
UC Irvine
ICS Technical Reports

Title
An integrated cognitive architecture for autonomous agents

Permalink
https://escholarship.org/uc/item/9mz232p6

Authors
Langley, Pat
Thompson, Kevin
Iba, Wayne
et al.

Publication Date
1989-09-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9mz232p6
https://escholarship.org/uc/item/9mz232p6#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 11 u.s_c.)

An Integrated Cognitive Architecture
,.----·

for Autonomous Agents

PAT LANGLEY 0

KEVIN -;TROMPS.ON °
WAYNE IBA

JOHN H. GENNARI

JOHN A. ALLEN

Department of Information & Computer Science
University of California, Irvine, CA 92717

Technical Report 89-28

September 15, 1989

° Current address:· AI Research Branch, Mail Stop 244-17, NASA Ames Research Center,
Moffett Field, CA 94035.

This research was supported by Contract MDA 903-85-C-0324 from the Army Research
Institute. We would like to thank members and alumni of the UCI machine learning
group - especially Doug Fisher, David Benjamin, and Patrick Young - for useful discus­
sions that led to many of the ideas in this paper. We also thank Mike Pazzani for his
comments on an earlier draft.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

Technical Report No. 4
, 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

An Integrated Cognitive Architecture for Autonomous Agents

7. AUTHOR(s)

Pat Langley, Kevin Thompson, Wayne F. Iba,
John Gennari, and John A. Allen

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Department of Information & Computer Science
University of California, Irvine, CA 92717

11. CONTROLLING OFFICE NAME AND ADDRESS
Army Research Institute
5001 Eisenhower A venue
Alexandria, Virginia 22333

14. MONITORING AGENCY NAME & ADDRESS (if different from ControllinK Office)

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

5. TYPE OF REPORT & PERIOD COVERED

Annual Report 7 /88-6/89

6. PERFORMING ORG. REPORT NUMBER

UCI-ICS Technical Report 89-**
8. CONTRACT OR GRANT NUMBER(s)

MDA 903-85-C-0324

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

12. REPORT DATE

September 15, 1989
13. NUMBER OF PAGES

46
15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Portions of this report appeared as separate papers in Proceedings of the Sixth International Workshop
on Machine Learning. Ithaca, NY: Morgan Kaufmann, 1989.

19. KEY WORDS (Continue on_reverse side if necessary and identify by block number)

cognitive architectures
probabilistic concepts
heuristic classification
spatial knowledg~_

incremental hill climbing
concept formation
plan acquisition
motor learning

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

OVER

D FORM
D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered}

1. Introduction

In order to exist in the world, an intelligent agent must have access to large amounts of
knowledge about physical objects, plans, and motor skills, and it must also be able to acquire
and organize new knowledge from experience. Traditional research in artificial intelligence
has focused on high-level aspects of cognition, making few efforts to develop integrated
systems that interact with the physical environment. In this paper we describe ICARUS, an
integrated cognitive architecture that we have designed with these issues in mind.

Our long-term goal is an integrated intelligent agent that acts on internal drives, acquires
knowledge from experience, and uses this knowledge to achieve its goals. We will focus on
three main types of knowledge - physical object concepts, planning knowledge, and motor
schemas - as crucial for intelligent behavior in a physical environment. In solving a problem,
the agent should recognize similar problems it has solved before. In recognizing an object,
it should use knowledge of objects it has seen in the past. In performing a motor operation,
it should take into account previous operations of a similar nature. The working hypotheses
of ICARUS are that a single long-term memory - a probabilistic concept hierarchy - can
represent knowledge in all these domains, that a single performance mechanism - heuristi~

classification - underlies all these abilities, and that a single learning mechanism - concept
formation - is sufficient to acquire this knowledge from experience.

1.1 Issues for Cognitive Architectures

We have designed ICARUS to address six basic issues. Other researchers have dealt with
some of these independently, but not within the context of a single research project. These
issues include:

• Interaction with the environment: An ICARUS agent constructs a model of its environ­
ment from sensory input and interacts with this environment through effectors. Although
we are currently working with simulated worlds, we have the long-term goal of attaching
agents to physical robots. We assume that early vision and primitive motor control are
solved problems, but we model cognition at a 'lower', more primitive level than most AI
researchers.

• Grounded symbols: Most research in AI has assumed high-level symbolic representations
that are disconnected from sensori-motor issues. In contrast, ICARUS assumes that all
symbols are ultimately grounded in some sensori-motor description (Hamad, 1989). For
instance, the- symbol THROW would be described in terms of an agent's arm, the thrown
object, and the manner in which both change over time. For s!mplicity, most of our
examples in this paper will involve symbolic primitives like shape and color, but we
believe that real-valued attributes - such as size, position, and velocity - are necessary
to describe much of the complexity in the physical world.

• Learning as incremental hill climbing: Learning is essential for intelligent action in an
uncertain, complex world, and we feel that much 0everyday' learning in humans (e.g.,
concept formation and skill acquisition) occurs in a gradual, unconscious fashion. We do

THE ICARUS ARCHITECTURE PAGE 3

multi-sensor fusion and object delineation, while remaining concerned with the higher-level
problem of object recognition.

We make similar simplifying assumptions about motor control. ICARUS affects its en­
vironment by placing commands in a motor buffer, which causes body parts to move to
specified positions at given velocities. Translating such commands to muscle contractions or
voltage changes is an active research problem in robotics, but we will assume that this task
can be separated from the generation of motor commands. Clearly, there exist some limits
on this independence assumption. For instance, one cannot lift an object beyond a given
mass, but under reasonable load conditions and in the absence of obstacles, we will ignore
issues of low-level motor control.

The main repository of ICARUS' knowledge is long-term memory,1 which consists of
nodes organized into an 'is-a' hierarchy. Each node can be viewed as a 'symbol' or 'chunk'
that is ultimately grounded in a sensori-motor description. We will generally refer to these
nodes as concepts, regardless of their purpose. Long-term memory is effectively infinite in
size, retaining all items stored in it indefinitely, though 'forgetting' can occur by losing access
to an item. ICARUS distinguishes between simple and composite concepts. The former are
described directly in terms of sensory-level features like length, width, texture, and hue;
whereas the latter are composed of simple concepts or lower-level composites. ICARUS does
not rely on a small, predetermined set of 'primitive' symbolic concepts; the system can
acquire an indefinite number of concepts from experience. In the following sections, we
describe the representation and organization of concepts in more detail.

