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Recent Advances in Lensless Imaging

Vivek Boominathan1,*, Jacob T. Robinson1, Laura Waller2, Ashok Veeraraghavan1

1Rice University, USA

2University of California, Berkeley, USA

Abstract

Lensless imaging provides opportunities to design imaging systems free from the constraints 

imposed by traditional camera architectures. Thanks to advances in imaging hardware, fabrication 

techniques, and new algorithms, researchers have recently developed lensless imaging systems 

that are extremely compact, lightweight or able to image higher-dimensional quantities. Here we 

review these recent advances and describe the design principles and their effects that one should 

consider when developing and using lensless imaging systems.

1. Introduction

The basic principles behind the design of a camera have not changed in several centuries. 

About a thousand years ago, when Iraqi scientist/philosopher Ibn-al-Haytham described an 

imaging device in his “Book of Optics” [1, 2], he imagined it consisting of a box with some 

optics on one end and a sensing mechanism on another. From the earliest concrete designs 

for a camera, conceived by Johann Zahn [3], to their practical incarnations popularized 

by Niepce, Talbot, and Daugerre [4,5], cameras have remained remarkably consistent – 

a closed box with a focusing lens on one side and a sensor on the other. It seems no 

coincidence that this design resembles that of the human eye. While the last three decades 

have entirely transformed the technology that is used to realize both lenses (e.g., plastic 

molding, 3D printing) and image sensors (e.g., complementary metal-oxide-semiconductor 

(CMOS), charge-coupled device (CCD), single-photon avalanche diode (SPAD) detector 

arrays), the basic design has remained static. Lenses have served us remarkably well over 

the last few centuries, allowing many scientific discoveries, from the visualization of tiny 

bacteria to otherworldly galaxies. However, they also bring with them some limitations, 

especially in the context of emerging applications.

A myriad of new task-based applications such as wearables, implantables, robotics, internet 

of things (IoT), virtual/augmented reality, and human-computer interaction ([6–11]) are 

driving the miniaturization of cameras. Traditional lenses add weight and cost, are rigid, 

occupy volume, and have stringent focusing distance proportional to the aperture size. For 

these reasons, a radical redesign of camera optics is necessary to meet the miniaturization 

demands [12].
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In a lensless camera, instead of a focusing lens, a thin, light, and potentially inexpensive 

optical encoder is used along with appropriate computational reconstruction algorithms to 

recover the scene from captured sensor measurements. The captured sensor measurements 

no longer resemble the scene to be imaged – but when well designed, the measurements 

nevertheless contain sufficient information to recover an image of the scene. The data from 

these lensless imagers are usually post-processed using a computational algorithm that can 

demultiplex the sensor measurements and reconstruct a sharp image of the scene.

While digital post-processing of images is standard for tasks such as distortion correction 

[13], high dynamic range [14], synthetic depth-of-field (DoF) [15], noise removal [16], 

and low light photography [17], lensless cameras are fundamentally different in that 

the post-processing is a part of the imaging system design. They fall into the class of 

imaging systems called ‘computational imaging’ - in which the system hardware (optics) 

and software (algorithms) are designed together [18]. Hence, lensless cameras encode 

information indirectly in the measurement, then computationally extract it by solving an 

inverse problem.

Over the last decades, several lensless imager designs have emerged, each with its own set 

of unique performance characteristics. Lensless imaging has been shown to have potential 

utility in a wide variety of applications such as microscopy [19, 20], photography [21–24], 

in-vivo imaging [25, 26], wearables and implantables [27], and machine vision [11, 28].

Advantages of Lensless Imaging.

The principal advantages of lensless imaging are:

• Size. Lens-based cameras, microscopes, and telescopes, by virtue of the required 

focusing distance between the lens and the sensor, impose strict constraints on 

the volume of the device. While small pixel sensors and advanced manufacturing 

have enabled photography with fairly small cameras on our smartphones, 

lensless imaging systems can reduce this volume further, resulting in ultra-

compact imaging systems, sometimes reaching thicknesses of under a millimeter.

• Weight. Lenses account for the vast majority of the weight in conventional 

imaging systems. By eschewing a lens, emerging lensless systems tend to be 

much lighter – sometimes as light as a gram or smaller in weight.

• Cost. Lenses account for the largest fraction of the cost in conventional high-

quality imaging systems. By removing the need for a lens, lensless imaging 

systems can provide an order-of-magnitude reduction in cost – sometimes 

requiring nothing more than an image sensor.

• Scalability. With the advent of lensless imaging, cameras, and microscopes 

based on this technology can benefit tremendously from the scale-factor 

advantages provided by semiconductor fabrication technologies, which have so 

far only benefited image sensors (but not optics).

• Field of View. The well-known field-of-view (FoV) vs. resolution trade-off 

limits conventional imaging, especially conventional microscopy. Lensless 
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imaging provides the potential for cellular resolution imaging while achieving 

FoV limited only to the size of the image sensor chip, a significant advantage in 

some applications.

• Visual privacy. The captured sensor data in a lensless system is unrecognizable 

visually, and reconstructing an image from the data requires intimate knowledge 

of the parameters of the imaging system. The obscuring of the image on sensor 

data opens up the potential for realizing lensless cameras that provide enhanced 

levels of privacy while providing adequate functionality for many applications.

• Compressive imaging. Because lensless imagers do not focus the light from 

a point in the scene onto a point on the sensor, and rather map a point in the 

scene to many points on the sensor, they are amenable to compressive sensing 

approaches [29, 30]. This means that one may reconstruct images with more 

pixels than the sensor has measurements, or higher-dimensional quantities, such 

as 3D imaging [25, 27, 31, 32], hyperspectral [33] or videos from single-shot 2D 

measurements [34].

Limitations of Lensless Imaging.

The principal disadvantages of lensless imaging are:

• Quality. Lensless imaging excels in the presence of challenging constraints 

on weight, size, scale, form-factor. However, lenses have been the mainstay of 

imaging for several centuries for a reason: they produce high-quality images. 

Therefore, in 2D imaging applications where application-dependent constraints 

do not limit the use of a focusing lens, lens-based imaging should remain the 

preferred method.

• Reconstruction Algorithm. All lensless imaging systems rely on computational 

reconstruction algorithms to recover the unknown image of the scene. This adds 

additional complexity to the imaging system in terms of the need for processing 

capability, additional power consumption, limited battery life, etc., and often 

means that real-time viewing of the image reconstruction is not possible or has 

some latency.

• Light Collection. Often, camera lenses are designed to be larger than the sensor 

to collect more light, providing brighter images and better noise performance. 

The light collection ability of a lensless camera, on the other hand, is limited by 

the sensor size.

2. Anatomy of a Lensless Camera

A traditional lens-based camera for photography consists of a focusing lens (single or 

multiple elements) and an image sensor typically placed at or near the focal distance from 

the lens. The lens focuses light from the scene onto the sensor, such that a point in the scene 

is mapped to (ideally) a single pixel on the sensor. In contrast, in a lensless imaging device, 

there is no lens. Instead, some kind of optical modulator (e.g. a coded amplitude mask, a 

diffuser) may be placed between the scene and the image sensor – typically very close to the 
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image sensor. Then, a measurement, which looks nothing like the final image, is captured 

on an image sensor and a computational inverse algorithm is solved to reconstruct the image 

of the scene. The relationship between the scene and the measurement can often be written 

as a linear matrix multiplication, so the captured image is interpreted as a weighted sum of 

system response functions, one from each point in the scene. Solving the inverse problem 

to reconstruct the image then involves inverting the system matrix, which must be known or 

calibrated.

