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EPIGRAPH

Religion is the opium of the masses.
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In this dissertation, we discuss topics in electroweak symmetry breaking and re-

lated phenomena. A quick review of the Standard Model of particle physics is given

in Chapter 1. There we also discuss its hierarchy problem and a possible solution– the

Littlest Higgs model. In Chapter 2 and 3, we show that the Littlest Higgs Model and

its variants do not successfully solve the hierarchy problem. In Chapter 4 we explore

the possibility of spontaneous CP violation in the Littlest Higgs and related models.

Another topic that we explore is the existence of a light dilaton, a pseudo-Nambu-

Goldstone boson of a spontaneously broken scale symmetry, which is the subject of

Chapter 5.
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Chapter 1

Introduction

In this chapter I provide context for the work contained in the following chapters.

I also review background material for lay-readers. Readers with basic knowledge of

particle physics can skip to Section 1.1.4.

1.1 The Basics

One of the most important objective of science is to understand how nature works.

On the quest to understand the fundamental laws of nature, we have come across

many puzzles and their resolutions. Even with the considerable amount of progress

made during the past century the universe is still a place full of mysteries. Resolving

(some of) these mysteries is a necessary step for understanding how nature works.

However, before discussing these unresolved puzzles, some of which are presented in

this dissertation, it is instructive to review first the successes we have made in our

attempt to understand the basic laws of nature.

Nature, at the most fundamental level, can be described by a set of building

blocks (elementary particles), interactions (forces), and universal rules. Our universe,

to a good approximation, follows the rules of relativity and quantum mechanics.

We have identified 12 elementary particles, the quarks and leptons, and 4 types of

force: gravity, electromagnetic, strong and weak. Gravity, the most familiar force

from our everyday experience, is the universal force that every particle feels. Gravity

successfully explains why we do not float around; why there is low tide and high tide;

why the Earth goes around the sun, etc.. Even though it is the most familiar force,

1
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it remains the least understood. We do not understand how to incorporate gravity

into a quantum theory. Luckily, due to the feeble nature of gravity, its effect on the

interactions of elementary particles can be ignored. Thus, we will leave gravity out

from the rest of this work.

Another familiar force from everyday experience is electromagnetism. It is the

force that charged particles feel. The electromagnetic force is responsible for a wide

range of phenomena: from static shock to lightning to the generation of electricity for

our daily consumption. However, few people know that it is also responsible for light,

or more generally, electromagnetic radiation. Unlike gravity, we do have a quantum

theory of the electromagnetic interactions which successfully describes virtually all

atomic phenomena. It is the most well-tested theory in all of physics.

The strong and weak forces are the least familiar. They operate at a subatomic

level. The strong force is responsible for binding protons together inside the nucleus

while the weak force is responsible for radioactivity. As is the case for the electromag-

netic force, we have a quantum theory of strong and weak interactions. The quantum

theory of the electromagnetic, strong and weak interactions is the cornerstone of our

current understanding of the fundamental laws of nature, on which we will focus on

for the rest of this chapter.

1.1.1 The Standard Model of Particle Physics

A fully relativistic and quantum mechanical theory that describes the electromag-

netic, strong and weak interactions of quarks and leptons is known as the Standard

Model (SM). Each type of interaction of quarks and leptons is a consequence of a

symmetry. In the SM, the interaction is mediated by a force carrier, a gauge boson.

Mathematically, the SM is a quantum field theory with a SU(3)C × SU(2)L ×U(1)Y

gauge group.

It is amazing that, at the fundamental level, much of the complex universe can

be understood in terms of quarks and leptons and the three symmetries for the elec-

tromagnetic, strong and weak interactions. The SM has had tremendous successes

when compared against experimental results. Prime examples are the prediction of an

anomalous magnetic dipole moment of the electron and the invisible width of the Z

boson. Despite its paramount successes there remain puzzles, both experimental and
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theoretical, that the SM cannot explain. On the experimental side, the observation

of baryon asymmetry in the universe, dark matter, and the accelerated expansion

of the universe cannot be accommodated within the SM. These observations suggest

that the SM is an incomplete theory and needs to be extended to include new physics

responsible for the above observations. SM also contains some theoretical puzzles.

Most of the puzzles are in the electroweak sector, the SU(2)L×U(1)Y part responsible

for the electromagnetic and weak interactions. The electroweak sector of the SM is

the subject that we will turn to next.

1.1.2 The Electroweak Sector

The electroweak sector of the SM is the best verified sector experimentally. The

gauge bosons responsible for the electroweak interaction are the W± and Z bosons,

and the photon. Naively these gauge bosons, according to gauge theory, are expected

to be massless. However, the photon is the only massless gauge boson we have

observed so far. Both W± and Z are massive. To make matters worse, electroweak

symmetry seems to constrain quarks and leptons to be massless in contradiction

with experimental measurement. These apparent inconsistencies are resolved by the

mechanism of spontaneous symmetry breakdown— the fundamental dynamics of the

system respect the symmetry, but the ground state that the system settles into does

not. Thus all the successful predictions of the theory remain valid while the W± and

Z bosons, as well as the quarks and leptons, become massive.

In the SM, electroweak symmetry is broken by a hypothetical particles, the Higgs.

The interaction of the Higgs with gauge bosons, quarks and leptons respect elec-

troweak symmetry. However, the dynamics of the Higgs is such that it can settle

into a ground state that is not invariant under electroweak symmetry. This is known

as electroweak symmetry breaking. Once the Higgs is in this electroweak breaking

ground state, the W± and Z bosons, as well as quarks and leptons, become massive

due to their interaction with the Higgs— the Higgs mechanism. We parametrize the

amount by which electroweak symmetry is broken by the vacuum expectation value

(vev) of the Higgs, v. Experimentally, v = 256 GeV (about 250 times the mass of

the proton). The scale v, which is often referred to as the electroweak scale, sets the

scale of the gauge boson, quark and lepton masses.
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The introduction of the Higgs particle successfully resolves the apparent inconsis-

tency of the electroweak sector of the SM by the Higgs mechanism. It also leaves a

remnant that could be detected at the Large Hadron Collider (LHC), the Higgs boson.

Since the Higgs boson is tied to electroweak symmetry breaking (EWSB), the mass

of the Higgs boson is expected to be around the electroweak scale. However, quan-

tum effects will in general push the mass of the Higgs boson to a much higher scale

associated with the new physics scale. Thus in order to have the Higgs boson at the

electroweak scale, there must be a significant cancellation among quantum effects—

also known as fine-tuning. For example, the scale of new physics expected from flavor

physics experiments is around 10 TeV. This requires a fine-tuning at the level of 1 part

in 10,000 in order to have to have the Higgs mass at around 100 GeV. The amount

of fine-tuning gets worse for a higher scale of new physics (grand unification: 1 in

1026, gravity: 1 in 1034, etc.). The large amount of fine-tuning seems theoretically

unsettling. The puzzle of why the electroweak scale is much lighter compared to other

scales is known as the hierarchy problem. Solving the hierarchy problem has been

one of the main focuses of recent theoretical particle physics research.

There is a large literature on possible solutions of the hierarchy problem. They can

be classified into three categories: theories with extra-dimensions, supersymmetric

theories, and little Higgs models. It is impossible to cover them all in this dissertation.

Instead, we will focus on the little Higgs models which are described in Section 1.1.4.

However, it is necessary to introduce first the concept of Nambu-Goldstone boson in

order to understand the mechanism employed to solve the hierarchy problem in this

type of models.

1.1.3 Consequence of Spontaneous Symmetry Breaking

In this subsection we discuss one important consequence of spontaneous symme-

try breakdown— the appearance of massless particles known as Nambu-Goldstone

bosons (NGBs). More concretely, for every generator of a continuous symmetry that

is spontaneously broken, there is a massless particle associated with it. It is worth

mentioning that when the spontaneously broken symmetries are only approximate

symmetries, the resulting NGBs become massive. They are referred to as pseudo-

Nambu-Goldstone bosons. The mass of the pseudo-Nambu-Goldstone boson is pro-
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portional to the amount by which the original symmetry is explicitly broken.

The NGBs are an important ingredient for the Higgs mechanism. The gauge boson

corresponds to the spontaneously breakdown gauge symmetry can combine with the

would-be NGB of the symmetry breaking to become massive. In the electroweak

sector of the SM, for example, the SU(2)L×U(1)Y gauge symmetry is spontaneously

broken down to U(1)EM . The would be NGBs of this symmetry breaking merge with

the otherwise massless W± and Z gauge bosons to give them masses.

1.1.4 The Little Higgs Models

We are now ready to discuss little Higgs models. As has been pointed out in

the previous section, PNGBs of weakly broken symmetries can be generically light.

In little Higgs models, the Higgs particles are PNGBs of some symmetries which are

weakly broken at the new physics scale. However, this is usually not enough to ensure

that the Higgs vev is much smaller than a new physics scale.

In order to have the Higgs mass much lighter than the new physics scale, little

Higgs models usually employ a clever symmetry breaking pattern where the symmetry

is broken only collectively (see Chapter 2 for more detail). This collective symmetry

breaking protects the Higgs mass from leading quantum corrections. Thus only sub-

leading quantum effects contribute to the Higgs mass and hence it can be, in general,

much lighter than the new physics scale. However, this seemingly simple idea turns

out to be difficult to implement consistently, and is the subject of the work discussed

in this dissertation.

1.2 Outline and Conclusions

In Chapter 2 we consider the most widely studied little Higgs model, the Littlest

Higgs. In this model, the collective symmetry needed to protect the Higgs mass from

quantum effects is itself violated by quantum effects. Thus the protection is only

possible when the quantum effects are fine-tuned so that they don’t impede collective

symmetry. Hence, the fine-tuning of the electroweak sector of the SM is moved to the

fine-tuning of collective symmetry mechanism. We also proceed to show that such a

fine-tuning is generic in the little Higgs model in which collective symmetry arises in
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the limit that some interactions are taken to be vanishing. The precise meaning of

this statement will be made clear in Chaper 2.

In Chapter 3, we present a full analysis of leading quantum effects of the Littlest

Higgs model. There, we introduce a technique for categorizing such effects in the

model. With this study, it is easy to see that the Littlest Higgs model suffers from a

fine-tuning problem.

In Chapter 4, we explore the possibility of accommodating spontaneous CP vio-

lation in the Littlest Higgs model. We find that this is impossible due to the minimal

nature of the model. However, a simple extension of the model does allow for spon-

taneous CP violation. This CP violation could be useful in explaining the observed

baryon asymmetry in the universe. Moreover, we show that such an extension of

the Littlest Higgs model contains a new light PNGB which leads to interesting LHC

phenomenology.

In Chapter 5, we study a slightly related topic regarding the spontaneous break-

down of the scale (or dilatation) symmetry. In a theory with a spontaneously broken

approximate scale invariant, one would expect light dilaton— the PNGB of the dilata-

tion symmetry. What is meant by light is that in the limit that the scale symmetry

is exact, the dilaton becomes massless. However, quantum effects break dilatation

symmetry explicitly and it becomes unclear if there is a dilaton at all. In fact, there

has been a long standing debate whether there exist a quantum theory containing a

light dilaton. In this Chapter, we construct a toy model in which, after quantization,

there is a light dilaton in the spectrum of the theory. Moreover, we are able to verify,

by direct computation, the properties of the dilaton often quoted in the literature ob-

tained via indirect arguments. Possible motivations to study such a model are given

in the chapter.



Chapter 2

Hidden Fine Tuning in the Quark

Sector of Little Higgs Models

In little higgs models a collective symmetry prevents the higgs from acquiring a

quadratically divergent mass at one loop. By considering first the littlest higgs model

we show that this requires a fine tuning: the couplings in the model introduced to

give the top quark a mass do not naturally respect the collective symmetry. We show

the problem is generic: it arises from the fact that the would be collective symmetry

of any one top quark mass term is broken by gauge interactions.

2.1 Introduction

Little Higgs (LH) models offer an alternative to the standard model in which no

fundamental scalars need be introduced (for reviews see [1, 2, 3]). Generally, in LH

models the Higgs is a composite particle, bound by interactions that become strong

at a scale Λ. The mass of the Higgs is much less than Λ as the Higgs is a pseudo-

Goldstone boson (PGB) of broken global symmetries in the theory of the new strong

interaction.

The global “flavor” symmetry Gf of these models has a subgroup Gw that is

weakly gauged. In the absence of this weak gauge force, the flavor symmetry is

broken spontaneously to a subgroup H due to hyper-strong interactions at the scale

Λ. As a result, there are massless Goldstone bosons that are coordinates on the Gf/H

coset space. Since the weakly gauged Gw force breaks the flavor symmetry explicitly,

7
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including its effects leads to some of the Goldstone bosons (the would-be Goldstone

bosons) being eaten by the Higgs mechanism and the rest becoming PGBs acquiring

small masses of order Λ times a small symmetry breaking parameter, the weak gauge

coupling constant. The Higgs is the lightest PGB in LH models, and its mass is

naturally much less than Λ (and the other PGBs): due to the collective symmetry

breaking mechanism its mass arises only at two loops.

Additional interactions must be included in LH models to account for quark and

lepton masses. At low energies they reproduce the Yukawa couplings of the standard

model. Since these interactions also break the flavor symmetry, they contribute to

the masses of the PGBs. In order to ensure that the Higgs remains much lighter than

Λ, the quark interactions are designed to implement the collective symmetry breaking

mechanism again.

In the littlest higgs[4] model (L2H) and variants a collective symmetry arises

naturally in the gauge sector. Turning off some gauge couplings gives an enlarged

symmetry group of the Lagrangian. This ensures that when those couplings are

turned off the higgs remains an exact Goldstone boson. The implementation of the

collective symmetry in the Yukawa couplings that give rise to the top quark mass

is somewhat different. For example, in the L2H the top-quark doublet is combined

with a new quark singlet into a ‘triplet’ of collective SU(3) symmetry. However, this

is not automatically a symmetry of the Lagrangian, as it is not respected by gauge

interactions. In other words, the couplings of the doublet and the singlet are a priori

independent, but need to be equal in order to implement the collective symmetry

mechanism. In this paper we investigate whether it is possible to construct a littlest

higgs model for which collective symmetry in the top-quark sector arises naturally.

If one used generic couplings in the L2H model for the doublet and the singlet of

the top quark ‘triplet’, then loop diagrams induce unsuppressed, order Λ/4π, Higgs

masses. Such generic couplings are not forbidden by any symmetry. As we will see,

even if the coupling of the ‘triplet’ is taken to respect the collective SU(3) symmetry

at tree level, radiative effects split it into two terms. These, in fact, have different

anomalous dimensions (they ‘run’ differently). The reader can view enforcing collec-

tive symmetry in the top quark sector as a fine tuning. Alternatively, one may argue

that assuming the symmetry is consistent with the littlest higgs approach. Only an
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explicit UV completion can validate one view over the other. We will not investigate

UV completions in this work, but enquire whether specific models avoid the issue.

Cannot collective symmetry arise naturally by gauging it? After all, if the sym-

metry is gauged then the restricted form of the quark coupling is a result of the gauge

symmetry. For example one may construct a model based on Gf/H = U(7)/O(7)

with Gw = SU(3) × SU(2) × U(1)3. The vacuum aligns[5, 6] so that Gw breaks to

the electroweak subgroup SU(2)× U(1) at the scale Λ, and the spectrum has a light

Higgs doublet plus many heavier PGBs. Could the gauged SU(3) now play the role

of the collective symmetry for the top quark mass? The problem with this is that the

gauge symmetry is broken and the would be higgs is eaten. This model is higgsless.

This is also generic: the collective symmetry must act nonlinearly on the higgs, and

therefore it must be broken. Gauging it eats away the higgs.

In Sec. 2.2 we review and explain the problem in the L2H model. The L2H itself

is phenomenologically disfavoured [7, 8, 9, 10, 11] by EWPD, and it is for this reason

that alternatives, like models with custodial symmetry[12] or with T-parity[13, 14, 15],

have been introduced. Rather than investigating these models individually we show

in Sec. 2.3 that the problem is generic. We first give a very explicit proof for models

with SU(N)/SO(N) (and SU(N)/Sp(N)) vacuum manifold. We then generalize,

which does not require much additional work. A brief recap is in Sec. 2.4.

2.2 Top-quark coupling fine tuning in the Littlest

Higgs Model

2.2.1 Model Review

To establish notation we briefly review elements of the L2H [4]. It has Gf =

SU(5), H = SO(5) and Gw =
∏

i=1,2 SU(2)i × U(1)i. Symmetry breaking SU(5) →
SO(5) is characterized by the Goldstone boson decay constant f . The embedding of

Gw in Gf is fixed by taking the generators of SU(2)1 and SU(2)2 to be

Qa
1 =

(
1
2
τa 02×3

03×2 03×3

)
and Qa

2 =

(
03×3 03×2

02×3 −1
2
τa∗

)
(2.1)
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and the generators of the U(1)1 and U(1)2

Y1 =
1

10
diag(3, 3,−2,−2,−2) and Y2 =

1

10
diag(2, 2, 2,−3,−3). (2.2)

The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ.

We denote by gi (g′i) the gauge couplings associated with SU(2)i (U(1)i). If one

sets g1 = g′1 = 0 the model has an exact global SU(3) symmetry (acting on the

upper 3 × 3 block of Σ), while for g2 = g′2 = 0 it has a different exact global SU(3)

symmetry (acting on the lower 3×3 block). Either of these exact global SU(3) would-

be symmetries guarantee the Higgs remains exactly massless. Hence, the Higgs mass

should vanish for either g1 = g′1 = 0 or g2 = g′2 = 0. The perturbative quadratically

divergent correction to the Higgs mass must be polynomial in the couplings and can

involve only one of the couplings at one loop order. Hence it must vanish at one

loop. This is the collective symmetry mechanism that ensures the absence of 1-loop

quadratic divergences in the higgs mass.

It is standard to introduce the top quark so that the collective symmetry argument

still applies. The third generation doublet qL is a doublet under SU(2)1 and a singlet

under SU(2)2. Introduce additional SU(2)1×SU(2)2-singlet spinor fields: qR, uL and

uR. The third generation right handed singlet is a linear combination of uR and qR.

The charges of these under U(1) × U(1) are listed below, in (2.15). Their couplings

are taken to be

Ltop = −1

2
λ1 f χ̄Li ε

ijk εxy Σjx Σky qR − λ2 f ūL uR + h.c. (2.3)

where the indexes i, j, k run over 1,2,3, the indexes x, y over 4, 5 and the triplet χL is

χL =

(
iτ 2qL

uL

)
. (2.4)

The collective symmetry argument now runs as follows. If λ2 = 0 then Ltop in (2.3) is

constructed so that it exhibits an explicit global SU(3) symmetry, a subgroup of Gf =

SU(5). Under this, the fields χL in (2.4) and Σix transform as triplets (on i = 1, 2, 3).

Since this would-be exact global symmetry is spontaneously broken it guarantees that

the Higgs field remains an exactly massless Goldstone boson. Similarly, if λ1 = 0 then

there is no coupling of the quarks to the Goldstone bosons, which therefore remain

massless. Hence, the mass term must vanish as either λ1 or λ2 are set to zero, and
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since the quadratic divergence is polynomial in the couplings, it can only arise at two

loops.

The gauge and top-quark interactions generate an effective, Coleman-Weinberg

potential which determines the vacuum orientation. If the gauge couplings are strong

enough[16],

g′21 + g2
1 >

2Nc

3π2c
λ2

1 λ
2
2

[
ln

(
Λ2

(λ2
1 + λ2

2)f 2

)
+
ĉ′

2

]
. (2.5)

where c and ĉ′ are unknown dynamical constants of order unity, the vacuum alignment

is

Σew =


0 0 12×2

0 1 0

12×2 0 0

 . (2.6)

leading to the gauge-symmetry breaking into the electroweak subgroup,
∏

i=1,2 SU(2)i×
U(1)i → SU(2)× U(1).

2.2.2 The Hidden Fine Tuning

As we just saw, the top quark Lagrangian Ltop in (2.3) is constructed so that

it exhibits an explicit global SU(3) symmetry. However, this is a symmetry of the

Lagrangian only for λ2 = g1 = g′1 = 0.

There is in fact no symmetry reason for the fields in χL to combine into a triplet.

Given that the effective Lagrangian is restricted only by the non-linear realization

of the symmetry (by parametrizing Gf/H) and by the requirement of explicit gauge

invariance under Gw, the coupling in (2.3) is more generally of the form

Ltop = −λ1f q̄
i
L ε

xyΣixΣ3yqR −
1

2
λ′1fūLε

3jkεxyΣjxΣkyqR − λ2fūLuR + h.c. (2.7)

Only when λ′1 = λ1 (and λ2 = g1 = g′1 = 0) do we recover the global SU(3) symmetry

of the collective symmetry mechanism. The main observation of this work is that the

relation λ′1 = λ1, assumed throughout the little higgs literature, is unnatural. We

refer to this as the hidden fine tuning problem. The reader may choose not to see

this as a problem, that assuming collective symmetry in the Yukawa sector at tree

level is in line with the littlest higgs approach. Only an explicit UV completion can

validate one view over the other.
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Although λ′1 = λ1 is natural in the absence of the gauge interactions, these are

already present in the UV completion. Below we comment in slightly more detail on

how radiative effects explicitly introduce SU(3) breaking into the Yukawa couplings.

It should be evident that for λ′1 6= λ1 the collective symmetry argument is spoiled.

