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1. Introduction 

In order to exist in the world, an intelligent agent must have access to large amounts of 
knowledge about physical objects, plans, and motor skills, and it must also be able to acquire 
and organize new knowledge from experience. Traditional research in artificial intelligence 
has focused on high-level aspects of cognition, making few efforts to develop integrated 
systems that interact with the physical environment. In this paper we describe ICARUS, an 
integrated cognitive architecture that we have designed with these issues in mind. 

Our long-term goal is an integrated intelligent agent that acts on internal drives, acquires 
knowledge from experience, and uses this knowledge to achieve its goals. We will focus on 
three main types of knowledge - physical object concepts, planning knowledge, and motor 
schemas - as crucial for intelligent behavior in a physical environment. In solving a problem, 
the agent should recognize similar problems it has solved before. In recognizing an object, 
it should use knowledge of objects it has seen in the past. In performing a motor operation, 
it should take into account previous operations of a similar nature. The working hypotheses 
of ICARUS are that a single long-term memory - a probabilistic concept hierarchy - can 
represent knowledge in all these domains, that a single performance mechanism - heuristi~ 

classification - underlies all these abilities, and that a single learning mechanism - concept 
formation - is sufficient to acquire this knowledge from experience. 

1.1 Issues for Cognitive Architectures 

We have designed ICARUS to address six basic issues. Other researchers have dealt with 
some of these independently, but not within the context of a single research project. These 
issues include: 

• Interaction with the environment: An ICARUS agent constructs a model of its environ­
ment from sensory input and interacts with this environment through effectors. Although 
we are currently working with simulated worlds, we have the long-term goal of attaching 
agents to physical robots. We assume that early vision and primitive motor control are 
solved problems, but we model cognition at a 'lower', more primitive level than most AI 
researchers. 

• Grounded symbols: Most research in AI has assumed high-level symbolic representations 
that are disconnected from sensori-motor issues. In contrast, ICARUS assumes that all 
symbols are ultimately grounded in some sensori-motor description (Hamad, 1989). For 
instance, the- symbol THROW would be described in terms of an agent's arm, the thrown 
object, and the manner in which both change over time. For s!mplicity, most of our 
examples in this paper will involve symbolic primitives like shape and color, but we 
believe that real-valued attributes - such as size, position, and velocity - are necessary 
to describe much of the complexity in the physical world. 

• Learning as incremental hill climbing: Learning is essential for intelligent action in an 
uncertain, complex world, and we feel that much 0everyday' learning in humans (e.g., 
concept formation and skill acquisition) occurs in a gradual, unconscious fashion. We do 
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multi-sensor fusion and object delineation, while remaining concerned with the higher-level 
problem of object recognition. 

We make similar simplifying assumptions about motor control. ICARUS affects its en­
vironment by placing commands in a motor buffer, which causes body parts to move to 
specified positions at given velocities. Translating such commands to muscle contractions or 
voltage changes is an active research problem in robotics, but we will assume that this task 
can be separated from the generation of motor commands. Clearly, there exist some limits 
on this independence assumption. For instance, one cannot lift an object beyond a given 
mass, but under reasonable load conditions and in the absence of obstacles, we will ignore 
issues of low-level motor control. 

The main repository of ICARUS' knowledge is long-term memory,1 which consists of 
nodes organized into an 'is-a' hierarchy. Each node can be viewed as a 'symbol' or 'chunk' 
that is ultimately grounded in a sensori-motor description. We will generally refer to these 
nodes as concepts, regardless of their purpose. Long-term memory is effectively infinite in 
size, retaining all items stored in it indefinitely, though 'forgetting' can occur by losing access 
to an item. ICARUS distinguishes between simple and composite concepts. The former are 
described directly in terms of sensory-level features like length, width, texture, and hue; 
whereas the latter are composed of simple concepts or lower-level composites. ICARUS does 
not rely on a small, predetermined set of 'primitive' symbolic concepts; the system can 
acquire an indefinite number of concepts from experience. In the following sections, we 
describe the representation and organization of concepts in more detail. 

Figure 1 presents a graphic representation of ICARUS' main processes and memories, 
with memories shown as circles and processing modules as rectangles. The architecture 
has no single "top-level" module, but instead has several cooperating processes that act in 
parallel. Information from the environment enters the sensory buffer, where the process of 
object recognition decides on the categories of observed objects and stores them in long­
term memory, based on earlier experience with similar objects. The LABYRINTH system 
implements this process and its associated learning mechanism, as we describe in Section 3. 

The planning process operates solely on long-term memory, noting unsolved problems 
(goals to transform one state into another), generating plans to solve them, and storing 
traces of this process in memory. Section 4 describes DlEDALUS, a system that instantiates 
our approach to plan generation. At the lowest level, plans specify operators that should 
be applied, and a third ICARUS component generates motor programs from descriptions of 
these operators 1n long-term memory. These motor commands alter the motor buffer, which 
directly affects the environment. The MlEANDER system implements the process of motor 
control, as we describe in Section 5. This component can also recognize and store instances 
of motor schemas.2 

1 One can view short-term memory as the active portion of long-term memory, but we delay discussion 
of such issues until Section 6 .2. 

2 We assume that perceptual traces are parsed into appropriate temporal chunks before being given to 
the recognition process. We do not yet have a theory of this segmentation process. 
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the disease or slow its progression. Many other aspects of human behavior can be viewed 
in these terms, and our work with ICARUS assumes that heuristic classification is the basic 
process underlying all cognition. 