Figure 1 presents a graphic representation of ICARUS' main processes and memories,
with memories shown as circles and processing modules as rectangles. The architecture
has no single "top-level" module, but instead has several cooperating processes that act in
parallel. Information from the environment enters the sensory buffer, where the process of
object recognition decides on the categories of observed objects and stores them in long­
term memory, based on earlier experience with similar objects. The LABYRINTH system
implements this process and its associated learning mechanism, as we describe in Section 3.

The planning process operates solely on long-term memory, noting unsolved problems
(goals to transform one state into another), generating plans to solve them, and storing
traces of this process in memory. Section 4 describes DlEDALUS, a system that instantiates
our approach to plan generation. At the lowest level, plans specify operators that should
be applied, and a third ICARUS component generates motor programs from descriptions of
these operators 1n long-term memory. These motor commands alter the motor buffer, which
directly affects the environment. The MlEANDER system implements the process of motor
control, as we describe in Section 5. This component can also recognize and store instances
of motor schemas.2

1 One can view short-term memory as the active portion of long-term memory, but we delay discussion
of such issues until Section 6 .2.

2 We assume that perceptual traces are parsed into appropriate temporal chunks before being given to
the recognition process. We do not yet have a theory of this segmentation process.

THE ICARUS ARCHITECTURE PAGE 5

the disease or slow its progression. Many other aspects of human behavior can be viewed
in these terms, and our work with ICARUS assumes that heuristic classification is the basic
process underlying all cognition.

This approach to intelligence implies that one has access to a large knowledge base, and
this knowledge must be acquired and organized in some fashion. Our work on ICARUS further
assumes that this occurs through an incremental process of concept formation, which involves
clustering a sequence of observed instances into categories, forming intensional descriptions
for each category, and creating a hierarchical organization for the categories. Concept for­
mation differs from the task of learning from examples (e.g., Quinlan, 1986) in that learning
is unsupervised. Thus, it can be viewed as a form of conceptual clustering (e.g., Michalski &
Stepp, 1983), but it differs from most work on this topic in that learning must be incremen­
tal. Examples of concept formation systems include Feigenbaum's (1963) EPAM, Kolodner's
(1980, 1983) CYRUS, Lebowitz's (1980, 1987) UNIMEM, and Fisher's (1987a, 1987b) COB­
WEB. Although our approach has much in common with all of these systems, it borrows
most heavily from Fisher's work.

As we detail in Sections 3, 4, and 5, ICARUS applies the same basic processes of clas:.
si:fication and concept formation to the retrieval and acquisition of object concepts, plan
knowledge, and motor schemas. However, before turning to these aspects of cognition, we
must first describe the basic processes, which we have implemented in a system called CLAS­
SIT (Gennari, Langley, & Fisher, 1989). Below we summarize the nature and organization
of the system's memory, then describe the algorithm, its evaluation function, and some mea­
sures of performance improvement. In the following treatment, we will use the term concept
to refer to any node in long-term memory that summarizes one or more instances, whether
these instances refer to objects, plans, motor behavior, or some other event.

2.1 Probabilistic Representation of Concepts

CLASSIT assumes that each instance is described as a conjunction of attribute-value
pairs, and it employs a probabilistic representation for concepts (Smith & Medin, 1981).
A probabilistic scheme associates a probability with each attribute value of a concept de­
scription, thus subsuming 'logical' representations that specify concepts as conjunctions of
necessary attributes. In particular, CLASSIT represents each concept Ck as a set of attributes
Ai and a subset of their possible values °Vij. Associated with each value is the conditional
probability of that value given membership in the class, P(Ai = °VijlCk)· In addition, each
concept has an -associated probability of occurrence, P(Ck)· For example, the attribute
BIRTH for the MAMMAL concept would have LIVE with very high probability and EGGS with
low probability; the vast majority of mammals give live birth, with only a few laying eggs.

Although most of our examples will involve nominal (symbolic) representations, CLAS SIT
can also handle real-valued attributes. In the nominal case, the system effectively stores a
discrete probability distribution for each attribute associated with a concept. Thus, a natural
analog for a real-valued attribute would be to store a continuous probability distribution.
CLASSIT assumes that the values of such real-valued attributes follow a normal distribution,

THE ICARUS ARCHITECTURE PAGE 7

j chance of being MEDIUM in size and a l chance of being LARGE, the same probabilities
for having a SOFT and DIMPLED texture, and equal probabilities of being ORANGE, GREEN,
or WHITE in color. Concept N3 has a i chance of occurring and its members are always
MEDIUM sized and SOFT, but they are evenly split among GREEN and WHITE colors. The
terminal nodes in the hierarchy - N2 (a basket ball), N4 (a soft ball), and Ns (a tennis ball) -
have less interesting probabilistic descriptions, since each is based on a single instance. Note
that the probability of each node's occurrence is specified relative to its parent, rather than
with respect to the entire distribution.

There is a strong similarity between CLASSIT's concept hierarchies and those occurring
in Fisher's (1987a) COBWEB. Both differ from EPAM, UNIMEM, and CYRUS, which labeled
the links from parent nodes to their children with explicit indices. In contrast, CLASSIT and
COBWEB connect parents to their children only through IS-A links, treating the concept nodes
themselves as indices. In addition, both systems divide instances into disjoint classes, so that
each observation is summarized by nodes along a single path through the hierarchy; this
differs from UNIMEM and CYRUS, which allow non-disjoint hierarchies. However, CLASSIT
diverges from COBWEB in that it does not store all observed instances; in some cases_,
terminal nodes themselves may contain abstractions, as in UNIMEM. Also, Fisher's system
stores all attributes with every node in the hierarchy, whereas CLASSIT (Gennari, 1989)
stores only the most diagnostic attributes, as we discuss in Section 2.5.

2.3 Classification and Learning in CLASSIT

Table 1 presents the basic CLASSIT algorithm, which classifies observations and forms a
concept hierarchy in the process. Upon encountering a new instance I, the system starts at
the root and sorts the instance down the hierarchy, using an evaluation function (described
in Section 2.4) to decide which action to take at each level. At a given node N, it retrieves all
children and considers placing the instance in each child C in turn; CLASSIT also considers
creating a new child based on the instance. The algorithm uses its evaluation function to
determine which of the resulting partitions is 'best' ,3 and then carries out the appropriate
action, which in turn modifies memory. Thus, the processes of classification and learning are
inextricably intertwined.

More specifically, if the instance I is sufficiently different from all the concepts in a
given partition, the evaluation function recommends placing I into a singleton class rather
than incorporating it into an existing concept. In this case, CLASSIT creates a new child
of the current parent node and bases its initial description on that of the instance. The
classification process halts at this point, since the new node has no children.