Based on different optical modulations, lensless systems can be broadly classified into 

illumination-modulated, mask-modulated, and programmable-modulator systems (Fig. 1). 

This section will describe the general anatomy of a lensless camera: sensor, modulator, and 

illumination.

2.1. Sensor

For visible light sensing, conventional CMOS or CCD sensor arrays are typically used. For 

imaging beyond the visible domain, such as infra-red imaging, sensor arrays using InGaAs 

sensors (SWIR) [22] or microbolometers (LWIR) [28] are available. To capture sufficient 

diversity of information to reconstruct an image, multiple measurements may need to be 

obtained. These measurements can be obtained in parallel via the use of a single focal plane 

array sensor with multiple pixels simultaneously capturing information or by using a single-

pixel sensor but by acquiring multiple measurements with changing modulation between the 

measurements. Time-resolved sensors, such as Single Photon Avalanche Photodiode (SPAD) 

[35], can also provide additional information diversity for lensless imaging [36–38].

2.2. Modulator

In order to reconstruct an image, lensless cameras need to optically encode the scene 

information – e.g., by having a different system response for each pixel of the scene. The 

system response could be a holographic response when the scene interferes with coherent 

light or could be a pattern produced by an optical element in the system. While attempts 

have been made to reconstruct images from a lensless system consisting only of a sensor 

placed some distance from the object [39], the result is an extremely ill-posed inverse 

problem, since there is very little difference between measurements taken from different 

positions in the scene. Hence, a modulating optic (e.g., a mask placed near the sensor) is 

generally required for practical lensless imaging, such that the measurement is significantly 

different for each pixel in the scene. There are several choices for modulation (Fig. 1):

Fixed Amplitude or Phase mask modulators: Amplitude-only modulators are 

modulators that consist of transparent and occluding regions arranged in some fixed spatial 

pattern on a 2D mask. Most practical realizations only provide binary control of amplitude, 

since grayscale is generally more difficult to fabricate. Binary amplitude modulation were 

first used for X-ray and gamma-ray imaging [40] due to impractical lensing materials 

for such high-energy light. Recently, amplitude modulators have been adapted for lensless 

imaging in the visible, short-wave infrared, and thermal wavebands. Amplitude modulation 

in the visible wavelengths can be achieved by etched chrome on glass [22, 27, 41, 42] or 
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dark ink on thin film. In general, reflective metal on glass provides better occlusion of light 

compared to ink. In the thermal wavelength regime, etched silicon can be used [28].

Phase modulators change the relative path-length (or effective phase retardation) in a 2D 

pattern. Phase masks have benefits over amplitude masks in that they are more light efficient 

(they do not attenuate the incoming light) and they can concentrate light in order to create 

sharper and higher-contrast patterns on the sensor [23], which usually improves image 

reconstruction performance.

Specific designs that fall under this category of lensless imagers with a fixed mask 

modulator are discussed in detail in Section 4.

Programmable modulator: Dynamic and programmable modulators, also referred to 

as Spatial Light Modulators (SLMs), can be used as an alternative to fixed masks. The 

most common SLMs are based on liquid-crystal (LC) technology [43], which is usually 

used for programmable amplitude modulation [44–46]. For realizing programmable phase 

modulation, Liquid Crystal on Silica (LCoS) devices may be used [47].

The primary benefit of a programmable modulator is that one can change the mask 

pattern quickly and capture multiple images, each with different optical encoding. 

In imaging designs with limited number of pixel photo-diodes [44, 48, 49], it is 

essential to use programmable modulators in order to obtain sufficient measurements for 

reconstruction. When sensor arrays are used, the ability to change the modulation pattern 

between acquisitions provides an extra degree-of-freedom that can improve reconstruction 

performance or resolution. The main drawback of a programmable modulator is that, when 

multiple measurements are needed for reconstruction, the image capture time increases. 

Additionally, LC based technologies are polarization sensitive and diffraction from the pixel 

grid often causes unwanted light scattering. Specific designs that fall under the category of 

lensless imagers with a programmable modulator are discussed in detail in Section 5.

Illumination modulators: Some lensless designs instead use illumination devices to 

pattern the light in the system, rather than detection-side patterning. Depending upon the 

property of the illumination used, the techniques are: shadow imaging, holographic imaging, 

or time-resolved imaging. Specific designs that fall under the category of lensless imagers 

with illumination modulator are discussed in detail in Section 3.

2.3. Illumination

Illumination is a critical part of any imaging system. Below, we highlight the most salient 

illumination strategies employed:

Ambient illumination: In some imaging scenarios, especially in macro-imaging, 

consumer imaging, or photography contexts wherein subjects are far away from the camera, 

ambient illumination scattering from subjects is sufficient, and no additional considerations 

are necessary.
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Trans-illumination: When access to both sides of a sample is available, trans-illumination 

can be used to illuminate the sample from one side and image from the other side. Many 

microscopes, including lab-on-a-chip applications, use this configuration with the sample 

placed on a glass slide and inserted between the illumination and the imaging sides of the 

imager.

Off-chip, side illumination: In many in-vivo microscopic imaging applications, ambient 

illumination is insufficient, and trans-illumination is physically impossible. Therefore, one 

needs to actively illuminate the sample from the same side as the imager (epi-illumination). 

One solution for this is to have one or more LEDs placed around the sides of the lensless 

imager directing light towards the sample [26]. For microscopy, where the sample is placed 

very close to the imager, uniformly illuminating the sample is challenging and requires 

careful design with a combination of optics (optical fiber, prisms, etc.) and mechanical 

placement of the sources (raised platform, angled-in, etc.).

On-chip, integrated illumination: When the FoV being imaged is very large and the 

sample is close to the imager, the ideal configuration is an on-chip array of light sources, 

such as light-emitting diodes (LEDs) or vertical-cavity surface-emitting laser (VCSEL), 

for illuminating the sample [50]. However, such a design introduces a whole host of new 

challenges that need to be addressed, in addition to the fabrication challenges of such 

a design. Firstly, the on-chip sources occupy the space that would have otherwise been 

image sensor pixels – meaning that the acquired lensless sensor data has missing pixels that 

need to be interpolated or otherwise accounted for in computational reconstruction. Second, 

light leakage directly to the sensor pixels from these on-chip sources becomes a problem, 

especially for the pixels near the sources.

Coherent illumination: Digital holography-based lensless systems rely on the spatial and 

temporal coherence of light sources. In such cases, laser diodes or narrow-band LEDs can be 

used. Given that multiple previous review articles [20, 51] have focused on this large area of 

research, we limit our scope primarily to non-holographic lensless imagers.