A straightforward computation gives a quadratically divergent correction to the higgs

mass,

δm2
h =

12

16π2
(λ2

1 − λ′21 )Λ2 (2.8)

where Λ is a UV cut-off. The severity of the fine tuning can now be explored. If we

insist that the Higgs mass should be naturally of order of 100 GeV, while Λ ∼ 10 TeV,

then, not surprisingly, λ′1 − λ1 . (4πmh/Λ)2 ∼ 1%.

The Lagrangian in (3.8) is not the most general one consistent with symmetries

to lowest order in the chiral expansion. If SU(3) were a good symmetry one could

add to the Lagrangian a term of the form

χ̄Liεjklεxy(Σ
∗)ij(Σ∗)kx(Σ∗)lyqR (2.9)

One can also freely replace qR ↔ uR in Eqs. (2.3) and (2.9), and then, of course, split

each SU(3) invariant term into a sum of SU(2)× U(1) invariant terms. There is no

reason a priori why these terms should be ignored, but they are not dangerous. In

fact, they are inevitable, as they are generated radiatively, many of them already at

one loop [17].

2.2.3 Radiatively induced λ′1 6= λ1

Imposing λ′1−λ1 = 0 is not only a fine tuning, it is unnatural. Since the symmetry

is broken by marginal operators, the renormalization group evolution of the difference

λ′1 − λ1 takes it away from zero, even if it is chosen to be zero at some arbitrary

renormalization point µ.

As a check we have computed explicitly the one loop renormalization group equa-

tions for these couplings (see Fig. 2.1):

µ
∂

∂µ
ln

(
λ1

λ′1

)
=
(

2
3
− y
) 3g′21

16π2
(2.10)

Here y is the charge of qR under U(1)2. Details of the calculation will be presented

elsewhere[17]. If βg′1 = (b/16π2)g′31 then we can write the solution in terms of the
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Figure 2.1: Feynman diagram that contributes to the renormalization of the Yukawa
couplings λ1 and λ′1. The wavy line represents a gauge boson of U(1)1 and the solid
and doted lines a spinor and a PGB, respectively.

running coupling:

λ1(µ)

λ′1(µ)
=
λ1(Λ)

λ′1(Λ)

(
g′1(µ)

g′1(Λ)

) 2−3y
b

(2.11)

The numerical value for b can be obtained from the standard QED beta function

(see [18, 19])

b =
2

3

∑
Weyl fermion

Y 2
1i +

1

6

∑
real scalar

Y 2
1i (2.12)

To compute this, we need to introduce the Yukawa-type coupling for all the other

standard model quarks. We will follow Perelstein [2] by noting that there is no need

for implementing collective symmetry breaking for the other standard model quarks

due to their small Yukawa couplings. Thus the other “up” type quarks Yukawa

interaction can be introduced by

−λuαf q̄
i
αLε

xyΣixΣ3yqαR (2.13)

where α = 1, 2 is the quark family index. Similarly the other “down” type quark

interactions can be introduced by

−λdαf q̄
i
αLεxy(Σ

∗)ix(Σ∗)3ydαR (2.14)

here α = 1, 2, 3. If we take Y2(qR) = y, then the Y1 charge of all the particles involved

are
qαL qαR dαR uL uR H φ

Y1
11
30
− y 2

3
− y 1

15
− y 13

15
− y 13

15
− y 1/4 1/2

Y2 y − 1
5

y y − 2
5

y − 1
5

y − 1
5

1/4 1/2

(2.15)
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Thus we get b = 1
360

(2737− 8832y + 10080y2) ≥ 46/105. However, we note that the

y can be arbitrary.

We do not dwell on the numerics, since there are too many adjustable parame-

ters (the choice of y, the value of U(1) couplings and λ1,2(Λ) which however must

satisfy (2.5), the value of the cutoff Λ). We simply note that 1/16π2 log(Λ/mh) ∼
1/16π2 log(100) ∼ 3%. Hence, even fine tuning λ1(Λ) = λ′1(Λ) generically produces a

difference λ1(mh)− λ′1(mh) in excess of 1%.

Note also that the same behavior must occur in the UV completion of the L2H

model. After all, the terms in the Lagrangian that break Gf -symmetry model the

effects of symmetry breaking interactions at short distances, that is, in the UV com-

pletion. The interactions in the UV completion that are responsible for the quark

Yukawa couplings cannot be taken to respect the SU(3) symmetry required for the

collective symmetry argument. The breaking of the SU(3) symmetry in the UV com-

pletion is naturally much larger than in (2.11) since neither the U(1)1 gauge coupling

nor the Yukawa couplings are asymptotically free.

2.3 A no-go theorem

In this section we show the impossibility of constructing a theory that implements

without fine tuning the collective symmetry mechanism on the terms responsible for

quark and lepton masses. Let us begin by stating in general terms what is required

in order to implement the collective symmetry mechanism. Any given term in the

Lagrangian has to be symmetric under a subgroup Gc of the flavor group Gf under

which the higgs field transforms non-linearly, and in particular, with a transformation

that includes a constant shift.1 In addition, there must not be any one loop divergent

radiative corrections that involve the coupling constants for two different terms.

Of course there are additional requirements on each individual term in the La-

grangian. In particular any one term must be invariant under Gw, the gauged sub-

group of Gf . We do not wish to specify this gauge group, since one could look for

realizations of the collective symmetry mechanism in gauge groups other than the

one of the L2H. Below we will only need to use the fact that this group contains

1Different terms in the Lagrangian may be invariant under different collective symmetry groups
Gc.
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the electroweak gauge group, Gew = SU(2) × U(1), that this symmetry is linearly

realized, i.e., that Gew ⊂ H so it remains unbroken at the scale at which Gf breaks to

H, and that the higgs field must transform as a doublet with hypercharge 1/2 under

the electroweak group.

The hidden fine tuning problem in the quark sector of the L2H resulted from the

fact that Gc = SU(3) is not a symmetry of the Yukawa term, because Gc does not

commute with Gw. The Yukawa term in the Lagrangian is actually a sum of terms

that are separately invariant under the gauge group and the collection of terms can

only be symmetric under Gc by fine tuning the separate coupling constants at one

scale. There are two ways that immediately come to mind in which one could try to

extend the L2H model to get around this problem. Either extend the gauge group

so that Gc itself is gauged or obtain Gc as an accidental symmetry. These, or other

strategies cannot work: below we will prove in generality that the collective symmetry

mechanism cannot work for terms other than the kinetic terms in the Lagrangian.

2.3.1 An SU(7)/SO(7) example and its generalization to

SU(N)/SO(N)

It is simpler to understand the general case by first looking at an explicit example.

We can motivate this by the following observation. If the SU(3) collective symmetry

that acts on the first three rows and columns of Σ is elevated to a gauge symmetry,

then the equality λ′1 = λ1 is natural. Of course, in the L2H model this won’t work

because the SU(3) is broken at the scale Λ at which SU(5) breaks to SO(5), and the

higgs is eaten at this scale. But perhaps one can construct a theory based on a larger

Gf symmetry group with SU(3) gauged and the higgs still transforming non-linearly

under some Gc subgroup of Gf .

For example, one may consider a nonlinear sigma model based on Gf/H =

U(7)/O(7) (with spinor fields in non-trivial representations of the hyper-strong gauge

group so that the U(1) in U(7) = SU(7) × U(1) is non-anomalous). Assume the

U(7) is broken to O(7) by a symmetric condensate, which transforms under U(7) as

Σ→ V ΣV T . Now gauge a Gw = SU(3)×SU(2)×U(1)3 subgroup of U(7). The SU(3)

factor is precisely the gauged version of the top-block collective symmetry group, un-

der which the royal triplet χL transforms as an actual triplet. It is a straightforward,
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if lengthy, exercise to show that the vacuum aligns correctly, that is, Gw breaks to

the electroweak subgroup. One can identify Πi4, and related entries, with the higgs

doublet. By suitably choosing the generators of the gauged U(1)3 symmetry one finds

that the higgs field is the only light PGB.

Now introduce top quark couplings in a manner consistent with the collective

symmetry and without fine tuning of Yukawa couplings. Just as in the L2H model, in

addition to the third generation quark doublet qL and singlet qR, introduce a pair of

weak singlet Weyl fermions uL and uR that transform as 11/6 under SU(2)W ×U(1)Y .

The singlet uL is combined with the doublet qL into a triplet of the gauged SU(3),

precisely as in (2.4). By suitably choosing the transformation properties under the

U(1)3 we can ensure that the most general Yukawa Lagrangian consistent with the

symmetries, to lowest order in the chiral expansion, is

Ltop = −fλ1χ̄Li(Σ
∗)i4qR −

1

2
fλ2χ̄Liε

ijkεxyΣjxΣkyuR + h.c. (2.16)

where the indexes i, j, k run over 1, 2, 3 and x, y over 5, 6. The problem with this model

is that the SU(3) symmetry does not protect the higgs. The collective symmetry

required is an SU(4) acting on the top-left 4 × 4 block of Σ. This in turn requires

enlarging the true triplet to a four-plet, which allows for more terms in the Lagrangian,

which are related by the U(4) symmetry. However, this is not a good symmetry of

the Lagrangian and the added terms are related to the ones above only by imposing

unnaturally a collective symmetry. This is precisely the same problem we encountered

with the L2H.

Let us generalize this to models with SU(N)/SO(N) vacuum manifold, parametrized

by the N × N symmetric unitary matrix Σ. We assume there is an SU(2) × U(1)

gauged subgroup of SO(N). Without loss of generality we can take its embedding in

SU(N) as follows:

Qa =
1

2


τa 02×(N−4) 02×2

0(N−4)×2 0(N−4)×(N−4) 0(N−4)×2

02×2 02×(N−4) −τa∗


Y =

1

2
diag(1, 1, y3, . . . , yN−2,−1,−1)

(2.17)

with
∑
yi = 0. We assume further that the whatever other interactions exist they

align the vacuum along (2.6) (with the proper interpretation for the dimensions of the
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0 blocks and the center unit block). Then, as usual, Σ = exp(iΠ/f)Σew exp(iΠT/f) =

exp(2iΠ/f)Σew, where in the last step we have chosen the broken generators to satisfy

ΠΣew = ΣewΠT . The N − 4 doublets Πix with i = 1, 2 and x = 3, . . . , N − 2, have

hypercharge 1/2 + yx. So any one of these for which yx = 0 is a prospective higgs

doublet.

Under an infinitesimal SU(N) transformation, 1 + iεaT a, the matrix of goldstone

bosons transforms as

δΠ =
f

2
(T a + ΣewT

aTΣ†ew) + · · · (2.18)

where the ellipses stand for terms at least linear in the fields. We are interested in

finding a subgroup Gc of SU(N) under which the higgs field transformation includes

a constant shift. However any such transformation does not commute with SU(2)×
U(1). Without loss of generality we assume that the third entry has zero hypercharge,

y3 = 0, so that Πi3 = Π∗3i = Π(N−2)i = Π∗i(N−2) is the prospective higgs doublet. Then

Gc must contain generators

X =


02×2 x2×1 02×(N−3)

x†1×2 01×1 01×(N−3)

0(N−3)×2 0(N−3)×1 0(N−3)×(N−3)

 (2.19)

or

X =


0(N−3)×(N−3) 0(N−3)×1 0(N−3)×2

01×(N−3) 01×1 xT1×2

02×(N−3) x∗2×1 02×2

 (2.20)

with x a complex two component vector. Both of these give the same linear shift

on the prospective higgs field, as can be verified by computing X + ΣewX
TΣ†ew. It

follows that for either one of these generators we have

[Qa, X] = X ′ (2.21)

where X ′ is a generator of the form of X. This means that the X generators transform

under SU(2) as a tensor operator; they are in fact complex doublets with hypercharge

1/2, just like the higgs. Now, there are additional generators in Gc: at the very least

it contains the SU(3) subgroup generated by the top-left or bottom right 3×3 blocks.

Together, X and these additional generators transform as a reducible representation

of the electroweak subgroup. It follows that a gauge invariant term in the Lagrangian
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that is also invariant under Gc is a sum of terms that are individually gauge invariant.

The only exception is when the term is constructed of fields that are separately SU(2)

invariant, as is the case of the λ2 mass term, in (2.3), in the L2H model. But it is

unnatural to choose the coefficients of these various terms to make their sum Gc

invariant. This is because the gauge interactions always break the symmetry. Gauge

boson exchange Feynman diagrams like that of Fig. 2.1 give divergent corrections to

these couplings, and the corrections do not preserve the Gc invariance.

We can relax one assumption above slightly. We do not need to assume the vacuum

alignment Σew is along (2.6). In order to have a collective symmetry argument that

one can already apply in the gauge sector one needs the first and last two rows and

columns to be as in (2.6). But the central (N − 4)× (N − 4) block does not have to

be a diagonal matrix, only a unitary, symmetric matrix. However, the argument goes

through as before: the components of Π that we identify with the higgs are changed

in precisely the way that the shifts in (2.18) are modified and the rest of the argument

goes through unchanged.

The explicit proof for the case Gf/H = SU(N)/Sp(N) is completely analogous.

2.3.2 The general case

We turn now to the general case. We assume that Gw contains the electroweak

gauge group Gew = SU(2)× U(1), with Gew ⊂ H. We further assume that a subset

of goldstone bosons can be identified with the higgs field. We consider a term in the

Lagrangian that is both symmetric under Gew and has a collective symmetry Gc. We

show in the appendix that we only need to consider semi-simple Gc, which we assume

henceforth.

That the higgs transforms linearly under the electroweak gauge group means that

there is a doublet h in Π that transforms as

δεh = iεa
τa

2
h+ iε

1

2
h (2.22)

under SU(2)× U(1). Under a group Gc ∈ Gf h transforms non-linearly,

δηh = ηmxm + · · · (2.23)

where the implicit sum over m is over all generators in Gc, for some two component

complex vectors xm and the ellipses stand for terms at least linear in h. One can
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redefine the basis of generators in Gc so that xm = 0 for m ≥ 5 and xm for m =

1, · · · , 4 are unit vectors, with m = 1, 3 real and m = 2, 4 purely imaginary. Now

consider the commutator,

(δηδε − δεδη)h = iεaηm
τa

2
xm + iεηm

1

2
xm + · · · (2.24)

The commutator is again a non-linear transformation, a linear combination of the

same four generators in Gc that shift the higgs. In terms of the Lie algebra of Gf ,

denoting these generators by X i, with2 i = 1, 2 and the generators of Gew by Qa and

Y , we read off

[Qa, X i] =
i

2
(τa)ijXj, [Y,X i] =

i

2
X i (2.25)

This is precisely the statement in Eq. (2.21), derived there from the explicit form of

matrices, that the generators transform as tensors of Gew with the same quantum

numbers as the higgs doublet, but we see now that it holds more generally, indepen-

dently of those explicit matrix representations.

Since there is no semi-simple Lie algebra of rank 4, there must be additional

generators, and [X i, Xj] must give some of these additional generators. Denote a

non-vanishing commutator by X̂ ij = [X i, Xj]. Using the Jacobi identity we see that

[Qa, X̂ ij] = [Qa, [X i, Xj]] (2.26)

= [X i, [Qa, Xj]]− [Xj, [Qa, X i]] (2.27)

=
i

2
(σa)jkX ik − i

2
(σa)ikXjk (2.28)

So these generators also satisfy an equation like (2.21) but transform in a representa-

tion in the tensor product of two doublets. Continuing this way, considering commu-

tators of the generators we have so far, we can eventually generate the complete Lie

algebra and find that it breaks into sectors classified by irreducible representations

under Gew.

We can use this to show that invariants under Gc break into a sum of terms

separately invariant under Gew. Any non-trivial invariant must be a product of two

combination of fields, one transforming in some irreducible representation R of Gc

2The index i runs over 1,2 because the hermitian matrices break into a symmetric and an anti-
symmetric part, corresponding to the two real and two imaginary components of xm, and also to
the real and imagnary components of the higgs doublet.
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and the other as the complex conjugate R̄. But from the previous paragraph it follows

that under Gew the representation R breaks into a direct sum R = r1⊕ r2⊕ · · · of at

least two irreducible representations of Gew. Therefore the product R × R̄, contains

the sum of at least two invariants under Gew, r1 × r̄1 and r2 × r̄2. Since Gc is not a

symmetry of the theory (because the kinetic energy term for the goldstone bosons is

not invariant), the two (or more) Gew invariants can be summed into a Gc invariant

only by fine tuning coefficients in the Lagrangian. This completes the argument.

It may not be self-evident that any non-trivial representation of Gc breaks into

two or more representations under Gew. This can be shown by noting that the roots

of the Lie algebra, that is the weights of the adjoint representation, of Gc break into a

sum of irreducible representations of Gew, precisely the same representations that the

generators fall into.3 Then by following the same procedure as in establishing branch-

ing rules for representations of Lie algebras, that is, introducing projection operators

in weight space, and using the fact that the roots form irreducible representations,

one obtains that every representation of Gc is decomposed into a sum of irreducible

representations of Gew.

We remarked above that U(1) factors in Gc are ignored. This requires some

explanation. After all, one could conceivably take the four broken generators to

generate a collective symmetry group of dimension 4, say U(1)4 or SU(2) × U(1).

But the U(1) symmetries do not help insure the higgs remains massless. It is easy to

see why by considering first the familiar L2H case. The λ1 and λ′1 terms of (3.8) that

need to be related by collective symmetry to obtain necessary cancellations in one loop

graphs can be made separately invariant under several U(1) symmetries. In fact, the

situation is reversed from the semi-simple group case, where a representation R of Gc

is a direct sum of at least two irreducible representation of Gew. Since the irreducible

representations of U(1) are one dimensional, it is Gew that relates several irreducible

representation of U(1), and forces them together into a term in the Lagrangian.

3This follows form considering the standard map TA → |TA〉 of the generators of Gf , with
TA|TB〉 = |[TA, TB ]〉. Then Qa|Xi〉 = i/2(σa)ij |Xj〉 and so on for the other generators of Gc.
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2.4 Conclusions

It is easy to see that radiative effects break the collective symmetry of top quark

couplings of the L2H model. These effects must also be present in the underlying UV

completion so they cannot be dismissed as small. Also, they are generically too large

for successful phenomenology even if one chooses to enforce collective symmetry on

the tree level top Yukawa couplings.

The problem cannot be circumvented by enlarging the model to one with a larger

underlying flavor symmetry group. Gauging collective symmetry is not an option: it

either gives a higgsless model or again requires imposing an unnatural symmetry at

tree level to avoid quadratically divergent radiative corrections to the higgs mass. The

reader may see this as a fine tuning problem, or may adopt the view that imposing

the collective symmetry on the top quark sector is in keeping with the littlest higgs

strategy.

We have shown that the collective symmetry argument cannot be implemented

naturally on the Yukawa couplings of little higgs models. Of course, no-go theorems

are only as good as its assumptions. We did not prove that no model exists that

can both include top quarks and solve the little hierarchy problem. For example, one

can presumably partially supersymmetrize the model to ensure the cancellation of

top loop induced quadratic mass divergences, at least at one loop. In the absence of

a novel mechanism to suppress the quadratic divergences in the top quark-induced

radiative corrections to the higgs mass without fine tuning, it seems one must rely on

a UV completion to explain the approximate collective symmetry of the model.

This chapter is a reprint of material as it appears in “Hidden fine tuning in the

quark sector of little higgs models,” B. Grinstein, R. Kelley and P. Uttayarat, JHEP

0909, 040 (2009) [arXiv:0904.1622 [hep-ph]], of which I was a co-author.



Chapter 3

One Loop Renormalization of the

Littlest Higgs Model

In Little Higgs models a collective symmetry prevents the Higgs from acquiring

a quadratically divergent mass at one loop. This collective symmetry is broken by

weakly gauged interactions. Terms, like Yukawa couplings, that display collective

symmetry in the bare Lagrangian are generically renormalized into a sum of terms

that do not respect the collective symmetry except possibly at one renormalization

point where the couplings are related so that the symmetry is restored. We study

here the one loop renormalization of a prototypical example, the Littlest Higgs Model.

Some features of the renormalization of this model are novel, unfamiliar form similar

chiral Lagrangian studies.

3.1 Introduction

The Littlest Higgs (L2H) model [4] is a realization of the idea that the Higgs field,

responsible for electroweak symmetry breaking, is a pseudo-Goldstone boson, and as

such its mass is automatically small (for some reviews see Ref. [1, 2, 3]). What is

meant by “small” is that the Higgs mass can be made arbitrarily small compared to

the scale of breaking of the symmetry that gives rise to this Goldstone boson. Earlier

realizations of this idea faced difficulties, required additional fine tuning [20, 21]. In

the L2H model, as well as its many extensions, the absence of quadratically divergent

radiative corrections to the Higgs mass is guaranteed, at one loop order, by the

22
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collective symmetry argument. The argument fails beyond one loop order, so the

Higgs can be made naturally light only if its mass is no smaller than of the order of

a two loop radiative correction with a cut-off at the scale of the new physics.

While there is a vast literature exploring the phenomenological effects of L2H-

type models, the renormalization structure of the model has been little explored.

Computations have been presented that check that the collective symmetry argument

does work; however, the structure of counterterms needed to subtract the divergences

that do occur has not been studied. Furthermore, the renormalization group equations

have not been determined.

Phenomenologically the L2H model has fallen somewhat out of favor because of its

difficulties simultaneously accommodating the electroweak precision constraints and

in solving the little hierarchy problem [7, 9, 8, 10, 11]. However, its structure is proto-

typical of many models, like Littlest Higgs models with reduced gauge symmetry [22],

or with custodial [12, 23] or T-parity [13, 14, 15] symmetries. Therefore, the methods

we will introduce here should be directly applicable to the one loop renormalization

of any of the models in this class.

