1

∫ A/2

−A/2
daC(

∆x(− a
h
− sinφ) + ∆z(cosφ− 1)

lcp
).

Assume that Ĉ = F(e−B|t|)I[l,∞), support Ĉ = O(B), and l � 1/B, where B is the

bandwidth. By the assumptions, we can change the above imaging function into:

E[I(∆x,∆z)] ∼ A−1

∫ A/2

−A/2
e
−
|∆x(− a

h
−sinφ)+∆z(cosφ−1)|

λp da,

where λp = cp/B. Now let ∆z̃ = ∆z(cosφ−1)
λp

and ∆x̃ =
∆x(−A

h
−sinφ)

λp
, then we can get

E[Ĩ(∆x̃,∆z̃)] ∼ A−1

∫ A/2

−A/2
e
−|∆z̃+∆x̃

− a
h
−sinφ

−A
h
−sinφ

|
da ∼

∫ −A/2−h sinφ
−A−h sinφ

A/2−h sinφ
−A−h sinφ

e−|∆z̃+∆x̃a
′ |da

′
.

In Figure 4.1, it shows the surface and the contour of PSF with P waves by using the above

formula.

Utilizing the transformation of coordinates, we can achieve a horizontal contour of PSF.

Assume that ∆z̃
′

= ∆z̃ + h sinφ
A+h sinφ

∆x̃, ∆x̃
′

= ∆x̃, then the above formula can be changed

into:

E[Ĩ
′
(∆x̃

′
,∆z̃

′
)] ∼

∫ A/2
A+h sinφ

−A/2
A+h sinφ

e−|∆z̃
′
+∆x̃

′
a
′ |da

′
.

Thus, the transverse radius of the focal spot is λp
A
h

+sinφ
and the longitudinal radius of the

focal spot is λp√
2−2 cosφ

. In Figure 4.2, we can achieve the surface and the contour of PSF with

P waves under the new coordinates, and it is the focal spot of the time-reversed focal spot

in the time harmonic regime, where x in multiples of λp
A
h

+sinφ
and z in multiples of λp√

2−2 cosφ
.
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Similarly, if we use S component scattering waves only, then the imaging function is:

I(∆x,∆z) =

∫∫
v̄(t+

l′

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dtda

=

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dωda.

Then, we will have similar resolution analysis but better than P component scattering waves

only since the velocity of P waves is faster than the velocity of S waves. The above function

can be written as:

E[I(∆x,∆z)] ∼ A−1

∫ A/2

−A/2
C(

(l′ − l̃)/cp − (r(a)− r∆(a))/cs
l

)da

∼ A−1

∫ A/2

−A/2
C(

(−∆x sinφ+ ∆z cosφ)/cp − (∆z + a∆x/h)/cs
l

)da

= A−1

∫ A/2

−A/2
C(

∆x(− a
hcs
− sinφ

cp
) + ∆z( cosφ

cp
− 1

cs
)

l
)da.

Now let ∆z̃ =
(

cosφ
λp
− 1

λs

)
∆z and ∆x̃ =

(
− A
hλs
− sinφ

λp

)
∆x, then we can get

E[Ĩ(∆x̃,∆z̃)] ∼A−1

∫ A/2

−A/2
e
−|∆z̃+∆x̃

a
hλs

+
sinφ
λp

A
hλs

+
sinφ
λp

|
da

∼
∫ A

2 λp+hλs sinφ

Aλp+hλs sinφ

−A
2 λp+hλs sinφ

Aλp+hλs sinφ

e−|∆z̃+∆x̃a
′ |da

′
.

In Figure 4.3, it shows the surface and the contour of PSF with S waves by using the above

formula. Utilizing the transformation of coordinates, we can achieve a horizontal contour of

PSF. Assume that ∆z̃
′

= ∆z̃ + hλs sinφ
Aλp+hλs sinφ

∆x̃, ∆x̃
′

= ∆x̃, then the above formula can be

changed into:

E[Ĩ
′
(∆x̃

′
,∆z̃

′
)] ∼

∫ Aλp/2

Aλp+hλs sinφ

−Aλp/2
Aλp+hλs sinφ

e−|∆z̃
′
+∆x̃

′
a
′ |da

′
.

Thus, the transverse radius of the focal spot is 1
A
hλs

+ sinφ
λp

and the longitudinal radius of the

focal spot is

√√√√( sinφ
Aλp
hλs

+sinφ

)2

+1

1
λs
− cosφ

λp

. In Figure 4.3 and Figure 4.4, we can achieve the surface and
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(a): The Surface of PSF (P waves) (b): The Contour of PSF (P waves)

Figure 4.1: PSF with P waves in the Original Coordinates

(a): The Surface of PSF (P waves) (b): The Contour of PSF (P waves)

Figure 4.2: PSF with P waves in the New Coordinates

the contour of PSF with S waves under the original coordinates and the new coordinates,

and it is the focal spot of the time-reversed focal spot in the time harmonic regime, where x

in multiples of 1
A
hλs

+ sinφ
λp

and z in multiples of

√√√√( sinφ
Aλp
hλs

+sinφ

)2

+1

1
λs
− cosφ

λp

.

If we change the location of the known source, the resolution changes too. As mentioned

before, φ denotes the angle between z axis and the wave propagation direction from the

source. When φ = 0, the transverse radius of the focal spot is λph

A
and the longitudinal

radius of the focal spot is ∞, where λph

A
is called Rayleigh resolution λR; When φ = π

2
,

the transverse radius of the focal spot is λp
A
h

+1
and the longitudinal radius of the focal spot
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(a): The Surface of PSF (S waves) (b): The Contour of PSF (S waves)

Figure 4.3: PSF with S waves in the Original Coordinates

(a): The Surface of PSF (P waves) (b): The Contour of PSF (P waves)

Figure 4.4: PSF with S waves in the New Coordinates
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Figure 4.5: Compared PSF with different φ

is λp√
2
, where λp is called broadband resolution; When φ = π, the transverse radius of the

focal spot is λph

A
and the longitudinal radius of the focal spot is λp

2
. As a result, when our

source is in the same depth as the inclusion, the transverse radius and the longitudinal radius

are less than the ones with a deeper source and our result will have better resolution. In

Figure 4.5, changing the location of the inclusion, we compared different locations of the

source and it shows that when the source is located at the same depth as the inclusion,

the imaging function is more sensitive to the change of the location of inclusion, since our

imaging function is related to the wave propagating path.

Similarly, with S scattering waves only, when φ = 0, the transverse radius of the focal

spot is hλs
A

which is Rayleigh resolution and the longitudinal radius of the focal spot is 1
1
λs
− 1
λp

,

which is called harmonic difference resolution λ̄p,s; When φ = π
2
, the transverse radius of the

focal spot is hλs
A
hλs

+ 1
λp

which is called harmonic sum resolution and the longitudinal radius of

the focal spot is

√
( 1
Aλp
hλs

+1
)2+1

1
λs

; When φ = π, the transverse radius of the focal spot is hλs
A

and the longitudinal radius of the focal spot is 1
1
λs

+ 1
λp

. As a result, when our source is in the

same depth as the inclusion, the transverse radius and the longitudinal radius are less than

the ones with a deeper source and our result will have better resolution. It is similar to the
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case with P component waves only.

4.2 With Unknown Sources Case

In this section, we will discuss the resolution analysis in Unknown Source Case.

Proposition 4.2.1. Suppose we have an unknown source, based on the imaging function in

the unknown source case, we have the following:

PSF ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e−|∆z̃+∆x̃ a

A
|da ∼

∫ 1/2

−1/2

e−|∆z̃+∆x̃a
′ |da

′
.

The transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the focal spot is

λ̄p,s, where λ̄p,s is harmonic difference resolution.

Proof. From the last chapter, we can get

I(∆x,∆z) ∼

ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da.

Since r(a)− r∆(a) ∼ ∆x(a/h) + ∆z(1− 1
2
(a/h)2), then we can have the following formula:

(4.1)

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C([∆x(a/h) + ∆z(1− 1

2
(a/h)2)](

1

cs
− 1

cp
)/l)da.

Since 1− 1
2
(a/h)2 is very close to 1 when a� h,

(4.2) E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C((∆x(a/h) + ∆z)(

1

cs
− 1

cp
)/l)da.

Consider a special case with assumption that Ĉ = F(e−B|t|)I[l,∞), support Ĉ = O(B), and

l� 1/B. By the above assumptions, we can change (4.1) into:

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
− |∆z+∆x(a/h)|

λ̄p,s da,
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(a) The Contour of Point Spread Function (b) The Surface of Point Spread Function

Figure 4.6: Point Spread Function with Unknown Source

where λs = cs/B;λp = cp/B;λ̄p,s = λsλp
λp−λs . Now let ∆z̃ = ∆z

λ̄p,s
and ∆x̃ = ∆x

λ̄p,s

A
h

, then we can

get

E[Ĩ(∆x̃,∆z̃)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e−|∆z̃+∆x̃ a

A
|da ∼

∫ 1/2

−1/2

e−|∆z̃+∆x̃a
′ |da

′
.

Thus, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the focal

spot is λ̄p,s. In Figure 4.6, it is the time-reversed focal spot in the time harmonic regime,

where x in multiples of hλ̄p,s
A

and z in multiples of λ̄p,s.

4.3 Image Contribution of Incident Waves

In this section, we will show the resolution analysis in Image Contribution of Incident Waves.

Since we need to consider the contribution of the incident waves, our resolution analysis in the

last two cases does not work in this section. Below is the resolution analysis on considering

the incident waves’ contribution.

Proposition 4.3.1. Suppose we have an unknown source, based on the imaging function in

the unknown source case with considering the contribution of incident waves’ components,
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we have the following:

PSF ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e−|∆z̃+∆x̃ a

A
|da ∼

∫ 1/2

−1/2

e−|∆z̃+∆x̃a
′ |da

′
.