2.4. Sensor-Mask Distance

A primary advantage of mask-modulated lensless cameras is that the sensor-to-mask 

distance can be extremely small, as compared to the sensor-to-lens distance in a lens-based 

camera. This allows the overall thickness of a lensless system to be extremely small (less 

than 200 μm [27, 52]) while maintaining a large FoV. The mask design dictates the ideal 

sensor-mask distance; masks with smaller features will have a smaller sensor-mask distance 

and larger angular FoV, but worse resolution, as compared to masks with larger features 

and larger sensor-mask distances. Larger features are usually easier to fabricate and more 

tolerant to misalignment, and when the sensor-mask distance is on the order of millimeters, 

one can conveniently affix the mask to a commercial sensor without removing the protective 

coverglass [11, 23, 53]. On the other hand, masks with very small features can be fabricated 

very precisely on-chip with the sensor for a compact and stable design [27, 50]. Hence, 

the sensor-mask distance is a design degree-of-freedom that can be optimized based on the 

application.
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2.5. Object Distance

The working distance from the lensless imager is often not a design degree-of-freedom 

but rather an application-dependent constraint, which has significant implications for the 

design in two ways. First, the object distance imposes physical limits on what illumination 

strategies can be incorporated. As the object distance becomes larger, there are fewer 

physical constraints on illumination devices, and the smaller NA gives more flexibility 

for achieving near-uniform illumination of the target. In photography, for example, ambient 

illumination is usually sufficient, whereas in fluorescence microscopy, one must design for 

both the illumination and detection devices. Second, the absence of a focusing lens means 

there is no magnification in lensless imaging devices; the syst em is non-telecentric and 

resolution varies with depth. Hence, spatial resolution δs is best characterized as angular 

resolution δα, which can be computed from the target distance d as δs = d * tan(δα). One 

important aspect to remember here is that many applications have a desired spatial resolution 

(e.g., 5 microns to image cells) which, given a fixed angular resolution, sets a maximum 

distance the target can be from the sensor.

3. Illumination-modulated Lensless System

Illumination-modulated lensless systems rely on how controlled illumination interacts with 

the sample. Properties of illumination such as location, coherence, and pulsing are exploited 

to capture a set of images with different illumination diversity, then reconstruct the scene.

3.1. Shadow Imaging

The simplest form of illumination-modulated lensless imaging uses a constant illumination 

source and an image sensor. Commonly used for lab-on-a-chip microscopy applications, the 

illumination and the image sensor are placed on opposite sides of the microscopic sample 

(Fig. 2A), usually with a larger illumination-to-sample distance than the sample-to-sensor 

distance. When the sample is very close to the sensor, the result is a shadow image [57]; 

when the sample is slightly further away, such that it diffracts (defocuses) slightly, the result 

is diffraction imaging [58]. Diffraction-based techniques can handle larger sample-sensor 

distances compared to shadow imaging and are discussed in the next section. The shadow 

imaging scheme requires the samples to be placed as close as possible (typically less than 

500 μm) to the surface of the imaging sensor [20].

Lange et al. [57] demonstrated a miniaturized microfluidic shadow imaging device for 

studying C.elegans. This early system was very compact, but the low resolution (>10 μm) 

limited its applications. Ozcan et al. [19] demonstrated a wide FOV imaging platform that 

was two orders of magnitude larger (37.25 mm × 25.70 mm) than the conventional optical 

microscope for monitoring the cells on-chip, termed LUCAS. This system recorded the 

shadow image of cells onto the sensor plane to monitor and count different cell types. 

Because of the large pixel size sensor (9 μm) used in the system, its spatial resolution was 

limited.

Pixel size limitations can be overcome by flowing the sample over the sensor and exploiting 

the temporal dimension to improve resolution. To physically sample a higher resolution 
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than pixel size, Heng et al. [59] and Cui et al. [60] fabricated a linear array of sub-micron 

metallic apertures on the sensor with the apertures centered on the pixels. By flowing the 

sample, C.elegans, in this case, within a microfluidic channel at a titled angle over the linear 

array, adjacent line scans of the sample are projected onto the pixels. By estimating the 

flow velocity, the line scans can be un-skewed to create an image of sub-micron resolution. 

The resolution of this optofluidic microscope is fundamentally limited by the size of the 

apertures and the spacing in between. Zheng et al. [54], on the other hand, opted to use 

computational methods instead of physical apertures to reconstruct sub-micron resolution 

images from a sequence of pixel-size-limited images. As the sample flows over the sensor, 

sub-pixel shifted projections are captured as a sequence of low-resolution images. A pixel 

super-resolution algorithm can be used to combine the low-resolution images to produce a 

single high-resolution image (Fig. 2B).

3.2. Holographic lensless imaging

A lensless holographic imaging system uses a coherent or partially coherent light source to 

obtain a diffraction pattern on the sensor [61, 62]. Similar to shadow imaging, lensless 

holographic imaging is commonly used for lab-on-a-chip microscopy applications and 

has the microscopic sample placed in between the light source and the sensor (Fig. 2A). 

However, since holographic imaging encodes complex-field information (amplitude and 

phase) instead of just amplitude information, the sample can be reconstructed at higher 

fidelity than shadow imaging. The coherence of the light source is a critical parameter in 

holographic imaging; lasers provide good spatial and temporal coherence, but can suffer 

from coherent speckle noise. LEDs can be used to tune the spatial coherence according to 

the size of the source, its bandwidth, and its distance to the sample [63, 64].

An approach to reconstruct is to consider the diffraction pattern on the sensor as an 

in-line hologram [65, 66]. An in-line hologram is the intensity pattern generated by the 

interference between the light scattered by an object on the sample and a reference wave 

that passes undisturbed through the sample. Then, the sample can be reconstructed from 

the measurements by digitally back-propagating using the Fresnel diffraction integral [67]. 

In-line hologram reconstruction method was used to show high-resolution images of red 

blood cells on lab-on-chip devices [68]. However, this basic implementation of digital 

holographic reconstruction is limited to only relatively sparse samples because the scattered 

waves need to be weak compared to the reference wave.

A more general approach is to consider the holographic measurement as a coherent 

diffraction pattern without any assumption of clean reference wave. Under this general 

consideration, additional information such as prior knowledge of object support in the 

sample (like sparsity) [64] or multiple measurements under different device geometries [55, 

56, 69, 70] are needed for recovery of the sample. Iterative phase retrieval algorithms [71] 

is used to incorporate the additional information and reconstruct images of the sample. 

Multiple measurements, in particular, can be used to reconstruct dense samples such as 

tissue slices or blood vessels. Greenbaum et al. [55] captured multi-height measurements by 

varying sample to sensor distance to reconstruct a human breast cancer tissue slice (Fig. 2C). 
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Luo et al. [56], instead, captured multiple measurements under different angular illumination 

to reconstruct the human breast cancer tissue slice (Fig. 2D).

Holographic lensless imaging has been a focus for previous review articles [20, 51] and we 

refer the reader to those articles for further details.

3.3. Time-resolved lensless imaging

Pulsed illumination coupled with time-resolved sensors can use the time-of-light 

information to image the scene [72]. High time-resolution (order of picoseconds [73]) 

of such systems has enabled its success in the challenging case of non-line-of-sight 

imaging around a corner [74,75]. Similar concepts have been used to demonstrate lensless 

imaging; however, the extent of work in this direction is limited. Kirmani et al. [36] 

showed, through simulation, lensless imaging with a pulsed light source and a small array 

time-resolved sensor. Wu et al. [37] showed real experiment lensless imaging but with 

expensive and bulky streak camera [76]. Satat et al. [38] proposed a time-resolved lensless 

imaging framework with spatial illumination patterning, sensor placement optimization, and 

using compressive sensing principles to reconstruct. However, the results were limited to 

numerical simulations.