It was noted in Ref. [24] that renormalization group running of the top Yukawa

coupling in L2H-models disrupts the collective symmetry. That is, in order for the

collective symmetry argument to operate in the top-quark Yukawa sector, the coupling

is built to satisfy an SU(3) symmetry. However, this symmetry is broken by weak

gauge interactions. The would be SU(3) symmetric top-Yukawa coupling actually

splits into two SU(2)×U(1) symmetric terms with coupling constants that run away

from each other as they evolve under the renormalization group. This begs the

question, what is the full renormalization group structure of the model? It is the

purpose of this paper to address this question, at one loop order.

There are several energy scales associated with this model. In addition to the

cutoff, Λ, there is the scale of masses of heavy vector bosons, gf where f ∼ Λ/4π is

a Goldstone boson decay constant and g some gauge coupling, and the electroweak

breaking scale v. We are largely interested in the cut-off dependence, so for our

computations we will focus on the largest energies, above gf . Therefore to determine

the ultraviolet behavior we retain the massive gauge vector bosons in our calculations

and neglect their masses. On the other hand, the renormalization structure below the



24

scale of these masses, gf , is well understood. The model reduces there to the standard

electroweak model with one Higgs doublet supplemented by irrelevant operators.

The main result of this paper, the splitting of the Yukawa couplings responsible

for the top quark mass, was already noted in Ref. [24]. There, a no-go theorem for the

collective symmetry mechanism for Yukawa terms was proved. However, the details of

the calculation of the running of Yukawa couplings were not given there since, as can

be seen from this work, this merits a lengthy discussion that would have detracted

from its main point. In fact, we have encountered several stumbling blocks, and

corresponding solutions, along the way. Readers interested in questions of principle

or practice, or both, in L2H-type models, will hopefully find this work useful.

The paper is organized as follows. We first review the L2H Model in Sec. 3.2. The

1-loop non-derivative counterterms formed only of scalar fields has been extensively

studied in the context of determining the effective potential. We classify the remaining

counterterms needed to renormalize the model at one loop in Sec. 3.3 and proceed to

compute the renormalization constants and corresponding beta functions in Sec. 3.4.

We offer some brief concluding remarks in Sec. 3.5.

3.2 The Model

The L2H model is an effective low energy description of some incompletely spec-

ified shorter distance dynamics. The short distance dynamics has a global “flavor”

symmetry Gf = SU(5), of which a subgroup Gw = SU(2)× SU(2)× U(1)× U(1) is

weakly gauged. In the absence of this weak gauge force, the flavor symmetry is broken

spontaneously to a subgroup H = SO(5) due to hyper-strong interactions at a scale

Λ. As a result, there are massless Goldstone bosons that are coordinates on the Gf/H

coset space. Since the weakly gauged Gw force breaks the flavor symmetry explicitly,

including its effects leads to some of the Goldstone bosons (the would-be Goldstone

bosons) being eaten by the Higgs mechanism and the rest becoming pseudo-Goldstone

bosons (PGBs) acquiring small masses of order Λ times a small symmetry breaking

parameter, a gauge coupling constant of the weakly gauged Gw. The Higgs is the

lightest PGB in Little Higgs models, and its mass is naturally much less than Λ (and

the other PGBs): due to the collective symmetry breaking mechanism a contribution
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of order Λ2 to its mass arises only at two loops.

To establish notation we briefly review elements of the L2H. Symmetry breaking

SU(5) → SO(5) is characterized by the Goldstone boson decay constant f . The

embedding of Gw in Gf is fixed by taking the gauge generators

Qa
1 =


τa/2 0 0

0 0 0

0 0 0

 , Y1 = diag(3, 3,−2,−2,−2)/10,

Qa
2 =


0 0 0

0 0 0

0 0 −τa∗/2

 , Y2 = diag(2, 2, 2,−3,−3)/10.

(3.1)

The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ,

transforming as Σ → UΣUT under U ∈ SU(5). A convenient parametrization of Σ

in terms of the hermitian matrix of Goldstone bosons Π is

Σ = e2iΠ/fΣ0, Σ0 =


0 0 12×2

0 1 0

12×2 0 0

 , (3.2)

where

Π =


ω + η1/

√
20 h/

√
2 φ

h†/
√

2 −2η/
√

5 hT/
√

2

φ∗ h∗/
√

2 ωT + η1/
√

20

 (3.3)

Here Σ0 gives the dynamically determined direction in which the vacuum aligns1 [5, 6]

relative to the embedding of Gw in Gf given in Eq. (3.1). Fluctuations along broken

symmetry directions are parametrized by fourteen fields in Π: ω and φ are 2 × 2

matrices satisfying ω† = ω and φT = φ, h is an unrestricted 2 × 1 matrix and η is

1× 1 and real. The vacuum spontaneously breaks Gw → SU(2)×U(1), and the four

fields in ω and η are eaten by the broken generators of gauge symmetries.

The covariant derivative is

DµΣ = ∂µΣ− i
2∑
j=1

[gjW
a
jµ(Qa

jΣ + ΣQaT
j ) + g′jBjµ(YjΣ + ΣYj)], (3.4)

1To ensure this alignment the weakly gauge coupling constant have to be strong enough; see
Ref. [16].
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where Bj and W a
j are the U(1)j and SU(2)j gauge fields respectively. The U(1)j

coupling constant is taken to be g′j while the SU(2)j coupling constant is gj.

The effective low energy theory has kinetic term

Lkin =
f 2

8
Tr(DµΣ)(DµΣ)†. (3.5)

If one sets g1 = g′1 = 0 the model has an exact global SU(3) symmetry (acting on

upper 3 × 3 block of Σ), while for g2 = g′2 = 0 it has a different exact global SU(3)

symmetry (acting on the lower 3×3 block). Either of these exact global SU(3) would-

be symmetries guarantee the Higgs remains exactly massless. Hence, the Higgs mass

should vanish for either g1 = g′1 = 0 or g2 = g′2 = 0. The perturbative quadratically

divergent correction to the Higgs mass must be polynomial in the couplings and can

involve only one of the couplings at a time at one loop order. Hence it must vanish

at one loop. This is the collective symmetry mechanism that ensures the absence of

1-loop quadratic divergences in the Higgs mass.

For a top-quark sector introduce a pair of singlet Weyl fermions uL and uR with

hypercharge 2/3. uL is combined with the 3rd generation doublet qL = (tL, bL)T to

form a “royal” triplet

χL =

(
iτ 2qL

uL

)
. (3.6)

The top Yukawa interaction is obtained from coupling the fermions to the upper right

2× 3 block of the Σ field,

Ltop = −1

2
λ1fχ̄LIε

IJKεxyΣJxΣKyqR − λ2fūLuR + h.c. (3.7)

Here and below implicit sums are over 1, 2, 3 for I, J,K, over 1, 2, for i, j, k and over

4, 5 for x, y.

There is in fact no symmetry reason for the fields in χL to combine into a triplet

[24]. More generally the coupling is of the form

Ltop = −λ1fχ̄Liε
ijεxyΣjxΣ3yqR −

1

2
λ′1fūLε

jkεxyΣjxΣkyqR − λ2fūLuR + h.c. (3.8)

In this case, there is a quadratically divergent correction to the Higgs mass,

δm2
h =

12

16π2
(λ2

1 − λ′21 )Λ2 (3.9)
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where Λ is a UV cut-off. As we will show below the relation λ′1 = λ1 is unstable

against radiative corrections. For f ≈ 1 TeV and mh ≈ 100 GeV this requires a

tuning δλ1 < 0.04%. Even if some unknown mechanism enforced λ1 = λ′1 at the

cut-off Λ, running gives δλ1 of order a few per cent at the scale of the Higgs mass;

see Eq. (58). If λ1(Λ) = λ′1(Λ) the correction to the Higgs mass is formally a two

loop effect. However it is enhanced relative to the naive expectation by the large

ln(4πf/mh) ≈ 5 and and the numerical factor of 12 in Eq. (9).

3.3 General Structure of Counterterms

In this section we study the structure of counterterms induced at 1-loop order in

the L2H model (Eqs. (3.5) and (3.7)). We focus on counterterms which have been

neglected in the literature. We omit any discussion of non-derivative counterterms

formed of scalar fields only, since the scalars’ effective potential has been studied

extensively,2 starting already with the original LLH paper [4].

3.3.1 Scalar Kinetic Energy Counterterms

Kinetic energy counterterms are normally introduced in field theory by rescaling

the bare fields φ → Z1/2φ. In non-linear sigma models the self-interactions of Gold-

stone bosons require counterterms that are higher order in the derivative expansion,

and no rescaling of fields is necessary. However, non-linear sigma models coupled

to light gauge bosons and fermions do generally require counterterms quadratic in

derivatives. We will see that in the L2H model no rescaling φ→ Z1/2φ is needed. In-

stead new terms that are not symmetric under the full SU(5) symmetry are required

to completely subtract the model at one loop.

We begin our study of the structure of kinetic energy counterterms by considering

the slightly simpler case λ′1 = λ1. Working only to 1 loop, there is only one coupling

constant present in each divergent self-energy diagram so the corresponding coun-

terterm could just as well be computed setting all other coupling constants to zero.

The Lagrangian with all but one couplings set to zero has an SU(3)× SU(2)× U(1)

2See Ref. [25] for a detailed study of the 1-loop scalars’ effective potential.
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symmetry. Since we can choose the regulator to respect this symmetry we demand

the counterterms are invariant under SU(3)× SU(2)× U(1).

Consider the possibility of partly subtracting the divergent graphs by rescaling the

bare fields. In general we can choose a different wavefunction renormalization factor

Z for each of the fourteen Goldstone boson fields in Π. Were the interaction and

the regularization method to respect the full flavor symmetry (SU(5)), there would

only be one common Z for all the fields in Π. The question becomes: what is the

restriction that SU(3)× SU(2)× U(1) imposes on the Z?

To answer this consider the expansion of the bare kinetic term

f 2

8
Tr ∂µΣ†∂µΣ = Tr ∂µφ

†∂µφ+ 1
2
∂µη∂

µη + Tr ∂µω∂
µω + ∂µh

†∂µh+ . . . (3.10)

where the ellipsis stand for terms quartic in the fields. Now we rescale each of the

fourteen fields by an independent factor Z and ask what are the constraints from

imposing SU(3)×SU(2)×U(1). There is a SU(2)×U(1) subgroup that acts linearly

and hence there are only four different Z factors:

ZφTr ∂µφ
†∂µφ+ 1

2
Zη∂µη∂

µη + ZωTr ∂µω∂
µω + Zh∂µh

†∂µh+ . . . (3.11)

We are led to consider the restrictions from SU(3) on these four factors. It is a

straightforward but laborious exercise to compute the transformation properties of

the fields in Π under SU(3). We take for definiteness the SU(3) generated by the

top-left 3 × 3 block. Of particular interest are transformations generated by the 4-7

Gell-Mann matrices

7∑
a=4

εaT a =
7∑

a=4

εa

(
λa 03×2

02×3 02×2

)
≡


02×2 λ 02×2

λ† 0 01×2

02×2 02×1 02×2

 , (3.12)

where λ is a 2×1 complex matrix of order ε. The resulting nonlinear transformations,

to first order in ε, are

δh =
1√
2
fλ+

i√
2

[
−ωλ− 5√

20
ηλ+ φλ∗

]
+ · · · (3.13)

δφ =
i

2
√

2

[
hλT + λhT

]
+ · · · (3.14)

δη = i

√
10

4

[
h†λ− λ†h

]
+ · · · (3.15)

δω =
i

2
√

2

[
λh† − hλ†

]
− i

4
√

2

[
h†λ− λ†h

]
1 + · · · (3.16)
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where the ellipses stand for terms of quadratic and higher order in the fields.

Applying this variation to the kinetic term in (3.11) and retaining only terms

quadratic in the fields we obtain

δL =
1√
2

(Zφ − Zh)Tr ∂µφ
†∂µhλT + h.c.

+
1√
2

(Zω − Zh)Tr ∂µω∂
µ
[
λh† − hλ†

]
+

√
10

4
(Zη − Zh)Tr ∂µη∂

µ
[
h†λ− λ†h

]
Hence invariance under SU(3) requires Zh = Zφ = Zω = Zη ≡ Z. The same conclu-

sion is reached by consideration of other embeddings of the invariance subgroup.

Already in the special SU(3) × SU(2) × U(1)-symmetric case one sees that di-

vergences in the self-energy diagrams cannot be subtracted with a single common Z

factor. One must introduce counterterms invariant under SU(3) × SU(2) × U(1),

or more generally, under Gw, that are not invariant under SU(5). We next turn to

constructing the relevant counterterms.

Scalar Kinetic Counterterms from Gauge Interaction

Figure 3.1: Scalar 2-point Function from gauge interaction with background pion
fields.

Gauge interactions induce divergences in the scalar 2-point function with arbitrary

background pion fields as shown in Fig. 3.1. We obtain the counterterms by the

method of spurions. The gauge generators are promoted to spurions transforming in

the adjoint representation of SU(5), T a → UT aU †. We list all the SU(5) invariant

counterterms with two T a’s and two derivatives. In the SU(2)1 sector, with the
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generator Qa
1 defined in Eq. (3.1), we find

Og11 = Tr (Qa
1Q

a
1) Tr (DµΣDµΣ∗) ,

Og12 = Tr (Qa
1Q

a
1DµΣDµΣ∗) ,

Og13 = Tr
(
Qa

1DµΣ(Qa
1)TDµΣ∗

)
,

Og14 = Tr (Qa
1(DµΣ)Σ∗) Tr (Qa

1ΣDµΣ∗) ,

Og15 = Tr (Qa
1(DµΣ)Σ∗Qa

1ΣDµΣ∗) ,

Og16 = Tr
(
Qa

1Σ(Qa
1)TΣ∗

)
Tr (DµΣDµΣ∗) ,

Og17 = Tr
(
Qa

1(DµΣ)(DµΣ∗)Σ(Qa
1)TΣ∗

)
+ h.c..

(3.17)

The counterterms for the SU(2)2 sector are obtained from those in the SU(2)1 sector

by the replacements g1 → g2 and Qa
1 → Qa

2. For the U(1)1 sector, with the generator

Y1 defined in Eq. (3.1), we have

Og
′
1

1 = Tr (Y1Y1) Tr (DµΣDµΣ∗)

Og
′
1

2 = Tr (Y1Y1DµΣDµΣ∗)

Og
′
1

3 = Tr (Y1DµΣY1D
µΣ∗)

Og
′
1

4 = Tr (Y1(DµΣ)Σ∗) Tr (Y1ΣDµΣ∗)

Og
′
1

5 = Tr (Y1(DµΣ)Σ∗Y1ΣDµΣ∗)

Og
′
1

6 = Tr (Y1ΣY1Σ∗) Tr (DµΣDµΣ∗)

Og
′
1

7 = Tr (Y1(DµΣ)(DµΣ∗)ΣY1Σ∗) + h.c..

(3.18)

Similarly, the counterterms for the U(1)2 sector can be obtained by substituting

g′1 → g′2 and Y1 → Y2 in the operators above.

Scalar Kinetic Counterterms from Yukawa Interaction

Yukawa interactions also induce divergences in the scalar 2-point function with

arbitrary background pion fields as shown in Fig. 3.2. Just as was done for gauge

generators, we treat the Yukawa couplings as SU(5) breaking spurions. In doing so,

we promote χL to a 5-plet

LY uk = χ̄LaS
abcdeΣbcΣdeqR + h.c., (3.19)
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Figure 3.2: Scalar 2-point Function from Yukawa interaction with background pion
fields.

with S symmetric in {b, c}, {d, e} and the exchange of the pair (b, c) ↔ (d, e). The

spurion S is not arbitrary, but rather takes a fixed “vacuum expectation” value

< Sabcde >=

{
λ1
8
εabd45ε123ce + . . . a = 1, 2

λ′1
8
ε3bd45ε123ce + . . . a = 3

(3.20)

where + . . . stands for symmetrization. Note that we can demand that S → S∗ under

CP, so L is invariant under CP. The counterterms will be also invariant under CP

and hence hermitian. For notational compactness we define Ψa = SabcdeΣbcΣde. In

terms of this, the counterterm is

OΨ = DµΨ†aDµΨa. (3.21)

Figure 3.3: Fermion 2pt Function from Yukawa interaction with background pion
fields

3.3.2 Fermion Kinetic Energy Counterterms

The divergence in the fermion self-energy is also present in the diagram with

arbitrary number of pion fields at each of the Yukawa vertices, as shown in Fig. 3.3.
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For notational compactness we defined Ψabc = SabcdeΣde and ξabc = S∗abcdeΣ
∗de. The

counterterms for the qR 2-point function are

Oq1 = q̄RΨ̄abci /DΨabcqR,

Oq2 = q̄RΨ̄abcΣ
∗cei /DΣedΨ

abdqR,

Oq3 = q̄RΨ̄abcΣ
∗bci /DΣdeΨ

adeqR,

Oq4 = q̄RΨ̄abcΣdei /DΣ∗bcΨadeqR,

Oq5 = q̄RΨ̄abcγ
µΨadeDµ

(
Σ∗bcΣde

)
qR,

(3.22)

while the counterterms for χL 2-ponit function are

Oχ1 = χ̄Laξ̄
abci /Dξa′bcχ

a′

L ,

Oχ2 = χ̄Laξ̄
abcΣcei /DΣ∗edξa′bdχ

a′

L ,

Oχ3 = χ̄Laξ̄
abcΣbci /DΣ∗deξa′deχ

a′

L ,

Oχ4 = χ̄Laξ̄
abcΣ∗dei /DΣbcξa′deχ

a′

L ,

Oχ5 = χ̄Laξ̄
abcγµξa′deDµ

(
Σ∗deΣbc

)
χa
′

L .

(3.23)

3.3.3 Yukawa Vertex Counterterms

At 1-loop order, gauge interactions do not introduce a new counterterm. So we can

subtract off the divergences with the Yukawa operator (i.e., χ̄LaS
abcdeΣbcΣdeqR+h.c.).

This is not the case for Yukawa interactions which generate two new counterterms

Ov1 = q̄RS
∗
abcdeΣ

∗deSlmnopΣmnΣopS
∗
lqrstΣ

∗stΣ∗bcΣ∗qrχaL + h.c.,

Ov2 = q̄RS
∗
abcdeΣ

∗deSlmnopΣmnΣopS
∗
lqrstΣ

∗stΣ∗bqΣ∗crχaL + h.c.
(3.24)

3.3.4 Counterterms to counterterms: The general case

The counterterms displayed so far are appropriate to render all green functions

finite if the only interactions in the model are those displayed in the Lagrangian

given in Sec. 3.2. That is, the counterterms are appropriate to the case were the

bare Lagrangian has the form given in Sec. 3.2. However, this cannot be maintained

beyond 1-loop order. The 1-loop counterterms become interaction terms at 2-loops.

This requires additional counterterms. And so on, as one moves to higher orders in

the loop expansion. All terms consistent with the symmetries of the model will be

generated by renormalization.
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It is more natural to start with the complete set of interaction terms (formerly

counterterms) and treat them all on an equal footing. However, this is not a viable

program for this model since the complete set does not appear to be finite. The next

best option is an organizing principle for a calculation that requires finite precision.

Before we make a specific proposal for one such organizing principle, we would

like to contrast this with other models. Clearly the case of renormalizable theories

is very different: only a finite number of terms is required to renormalize the theory

to all orders in the loop expansion. More apropos, the case of chiral Lagrangians is

different too. For these as one goes up in the loop expansion the counterterms involve

accordingly more derivatives. Therefore the infinite set of counterterms are neatly

organized by the number of derivatives which is tied to the loop expansion. In the

L2H this is explicitly not the case already at 1-loop order: the counterterms generated

are not suppressed by additional derivatives.

Suppose we are interested in processes that do not involve more than n PGBs. By

expanding the Σ field in powers of the PGBs we will discover there is a finite number,

N(n, d) of linearly independent operators containing no more than d derivatives.

Denote this basis of operators by Ôi. Then one can re-define the remaining (infinite

set of) operators so that their expansion in PGBs starts at order higher than n,

Oa → Oa −
∑

i c
i
aÔi where the sum runs to N(n, d). Given a desired precision for

a calculation one can determine the order in the loop and momentum expansions

required to achieve that precision. The latter gives us directly the required number

of derivatives d to be retained. The number n of PGBs to be retained is a bit more

complicated. For a process that involves k PGBs, an operator with k+ 2L PGBs can

contribute at L-loop order. Therefore, for processes with no more than k PGBs that

require L-loop precision and up to d powers of momenta, the basis with N(k+ 2L, d)

operators should be used.

While the above algorithm is quite specific, we have not carried out that program

of renormalization. The reason should be clear: the algorithm requires making a

specific choice of process to study, or at least a restriction on the number of PGBs in

the processes that will be considered. So, as explained at the top of this section, we

have opted instead for the full 1-loop renormalization of the model of Sec. 3.2 assuming

all other possible terms consistent with symmetries (an infinite set) is absent in the
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bare Lagrangian.

3.4 Renormalization

3.4.1 Generalities

The renormalized Lagrangian is

L = Lφ + Lψ + LYuk (3.25)

where

Lφ =
f 2

8

[
Tr
(
DµΣ†DµΣ

)
+
∑
a,i

ζgia Z
gi
a Ogia + µ−εκΨZΨOΨ

]
, (3.26)

Lψ = ZχLχ̄LIi /Dχ
I
L + ZqR q̄Ri /DqR

+ µ−ε
5∑

a=1

κχaZχaZχLOχa + µ−ε
5∑
b=1

κqbZqbZqROqb , (3.27)

LYuk = −fµε/2λ1Zλ(ZχLZqR)1/2χ̄Liε
ijεxyΣjxΣ3yqR + h.c.