In addition, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius

of the focal spot is λ̄p,s. They are same as the values achieved in the unknown source case

without considering the incident waves’ component.

Proof. From the last chapter, we get the imaging function in this case:

Isim(∆x,∆z) =T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)

+ U0 · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda

=T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃t

+ ω̃2Cs(φ)e−ikp l̂(a)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃tdtdadωdω̃.

Then, it is similar to simplify the above function as below:

E[Isim(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)+C(

l̂−r∆(a)−l̃
cp

− r(a)−r∆(a)
cs

l
)da.

Here, l̂ is the distance between the source and the sensor:

l̂ =

√
(l̃ − a)2 + (−l̃ − h)2

∼l̃ + h cosφ− a cosφ+
h2

2l̃
+
a2

2l̃
,

with the assumption that a� h� l̃.

Similarly, we have r(a) − r∆(a) ∼ ∆x(a/h) + ∆z, and from the above assumption, we
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can have the following formula:

l̂ − r∆(a)− l̃ ∼ l̃ + h cosφ− a cosφ+
h2

2l̃
+
a2

2l̃
− (h−∆z − a∆x

h
+
a2

h
)− l̃

∼ h cosφ− h+
h2

2l̃
� r(a)− r∆(a).

Then, we can simiplify the expectation of the imaging function:

E[Isim(∆x,∆z)] ∼(4.3)

ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C([∆x(a/h) + ∆z](

1

cs
− 1

cp
)/l) + C(

h cosφ− h+ h2

2l̃

lcp
)da.

Consider a special case with assumption that Ĉ = F(e−B|t|)I[l,∞), support Ĉ = O(B),

and l� 1/B. By the above assumptions, we can change (4.3) into:

E[Isim(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
− |∆z+∆x(a/h)|

λ̄p,s + e
−
|h cosφ−h+h2

2l̃
|

lλp da,

where λs = cs/B; λp = cp/B; λ̄p,s = λsλp
λp−λs .

Assume that

l1 =ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
− |∆z+∆x(a/h)|

λ̄p,s da

l2 =ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
−
|h cosφ−h+h2

2l̃
|

lλp da,

where l1 is the expection of the original imaging function; l2 is the incident waves’ contribu-

tion and l2 is a constant which is much smaller than l1, as a result,

E[Isim(∆x,∆z)] =l1 + l2

=E[I(∆x,∆z)] + constant

∼E[I(∆x,∆z)].

As a result, the incident waves’ component will not influence the image a lot, so the resolution
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(a) The Contour of PSF (b) The Surface of PSF

Figure 4.7: PSF with Incident Waves’ Contribution

analysis of this case can follow the above section.

Now let ∆z̃ = ∆z
λ̄p,s

and ∆x̃ = ∆x
λ̄p,s

A
h

, then we can get

E[Ĩsim(∆x̃,∆z̃)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e−|∆z̃+∆x̃ a

A
|da+ ε ∼

∫ 1/2

−1/2

e−|∆z̃+∆x̃a
′ |da

′
+ ε,

where ε denotes a small constant.

Thus, similarly, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius

of the focal spot is λ̄p,s. They are same as the values achieved in the last section. Since

SNR is much larger than 1, the incident waves’ component influences the image only a little,

therefore, it will not change the radius of the focal spot. Also, we can achieve almost the

same figure of Point Spread Function. See Figure 4.7, it is the time-reversed focal spot in

the time harmonic regime, where x in multiples of hλ̄p,s
A

and z in multiples of λ̄p,s. Figure

4.7 and Figure 4.6 are almost same.

4.4 With Unknown Pulse Source Case

In this section, we will present the resolution anlysis in Unknown Pulse Source Case.
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4.4.1 With Rectangular Pulse Source Case

In this subsection, we assume that we have a rectangular pulse source, but we do not know

the location of the source.

Proposition 4.4.1. Suppose we have a rectangular pulse source and the location of the

source is unknown, then

PSF ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
(2τ − |∆z̃ + ∆x̃

a

A
|)da

∼
∫ 1/2

−1/2

−|∆z̃ + ∆x̃a
′|da′ .

In addition, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the

focal spot is λ̄p,s, where λ̄p,s is harmonic difference resolution.

Proof. From the Unknown Source Case section, we can get

I(∆x,∆z) ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da.

Since r(a) − r∆(a) ∼ ∆x(a/h) + ∆z(1 − 1
2
(a/h)2), then we can have the following formula

(4.1) as before. Similarly, since 1− 1
2
(a/h)2 is very close to 1 when a� h,

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C((∆x(a/h) + ∆z)(

1

cs
− 1

cp
)/l)da.

Suppose the rectangular pulse source is defined as:

(4.4) ρτ (t) =

1 −τ ≤ t ≤ τ

0 otherwise.

At the end of Chapter 2, we introduce the definition of the correlation function: C(∆t
l

) =

E[v(t)v(t+ ∆t)], where l is the correlation length and l = 1
C(0)

∫∞
−∞C(h)dh. In this section,
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(a) The Contour of Point Spread Function (b) The Surface of Point Spread Function

Figure 4.8: Point Spread Function with Rectangular Pulse Source

v(t) = ρτ (t), as a result,

(4.5) C(t) =

2τ − t t > 0

2τ + t t ≤ 0.

By the above assumptions, we can change (4.1) into:

E[I(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
(2τ − |r(a)− r∆(a)

cp
− r(a)− r∆(a)

cs
|)da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
(2τ − |(∆x(a/h) + ∆z)(

1

cs
− 1

cp
)|)da.

Assume that λ̄p,s = λpλs
λp−λs , if we let ∆z̃ = ∆z

λ̄p,s
and ∆x̃ = ∆x

λ̄p,s

A
h

, then we can get

E[Ĩ(∆x̃,∆z̃)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
(2τ − |∆z̃ + ∆x̃

a

A
|)da ∼

∫ 1/2

−1/2

−|∆z̃ + ∆x̃a
′|da′ .

Thus, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the

focal spot is λ̄p,s. In Figure 4.8, it is the time-reversed focal spot in the time harmonic

regime, where x in multiples of hλ̄p,s
A

and z in multiples of λ̄p,s.
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4.4.2 With Continous Pulse Source Case

In this section, we assume that we have a continous pulse source, and the resolution analysis

in this case will be presented later in this section.

Proposition 4.4.2. Suppose we have a continous pulse source and the location of the source

is unknown, then

PSF ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0(∆z̃ + ∆x̃

a

A
))e−(∆z̃+∆x̃ a

A
)2/4t20da

∼
∫ 1/2

−1/2

cos(ω0(∆z̃ + ∆x̃a
′
))e−(∆z̃+∆x̃a

′
)2/4t20da

′
.

In addition, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the

focal spot is λ̄p,s, where λ̄p,s is harmonic difference resolution.

Proof. From the Unknown Source Case section, we can get

I(∆x,∆z) ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da.

Similarly,

E[I(∆x,∆z)] ∼ ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C((∆x(a/h) + ∆z)(

1

cs
− 1

cp
)/l)da.

Assume that our source is a continuous pulse source:

ρ(t) = cos(ω0t)e
−( t

t0
)2/2

,

where ω0 and t0 are parameters and ω0 � 1
t0

. By the definition of the correlation function:

C(∆t
l

) = E[v(t)v(t+∆t)], where l is the correlation length and l = 1
C(0)

∫∞
−∞C(h)dh. Assume
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that the sourcev(t) = ρ(t), as a result,

C(∆t) ∼
∫
ρ(
t

τ
)ρ(

t+ ∆t

τ
)dt

∼
∫
ρ(t)ρ(t+

∆t

τ
)dt

∼
∫

(cos(ω0t)e
−( t

t0
)2/2

)(cos(ω0(t+
∆t

τ
))e
−(

t+ ∆t
τ

t0
)2/2

)dt

∼(cos(ω0t) cos(ω0(t+
∆t

τ
)))e

−( t
t0

)2/2−(
t+∆t/τ
t0

)2/2
dt

∼e−
(

∆t/τ
2t0

)2
∫

(cos(2ω0t+ ω0∆t/τ) + cos(ω0∆t/τ))e
− (t+∆t/(2τ))2

t20 dt

∼e−
(

∆t/τ
2t0

)2
∫

(cos(2ω0s) + cos(ω0∆t/τ))e
− s

2

t20 ds

∼I1 + I2,

where C is the correlation function, τ is the duration time of the pulse, I1 =
∫

cos(2ω0s)e
− s

2

t20 ds,

and I2 =
∫

cos(ω0∆t/τ)e
− s

2

t20 ds.

Since I1 = o(t0) and I2 = O(t0),

C(∆t) ∼ cos(ω0∆t/τ)e
−
(

∆t/τ
2t0

)2

.

By the above assumptions, we can change (4.2) into:

E[I(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0(r(a)− r∆(a))(

1

cp
− 1

cs
)/τ)e

−
(
r(a)−r∆(a)

2t0cpτ
− r(a)−r∆(a)

2t0csτ

)2

da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0(∆x(a/h) + ∆z)(

1

cs
− 1

cp
))e
−(∆x(a/h)+∆z)2( 1

2t0cs
− 1

2t0cp
)2

da.