4. Mask-modulated Lensless System

Within the class of mask-modulated lensless systems, a fixed optical mask is introduced 

to make a versatile lensless system that can work for a large range of object distances 

and passive or uncontrolled lighting scenarios. The mask modulates the incoming light to 

produce an encoding that can be decoded using computational techniques. Mask-modulated 

lensless cameras were used to demonstrate 2D imaging [22–24], refocusing [23], 3D 

imaging [23, 53], and microscopic imaging [23, 25, 27]. Example imaging results from 

mask-modulated lensless imagers are show in Fig. 5. The majority of recent lensless designs 

fall into this category.

A mask-modulated lensless camera consists of an optical mask placed in front of an image 

sensor, often imaging a scene with ambient illumination. The mask modulates the light from 

the scene and forms a multiplexed measurement on the sensor. For a typical mask-modulated 

lensless system shown in Fig. 3, we can say the following:

• Magnification. For a given mask-to-sensor distance, the magnification M is:

M = d
z , (1)

where d is the mask-to-sensor distance, and z is the scene-to-mask distance. This 

equation is similar to that of a fixed focus simple lens system, where d would be 

the image distance and z is the object distance.

• Field-of-view. The angular FoV is given by:

θFoV = min 2θCRA, 2 tan−1(s/(2d)) , (2)
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where θCRA is the chief ray angle (CRA) of the pixels, and s is the sensor size. 

When d is small, the FoV is limited by the CRA [22]. When d is large, the sensor 

size limits the FoV [46]. The CRA describes the maximum angle of incoming 

light for which the pixels are fairly sensitive. That is, light entering the pixel 

from angles larger than ±θCRA with respect to its surface normal will be captured 

with very low sensitivity.

The optical masks used for lensless cameras can be broadly categorized into amplitude 

modulators [21, 22, 27, 77] and phase modulators. The phase modulators can be further 

sub-categorized into phase gratings [78, 79], diffuser [53, 80], and phase masks [23]. 

Illustrations of these masks are shown in Fig. 3. We will go through each of these masks 

below.

One key characteristic of a mask-modulated lensless system is the pattern that the mask 

produces on the sensor for a point source in the scene. We call this pattern the point-spread-

function (PSF), and its properties determine the imaging model of the system (Section 6.1). 

We will go through the various choices of PSFs after we describe the main types of optical 

masks.

4.1. Amplitude Modulators

An amplitude mask either passes, blocks, or attenuates the incident light. For ease 

of fabrication, binary amplitude masks are most commonly used. The simplest binary 

amplitude mask is a pinhole; however, the diminutive light throughput makes it extremely 

impractical. Early work on amplitude mask modulators with multiple “pinholes” or 

apertures was in the X-ray and gamma-ray imaging regimes [40, 81], where it is much 

easier to block than refract the high-energy light. Some of the lensless designs in the visible 

wavelengths were inspired by the early work in X-ray and gamma-ray imaging [12].

The light modulation by amplitude masks is achieved and modeled in two ways: as a shadow 

of the mask when mask-sensor distance is small and as diffraction when mask-sensor 

distance is large. The distinction can be roughly based on Fresnel Number NF = a2/dλ 
[67] associated with size a of the mask’s open apertures, the distance d to the sensor, and 

wavelength λ of light. If NF is much greater than 1, then geometrical properties are valid, 

and the PSF mimics the shadow of the mask pattern. On the other hand, when NF is less than 

1, diffraction effects need to be considered to determine the PSF.

Asif et al. [22] used an amplitude mask with a separable pattern for their FlatCam device 

and placed it close (1.2 mm [12]) to the sensor (Fig. 3(B)). The PSF of FlatCam was 

modeled as the shadow of the pattern. A separable pattern is constructed as an outer product 

of two 1D patterns, and using such a pattern for the PSF simplifies the computational model 

of the lensless camera (see Section 6.1). FlatCam showed the promise of using amplitude 

masks for creating very thin cameras [12]. Adams et al. [27] further miniaturized this 

design (200 μm mask-sensor distance) with their FlatScope device (Fig. 3(A,E)), to show 

applications in 3D fluorescence microscopy. FlatScope showed the promise of breaking 

the trade-off between field-of-view (FoV) and resolution, placed by microscopy lenses, by 
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experimentally showing an FoV of 6.52 mm2, 10× the FoV of a microscope with similar 

resolution objective lens and the same sensor size.

Nakamura, Tajima, and Shimano et al. [41, 77, 82] introduced a Fresnel Zone Aperture 

(FZA) as the amplitude mask pattern placed close (2 mm) to the sensor (Fig. 3(C,F)). 

At this distance, the PSF is the shadow of the FZA pattern itself. Ghosting effects in the 

image reconstruction are subdued by combining measurements through a set of 4 to 16 

radially-phase-shifted FZA patterns. Wu et al. [42] showed imaging with a single FZA mask 

(3 mm mask-sensor distance), using a compressive sensing algorithm [83] to reconstruct.

When the distance of the amplitude mask to the sensor increases to more than 10s of 

millimeters and with smaller mask feature sizes, the Fresnel number becomes less than 1, 

and diffraction effects become significant. DeWeert et al. [21] used a separable amplitude 

pattern (at 65 mm from the sensor) whose PSF remained separable even with diffraction 

effects. A separable Doubly-Toeplitz model was then used to reconstruct cityscape images. 

Reshetouski et al. [28] used Fresnel Zone Plates (FZP) to replace pinholes and achieve 

relatively light-efficient focus points within the PSF. With thermal wavelengths, short mask-

sensor distance (3.2 mm [28] is sufficient for significant diffraction (NF < 1). In the visible 

wavelengths, Reshetouski et al. [84] achieved the same diffraction focus points by placing 

the FZP mask at a larger distance of 38.6 mm from the sensor.

Amplitude masks generally have the advantage of being easier to fabricate for a wide range 

of wavelengths. Outside the visible range, materials that can block light are easier and 

cheaper to find than those that can refract light. Chromium (Cr) is the material of choice 

for blocking light in the visible and thermal wavelength range, because of its good adhesion 

to glass. Chromium is deposited on a transparent wafer (glass for visible light, silicon for 

thermal), patterned using a photo-lithography process and then etched to produce the mask 

pattern [27, 42].

A major disadvantage of amplitude masks is the light throughput. Since the mask 

modulates light by either passing or blocking light, many photons are lost, leading to 

low signal-to-noise-ratio (SNR) measurements. Low SNR is particularly problematic in low-

light scenarios and photon-limited imaging like fluorescence or bioluminescence imaging. 

Decoding the lensless sensor capture tends to amplify noise, leading to poor reconstruction.

4.2. Phase modulators

A phase modulator modulates the phase of incident light by the principles of wave optics 

[86]. Phase modulators allow almost all of the light to pass through, providing high SNR. 

Hence, they are desirable for low-light scenarios and photon-limited imaging.

Phase modulators can be sub-categorized into phase gratings, diffusers, and phase masks. 

Phase gratings and masks can be fabricated either by photo-lithographically etching 

patterns into a transparent substrate (e.g. glass) or by an additive process of controlled 

polymerization of photoresist on the transparent substrate [87]. Diffusers can be made by 

etching random surface heights onto glass or inexpensive sandblasting to produce a rough 

surface on the glass.