This approach to intelligence implies that one has access to a large knowledge base, and 
this knowledge must be acquired and organized in some fashion. Our work on ICARUS further 
assumes that this occurs through an incremental process of concept formation, which involves 
clustering a sequence of observed instances into categories, forming intensional descriptions 
for each category, and creating a hierarchical organization for the categories. Concept for­
mation differs from the task of learning from examples (e.g., Quinlan, 1986) in that learning 
is unsupervised. Thus, it can be viewed as a form of conceptual clustering (e.g., Michalski & 
Stepp, 1983), but it differs from most work on this topic in that learning must be incremen­
tal. Examples of concept formation systems include Feigenbaum's (1963) EPAM, Kolodner's 
(1980, 1983) CYRUS, Lebowitz's (1980, 1987) UNIMEM, and Fisher's (1987a, 1987b) COB­
WEB. Although our approach has much in common with all of these systems, it borrows 
most heavily from Fisher's work. 

As we detail in Sections 3, 4, and 5, ICARUS applies the same basic processes of clas:. 
si:fication and concept formation to the retrieval and acquisition of object concepts, plan 
knowledge, and motor schemas. However, before turning to these aspects of cognition, we 
must first describe the basic processes, which we have implemented in a system called CLAS­
SIT (Gennari, Langley, & Fisher, 1989). Below we summarize the nature and organization 
of the system's memory, then describe the algorithm, its evaluation function, and some mea­
sures of performance improvement. In the following treatment, we will use the term concept 
to refer to any node in long-term memory that summarizes one or more instances, whether 
these instances refer to objects, plans, motor behavior, or some other event. 

2.1 Probabilistic Representation of Concepts 

CLASSIT assumes that each instance is described as a conjunction of attribute-value 
pairs, and it employs a probabilistic representation for concepts (Smith & Medin, 1981). 
A probabilistic scheme associates a probability with each attribute value of a concept de­
scription, thus subsuming 'logical' representations that specify concepts as conjunctions of 
necessary attributes. In particular, CLASSIT represents each concept Ck as a set of attributes 
Ai and a subset of their possible values °Vij. Associated with each value is the conditional 
probability of that value given membership in the class, P(Ai = °VijlCk)· In addition, each 
concept has an -associated probability of occurrence, P(Ck)· For example, the attribute 
BIRTH for the MAMMAL concept would have LIVE with very high probability and EGGS with 
low probability; the vast majority of mammals give live birth, with only a few laying eggs. 

Although most of our examples will involve nominal (symbolic) representations, CLAS SIT 
can also handle real-valued attributes. In the nominal case, the system effectively stores a 
discrete probability distribution for each attribute associated with a concept. Thus, a natural 
analog for a real-valued attribute would be to store a continuous probability distribution. 
CLASSIT assumes that the values of such real-valued attributes follow a normal distribution, 
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j chance of being MEDIUM in size and a l chance of being LARGE, the same probabilities 
for having a SOFT and DIMPLED texture, and equal probabilities of being ORANGE, GREEN, 
or WHITE in color. Concept N3 has a i chance of occurring and its members are always 
MEDIUM sized and SOFT, but they are evenly split among GREEN and WHITE colors. The 
terminal nodes in the hierarchy - N2 (a basket ball), N4 (a soft ball), and Ns (a tennis ball) -
have less interesting probabilistic descriptions, since each is based on a single instance. Note 
that the probability of each node's occurrence is specified relative to its parent, rather than 
with respect to the entire distribution. 

There is a strong similarity between CLASSIT's concept hierarchies and those occurring 
in Fisher's (1987a) COBWEB. Both differ from EPAM, UNIMEM, and CYRUS, which labeled 
the links from parent nodes to their children with explicit indices. In contrast, CLASSIT and 
COBWEB connect parents to their children only through IS-A links, treating the concept nodes 
themselves as indices. In addition, both systems divide instances into disjoint classes, so that 
each observation is summarized by nodes along a single path through the hierarchy; this 
differs from UNIMEM and CYRUS, which allow non-disjoint hierarchies. However, CLASSIT 
diverges from COBWEB in that it does not store all observed instances; in some cases_, 
terminal nodes themselves may contain abstractions, as in UNIMEM. Also, Fisher's system 
stores all attributes with every node in the hierarchy, whereas CLASSIT (Gennari, 1989) 
stores only the most diagnostic attributes, as we discuss in Section 2.5. 

2.3 Classification and Learning in CLASSIT 

Table 1 presents the basic CLASSIT algorithm, which classifies observations and forms a 
concept hierarchy in the process. Upon encountering a new instance I, the system starts at 
the root and sorts the instance down the hierarchy, using an evaluation function (described 
in Section 2.4) to decide which action to take at each level. At a given node N, it retrieves all 
children and considers placing the instance in each child C in turn; CLASSIT also considers 
creating a new child based on the instance. The algorithm uses its evaluation function to 
determine which of the resulting partitions is 'best' ,3 and then carries out the appropriate 
action, which in turn modifies memory. Thus, the processes of classification and learning are 
inextricably intertwined. 

More specifically, if the instance I is sufficiently different from all the concepts in a 
given partition, the evaluation function recommends placing I into a singleton class rather 
than incorporating it into an existing concept. In this case, CLASSIT creates a new child 
of the current parent node and bases its initial description on that of the instance. The 
classification process halts at this point, since the new node has no children. 

If CLASSIT instead decides to incorporate the instance I into an existing child C, it 
modifies the probability distribution for each attribute in C based on 'the instance's values, 
thus updating the concept definition. The system also updates the probability of the selected 

3 This lets the system avoid the need for explicit attribute tests or indices at each node. At the level we 
have described it, the CLASSIT algorithm is identical to that used in Fisher's COBWEB. 
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Some examples based on the hierarchy in Figure 2 will clarify the effect of these operators. 
Given a new instance I (a colored golf ball) described as SIZE SMALL, COLOR ORANGE, and 
TEXTURE DIMPLED, CLASSIT first incorporates the observation into the root node Nl, giving 
a new set of probabilities. The system then considers the two children of this node, deciding 
that the instance best matches N2, and that adding the instance to this class would be better 
than creating a new disjunct. As a result, it incorporates I into N2 (giving new scores) and 
creates two children for N2, one (N6) based on the original version of N2 and the other 
( N7) based on the instance. Figure 3 presents the hierarchy after sorting is complete. 