− f

2
µε/2λ′1Zλ′(ZχLZqR)1/2ūLε

jkεxyΣjxΣkyqR + h.c.

+ fµ−ε
2∑

a=1

κvaZvaOva . (3.28)

and the wavefunction renormalization of the Goldstone bosons is implicit in

Σ = exp(2iZ1/2Π/f)Σ0. Note that we have kept the bare f throughout, and it

has dimension 1 − ε/2 in dimensional regularization (with d = 4 − ε). This ensures

that the coefficients of the power expansion of the kinetic terms do not run (or rather,

they all run the same, just according to the wavefunction of the field Π). Since the

spurion Sabcde includes the Yukawa coupling constants it has dimension ε/2. There-

fore, the bare couplings κ have dimension −ε. We have ignored the λ2 term in the

Yukawa Lagrangian as it plays no role in renormalization.

The calculation will require we fix the U(1) charges of all fields. For the Σ fields

these are already determined by the transformation properties under Gf , and the fact

that Gw is a subgroup of Gf . Since the hypercharges Y = Y1 + Y2 are fixed and the

interactions are invariant under the gauge transformations, there is only freedom to
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choose the U(1) charge of one quark field. We take qR to have Y2 charge y. Then the

rest of the charges are fixed:

Y1(qR) = 2/3− y Y2(qR) = y

Y1(χ) = 11
30
− y Y2(χL) = y − 1

5

Y1(uL) = 13
15
− y Y2(uL) = y − 1

5

(3.29)

The ζa and κa terms modify the Lagrangian at tree level and these modifications

should be included in our perturbative computations. However, we intend to take the

bare parameters ζa and κa to vanish at the end of the calculation. This is because we

want to study the radiative corrections that generate these terms, even if absent from

the bare Lagrangian. Then, while ζa terms in the tree level Feynman rules can be

neglected, the counterterms, of the form ζa(Za−1), do not vanish as ζa → 0 (similarly

for κa terms). The RGE for these couplings is derived through standard methods.

We use a generic coupling ζ for the couplings of ζ, κ terms. Taking a log-derivative

with respect to µ of ζbare = µεDζZζ, where εDζ is the dimension of the bare coupling

ζ, we have

εDζZζ + µ
∂ζ

∂µ

(
Z + ζ

∂Z

∂ζ

)
+ ζ

(
−1

2
εg + βg

)
∂Za
∂g

= 0. (3.30)

Here g stands for the collection of Yukawa and gauge coupling constants, and there

is an implicit sum over these. Since µ ∂ζ
∂µ

has a finite limit as ε → 0 and Z can be

written as

Z = 1 +
a(1)

ζ

1

ε
+O(ε−2),

where a(1) = a(1)(g) is only a function of the couplings, we have

µ
∂ζ

∂µ
= −εDζζ + βζ ,

βζ = −Dζa
(1) +

1

2
g
∂a(1)

∂g
. (3.31)

We will determine the normalization factors Za in the next subsection.
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3.4.2 Matching Counterterms

Scalar 2-Point Functions with Arbitrary Scalar Background

We first consider the SU(2)1 gauge sector. The non-trivial 2-point functions for

the scalars are

H H†
= −3

4
g2

1

3

4

1

16π2

2

ε
ip2δij (3.32)

! !
= −2g2

1

3

4

1

16π2

2

ε
ip2δbc (3.33)

! !†
= −2g2

1

3

4

1

16π2

2

ε
ip2δbc (3.34)

There is no η self-enrgy diagram because it is a singlet under the gauge group. For

the 3-point functions, we denote by pi the momentum of particle i starting from the

left in the clockwise direction in the following diagrams

H H†

!

=
15

4
√

20

g2
1

f

3

4

1

16π2

2

ε

(
p2

1 − p2
3

)
δij (3.35)

H H†

!

=
5

4

g2
1

f

3

4

1

16π2

2

ε

(
p2

1 − p2
3

) σaij
2

(3.36)

H H

!

=
1

8

g2
1

f

3

4

1

16π2

2

ε

(
7p2

2 − 2p2
1 − 2p2

3

)
× (δikδjl + δilδjk) (3.37)

! !†

"

= 2
g2

1

f

3

4

1

16π2

2

ε

(
p2

1 − p2
3

)
iεabc (3.38)

where we used ω = ωaσa/2 and φ = σaσ2φa/
√

2. We have also found that the 4-

point function with two η’s and two φ’s vanishes. Cancelation of divergences in these
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diagrams, together with the absence of diagram with two η’s and two φ’s requires

Z = 1,

Zg1
1 = 1,

Zg1
2 = 1 + 3

1

ζg12

g2
1

16π2

2

ε
,

Zg1
3 = 1 + 3

1

ζg13

g2
1

16π2

2

ε
,

Zg1
4 = 1,

Zg1
5 = 1− 3

1

ζg15

g2
1

16π2

2

ε
,

Zg1
6 = 1 +

3

20

1

ζg16

g2
1

16π2

2

ε
,

Zg1
7 = 1− 3

2

1

ζg17

g2
1

16π2

2

ε
,

(3.39)

We can similarly determine Zg2
i by nothing that Lg2 → Lg1 and Og2i → O

g1
i when

Π→ −Π. Thus we have Zg1
i = Zg2

i .

We next consider the U(1)1 sector. The divergent 2-point and 3-point functions are

H H† = −1

4
g′2

3

4

1

16π2

2

ε
ip2δij, (3.40)

! !† = −g′2 3

4

1

16π2

2

ε
ip2δab, (3.41)

H H†

!

=

√
5

8

g′2

f

3

4

1

16π2

2

ε

(
p2

1 − p2
3

)
δij, (3.42)

H H†

!

= −1

4

g′2

f

3

4

1

16π2

2

ε

(
p2

1 − p2
3

) σaij
2
, (3.43)

H H

!

= −3

8

g′2

f

3

4

1

16π2

2

ε
p2

2 (δikδjl + δilδjk) . (3.44)

As in the case of SU(2), the 4-point function with two η’s and two φ’s vanishes. Can-

celation of divergences in these diagrams, together with the absence of a divergence
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in the diagram with two ηs and two φs, requires

Z
g′1
1 = 1− 1

40

1

ζ
g′1
1

g′21
16π2

2

ε
,

Z
g′1
2 = 1 +

3

8

1

ζ
g′1
2

g′21
16π2

2

ε
,

Z
g′1
3 = 1 +

3

8

1

ζ
g′1
3

g′21
16π2

2

ε
,

Z
g′1
4 = 1,

Z
g′1
5 = 1− 3

8

1

ζ
g′1
5

g′21
16π2

2

ε
,

Z
g′1
6 = 1− 3

80

1

ζ
g′1
6

g′21
16π2

2

ε
,

Z
g′1
7 = 1− 3

16

1

ζ
g′1
7

g′21
16π2

2

ε
,

(3.45)

and Z
g′1
i = Z

g′2
i . The divergence in the H 2-point function from Yukawa interaction is

2λ2
1

16π2

2

ε

and in the η 2-point function is
8

5

λ′21
16π2

2

ε
.

Thus we obtain

ZΨ = 1− 1

κψ

1

16π2

2

ε
. (3.46)

Fermion 2-Point Functions

We first consider the qR 2-point functions with arbitrary scalar background. The

1-loop diagrams are

qR qR
=

1

16π2

2

ε

(
2λ2

1 +
2

5
λ′21

)
i/p, (3.47)

qR qR

!

=
1

16π2

2

ε

(
− 1√

5
λ2

1 +
4

5
√

5
λ′21

)
i/pη, (3.48)

qR qR

!!

= 0, (3.49)

p1 p2

p3 p4

qR qR

h†h

=
1

16π2

2

ε

[
3i

5
(λ2

1 − λ′21 )(/p1
− /p2

) +
iλ2

1

10
(/p3
− /p4

)

]
.

(3.50)
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Matching counterterms yields

ZqR = 1,

Zq1 = 1,

Zq2 = 1− 8
1

κq2

1

16π2

2

ε
,

Zq3 = 1 +
8

5

1

κq3

1

16π2

2

ε
,

Zq4 = 1,

Zq5 = 1.

(3.51)

Similarly, for the χL 2-point functions, we find

ZχL = 1,

Zχ1 = 1,

Zχ2 = 1− 8
1

κχ2

1

16π2

2

ε
,

Zχ3 = 1 +
8

5

1

κχ3

1

16π2

2

ε
,

Zχ4 = 1,

Zχ5 = 1.

(3.52)

Yukawa Vertex Counterterms

As we mentioned above, gauge interactions do not induce new operators but the

Yukawa interaction do. Here we distinguish the SU(2) and U(1) part of the Yukawa

in their action:

Zλ1 = 1− 3
1

16π2

2

ε

[(
11

30
− y
)(

2

3
− y
)
g′21 +

(
y − 1

5

)
yg′22

]
,

Zλ′1 = 1− 3
1

16π2

2

ε

[(
13

15
− y
)(

2

3
− y
)
g′21 +

(
y − 1

5

)
yg′22

]
.

(3.53)

We see that λ1 and λ′1 are renormalized differently. The other renomalization factors

are:

Zv1 = 1 +
4

5

1

κv1

1

16π2

2

ε
,

Zv2 = 1 +
11

5

1

κv2

1

16π2

2

ε
.

(3.54)

3.4.3 β Functions

We have already pointed out that the coupling λ1 and λ′1 run differently [24]. It

is now straightforward to obtain their beta functions:

βλ1
λ1

= − 3

8π2

[ (
11
30
− y
) (

2
3
− y
)
g′21 +

(
y − 1

5

)
y g′22

]
(3.55)

βλ′1
λ′1

= − 3

8π2

[ (
13
15
− y
) (

2
3
− y
)
g′21 +

(
y − 1

5

)
y g′22

]
(3.56)

Note, in particular, that

µ
∂

∂µ
ln

(
λ1

λ′1

)
=
(

2
3
− y
) 3g′21

16π2
(3.57)
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With βg′1 = (b/16π2)g′31 we can write the solution in terms of the running coupling:

λ1(µ)

λ′1(µ)
=
λ1(Λ)

λ′1(Λ)

(
g′1(µ)

g′1(Λ)

) 2−3y
b

(3.58)

The β functions for the couplings ζga are determined using Eq. (3.31). We find

β
g
1(2)

ζ1
= 0,

β
g
1(2)

ζ2
= 6

g2
1(2)

16π2
,

β
g
1(2)

ζ3
= 6

g2
1(2)

16π2
,

β
g
1(2)

ζ4
= 0,

β
g
1(2)

ζ5
= −6

g2
1(2)

16π2
,

β
g
1(2)

ζ6
=

3

10

g2
1(2)

16π2
,

β
g
1(2)

ζ7
= −3

g2
1(2)

16π2
,

β
g′
1(2)

ζ1
= − 1

20

g′21(2)

16π2
,

β
g′
1(2)

ζ2
=

3

4

g′21(2)

16π2
,

β
g′
1(2)

ζ3
=

3

4

g′21(2)

16π2
,

β
g′
1(2)

ζ4
= 0,

β
g′
1(2)

ζ5
= −3

4

g′21(2)

16π2
,

β
g′
1(2)

ζ6
= − 3

40

g′21(2)

16π2
,

β
g′
1(2)

ζ7
= −3

8

g′21(2)

16π2
.

(3.59)

For κ the couplings are implicit in the operators so the β functions are pure number

βκq1 = 0,

βκq2 = −16
1

16π2
,

βκq3 =
16

5

1

16π2
,

βκq4 = 0,

βκq5 = 0,

βκχ1 = 0,

βκχ2 = −16
1

16π2
,

βκχ3 = +
16

5

1

16π2
,

βκχ4 = 0,

βκχ5 = 0,

(3.60)

and

βψ = −2
1

16π2
, βκv1 =

8

5

1

16π2
, βκv2 =

22

5

1

16π2
. (3.61)

3.5 Conclusions

We have studied the one loop renormalization of the Littlest Higgs Model. Phe-

nomenologically this model has fallen somewhat out of favor because of its difficulties

simultaneously accommodating electroweak precision constraints and solving the lit-

tle hierarchy problem [7, 8, 9, 10, 11]. However, its structure is prototypical of many
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models, like Littlest Higgs models with reduced gauge symmetry [22], or with custo-

dial [12, 23] or T-parity [13, 14, 15] symmetries. Therefore, the methods introduced

here should be largely the same as those needed for one loop renormalization of any

model in this class.

We have displayed explicit counterterms and their Z factors in dimensional reg-

ularization, in Landau gauge. These results are only of interest to understand the

procedure, so they have been included here more for clarity of presentation. However,

the beta functions of the couplings of all the terms in the Lagrangian are independent

of gauge and scheme choice. They, together with the methods introduced, constitute

the main result of this work and are displayed explicitly in Sec. 3.4.

One important result is that the coupling constants associated with the Yukawa

coupling of the top quark run differently; see Eq. (3.57). As observed in Ref. [24]

in the absence of fine tuning, the collective symmetry mechanism fails for Yukawa

couplings in the Littlest Higgs model and its relatives. One can similarly conclude

that the terms that were required as counterterms, all allowed by the symmetries and

being of leading order in the derivative expansion, should have been included in the

model from the start.

This chapter is a reprint of material as it appears in “One Loop Renormalization

of the Littlest Higgs Model,” B. Grinstein, R. Kelley and P. Uttayarat, JHEP 1102,

089 (2011) [arXiv:1011.0682 [hep-ph]], of which I was a co-author.



Chapter 4

Spontaneous CP Violation and

Light Particles in The Littlest

Higgs Models

Little Higgs models often feature spontaneously broken extra global symmetries,

which must also be explicitly broken in order to avoid massless Goldstone modes in

the spectrum. We show that a possible conflict with collective symmetry breaking

then implies light modes coupled to the Higgs boson, leading to interesting phe-

nomenology. Moreover, spontaneous CP violation is quite generic in such cases, as

the explicit breaking may be used to stabilize physical CP odd phases in the vacuum.

We demonstrate this in an SU(2)×SU(2)×U(1) variant of the Littlest Higgs, as well

as in an original SU(6)/SO(6) model. We show that even a very small explicit break-

ing may lead to large phases, resulting in new sources of CP violation in this class of

models.

4.1 Introduction

Despite its impressive experimental success, the Standard Model (SM) is known

to have several theoretical puzzles. One of these, the “hierarchy problem”, is the

apparent fine tuning associated with the electroweak scale. This paradigm has led

to numerous hypotheses, such as supersymmetry, technicolor, extra-dimensions, and

more. In order to eliminate the hierarchy problem, models based on these hypotheses

42
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often introduce new physics at the TeV scale. Unfortunately, such low scale new

physics seem to generally spoil the success of the SM by introducing low energy

effects which are tightly constrained by experimental data.

The tension between the need to solve the hierarchy problem and the above exper-

imental constraints is known as the “little hierarchy problem”. It may be solved by

using the Little Higgs framework [26, 27], where physics beyond the SM appears only

at Λ ∼ 10 TeV instead of the generically expected 1 TeV. The SM Higgs field remains

naturally light by serving as a pseudo Goldstone boson of multiple approximate global

symmetries. Explicit breaking of this set of symmetries is “collective”, i.e., apparent

only in the presence of at least two terms in the Lagrangian. This ensures that the

only one-loop diagrams contributing to the Higgs mass are logarithmically divergent

at most, thereby allowing for a cutoff at Λ ∼ (4π)2v instead of the generic Λ ∼ 4πv.

In Little Higgs models, the electroweak gauge group is extended to a partially

gauged global symmetry. The gauged generators are broken spontaneously to the

electroweak gauge group. Some of the global generators are broken spontaneously

too, but in a realistic model they must be also broken explicitly in order to avoid

exact Goldstone bosons. Then, one has to make sure that the set of global symmetries

which protect the Higgs is not broken non-collectively. Such non-collective breaking

would destabilize the electroweak scale.

In this paper we discuss cases, such as the SU(2)2×U(1) Littlest Higgs vari-

ant [10, 22], where there is a tension between lifting the mass of the pseudo-Goldstone

bosons and retaining collective symmetry breaking. A consequence of this is the pres-

ence of light particles with direct couplings to the SM Higgs, leading to interesting

phenomenology. For example, there is a range of parameters for which a new decay

channel for the Higgs opens up.

Another possible consequence is the appearance of spontaneous CP violation,

i.e., physical phases in the VEV. Such phases are rotated by field redefinitions. The

generators of these transformations must obey some conditions if the vacuum indeed

breaks CP invariance [28]. In particular, in order for a phase to be physical, the

related generator must be both explicitly and spontaneously broken. In case there

is a conflict between this requirement and that of collective symmetry breaking, one

may expect that the effect of spontaneous CP violation is suppressed - from the same



44

reason that the related pseudo-Goldstone bosons are light. However, as we will show,

the CP violating phase may be O(1), even in the limit of small explicit breaking.

We begin by reviewing the Littlest Higgs model and its SU(2)2×U(1) variant,

showing that it includes an exact Goldstone due to a spontaneously broken global

U(1) which would be gauged in the original SU(2)2×U(1)2 version of the littlest

Higgs. We then show that lifting the exact Goldstone requires spoiling collective

symmetry breaking, hence leading to a suppression of its mass. Once collective sym-

metry breaking is spoiled, even by a small parameter, it becomes possible for the

vacuum to align with an O(1) CP-odd phase. We discuss how such CP violation

arises in the low energy limit. In the SU(2)2×U(1) model it turns out to be sup-

pressed, but we argue that this is a peculiarity of the minimal nature of the SU(5)

structure, rather than a generic feature in Little Higgs models. In order to support

this statement, we construct an original SU(6)/SO(6) model which accommodates an

O(1) physical phase in the low energy limit.

4.2 Saving the SU(2)×SU(2)×U(1) Model

Here we will discuss the SU(2)×SU(2)×U(1), and how to make its Goldstone

boson massive without destabilizing the electroweak scale. But before that, let us

briefly review the original Littlest Higgs.

4.2.1 The Littlest Higgs

A very elegant implementation of the Little Higgs idea is the Littlest Higgs [4],

whose lagrangian is described as an approximate SU(5)/SO(5) effective field theory.

The vacuum manifold SU(5)/SO(5) may be parametrized as Σ0 = UUT , where U is

a broken SU(5) transformation. The global SU(5) is explicitly broken by gauging an
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[SU(2)× U(1)]2 subgroup, where the gauged generators are embedded in SU(5) as

T i1 =


σi/2

01×1

02×2

 , Y1 = diag(3, 3,−2,−2,−2)/10;

T i2 =


02×2

01×1

−σa∗/2

 , Y2 = diag(2, 2, 2,−3,−3)/10. (4.1)

Once this explicit SU(5) breaking is included, the degeneracy is partially lifted, as a

minimum energy vacuum appears at

Σ0 =


eiδV

e−4iδ

eiδV T

 . (4.2)

Here, V is a 2 × 2 special unitary matrix and δ is a real parameter. Gauging the

[SU(2) × U(1)]2 subgroup breaks explicitly all the SU(5) generators which are not

gauged. The vacuum breaks the [SU(2)× U(1)]2 gauge group to the electroweak

group, SU(2)L×U(1)Y . One can then use the spontaneously broken generators to

rotate the vacuum into the form

Σ0 =


1

1

1

 . (4.3)

By doing so, we have chosen a basis in which the electroweak gauge group is given

by the diagonal subgroup of the full Little Higgs gauge group.

We follow the common formalism for chiral lagrangians [29, 30] and arrange the

Goldstone bosons in a matrix,

Σ = eiΠ/fΣ0e
iΠT /f , Π = ΠaXa, (4.4)

where Xa are the 14 broken generators of SU(5). We can always choose a basis where

XaΣ0 = Σ0X
aT . (4.5)

In this basis, Eq.(4.4) simplifies to

Σ = e2iΠ/fΣ0. (4.6)
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Four of the above fourteen degrees of freedom become the longitudinal components of

the W
′±, Z ′ and γ′, which correspond to the spontaneously broken gauged generators.

The remaining ten pseudo-Goldstone bosons can be classified according to their SM

quantum numbers as one complex doublet H, which we identify with the SM Higgs,

and one complex triplet, φ, which carries one unit of hypercharge. These pseudo-

Goldstone bosons are parametrized as follows:

Π =


eaten H/

√
2 φ

H†/
√

2 eaten HT/
√

2

φ† H∗/
√

2 eaten

 . (4.7)

From the transformation law Σ → UΣUT , it follows that the Higgs transforms

nonlinearly under SU(3)1 and SU(3)2, which act on the (123) and (345) blocks, re-

spectively. Note that the SU(2)1×U(1)1 gauge interactions break SU(3)1 and con-

serve SU(3)2, whereas SU(2)2×U(1)2 gauge interactions conserve SU(3)1 and break

SU(3)2. However, the two (overlapping) groups SU(3)1 and SU(3)2 are fully broken

only when both sets of gauge couplings are turned on, namely, they are collectively

broken. Therefore, any diagram which contributes to the Higgs mass must involve

both ‘1’ and ‘2’ gauge interactions. However, the only one-loop diagrams contributing

to the Higgs mass involve two gauge boson propagators, leading to only a logarithmic

dependence: δm2
H ∼

(
gf
4π

)2
log(Λ/f).