Since λp = cp/τ , λs = cs/τ and λ̄p,s = λpλs
λp−λs , if we let ∆z̃ = ∆z

λ̄p,s
and ∆x̃ = ∆x

λ̄p,s

A
h

, then

we can get

E[Ĩ(∆x̃,∆z̃)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0(∆z̃ + ∆x̃

a

A
))e−(∆z̃+∆x̃ a

A
)2/4t20da

∼
∫ 1/2

−1/2

cos(ω0(∆z̃ + ∆x̃a
′
))e−(∆z̃+∆x̃a

′
)2/4t20da

′
.
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Figure 4.9: Point Spread Function with Continuous Pulse Source

Thus, the transverse radius of the focal spot is hλ̄p,s
A

and the longitudinal radius of the

focal spot is λ̄p,s. In Figure 4.9, it is the time-reversed focal spot in the time harmonic

regime, where x in multiples of hλ̄p,s
A

and z in multiples of λ̄p,s.
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Chapter 5

Stability Analysis

Elastic imaging involves how measurement and medium noises are modeled and how the

imaging process handles them-that is, whether they are suppressed or amplified. Measure-

memt and medium noises affect the stability of the imaging functionals in very different

ways. The principle objective of this chapter is to carry out a detailed stability analysis of

the topological derivative based imaging functionals with respect to noises.

5.1 Fundamental Results

Before analyzing the stability of the imaging functions, we need to introduce the important

results in [5].

Proposition 5.1.1 ([5]). Suppose zn = z(tn) for (n = 1, 2, . . . , N) are samples from zero-

mean, complex Gaussian video process z(t).

a). If s 6= t, then

Ez̄m1 z̄m2 ...z̄mszn1zn2 ...znt
= 0

where mk and ni are integers from set {1, 2, 3, . . . , N}.

40



b). If s = t, then

Ez̄m1 z̄m2 ...z̄mszn1zn2 ...znt

=
∑
π

(Ez̄mπ(1)
zn1)(Ez̄mπ(2)

zn2) . . . (Ez̄mπ(t)
znt),

where π is a permutation of the set of integers {1, 2, 3, . . . , t}.

Corollary 5.1.1 ([5]). Suppose that v(z) is a complex, circulary symmetric Gaussian process,

then

E[v̄(z1)v̄(z2)v(z3)v(z4)]

=E[v̄(z1)v(z3)]E[v̄(z2)v(z4)] + E[v̄(z2)v(z3)]E[v̄(z1)v(z4)].

Proposition 5.1.2 (Moment Theorem for Circular Symmetric Complex Gaussian Variables

[5]). Suppose that z
′
js are complex circular symmetric Gaussian random vectors, then

E[z1z2z3z4] = E[z1z2]E[z3z4] + E[z1z3]E[z2z4] + E[z1z4]E[z2z3].

5.2 Stability Analysis based on Imaging Functions

5.2.1 Stability Analysis in Known Source Case

In this section, we will utilize Signal-to-noise ratio(SNR) to analyze the stability in Known

Source Case.

SNR is defined as the ratio of the power of a signal (meaningful information) and the

power of background noise (unwanted signal):

SNR =
|E[I(0, 0)]|2

Var[I(0, 0)]
.

Proposition 5.2.1. Suppose we have a known source which is a stationary stochastic pro-

cess. Then the signal-to-noise ratio in the known source case either with only P component
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scattering waves or with only S component scattering waves is as below:

SNR ≥
(
∫
R
ω2Ĉ(ω) dω)2

(
∫
R
Ĉ(ω) dω) supω(ω4Ĉ(ω))

T

4
∫
R

sinc2(s) ds

≥
(
T

τ

)
2π√
2π

1

16

≈0.157T

τ
,

where C is the correlation function and the correlation time is τ . In addition, SNR in the

P component scattering case is the same as that in the S component case.

Proof. Recall the form of our imaging function in the known source case with respect to P

waves only from the above chapters:

I(∆x,∆z) ∼
∫∫∫∫

F(v̄(t+
l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dωdω̃dtda

∼
∫∫∫∫

¯̂v(ω̃)eiω̃l
′/cp v̂(ω)e−iωl̃/cpω2e−iωr(a)/cpeiωr

∆(a)/cpe−i(ω−ω̃)tdωdω̃dtda

∼ T−1

∫
R

dω

∫
R

dω̃

∫ T
2

−T
2

χA(ω, ω̃)ei(ω̃−ω)tv̂(ω)¯̂v(ω̃)dt.

Here,

χA(ω, ω̃) =χA(ω, ω̃; ∆x,∆z)

=A−1

∫ A/2

−A/2
ω2Cp(φ)eiω̃l

′/cpe−iωl̃/cpe−iωr(a)/cpeiωr
∆(a)/cpda.

Then,

E[I(∆x,∆z)] =T−1

∫
R

dω

∫
R

dω̃

∫ T/2

−T/2
χA(ω, ω̃)ei(ω̃−ω)tĈ(ω)δ(ω − ω̃)dt

=

∫
R

χA(ω, ω)Ĉ(ω)dω.
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The variance of the imaging function is:

V ar[I(∆x,∆z)] =E[|I2(∆x,∆z)|]− |E[I(∆x,∆z)]|2

=

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(E[¯̂v(ω̃)v̂(ω)v̂(ω̃′)¯̂v(ω′)]− E[¯̂v(ω̃)v̂(ω)]E[v̂(ω̃′)¯̂v(ω′)]).

Using Theorem 2, then

V ar[I(∆x,∆z)] =

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(E[¯̂v(ω̃)v̂(ω̃′)]E[v̂(ω)¯̂v(ω′)] + E[¯̂v(ω̃)¯̂v(ω′)]E[v̂(ω)v̂(ω̃′)])

=

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(Ĉ(ω̃)δ(ω̃ − ω̃′) ¯̂
C(ω)δ(ω − ω′) + Ĉ(ω̃)δ(ω̃ + ω′)

¯̂
C(ω)δ(ω + ω̃′)).

We can simplify the above function:

V ar[I(∆x,∆z)] =

∫
R

dω

∫
R

dω̃T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(ω, ω̃)Ĉ(ω̃)
¯̂
C(ω)ei(ω̃−ω)te−i(ω̃−ω)t′

+

∫
R

dω

∫
R

dω̃T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(−ω̃,−ω)Ĉ(ω̃)
¯̂
C(ω)ei(ω̃−ω)te−i(ω̃−ω)t′

=2

∫
R

dω

∫
R

dω̃ χA(ω, ω̃)χ̄A(ω, ω̃)Ĉ(ω̃)
¯̂
C(ω)sinc2(

(ω̃ − ω)T

2
).

Consider (∆x,∆z) = (0, 0), then

E[I(0, 0)] = Cp(φ)

∫
R

ω2Ĉ(ω)dω.
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Note that

|χA(ω, ω̃)| ≤ Cp(φ)ω2,

then,

V ar[I(0, 0)] ≤ 2

∫
R

dω

∫
R

dω̃ ω4Ĉ(ω̃)Ĉ(ω)sinc2(
(ω̃ − ω)T

2
)(Cp(φ))2,

where Ĉ is real and positive.

Assume that v is smooth and

sup
ω

(Ĉ(ω)) ≤ C <∞,

then

V ar[I(0, 0)] ≤ 2C 2

T
(

∫
R

sinc2(s)ds)(

∫
R

ω4Ĉ(ω)dω)(Cp(φ))2.

Then,

SNR =
|E[I(0, 0)]|2

V ar[I(0, 0)]

≥
(
∫
R
ω2Ĉ(ω)dω)2

(
∫
R
ω4Ĉ(ω)dω) supω(ω4Ĉ(ω))

T

4
∫
R

sinc2(s)ds
.

Suppose that the correlation time is τ , then Ĉ(ω) = τ ˆ̃C(τω), with C̃ non-dimensionalized

and O(1) support. Thus,

SNR ≥
(
∫
R
s2 ˆ̃C(s)ds)2

(
∫
R
s4 ˆ̃C(s)ds) sups(s

4 ˆ̃C(s))

1

4
∫
R

sinc2(s)ds

T

τ
.

WLOG, we assume that C̃(s) is Gaussian, then

∫
R

ˆ̃C(s) ds = 2

∫ ∞
0

e−
s2

2 ds =
√

2π.

Moreover, ∫
R

s2 ˆ̃C(s) ds = 2

∫ ∞
0

s2e−
s2

2 ds =
√

2π.
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Under the same assumption, to achieve the maximum of ˆ̃C(s), we only need to make

d

ds
e−

s2

2 = 0.

After solving the above equation, we can get s = 0. Thus,

sup
s

( ˆ̃C(s)) = 1.

In addition, we know that

∫
R

sinc2(s) ds ≤ 2

(
1 +

∫ ∞
1

x−2 dx

)
≤ 4.

Therefore,

SNR ≥ (
T

τ
)

2π

3
√

2π

1

16
≈ 0.83T

τ
.

In conlusion, considering P scattering waves, SNR depends on the correlation time and

the time domain only: the longer the time domain is, the better quality of the image is; the

shorter the correlation time is, the better quality of the image is.

Similarly, considering the S component scattering waves, our imaging function in the

known source case is as below:

I(∆x,∆z) ∼
∫∫∫∫

F(v̄(t+
l′

cp
))F(v(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))dωdω̃dtda

∼
∫∫∫∫

¯̂v(ω̃)eiω̃l
′/cp v̂(ω)e−iωl̃/cpω2e−iωr(a)/cseiωr

∆(a)/cse−i(ω−ω̃)tdωdω̃dtda

∼ T−1

∫
R

dω

∫
R

dω̃

∫ T
2

−T
2

χA(ω, ω̃)ei(ω̃−ω)tv̂(ω)¯̂v(ω̃)dt.

Here,

χA(ω, ω̃) =χA(ω, ω̃; ∆x,∆z)

=A−1

∫ A/2

−A/2
ω2Cs(φ)eiω̃l

′/cpe−iωl̃/cpe−iωr(a)/cseiωr
∆(a)/csda.
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Similarly,

SNR ≥ (
T

τ
)

2π√
2π

1

16
≈ 0.157T

τ
.