Boominathan et al. Page 11

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2.1. Phase gratings—Phase gratings modulate the phase of incoming light at each 

lateral pixel by 0 or π rad. Stork and Gill [79] exploited an odd-symmetry binary phase 

structure (Fig. 3(G)) to produce nulls or zero intensity regions on the sensor. The gratings 

were used to demonstrate ultra-miniature lensless imaging [52, 78] and thermal lensless 

imaging [88]. However, the imaging performance of these systems was limited to low-

resolution.

4.2.2. Diffusers—Diffusers are an inexpensive way to achieve phase modulation. 

Diffusers have continuous random height profiles and produce pseudorandom patterns as the 

PSF. Singh et al. [80] introduced scatter-plate microscopy, which used the speckle pattern 

produced by a diffuser as the PSF. The auto-correlation of this speckle pattern is close to a 

‘δ’ function with a constant background so that the sample image can be reconstructed by 

cross-correlating the measurements with the PSF. Antipa and Kuo et al. [24, 53] introduced 

DiffuserCam, in which a diffuser (with Gaussian 0.5° FWHM angular spread) was placed 

~9 mm in front of the sensor, generating a high-contrast caustic pattern PSF (Fig. 6(C)). 

Using convex optimization techniques for image reconstruction with compressed sensing, 

DiffuserCam was demonstrated for 2D [24] and 3D imaging [53]. For microscopy, Kuo et 

al. [25] fabricated a random microlens diffuser (placed at 3.8 mm mask-sensor distance, 

Fig. 3(D)) to improve the contrast of the PSF and achieved improved reconstruction quality 

in low-light scenarios of fluorescence microscopy. Tian et al. [89] designed a random 

microlens array with reduced inter-lens cross talk to simplify the image reconstruction 

process and drastically improve the reconstruction speed.

4.2.3. Phase Masks—Phase masks provide nearly-continuous phase modulation, 

limited only by the fabrication method used. With such control, phase masks can achieve 

a large range of PSFs. However, relative to previous phase modulators, fabricating custom 

phase masks is more involved and can be relatively expensive. Boominathan et al. [23] 

introduced PhlatCam with a designed phase mask (Fig. 3(H)) that produced a very high 

contrast contour pattern as the PSF. Inspired by Chi et al. [90, 91], PhlatCam used 

phase retrieval methods [92] to design the phase mask for the target contour PSF. The 

versatile PhlatCam (~2 mm mask-sensor distance) prototype was used for 2D imaging 

at far distances, refocusing at medium distances, 3D imaging at close distances, and 

microscopy at very close sample-mask distance. Adams et al. [26], used the mask design 

from PhlatCam and rebuilt the system with integrated illumination and wavelength filter, 

called FlatScope2.0, for in vivo microscopy applications.

4.3. Point spread functions

All mask-modulated systems can be characterized by their response when illuminated by a 

single point source of light. This response is called the point-spread-function (PSF), whose 

properties are critical for image recovery. Generally, the desired properties of a lensless 

PSF is that its auto-correlation is close to a ‘δ’-function and has an almost flat magnitude 

spectrum. This allows for maximal information transfer onto the measurements and reliable 

recovery of images [23].
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The PSF design, in some cases, is coupled with the choice of mask used. Amplitude masks, 

in most cases, are used to produce binary PSFs, but the PSF could deviate from the target 

PSF due to diffraction [21,23]. Phase gratings are used to produce reliable nulls in the 

PSF by introducing an odd-symmetric phase [52, 78]. Diffusers produce caustic patterns as 

their PSF (Fig. 6(C)) when the mask-sensor distance is at the caustic plane [24, 53] and 

speckle pattern PSFs [80] at further distances. Phase masks were shown to achieve a larger 

range of PSFs [23]; however, the achievable space of the PSFs is less understood due to the 

non-convex nature of the phase mask design using phase retrieval methods.

A plethora of PSFs have been explored for use in mask-modulated lensless imaging, many 

of which are realized using amplitude masks. A separable PSF (Fig. 6(A)) was shown to 

reduce the computation complexity the camera model to two smaller operations (see Section 

6.1 for more details), each applied on the rows and the columns of the image [21, 22, 27]. A 

separable PSF, by definition, is constructed by an outer product of two 1D vectors. Patterns 

based on Uniformly Redundant Array (URA) [93], Modified Uniformly Redundant Array 

(MURA) [94], and Maximum Length Sequence (MLS) [95] are popular choices due to their 

auto-correlation properties.

A Fresnel Zone Aperture (FZA) PSF, constructed like a Fresnel zone plate [96] amplitude 

mask, was used by [41, 77]. When the measurements are post-multiplied by the same FZA 

pattern, it was observed the scene spatial information was transferred to the magnitude in 

the frequency domain through the resultant moiré fringes. This led to a one-step analytical 

solution to reconstruct images from the Fourier transform of the moiré fringes. However, 

the frequency domain also contains information that interferes with the reconstruction. 

Therefore, the scene is imaged through a set of 4 to 16 phase-shifted FZA PSFs and then 

combined to subdue this unwanted information. A single FZA PSF was also used where 

reconstruction was done with iteratively solving a convex minimization problem [42]. On 

the other hand, Fresnel Zone Plate patterns were used for its original intended property of 

diffractively focusing light to a point [96] to create a Sparse URA PSF (Fig. 6(E)) [28, 84].

By controlling the nulls in the PSF using odd-symmetric bi-level phase-gratings, a Spiral 

PSF (Fig. 6(B)) was proposed [52, 78]. A tessellation of Spiral PSFs was proposed to cover 

a large sensor area [79]. However, precise control of the PSF is difficult with this design. 

On the other hand, a multi-level phase mask can be designed to achieve a wide variety of 

PSFs. A contour PSF [23] (Fig. 6(D)) was proposed to have the desirable properties of an 

invertible PSF and was realized using a phase-mask designed using phase retrieval methods 

[71].

5. Programmable Modulator Lensless System

Various Spatial Light Modulator (SLM) technologies such as LCD, LCoS, and DMD can 

provide dynamic programmable optical encoding [44–46]. Programmable modulators allow 

for multiple lensless images to be captured for each reconstructed image; the different 

diversity in the measurements then leads to better reconstruction [21] or allows very 

few pixels on the sensor [44]. Multiple measurements can also be used to simplify the 

reconstruction algorithm while maintaining high fidelity [46].
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Huang & Jiang et al. [44, 98] used an LCD panel as a transmissive amplitude modulator to 

compressively [29, 30] capture scene images onto just 1 or 2 pixels. The compression comes 

from the fact that the number of measurements taken is a fraction (12.5% to 25%) of the 

number of pixels in the final reconstruction image. Expansion up to 4 × 4 pixel array, with 

spaced apart pixels, were explored to split the field-of-view [99]. Zomet and Nayar [45] used 

an LCD panel to act as a controllable pinhole to track a moving object onto a full-resolution 

sensor, without any moving parts.

Multiple measurements through different mask patterns capture the scene onto the sensor 

through different “filters”. Each filter may capture some part of the scene information 

reliably while discarding other information. Such information differences could be 

characterized in the Fourier domain or similar analysis, and combining the different filtering 

can lead to a better reconstruction. Although [21] showed reconstruction with single-shot 

amplitude modulation, the artifacts in the reconstruction were substantially reduced by 

incorporating 2–4 measurements with different mask patterns. Via simulation, [12] showed 

that increasing the number of measurements improved the reconstruction asymptotically, 

with higher gains in the beginning and diminishing returns at a larger number of 

measurements. Additionally, there is a trade-off when trying to image dynamic objects, 

which time-limit the number of images that may be captured for each reconstruction.