If CLASSIT instead decides to incorporate the instance I into an existing child C, it
modifies the probability distribution for each attribute in C based on 'the instance's values,
thus updating the concept definition. The system also updates the probability of the selected

3 This lets the system avoid the need for explicit attribute tests or indices at each node. At the level we
have described it, the CLASSIT algorithm is identical to that used in Fisher's COBWEB.

THE ICARUS ARCHITECTURE PAGE 9

Some examples based on the hierarchy in Figure 2 will clarify the effect of these operators.
Given a new instance I (a colored golf ball) described as SIZE SMALL, COLOR ORANGE, and
TEXTURE DIMPLED, CLASSIT first incorporates the observation into the root node Nl, giving
a new set of probabilities. The system then considers the two children of this node, deciding
that the instance best matches N2, and that adding the instance to this class would be better
than creating a new disjunct. As a result, it incorporates I into N2 (giving new scores) and
creates two children for N2, one (N6) based on the original version of N2 and the other
(N7) based on the instance. Figure 3 presents the hierarchy after sorting is complete.

P(N1)=1.0 P(vjc)

SIZE SMALL 0.25

MEDIUM 0.50

LARGE 0.25

TEXT. SOFT 0.50

DIMPLE 0.50

COLOR ORANGE 0.50
GREEN 0.25

WHITE 0.25

P(N2)=0.5 P(vlc) P(N3)=0.5 P(vjc)

SIZE SMALL 0.5 SIZE MEDIUM 1.0
LARGE 0.5 TEXT. SOFT 1.0

TEXT. DIMPLE 1.0 COLOR GREEN 0.5
COLOR ORANGE 1.0 WHITE 0.5

~ ~
P(N6)=0.5 P(vjc) P(N7)=0.5 P(vjc) P(N4)=D.5 P(vjc) P(Ns)=0.5 P(vjc)

SIZE SMALL 1.0 SIZE LARGE 1.0 SIZE MEDIUM 1.0 SIZE MEDIUM 1.0

TEXT. DIMPLE 1.0 TEXT. DIMPLE 1.0 TEXT. SOFT 1.0 TEXT. SOFT 1.0

COLOR ORANGE 1.0 COLOR ORANGE 1.0 COLOR WHITE 1.0 COLOR GREEN 1.0

Figy,re 3. The concept hierarchy after incorporating a fourth ball.

Now suppose CLASSIT encounters another instance J (a marble), which is described as
SIZE SMALL, COLOR CLEAR, and TEXTURE SMOOTH. Again the system incorporates the
description into the root node Nl, altering the probabilities. However, when it considers
incorporating J into N2 and N3, it finds the instance sufficiently different from both that
it creates a new singleton concept (N8). CLASSIT stores this new node as a third child of
Nl, basing its initial counts on the values in the instance. Figure 4 shows the structure of
the hierarchy after this step.

0

I

f
r
le
h

Sl

r<
1

t]

ll
a1

THE ICARUS ARCHITECTURE PAGE 15

P(vesse0=2/6 P VIC

Role1 vessel-body 1.00

Role2
1.00 1.00 0.50

cup-handle
ladle-handle 0.50

P VIC P(ladle-body =1/2 P(cup-body)=l/2 P(VIC)
1.00 Wei ht heav 1.00 Wei ht heav 1.00
1.00 Sha e lar e-round 1.00 Shape small-round 1.00

Figure 5. A portion of LABYRINTH's memory.

object, with components of its own. Simple components (the leaves of the PART-OF tree)
are described with primitive attribute values, like those used by CLASSIT.

However, one can also view composite objects (nonterminal nodes in the PART-OF tree)
as having attributes, whose values are component objects. Thus, we will use 'attribute' to
refer both to components (in the case of composite concepts) and to descriptive features
(in the case of simple concepts). Still, there is a major difference between attributes of
simple objects and those of composite objects. In primitive objects, the correspondence
between attributes of two instances is given in the input. However, in composite objects, the
attributes are unordered, so that LABYRINTH must determine this correspondence itself.

Composite object concepts are similar to instances in that they consist of nodes connected
by PART-OF links. At each level of a given concept's tree, there exists a set of associated
probabilistic attributes; however, these attributes represent components rather than observ­
able attributes, except at the lowest level. The 'values' associated with these 'attributes'
refer to other nodes in the concept hierarchy, giving an interleaved memory structure that,
as we discuss in Section 6.1, is similar to that proposed in Schank's (1982) theory of dynamic
memory.

For example, Figure 5 presents a partial LABYRINTH hierarchy containing three com­
posite concepts and five simple concepts. The values of each composite concept refer to
simple concepts, which are represented exactly as in CLASSIT. One can view each composite
attribute as specifying a role that can be filled by its possible values (i.e., components). In
some cases, an attribute takes on a single value that corresponds to an abstract concept high
in the hierarchy. For instance, the first role of VESSEL has the single value VESSEL-BODY.
This has two more specific children - CUP-BODY and LADLE-BODY - which have similar
features and which occupy the analogous role in the composite concepts CUP and LADLE.

THE ICARUS ARCHITECTURE PAGE 19

4. The Generation and Acquisition of Plans

In order to achieve its goals, an intelligent agent must be able plan; that is, to order its
actions in the world. We can briefly state the planning task as:

• Given: A goal to transform an initial world state I into a desired state D;

• Given: A set of primitive operators 0 that let one directly transform states of the world;

• Find: A sequence of operator instances from 0 that will transform I into D.

This formulation makes a number of assumptions. First, one must have some explicit descrip­
tion of the desired state, even though this may be only partially specified. It also assumes
that the planning task involves a single agent, making timing less important than in multi­
agent planning tasks. Third, it makes the closed-world assumption - that all aspects of the
world remain constant unless the agent applies some operator. Finally, it assumes that one
can separate the process of plan generation and plan execution. 5

4.1 Approaches to Planning

One can identify three distinct paradigms within the AI planning literature. The earli~
est approach uses weak, domain-independent methods like means-ends analysis (e.g., Newell,
Shaw, & Simon, 1960; Fikes, Hart, & Nilsson, 1971) to select relevant operators and cre­
ate subgoals. 6 A second framework incorporates domain-specific goal decompositions or
schemas, which specify useful orders on operators or useful subgoals (e.g., Bresina, 1988). A
third approach - case-based reasoning - retrieves specific plans from memory and uses them
to constrain the planning process.