We will hold the same conclusion as above. In the following section, we will analyse stability

in the unknown source case.

5.2.2 Stability Analysis in Unknown Source Case

In this section, we analyze the stability in Unknown Source Case.

Proposition 5.2.2. Suppose we have an unknown source, based on the imaging function

in the unknown source case, we have the signal-to-noise ratio(SNR) in the unknown source

case:

SNR =
|E[I(0, 0)]|2

Var[I(0, 0)]

≥
∫
R
ω4Ĉ(ω)dω

supω(ω4Ĉ(ω))

T

4
∫
R

sinc2(s)ds

≥(
T

τ
)
3
√

2π

16e−2

1

16
≈ T

5τ
,

where C is the correlation function, and the correlation time is τ , then Ĉ(ω) = τ ˆ̃C(τω), with

C̃ non-dimensionalized and O(1) support.

Proof. Recall the form of our imaging function in the unknown source case from the above

chapters:

I(∆x,∆z) =T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda

=T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃t dtdadωdω̃

=T−1

∫
R

dω

∫
R

dω̃

∫ T/2

−T/2
χA(ω, ω̃)ei(ω̃−ω)tv̂(ω)¯̂v(ω̃)dt.
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Here,

χA(ω, ω̃) =χA(ω, ω̃; ∆x,∆z)

=A−1

∫ A/2

−A/2
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃eikpr

∆(a)−ik̃sr∆(a)da

=A−1

∫ A/2

−A/2
ω2ω̃2Cp(φ)Cs(φ)eil̃(ω̃−ω)/cp+i(ω̃/cs−ω/cp)(r(a)−r∆(a))da.

Then,

E[I(∆x,∆z)] =T−1

∫
R

dω

∫
R

dω̃

∫ T/2

−T/2
χA(ω, ω̃)ei(ω̃−ω)tĈ(ω)δ(ω − ω̃)dt

=

∫
R

χA(ω, ω)Ĉ(ω)dω.

The variance of the imaging function is:

V ar[I(∆x,∆z)] =E[|I2(∆x,∆z)|]− |E[I(∆x,∆z)]|2

=

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

T−2χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(E[¯̂v(ω̃)v̂(ω)v̂(ω̃′)¯̂v(ω′)]− E[¯̂v(ω̃)v̂(ω)]E[v̂(ω̃′)¯̂v(ω′)]).

Using Theorem 2, then

V ar[I(∆x,∆z)] =

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

T−2χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(E[¯̂v(ω̃)v̂(ω̃′)]E[v̂(ω)¯̂v(ω′)] + E[¯̂v(ω̃)¯̂v(ω′)]E[v̂(ω)v̂(ω̃′)])

=

∫
R

dω

∫
R

dω̃

∫
R

dω′
∫
R

dω̃′
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

T−2χA(ω, ω̃)χ̄A(ω′, ω̃′)ei(ω̃−ω)te−i(ω̃
′−ω′)t′

(Ĉ(ω̃)δ(ω̃ − ω̃′) ¯̂
C(ω)δ(ω − ω′) + Ĉ(ω̃)δ(ω̃ + ω′)

¯̂
C(ω)δ(ω + ω̃′)).
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We can simplify the above function:

V ar[I(∆x,∆z)] =

∫
R

dω

∫
R

dω̃T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(ω, ω̃)Ĉ(ω̃)
¯̂
C(ω)ei(ω̃−ω)te−i(ω̃−ω)t′

+

∫
R

dω

∫
R

dω̃T−2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

χA(ω, ω̃)χ̄A(−ω̃,−ω)Ĉ(ω̃)
¯̂
C(ω)ei(ω̃−ω)te−i(ω̃−ω)t′

=2

∫
R

dω

∫
R

dω̃ χA(ω, ω̃)χ̄A(ω, ω̃)Ĉ(ω̃)
¯̂
C(ω)sinc2(

(ω̃ − ω)T

2
).

Consider (∆x,∆z) = (0, 0), then

E[I(0, 0)] = Cp(φ)Cs(φ)

∫
R

ω4Ĉ(ω)dω.

Note that

|χA(ω, ω̃)| ≤ Cp(φ)Cs(φ)ω2ω̃2,

then,

V ar[I(0, 0)] ≤ 2

∫
R

dω

∫
R

dω̃ ω4ω̃4Ĉ(ω̃)Ĉ(ω)sinc2(
(ω̃ − ω)T

2
)(Cp(φ)Cs(φ))2,

where Ĉ is real and positive.

Assume that v is smooth and

sup
ω

(ω4Ĉ(ω)) ≤ C <∞,

then

V ar[I(0, 0)] ≤ 2C 2

T
(

∫
R

sinc2(s)ds)(

∫
R

ω4Ĉ(ω)dω)(Cp(φ)Cs(φ))2.
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Then,

SNR =
|E[I(0, 0)]|2

V ar[I(0, 0)]

≥
∫
R
ω4Ĉ(ω)dω

supω(ω4Ĉ(ω))

T

4
∫
R

sinc2(s)ds
.

Suppose that the correlation time is τ , then Ĉ(ω) = τ ˆ̃C(τω), with C̃ non-dimensionalized

and O(1) support. Thus,

SNR ≥
∫
R
s4 ˆ̃C(s)ds

sups(s
4 ˆ̃C(s))

1

4
∫
R

sinc2(s)ds

T

τ
.

WLOG, we assume that C̃(s) is Gaussian, then

∫
R

s4 ˆ̃C(s) ds = 2

∫ ∞
0

s4e−
s2

2 ds = 3
√

2π.

Under the same assumption, to achieve the maximum of s4 ˆ̃C(s), we only need to make

d

ds
s4e−

s2

2 = 0.

After solving the above equation, we can get s = ±2. Thus,

sup
s

(s4 ˆ̃C(s)) = 16e−2.

In addition, we know that

∫
R

sinc2(s) ds ≤ 2

(
1 +

∫ ∞
1

x−2 dx

)
≤ 4.

Therefore,

SNR ≥ (
T

τ
)
3
√

2π

16e−2

1

16
≈ T

5τ
.

In conlusion, in Unknown Source Case, SNR depends on the correlation time and the

time domain only: the longer the time domain is, the better quality of the image is; the
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shorter the correlation time is, the better quality of the image is.

5.2.3 Stability Analysis in Image Contribution of Incident Waves

In Known Source Case and Unknown Source Case, we ulitized SNR to anlalyze the stability

of the imaging function. Now we introduce a new way to define SNR as the ratio of the level

of a desired signal to the level of background noise:

(5.1) SNR =
|E[I]|

|E[Iincident]|
,

where I is the original imaging function related to the correlation between the backprop-

agated P waves and S waves; Iincident is the incident waves’ contribution. In this section,

we will utilize the new definition of SNR to analyze the stability in Image Contribution of

Incident Waves Case.

Proposition 5.2.3. Suppose we have an unknown source which is a stationary stochastic

process, based on the imaging function considering the contribution of the incident waves,

we have the following:

SNR =

∫ A/2
−A/2C([∆x(a/h) + ∆z]( 1

cs
− 1

cp
)/l)da∫ A/2

−A/2C(
h cosφ−h+h2

2l̃

lcp
)da

∼

∫ A/2
−A/2 e

− |∆z+∆x(a/h)|
λ̄p,s da∫ A/2

−A/2 e
−
|h cosφ−h+h2

2l̃
|

λp da

� 1,

where C is the correlation function.

When φ = 0, SNR ∼ e
h2

2l̃λpH(∆x,∆z), where H(∆x,∆z) = A−1
∫ A/2
−A/2 e

− |∆z+∆x(a/h)|
λ̄p,s da;

When φ = π
2
, SNR ∼ e

h
λpH(∆x,∆z); When φ = π, SNR ∼ e

2h
λpH(∆x,∆z). In addition,

when φ = π
2

or φ = π, SNR is much larger than that when φ = 0.
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Proof. From the above sections, we know that

(5.2) I(∆x,∆z) ∼ T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda.

Then,

E[I(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
− |∆z+∆x(a/h)|

λ̄p,s da.

In addition,

(5.3) Iincident ∼ T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
U0 · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda.

Then,

E[Iincident(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

l̂−r∆(a)−l̃
cp

− r(a)−r∆(a)
cs

l
)da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
e
−
|h cosφ−h+h2

2l̃
|

λp da.

Since
|h cosφ−h+h2

2l̃
|

λp
is a contant which is much larger than |∆z+∆x(a/h)|

λ̄p,s
, then

e
− |∆z+∆x(a/h)|

λ̄p,s � e
−
|h cosφ−h+h2

2l̃
|

λp .

As a result,

|E[I(∆x,∆z)]| � |E[Iincident(∆x,∆z)]|.

That is,

(5.4) SNR =
|E[I]|

|E[Iincident]|
� 1.
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5.2.4 Stability Analysis in Pulse Source Case

Suppose we have a pulse source, and we utilize Isim = I + Iincident as our imaging function.

From the last section, similarly, we can get

Isim(∆x,∆z) =T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)

+ U0 · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda

=T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃t

+ ω̃2Cs(φ)e−ikp l̂(a)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃tdtdadωdω̃.

In this section, we will utilize the latter definition of SNR to analyze the stability in Unknown

Pulse Source Case.

Proposition 5.2.4. Suppose we have an unknown source which is a continuous pulse source(3.6),

based on the imaging function considering the contribution of the incident waves, we have

the following:

(5.5) SNR =

∫ A/2
−A/2C([∆x(a/h) + ∆z]( 1

cs
− 1

cp
)/l)da∫ A/2

−A/2C(
h cosφ−h+h2

2l̃

lcp
)da

� 1,

where the correlation function C(∆t) ∼ cos(ω0∆t/τ)e
−
(

∆t/τ
2t0

)2

.