Miller et al. [97] introduced a different way of achieving diversity in measurements by 

using reconfigurable particles as scattering masks (Fig. 7). The particles are silica-coated 

gold nanowires suspended in water to form a scattering mask. The nanowires are highly 

polarizable, exhibit a strong response to the applied electric field, and can be oriented in 

different ways depending on the direction of the applied field. This technology is similar to 

LC technology, except that multiple random particle configurations are achieved here. The 

final reconstruction was improved by measuring with and without applied field and under 

different directions of the field. As before, the improvement in reconstruction is asymptotic 

with the increase in the number of measurements.

Hua et al. [46] used a translating mask, implemented using LCoS, to increase the diversity 

in terms of the viewpoint of the camera. This leads to a depth-dependent translation of the 

measurements and the information from a particular depth can be enhanced by summing 

the appropriately shifted measurements. Reconstructing from such combined measurement 

produces an image focused at a particular depth plane. By designing the amount of shift and 

the number of shifts, the effect of the focusing operation can be made to depend minimally 

on all depths, except one. This allows decoupling the optimization problem of joint texture 

recovery of all depths to just individually solving each depth plane, resulting in a fast 

recovery.

6. Image Reconstruction

The absence of a lens implies that the measurements in a lensless camera are not direct 

measurements of the scene intensity. Instead, the particular design of the lensless imaging 

device induces a relationship (in most cases, this relationship is linear) between the 

Boominathan et al. Page 14

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensor measurements and the scene intensity that needs to be recovered by computational 

reconstruction.

6.1. Forward Model

The relationship between the sensor measurements and the scene intensity is typically 

represented using an appropriate forward model, which calculates the expected measurement 

for a given scene. Often, the optical physics involved is complicated and difficult or 

computationally intensive to model comprehensively. The main goal of the forward model 

is to choose the right approximations for this relationship (typically related to the various 

assumptions that one can make about the scene being imaged) that achieve a practically 

useful trade-off between accuracy and reconstruction complexity.

6.1.1. Forward model for 2D imaging—The simplest case for the forward model 

arises when the scene can be assumed to be a single planar target with 2D spatial 

intensity variations in the target plane to be imaged. In this case, one can usually write the 

relationship between the captured sensor measurements y, and the unknown scene intensity 

x using linear matrix multiplication as,

y = Hx (3)

where H is a matrix that is dependent on the various design choices made. In particular, 

the elements of the matrix H are dependent on the choice of sensor, the choice of mask, 

the sensor-mask distance, the mask-scene distance, and any other system design parameters. 

While this general forward model is broadly applicable for a wide variety of lensless 

imaging system designs, in the absence of any further assumptions it will be challenging 

to implement practically for sensors with large pixel counts. Consider, for example, a 

megapixel sensor with a megapixel image being reconstructed: H is a 106 × 106 matrix, 

so there are 1012 elements in the matrix and every application of the forward model 

requires 1012 multiplications making it infeasible both in terms of memory complexity 

and computational complexity. To significantly reduce the computational complexity of 

the forward model, two ideas have emerged as powerful alternatives: convolutional and 

separable approximations.

Convolutional model:  Under certain conditions such as narrow field-of-view, sufficient 

mask-sensor distance, and far-field approximation, one can show that the general linear 

model can be approximated as a convolution with a point-spread-function (PSF) (i.e., the 

relationship between scene intensity and sensor measurements is shift-invariant) [23, 53]. 

In this case, the relationship between the captured sensor measurements Y(x, y) and the 

unknown scene intensity field X(x, y) can be written as

Y = X ∗ h, (4)

where h(x, y) is a 2D kernel (the PSF) and * denotes 2D convolution over (x, y). The benefit 

of this convolutional approximation is two-fold. First, instead of saving the entire 106 × 

106 matrix H, one only needs to save a single 2D kernel h. Second, the forward model can 

be efficiently implemented in the Fourier domain, which reduces computational complexity 
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from (N2) to (N log N), where N is the number of pixels – resulting practically in three 

orders-of-magnitude reduction in computational complexity. A cropped convolution model 

[53] (convolution followed by cropping) can be used when the sensor is not large enough to 

contain all the light coming from wide FoV angles.

The main limitation of the convolutional model is that when the FOV increases or 

equivalently when the object to mask distance significantly reduces (for applications such 

as microscopy), the shift-invariance assumption breaks down – and the convolutional model 

is no longer a good approximation. One technique that has been explored to extend the 

applicability of this model is a local convolutional model [25] — wherein the convolution 

kernel is assumed to change slowly over the field-of-view.

Separability model:  Another alternative for reducing the computational and memory 

complexity of the general linear model is through separability. A mask whose 2D spatial 

pattern is separable, i.e., can be represented as a cross-product of two 1D functions, 

results in a separable relationship between the captured sensor measurements and the scene 

intensity [21, 22]. In this case, the relationship can be compactly represented as

Y = ΦLXΦR
T , (5)

where ΦL and ΦR represent the separable operations on the image’s rows and columns, 

respectively. As such, the main advantage of this separability is that the ΦL and ΦR matrices 

are much smaller than H in Eq 3. For the example of a megapixel sensor and image, the 

separable matrices are 103 × 103, reducing the memory needed by six orders-of-magnitude. 

In addition, since the separable matrix operation is massively parallel and can be applied 

row-by-row and then column-by-column, this also reduces the computational complexity 

to (N) where N is the number of pixels. An extended separable model called the Texas 

Two-step Model [27] allowed the use of large separable pattern masks for compact and wide 

field-of-view microscopy applications.

6.1.2. Forward model for 3D imaging—All of the models developed above can be 

extended to 3D imaging. The key aspects to remember are: (a) the transfer functions 

that relate scene intensity to sensor measurements are depth-dependent, and (b) light 

distributions arriving from multiple depth planes are additive at the sensor. Given this, the 

general linear model, the convolutional model and the separable model can all be extended 

to 3D as below:

y = ∑
z

Hzxz, Y = ∑
z

Xz ∗ hz, Y = ∑
z

ΦLzXzΦRz
T , (6)

where the subscript z represents the depth dependence of scene features or transfer 

functions, as appropriate and ∑z denotes a sum over the z dimension. The computational 

and memory complexity of these forward models increase linearly with the number of depth 

layers used in the model, but are otherwise very similar to the 2D models above in terms of 

their limitations.
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6.1.3. Light field representations—An alternative representation that allows for 

post-capture extraction of 3D and viewpoint-dependent information is the light field 

parameterization [100, 101]. In this representation, instead of recovering 2D or 3D intensity 

distributions, we attempt to recover 4D light radiance L(x, y, θ, ϕ) of rays intersecting a 

plane at (x, y) and traveling in the direction (θ, ϕ). This 4D representation is redundant 

and therefore has more parameters to estimate compared to the 3D intensity field, but 

forward models and reconstruction algorithms can efficiently exploit the elegant geometry 

that this representation affords. All of the previously developed forward models (general 

linear, convolutional and separable) can be adapted to the light field representation.