P(N1)=1.0 P(vjc) 

SIZE SMALL 0.25 

MEDIUM 0.50 

LARGE 0.25 

TEXT. SOFT 0.50 

DIMPLE 0.50 

COLOR ORANGE 0.50 
GREEN 0.25 

WHITE 0.25 

P(N2)=0.5 P(vlc) P(N3)=0.5 P(vjc) 

SIZE SMALL 0.5 SIZE MEDIUM 1.0 
LARGE 0.5 TEXT. SOFT 1.0 

TEXT. DIMPLE 1.0 COLOR GREEN 0.5 
COLOR ORANGE 1.0 WHITE 0.5 

~ ~ 
P(N6)=0.5 P(vjc) P(N7 )=0.5 P(vjc) P(N4)=D.5 P(vjc) P(Ns)=0.5 P(vjc) 

SIZE SMALL 1.0 SIZE LARGE 1.0 SIZE MEDIUM 1.0 SIZE MEDIUM 1.0 

TEXT. DIMPLE 1.0 TEXT. DIMPLE 1.0 TEXT. SOFT 1.0 TEXT. SOFT 1.0 

COLOR ORANGE 1.0 COLOR ORANGE 1.0 COLOR WHITE 1.0 COLOR GREEN 1.0 

Figy,re 3. The concept hierarchy after incorporating a fourth ball. 

Now suppose CLASSIT encounters another instance J (a marble), which is described as 
SIZE SMALL, COLOR CLEAR, and TEXTURE SMOOTH. Again the system incorporates the 
description into the root node Nl, altering the probabilities. However, when it considers 
incorporating J into N2 and N3, it finds the instance sufficiently different from both that 
it creates a new singleton concept (N8). CLASSIT stores this new node as a third child of 
Nl, basing its initial counts on the values in the instance. Figure 4 shows the structure of 
the hierarchy after this step. 
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P( vesse0=2/6 P VIC 

Role1 vessel-body 1.00 

Role2 
1.00 1.00 0.50 

cup-handle 
ladle-handle 0.50 

P VIC P(ladle-body =1/2 P(cup-body)=l/2 P(VIC) 
1.00 Wei ht heav 1.00 Wei ht heav 1.00 
1.00 Sha e lar e-round 1.00 Shape small-round 1.00 

Figure 5. A portion of LABYRINTH's memory. 

object, with components of its own. Simple components (the leaves of the PART-OF tree) 
are described with primitive attribute values, like those used by CLASSIT. 

However, one can also view composite objects (nonterminal nodes in the PART-OF tree) 
as having attributes, whose values are component objects. Thus, we will use 'attribute' to 
refer both to components (in the case of composite concepts) and to descriptive features 
(in the case of simple concepts). Still, there is a major difference between attributes of 
simple objects and those of composite objects. In primitive objects, the correspondence 
between attributes of two instances is given in the input. However, in composite objects, the 
attributes are unordered, so that LABYRINTH must determine this correspondence itself. 

Composite object concepts are similar to instances in that they consist of nodes connected 
by PART-OF links. At each level of a given concept's tree, there exists a set of associated 
probabilistic attributes; however, these attributes represent components rather than observ­
able attributes, except at the lowest level. The 'values' associated with these 'attributes' 
refer to other nodes in the concept hierarchy, giving an interleaved memory structure that, 
as we discuss in Section 6.1, is similar to that proposed in Schank's (1982) theory of dynamic 
memory. 

For example, Figure 5 presents a partial LABYRINTH hierarchy containing three com­
posite concepts and five simple concepts. The values of each composite concept refer to 
simple concepts, which are represented exactly as in CLASSIT. One can view each composite 
attribute as specifying a role that can be filled by its possible values (i.e., components). In 
some cases, an attribute takes on a single value that corresponds to an abstract concept high 
in the hierarchy. For instance, the first role of VESSEL has the single value VESSEL-BODY. 
This has two more specific children - CUP-BODY and LADLE-BODY - which have similar 
features and which occupy the analogous role in the composite concepts CUP and LADLE. 
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4. The Generation and Acquisition of Plans 

In order to achieve its goals, an intelligent agent must be able plan; that is, to order its 
actions in the world. We can briefly state the planning task as: 

• Given: A goal to transform an initial world state I into a desired state D; 

• Given: A set of primitive operators 0 that let one directly transform states of the world; 

• Find: A sequence of operator instances from 0 that will transform I into D. 

This formulation makes a number of assumptions. First, one must have some explicit descrip­
tion of the desired state, even though this may be only partially specified. It also assumes 
that the planning task involves a single agent, making timing less important than in multi­
agent planning tasks. Third, it makes the closed-world assumption - that all aspects of the 
world remain constant unless the agent applies some operator. Finally, it assumes that one 
can separate the process of plan generation and plan execution. 5 

4.1 Approaches to Planning 

One can identify three distinct paradigms within the AI planning literature. The earli~ 
est approach uses weak, domain-independent methods like means-ends analysis (e.g., Newell, 
Shaw, & Simon, 1960; Fikes, Hart, & Nilsson, 1971) to select relevant operators and cre­
ate subgoals. 6 A second framework incorporates domain-specific goal decompositions or 
schemas, which specify useful orders on operators or useful subgoals (e.g., Bresina, 1988). A 
third approach - case-based reasoning - retrieves specific plans from memory and uses them 
to constrain the planning process. 

Because one cannot predict interactions among operators, planning in novel domains may 
require search. This makes many planning methods impractical for use in controlling real­
time robotic agents (Georgeff, 1987). One natural response is to employ machine learning 
techniques to acquire domain-specific planning knowledge, and to use this knowledge to 
reduce or eliminate search on future problems. Resea!chers have applied machine learning 
techniques to all three of the planning paradigms described above. For instance, Minton 
(1988) has studied Jearning within a means-ends planner, DeJong and Mooney (1986) have 
used a schema-based method, and Hammond (1986) and Kolodner (1987) have examined 
case-based approaches. 