When φ = 0, SNR ∼ A−1C−1( h2

2l̃lcp
)E[I], where E[I] =

∫ A/2
−A/2C([∆x(a/h) + ∆z]( 1

cs
−

1
cp

)/l)da; When φ = π
2
, SNR ∼ A−1C−1(−h

lcp
)E[I]; When φ = π, SNR ∼ A−1C−1(−2h

lcp
)E[I].

In addition, when φ = π
2

or φ = π, SNR is much larger than that when φ = 0.

Proof. From Resolution Analysis Chapter, we know that the expectation of the imaging
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function with a continous pulse source is:

E[I(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

r(a)−r∆(a)
cp

− r(a)−r∆(a)
cs

l
)da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0(∆x(a/h) + ∆z)(

1

cs
− 1

cp
))

e
−(∆x(a/h)+∆z)2( 1

2t0cs
− 1

2t0cp
)2

da,

by utilizing the correlation function C(∆t) ∼ cos(ω0∆t)e
−
(

∆t
2t0

)2

. In addition,

E[Iincident(∆x,∆z)] ∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
C(

l̂−r∆(a)−l̃
cp

− r(a)−r∆(a)
cs

l
)da

∼ω4
cCp(φ)Cs(φ)A−1

∫ A/2

−A/2
cos(ω0

|h cosφ− h+ h2

2l̃
|

λp
)e
−(
|h cosφ−h+h2

2l̃
|

λp
)2

da.

Since
|h cosφ−h+h2

2l̃
|

λp
is a contant which is much larger than |∆z+∆x(a/h)|

λ̄p,s
, then

e
−(∆x(a/h)+∆z)2( 1

2t0cs
− 1

2t0cp
)2

� e
−(
|h cosφ−h+h2

2l̃
|

λp
)2

.

Additionally, for cos(ω0(∆x(a/h) + ∆z)( 1
cs
− 1

cp
)) and cos(ω0

|h cosφ−h+h2

2l̃
|

λp
), they have bouned

values. As a result,

|E[I(∆x,∆z)]| � |E[Iincident(∆x,∆z)]|

That is,

(5.6) SNR =
|E[I]|

|E[Iincident]|
� 1.

Similary, if our source is a unknown rectangular pulse source, SNR � 1 holds too.
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Chapter 6

Simulations

6.1 With Known Sources

Suppose that the location and the properties of the source are known, then we can get the

imaging function by computing the correlation between incident waves and the backpropa-

gate scattering waves.

6.1.1 With One Sensor

Suppose that we have one sensor only, then from last several sections, we know that the

imaging function is :

I(∆x,∆z) =

∫
v̄(t+

l′

cp
)v(t+

l

cp
+
r(a)

cp
− r∆(a)

cp
)dt

=

∫
F(v̄(t+

l′

cp
))F(v(t+

l

cp
+
r(a)

cp
− r∆(a)

cp
))dω.

In the simulation, assume that our sensor is located at (A
2
, 0, h), the inclusion is located at

(0, 0, 0), and the source is at (l̃ sinφ, 0,−l̃ cosφ), with the assumption φ = π
6
, just like Figure

4.5.

In Figure 6.1a, for one dimensional offset (∆x 6= 0, ∆z ≡ 0), we can get the maximum

value for the imaging function when ∆x = 0. In Figure 6.1b, it shows the surface of the

imaging function in two dimensional offset, and we can find that the maximum values can
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(a): 1D offset (b): 2D offset(Surface) (c): 2D offset(Contour)

Figure 6.1: Imaging Function in One-Sensor Case with P waves

be achieved along a line. In Figure 6.1c, it shows the contour of the imaging function in two

dimensional offset, and also, we can find that the maximum values can be achieved along

a curve. The location of the curve depends on the location of the sensor. If we extend the

range of the search points, in Figure 6.2, more clearly, we can find that the maximum values

can be achieved along a curve. The curve function satisfies

l′ − l − r(a) + r∆(a) = 0,

which is a function for ellipse. Similarly, if I relocate the sensor at (0, 0, h), instead of

(A
2
, 0, h), then we can get similar figure (Figure 6.3). They have similar shape but different

curve functions. Therefore, different locations of the sensor will give us different curves where

the maximum imaging function values can be achieved. See Figure 6.4, it shows that we can

achieve maximum values along different ellipses when the location of the sensor is different,

but they have one intersection point that is (0, 0, 0) where ∆x = 0, ∆z = 0. We call this

kind of curves Maximizer Curves.
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Figure 6.2: Known Source with One-Sensor Case (P waves) (The N th sensor)
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Figure 6.3: Known Source with One-Sensor Case (P waves) (The N/2 th sensor)
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Figure 6.4: Maximizer Curves with Different Sensor Locations (Known Source)
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Figure 6.5: Imaging Function in Known Source with Many-Sensor Case (P waves)

6.1.2 With Many Sensors

Suppose that we have many sensors, then from last several sections, if we use P component

scattering waves only, we know that the imaging function is :

I(∆x,∆z) =

∫∫
v̄(t+

l′

cp
)v(t+

l

cp
+
r(a)

cp
− r∆(a)

cp
)dtda

=

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l

cp
+
r(a)

cp
− r∆(a)

cp
))dωda.

In Figure 6.5a, for one dimensional offset (∆x 6= 0, ∆z ≡ 0), we can get the maximum

value for the imaging function when ∆x = 0. In Figure 6.5b, it shows the surface of the

imaging function in two dimensional offset, and we can find that the maximum values can

be achieved when ∆x = 0 and ∆z = 0. In Figure 6.5c, it shows the contour of the imaging

function in two dimensional offset, and also, we can find that the maximum values can be

achieved when ∆x = 0 and ∆z = 0.

Similarly, if we use S component scattering waves only, then the imaging function is:

I(∆x,∆z) =

∫∫
v̄(t+

l′

cp
)v(t+

l

cp
+
r(a)

cs
− r∆(a)

cs
)dtda

=

∫∫
F(v̄(t+

l′

cp
))F(v(t+

l

cp
+
r(a)

cs
− r∆(a)

cs
))dωda.

Similarly, we can get Figure 6.6.
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Figure 6.6: Imaging Function in Known Source with Many-Sensor Case (S waves)

6.2 With Unknown Sources

Suppose that the location and the properties of the source are unknown, then we can get

the imaging function by computing the correlation between the backpropagated scattering

P waves and S waves.

6.2.1 With One Sensor

Suppose that we have one sensor only, then from last several sections, we know that the

imaging function in the unknown-source case with one sensor is :

I(∆x,∆z) =

∫
v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dt

=

∫
F(v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dω.

In the simulation, assume that our sensor is located at (A
2
, 0, h), the inclusion is located at

(0, 0, 0).

In Figure 6.7a, it shows the surface of the imaging function in the unknown-source case

with one sensor and two dimensional offset, and we can find that the maximum values can

be achieved along a curve. In Figure 6.7b, it shows the contour of the imaging function

in two dimensional offset, and also, we can find that the maximum values can be achieved

along a curve. The location of the curve depends on the location of the sensor. If we extend

the range of the search points, in Figure 6.7b, more clearly, we can find that the maximum
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Figure 6.7: Unknown Source with One-Sensor Case (The Nth Sensor)

values can be achieved along a curve. The curve function satisfies

r(a)− r∆(a) = 0,

which is a function for a circle. Similarly, if I relocate the sensor at (0, 0, h), instead of

(A
2
, 0, h), then we can get similar figure (Figure 6.8). They have similar shape but different

curve functions. Therefore, different locations of the sensor will give us different curves where

the maximum imaging function values can be achieved. See Figure 6.9, it shows that, in

the unknown-source case, we can achieve maximum values along different circles when the

location of the sensor is different, but they have one intersection point in the search region

that is (0, 0, 0) where ∆x = 0, ∆z = 0. We call this kind of curves Maximizer Curves. In

Figure 6.9, also, we can find two intersection points in total, but one of them is far away

from the search region, so it will not influence our final result.

6.2.2 With Many Sensors

Assume that we have many sensors on x-axis, the source is at (h, 0,−h cotφ), but we cannot

use the location of the source to find the imaging function, since in this section our study

focuses on the unknown sources. The source gennerated incident P waves, and scattered at

inclusion, then we can receive scattering P waves and S waves. Our imaging function is from
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Figure 6.8: Unknown Source with One-Sensor Case (The N/2th Sensor)

Maximizer Curves in Unknown-Source Case
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Figure 6.9: Maximizer Curves with Different Sensor Locations (Unknown Source)
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(a): Imaging Function with 2D Offset(Surface) (b): Imaging Function with 2D Offset(Contour)

Figure 6.10: Unknown Source Case with Many Sensors

the correlation between backpropagated scattering P waves and S waves as below:

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃v̂(ω)¯̂v(ω̃)eikpr
∆(a)e−ik̃sr

∆(a)e−iωteiω̃tdtdadωdω̃.

In Figure 6.10a, it shows the surface of the imaging function in the unknown-source case

with many sensors and two dimensional offset, and we can find that the maximum values

can be achieved when ∆x = 0 and ∆z = 0. In Figure 6.10b, it shows the contour of the

imaging function in the unknown-source case with many sensors and two dimensional offset,

and also, we can find that the maximum values can be achieved when ∆x = 0 and ∆z = 0.

6.3 Image Contribution of Incident Waves

As mensioned before, when we received the scattering P waves and the scattering S waves

in the sensors, actually, we can also receive incident P waves. By using the received data,

our imaging function will be:

Isim = I + Iincident.