Because one cannot predict interactions among operators, planning in novel domains may
require search. This makes many planning methods impractical for use in controlling real­
time robotic agents (Georgeff, 1987). One natural response is to employ machine learning
techniques to acquire domain-specific planning knowledge, and to use this knowledge to
reduce or eliminate search on future problems. Resea!chers have applied machine learning
techniques to all three of the planning paradigms described above. For instance, Minton
(1988) has studied Jearning within a means-ends planner, DeJong and Mooney (1986) have
used a schema-based method, and Hammond (1986) and Kolodner (1987) have examined
case-based approaches.

In this section, we describe the planning component of ICARUS - as implemented in
a system called--DJEDALUS - which views these paradigms as 'stages' in the development
of planning expertise. The system begins with knowledge of the operators for a domain
and, like Minton's (1988) PRODIGY, uses means-ends analysis to construct plans. However,

5 In future work we hope to loosen these assumptions, and to address the generation and acquisition of
nonlinear plans (Mooney, 1988).

6 More recent work in this tradition has invoked more powerful (and more expensive) search methods
(Wilkins, 1982), but has continued to use general, domain-independent techniques.

THE ICARUS ARCHITECTURE PAGE 21

A problem consists of an initial state and a desired state that the agent wants to achieve.
Each state may contain only partial descriptions of the world. For instance, Figure 6 (a)
presents a graphical description of a simple problem in the blocks-world domain. One can
also describe a problem in terms of the differences between the initial and desired state.
Node Pl in Figure 6 (b) summarizes the problem in this manner. The notion of representing
problems as differences is central to our approach.

Most work on planning assumes that operators have known preconditions and effects,
and that they should be reasonably efficient (i.e., require no search). To this end, DJEDALUS
assumes that operators correspond to compiled motor skills, which we discuss in Section 5.
For the purposes of planning, this means that one can treat operators as 'black boxes', de­
scribing them in ter·ms of preconditions and postconditions. However, from this information
one can derive a set of differences that exist between states before and after application,
giving a description similar to that used for problems.

4.3 The Organization of Plan Memory

DJEDAL us uses the notion of differences to organize its memory for planning knowledge:
As in CLASSIT and LABYRINTH, long-term memory takes the form of a probabilistic concept
hierarchy. Initially, the terminal nodes in this hierarchy consist only of general operators
described in terms of the differences between their initial and final states. Internal nodes
correspond to classes of operators that have some overlap in their difference descriptions.
Essentially, this hierarchy is an efficiently organized difference table (Newell et al., 1960)
that changes with experience.

Figure 7 (a) presents an initial difference hierarchy for the blocks-world domain. Each
node has an associated name N (top), a set of associated differences Di (center), and a set of
one or more associated operators (bottom). Moreover, each node has a certain probability of
occurrence P(N), and each difference has a conditional probability P(DdN) of occurrence
given the concept, as does each operator. For clarity, Figure 7 (b) shows a traditional STRIPS
representation for each operator. Thus, node N3 depicts DJEDALUS's summary description
for the operator (stack ?x ?y), which has preconditions (clear ?x) (clear ?y) (on ?x
table), where question marks indicate pattern-match variables. Its actions include adding
(on ?x ?y) and deleting (on ?x table) (clear ?y). Thus, it can be summarized by the
set of differences (on ?x ?y) •(clear ?y) •(on ?x table), as shown in the terminal
node N3. The 'hierarchy' in this figure has only two levels, but domains involving more
actions would contain internal nodes that index and summarize subsets of the operators.

The system represents a plan for solving a particular problem in terms of a derivational
trace (Carbonell, 1986) that states the reasons for each step in the operator sequence. This
trace consists of a binary tree of problems and subproblems, with the original task as the top
node and with trivial (one-step) subproblems as the terminal nodes. Each node (problem)
in this derivational trace is described by differences between its initial and final state, along
with the operator instance that was selected to transform one into the other.

THE ICARUS ARCHITECTURE PAGE 23

same format as the original operators. In this case, one interprets nodes in the hierarchy as
problems DlEDAL us has solved, and the associated operators as the ones that led the system
to a solution. Thus, nodes correspond to probabilistic 'selection rules' for deciding among
operators, but the program does not retain the derivational trace itself in memory. Figure
8 presents a modified version of the difference hierarchy from Figure 7, after the system has
incorporated the problem-operator pairs from the derivational trace in Figure 6.

4.4 Using and Acquiring Plan Knowledge

As shown in Table 3, the planning component of DlEDAL us uses a variant of means-ends
analysis (Newell et al., 1960). In this framework, solving a problem (transforming a current
state into a desired one) involves the recursive generation of subproblems. The standard
means-ends approach determines all differences between the current and desired state, selects
the most important difference (using some predefined criteria), and then retrieves an operator
that reduces the difference. If the selected operator cannot be applied, a subproblem is
generated to change the current state into one that satisfies the operator's preconditions.
Applying the operator produces a new state, along with a new subproblem to transform thi~
into the desired state; the algorithm is then called recursively to solve this task.

DlEDALUS differs from most means-ends planners in the way it retrieves operators from
memory. First the system computes all differences between the current and goal states. It
then uses a variant on CLAS SIT to sort the difference structure, D, down the difference hier­
archy, looking for the best match between the differences of D and the differences stored in
the hierarchy.8 DJEDALUS selects the operator associated with the difference node retrieved
through this process. Should this operator lead to an unsuccessful plan (e.g., if its precon­
ditions cannot be achieved), DlEDALUS backtracks, retrieving the operator with next best
match, and continues.

This strategy also differs from earlier methods in placing an ordering on operators, rather
than dividing them into relevant and irrelevant sets. One result is that it prefers operators
that reduce multiple differences in the current problem, which should make it more selective
than traditional techniques. More important, although DlEDAL us prefers operators that
reduce problem differences, it is not restricted to this set. If none of the 'relevant' operators
are successful, it falls back on operators that match none of the current differences. This
gives it the potential to break out of impasses that can occur on 'trick problems'.

DlEDALUS integrates learning into its planning process, using the derivational traces
described above.--Whenever it finds a plan that achieves a problem or subproblem, it stores
the description of that problem in its concept hierarchy. This involves storing the problem
description (the differences and the selected operator) as a new terminal node (case) in the

8 This variant treats each difference as a separate feature that takes on the value PRESENT or ABSENT.
(For simplicity, we have shown only the probabilities for the PRESENT value.) The current version computes
all maximal partial matches between the differences at a node and those in an instance, computes a simplified
version of category utility for each match, and selects the one with the highest score. One can imagine more
efficient greedy and attentional approaches to this matching problem, but we have not implemented them.