In this section, we describe the planning component of ICARUS - as implemented in 
a system called--DJEDALUS - which views these paradigms as 'stages' in the development 
of planning expertise. The system begins with knowledge of the operators for a domain 
and, like Minton's (1988) PRODIGY, uses means-ends analysis to construct plans. However, 

5 In future work we hope to loosen these assumptions, and to address the generation and acquisition of 
nonlinear plans (Mooney, 1988). 

6 More recent work in this tradition has invoked more powerful (and more expensive) search methods 
(Wilkins, 1982), but has continued to use general, domain-independent techniques. 
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A problem consists of an initial state and a desired state that the agent wants to achieve. 
Each state may contain only partial descriptions of the world. For instance, Figure 6 (a) 
presents a graphical description of a simple problem in the blocks-world domain. One can 
also describe a problem in terms of the differences between the initial and desired state. 
Node Pl in Figure 6 (b) summarizes the problem in this manner. The notion of representing 
problems as differences is central to our approach. 

Most work on planning assumes that operators have known preconditions and effects, 
and that they should be reasonably efficient (i.e., require no search). To this end, DJEDALUS 
assumes that operators correspond to compiled motor skills, which we discuss in Section 5. 
For the purposes of planning, this means that one can treat operators as 'black boxes', de­
scribing them in ter·ms of preconditions and postconditions. However, from this information 
one can derive a set of differences that exist between states before and after application, 
giving a description similar to that used for problems. 

4.3 The Organization of Plan Memory 

DJEDAL us uses the notion of differences to organize its memory for planning knowledge: 
As in CLASSIT and LABYRINTH, long-term memory takes the form of a probabilistic concept 
hierarchy. Initially, the terminal nodes in this hierarchy consist only of general operators 
described in terms of the differences between their initial and final states. Internal nodes 
correspond to classes of operators that have some overlap in their difference descriptions. 
Essentially, this hierarchy is an efficiently organized difference table (Newell et al., 1960) 
that changes with experience. 

Figure 7 (a) presents an initial difference hierarchy for the blocks-world domain. Each 
node has an associated name N (top), a set of associated differences Di (center), and a set of 
one or more associated operators (bottom). Moreover, each node has a certain probability of 
occurrence P(N), and each difference has a conditional probability P(DdN) of occurrence 
given the concept, as does each operator. For clarity, Figure 7 (b) shows a traditional STRIPS 
representation for each operator. Thus, node N3 depicts DJEDALUS's summary description 
for the operator (stack ?x ?y), which has preconditions (clear ?x) (clear ?y) (on ?x 
table), where question marks indicate pattern-match variables. Its actions include adding 
(on ?x ?y) and deleting (on ?x table) (clear ?y). Thus, it can be summarized by the 
set of differences (on ?x ?y) •(clear ?y) •(on ?x table), as shown in the terminal 
node N3. The 'hierarchy' in this figure has only two levels, but domains involving more 
actions would contain internal nodes that index and summarize subsets of the operators. 

The system represents a plan for solving a particular problem in terms of a derivational 
trace (Carbonell, 1986) that states the reasons for each step in the operator sequence. This 
trace consists of a binary tree of problems and subproblems, with the original task as the top 
node and with trivial (one-step) subproblems as the terminal nodes. Each node (problem) 
in this derivational trace is described by differences between its initial and final state, along 
with the operator instance that was selected to transform one into the other. 





THE ICARUS ARCHITECTURE PAGE 23 

same format as the original operators. In this case, one interprets nodes in the hierarchy as 
problems DlEDAL us has solved, and the associated operators as the ones that led the system 
to a solution. Thus, nodes correspond to probabilistic 'selection rules' for deciding among 
operators, but the program does not retain the derivational trace itself in memory. Figure 
8 presents a modified version of the difference hierarchy from Figure 7, after the system has 
incorporated the problem-operator pairs from the derivational trace in Figure 6. 

4.4 Using and Acquiring Plan Knowledge 

As shown in Table 3, the planning component of DlEDAL us uses a variant of means-ends 
analysis (Newell et al., 1960). In this framework, solving a problem (transforming a current 
state into a desired one) involves the recursive generation of subproblems. The standard 
means-ends approach determines all differences between the current and desired state, selects 
the most important difference (using some predefined criteria), and then retrieves an operator 
that reduces the difference. If the selected operator cannot be applied, a subproblem is 
generated to change the current state into one that satisfies the operator's preconditions. 
Applying the operator produces a new state, along with a new subproblem to transform thi~ 
into the desired state; the algorithm is then called recursively to solve this task. 

DlEDALUS differs from most means-ends planners in the way it retrieves operators from 
memory. First the system computes all differences between the current and goal states. It 
then uses a variant on CLAS SIT to sort the difference structure, D, down the difference hier­
archy, looking for the best match between the differences of D and the differences stored in 
the hierarchy.8 DJEDALUS selects the operator associated with the difference node retrieved 
through this process. Should this operator lead to an unsuccessful plan (e.g., if its precon­
ditions cannot be achieved), DlEDALUS backtracks, retrieving the operator with next best 
match, and continues. 

This strategy also differs from earlier methods in placing an ordering on operators, rather 
than dividing them into relevant and irrelevant sets. One result is that it prefers operators 
that reduce multiple differences in the current problem, which should make it more selective 
than traditional techniques. More important, although DlEDAL us prefers operators that 
reduce problem differences, it is not restricted to this set. If none of the 'relevant' operators 
are successful, it falls back on operators that match none of the current differences. This 
gives it the potential to break out of impasses that can occur on 'trick problems'. 