Here, I is the imaging function we mentioned in the above sections; Iincident is the correlation

between backpropagated incident P waves and the backpropagated scattering S waves. In

the simulation, the imaging function Isim is the correlation between the backpropagated
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scattering S waves and the backpropagated P waves which includes backpropagated incident

P waves and backpropagated scattering P waves because of the seperation issue.

In the above two sections, we get some results without considering the incident wave

term. In this section, we will do the similar simulation with considering the incident wave

term.

6.3.1 With One Sensor

Suppose that we have one sensor only, we know that the imaging function with considering

the incident waves’ contribution is as below:

Isim(∆x,∆z) =

∫
v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)

+ v̄(t+
l̂

cp
− r∆(a)

cp
)v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
)dt

=

∫
F(v̄(t+

l̃

cp
+
r(a)

cp
− r∆(a)

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))

+ F(v̄(t+
l̂

cp
− r∆(a)

cp
))F(v(t+

l̃

cp
+
r(a)

cs
− r∆(a)

cs
))dω

∼
∫

¯̂v(ω)eikp l̃ω2eikpr(a)e−ikpr
∆(a)v̂(ω)e−ikp l̃ω2e−iksr(a)eiksr

∆(a)

+ ¯̂v(ω)eikp l̂e−ikpr
∆(a)v̂(ω)e−ikp l̃ω2e−iksr(a)eiksr

∆(a)dω,

where l̂ is the distance between the source and the sensor.

In the simulation, assume that our sensor is located at (A
2
, 0, h), the inclusion is located at

(0, 0, 0). In Figure 6.11 a, considering the incident waves’ contribution, it shows the surface

of the imaging function in the unknown-source case with one sensor and two dimensional

offset, and we can find that the maximum values can be achieved along two curves instead

of one curve in the above sections. In Figure 6.11 b, considering the incident waves, it shows

the contour of the imaging function in two dimensional offset, and also, we can find that the

maximum values can be achieved along two curves. Also, we can find that the location of the

curve depends on the location of the sensor. In the simulation, if we changed the location of

the sensor, then the curves above will change a little bit. Compared with Figure 6.7, after
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Figure 6.11: One-Sensor Unknown Source Case with Incident Waves’ Contribution

considering the incident waves’ contribution, we can get two maximizer curves: one is the

’true’ maximizer curve; the other one is a ’dummy’ maximizer curve which was generated

because of the incident waves’ contribution. Now our results get much worse than before.

The ’true’ maximizer curve satifies the equation as before:

r(a)− r∆(a) = 0.

The ’dummy’ maximizer curve satisfies the new equation as below:

ks(r(a)− r∆(a))− kp(l̂(a)− l̃(a)− r∆(a)) = 0,

where l̂(a) denotes the distance between the sensor and the source; l̃(a) denotes the distance

between the sensor and the source; r(a) denotes the distance between the sensor and the

inclusion; r∆(a) denotes the distance between the sensor and the search point.

6.3.2 With Many Sensors

Assume that we have many sensors on x-axis, the source is at (h, 0,−h cotφ), but we cannot

use the location of the source to find the imaging function, since in this section our study

focuses on the unknown sources. The source gennerated incident P waves, and scattered at

inclusion, then we can receive the incident P waves, the scattering P waves and the scattering
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Figure 6.12: Many-Sensor Unknown Source Case with Incident Waves’ Contribution

S waves. Our imaging function with the incident waves’ contribution is as below:

Isim(∆x,∆z) =T−1A−1

∫ T/2

−T/2

∫ A/2

−A/2
Usc · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)

+ U0 · ~e3(t− r∆(a)/cp) ∗Usc · ~e1(t− r∆(a)/cs)dtda

=T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃t

+ ω̃2Cs(φ)e−ikp l̂(a)eik̃sr(a)+ik̃p l̃

v̂(ω)¯̂v(ω̃)eikpr
∆(a)−ik̃sr∆(a)−iωt+iω̃tdtdadωdω̃.

In Figure 6.12a, it shows that the surface of the imaging function in the unknown-source

case with many sensors and two dimensional offset after considering the incident waves’

contribution, and we can find that the maximum values can be achieved when ∆x = 0 and

∆z = 0. In Figure 6.12b, it shows the contour of the imaging function in the unknown-source

case with many sensors and two dimensional offset after considering the incident wave term,

and also, we can find that the maximum values can be achieved when ∆x = 0 and ∆z = 0.

Compared with Figure 6.10, we can find that the resolution becomes worse after considering

the incident waves’ contribution, but we can find the maximum value of the imaging function

at the same location.
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6.4 With Pulse Sources

Suppose that the location of the source is unknown, however, the source is a pulse instead of

random sources, then we can get the imaging function by computing the correlation between

the backpropagated scattering P waves and S waves as before.

6.4.1 With Rectangular Pulse Source

Suppose that our source is a rectangular pulse defined as:

(6.1) ρτ (t) =

1 −τ ≤ t ≤ τ

0 otherwise.

The Fourier transform of the rectangular pulse is aclculated as follows:

ρ̂τ (ω) =F(ρτ (t)) =

∫
ρτ (t)e

iωtdt

=

∫ τ

−τ
eiωtdt ∝ sin(ωτ)

ω
∝ sinc(

ωτ

π
).

Suppose that we have many sensors, then the imaging function is same as before:

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃v̂(ω)¯̂v(ω̃)eikpr
∆(a)e−ik̃sr

∆(a)e−iωteiω̃tdtdadωdω̃.

In this section, our source is a rectangular pulse, so v̂(ω) can be replaced by sinc(ωτ
π

):

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃sinc(
ωτ

π
) ¯sinc(

ω̃τ

π
)eikpr

∆(a)e−ik̃sr
∆(a)e−iωteiω̃tdtdadωdω̃.

In Figure 6.13a, it shows the surface of the imaging function in the rectangular pulse

source case with many sensors and two dimensional offset, and we can find that the maximum

values can be achieved when ∆x = 0 and ∆z = 0. In Figure 6.13b, it shows the contour
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of the imaging function in the rectangular pulse source case with many sensors and two

dimensional offset, and also, we can find that the maximum values can be achieved when

∆x = 0 and ∆z = 0. In Figure 6.13, we used different values of τ . τ denotes the width

of the rectangular pulse source. From these figures, we can find that the smaller τ is, the

better resolution there will be.

6.4.2 With Continuous Pulse Source

Assume that we have many sensors on x-axis, the source is at (h, 0,−h cotφ), but we cannot

use the location of the source to find the imaging function. In this section, our source is a

continuous pulse source:

ρ(t) = cos(ω0t)e
−( t

t0
)2/2

,

where ω0 and t0 are parameters and ω0 � 1
t0

. The figures of the continuour pulse source are

Figure 6.14 and Figure 6.15. They show that different parameter values will influence the

width of the pulse.

The above pulse function is the product of the cosine function and the Gaussian kernal.

The source gennerated a continuous pulse, and scattered at inclusion, then we can receive

scattering P waves and S waves. Our imaging function is same as before:

I(∆x,∆z) =T−1A−1

∫∫∫∫
ω2ω̃2Cp(φ)Cs(φ)e−ikp(r(a)+l̃)

eik̃sr(a)+ik̃p l̃v̂(ω)¯̂v(ω̃)eikpr
∆(a)e−ik̃sr

∆(a)e−iωteiω̃tdtdadωdω̃.

In Figure 6.16a, it shows the surface of the imaging function in the continuous-pulse case

with many sensors and two dimensional offset, and we can find that the maximum values

can be achieved when ∆x = 0 and ∆z = 0. In Figure 6.16b, it shows the contour of the

imaging function in the continuous-pulse case with many sensors and two dimensional offset,

and also, we can find that the maximum values can be achieved when ∆x = 0 and ∆z = 0.

In Figure 6.16, we can find that when we fix ω0, the smaller t0 is, the better resolution there

will be.

If we fix t0 = 10, then, as Figure 6.17, the resolution is not as good as before and there
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Figure 6.13: Imaging Function with Rectangular Pulse Source with Different τ
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Figure 6.14: Continuous Pulse with Different Parameters
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Figure 6.15: Continuous Pulse with Different Parameters
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(e): 2D offset(Surface)(ω0 = 10, t0 = 0.1) (f): 2D offset(Contour)(ω0 = 10, t0 = 0.1)

Figure 6.16: Imaging Function in Continuous Pulse Source with Fixed ω0
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is no relationship between ω0 and the resolution when the value of t0 is not small enough.

In Figure 6.18, when we fix t0 = 0.1, the resolution will be much better than above, and ω0

does not influence the resolution a lot. Also, we can find that there is no difference on theses

figures when t0 is small enough.
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Figure 6.17: Imaging Function in Continuous Pulse Source with Fixed t0
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Figure 6.18: Imaging Function in Continuous Pulse Source with Fixed t0
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Chapter 7

Summary and Examples

In this section, we will show the main results in different cases by tables. Table 1 shows

the theretical results from known source case, unknown source case, image contribution of

incident waves and unknown pulse source case. Table 2 shows the main results in different

φ, where φ denotes the angle between z axis and the propagation direction of the incident

waves from the source to the inclusion.