THE ICARUS ARCHITECTURE

Table 3. DJEDALUS' means-ends planning algorithm.

Inputs: STATE is a (partially described) initial state.
GOAL is a (partially described) desired state.

Outputs: A final state that matches the description of GOAL.
Side effects: A modified concept hierarchy that includes this problem.

Procedure Transform(STATE, GOAL)

If STATE matches GOAL,
Then return STATE.
Else let L be the null list.

Let D be the differences between STATE and GOAL.
Repeat until FLAG := true.

Let FLAG be fail.
Retrieve the operator 0 that best matches differences D and

that is not a member of L.
If 0 -1- fail,

Then let L be Insert 0 into L.
Let NEW be Apply(O, STATE).
If NEW -:j:. fail,

Then let NSTATE be Transform(NEW, GOAL).
If NSTATE -:j:. fail,

Then let FLAG be true.
Else let FLAG be true.

If 0 := fail,
Then return fail.
Else incorporate difference-operator pair (D, 0) into memory.

Return NSTATE.

Procedure Apply(O, STATE)

L~t C be the preconditions on operator 0.
Let R be the results of operator 0.
If R is pathological (e.g., if R has been seen during this problem),

Then return fail.
Else if STATE does not match C,

T~en let NEW be Transform(STATE, C) and return NEW.
Else return R.

PAGE 25

Upon encountering a new problem, DJEDALUS uses its memory of past successes to
select operators in a more discriminating fashion. Specific problems (described by differences
and operators) are stored in the same concept hierarchy as the original operators, and the
same sorting process is used to retrieve them. If a stored case matches a new problem or
subproblem more closely (according to category utility) than one of the original operator
descriptions (because it has more differences in common), DJEDALUS retrieves this case and
attempts to apply the associated operator. In some situations, a problem may be sufficiently
unique that the system does not sort it all the way down to a terminal node, instead using a

THE ICARUS ARCHITECTURE PAGE 27

this time retrieving (stack c d) as the preferred action. However, the preconditions of this
operator instance are not met, so DJEDAL us first attempts to generate a state that satisfies
them, giving the new subproblem P6. In this case it selects (unstack a), which solves
P6 in a single step and lets the system apply (stack c d). This process continues, with
the program selecting (stack b c) and then (stack a b), both of which can be applied
without additional subproblems. The last application produces a state with no differences
from the desired state, so DlEDALUS halts, having solved the top-level problem P4. For the
sake of simplicity, we have not shown how the system updates its difference hierarchy after
solving this problem.

4.5 The Behavior of DlEDALUS

Our approach to planning in DJEDALUS bears similarities to certain work in case-based
reasoning. Like Kolodner's (1987) JULIA and Hammond's (1986) CHEF, our system stores
specific cases and retrieves them when solving new problems. However, our approach to
organizing plan memory and indexing cases is significantly different from their methods,
focusing on the differences occurring in each problem. DlEDALUS is most similar to Veloso
and Carbonell's (1988) approach to derivational analogy, sharing the notion of derivational
traces and a means-ends planner. However, our system organizes plan knowledge into a
probabilistic concept hierarchy, whereas their work to date has not focused on issues of
indexing and retrieval. Finally, our approach only retains knowledge of successful plans and
does not store failed cases.

DJEDALUS also differs from all three systems in another way. Rather than storing cases
as monolithic data structures, it stores only the operator selected for each problem or sub­
problem. This is similar to the use of preference rules in Laird, Rosenbloom, and Newell's
(1986) SOAR and in Minton's (1988) PRODIGY. This means DJEDAL us retains no memory of
the relation between problems and their subproblems, and it must sort each new subproblem
through memory even if a similar problem-subproblem pair has previously occurred. Thus,
the system cannot retrieve entire plans from memory, as in JULIA and CHEF, but it can
effectively regenerate them using the difference-operator cases stored in memory. Laird et
al. (1986) have argued that SOAR's distributed knowledge structures lead to greater transfer
than storing macro~operators or entire cases, and we expect this to hold for DJEDALUS as
well.

As noted earlier, one emergent effect of our approach to learning should be a three­
st age development of planning expertise. Initially, DJEDALUS has access only to the domain
operators stored in its concept hierarchy. As a result, it will sometimes select a poor operator
and be forced to backtrack. In this stage, it behaves much like any knowledge-lean means­
ends planning system. However, as DJEDALUS gains experience in the domain, it stores
specific cases that specify useful operators and the situations in which they should be applied.
In this stage, the system will behave like a case-based planner, retrieving particular problems
it has solved in the past as a guide to its actions on new tasks.

THE ICARUS ARCHITECTURE PAGE 29

An ideal intelligent agent learns not only from successes, but also from failures. The
current version of D.tEDAL us learns from failures in the sense that it stores operators found
during backtracking search, but it retains no information about operators retrieved earlier in
that search which led to failed paths. We hope to augment the system in this manner, storing
with difference nodes the operators that one should not select. As with the rejection rules
in SOAR and PRODIGY, this knowledge should help constrain search by eliminating possible
candidates even when no positive advice is available. However, it is not clear whether this
information should be stored in the same hierarchy as the selection rules or in a separate
one entirely.

In future work, we hope to implement a tight coupling between planning and motor
control, which we describe in the following section. We currently treat operators as compiled
motor skills that one can execute without creating subgoals, but the dividing line between
planning and motor behavior should be a function of the agent's goals and experience.
Presumably, D.tEDAL us would come to a new domain with only a few general operators, but
practice in the domain would lead to new domain-specific motor schemas that augment the
repertoire of operators available for planning. We describe one method for acquiring sudi
motor skills in the next section. We also hope to incorporate an 'automatization' process
(Schneider & Fisk, 1983) that gradually transforms planning expertise into compiled motor
skills with practice, but our ideas on this mechanism remain somewhat vague.

Although our examples to date have focused on STRIPS-like symbolic states and oper­
ators, we hope to extend D.tEDALUS to handle more realistic, numeric descriptions of the
physical world. Although the same basic planning and learning methods should apply, one
important issue remains to be resolved. In means-ends analysis, a problem is solved only
when no differences remain between the current and desired state. This decision is clear-cut
in a STRIPS framework, but given real-valued state descriptions, one must use some form
of partial-matching scheme to decide when the remaining differences are insignificant. We
hope to use some principled metric like category utility to address the issue, but the details
remam open.