In order to maintain collective symmetry breaking also in the top quark sector,

we introduce a new vector-like quark pair (t′L, t
′
R) which is SU(2)L singlet, and we

define χiL = (iσ2QL, t
′
L), where i = 1, 2, 3 and QL is the SM third generation quark

doublet. The top quark sector is taken to be

L = λfχLiΩ
itR + λ′f t̄′Lt

′
R + c.c., (4.8)

where

Ωi = εijkεxyΣjxΣky. (4.9)

Here, i, j, k run over 1, 2, 3 and x, y over 4, 5. The first term is invariant under

SU(3)1, but breaks SU(3)2, whereas the second term breaks SU(3)1 and preserves

SU(3)2. That this is the case can be seen by taking χiL to be an SU(3)1 triplet.

Diagrams which contribute to the Higgs mass must involve both couplings, and are

only logarithmically divergent at one-loop.
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4.2.2 The Hypercharge Model

The Littlest Higgs model suffers from large corrections to electroweak precision ob-

servables, mainly due to the heavy gauge boson related to U(1)′. One solution to this

problem is to impose T-parity [13, 14, 31], under which SM fields are even and new

heavy fields are odd. This removes all the single heavy field exchange diagrams, effec-

tively pushing many dangerous contributions to the electroweak precision observables

to the loop level. In the same time, T-parity provides a WIMP dark matter which

naturally gives the correct thermal relic abundance. Nevertheless, the multitude of

new fields makes it potentially vulnerable to flavor problems [32, 33]. Moreover, it

becomes difficult to find a simple UV completion to match it onto [34, 35, 36, 37].

Another solution was to gauge only one of the U(1) generators [10, 22]. It is this

solution that we are considering here, although our lessons for model building and

spontaneous CP violation are rather generic, and we expect them to hold whether

or not T-parity is imposed. Let us define the following two combinations of U(1)

generators:

Y =
Y1 + Y2

2
=

1

2
diag(1, 1, 0,−1,−1),

Y ′ =
Y1 − Y2

2
=

1

10
diag(1, 1,−4, 1, 1). (4.10)

In this model which we denote as the hypercharge model, only the the SM hypercharge

Y is gauged while Y ′ generates a global symmetry, which we denote as U(1)′. The

pseudo-Goldstone bosons matrix now becomes (in terms of the uneaten fields)

Π =


η/
√

20 1 H/
√

2 φ

H†/
√

2 −2η/
√

5 HT/
√

2

φ† H∗/
√

2 η/
√

20 1

 . (4.11)

While gauging U(1)Y alone eliminates the troublesome heavy gauge boson, it

spoils collective symmetry breaking, since unlike U(1)1 or U(1)2 gauge interactions

which conserve one SU(3) each, the hypercharge gauge interaction breaks explicitly

both SU(3)1 and SU(3)2 via a single term in the Lagrangian. As was shown in [10, 22],

this effect is suppressed by the smallness of the hypercharge coupling g′, and we will
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not discuss it further.1

Another, more acute problem of the hypercharge model is that it introduces a new

massless Goldstone boson η, which corresponds to the spontaneously broken U(1)′.

Note that so far, U(1)′ is an exact symmetry which is only broken spontaneously. In

the Littlest Higgs, this Goldstone boson is eaten by the corresponding gauge boson,

which is absent in the hypercharge model. Therefore, in order for this model to be

phenomenologically viable, the new Goldstone must acquire mass, requiring explicit

breaking of U(1)′. This has been recognized previously, but without providing explicit

realization. For example, in [38], the phenomenology of η was studied, assuming a

range of masses up to mη ∼ v. Below we show that any operator that gives mass to η

is bound to introduce further non-collective symmetry breaking, thus constraining mη

to be roughly below the SM Higgs mass. The assumption on mη in [38] is therefore

consistent with our results.

4.2.3 A Realistic Hypercharge Model

Before proving that collective symmetry breaking must be spoiled by any term

that breaks U(1)′, let us state a generic condition any explicitly broken generator has

to satisfy in order not to spoil collective symmetry breaking, namely, in order not

to break the full set of symmetries which protect the Higgs by a single term in the

lagrangian. In order to do that, denote the collection of groups under which the Higgs

transforms non-homogeneously by {Ci}. Each of these groups should be minimal in

the sense that it does not contain a subgroup which protects the Higgs. The Ci may

be disjoint (as in the Minimal Moose [39] or in the Simplest Little Higgs [40]) or

overlapping (as in the Littlest Higgs, where we have C1 = SU(3)1 and C2 = SU(3)2).

Consider a generator X. First note that if X is a linear combination of gauged

generators and a generator of Ci for a particular i, then breaking X explicitly requires

breaking Ci explicitly too (since gauge invariance must be an exact symmetry). If this

is true for all i, then any term in the lagrangian which breaks X explicitly would in-

evitably spoil collective symmetry breaking. We thus arrive at the following condition:

1Radiative corrections break SU(3)1 already in the original [SU(2)×U(1)]
2

model [24, 17]. Here
we will consider only tree-level breaking.
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In order that a generator can be broken explicitly without spoiling collective symmetry

breaking, it must not be expressible as any kind of the linear combinations above.

Failing to satisfy this condition would lead to non-collective breaking of the set {Ci},
which may be allowed provided that the breaking is small enough, such that it does

not destabilize the weak scale.

Applying the condition above to Y ′, we see that the generator Y ′ cannot be broken

without spoiling collective symmetry since it can be expressed as:

5Y ′ = −Y + 2
√

3T 8
SU(3)1

= Y + 2
√

3T 8
SU(3)2

. (4.12)

Thus any term which breaks U(1)′ and is allowed by gauge invariance must break both

SU(3)1 and SU(3)2. A spurion which qualifies is s = (0, 0, 1, 0, 0)T , transforming (for-

mally) in the fundamental of SU(5). Its symmetry breaking pattern is SU(5)→SU(4)

which acts on the (3, 3) minor. The 9 broken generators include Y ′ and generators

which are also broken by the gauging. In particular, any function of Σ33 = s†Σs

would break Y ′ while maintaining gauge invariance. For example, consider

δL = εf 4Σ33 + c.c., (4.13)

where ε is dimensionless. Expanding Σ, we obtain

δL = 4εf 2

[
4

5
η2 +H†H + . . .

]
, (4.14)

where we took ε to be real, such that no extra explicit CP violation is implied. As

expected, mH gets a tree-level contribution, since δL breaks explicitly both SU(3)1

and SU(3)2. In order not to destabilize the electroweak scale, we require ε ∼ (1/4π)2.

It follows that mass of η can be as large as the Higgs mass, but it seems equally

reasonable (or equally unreasonable) to have a much lighter η.

A light η which couples directly to the Higgs [via both a renormalizable term

∼ εη2H†H and derivative couplings such as ∼ 1
f2

(η∂µη)(H†∂µH)] would open a new

decay channel h→ ηη for the SM Higgs (see fig. 4.1). Due to its sizable couplings, η

would decay promptly at the collider, but depending on its dominant decay modes,

it could lead to unusual signatures. For example, η can decay into a pair of light

particles: e+e−, or bb̄, as studied in [38]. In this case, the Higgs can decay into two
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Figure 4.1: Contours of the branching ratio BR(h → ηη) in the mη − mH plane,
for f = 1.2 TeV (left) and f = 2.4 TeV (right). While the dominant mode in this
mass range is still bb̄, the new mode ηη becomes significant throughout the parameter
space.

pairs of boosted objects, such as H → ηη → (jj) + (`+`−), where the objects in

the parentheses are collimated due to the large boost factor γ ∼ mH/2mη. Another

possibility is that the singlet η decays mainly via off-shell top quarks. Then, the

Higgs will decay into two pairs of boosted tops. The viability of such unusual Higgs

phenomenology deserves careful study, which we leave for future work.

The explicit breaking could as well be introduced in the Yukawa term, in which

case the bound on ε comes from one-loop. For example, consider the following Yukawa

term:

LY = fχ̄LiΩ
i (λ+ εΣ33) tR + c.c., (4.15)

inducing a one-loop contribution of the form

κε2f 2

(
Λ

4π

)2

Ω†Ω
(
λ2 + 2λεReΣ33 + ε2 |Σ33|2

)
, (4.16)

where κ is an order one number depending on physics near the UV cutoff, and ε is

real valued. This gives rise to

mη ∼ mH ∼ ελf. (4.17)

Therefore ε may be as large as ∼ 1/4π.
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In the next section we discuss how such explicit breaking of U(1)′, when properly

introduced, may give rise to spontaneous CP violation, by stabilizing the phase δ in

Eq.(4.3), such that the VEV assumes the form

Σ0 = eiϕ


eiδ1

e−4iδ

eiδ1

 . (4.18)

4.3 Spontaneous CP Violation in the Hypercharge

Model

4.3.1 Spontaneous CP Violation from Breaking U(1)′

We saw that the Hypercharge model has an explicitly broken U(1)′. One might

expect that once this U(1)′ is broken (for example, by Σ33 insertions, like in the

previous section), the related pseudo-Goldstone η acquires a VEV that breaks CP

spontaneously. It turns out that there must be at least two terms which break U(1)′

explicitly, in order for spontaneous CP violation to occur [28]. It can be shown

generically that as long as a U(1) is broken by one single term involving a single

field, the U(1)-related phase in the VEV can be removed, by using a particular U(1)

transformation. Because of the explicit breaking, the coupling flips its sign, but the

phase is removed.2 Once two explicit breaking terms are introduced, the phase gets

generically stabilized at a non-zero value. Of course, more terms would be induced

by loops, but the resulting phase would be also loop suppressed.

It is interesting to notice that the CP-odd phase may beO(1), even in the limit ε→
0, where the explicit breaking vanishes. The reason for this non-analytical behavior

of the phase as function of ε is that however small ε may be, it is the leading effect

in lifting the degeneracy associated with the Goldstone direction. Nevertheless, any

physical consequence of effect related to the phase is associated with some momentum

scale p (for example, the mass of a particle whose decay exhibits direct CP violation).

The effect will be negligible for p > εf ∼ mη, since for such large characteristic

momenta, the pseudo-Goldstone boson is effectively massless. 3

2We thank H. Haber for pointing out such a possibility. See more examples in [28].
3We thank Richard Hill for raising this puzzle, and Ben Grinstein for his physical interpreation.
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In the hypercharge model, there is one exact global U(1)′ generated by

Y ′ = diag(1, 1,−4, 1, 1)/10, which is spontaneously broken. A single term is sufficient

to lift the Goldstone boson mass, as we have discussed in the previous section. How-

ever, only in the presence of at least two different terms, a physical CP-odd phase

would arise. A simple choice would then be the following:

δLSCPV = εf 4
(
aΣ33 + bΣ2

33

)
+ c.c., (4.19)

where we take ε, a, b to be real, and a, b are O(1) whereas ε must be loop suppressed,

as we have discussed in the previous section. This results in the following tree-level

potential for η:

Vη = 2εf 4

(
a cos

2η√
5f

+ b cos
4η√
5f

)
+ . . . (4.20)

This potential is minimized for

〈η〉 =

√
5f

2
arccos

(
−a
4b

)
if

∣∣∣ a
4b

∣∣∣ < 1, (4.21)

which is of order one if we assume no hierarchy between a and b.

Two final comments are in order before we show how the above CP-odd phase

shows up among SM fields. First, we note that η is odd under T-parity, and therefore a

non-zero δ in the T-parity version of the model would have to be further suppressed,

as it implies spontaneous breaking of T-parity. The second comment is about the

possibility of CP violation from an overall phase, Σ0 → eiαΣ0. This phase is related to

an overall U(1) which commutes with SU(5). Therefore, none of the SU(5) Goldstone

bosons transform and we conclude that the overall U(1) is not relevant as a symmetry

transformation. This also means that there is no dynamical field whose VEV is

related to that phase. CP violation from such phases is usually considered explicit,

not spontaneous. Once we include the related Goldstone boson, η′ ≡ TrΠ, the overall

phase becomes related to spontaneous CP violation. This amounts to adding a U(1)

factor, along with its Goldstone boson to the chiral lagrangian. We will not consider

this issue further, since we find it unrelated to the rest of the discussion.

4.3.2 CP Violation in Non-renormalizable Couplings

Having found possible modifications of the Littlest Higgs which allow for spon-

taneous CP violation, it is worth asking what would be the effect of CP violation
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beyond the SM on the SM sector. Following [41], we will focus on CP violation in

dimension-six couplings of the SM Higgs to quarks, ignoring other manifestations of

CP violation on the SM sector. Assuming that the low energy effective theory is

that of the SM, new CP violation involving the SM Higgs and quarks would arise

predominantly in the dimension-six operators [41]

∆L =
Zu
ij

f 2
Q̄iH̃ujH

†H +
Zd
ij

f 2
Q̄iHdjH

†H +
Z`
ij

f 2
L̄iH`jH

†H,

+
ZH

f 2
(DµH)†Dµ(H H†H) + c.c., (4.22)

where f is the new physics scale, i.e., the spontaneous symmetry breaking scale of

the Little Higgs non-linear sigma model.4

The lagrangian (4.22) arises from Eq.(4.8) once we expand Σ in terms of the SM

Higgs field. In this framework, new CP violation (i.e., CP violation beyond the CKM

phase) appears as relative phases between the new couplings and the SM Yukawas.

In the Littlest Higgs, the expansion of Σ alone in the Yukawa term does not give rise

to relative phases between the coefficients of H and HH†H. Therefore the only way

a phase will show up, would be from two different Yukawa terms differing in both

the expansion coefficients and an overall phase. However, as we show in appendix B,

the Littlest Higgs model does not allow for different expansion coefficients, using any

Yukawa term which preserves SU(3)1. It follows that having a different expansion

requires a Yukawa term which does not respect collective symmetry breaking. A

qualifying Yukawa term is the standard one with a Σ33 insertion, just like the one

discussed in the previous section. Such Yukawa term would have to be suppressed in

order to keep the SM Higgs light.

We conclude that although we have shown how to get an O(1) physical phase δ in

the Hypercharge model, the phase appearing in Higgs - SM fermions interactions is

suppressed, of order εδ. This is a consequence of the constrained nature of the SU(5)

structure, and is by no means generic. In order to confirm that, in the next section

we present an SU(6)/SO(6) version of the Littlest Higgs.

4Note that the last term in Eq.(4.22) can always be shifted away by a non-linear field redefinition

H → H
(

1− ZH

f2 H
†H
)

. To leading order, such field redefinition mimics replacing Zf with Zf−ZH .

Since the authors in [41] assume ZH = 0, one has to replace Zf by Zf −ZH in their results in order
to use them correctly.
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4.4 An SU(6)/SO(6) variant

We have found that in SU(5)/SO(5) Little Higgs models, spontaneous CP violation

requires spoiling collective symmetry breaking, However, this seems to be due to

the minimal nature of the SU(5)/SO(5) Littlest Higgs. Once we consider a larger

group, it becomes easier to find more global generators satisfying the two conditions.

We illustrate this with an SU(6)/SO(6) version of the Littlest Higgs. Note that

we do not attempt to give a full description of this model and its phenomenology.

Rather, we give a preliminary analysis aimed at the basic features, namely, a successful

mechanism for suppressing the electroweak scale, lifting all the Goldstone bosons, and

a possible O(1) spontaneous CP violation.

We gauge an [SU(2)1×U(1)]2 subgroup of SU(6), generated by

T i1 =


σi/2

02×2

02×2

 , Y1 = diag(2, 2,−1,−1,−1,−1)/6;

T i2 =


02×2

02×2

−σa∗/2

 , Y2 = diag(1, 1, 1, 1,−2,−2)/6. (4.23)

This gauging leaves an exact global SU(2)M symmetry which acts on the (3,4) block.

A vacuum which minimizes the effective potential generated by gauge interactions

takes the form

Σ0 =


0 0 1

0 V 0

1 0 0

 , (4.24)

where V may be parametrized as

V =

(
eiα cos θ i sin θ

i sin θ e−iα cos θ

)
= V1/2V

T
1/2, V1/2 = eiασ

3/2eiθσ
1/2. (4.25)

This VEV breaks spontaneously the exact global SU(2)M to SO(2)M . The pseudo-

Goldstone bosons are parametrized using

Σ = e2iΠ/fΣ0, (4.26)
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where

Π =


H φ

H† V1/2EV †1/2 VHT

φ† H∗V †

 , H =
1√
2

(H|K) , E =

(
σ ρ

ρ −σ

)
. (4.27)

Note that both H and K carry the quantum numbers of the SM Higgs, whereas σ and

ρ are SM singlets, and φ is a complex triplet. The gauge interactions break collec-

tively SU(4)1 and SU(4)2, which protect both doublets H and K from quadratically

divergent mass parameters. They also leave SU(2)M unbroken, such that the SM

singlets ρ and σ remain massless at this stage.

Note that a quartic coupling (H†H)2 is not forbidden by collective symmetry

breaking, since the field φ transforms in such a way that Tr
∣∣φ+ i/(2f)HHT + . . .

∣∣2
remains invaraint. We compute the quadratic divergent part of the CW potential to

verify this in Appendix D.

In the fermion sector, we introduce the following lagrangian:

−Lf = fχ̄Li
(
λ1Ωi

1 + λ2Ωi
2

)
tR + λ′f t̄′Lt

′
R,

Ωi
1 = Σ̄i4Σ44, Ωi

2 = εjk`εxyΣ̄
ijΣ̄kxΣ̄`y, (4.28)

where i, j, k, ` run through 1,2,3 and x, y from 5 to 6, and χi includes both the left

handed quark doublet and t′L, as usual - see section 4.2. The Yukawa terms and the

mass term break SU(3)1 and SU(4)2 collectively, such that one doublet, H, remains

light. The other doublet, K, becomes heavy since it is only protected by SU(4)1,2

which are broken non-collectively by the Yukawa terms. The Yukawa terms also break

SU(2)M which protects the SM singlet ρ, thus lifting its mass to O(f). Since there

are two different spurions which break this symmetry, we expect spontaneous CP

violation from θ ∼ O(1).

Note, however, that Eq.(4.28) cannot break the SU(2)M generator diag(0, 0, 1,−1, 0, 0),

since this generator violates the condition from the previous section: it is an SU(4)2

generator which is also in the span of
{
T 8

SU(3)1
, Y, Y ′

}
. This is also manifest in the

one-loop effective potential, whose quadratically divergent term is given by

VCW(Σ) =
κΛ2

16π2
TrMM †, (4.29)

where

M = M(Σ) = f (λ1Ω1 + λ2Ω2) . (4.30)
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Here, the precise value of κ depends on unknown physics near the cutoff, and we

have assumed real values for λ1,2 in order to study the case of purely spontaneous CP

violation. Using the explicit form of Σ0 in Eq.(4.24), this yields

VCW = κf 4 cos2 θ
(
λ2

1 + 4λ2
2 − λ2

1 cos2 θ
)
. (4.31)

We can distinguish between two cases:

1. For κ > 0, the minimum lies at θ = ±π/2. In that case there is no CP violation,

since the phase can be removed by the field redefinition

Σ→ exp
(
∓T 1

SU(2)M
π/2
)
, (4.32)

where T 1
SU(2)M

≡ diag (0, σ1/2, 0). The potential becomes

VCW → ∓κf 4 sin2 θ
[
λ2

1 + 4λ2
2 ± λ2

1 sin2 θ
]

= ∓κf 4
(
1− cos2 θ

) [
λ2

1 + 4λ2
2 ± λ2

1

(
1− cos2 θ

)]
. (4.33)

Since this field redefinition is not a symmetry, the potential have changed, but

using the same variable (cos2 θ), its coefficients remain real valued, while the

minimum is now at θ = 0, hence the field redefinition has removed the phase

successfully from the lagrangian and it cannot be physical.

2. For κ < 0, the potential is minimized at

cos θ = ±

√
λ2

1 + 4λ2
2

2λ2
1

if |λ1| ≥ 2 |λ2| ,

θ = 0, π if |λ1| ≤ 2 |λ2| . (4.34)

In the former case, there is a physical CP-odd phase in the vacuum, while in

the latter, the phase can be removed by a field redefinition.

We conclude that if the UV completion is such that κ < 0, the loop effects are

sufficient to generate a generically large CP-odd phase. In any case, a phase may be

generated also at tree level by introducing a term of the same form as Eq.(4.29) with

a negative coefficient.

As expected, the potential does not stabilize α and this will persist for all the

terms in the effective potential, due to the unbroken U(1) symmetry generated by
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Figure 4.2: Contours of the branching ratio BR(h→ σσ) in the mσ−mH plane, for
f = 1.2 TeV (left) and f = 2.4 TeV (right). Again, the dominant mode in this mass
range is still bb̄, but the new mode σσ becomes significant throughout the parameter
space.

diag(0, 0, 1,−1, 0, 0). Stabilizing α can be done easily, by introducing a small non-

collective breaking term, such as

LX = εf 4Σ̄33Σ44 + c.c.. (4.35)

Similar to the hypercharge model, we will have to take ε . 1/(4π)2, which fixes the

mass of σ to be around or below the Higgs mass. The light singlet σ could alter the

Higgs phenomenology, by playing a role which is similar to the role of the singlet η in

the hypercharge model, although the branching ratio for h→ σσ at low Higgs mass is

slightly lower than the corresponding branching ratio in the hypercharge model (see

Fig. 4.2).

Unlike the hypercharge model, here anO(1) phase would show up in the dimension-

six couplings. Expanding Eq.(4.28) in terms of H yields

√
2e−iα cos θ(2i− sin θ)

[
1 +

(
1

3

2i+ sin θ

2i− sin θ

)
H†H

]
Q3LH̃tR. (4.36)

Note that only θ is manifested in the SM sector as a relative phase in the Z couplings,

and moreover, the resulting phase in the low energy lagrangian is not suppressed by

the small parameter ε. We conclude that the SU(6)/SO(6) model admits spontaneous

CP violation from phases in the VEV. Unlike in the SU(5)/SO(5) hypercharge model,

the resulting phase between H̃ and H̃H†H can be O(1).