If φ = 0, it denotes that our source is a backlight; if φ = π
2
, it shows that we have

a sidelight source; if φ = π, then we have a headlight source. With different φ, we have

different resolution and stability results as Table 2:

1. Resolution Derivation In Known Source Case considering P scattering component only,

with a backlight, the transverse radius is Rayleigh resolution and the longitudinal ra-

dius is infinity; with a sidelight, the transverse radius is harmonic sum resolution and

the longitudinal radius is broadband resolution; with a headlight, the transverse radius

is Rayleigh resolution and the longitudinal radius is broadband resolution. In Known

Source Case considering S scattering component only, with a backlight, the transverse

radius is Rayleigh resolution and the longitudinal radius is harmonic difference res-

olution; with a sidelight, the transverse radius is harmonic sum resolution and the

longitudinal radius is broadband resolution; with a headlight, the transverse radius is

Rayleigh resolution and the longitudinal radius is harmonic sum resolution. In the

other three cases, the transverse radius is Rayleigh resolution and the longitudinal

radius is harmonic difference resolution no matter how φ changes.
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2. Stability Analysis In Known Source Case, SNR ≥ 0.83T
τ

, no matter considering P com-

ponent only or S component only and also it holds for different φ. In Unknown

Source Case, SNR ≥ T
5τ

holds for different φ. In Image Contribution of Incident

Waves, with a backlight, SNR ∼ e
h2

2l̃λpH(∆x,∆z) ≤ e
h2

2l̃λp ; with a sidelight, SNR

∼ e
h
λpH(∆x,∆z) ≤ e

h
λp ; with a headlight, SNR ∼ e

2h
λpH(∆x,∆z) ≤ e

2h
λp . Because we

know that H(∆x,∆z) = A−1
∫ A/2
−A/2 e

− |∆z+∆x(a/h)|
λ̄p,s da and 1 = H(0, 0) = maxH(∆x,∆z).

In addition, with a sidelight or headlight, SNR is much larger than that with a

backlight in this case. In Unknown Pulse Source Case, with a backlight, SNR ∼

A−1C−1( h2

2l̃lcp
)E[I]; with a sidelight, SNR ∼ A−1C−1(−h

lcp
)E[I]; with a headlight, SNR

∼ A−1C−1(−2h
lcp

)E[I]. Additively, with a sidelight or headlight, SNR is much larger

than that with a backlight.

In Table 3, it shows the results in true values, where cp = 6km/s, cs = 4km/s, λp =

0.15km, λp = 0.1km, h = 50km, A = 0.1km, l̃ = 100km, T = 100s, τ = 5s, ω0 = 10,

t0 = 100, and l = 0.01km. In Figure 7.1, it shows the coeffient of SNR in Pulse Source

case, that is, when |∆t| is larger and larger, the coeffient A−1C−1(∆t) will have a very large

absolute value.

Table 7.1: Main Results in Different Cases

Cases
Resolution

Stability
Transverse Radius Longitudinal Radius

Known Source
P:

λp
A
h+sinφ

λp√
2−2 cosφ SNR ≥ 0.83T

τ

S: 1
A
hλs

+ sinφ
λp

√√√√( sinφ
Aλp
hλs

+sinφ

)2

+1

1
λs
− cosφ

λp

Unknown Source
hλ̄p,s
A λ̄p,s SNR ≥ T

5τ

ICIWa hλ̄p,s
A λ̄p,s SNR � 1

Pulse Source
hλ̄p,s
A λ̄p,s SNR � 1

a ICIW denotes image contribution of incident waves.
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Table 7.2: Main Results in Different φ

Cases
Resolution

Stability
Transverse Longitudinal

Known Source

P
φ = 0

λph
A ∞

SNR ≥ 0.83T
τ

φ = π
2

λp
A
h+1

λp√
2

φ = π
λph
A

λp
2

S
φ = 0 λsh

A λ̄p,s

φ = π
2

hλs
A
hλs

+ 1
λp

√
( 1
Aλp
hλs

+1
)2+1

1
λs

φ = π λsh
A

√
( 1
Aλp
hλs

+1
)2+1

1
λs

Unknown Source
φ = 0

hλ̄p,s
A

λ̄p,s SNR ≥ T
5τφ = π

2

φ = π

ICIWa
φ = 0

hλ̄p,s
A

λ̄p,s

SNR ∼ e
h2

2l̃λpH(∆x,∆z)

φ = π
2 SNR ∼ e

h
λpH(∆x,∆z)

φ = π SNR ∼ e
2h
λpH(∆x,∆z)

Pulse Source
φ = 0

hλ̄p,s
A

λ̄p,s

SNR ∼ A−1C−1( h2

2l̃lcp
)E[I]

φ = π
2 SNR ∼ A−1C−1(−hlcp )E[I]

φ = π SNR ∼ A−1C−1(−2h
lcp

)E[I]

a ICIW denotes image contribution of incident waves.
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Figure 7.1: The Coefficients of SNR in Pulse Source Case with True Values
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Table 7.3: Main Results in True Values

Cases
Resolution

Stability
Trans. Long.

Known Source

P
φ = 0 75 ∞

SNR ≥ 16.6
φ = π

2 0.150 0.106

φ = π 75 0.075

S
φ = 0 50 0.3

φ = π
2 0.150 0.141

φ = π 50 0.06

Unknown Source
φ = 0

150 0.3 SNR ≥ 4
φ = π

2

φ = π

ICIWa
φ = 0

150 0.3 SNR � 1
φ = π

2

φ = π

Pulse Source
φ = 0

150 0.3
SNR ∼ 33|E[I]|

φ = π
2 SNR ∼ 1.36× 109|E[I]|

φ = π SNR ∼ 1.67× 1031|E[I]|
a ICIW denotes image contribution of incident waves.
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Appendices

A Introduction to Elastic Wave Equation

A.1 Motivation

Elastic wave equation has been widely used to describe wave propagation in an elastic

medium, such as seismic waves in Earth and ultrasonic waves in human body. Seismic

waves are waves of energy that travel through the earth, and are a result of an earthquake,

explosion, or a volcano.

A.2 Elastic Wave Equation

The standard form for seismic elastic wave equation in homogeneous medium is :

ρutt = (λ+ 2µ)∇∇ · u− µ∇×∇× u,

where ρ is the density,u is the displacement for the wave, and λ,µ are Lame parameters.

We will make use of Newton’s second law F = ma, where the mass m = ρdx1dx2dx3 and

the acceleration a = utt = ∂2u
∂t2

. The total force from stress field is

F = Fi + F body
i ,

where F body
i = fidx1dx2dx3 and Fi = Σ

∂τij
∂xj

dx1dx2dx3 = ∂jτijdx1dx2dx3. Combining the



Components of Stress in Three Dimensions.

above equations, we can get the Momentum equation:

ρ
∂2u

∂t2
=
∂τij
∂xj

+ fi,

where τ is the stress tensor.

Definition of Stress: A measure of the internal forces acting within a deformable

body. The stress at any point n an object, assumed to behave as a contimuum, is completely

defined by nine component stresses: three orthogonal normal stresses and six orthognonal

shear stresses. The stress tensor τij is the Cauchy stress tensor which is a second order tensor

of a linear map with nine components τij that completely define the state of stress at a point

inside a material in the deformed placement or configuration. The tensor relates a unit-

length direction vector n to the stress vector T(n) across an imaginary surface perpendicular

to n:

τ =


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 .
Definition of Strain: A local measure of relative change in the displacement field, that
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is, the spatial gradients in the displacement field. Also, it related to deformation, or change

in shape, of a material rather than any change in position:

eij =
1

2
(∂iuj + ∂jui) =


∂u1

∂x1

1
2
(∂u1

∂x2
+ ∂u2

∂x1
) 1

2
(∂u1

∂x3
+ ∂u3

∂x1
)

1
2
(∂u2

∂x2
+ ∂u1

∂x2
) ∂u2

∂x2

1
2
(∂u2

∂x3
+ ∂u3

∂x2
)

1
2
(∂u1

∂x2
+ ∂u2

∂x1
) 1

2
(∂u3

∂x1
+ ∂u1

∂x3
) ∂u3

∂x3

 .

Stress and Strain are linked in elastic media by Stress-Strain or constitutive relationship.

The most general linear relationship between Stress and Strain is :

τij = Cijklekl,

where C denotes the stiffness (or elastic coefficient), and Cijkl is termed the elastic tensor.

A.3 The Seismic Wave Equation in Isotropic Medium

The material is isotropic if the properties of the solid are the same in all directions. In

isotropic medium, the number of the independent parameters is reduced to two:

Cijkl = λδijδkl + µ(δilδjk + δikδjl),

where λ and µ are called the Lame parameters; δij = 1 for i = j, δij = 0 otherwise; µ = τxy
2exy

.

The stress-stain equation for an isotropic medium:

τij = λδijekk + 2µeij = λδij∂kuk + µ(∂iuj + ∂jui).

Substituting the above equations in the homogeneous equation of motion:

ρutt =∂j[λδij∂kuk + µ(∂iuj + ∂jui)]

=∂iλ∂kuk + λ∂i∂kuk + ∂jµ(∂iuj + ∂jui) + µ∂j∂iuj + µ∂j∂jui

=∂iλ∂kuk + ∂jµ(∂iuj + ∂jui) + λ∂i∂kuk + µ∂i∂juj + µ∂j∂jui.
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Thus, we can get

ρutt = ∇λ(∇ · u) +∇µ · [∇u+ (∇u)T ] + (λ+ µ)∇∇ · u+ µ∇2u.

By using ∇2u = ∇∇ · u−∇×∇× u, we can get

ρutt = ∇λ(∇ · u) +∇µ · [∇u+ (∇u)T ] + (λ+ 2µ)∇∇ · u−∇×∇× u.

The first two terms on the involve gradient in the Lame parameters and are non-zero when-

ever the material is inhomogeneous. Including these factors makes the equations very com-

plicated and difficult to solve efficiently. If velocity is only a function of depth, then the

material can be modeled as a series of homogeneous layers. Within each layer, there are no

gradients in the Lames parameters and so these terms go to zero. The standard form for

seismic wave equation in homogeneous medium is:

ρutt = (λ+ 2µ)∇∇ · u−∇×∇× u.