Finally, we plan to incorporate a priority queue into D.tEDAL us, which would provide a
more realistic model of attention in planning and let the system handle multiple independent
goals. Problems could enter this queue from high-level drives (e.g., hunger or sleep), from
the planner as subproblems, or from an execution monitoring component when a plan fails.
Each problem WDuld be ordered by its associated priority, which generally decreases over
time, so that old problems would be gradually forgotten. If a new problem were passed to
the queue with a higher priority than the currently active one, the current problem would
be set aside in lieu of the more important one. The extended system would work on this
task until it was solved or until another problem (possibly the original one) becomes more
important. In summary, DlEDAL us provides a fertile framework within which to formulate
and test our ideas about the relations among memory, planning, and learning.

THE ICARUS ARCHITECTURE PAGE 31

memory structure that encodes that action. Thus, a schema consists of a temporal sequence
of states, (S1, S2, ... , Sn), where each state, Si= (ti, { (Jk, p, v), ... }), contains a time value
ti and a set of 3-tuples. The states (Si) are ordered so that the time values (ti) are in an
increasing sequence, ti < tj for i < j. Each 3-tuple includes a joint name Jb the expected
position p of the joint in three-space at time ti, and the desired velocity vector v of the
joint upon reaching the position p. All numeric attributes have an associated mean and
variance that summarize previous experience with the schema. Each state contains a set of
such 3-tuples, one for each of the agent's joints, though not all joints need be specified.

We distinguish between two sorts of motor schemas. The first type - viewer-centered
schemas - represent the position and velocity vectors using Cartesian three-space coordinates,
with the origin centered at the agent. This representation describes all joints in terms of
a single Cartesian coordinate system. We assume this information is available as visual
feedback during execution of a skill; it can also be used to describe another agent's actions.
The second type - joint-centered schemas - represent information in their own local, joint­
centered coordinate system. Each local coordinate system is spherical, being defined with
the previous joint in the effector as the origin. We assume this information is available as
proprioceptive feedback during execution; MlEANDER uses this representation to directly
control its motor behavior.

As we will see, MlEANDER can initially acquire motor skills in viewer-centered form, by
observing another agent performing that skill. In addition, DlEDAL US (when run in physical
domains) describes problems and subproblems in terms of initial and final states using the
viewer-centered scheme. However, an agent needs a joint-centered schema in order to exe­
cute an action. Intuitively, viewer-centered schemas are better suited to how things 'look',
whereas joint-centered schemas are better suited to controlling limbs. MlEANDER moves
from a viewer-centered schema to a joint-centered one by applying an inverse kinematic
transform (Wylie, 1975). In general, this process will generate errors in the joint-centered
representation. This results from the differing representational power of the two coordinate
systems and the sparse representation of the schema. Actions that may appear simple in
one coordinate system can be quite complex from the other's point of view, and the transla­
tion process is inherently imperfect. As we will see, learning can be used to overcome these
limitations.

Like other parts of ICARUS, the MlEANDER component organizes its domain knowledge
in a probabilistic concept hierarchy. We have already mentioned that schema attributes have
associated means and variances. This lets the system represent motor knowledge at different
levels of abstraction, with nodes higher in the hierarchy tending toward higher variances.
For example, different types of throwing actions might be stored as children of a more gen­
eral THROW concept; similarly, each type of throw might have children representing specific
cases of throwing behavior. Each schema also has an associated probability, summarizing the
percentage of times it has been used relative to its siblings. MlEANDER's memory organiza­
tion differs from other facets of ICARUS in that viewer-centered and joint-centered schemas
always occur in pairs, being stored in the same place in 'the hierarchy.

THE ICARUS ARCHITECTURE PAGE 33

Ji
tsg

Ji
tsg

······ ... t2o t20

Jo Jo
ti

Desired Joint-centered

Figure 11. Traces of the behavior generated by a viewer-centered and joint-centered motor
schema, with arm shown in the positions it occupies at times specified by states
in the schemas (from Iba & Langley, 1987).

the system exhibits a tradeoff between speed and accuracy (Iba & Langley, 1987) similar to
that observed in humans. Moreover, if one assumes that the monitoring rate corresponds to
the attention level, then MJEANDER is more accurate when it attends more carefully to the
task at hand. Both of these effects suggest an important role for learning in motor behavior,
which we discuss below.

5 .3 Acquisition and Improvement of Motor Skills

In principle, MJEANDER can acquire new joint-centered schemas through play or through
active experimentation on existing schemas. However, a simpler strategy involves observing
the motor behavior of other agents. In this scenario, the system sorts observed behavior
through its memory of viewer-centered schemas, extending and revising a concept hierarchy
in the same fashion as other components of ICARUS. Thus, MJEANDER can accumulate
considerable expertise about possible actions before it ever attempts to carry them out.
Once the system has an accurate viewer-centered description of a motor skill, it can use this
summary to generate an initial joint-centered schema and to recover from errors during its
execution.

However, MJEANDER's learning does not end at this point. The monitoring process
provides data about execution errors, and the system attempts to learn from these errors so
it can avoid them in the future without the need for monitoring. To this end, MJEANDER
retains information about the largest error that it detects during execution monitoring. After
the trial during which this error occurred, the system produces a modified joint-centered
description that should more closely approximate the viewer-centered schema from which it
was derived. Table 4 summarizes the algorithm used to generate the variant description.

THE ICARUS ARCHITECTURE PAGE 35

skill acquisition. This occurs because the learning algorithm always focuses first on the state
causing the largest error, leading the system to overcome larger errors before smaller ones.
Like humans, MlEANDER exhibits a tradeoff between speed and accuracy, and this trade­
off decreases with practice. We also predict that the system will exhibit effects of practice

variability (Schmidt, 1975), though we have not yet demonstrated this phenomenon.

To date, we have tested MlEANDER primarily on simple motor skills like drawing straight
lines, since these predominate in the literature on human motor behavior. However, we
plan to test the system on more complex skills, such as handwriting, throwing objects into
a basket, and juggling. The latter two tasks raise issues of hand-eye coordination and
manipulating objects over which one has only partial control. We believe these can be
cast within the framework of viewer-centered schemas, making them accessible to the same
monitoring and error recovery methods that MlEANDER uses for simpler motor skills.

In the longer term, we hope to integrate MlEANDER's execution process more fully into
D.tEDALUS, letting ICARUS interleave planning and execution in a principled way. We also
hope to account for automatization in terms of the compilation of plan knowledge into motor
schemas. This process would gradually transform derivational traces stored in the plari
hierarchy, eliminating the reasons for actions and thus increasing efficiency at the expense
of flexibility. The details of this mechanism remain an issue for future research.