DlEDALUS integrates learning into its planning process, using the derivational traces 
described above.--Whenever it finds a plan that achieves a problem or subproblem, it stores 
the description of that problem in its concept hierarchy. This involves storing the problem 
description (the differences and the selected operator) as a new terminal node (case) in the 

8 This variant treats each difference as a separate feature that takes on the value PRESENT or ABSENT. 
(For simplicity, we have shown only the probabilities for the PRESENT value.) The current version computes 
all maximal partial matches between the differences at a node and those in an instance, computes a simplified 
version of category utility for each match, and selects the one with the highest score. One can imagine more 
efficient greedy and attentional approaches to this matching problem, but we have not implemented them. 
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Table 3. DJEDALUS' means-ends planning algorithm. 

Inputs: STATE is a (partially described) initial state. 
GOAL is a (partially described) desired state. 

Outputs: A final state that matches the description of GOAL. 
Side effects: A modified concept hierarchy that includes this problem. 

Procedure Transform(STATE, GOAL) 

If STATE matches GOAL, 
Then return STATE. 
Else let L be the null list. 

Let D be the differences between STATE and GOAL. 
Repeat until FLAG := true. 

Let FLAG be fail. 
Retrieve the operator 0 that best matches differences D and 

that is not a member of L. 
If 0 -1- fail, 

Then let L be Insert 0 into L. 
Let NEW be Apply(O, STATE). 
If NEW -:j:. fail, 

Then let NSTATE be Transform(NEW, GOAL). 
If NSTATE -:j:. fail, 

Then let FLAG be true. 
Else let FLAG be true. 

If 0 := fail, 
Then return fail. 
Else incorporate difference-operator pair (D, 0) into memory. 

Return NSTATE. 

Procedure Apply(O, STATE) 

L~t C be the preconditions on operator 0. 
Let R be the results of operator 0. 
If R is pathological (e.g., if R has been seen during this problem), 

Then return fail. 
Else if STATE does not match C, 

T~en let NEW be Transform(STATE, C) and return NEW. 
Else return R. 

PAGE 25 

Upon encountering a new problem, DJEDALUS uses its memory of past successes to 
select operators in a more discriminating fashion. Specific problems (described by differences 
and operators) are stored in the same concept hierarchy as the original operators, and the 
same sorting process is used to retrieve them. If a stored case matches a new problem or 
subproblem more closely (according to category utility) than one of the original operator 
descriptions (because it has more differences in common), DJEDALUS retrieves this case and 
attempts to apply the associated operator. In some situations, a problem may be sufficiently 
unique that the system does not sort it all the way down to a terminal node, instead using a 
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this time retrieving (stack c d) as the preferred action. However, the preconditions of this 
operator instance are not met, so DJEDAL us first attempts to generate a state that satisfies 
them, giving the new subproblem P6. In this case it selects (unstack a), which solves 
P6 in a single step and lets the system apply (stack c d). This process continues, with 
the program selecting (stack b c) and then (stack a b), both of which can be applied 
without additional subproblems. The last application produces a state with no differences 
from the desired state, so DlEDALUS halts, having solved the top-level problem P4. For the 
sake of simplicity, we have not shown how the system updates its difference hierarchy after 
solving this problem. 

4.5 The Behavior of DlEDALUS 

Our approach to planning in DJEDALUS bears similarities to certain work in case-based 
reasoning. Like Kolodner's (1987) JULIA and Hammond's (1986) CHEF, our system stores 
specific cases and retrieves them when solving new problems. However, our approach to 
organizing plan memory and indexing cases is significantly different from their methods, 
focusing on the differences occurring in each problem. DlEDALUS is most similar to Veloso 
and Carbonell's (1988) approach to derivational analogy, sharing the notion of derivational 
traces and a means-ends planner. However, our system organizes plan knowledge into a 
probabilistic concept hierarchy, whereas their work to date has not focused on issues of 
indexing and retrieval. Finally, our approach only retains knowledge of successful plans and 
does not store failed cases. 

DJEDALUS also differs from all three systems in another way. Rather than storing cases 
as monolithic data structures, it stores only the operator selected for each problem or sub­
problem. This is similar to the use of preference rules in Laird, Rosenbloom, and Newell's 
(1986) SOAR and in Minton's (1988) PRODIGY. This means DJEDAL us retains no memory of 
the relation between problems and their subproblems, and it must sort each new subproblem 
through memory even if a similar problem-subproblem pair has previously occurred. Thus, 
the system cannot retrieve entire plans from memory, as in JULIA and CHEF, but it can 
effectively regenerate them using the difference-operator cases stored in memory. Laird et 
al. (1986) have argued that SOAR's distributed knowledge structures lead to greater transfer 
than storing macro~operators or entire cases, and we expect this to hold for DJEDALUS as 
well. 

As noted earlier, one emergent effect of our approach to learning should be a three­
st age development of planning expertise. Initially, DJEDALUS has access only to the domain 
operators stored in its concept hierarchy. As a result, it will sometimes select a poor operator 
and be forced to backtrack. In this stage, it behaves much like any knowledge-lean means­
ends planning system. However, as DJEDALUS gains experience in the domain, it stores 
specific cases that specify useful operators and the situations in which they should be applied. 
In this stage, the system will behave like a case-based planner, retrieving particular problems 
it has solved in the past as a guide to its actions on new tasks. 
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An ideal intelligent agent learns not only from successes, but also from failures. The 
current version of D.tEDAL us learns from failures in the sense that it stores operators found 
during backtracking search, but it retains no information about operators retrieved earlier in 
that search which led to failed paths. We hope to augment the system in this manner, storing 
with difference nodes the operators that one should not select. As with the rejection rules 
in SOAR and PRODIGY, this knowledge should help constrain search by eliminating possible 
candidates even when no positive advice is available. However, it is not clear whether this 
information should be stored in the same hierarchy as the selection rules or in a separate 
one entirely. 