If ρ, λ and µ are constants, the wave equation is simplified as:

utt = α2∇∇ · u− β2∇×∇× u,

where the P wave velocity α =
√

λ+2µ
ρ

and the S wave velocity β =
√

µ
ρ
.

B Model Assumptions

In our model, the typical wavelength of the propagating pulse λ0 is comparable to the propa-

gation distance L, while the size l of the layers is small( Here, the radius of the inclusion R is

small). The typical wavelength is taken to be the pulse width times a reference propagation

speed. In this homogenization regime, propagation in a random medium is asymptotically

equivalent to propagation in a homogeneous effective medium obtained by averaging the

density and the reciprocal of the bulk modulus. In many applications the propagation dis-

83



tance is large compared with the size of the pulse, and wave fluctuations build up behind

it as it travels deep into the random medium. In order to model this regime, we take the

propagation distance L to be lage compared to the typical wavelength λ0, and the typical

layer size l small compared to λ0,

l� λ0 � L.

In our model, that is,

R� λ0 � l̃,

where, l̃ is the distance between source and inclusion.

We refer to this scaling as the high-frequency white-noise regime. It is a particularly

interesting one becuse it is a high-frequency regime with respect to the large-scae variations

of the medium, L/λ0 � 1, but it is a low-frequency regime with respect to the small-scale

random fluctuations, l/λ0 � 1. As a result, the effect of the random fluctuations takes a

canonical form the white-noise regime is one of the scaling regimes that have remarkably

complete asymptotic theory.

C Probabilistic Tools

C.1 The Law of Large Numbers

In probability theory, the law of large numbers (LLN) is a theorem that describes the result

of performing the same experiment a large number of times. According to the law, the

average of the results obtained from a large number of trials should be close to the expected

value, and will tend to become closer as more trials are performed.

Two different versions of the law of large numbers are described below; they are called

the strong law of large numbers, and the weak law of large numbers. Both versions of

the law state that with virtual certainty the sample average Xn = 1
n
(X1 + · · · + Xn),

converges to the expected value Xn → µ = E(X) for n → ∞, where X1, X2, ... is

an infinite sequence of i.i.d. Lebesgue integrable random variables with expected value

E(X1) = E(X2) = · · · = E(X) = µ. Lebesgue integrability of Xj means that the expected
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valueE(Xj) exists according to Lebesgue integration and is finite.

An assumption of finite variance V ar(X1) = V ar(X2) = ... = σ2 < ∞ is not necessary.

Large or infinite variance will make the convergence slower, but the LLN holds anyway. This

assumption is often used because it makes the proofs easier and shorter.

Weak Law

Simulation illustrating the law of large numbers. Each frame, you flip a coin that is red

on one side and blue on the other, and put a dot in the corresponding column. A pie chart

shows the proportion of red and blue so far. Notice that the proportion varies a lot at first,

but gradually approaches 50%. The weak law of large numbers (also called Khintchine’s

law) states that the sample average converges in probability towards the expected value

Xn
P−→ µ when n→∞. That is to say that for any positive number ε,

lim
n→∞

Pr
(
|Xn − µ| > ε

)
= 0.

Interpreting this result, the weak law essentially states that for any nonzero margin specified,

no matter how small, with a sufficiently large sample there will be a very high probability

that the average of the observations will be close to the expected value; that is, within the

margin.

Strong Law

The strong law of large numbers states that the sample average converges almost surely

to the expected value Xn
a.s.−−→ µ when n→∞. That is,

Pr
(

lim
n→∞

Xn = µ
)

= 1.

The proof is more complex than that of the weak law. This law justifies the intuitive

interpretation of the expected value of a random variable when sampled repeatedly as the

”long-term average”. Almost sure convergence is also called strong convergence of random

variables. This version is called the strong law because random variables which converge

strongly (almost surely) are guaranteed to converge weakly (in probability). The strong

law implies the weak law. The strong law of large numbers can itself be seen as a special

case of the pointwise ergodic theorem. Moreover, if the summands are independent but not
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identically distributed, then

Xn − E
[
Xn

] a.s.−−→ 0,

provided that each Xk has a finite second moment and

∞∑
k=1

1

k2
Var[Xk] <∞.

This statement is known as Kolmogorov’s strong law, see e.g. Sen & Singer (1993, Theorem

2.3.10).

D The Cross Correlation

In signal processing, cross-correlation is a measure of similarity of two waveforms as a function

of a time-lag applied to one of them. This is also known as a sliding dot product or sliding

inner-product. It is commonly used for searching a long signal for a shorter, known feature.

It has applications in pattern recognition, single particle analysis, electron tomographic,

averaging, cryptanalysis, and neurophysiology.

D.1 Wave cross correlations in a homogeneous medium with ran-

dom sources

Let u(t,x1) and u(t,x2) denote the time-dependent wave fields recorded by two sensors at

x1 and x2. Their cross correlation function over the time interval [0, T ] with time lag τ is

given by

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt.

In a homogeneous medium, if the source of the waves is a space-time stationary random field

that is also delta correlated in space and time,

∂

∂τ
CT (τ,x1,x2) ' −[G(τ,x1,x2)−G(−τ,x1,x2)],
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where G is the Green’s function. This approximate equality holds for T sufficiently large

and provided some limiting absorption is introduced to regularize the integral. The main

point here is that the time-symmetrized Greens function can be obtained from the cross

correlation if there is enough source diversity. In this case the wave field at any sensor is

equipartitioned, in the sense that it is a superposition of uncorrelated plane waves of all

directions. We can recover in particular the travel time τ(x1,x2) from the singular support

of the cross correlation.

D.2 Wave cross correlations in a scattering medium

In the case of a spatially localized distribution of noise sources, directional diversity of the

recorded fields can be enhanced if there is sufficient scattering in the medium. An ergodic

cavity with a homogeneous interior is a good example: Even with a source distribution

that has very limited spatial support, the reverberations of the waves in the cavity gener-

ate interior fields with high directional diversity. Multiple scattering of waves by random

inhomogeneities can also lead to wave field equipartition if the transport mean free path is

short compared to the distance from the sources to the sensors. The transport mean free

path is the propagation distance over which wave energy transport in a scattering medium

is effectively isotropic. In such a scattering medium, the inhomogeneities can be viewed as

secondary sources in the vicinity of the sensors.

If in a random medium the transport mean free path is short compared to the distance

between the sensors, then the cross correlation function still gives an estimate of the Green’s

function, which is itself random because of the medium. However, its coherent part that

has information about the travel time is essentially unobservable. The travel time can be

estimated in a random medium when the noise sources are spatially limited provided that

(i) the transport mean free path is short compared to the distance between the sources and

the sensors, and (ii) it is long compared to the distance between the sensors.
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D.3 Extracting the Green’s function from the cross correlation

The wave equation with noise sources. We consider the solution u of the wave equation

in a d-dimensional inhomogeneous medium:

1

c2(x)

∂2u

∂t2
−∆xu = nε(t,x).

The term nε(t,x) models a random distribution of noise sources. It is a zero-mean stationary

(in time) Gaussian process with autocorrelation function

< nε(t1,y1)nε(t2,y2) >= F ε(t2 − t1)T (y1,y2).

Here, < · > stands for statistical average with respect to the distribution of the noise sources.

The Gaussian property is assumed here so as to simplify the calculations of statistical stabil-

ity. It could be replaced by a more general decorrelation or mixing property. We assume that

the decoherence time of the noise sources is much smaller than typical travel times between

sensors. If we denote with ε the ratio of these two time scales, we can then write the time

correlation function F ε in the form

F ε(t2 − t1) = F (
t2 − t1
ε

),

where t1 and t2 are scaled relative to typical sensor travel times.

Statistical stability of the cross correlation function.

The stationary solution of the wave equation has the integral representation

u(t,x) =

∫ ∫ t

−∞
nε(s,y)G(t− s,x,y)dsdy

=

∫ ∫
nε(t− s,y)G(s,x,y)dsdy,

where G(t,x,y) is the time-dependent Green’s function. It is the fundamental solution of

the wave equation.
1

c2(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y),
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starting from G(0,x,y) = ∂tG(0,x,y) = 0.

The empirical cross correlation of the signals recorded at x1 and x2 for an integration

time T is

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt.

It is a statistically stable quantity, in the sense that for a large integration time T , CT is

independent of the realization of the noise sources.

Proposition: (a) The expectation of CT (with respect to the distribution of the sources)

is independent of T :

< CT (τ,x1,x2) >= C(1)(τ,x1,x2)

where C(1) is given by

C(1)(τ,x1,x2) =

∫
dy

∫
dsds′G(s,x1,y)G(τ + s+ s′,x2,y)F ε(s′)θ(y),

or equivalently by

C(1)(τ,x1,x2) =
1

2π

∫
dy

∫
dω

¯̂
G(ω,x1,y)Ĝ(ω,x2,y)F̂ ε(s′)e−iωτθ(y).

(b) The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)→ C(1)(τ,x1,x2), as T →∞,

in probability with respect to the distribution of the sources. More precisely, the fluctuations

of CT around its mean value C(1) are of order T−1/2 for T large compared to the decoherence
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time of the sources. The covariance function of CT is:

Cov(CT (τ,x1,x2), CT (τ + ∆τ,x1,x2))

1

T 2

∫ T

0

∫ T

0

dtdt′
∫
dsds′dudu′

∫
dy1dy

′

1dy2dy
′

2

×G(s,x1,y1)G(u− τ,x1,y2)G(s′,x2,y
′

1)G(u′ − τ −∆τ,x2,y
′

2)

× (< nε(t− s,y1)nε(t− u,y2)nε(t′ − s′,y′1)nε(t′ − u′,y′2) >

− < nε(t− s,y1)nε(t− u,y2) >< nε(t′ − s′,y′1)nε(t′ − u′,y′2) >).
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