58

4.5 Conclusions and Further Implications

In this work we have discussed the tension between lifting Goldstone bosons

and collective symmetry breaking. We showed that such tension is present in the

SU(2)×SU(2)×U(1) model. This model has a Goldstone mode which acquires mass

only via terms that spoil collective symmetry breaking. Such terms must be sup-

pressed in order to keep the SM Higgs boson light, implying that the related pseudo-

Goldstone bosons must be light too. This may lead to interesting collider phenomenol-

ogy, such as non-standard Higgs decays.

Once collective symmetry breaking is spoiled, even by a small parameter, CP in-

variance may be broken spontaneously, inducing a large CP-odd phase. However, due

to the minimal nature of the SU(5) structure, the phase which appears in interac-

tions among SM fields is suppressed. We have shown that this difficulty is lifted in

an SU(6)/SO(6) model, where an O(1) phase may give rise to observable effects in

non-renormalizabe couplings of the SM Higgs to quarks.

TheO(1) spontaneous CP violating phase in Eq.(4.36) would contribute to electric

dipole moments (EDMs) and will be detectable in the next-generation of electric

dipole moments experiments [41].

At this level of discussion, we did not suggest experimental ways to distinguish

between spontaneous and explicit CP violation. In the case of continuous symmetry

breaking, there are Goldstone bosons associated with the continuous set of vacua.

Since CP is a Z2, its spontaneous breaking implies the existence of two equivalent

vacua. 5 Indeed, it is evident from Eq.(4.34) that there are two values for θ which lead

to the same phase in Eq.(4.36). The doubling of vacua might imply the existence of

domain walls in the universe, once the temperature had dropped below the breaking

scale f . This poses a problem for the cosmology of the model, which can be avoided

if the reheating temperature after inflation is lower than f , or if there is additional

explicit CP violation - which would tilt the potential, making one of the vacua the

true vacuum.

A related issue is whether the phase from spontaneous CP violation can contribute

to successful electroweak baryogenesis. This depends on other features of the model,

5The two vacua cease to be equivalent once explicit CP violation is added. In our case, this is
introduced by the usual Kobayashi-Maskawa phase.
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such as the scale f and the sign and size of higher dimension terms in the effective

potential. Note that unlike Nelson-Barr models which are renormalizable, in Little

Higgs models the proximity of the UV completion does not permit predictive state-

ments regarding this issue. The investigation of the above issues, as well as a detailed

analysis of collider phenomenology, is left for future work.

This chapter is a reprint of material as it appears in “Spontaneous CP Violation

and Light Particles in The Littlest Higgs,” Z. Surujon and P. Uttayarat, Phys. Rev.

D 83, 076010 (2011) [arXiv:1003.4779 [hep-ph]], of which I was a co-author.



Chapter 5

A Very Light Dilaton

We present a completely perturbative model that displays behavior similar to that

of walking technicolor. In one phase of the model RG-trajectories run towards an IR-

fixed point but approximate scale invariance is spontaneously broken before reaching

the fixed point. The trajectories then run away from it and a light dilaton appears in

the spectrum. The mass of the dilaton is controlled by the “distance” of the theory to

the critical surface, and can be adjusted to be arbitrarily small without turning off the

interactions. There is a second phase with no spontaneous symmetry breaking and

hence no dilaton, and in which RG trajectories do terminate at the IR-fixed point.

5.1 Introduction

The Nambu-Goldstone boson of spontaneously broken scale invariance is known

as a dilaton. The name is also used to describe the pseudo Nambu-Goldstone boson,

a massive state that appears when scale invariance is slightly broken. Classically this

notion makes good sense. For example, take a scale invariant field theory, one with

only dimensionless couplings,1 with a flat direction for the minima of the potential for

scalar fields. A dilaton follows from expanding about a non-zero field value. Adding

arbitrarily small terms with dimensional couplings will generally give the dilaton a

small mass. However, ordinarily the passage to the quantum case can destroy this

picture. Quantum effects break scale invariance even in the absence of explicit mass

terms. The state that before quantization would have been identified as a dilaton

1In this work we consider only field theories in four space-time dimensions.

60
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acquires a mass that is not small. In fact, it is not clear one can uniquely identify a

state with what would have been the dilaton. What is meant by a “small” mass is that

it can be made arbitrarily small while keeping all the remaining spectrum roughly

constant and interacting. However it is not easy to construct models displaying this

behavior, that is, models of a very light dilaton.

In their celebrated analysis of the massless abelian U(1) model Coleman and

Weinberg find a scalar of mass m and a vector of mass M in the spectrum, with

m2/M2 = 3e2/8π2 [42]. Since the model is classically scale invariant one is tempted

to identify the only scalar with the pseudo Nambu-Goldstone boson of broken scale

invariance. It is not clear that this identification makes sense. But even if we insist

on it we see that the dilaton can only be made light by turning off the interactions,

e2 → 0. Moreover, if we insist in keeping the scale of symmetry breaking fixed then

in this limit the vector meson mass also approaches zero, albeit at a slower rate.

One may guess that a good search strategy for a light dilaton model is to take

as a starting point an exactly conformal model. Then look to spontaneously break

scale invariance and finally add small explicit scale symmetry breaking terms. But

this strategy has proven ineffective. Consider, for example, N = 4 supersymmetric

Yang-Mills theory, an exactly conformal interacting theory. The scalar potential

has minimum energy flat directions and one can choose to expand about a non-

trivial vacuum. Scale invariance is spontaneously broken and a massless dilaton must

emerge. However, supersymmetry is not broken and a lot more massless stuff emerges

too. As the vacuum breaks the Yang-Mills symmetry group G to one of its maximal

subgroups H a full N = 4 H-gauge theory remains in the massless spectrum. The

potential again has many zero energy flat directions and we are free to identify these

with “dilatons.” Of course, we could just as well have identified with dilatons the

flat directions of the original theory, based on G. Moreover, adding perturbations

will render the dilaton very heavy, calling into question the identification of any

one state with the dilaton. A perturbation, either relevant or marginal, vitiates the

cancellations that give vanishing beta functions and the theory runs to strong coupling

in the infrared.

In this work we construct a model of a light dilaton. The strategy, construction of

the model and the results of our analysis are easily summarized. We look for a light
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dilaton in an interacting field theory that displays a perturbative attractive infrared

fixed point and contains scalars. The idea is to look for spontaneous symmetry

breaking along a renormalization group trajectory headed towards the fixed point.

For a specific model we take that of Banks and Zaks [43, 44] supplemented with scalars

that are neutral under the gauge group. The scalars have quartic self-interactions and

are Yukawa-coupled to the Banks-Zaks spinors. As the Yang-Mills gauge coupling

runs toward the Banks-Zaks IR-fixed point, it drives the scalar and Yukawa couplings

towards the non-trivial fixed point values too. Depending on the relative values

of the coupling constants the Coleman-Weinberg effective potential for the scalar

fields may develop a non-trivial minimum [42]. The parameter space of the theory is

split according to whether scaling symmetry is spontaneously broken or not, and for

couplings near the boundary between these regions the dilaton is very light in units of

its decay constant. Yet the theory is fully interacting and the spectrum is non-trivial

(and insensitive to the parameter adjustment required to make the dilaton arbitrarily

light).

Our search for a model of a very light dilaton was partially motivated by recent

work of Appelquist and Bai [45] (henceforth ‘AB’) and by Hashimoto and Yamawaki

[46] rekindling and old debate on whether walking technicolor (WTC) may have a

light dilaton in its spectrum [47, 48, 49, 50, 51, 52, 53, 54]. The idea of “walking”

promises to solve many difficulties of technicolor (TC) theories. The conjectural be-

havior of the theory requires that (1) the TC coupling constant g evolves very slowly,

(2) this occurs while at large value of the TC coupling constant, so that anomalous

dimensions are large, and (3) the slowly running coupling eventually crosses a thresh-

old, exceeding a critical value gc for chiral symmetry breaking. The picture is that

once the coupling crosses this threshold, techniquarks become massive, decouple and

leave the technigluons to drive alone the running of the coupling constant (which

from that point on grows quickly, much like in QCD). The condensate that results

breaks electroweak symmetry giving masses to W and Z gauge bosons. The large

anomalous dimension of the techniquark bi-linear insures that four-fermion operators

induced by extended-TC interactions (ETC) give acceptable masses to all but the top

quarks (and leptons) while effectively suppressing ETC mediated FCNCs. Moreover,

the large anomalous dimensions of 4-techniquark operators also induced by the ETC
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tend to increase the masses of troublesome pseudo-Goldstone to acceptable levels. In

this picture the slow evolution of the coupling constant can be viewed as an approach

towards a would-be conformal fixed point, g∗. It is a “would-be” fixed point only

because gc < g∗, which triggers the fast QCD-like evolution of g once it exceeds the

critical value gc. AB argue, while Hashimoto and Yamawaki rebut, that a dilaton

does appear and estimate that its mass is roughly determined by the value of the

beta function at its closest approach to the would-be fixed point, β(gc).

The existence of a light dilaton in WTC is by no means obvious. The dilaton is

in some respects similar to the η′ in QCD. Were we to ignore the U(1)A anomaly it

would be a pseudo Nambu-Goldstone boson, on par with the (π,K, η) octet. But the

anomaly breaks the symmetry explicitly and because it involves the strong interac-

tions this breaking is not a small perturbation. Beyond deciding whether the light

dilaton appears in the spectrum of WTC, there are many other questions that arise.

For example, what precisely is the meaning of the critical coupling gc, what is the

dilaton decay constant, etc.

Unfortunately, as of this writing there is no explicit realization of the WTC idea

as a specific model. Numerous numerical studies are ongoing to determine whether

QCD-like theories at the edge of the conformal window display the phenomenon of

walking [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76, 77]. While a positive result from these studies may confirm the existence of models

exhibiting the WTC idea, a negative result would not rule out the possibility that

some non-QCD like theory behaves this way. In the mean time it would be useful

to construct a toy model displaying some of the WTC behavior. One would like

the toy model to be fully perturbative so that one may readily compute and resolve

questions. In some ways our model fits the bill. It does have coupling constants that

grow as they approach a fixed point, then walk for quite a long RG-time and finally

swerve away. This change of behavior is triggered, much like in the WTC idea, by the

analogue of chiral symmetry breaking, that is, the scalar fields acquiring a non-trivial

expectation value, giving masses to the spinors through their Yukawa couplings. To

be sure, the model fails to mimic WTC in important ways. By design it remains

perturbative, and therefore anomalous dimensions remain small. And, as opposed to

a would be WTC theory, our model is not asymptotically free; while the Banks-Zaks
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sector is, RG-running in the scalar sector encounters Landau poles. We do not see

the latter of these difficulties as central. One can view this as a theory with a cut-off

at a scale that is exponentially large compared to where the physics of the symmetry

breaking takes place, or imagine that it is the low energy effective theory of a more

complete model.

But the usefulness of an explicit model of a very light dilaton goes beyond that

of being a toy WTC. Sundrum has remarked that the dilaton can serve as a scalar

analog of the graviton. By studying the properties of the dilaton one can hope to gain

insights into the theory of gravity and perhaps find the answer to the cosmological

constant puzzle [78]. A dilaton is also likely to appear in the AdS/CFT dual of

the Randal-Sundrum model [79] with the Goldberger-Wise mechanism stabilizing the

extra-dimension [80]. In the 4-dimensional language, the theory is described not

by a CFT but by a flow to a CFT fixed point which is however interrupted close

to the fixed point by the expectation value of a field that measures the distance

from the origin in moduli space [81, 82]. This is described effectively by a theory

at the fixed point, a CFT Lagrangian, supplemented by small perturbations. The

latter are made scale invariant by including couplings to the dilaton in the spirit of

phenomenological Lagrangians [29, 30]. If the SM is embedded in such a scheme the

dilaton may behave much like, but not exactly the same as, the higgs boson of the

minimal standard model [83, 84, 85]. An amusing question that one can now ponder

is the inverse AdS/CFT problem: given our perturbative model, what is the AdS dual

(presumably a strongly interacting non-factorizable gravity model in 5 dimensions)?

Another area where the dilaton may play a role is in astrophysics and cosmology.

By noting that the dilaton couples to the trace of the stress energy tensor, the authors

in Ref. [86] propose to use a light dilaton as a force mediator between the SM particles

and dark matter particles. Some authors also propose a light dilaton as a new dark

matter candidate [87]. In all these cases an explicit computable model may be put to

use in understanding issues currently clouded by our inability to compute at or near

strongly interacting fixed points.

The paper is organized as follows. In Sec. 5.2 we introduce our model and show

the existent of both the IR-fixed point and the non-trivial vacuum. In Sec. 5.3 we

identify the state corresponding to the dilaton and we compute its mass. In Sec. 5.4
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we discuss a phase structure of our model accessible in perturbation theory. We

discuss our results briefly in Sec. 5.5.

5.2 The Model

We study a class of SU(N) gauge theories with nf = nχ + nψ = 2nχ flavors of

spinors, ψi and χk, and two real scalars. The spinors are taken to be vector-like in

the fundamental representation of the gauge group while the scalars are singlets. The

most general Lagrangian that is classically scale invariant and also invariant under the

discrete symmetry φ1 → φ1, φ2 → −φ2, ψ → ψ, χ→ −χ, and the global simultaneous

SU(nχ) transformations ψ → Uψ, χ→ Uχ is

L = −1

2
TrF µνFµν +

nχ∑
j=1

ψ̄ji /Dψj +

nχ∑
k=1

χ̄ki /Dχk +
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2

− y1

(
ψ̄ψ + χ̄χ

)
φ1 − y2(ψ̄χ+ h.c.)φ2 −

1

24
λ1φ

4
1 −

1

24
λ2φ

4
2 −

1

4
λ3φ

2
1φ

2
2 .

(5.1)

Quantum effects will induce scalar masses of the order of the cut-off. We will at

first fine-tune the masses to zero, much like Coleman and Weinberg [42]; after all, we

are not interested in solving the hierarchy problem. Alternatively one can study this

theory perturbatively in the continuum, using dimensional regularization. Later, in

Sec 5.4.1 we consider the effect of adding a scalar mass.

For small number of families this model is very similar to QCD. The gauge sector

will run to strong coupling in the infrared, the remaining parameters will only act as

small perturbations. The chiral symmetry SU(nf )×SU(nf ) is spontaneously broken

to its diagonal subgroup with associated Nambu-Goldstone bosons in the spectrum.

We are interested in larger values of nf for which the gauge coupling is still asymp-

totically free but behaves very differently in the infrared, as we now discuss.

5.2.1 Fixed Point Structure

We arrange the values of N and nf so that the coefficient in the one-loop term

of the gauge beta function is small, much as Banks and Zaks do for QCD [43]. The

perturbative fixed point value in the gauge coupling appears from balancing the one

and two loop terms against each other. To arrange for an arbitrarily small fixed point
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value we consider only large values of N and nf . The coefficients of the one-loop terms

of the beta functions for the remaining couplings are not small. Hence it suffices to

retain only up to one loop order in the beta functions of Yukawa and scalar couplings,

while, of course, retaining up to two loop order for that of the gauge coupling. The

mass independent (e.g., minimal subtraction) β-functions at large N and nf are given

by [88, 19, 89, 90]

(16π2)
∂g

∂t
= −δN

3
g3 +

25N2

2

g5

16π2

(16π2)
∂y1

∂t
= 4y1y

2
2 + 11N2y3

1 − 3Ng2y1,

(16π2)
∂y2

∂t
= 3y2

1y2 + 11N2y3
2 − 3Ng2y2

(16π2)
∂λ1

∂t
= 3λ2

1 + 3λ2
3 + 44N2λ1y

2
1 − 264N2y4

1,

(16π2)
∂λ2

∂t
= 3λ2

2 + 3λ2
3 + 44N2λ2y

2
2 − 264N2y4

2,

(16π2)
∂λ3

∂t
= λ1λ3 + λ2λ3 + 4λ2

3 + 22N2λ3y
2
1 + 22N2λ3y

2
2 − 264N2y2

1y
2
2.

(5.2)

The number of families is taken to be fixed at nf = 11N/2(1 − δ/11) and we drop

the O(δ) terms except in βg. Even though N and nf are integers, one can make δ

arbitrarily small by taking N and nf arbitrarily large.

These equations will play an important role in our discussion. The first step is

to determine whether any non-trivial fixed points exist. To see that one does indeed

run into the fix point we can argue as follows. First, there is no question that the

gauge coupling flows in the IR towards it fixed point. All that is required is that it

starts its flow from the UV at a value smaller than the fixed point. Then the Yukawa

couplings’ beta functions are dominated by the last term, which is negative and only

linear in the yi’s. Hence they grow until the positive non-linear terms compensate

against the last negative, linear term. And the story is then repeated for the scalars,

but now having the Yukawa couplings drive the beta functions (the last terms in each

of the three scalar coupling beta functions are negative and λi independent).

The mechanism that is driving the couplings towards theIR-fixed point values

is mimicked by the process of determining their location. The gauge coupling has

the same fixed point as in the Banks-Zaks model. This is used in the equations

for the Yukawa couplings y1,2 which are then trivially solved to leading order in 1/N

accuracy. In turn these solutions are used in the equations for the scalar self-couplings.
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To leading order in 1/N accuracy, the fixed point is at the following zeroes of the

beta functions:

g2
∗ = 16π2 2

75

δ

N
, y2

1∗ = y2
2∗ =

3

11

g2
∗
N
, λ1∗ = λ2∗ = λ3∗ = 6y2

1∗ =
18

11

g2
∗
N
. (5.3)

Since δ is arbitrarily small while N is arbitrarily large the fixed point values of the

couplings are all perturbative. It is easy to check that the terms omitted in the loop

expansion of the beta functions are parametrically smaller.

This result may be surprising. Common lore, which of course cannot be docu-

mented, is that theories with scalars and fermions do not exhibit nontrivial IR-fixed

points in 4 dimensions. While this is obviously false in 4− ε dimensions, we see that

it is also false in exactly four dimensions. The lore’s intuition is vitiated here because

it is the gauge coupling which is driving the remaining couplings toward the fixed

point.

5.2.2 Vacuum Structure

We turn now to the physical content of our model. The first order of business is

to understand its vacuum structure and determine the fate of the symmetries of the

Lagrangian. At the classical level, the potential is trivially minimized, 〈φ1〉 = 〈φ2〉 = 0

and all symmetries are explicitly realized. However, this may change once quantum

effects are included. The one-loop effective potential in the MS scheme is [42]

Veff = − 1

24
λ1φ

4
1 −

1

24
λ2φ

4
2 −

1

4
λ3φ

2
1φ

2
2

−
11N2M4

f+

(64π2)

(
ln
M2

f+

2µ2
− 3

2

)
−

11N2M4
f−

(64π2)

(
ln
M2

f−

2µ2
− 3

2

)
+

M4
s+

(64π2)

(
ln
M2

s+

µ2
− 3

2

)
+

M4
s−

(64π2)

(
ln
M2

s−

2µ2
− 3

2

)
,

(5.4)

where

Mf± = y1φ1 ± y2φ2,

M2
s± =

(λ1 + λ3)φ2
1 + (λ2 + λ3)φ2

2

4

±
√

(λ1 − λ3)2φ4
1 + (λ2 − λ3)2φ4

2 − 2(λ1λ2 − λ1λ3 − λ2λ3 − 7λ2
3)φ2

1φ
2
2

4
.

(5.5)
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No mass terms have appeared because we have used dimensional regularization (in

the MS scheme). As explained earlier, this is in keeping with Coleman and Weinberg

who completely subtract the mass terms. We will return to this point in the discussion

where we will argue that including small masses for the scalars and spinors of the

model does not modify the main conclusions (but we have to wait until then to explain

the meaning of “small.”)

It is fairly difficult to search for the minimum of this function. We can however

find some local minima easily, by searching only for a vacuum that preserves the

discrete symmetry φ1 → φ1, φ2 → −φ2, ψ → ψ and χ→ −χ. The effective potential

along the φ2 = 0 axis is much simplified:
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It is straightforward to find an extremum of this function,

∂

∂φ1

Veff(〈φ1〉) = 0

=⇒ −λ1

6
=

λ2
1

64π2

(
ln
λ1〈φ1〉2

2µ2
− 1

)
+

λ2
3

64π2

(
ln
λ3〈φ1〉2

2µ2
− 1

)
− 88N2y4

1

64π2

(
ln
y2

1〈φ1〉2

µ2
− 1

)
. (5.7)

If the extremum is a minimum this equation determines the vacuum expectation 〈φ1〉
in terms of the coupling constants of the model. Alternatively one may eliminate one

of the dimensionless parameters of the model in favor of the dimensional vacuum ex-

pectation value. This is the well known dimensional transmutation procedure. Since

the expectation value sets the physical scale for the theory we adopt this approach

here so in what follows the dimensionless parameter λ1 is understood as a function of

the couplings and the expectation value, given in (5.7). In order that the perturba-

tive expansion of V eff not be invalidated by large logs in higher orders we insist that

λ1/16π2 ln(〈φ1〉2/µ2) � 1. Then λ1 is given by the last two terms in (5.7), and this

condition becomes
λ2

3 − 88N2y4
1

(16π2)2
ln2 〈φ1〉2

µ2
� 1 . (5.8)

Since λ1 has been eliminated in favor of 〈φ1〉, the conditions that the perturbative

analysis is valid are that 〈φ1〉 satisfies (5.8) and that dimensionless couplings remain
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small. Next, we must check that the extremum is a local minimum and that it is of

lower energy than that of the origin of field space.