In future work, we hope to implement a tight coupling between planning and motor 
control, which we describe in the following section. We currently treat operators as compiled 
motor skills that one can execute without creating subgoals, but the dividing line between 
planning and motor behavior should be a function of the agent's goals and experience. 
Presumably, D.tEDAL us would come to a new domain with only a few general operators, but 
practice in the domain would lead to new domain-specific motor schemas that augment the 
repertoire of operators available for planning. We describe one method for acquiring sudi 
motor skills in the next section. We also hope to incorporate an 'automatization' process 
(Schneider & Fisk, 1983) that gradually transforms planning expertise into compiled motor 
skills with practice, but our ideas on this mechanism remain somewhat vague. 

Although our examples to date have focused on STRIPS-like symbolic states and oper­
ators, we hope to extend D.tEDALUS to handle more realistic, numeric descriptions of the 
physical world. Although the same basic planning and learning methods should apply, one 
important issue remains to be resolved. In means-ends analysis, a problem is solved only 
when no differences remain between the current and desired state. This decision is clear-cut 
in a STRIPS framework, but given real-valued state descriptions, one must use some form 
of partial-matching scheme to decide when the remaining differences are insignificant. We 
hope to use some principled metric like category utility to address the issue, but the details 
remam open. 

Finally, we plan to incorporate a priority queue into D.tEDAL us, which would provide a 
more realistic model of attention in planning and let the system handle multiple independent 
goals. Problems could enter this queue from high-level drives (e.g., hunger or sleep), from 
the planner as subproblems, or from an execution monitoring component when a plan fails. 
Each problem WDuld be ordered by its associated priority, which generally decreases over 
time, so that old problems would be gradually forgotten. If a new problem were passed to 
the queue with a higher priority than the currently active one, the current problem would 
be set aside in lieu of the more important one. The extended system would work on this 
task until it was solved or until another problem (possibly the original one) becomes more 
important. In summary, DlEDAL us provides a fertile framework within which to formulate 
and test our ideas about the relations among memory, planning, and learning. 
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memory structure that encodes that action. Thus, a schema consists of a temporal sequence 
of states, (S1, S2, ... , Sn), where each state, Si= (ti, { (Jk, p, v), ... } ), contains a time value 
ti and a set of 3-tuples. The states (Si) are ordered so that the time values (ti) are in an 
increasing sequence, ti < tj for i < j. Each 3-tuple includes a joint name Jb the expected 
position p of the joint in three-space at time ti, and the desired velocity vector v of the 
joint upon reaching the position p. All numeric attributes have an associated mean and 
variance that summarize previous experience with the schema. Each state contains a set of 
such 3-tuples, one for each of the agent's joints, though not all joints need be specified. 

We distinguish between two sorts of motor schemas. The first type - viewer-centered 
schemas - represent the position and velocity vectors using Cartesian three-space coordinates, 
with the origin centered at the agent. This representation describes all joints in terms of 
a single Cartesian coordinate system. We assume this information is available as visual 
feedback during execution of a skill; it can also be used to describe another agent's actions. 
The second type - joint-centered schemas - represent information in their own local, joint­
centered coordinate system. Each local coordinate system is spherical, being defined with 
the previous joint in the effector as the origin. We assume this information is available as 
proprioceptive feedback during execution; MlEANDER uses this representation to directly 
control its motor behavior. 

As we will see, MlEANDER can initially acquire motor skills in viewer-centered form, by 
observing another agent performing that skill. In addition, DlEDAL US (when run in physical 
domains) describes problems and subproblems in terms of initial and final states using the 
viewer-centered scheme. However, an agent needs a joint-centered schema in order to exe­
cute an action. Intuitively, viewer-centered schemas are better suited to how things 'look', 
whereas joint-centered schemas are better suited to controlling limbs. MlEANDER moves 
from a viewer-centered schema to a joint-centered one by applying an inverse kinematic 
transform (Wylie, 1975). In general, this process will generate errors in the joint-centered 
representation. This results from the differing representational power of the two coordinate 
systems and the sparse representation of the schema. Actions that may appear simple in 
one coordinate system can be quite complex from the other's point of view, and the transla­
tion process is inherently imperfect. As we will see, learning can be used to overcome these 
limitations. 

Like other parts of ICARUS, the MlEANDER component organizes its domain knowledge 
in a probabilistic concept hierarchy. We have already mentioned that schema attributes have 
associated means and variances. This lets the system represent motor knowledge at different 
levels of abstraction, with nodes higher in the hierarchy tending toward higher variances. 
For example, different types of throwing actions might be stored as children of a more gen­
eral THROW concept; similarly, each type of throw might have children representing specific 
cases of throwing behavior. Each schema also has an associated probability, summarizing the 
percentage of times it has been used relative to its siblings. MlEANDER's memory organiza­
tion differs from other facets of ICARUS in that viewer-centered and joint-centered schemas 
always occur in pairs, being stored in the same place in 'the hierarchy. 
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Figure 11. Traces of the behavior generated by a viewer-centered and joint-centered motor 
schema, with arm shown in the positions it occupies at times specified by states 
in the schemas (from Iba & Langley, 1987). 

the system exhibits a tradeoff between speed and accuracy (Iba & Langley, 1987) similar to 
that observed in humans. Moreover, if one assumes that the monitoring rate corresponds to 
the attention level, then MJEANDER is more accurate when it attends more carefully to the 
task at hand. Both of these effects suggest an important role for learning in motor behavior, 
which we discuss below. 