6.1.4. Holographic representation—A highly general approach to extracting 3D 

spatial information contained within the incoming light wavefront is to represent the 

wavefront as spatially coherent, using a complex-field representation. This model is only 

valid in holographic imaging and other scenarios where the light is sufficiently coherent.

6.1.5. Video imaging models—The discussion so far has only considered an instant 

in time; however, dynamics captured in multiple frames are often of interest. For video 

imaging, the dynamics may be decoupled, so both the forward model and the reconstruction 

algorithms are implemented on a frame-by-frame basis, assuming that any motion and 

dynamics are negligible within the exposure duration of a single frame. Alternatively, 

the dynamics in the scene may be faster than the frame rate of the camera, such that 

the interaction between changing scene radiance and measurements have to be explicitly 

modeled [34].

6.2. Calibration

The approaches described above model the functional relationship between sensor 

measurements and scene intensity. However, the actual parameters of the models need to 

be known, for example the matrix H in the general linear model, the kernel K in the 

convolutional model, or the row and column operators ΦL and ΦR in the separable model. 

When the mask design and sensor-mask distance is known precisely, these parameters 

may be known from the design process. However, typically fabrication techniques are not 

sufficiently accurate and one must measure the system response of the actual system as built 

– this process is called calibration.

We refer to the situation where the system parameters are known as model-based calibration. 

In this case, a computational model of the lensless imaging system design and appropriate 

wavefront (or light intensity) propagation models can be used to estimate/predict the 

calibration parameters computationally. The main advantage of the technique is that no 

actual measurements from the device are needed. The disadvantage is that any errors or 

differences between the design and the actual device are not accounted for, resulting in 

reconstruction artifacts.

When the system parameters are measured physically, we call it experimental calibration. 

This process typically involves taking one or more images of a ‘known’ scene with 

the device and using the acquired measurements and the ‘known’ scene to recover the 

calibration parameters. The simplest known scene to use is a point source, hence the 
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calibration measurements may be called the PSF measurements. Depending on the forward 

model approximation (Section 6.1), the number of calibration measurements required varies 

greatly, as described below. Hence, approximations to the forward model not only reduce 

computational requirements for reconstruction, but also significantly reduce the number of 

calibration measurements required.

Calibrating the general linear model: With a general linear model, one must measure 

a unique PSF for every point in the 2D or 3D scene. For large pixel-count cameras this 

means millions of calibration images are required. Given a 2D measurement for each PSF, 

this means the calibration procedure must estimate N2 parameters (where N is the number 

of pixels). Hence, except for extremely low-resolution models, experimental calibration of 

general linear model parameters is intractable. As a consequence, the only viable approach 

for general linear models is model-based calibration, assuming that the device parameters 

are exactly known apriori – and perfectly realized.

Calibrating convolutional models: The ease of calibration is one of the primary 

advantages of the convolutional model. Since the PSF is shift-invariant at each depth, only 

a single PSF capture is required for calibration. In the 3D case, depth-dependent scaling can 

also be modeled by a physical approximation; however, more accurate results come from 

multiple images acquired as the point source is moved axially. Similarly, if the PSF is not 

shift-invariant across the FoV, a local convolutional model may apply, where a coarse grid 

of PSFs are acquired at different lateral positions across the FoV. The number of required 

calibration images in this case depends on how quickly the PSF changes across the FoV 

[25].

Calibrating separable models: In a separable model, calibration amounts to estimating 

the row and column operators ΦL and ΦR. Typically, this is done by projecting line images 

(rows and columns), rather than point sources, and capturing a series of lensless images 

with the line being translated to cover the entire FoV. This is slightly more challenging than 

calibration with a convolutional model — but since the number of images required remains 

limited, it is practically feasible, unlike the general linear model.

6.3. Algorithms for Reconstruction

Consider a particular lensless imaging system and assume that we have chosen an 

appropriate forward model to characterize the system, performed the calibration required, 

and estimated the calibration parameters. When a lensless image of an unknown scene is 

acquired, the measurements obtained y are also known. Without loss of generality, assume 

that the forward model can be represented in functional form as fH(x), where x is the 

unknown scene parameters, and H is the calibration parameters that have been estimated and 

are considered known. The goal of the reconstruction algorithm is to estimate the unknown 

image x, given both the lensless measurements y and the calibration parameters H.

6.3.1. Convex Optimization—The image reconstruction problem can generically be 

cast as an optimization problem, as
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x = argmin
x

y − fH(x) 2 + λℛ(x); (7)

where λ is a Lagrange multiplier and ℛ(x) is a regularizer that typically imposes priors on 

the estimated image.

In most lensless imaging systems, the function fH is linear, and with an appropriate choice 

of regularizer terms, the optimization problem can be made convex. In such instances, a 

whole host of algorithms have been developed to solve these large-scale convex optimization 

problems [104, 105] – and depending on the particulars of the choice of regularizer and 

forward model, one of these generic convex optimization algorithms is utilized.

The most common regularizers used are those that enforce smoothness (Tikhonov 

regularization, total variation (TV), transform domain sparsity) or those that enforce sparsity 

in the reconstruction (L1 or L0 norm). Typically, smoothness priors are more appropriate 

for natural scene reconstructions, while for many biological applications (especially those 

involving fluorescence), sparsity and related priors/regularizers are more appropriate.

Computational complexity and reconstruction run-time:  The optimization problem 

above is a large-scale problem. Even for moderate resolution (say 1-megapixel images), 

the optimization problem typically has ≈ 106 unknowns to be estimated and > 106 

equations. Consequently, direct implementations of traditional optimization techniques 

may be too slow to meet the rigorous run-time requirements in some applications. This 

poses strict constraints on the computational burden, especially in applications that require 

real-time performance (≈ 30 fps) or those that need the reconstruction algorithms to be 

implemented on-device. In almost all of these examples, the faster forward models such 

as convolutional or separable models are used — this choice, in conjunction with fast 

optimization algorithms (e.g., Wiener deconvolution) and their efficient (and if needed 

parallel) implementations on hybrid edge compute platforms (including CPUs and GPUs), 

allows for these application-dependent needs to be met. Several of these lensless imaging 

devices have been demonstrated to achieve 30 − 100 fps real-time performance with an 

image resolution of a few megapixels, indicating that with the right choice of forward model 

and reconstruction algorithm, the computational complexity challenge can be reasonably 

handled.

6.3.2. Data-driven techniques—Over the last decade, advances in machine learning, 

especially deep learning, have revolutionized inverse algorithms in many areas, and lensless 

imaging is no exception. Data-driven techniques provide a few significant advantages when 

compared to traditional optimization-based algorithms. Firstly, these algorithms are less 

reliant on physical models of light transport and, therefore, better able to account for 

model errors. Second, these algorithms can be tuned to particular statistics of application 

domains, which allows performance improvements. Third, the direct utilization of these 

algorithms allows us to exploit the many radical advances in fast computing and associated 

hardware advances. Finally, these data-driven techniques rely on prior statistics about the 

reconstructed scene, resulting in significant performance improvements over optimization-

alone techniques.
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Data for learning:  The data for learning can be generated either by experimentally 

capturing or by simulating the measurements. Experimentally capturing training data [85, 

102, 106] allows for incorporating all the non-idealities present in a real system into the 

data, thereby making the method generalize for various real scenarios. On the other hand, 

simulating the training data is much more efficient. When simulating the measurements, 

performance improves when more aspects of the optics are incorporated (e.g. diffraction, 

sensor properties, spectral response) [103].