6. Discussion

In the previous sections we described ICARUS in terms of its various components. With
this as background, we can examine its relation to other cognitive architectures, discuss
some aspects of the overall framework, and present our plans for integration and evaluation.
Below we address each of these in turn.

6.1 Related Work on Cognitive Architectures

Because the ICARUS model attempts to span a substantial portion of cognitive behavior,
it bears clear relations to many aspects of earlier AI research. We have cited some relevant
work in the context of individual components, but here we briefly discuss related learning
work on cognitive architectures for learning. The best known examples of such architectures
are Anderson's (1983) ACT*, Laird et al. 's (1986) SOAR, and Minton's (1988) PRODIGY. 12

Like ICARUS-; these architectures attempt to cover a broad range of behaviors within a
unified theoretical framework, though they differ in their generality and theoretical content.
For instance, PRODIGY makes strong claims about the nature of problem solving, but is
largely limited to this facet of cognition. At the other extreme, ACT* takes a weaker
stance on the organization of thought processes, but has been applied to domains as diverse

12 Another recent example is Mitchell et al. 's (in press) THEO architecture, which differs significantly
from both ICARUS and earlier systems. Briefly, it organizes memory into frames, uses a backward-chaining
mechanism to control reasoning, and employs a caching technique to improve retrieval efficiency. Unlike
other architectures, THEO has no explicit short-term memory.

THE ICARUS ARCHITECTURE PAGE 37

organization of memory has implications for efficiency, and Rosenbloom (1987) has shown
that SOAR can exhibit a form of 'data chunking' that shares features with LABYRINTH's
formation of object concepts. However, the systems differ in what they treat as underlying
processes and what they treat as emergent phenomena.

On many dimensions, ICARUS is most similar to 'analogical' or 'case-based' approaches
to cognition (e.g., Carbonell, 1986; Kolodner, 1987). We have noted that the system's basic
data structures share aspects of Schank's (1982) theory of dynamic memory, and in its
early stages, the DJEDALUS component exhibits a form of 'case-based reasoning' (Kolodner,
1987). Like dynamic memory, ICARUS relies on interleaved hierarchies of different concepts,
with complex concepts being specified in terms of their components and with more abstract
concepts stored above their specific children. Our framework differs from dynamic memory
(as it does from SOAR, PRODIGY, and ACT*) in its emphasis on probabilistic descriptions,
in its focus on grounded symbols and interaction with physical environments, and in its
concern with sensori-motor phenomena in addition to high-level cognition. However, both
ICARUS and dynamic memory emphasize retrieval from an organized memory, and both can
be viewed as direct descendants of EPAM (Feigenbaum, 1963; Feigenbaum & Simon, 1984);
the earliest model of incremental concept formation.

6.2 Attention and Short-Term Memory in ICARUS

One central finding of cognitive psychology is that the human information-processing
system contains sequential 'bottlenecks' that require some form of selective attention. In
describing ICARUS' components, we revealed three different forms of attention. The first
dealt with the basic processes of retrieval and object recognition as modeled by CLASSIT
and LABYRINTH. This variant corresponds roughly to the notion of perceptual attention in
the psychological literature (Treisman, 1969), though we have not attempted to account for
such attentional phenomena.

A second form of attention occurs in MJEANDER's process of execution monitoring. This
corresponds roughly to the notion of closed-loop processing in theories of human motor
behavior (e.g., Adams, 1971), and it underlies the system's ability to model the tradeoff
between speed and accuracy in motor control. However, MlEANDER currently uses a system
parameter to describe the level of attention, and does not reflect the conscious nature of
this process. Future versions should model execution monitoring in more detail, possibly
borrowing from the method used in CLASSIT.

The attentional bottleneck is not limited to the sensori-motor level, and one can cast
DJEDAL us (like any means-ends system) as modeling the cognitive aspects of attention. In
this framework, the agent generates new goals (subproblems) seque~tially, and the focus
of attention is on one goal at any given time. In future work, we plan to associate levels
of attention with each subproblem that reflect their priority, and to integrate the planning
process with the application of internal drives. We also hope to use goal information to
direct the attentional processes in object recognition and motor control.

THEillARUSARCHITECTURE PAGE 39

6.4 Spatial Knowledge in ICARUS

An intelligent agent exists in some physical environment larger than its sensors can
encompass. In order to reason about such surroundings, it must be able to represent familiar
locations, organize them in memory, access them from that memory, and acquire them
from experience. Before we can herald ICARUS as a successful model of such an agent, we
must show it can handle all these aspects of spatial knowledge, and here we discuss the
architecture's potential in this context.

We will use the term place to refer to a location and its associated sense data (i.e., the
visible objects it contains and their features). LABYRINTH's ability to deal with composite
concepts suggests an approach to handling knowledge of places. Briefly, one can represent
each place as a complex 'object concept', with objects visible from that location (e.g., boul­
ders, posts) as its component objects. Upon receiving a sensory description of its current
surroundings, ICARUS would pass this information to LABYRINTH for incorporation into
long-term memory. This process would involve classifying and storing component objects,
redescribing the overall scene by treating the component labels as its 'features', and finally:
classifying and storing the scene in memory, described in terms of its components. If th~
scene is genuinely new, LABYRINTH would store it as a new place concept; otherwise it would
store the experience as a child of a familiar place.

This approach to place description also supports the notion of landmarks, which are
generally viewed as useful in navigation and exploration. In this framework, landmarks
are objects that can be seen from many positions, making them components of many place
concepts, and are sufficiently unique to aid in distinguishing places from each other. The
complexity of spatial information requires that we incorporate the CLASSIT attention mech­
anism into LABYRINTH, and the augmented version should tend to focus on landmarks early
in the process of place recognition. It should also use landmarks in identifying sequences of
places as it moves along, which leads us to a different but related aspect of spatial knowledge.

In addition to recognizing familiar places, an intelligent agent should also be able to
navigate from one place to another, and knowledge of routes is generally viewed as useful to
this end. In ICARUS, it seems natural to view routes as sequences of places that occur in the
context of plans. Tilus, generating (or retrieving) a route involves generating (or retrieving)
a plan for moving between two places, and acquiring a route involves storing a successful
plan for moving from one place to another. We hope to use DlEDALUS to handle the task of
navigation and the acquisition of route knowledge, letting the agent's navigational abilities
improve with experience of a particular area.