5 .3 Acquisition and Improvement of Motor Skills 

In principle, MJEANDER can acquire new joint-centered schemas through play or through 
active experimentation on existing schemas. However, a simpler strategy involves observing 
the motor behavior of other agents. In this scenario, the system sorts observed behavior 
through its memory of viewer-centered schemas, extending and revising a concept hierarchy 
in the same fashion as other components of ICARUS. Thus, MJEANDER can accumulate 
considerable expertise about possible actions before it ever attempts to carry them out. 
Once the system has an accurate viewer-centered description of a motor skill, it can use this 
summary to generate an initial joint-centered schema and to recover from errors during its 
execution. 

However, MJEANDER's learning does not end at this point. The monitoring process 
provides data about execution errors, and the system attempts to learn from these errors so 
it can avoid them in the future without the need for monitoring. To this end, MJEANDER 
retains information about the largest error that it detects during execution monitoring. After 
the trial during which this error occurred, the system produces a modified joint-centered 
description that should more closely approximate the viewer-centered schema from which it 
was derived. Table 4 summarizes the algorithm used to generate the variant description. 
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skill acquisition. This occurs because the learning algorithm always focuses first on the state 
causing the largest error, leading the system to overcome larger errors before smaller ones. 
Like humans, MlEANDER exhibits a tradeoff between speed and accuracy, and this trade­
off decreases with practice. We also predict that the system will exhibit effects of practice 

variability (Schmidt, 1975), though we have not yet demonstrated this phenomenon. 

To date, we have tested MlEANDER primarily on simple motor skills like drawing straight 
lines, since these predominate in the literature on human motor behavior. However, we 
plan to test the system on more complex skills, such as handwriting, throwing objects into 
a basket, and juggling. The latter two tasks raise issues of hand-eye coordination and 
manipulating objects over which one has only partial control. We believe these can be 
cast within the framework of viewer-centered schemas, making them accessible to the same 
monitoring and error recovery methods that MlEANDER uses for simpler motor skills. 

In the longer term, we hope to integrate MlEANDER's execution process more fully into 
D.tEDALUS, letting ICARUS interleave planning and execution in a principled way. We also 
hope to account for automatization in terms of the compilation of plan knowledge into motor 
schemas. This process would gradually transform derivational traces stored in the plari 
hierarchy, eliminating the reasons for actions and thus increasing efficiency at the expense 
of flexibility. The details of this mechanism remain an issue for future research. 

6. Discussion 

In the previous sections we described ICARUS in terms of its various components. With 
this as background, we can examine its relation to other cognitive architectures, discuss 
some aspects of the overall framework, and present our plans for integration and evaluation. 
Below we address each of these in turn. 

6.1 Related Work on Cognitive Architectures 

Because the ICARUS model attempts to span a substantial portion of cognitive behavior, 
it bears clear relations to many aspects of earlier AI research. We have cited some relevant 
work in the context of individual components, but here we briefly discuss related learning 
work on cognitive architectures for learning. The best known examples of such architectures 
are Anderson's (1983) ACT*, Laird et al. 's (1986) SOAR, and Minton's (1988) PRODIGY. 12 

Like ICARUS-; these architectures attempt to cover a broad range of behaviors within a 
unified theoretical framework, though they differ in their generality and theoretical content. 
For instance, PRODIGY makes strong claims about the nature of problem solving, but is 
largely limited to this facet of cognition. At the other extreme, ACT* takes a weaker 
stance on the organization of thought processes, but has been applied to domains as diverse 

12 Another recent example is Mitchell et al. 's (in press) THEO architecture, which differs significantly 
from both ICARUS and earlier systems. Briefly, it organizes memory into frames, uses a backward-chaining 
mechanism to control reasoning, and employs a caching technique to improve retrieval efficiency. Unlike 
other architectures, THEO has no explicit short-term memory. 
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organization of memory has implications for efficiency, and Rosenbloom (1987) has shown 
that SOAR can exhibit a form of 'data chunking' that shares features with LABYRINTH's 
formation of object concepts. However, the systems differ in what they treat as underlying 
processes and what they treat as emergent phenomena. 

On many dimensions, ICARUS is most similar to 'analogical' or 'case-based' approaches 
to cognition (e.g., Carbonell, 1986; Kolodner, 1987). We have noted that the system's basic 
data structures share aspects of Schank's (1982) theory of dynamic memory, and in its 
early stages, the DJEDALUS component exhibits a form of 'case-based reasoning' (Kolodner, 
1987). Like dynamic memory, ICARUS relies on interleaved hierarchies of different concepts, 
with complex concepts being specified in terms of their components and with more abstract 
concepts stored above their specific children. Our framework differs from dynamic memory 
(as it does from SOAR, PRODIGY, and ACT*) in its emphasis on probabilistic descriptions, 
in its focus on grounded symbols and interaction with physical environments, and in its 
concern with sensori-motor phenomena in addition to high-level cognition. However, both 
ICARUS and dynamic memory emphasize retrieval from an organized memory, and both can 
be viewed as direct descendants of EPAM (Feigenbaum, 1963; Feigenbaum & Simon, 1984); 
the earliest model of incremental concept formation. 

6.2 Attention and Short-Term Memory in ICARUS 

One central finding of cognitive psychology is that the human information-processing 
system contains sequential 'bottlenecks' that require some form of selective attention. In 
describing ICARUS' components, we revealed three different forms of attention. The first 
dealt with the basic processes of retrieval and object recognition as modeled by CLASSIT 
and LABYRINTH. This variant corresponds roughly to the notion of perceptual attention in 
the psychological literature (Treisman, 1969), though we have not attempted to account for 
such attentional phenomena. 

A second form of attention occurs in MJEANDER's process of execution monitoring. This 
corresponds roughly to the notion of closed-loop processing in theories of human motor 
behavior (e.g., Adams, 1971), and it underlies the system's ability to model the tradeoff 
between speed and accuracy in motor control. However, MlEANDER currently uses a system 
parameter to describe the level of attention, and does not reflect the conscious nature of 
this process. Future versions should model execution monitoring in more detail, possibly 
borrowing from the method used in CLASSIT. 