We first verify that the extremum is a local minimum. To this end we need to

check that the eigenvalues of the mass matrix are both positive. Owing to the discrete

symmetry and the fact that we are on the φ2 = 0 axis, the mixed derivatives terms

vanish at 〈φ1〉, ∂2

∂φ1∂φ2
Veff(〈φ1〉, 0) = 0. Hence the two eigenvalues are given by

∂2

∂φ2
1

Veff(〈φ1〉, 0) =
λ2

3 − 88N2y4
1

32π2
〈φ1〉2, (5.9)
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The first eigenvalue is positive provided

ε ≡ λ2
3 − 88N2y4

1 > 0. (5.11)

The second eigenvalue is generally positive provided we are in the regime where the

one loop terms are small compared to the tree level term. This is generally the case

in perturbation theory, although one could have one coupling, in this case λ3 be small

compared to the remaining couplings (and indeed this is the situation for λ1 in the

region of parameter space of interest).

We can now check that the effective potential at 〈φ1〉 is negative:

Veff(〈φ1〉) = −λ
2
3 − 88N2y4

1

512π2
〈φ1〉4 = − ε

512π2
〈φ1〉4. (5.12)

Remarkably, the condition that this be negative is precisely the same as having the

first eigenvalue of the mass matrix be positive, Eq. (5.11).

Here we take a small detour to discuss the role of φ2. The readers might notice

that φ2 plays virtually no role in the above analysis of the vacuum. Moreover, we

could have arranged for the non-trivial IR fixed-point with only one scalar. This can

be seen by setting y2, λ2 and λ3 to zero in Eq (5.2) and repeating the fixed-point

analysis given above.2 This begs the question – what is the purpose of φ2? With only

one scalar, φ1, we can repeat the above analysis and reproduce Eqs. (5.8)–(5.12) with

2Similar result regarding the fixed-point in Banks-Zaks type theory with an extra scalar singlet
has been independently obtained in [91, 92].
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λ3 set to 0. Clearly, the extremum becomes the maximum and the effective potential

seems to be unbounded from below. The extra scalar field allow us to introduce more

couplings and more importantly establish the non-trivial minimum via perturbative

analysis.

Note that the conditions we have found for the non-trivial minimum of the effective

potential are not satisfied at or in the vicinity of the IR-fixed point. But neither are

the conditions for perturbative computability. In order to determine the vacuum

structure near the IR fixed point we must re-sum the leading log expansion of the

effective potential. Equivalently we can take any point in the vicinity of the fixed

point and ask whether its RG-trajectory maps back at some large RG-time t to the

region where the analysis above is valid. If that is the case we can further ask whether

it gives a non-trivial minimum. This is the approach we adopt here. We will come

back to this issue in Sec. 5.4 where we will discuss the phase structure of the model

and integrate the RGEs numerically to verify the vacuum structure near the IR-fixed

point. But even without numerical studies we can argue physically that there are

points arbitrarily close to the IR-fixed points for which the vacuum is non-trivial and

scale invariance is spontaneously broken.

Choose the parameters to satisfy (5.11) and to be small at some fixed renormal-

ization scale µ0. One can arrange for the allowed range of expectation values to

be large, so that 〈φ1〉 � µ0 is included, by choosing ε to be as small as necessary.

The coupling constants will run as in the mass independent scheme until the scale

µ reaches values comparable to the mass of the heaviest particle in the model. At

that point the running is modified. The trajectory that would end at the IR-fixed

point is modified before the fixed point is reached. However this modification to the

trajectory occurs only for µ . 〈φ1〉. That is, given a fixed starting point µ0 we can

choose to run as far as needed on the mass-independent trajectory, far enough that it

gets arbitrarily close to the IR-fixed point; all that is required is that one starts with

a small enough value of 〈φ1〉.
We have not been able to explore fully the landscape of our effective potential.

Other, lower minima may exist outside the φ2 = 0 axis. If that is the case the mini-

mum we have found describes only a metastable vacuum. The analysis that follows is

still largely correct. But more importantly, an analogous analysis could be applied to
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the global minimum and the qualitative results will not be different. What is impor-

tant here is that the non-trivial minimum found at one-loop spontaneously breaks the

scale invariance of the classical Lagrangian. The scale invariance is explicitly broken

at one-loop too, by a quantum mechanical anomaly. If the former effect is dominant

then we expect to see a pseudo Nambu-Goldstone boson of spontaneously broken

approximate scale invariance, while if the latter effect is dominant no such state will

be seen. So we turn in the next section to determining the spectrum of the model.

5.2.3 Particle Spectrum

If the theory is in the symmetric phase, 〈φ1〉 = 〈φ2〉 = 0, then all the particles are

massless. Here, we compute the spectrum in the broken phase, 〈φ1〉 = v, 〈φ2〉 = 0.

We retain up to one-loop order in the computation of the spectrum so that we may

later address questions of invariance of physical quantities under RG-evolution. This

is important because on the one hand we determine the vacuum structure far away

from the IR fixed point while on the other we are interested in the fate of scale

invariance and hence want to study the RG flow towards, and eventually in the

vicinity of, the IR-fixed point.

We first compute the fermion spectrum. For large N the leading contribution

to the fermion self-energy is from the gauge interaction. We can parametrize the

self-energy as

iΣ(/p) = i(Am+B/p). (5.13)

We obtain, to one-loop order,

A =
g2

16π2

N

2

(
−3 ln
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2
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+ 4

)
, B = 1 , (5.14)

in Landau gauge. Hence the masses of χ and ψ (poles in the respective propagators)

are

Mψ(µ) = Mχ(µ) = y1v

[
1− g2

16π2

N

2

(
3 ln

y2
1v

2

µ2
− 4

)]
. (5.15)

The pole masses of the scalar fields φ1 and φ2 can be computed in a similar manner.

Schematically, to one-loop order, the mass is

M2
φ =

λ

2
v2 + Π(λv2/2). (5.16)



72

Explicit computation yields

M2
φ1

=
λ1v

2

2
+

3λ2
1v

2

64π2

(
ln
λ1v

2

2µ2
− 5

3
+

2π

3
√

3

)
+

3λ2
3v

2

64π2

(
ln
λ3v

2

2µ2
− 1

3
− 2λ1

3λ3

)
+

22N2y2
1

16π2

[
y2

1v
2 − λ1v

2

12
− 3

(
y2

1v
2 − λ1v

2

12

)(
ln
y2

1v
2

µ2

)

− 3

∫ 1

0

dx

(
y2

1v
2 − x(1− x)

2
λ1v

2

)
ln

(
1− x(1− x)

λ1

2y2
1

)]
, (5.17)

=
3λ2

1v
2

64π2

(
−2

3
+

2π

3
√

3

)
+

3λ2
3v

2

64π2

(
2

3
− 2λ1

3λ3

)
+

22N2y2
1

16π2

[
− 2

(
y2

1v
2 − λ1v

2

12

)

− 3

∫ 1

0

dx

(
y2

1v
2 − x(1− x)

2
λ1v

2

)
ln

(
1− x(1− x)

λ1

2y2
1

)]
,

' λ2
3 − 88N2y4

1

32π2
v2,

=
ε

32π2
v2,

M2
φ2

=
λ3v

2

2
+
λ1λ3v

2

64π2

(
ln
λ1v

2

2µ2
− 1

)
+
λ2λ3v

2

64π2

(
ln
λ3v

2

2µ2
− 1

)
+
λ2

3v
2

16π2

(
ln
λ3v

2

2µ2
+

∫ 1

0

dx ln

(
x2 + (1− x)

λ1

λ3

))
+

22N2y2
2

16π2

[
y2

1v
2 − λ3v

2

12
− 3

(
y2

1v
2 − λ3v

2

12

)(
ln
y2

1v
2

µ2

)

− 3

∫ 1

0

dx

(
y2

1v
2 − x(1− x)

2
λ3v

2

)
ln

(
1− x(1− x)

λ3

2y2
1

)]
, (5.18)

' λ3v
2

2
+
λ2λ3v

2

64π2

(
ln
λ3v

2

2µ2
− 1

)
+
λ2

3v
2

16π2

(
ln
λ3v

2

2µ2
− 2

)
+

22N2y2
2

16π2

[
y2

1v
2 − λ3v

2

12
− 3

(
y2

1v
2 − λ3v

2

12

)(
ln
y2

1v
2

µ2

)

− 3

∫ 1

0

dx

(
y2

1v
2 − x(1− x)

2
λ3v

2

)
ln

(
1− x(1− x)

λ3

2y2
1

)]
.

The first lines of Eqs. (5.17) and (5.18) are the complete one-loop expressions for the

pole masses, while the second line on Eq. (5.17) uses Eq. (5.7) and shows that the

whole expression is of one-loop order and that it has no explicit µ dependence. The

last line in both equations is further simplified using the approximation valid at µ0
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that λ1 is small. Observe that these scalar masses differ from the curvature of the

effective potential at the minimum. This is because the effective potential is computed

at zero external momentum,while the pole mass is computed at a momentum equal

to the pole mass itself.

It is instructive to check that these masses are RG-invariant. The important

observation is that the vacuum expectation value, v, transforms under the RGE with

the anomalous dimension of φ1:

∂v

∂t
= γφ1v = −11N2y2

1

16π2
v . (5.19)

Using this, the above expressions for the pole masses and the beta functions in

Eq. (5.2), one can verify that

∂Mψ

∂t
=
∂Mχ

∂t
=
∂Mφ1

∂t
=
∂Mφ2

∂t
= 0 , (5.20)

up to terms of order of two loops. This is of course expected, but the explicit com-

putation gives a check of the above expressions. For this check we have not used

the approximation that λ1 is small. This approximation is only valid for µ ∼ µ0,

but we will be examining shortly RG-trajectories that extend to µ � µ0 where the

approximation breaks down.

5.3 Dilaton

5.3.1 Dilatation Current

The dilatation current, Dµ is related to the improved stress-energy tensor through

Dµ = xνΘ
µν [93]. There are two important properties of the improved energy mo-

mentum tensor. First, it is not renormalized, so it has no anomalous dimensions.

And second, it is such that the divergence of the dilatation current is just the trace

of the stress-energy tensor, ∂µDµ = Θµ
µ. A simple way of computing this tensor is by

re-writing the model in a general covariant fashion, with a background metric gµν ,

taking Θµν = −2 δ
δgµν

Sm where Sm is the action integral (exclusive of the Hilbert-

Einstein term) and then re-setting the metric to the trivial one gµν = ηµν . From the
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Lagrangian in (5.1) we have

Θµν = −F aµλF aν
λ +

1

2
χ̄i(γµDν + γνDµ)χ+

1

2
ψ̄i(γµDν + γνDµ)ψ

+ ∂µφi∂
νφi −

1

2
κ(∂µ∂ν − gµν∂2)φ2

i − gµνL . (5.21)

The term proportional to κ is the improvement: it is automatically conserved and

is itself a total derivative so its integral vanishes, leaving the generators of energy

and momentum
∫
d3x Θ0µ unmodified. The improved tensor corresponds to setting

κ = 1/3.

Classically the trace of this tensor vanishes and therefore the divergence of the di-

latation current vanishes too. The theory is classically scale invariant. As is famously

known this is no longer the case once quantum effects are included. Instead one has

a “trace anomaly:” [94, 95]

Θµ
µ = γφ1φ1∂

2φ1 + (4γφ1λ1 − βλ1)
φ4

1

24
+ . . . , (5.22)

where we have kept only the terms involving φ1 since these will play a role in our

discussion below. The terms involving the field anomalous dimension γφ1 are often

overlooked. They can be ignored when application of the equations of motion is valid

but may play a role in off-shell matrix elements or Green functions.3 There is a

simple indirect indication that these additional terms must be included: since Θµν is

not renormalized the trace anomaly must be an RG-invariant, and the γφ1-terms are

required for this purpose [97, 98].

5.3.2 Dilaton

As a pseudo-Nambu-Goldstone boson the dilaton state |σ〉 should be created by

acting on the vacuum with the spontaneously broken dilatation current. In analogy

with PCAC we define a dilaton decay constant fσ and a dilaton mass Mσ so that

〈0|∂µDµ|σ〉 = 〈0|Θµ
µ|σ〉x=0 = −fσM2

σ . (5.23)

3There is an interesting technical subtlety here. The equations of motion that can and should
be used are those for the bare fields [96]. The use of the equation of motion in Eq. (5.22) gives that
the terms proportional to γφ1 cancel. On the other hand, the insertion of the anomaly into a matrix
element would have us replace −M2

φ1
for ∂2 but since this mass starts only at one-loop order its

product with γφ1
would give a higher order effect and spoil the cancellation against the rest of the

γφ1
terms. We have verified by explicit computation that in fact the cancellation is not spoiled. To

this end one must use the relation in Eq. (5.7) that effectively trades λ1 for one-loop terms.
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This equation contains a particular combination of decay constant and mass and we

would like to be able to distinguish between them. The matrix element of the current

itself (which in PCAC gives the decay constant directly) is not very useful because of

the explicit coordinate dependence. Instead consider the energy momentum tensor,

before taking the trace:

〈0|Θµν(x)|σ〉 =
fσ
3

(
pµpν − gµνp2

)
eip·x (5.24)

The form of this equation is fixed by conservation of the stress-energy tensor and that

its trace is given by Eq. (5.23). Note that in Eq. (5.24) the momentum is on-shell,

p2 = M2
σ .

In order to compute fσ and Mσ we must first identify a state in the spectrum of our

model as the dilaton. Were we in the exact symmetry limit there would be a unique

one-particle state that couples to the stress energy tensor, making the identification

of the dilaton straightforward. If the symmetry is not exact but approximate we

expect the dilaton to be a spinless state that (1) couples most strongly to the stress

energy tensor and (2) is the lightest state that does. It is easy to see that the state of

mass Mφ1 fits the bill. First, it is the lightest of the two spinless one-particle states

in the spectrum, which is clear since the perturbative expansion for its mass starts at

one-loop order. To see that it couples more strongly, note that when expanding the

fields about the vacuum 〈φ1〉 = v and 〈φ2〉 = 0 in the stress energy tensor, the only

field that appears linearly is φ1. Therefore the only one-particle state that has tree

level overlap with the stress energy tensor is the state created by φ1.

With this identification we can now compute the decay constant to tree level.

Shifting the fields in Eq. (5.21) and concentrating on terms that can give pµpν in the

matrix element, we have Θµν = −1/3v∂µ∂νφ1 + · · · . The ellipsis stand for terms that

contribute only at higher order than tree level. Hence we read off fσ = v. And, of

course, Mσ = Mφ1 .

The anomaly equation gives us a non-trivial check of this identification. Going to

shifted fields in the anomaly Eq. (5.22), we have

Θµ
µ = γφ1v∂

2φ1 + (4γφ1λ1 − βλ1)
v3φ1

6
+ . . . (5.25)

Taking the matrix element of this, working to lowest order (tree level in the graphs).
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we obtain

〈0|Θµ
µ|σ〉x=0 = −γφ1vp2 − λ2

1 + λ2
3 − 88N2y4

1

32π2
v3 + . . . . (5.26)

This agrees with Eq. (5.23) if we use our identifications

fσ = v and M2
σ = M2

φ1
=

ε

32π2
v2. (5.27)

We have dropped the γφ1vM
2
σ and λ2

1v
3 terms for consistency.

Since the improved stress energy tensor is not renormalized the decay constant

fσ must be an RG-invariant quantity. Mσ is also RG-invariant as any physical mass

must. The expressions we have found are not RG-invariant only because we have

expressed them in lowest order of perturbation theory. The pole mass, which we

have already discussed earlier, is explicitly seen to be RG-invariant to one-loop order

for the trivial reason that it itself starts at one-loop order. On the other hand,

the vacuum expectation value runs like the field, Eq. (5.19). If Z(t) is the wave-

function renormalization factor, ∂Z/∂t = 2γφ1Z, Z(0) = 1, where t = ln(µ/µ0), then

fσ = v/Z1/2 is an RG-invariant, the RG-improved version of the previous result.

5.4 Phase Structure

We return here to the study of the phase structure of the model, posed earlier

in Sec. 5.2.2. Let us recapitulate from there. A perturbative study of the vacuum

structure of the theory requires that we limit our attention to a region of parameter

space where λ1 is small. Then the model possesses a new, non-trivial minimum pro-

vided (5.11) is satisfied. Neither of these conditions are satisfied in the neighborhood

of the IR-fixed point. However, we can take any point in the vicinity of the fixed

point and ask whether its RG-trajectory maps back at some large RG-time t to the

region where a perturbative analysis of the effective potential is valid and gives a

non-trivial minimum. In fact, by reversing the process, that is, by starting with a

well chosen point at large RG-time t and then running towards the IR, we argued that

there always exist points arbitrarily near the IR-fixed point for which the symmetry

is spontaneously broken. Choose coupling constants at some renormalization scale µ0

that give a non-trivial minimum and so that the expectation value is small 〈φ1〉 � µ0.

The coupling constants will run as in the mass independent scheme towards the IR-

fixed point and will get closer the smaller the value of 〈φ1〉. At µ ∼ 〈φ1〉 the running
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will be modified and the trajectory will not hit the fixed point, but will have gotten

very close.

Now let’s complete the picture. When µ becomes of the order of the physical mass

of the heaviest particles in the spectrum the running of the couplings is modified. For

µ below the scale of that mass the beta function becomes effectively the one for

the model in the absence of those massive particles, that is, the heavy particles are

“integrated out.” As µ is further decreased one sequentially integrates out all massive

particles in the model. This all occurs near the fixed point so all couplings are still

perturbative, but now all scalars and spinors are integrated out. The Yukawa and

self-couplings stopped running and become uninteresting since the effective theory

contains only massless Yang-Mills vectors. Now the beta function of this effective

theory is very much like that of QCD: the coupling constant quickly runs to strong

coupling,

g2(µ) ≈ g2
∗

1 + g2∗
16π2

22N
3

ln µ
〈φ1〉

(5.28)

The spectrum of the effective theory is that of a theory of pure glue, that is glueballs,

of mass

Mg ∼ 〈φ1〉e
− 3

22N
16π2

g2∗ = 〈φ1〉e−225/44δ (5.29)

So the spectrum of the model consists of two massive scalars and nf massive fermions

with masses given in Sec. 5.2.3 plus glueballs with masses Mg. The lighter scalar can

be identified with the dilaton and its mass is given by Eq. (5.27).

We can repeat the analysis, only now starting from a set of coupling constants

that does not satisfy the condition (5.11) at µ0. The potential now remains positive

up to large values of φ1/µ0 and one expects that by the time it starts decreasing

perturbation theory ceases to be applicable. So we expect the true vacuum is at the

origin of field space 〈φ1〉 = 〈φ2〉 = 0. There is no spontaneous scaling symmetry

breaking, all particles are massless. As t → −∞ the RG-trajectories run into the

IR-fixed point.

The following picture emerges: the theory has two phases. The parameter space

of the model, which we identify with the space of couplings at a fixed renormalization

scale µ0, is split in two regions. In region I the spectrum is massless and all RG-

trajectories run into the IR-fixed point. In region II there are no massless particles

and RG-trajectories do not end at the IR-fixed point. There is a boundary between
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these phases, a hypersurface in the parameter space of the model. The fixed point

lies on this surface.

The expectation value 〈φ1〉 vanishes in region I, but does not in region II. The

transition is discontinuous: by dimensional transmutation, there is a non-trivial min-

imum of Veff at an arbitrary4 value of 〈φ1〉 provided λ2
3−88N2y4

1 is positive, no matter

how small. Since the physical content is preserved by flows we see that the surface

itself is RG-invariant.

But perhaps we have rushed into conclusions. Firstly, when (5.11) is not satisfied

the effective potential is unbounded from below as one moves along the φ1 axis towards

large values of φ1. We stated without justification that at large φ1 perturbation theory

breaks down and one expects the potential stays bounded from below. But there is

no guarantee of this, and even if the potential stays bounded it may develop a new

global minimum at large φ1. Perhaps none of region I is physical? And secondly, in

order to reach the vicinity of the IR point, which is AB’s prescription for obtaining a

light dilaton, we argued we can choose 〈φ1〉 small enough that our RG-trajectory will

get there. But how do we know that this does not occur only for such small 〈φ1〉 that

the logs in the effective potential become too large, again invalidating the analysis?

Fortunately we can go a long way towards settling these issues by explicit com-

putation. Inasmuch as the potential becomes one dimensional (the minimum or the

unbounded direction both lie on the axis) we can use the RGE to re-sum the leading

logs hence extending the region of validity of the computation to the whole space of

perturbative parameters. For the effectively one dimensional case the effective po-

tential is Veff = 1
24
λ̄1(t, λ1)Z(t)2φ4

1 [99]. Here t = ln(φ1/µ0), Z is a wave-function

renormalization factor and λ̄1(t, λ1) is the running coupling constant, defined with

boundary condition λ̄1(0, λ1) = λ1. The first objection above is settled as follows: for

any RG-trajectory for which λ̄1 stays positive we can assert the minimum of Veff is

at the origin of field space and there is no symmetry breaking. The only caveat is

that we cannot trust the calculation at very large t where the scalar couplings become

non-perturbatively large. Recall the model has Landau poles so it either is considered

as a cut-off model or as the low energy limit of a complete theory.