However, before any system can formulate routes, it must have some basic information
about spatial relations between different places. We assume that LABYRINTH will recognize
familiar places and store them in memory, but we need some additional mechanism for
linking nearby places. To this end, we plan to incorporate a drive for exploration into
ICARUS. Given no high-priority goals, this will lead the agent toward novel objects and
places in its environment, so as to examine them in more detail. It will also lead the agent

THE ICARUS ARCHITECTURE PAGE 41

Combining these four systems into a single, integrated architecture will be a challeng­
ing task, but we have made some progress in this direction. For instance, LABYRINTH,

DJEDAL us, and MJEANDER already use the CLASSIT system as their primary subroutine.
We forsee few problems with connecting DJEDAL us and MJEANDER; the former will generate
plans that the latter can execute, and we will not attempt a tight integration of planning and
execution in the near future. One major issue that remains is the interaction between inter­
nal drives and the planning process. Another concern is the interaction between planning
and object recognition, but we hope to delay this in the first version of ICARUS, assuming
that these processes run independently and in parallel.

We plan to evaluate each of these systems experimentally using artificial domains, some
purely symbolic in nature and others designed to mimic the continuous nature of the physical
world. As in previous studies, we plan to vary aspects of the environment, such as the
regularity of object classes and the complexity of problems. We also plan to vary aspects
of the systems, such as their parameter settings and evaluation functions, and we hope
to carry out lesion studies, comparing the behavior of each system to that when certain
components are omitted. In each case, we plan on measuring learning in terms of performance
improvement over time, examining both accuracy and efficiency as dependent variables. A
central hypothesis is that retrieval time will not degrade with large amounts of experience;
to this end, we plan to run the systems on training sets of many instances.

Evaluating the overall architecture will be more difficult, but we will attempt this task
only after studying the components in some detail. For this purpose we plan to use a
simulated environment such as the World Modeler's System, 14 which simulates a three­
dimensional world obeying the laws of Newtonian physics. This simulation models time
in discrete steps, updating the positions of objects based on their previous positions, their
velocities, and the forces applied to them, including gravity, torque, and friction. The
simulator computes the effects of elastic collisions among rigid objects, and alerts the agent
when it touches other objects. The agent controls its effectors by placing them in desired
positions, and can pick up objects as a primitive action.

We have designed two initial domains within this testbed. The first involves a blocks
world in which th~ agent consists of a robot hand that must pick up blocks and place
them in specified locations. The second domain involves a mobile agent that can wander
around, learning about its environment while subject to conflicting drives like hunger and
curiosity. Both domains are relatively simple, but they should provide initial tests of the
overall architecture and let us compare variants to each other. For instance, we expect
the innate drives to have a major influence on both initial performance and learning. The
simulated world also lets one control levels of uncertainty in sensori-motor data, and we will
vary this as well. In the longer term, we hope to test ICARUS in complex worlds, and our
ultimate goals include connecting the system to a physical robot for more realistic tests.

' 14 This software was developed by researchers at Carnegie Mellon University and the University of Cali-
fornia, Irvine.

THE ICARUS ARCHITECTURE PAGE 43

References

Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior,
3, 111-149.

Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press.

Bresina, J. L. (1988). REAPPR - An expert system shell for planning (Technical Report
LCSR-TR-119). New Brunswick, NJ: Rutgers University, Busch Campus, Hill Center
for the Mathematical Sciences, Laboratory for Computer Science Research.

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning: An artificial intelligence approach (Vol. 2). San Mateo, CA: Morgan
Kaufmann.

Carbonell, J. G., & Veloso, M. (1988). Integrating derivational analogy into a general prob­
lem solving architecture. Proceedings of the DARPA Workshop on Case-based Reasoning
(pp. 104-121). Clearwater Beach, FL: Morgan Kaufmann.

Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 21, 289-350.

DeJong, G. F., & Mooney, R. (1986). Explanation-based learning: An alternative view.
Machine Learning, 1, 145-176.

Everitt, B. (1974). Cluster analysis. London: Heinemann Educational.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In E. A. Feigenbaum
& J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning.
Cognitive Science, 8, 305-336.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2, 189-208.

Fisher, D. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, 13~-172.

Fisher, D. (1987b). Knowledge acquisition via incremental conceptual clustering. Doctoral
dissertation, Department of Information & Computer Science, University of California,
Irvine.

Fisher, D. H. (1988). A computational account of basic level and typicality effects. Pro­
ceedings of the Seventh National Conference on Artificial Intelligence (pp. 233-238). St.
Paul, MN: Morgan Kaufmann.

Fisher, D. H., & Langley, P. (in press). The structure and formation of natural categories.
In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research
and theory (Vol. 26). Cambridge, MA: Academic Press.

THE ICARUS ARCHITECTURE PAGE 45

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine
Learning, 2, 103-138.

Marr, D. (1982). Vision: A computational investigation into the human representation and
processing of visual information. San Francisco, CA: W. H. Freeman.

Mervis, C., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psy­
chology, 32, 89-115.

Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Minton, s.· (1988). Quantitative results concerning the utility of explanation-based learning.
Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 564-569).
St. Paul, MN: Morgan Kaufmann.

Mitchell, T. M., Allen, J., Chalasani, P., Cheng, J., Etzioni, 0., Ringuette, M., & Schlimmer,
J. C. (in press). THEO: A framework for self-improving systems. In K. VanLehn, (Ed).,
Architectures for Intelligence. Hillsdale, N.J.: Lawrence Elrbaum.

Mooney, R. (1988). Generalizing the order of operators in macro-operators. Proceedings of
the Fifth International Workshop on Machine Learning (pp. 270-283). Ann Arbor, MI:
Morgan Kaufmann.

Newell, A., Shaw, J.C., & Simon, H. A. (1960). Report on a general problem-solving program
for a computer. Information Processing: Proceedings of the International Conference on
Information Processing (pp. 256-264).

Newell, A. (1980). Reasoning, problem solving, and decision processes: The problem space
hypothesis. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, NJ:
Lawrence Erlbaum.

Nilsson, N. (1984). Shakey the robot (Technical Note 323). Menlo Park, CA: SRI Interna­
tional.

Rosenbloom, P. S. (1986). The chunking of goal hierarchies. In J. Laird, P. Rosenbloom,
& A. Newell (Eds.), Universal subgoaling and chunking. Boston, MA: Kluwer Academic
Publishers.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987). Knowledge level learning in SOAR.
Proceedings -of the Sixth National Conference on Artificial Intelligence (pp. 499-504).
Seattle, WA: Morgan Kaufmann.

Sacerdoti, E. D. (1977). A structure for plans and behavior. New York: Elsevier North­
Holland.

Schank, R. C. (1982). Dynamic memory. Cambridge, UK: Cambridge University Press.