The attentional bottleneck is not limited to the sensori-motor level, and one can cast 
DJEDAL us (like any means-ends system) as modeling the cognitive aspects of attention. In 
this framework, the agent generates new goals (subproblems) seque~tially, and the focus 
of attention is on one goal at any given time. In future work, we plan to associate levels 
of attention with each subproblem that reflect their priority, and to integrate the planning 
process with the application of internal drives. We also hope to use goal information to 
direct the attentional processes in object recognition and motor control. 
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6.4 Spatial Knowledge in ICARUS 

An intelligent agent exists in some physical environment larger than its sensors can 
encompass. In order to reason about such surroundings, it must be able to represent familiar 
locations, organize them in memory, access them from that memory, and acquire them 
from experience. Before we can herald ICARUS as a successful model of such an agent, we 
must show it can handle all these aspects of spatial knowledge, and here we discuss the 
architecture's potential in this context. 

We will use the term place to refer to a location and its associated sense data (i.e., the 
visible objects it contains and their features). LABYRINTH's ability to deal with composite 
concepts suggests an approach to handling knowledge of places. Briefly, one can represent 
each place as a complex 'object concept', with objects visible from that location (e.g., boul­
ders, posts) as its component objects. Upon receiving a sensory description of its current 
surroundings, ICARUS would pass this information to LABYRINTH for incorporation into 
long-term memory. This process would involve classifying and storing component objects, 
redescribing the overall scene by treating the component labels as its 'features', and finally: 
classifying and storing the scene in memory, described in terms of its components. If th~ 
scene is genuinely new, LABYRINTH would store it as a new place concept; otherwise it would 
store the experience as a child of a familiar place. 

This approach to place description also supports the notion of landmarks, which are 
generally viewed as useful in navigation and exploration. In this framework, landmarks 
are objects that can be seen from many positions, making them components of many place 
concepts, and are sufficiently unique to aid in distinguishing places from each other. The 
complexity of spatial information requires that we incorporate the CLASSIT attention mech­
anism into LABYRINTH, and the augmented version should tend to focus on landmarks early 
in the process of place recognition. It should also use landmarks in identifying sequences of 
places as it moves along, which leads us to a different but related aspect of spatial knowledge. 

In addition to recognizing familiar places, an intelligent agent should also be able to 
navigate from one place to another, and knowledge of routes is generally viewed as useful to 
this end. In ICARUS, it seems natural to view routes as sequences of places that occur in the 
context of plans. Tilus, generating (or retrieving) a route involves generating (or retrieving) 
a plan for moving between two places, and acquiring a route involves storing a successful 
plan for moving from one place to another. We hope to use DlEDALUS to handle the task of 
navigation and the acquisition of route knowledge, letting the agent's navigational abilities 
improve with experience of a particular area. 

However, before any system can formulate routes, it must have some basic information 
about spatial relations between different places. We assume that LABYRINTH will recognize 
familiar places and store them in memory, but we need some additional mechanism for 
linking nearby places. To this end, we plan to incorporate a drive for exploration into 
ICARUS. Given no high-priority goals, this will lead the agent toward novel objects and 
places in its environment, so as to examine them in more detail. It will also lead the agent 
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Combining these four systems into a single, integrated architecture will be a challeng­
ing task, but we have made some progress in this direction. For instance, LABYRINTH, 

DJEDAL us, and MJEANDER already use the CLASSIT system as their primary subroutine. 
We forsee few problems with connecting DJEDAL us and MJEANDER; the former will generate 
plans that the latter can execute, and we will not attempt a tight integration of planning and 
execution in the near future. One major issue that remains is the interaction between inter­
nal drives and the planning process. Another concern is the interaction between planning 
and object recognition, but we hope to delay this in the first version of ICARUS, assuming 
that these processes run independently and in parallel. 

We plan to evaluate each of these systems experimentally using artificial domains, some 
purely symbolic in nature and others designed to mimic the continuous nature of the physical 
world. As in previous studies, we plan to vary aspects of the environment, such as the 
regularity of object classes and the complexity of problems. We also plan to vary aspects 
of the systems, such as their parameter settings and evaluation functions, and we hope 
to carry out lesion studies, comparing the behavior of each system to that when certain 
components are omitted. In each case, we plan on measuring learning in terms of performance 
improvement over time, examining both accuracy and efficiency as dependent variables. A 
central hypothesis is that retrieval time will not degrade with large amounts of experience; 
to this end, we plan to run the systems on training sets of many instances. 

Evaluating the overall architecture will be more difficult, but we will attempt this task 
only after studying the components in some detail. For this purpose we plan to use a 
simulated environment such as the World Modeler's System, 14 which simulates a three­
dimensional world obeying the laws of Newtonian physics. This simulation models time 
in discrete steps, updating the positions of objects based on their previous positions, their 
velocities, and the forces applied to them, including gravity, torque, and friction. The 
simulator computes the effects of elastic collisions among rigid objects, and alerts the agent 
when it touches other objects. The agent controls its effectors by placing them in desired 
positions, and can pick up objects as a primitive action. 

We have designed two initial domains within this testbed. The first involves a blocks 
world in which th~ agent consists of a robot hand that must pick up blocks and place 
them in specified locations. The second domain involves a mobile agent that can wander 
around, learning about its environment while subject to conflicting drives like hunger and 
curiosity. Both domains are relatively simple, but they should provide initial tests of the 
overall architecture and let us compare variants to each other. For instance, we expect 
the innate drives to have a major influence on both initial performance and learning. The 
simulated world also lets one control levels of uncertainty in sensori-motor data, and we will 
vary this as well. In the longer term, we hope to test ICARUS in complex worlds, and our 
ultimate goals include connecting the system to a physical robot for more realistic tests. 

' 14 This software was developed by researchers at Carnegie Mellon University and the University of Cali-
fornia, Irvine. 
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