The second objection can also be settled by following the trajectory towards the

4Arbitrary, but not extreme: the logs of 〈φ1〉/µ0 cannot be too large if the perturbative analysis
is to remain valid.
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IR. If at any point along the trajectory the running coupling turns negative then there

will be a minimum away from the origin in field space, symmetry will be broken and

a pseudo Nambu-Goldstone boson associated with the breaking of scale invariance

will appear in the spectrum. One can then follow the trajectory and determine how

close it gets to the IR-fixed point. This is somewhat unnecessary, since we already

established in the previous two sections that for small ε we get a light dilaton.

Although the model is perturbative, we do not know how to analytically integrate

the RG trajectories. But it is quite straightforward to investigate them numerically. It

is beyond the scope of this work to conduct an exhaustive study of the phase diagram

numerically. Instead we follow the trajectories from some initial points at µ0 to gain

confidence the picture we have painted is not obviously flawed. We use N = 20,

nf = 11N/2, δ = 0.2. First we take g(µ0) = 4
9
g∗, y1(µ0) = 0.45y1∗, y2(µ0) = 1

5
y2∗,

λ1(µ0) = 1
30
λ1∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗.. This set of parameters does not

satisfy (5.11). The effective potential doesn’t develop a non-trivial minimum,the

running coupling λ̄1 remains positive. The theory flows to the IR fixed point. Next we

analyze the case when g(µ0) = 4
9
g∗, y1(µ0) = 0.32y1∗, y2(µ0) = 1

5
y2∗, λ1(µ0) = 1

30
λ1∗,

λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗. Naively, this theory seems to flow to the IR-fixed

point as well. But in this case, the effective potential does develop a minimum at

ln (v2/µ2
0) ' −58. We estimate the fractional correction to the effective potential

from higher orders in the loop expansion to be of order∣∣∣∣Ng2

16π2
ln

(
y2

1v
2

µ2

)∣∣∣∣ ' 0.2

Thus we can trust the minimum we find using perturbation theory. With this vev,

the spectrum is Mψ,χ/v ' 8.5× 10−3,Mφ1/v ' 7.9× 10−4,Mφ2/v ' 9.5× 10−2. The

scale µ0 is some 13 orders of magnitude larger than the vacuum expectation value v,

but it is unphysical.

We have studied numerically the transition between these two parameters sets by

varying y1(µ0) or ε(µ0). When y1(µ0) is sufficiently large, or when ε turns negative,

we change from a broken phase to the symmetric phase as expected from Eq. (5.12).

Note that with our particular value of parameters, the theory is close to the boundary

of the broken/symmetric phases.
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5.4.1 Relevant Perturbations

Suppose we consider a modification of the model, one in which scale invariance

is explicitly broken. This is accomplished by adding relevant perturbations. If the

symmetries of the model are to be preserved only mass terms can be added. This

enlarges the parameter space of the model. The origin of all the relevant-perturbation

axes corresponds to the parameter space described in the previous paragraphs, and

it is on that hyperplane that the IR-fixed point lies together with the two phases and

the hypersurface separating them.

Far away from this hyperplane, a long ways along the relevant-perturbation axes,

the physics is very simple: scalars and spinors have hard masses and below the scale

of those masses they decouple so as to leave only light glueballs in the spectrum. A

more interesting region of parameter space is the direction of large scalar masses and

small spinor masses. Then the scalars decouple and one is left with a Banks-Zaks-like

model. Only it does not run into an IR-fixed point because the spinors eventually

decouple, the YM-coupling then runs strongly and glueballs form. Only at zero spinor

mass do we see that our IR-fixed point is really part of an IR-fixed hyperline.

What is the fate of the two phases as one extends into the new axes? In the

symmetric phase the addition of hard masses can only make the vacuum at the origin

of field space more stable. The spectrum is modified, particles are massive now and

there is no IR-fixed point (save for the zero spinor mass case).

Analysis of the broken symmetry phase is more subtle. Provided we stay very

close to the origin of the new axes, so that the added mass terms are really small

perturbations, much smaller than the masses obtained in the absence of the per-

turbations, then nothing changes qualitatively and the quantitative changes to the

spectrum are small. As the strength of the relevant perturbations increase the model

may remain in a broken phase, depending on the precise nature of the perturbations.

But for large enough perturbations the dilaton will be unrecognizable as a pseudo

Nambu-Goldstone boson.

Summarizing, the two phase diagram does extend into the larger parameter space.

The fixed point becomes a (hyper) line of fixed points. For large perturbations the

dilaton is gone.
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5.5 Discussion, Conclusion and Open Questions

We have presented a model with an IR-fixed point, and demonstrated that the

model has two phases. In phase I RG-trajectories run into the IR-fixed point (in

infinite RG-time). The scale symmetry is approximate and explicitly realized and

it becomes exact at the fixed point. In phase II scale symmetry is spontaneously

broken. Of course, scale invariance is also explicitly broken by the trace anomaly.

The trajectories don’t reach the IR-fixed point but some get very close and for those

the explicit, relative to spontaneous, breaking of scale invariance is small: A light

dilaton appears in the spectrum.

Analytic evidence for this picture was presented at length but the numerical sup-

port was scant. This is clearly an interesting direction for future work. In particular,

one could determine the actual location of the phase transition. Another direction for

future work is to find generalizations of the model. We do not know how general this

picture is or how difficult it may be to come about models that display arbitrarily

light dilatons (we were not aware of any example prior to this work).

Among new models one may try to construct some with the Standard Model

of electroweak interactions embedded in it. One could then test whether the setup

in Ref. [83] works as advertised. The authors there considered the possibility that

the standard model is embedded in an almost conformal, possibly strongly inter-

acting field theory with spontaneously broken scale invariance. In the context of

4-dimensional strongly interacting near-CFTs obtained as AdS/CFT-like duals of 5-

dimensional non-factorizable geometries (RS models) one encounters often the schematic

Lagrangian describing the dynamics:

L = LCFT +
∑
n

λnOn . (5.30)

The first term is a CFT while the sum that follows is an attempt to capture the

deviations (“deformations”) from the CFT by adding small perturbations [81, 82].

Obviously this basic setup applies to our model, and because it is fully perturbative

model one should be able to verify the validity of some general assertions. The

deviations from conformality can be small in one of two ways, either the anomalous

dimensions γn or the coefficients λn of the operators On are small. On general grounds

one can show that for |γn| � 1 the effective potential for the field χ whose expectation
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value gives rise to the dilaton is [83]

Veff(χ) =
M2

σ

4f 2
σ

χ4

[
ln

(
χ

fσ

)
− 1

4

]
+O(γ2) . (5.31)

The case |λn| � 1 is more cumbersome. Only in the case that only one perturbation

is added does one obtain a parameter-free effective potential

Veff(χ) =
M2

σ

f 2
σγ
χ4

[
1

4 + γ

(
χ

fσ

)γ
− 1

4

]
+O(λ2) ,

while for more than one perturbation occur one has the less restricted

Veff(χ) =
M2

σ

f 2
σ

χ4
∑
n

{
xn

[
1

4 + γn

(
χ

fσ

)γn
− 1

4

]}
+O(λ2) ,

where the coupling constants have been traded for constants xn that are constrained

by
∑

n γnxn = 1.

Any model with a conformal fixed point g∗ can be written in the fashion of

Eq. (5.30)

L(g) = L(g∗) + (L(g)− L(g∗))

where g are coupling constants at arbitrary values. If g is sufficiently close to g∗

one is in the case |λn| � 1 above, while if the region of couplings that includes g

and g∗ is perturbative one expects |γn| � 1. We need, in addition, that the model

display spontaneous breaking of scale invariance in the vicinity of the fixed point. Our

model furnished an explicit example. The analogue of χ is our field φ1. Because it is

perturbative one has |γn| � 1. Reassuringly, when the tree level term in the effective

potential of Eq. (5.6) is eliminated by use of Eq. (5.7), and the expressions for dilaton

mass and decay constant in Eq. (5.27) the resulting potential is exactly of the form

of Eq. (5.31). To emphasize, the dependence on the many coupling constants of our

model is completely contained now in only two parameters: Mσ and fσ.

Finally, we address one of the central questions we set out to investigate: Is the

AB estimate of the dilaton mass in walking technicolor scenarios correct? For AB,

the dilaton mass is given by

M2
σ '

s(α∗ − αc)
αc

Λ2 '
N c
f −Nf

N c
f

Λ2, (5.32)

where α∗ is the coupling at the fixed point, Nf is the number of flavors and Λ is

the scale of chiral symmetry breaking which occurs only if the critical coupling αc is
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below the fixed point, αc < α∗, which in turn corresponds to the number of flavors

below a critical value, N c
f . The middle expression in Eq. (5.32), relating the mass to

the distance between the critical coupling and the fixed-point, does not carry over

to our model. In our case, the role of the critical value of the coupling constant αc

is played by a critical surface, ε = 0, separating the symmetric and broken phases.

But the mass of the dilaton is not proportional to the distance between this surface

and the fixed point (however one defines distance): the fixed-point lies on the critical

surface and the dilaton mass vanishes everywhere on the surface. The rightmost

expression in Eq. (5.32), however, has a counterpart in our model. In that formula

(N c
f − Nf )/N

c
f measures how far the theory is from the critical point. In our model

ε plays the role of this quantity. It measures how far the theory is from the critical

surface. Moreover, both (N c
f −Nf )/N

c
f and ε can be made arbitrarily small which in

turn make the dilaton arbitrarily light compared to the scale of symmetry breaking.

To the extent that one can arrange for arbitrarily small (N c
f −Nf )/N

c
f , AB’s estimate

of a parametrically small dilaton mass is consistent with our analysis.

We thank F. Sannino for bringing to our attention Ref. [100] which arrives at

a similar conclusion to that of [45]. We also thank L. Vecchi for bringing to our

attention Ref. [101, 102] which, via a different method, also arrives at the same

conclusion as [46].

This chapter is a reprint of material as it appears in “A Very Light Dilaton,”

B. Grinstein and P. Uttayarat, JHEP 1107 (2011) 038 [arXiv:1105.2370 [hep-ph]], of

which I was a co-author.



Appendix A

Proof that GC is Semi-simple

We show that the four generators X i in Gc that produce the non-linear trans-

formations of the four real components of the higgs field are in a subalgebra that

generates a semi-simple subgroup of Gc.

Our starting point are the commutation relations

[Qa, X i] = R(Qa)ijXj, [Y,X i] = R(Y )ijXj. (A.1)

These are part of the algebra of Gf . We recall some basic facts about compact Lie

algebras (we follow and use the notation of Ref. [103]). The Cartan subalgebra of

Gf is the largest set of mutually commuting generators Hi, i = 1, . . . , r ≡ rank(Gf ).

In the adjoint representation define a vector space by the map TA → |TA〉, where

the TA are generators of Gf , and define the action of generators on this vectors by

TA|TB〉 = |[TA, TB]〉. Moreover, define an inner product on this space by 〈TA|TB〉 =

Tr(TA†TB). Since the Hi are mutually commuting one can find a basis of the vector

space Hi|Eα〉 = αi|Eα〉. The states correspond to the rest of the generators, Eα. It

follows that [Hi, Eα] = αiEα and E−α = E†α. Choose the generators of the Cartan

subalgebra to satisfy 〈Hi|Hj〉 = δij. It can be shown

[Eα, E−α] =
r∑
i=1

αiHi (A.2)

We intend to show that there is a basis of of Cartan generators for which the four X i

(or a linear combination of them) correspond to two pairs (Eα, E−α) that therefore

do not commute among themselves.
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We are free to take H1 = Q3 and H2 = Y as the first two members of the Cartan

subalgebra. Now, the standard representation

R(Y ) =

(
−τ 2/2 0

0 −τ 2/2

)
, R(Q3) =

(
−τ 2/2 0

0 τ 2/2

)
, (A.3)

R(Q1) =

(
0 −τ 2/2

−τ 2/2 0

)
, R(Q2) =

(
0 −i/2 12×2

i/2 12×2 0

)
, (A.4)

and we can make a transformation X i → U ijXj to diagonalize R(Q3) and R(Y ):

[Y,X1] = −1

2
X1

[Y,X2] = +
1

2
X2

[Y,X3] = −1

2
X3

[Y,X4] = +
1

2
X4

[Q3, X1] = −1

2
X1

[Q3, X2] = +
1

2
X2

[Q3, X3] = +
1

2
X3

[Q3, X4] = −1

2
X4

(A.5)

The rest of the Cartan subalgebra can be chosen to commute with X i, as we now

show. Suppose

[Hi, X
1] = −ai

2
X1

[Hi, X
2] = +

ai
2
X2

[Hi, X
3] = −bi

2
X3

[Hi, X
4] = +

bi
2
X4

(A.6)

Then the generators H ′i = Hi − (ai + bi)/2 Y − (ai − bi)/2 Q3, commute with Xj.

Now, it is clear the the four |X i〉 are among the states |Eα′〉 that satisfy H ′i|Eα′〉 =

α′i|Eα′〉. Moreover the vectors α′ for X i are of the form (±1
2
,±1

2
, 0, . . . , 0). Equation

(A.2) holds only provided the Hi that satisfy Tr(HiHj) = δij. While the Hi satisfy this

orthonormality condition, the new basis H ′i generally does not. Writing Hi = VijH
′
j

gives an explicit set of eigenvectors of Hi,

Hi|Eα′〉 = VijH
′
j|Eα′〉 = Vijα

′
j|Eα′〉

The eigenvectors are the same as those of H ′i, and hence the |Xj〉 are still among

them, but the eigenvalues have changed, αi = Vijα
′
j. But with this basis we can use
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(A.2). Explicitly

[X1, X2] = −1

2

r∑
i=1

(Vi1 + Vi2)Hi (A.7)

[X3, X4] = −1

2

r∑
i=1

(−Vi1 + Vi2)Hi (A.8)

We see that both commutators are non-vanishing, as we set out to demonstrate.

This appendix is a reprint of the material as it appears in “Hidden fine tuning

in the quark sector of little higgs models,” B. Grinstein, R. Kelley and P. Uttayarat,

JHEP 0909, 040 (2009) [arXiv:0904.1622 [hep-ph]], of which I was a co-author.



Appendix B

Expansion Coefficients of Ω in

Littlest Higgs and SU(3)1

Here we will show that any two Yukawa terms which are invariant under SU(3)1

have the same expansion coefficients for H† vs. H†HH† (up to an overall constant).

The expression for Ωi is given by

ΩI = δi3
[
a0 +

a1

f
η +

a2

f 2
η2 +

a3

f 2
H†H +

a4

f 2
Tr (φ†φ) + . . .

]
+δiα

[
b1

f
H† +

b2

f 2
ηH† +

b3

f 2
H†ω +

b4

f 2
hTφ† +

b5

f 3
(H†H)H† + . . .

]α
,(B.1)

where i = 1, 2, 3 and α = 1, 2. Now we will show that the coefficient b1 and b5 are

completely determined by a0. Consider an SU(3)1 transformation generated by

Λ =


0 λ 0

λ† 0 0

0 0 0

 (B.2)

The Goldstone bosons transform nonlinearly under Λ. Let us define

δΠ = δΠ(0) + δΠ(1) + δΠ(2) + . . . , (B.3)

where

δΠ(0) =
f

2

(
Λ + Σ0ΛTΣ0

)
,

δΠ(1) =
i

2

(
ΛΠ− ΠΛ + ΠΣoΛ

TΣ0 − Σ0ΛTΣ0Π
)
, (B.4)

δΠ(2) =
1

6f

(
−Π2Λ + 2ΠΛΠ− Λπ2 − Π2Σ0ΛTΣ0 + 2ΠΣ0ΛTΣ0Π− Σ0ΛTΣ0Π2

)
.
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In terms of the component fields we have

δH =
1√
2
fλ+

i√
2

(
−ωλ+ φλ† +

5√
20
ηλ

)
+

1

6
√

2f

[
(H†λ+ λ†H)H − 2(H†H)λ

]
+ . . . ,

δφ =
i

2
√

2

(
λHT +HλT

)
+ . . . , (B.5)

δη = −i
√

10

4

(
H†λ− λ†H

)
+ . . . ,

δω =
i

2
√

2

(
λH† −Hλ†

)
− i

4
√

2

(
H†λ− λ†H

)
+ . . .

Applying SU(3) transformation to Ω yields

δΩi = −iδiα
[
a0 +

a1

f
η +

a2

f 2
η2 +

a3

f 2
H†H +

a4

f 2
Tr (φ†φ)

]
λ†α

−iδi3
[
b1

f
H† +

b2

f 2
ηH† +

b3

f 2
H†ω +

b4

f 2
HTφ† +

b5

f 3
(H†H)H†

]
λ.(B.6)

This must be the same as applying Eq.(B.5) to Eq.(B.1)

δOi = δiα
b1√

2
λ†α +

1

f

{
δi3

[
−a1i

√
10

4

(
H†λ− λ†H

)
+

a3√
2

(
H†λ+ λ†H

)]

+ δiα
[
−i b1√

2
(−λ†ω +

5√
20
ηλ† + λTφ†) +

b2√
2
ηλ† +

b3√
2
λ†ω +

b4√
2
λTφ†

]α}
+

1

f 2
δiα

{
b1

6
√

2

[
(H†λ+ λ†H)H† − 2(H†H)λ†

]
− ib2

√
10

4

(
H†λ− λ†H

)
H†

+ i
b3

4
√

2
H†
(
2λH† − 2Hλ† −H†λ+ λ†H

)
− i b4

2
√

2
HT

(
λ∗H† +H∗λ†

)
+

b5√
2

[
(H†H)λ† + (λ†H +H†λ)H†

]}α
. (B.7)

Matching the coefficients in Eq.(B.6) and Eq.(B.7), we get

b1 = −a0, b5 =
i2
√

2

3
a0. (B.8)

Thus any two Yukawa operators Ω1 and Ω2 will have the same ratio of the coefficients

of H† and H†HH†.

This appendix is a reprint of material as it appears in “Spontaneous CP Violation

and Light Particles in The Littlest Higgs,” Z. Surujon and P. Uttayarat, Phys. Rev.

D 83, 076010 (2011) [arXiv:1003.4779 [hep-ph]], of which I was a co-author.



Appendix C

Tree-level Decay Rate for h→ ηη

The kinetic term for the Σ field includes the interaction

1

f 2

[
aη∂µη

(
H†∂µH + ∂µH

†H
)
− b (∂µη)2H†H

]
→ v

f 2

[
aη∂µη∂µh− b(∂µη)2h

]
,

(C.1)

where v is the Higgs vev. The explicit breaking term, e.g. Eq.(4.13), includes the

interaction
cM2

η

f 2
ηηH†H →

cvM2
η

f 2
. (C.2)

The decay amplitude due to these two terms is

iM(h→ ηη) = i
v

f 2

[
ap2 + 2b(q1 · q2) + cM2

η

]
, (C.3)

where p is the momentum of the incoming h and qi are momenta of the outgoing η’s.

In the Higgs rest frame, the amplitude reduces to

iM(h→ ηη) = i
v

f 2
M2

H

[
a+ b+

M2
η

M2
H

(c− 2b)

]
. (C.4)

Thus the rate for h→ ηη is

Γ(h→ ηη) =
1

32π

√
1− 4M2

η/M
2
H

MH

M4
H

f 4
v2

[
a+ b+

M2
η

M2
H

(c− 2b)

]2

. (C.5)

We include the tree-level decay rate for h→ bb̄ for completeness. The amplitude is

iM(h→ bb̄) = 3
m2
b

v2
Tr
(
/p1

+mb

)(
/p2
−mb

)
= 3

m2
b

v2
M2

H

(
1− 4m2

b

M2
H

)
. (C.6)
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Thus the decay rate is

Γ(h→ bb̄) =
1

16π

6m2
b

v2
MH

(
1− 8m2

b

M2
H

)3/2

. (C.7)

In the hypercharge model a = b = 5/12 and c = 25
√

2/48. For the SU(6)/SO(6)

model with α = θ = 0, we get a = b = 1/3 and c = 17/24.

This appendix is a reprint of material as it appears in “Spontaneous CP Violation

and Light Particles in The Littlest Higgs,” Z. Surujon and P. Uttayarat, Phys. Rev.

D 83, 076010 (2011) [arXiv:1003.4779 [hep-ph]], of which I was a co-author.



Appendix D

1-loop Effective Potential in

SU(6)/SO(6) Model

Here we give the one-loop effective potential in the case θ = α = 0 and retain

only terms relevant for the quartic potential of the Higgs doublet. The contributions

from gauge interactions are

Vgauge = a(g2
1 + g′21 )f 2 Tr

∣∣∣∣φ+
i

2f

(
HHT +KKT

)∣∣∣∣2
+a(g2

2 + g′22 )f 2 Tr

∣∣∣∣φ− i

2f

(
HHT +KKT

)∣∣∣∣2 + . . . , (D.1)

where a is an order one constant whose precise value depends on the UV completion.

The contributions form the top quark loop are

Vtop = −κf 4
[
λ2

1|Ω1|2 + λ2
2|Ω2|2 + 2λ1λ2Re(Ω†1Ω2)

]
,

|Ω1|2 =
2

f 2

(
2ρ2 +K†K

)
− 2i

f 3

(
ρH†K − ρK†H +KTφ†K −K†φK∗

)
+O

(
1

f 4

)
, (D.2)

|Ω2|2 =
8

f 2

(
2Trφφ† + 2ρ2 +K†K

)
+

8i

f 3

(
ρH†K − ρK†H −HTφ†H +H†φH∗

)
+O

(
1

f 4

)
, (D.3)

Re(Ω†1Ω2) = O
(

1

f 5

)
, (D.4)

where κ is the order one constant depends on the UV completion.
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