Deep Learning Architectures and Algorithms:  Various approaches perform two steps in 

the reconstruction network. The first part incorporates the lensless system model to convert 

the measurements to the image space, and the second part enhances the fidelity of the 

reconstruction. Monakhova et al. [102] used an unrolled network of alternating direction 

method of multipliers (Le-ADMM, Fig. 8(B)), where the iterative steps of ADMM are 

unrolled into layers, to simultaneously optimize the ADMM parameters and reconstruct 

the image (Fig. 9(A)). An optional U-net based denoiser network follows this first step. 

Khan et al. [85, 106] used a first part that mimics the camera model formulation with 

trainable parameters. This first part is called the trainable inversion layer that maps the 

highly multiplexed input to the image space (Fig. 8(A))). The second part is U-net that 

perceptually enhances the final reconstruction to produce photo-realistic images (Fig. 9(B)). 

Wu et al. [103] used a deep back-projection network (DBPN) as the second part (Fig. 8(C)) 

to improve the reconstruction quality. The DBPN [107] has repeated up- and downsampling 

layers that provide an error feedback mechanism that realizes self-correcting of features and 

enhances the resolution of the output image.

7. Applications

7.1. Photography, Refocusing, and 3D Imaging

In photography-based applications, it is not possible to control the placement of objects in 

the scene with respect to the sensor. Additionally, the objects are usually lit with ambient 

illumination, such as indoor lighting. In such cases, mask-modulated lensless systems 

encode the incoherent scene information onto the sensor, and the image is reconstructed 

using one of the algorithms mentioned in the previous section.

All-in-focus 2D imaging or photography was shown for objects more than a foot or 

30 cm away from the lensless system [22–24, 42, 77]. Particularly, DeWeert et al. [21] 

reconstructed images of a cityscape. For closer scene distance, refocusing was shown with 

fixed mask [23, 77, 108] and with a programmable mask [46]. For much closer scenes, 

3D imaging was shown [23, 53]. Exploiting the compressive nature of lensless imaging, 

the following applications were shown from just from a single capture/measurement: 3D 

imaging [23, 53], video [34], and spectral imaging [33].

7.2. Microscopy

Microscopy is one area that benefits from the small form factor and unique design space 

provided by lensless imaging. In traditional microscopes, there is a practical trade-off 

between FoV, resolution, and light collection efficiency: large numerical aperture (NA) 
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objective lenses that collect the most light and have the highest resolution are also larger 

and heavier than lower NA objective lenses, as well as having a smaller FoV [27]. However, 

the trade-offs between FoV, resolution, and light collection efficiency for lensless imaging 

are quite different than in a traditional microscope. In principle, the FoV of a lensless 

microscope can be expanded by creating a larger sensor or sensor array, without sacrificing 

resolution. Indeed, lensless microscopy has demonstrated large FoV high-resolution imaging 

in a number of contexts [19, 27, 64, 109–112]. Additional advantages of lensless imaging for 

microscopy include 3D reconstruction abilities and reduced size, weight, and cost. These are 

important considerations for pre-clinical studies of freely moving animals that cannot carry 

heavy microscopes and for clinical use where small size and weight can facilitate point-

of-care use. However, one practical challenge for lensless microscopy is achieving high-

quality chromatic filtering when operating in fluorescence mode. In traditional fluorescence 

microscopy, the excitation light can be filtered with a high extinction ratio using multilayer 

dielectric filters in the collimated light path. In lensless imaging, however, scattered 

excitation and fluorescence emission light are incident on the device from a wide range 

of angles because the sample is placed close to the device. As a result, multilayer filters do 

not perform well since their passband wavelengths are strongly dependent on the angle of 

incidence of the incoming light. Despite these challenges, recent work has demonstrated that 

it is possible to reconstruct high-quality fluorescent images in vivo using a combination of 

dielectric and absorption filters [25, 26]. While these demonstrations show that fluorescence 

lensless imaging is possible in vivo, more work is needed to achieve the same extinction 

ratios and corresponding SNR as traditional lensed microscopes.

7.3. Emerging applications

The size reduction achievable by lensless configuration leads to many applications 

where space is severely constrained. One such application is endoscopy, where lensless 

technologies enable imaging through an optical fiber bundle. Porat et al. [113] and Shekel 

et al. [114] exploited speckle-correlation properties (which is illumination-modulated) to 

image through a fiber bundle. In another work, Shin et al. [115] placed an amplitude-

coded aperture in front of the fiber bundle to capture mask-modulated measurements and 

reconstruct them. The current demonstrations of lensless endoscopy have been on a small 

scale and as a proof-of-concept and need further exploration to bring this technology to 

clinical use.

The heavily multiplexed measurements from mask-modulated lensless systems are visually 

unrecognizable, and reconstructing an image requires intimate knowledge of the system 

parameters. However, current imaging models of (non-holographic) lensless systems are 

simple, retain all the information, and are hackable to retrieve private information. Tan et 

al. [116] explored adding additional analog operations on the sensor, such as pooling and 

quantization, as an attempt to destroy private information (e.g., face identity) while retaining 

useful information (e.g., face detection). On the other hand, software was used to remove 

sensitive information from post-capture measurement [117]. However, further exploration is 

needed to bring the privacy-enabled lensless system to practical use.

Boominathan et al. Page 21

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Future Outlook

Lensless imaging offers considerable advantages in size, weight, and form-factor compared 

to traditional imaging systems. That makes lensless imaging an attractive option for a 

variety of space-constrained applications. Under-display cameras, micro-robotic vision, 

implantable sensors, and virtual/augmented reality headsets are some of the upcoming 

exciting applications that can benefit from the form factor of lensless cameras. In addition, 

an array of lensless cameras can be tiled with flexible interconnects to create a flexible 

imaging surface that can conform to various shapes. Such flexible imaging surfaces can 

benefit a range of applications such as health-monitoring sleeves, full-brain imaging, 360°-

view study of animals and plants, to name a few examples.

Computation is integral in extracting information from lensless measurements and adds 

significantly to the power requirements of the imaging system. Since many space-

constrained applications are also power-constrained, efficient computational implementation 

is an important area for improvement. The computational power problem could be alleviated 

in a few ways. First, the lensless measurements can be wirelessly transmitted to the cloud, 

where powerful algorithms extract information. Second, efficient algorithms with a low-

resource footprint can be developed. Third, a dedicated system-on-a-chip (SoC) can be 

developed to perform low-power lensless image processing. Additionally, jointly designing 

algorithms and SoCs can achieve incredible low-power performance.

Beyond imaging, lensless systems also have the potential for vision and inference 

applications. While recent works have focused on improving imaging performance, 

optimizing lensless systems for direct vision tasks is an exciting opportunity for future 

work. Face detection and verification, fingerprint identification, gesture recognition, human 

counting, and object tracking are some examples of vision applications that could 

immediately benefit from lensless systems.

Recent advances in lensless imaging have shown great promise in adding an exciting new 

dimension to the design of imaging systems. The lensless paradigm lays an additional pillar 

in technology that can enable new and novel future applications.

References

1. Al-Haytham I, Book of Optics (Kitab Al-Manazir) (1011).

2. Al-Khalili J, “In retrospect: Book of Optics,” Nature 518, 164–165 (2015).

3. Zahn J, Oculus artificialis teledioptricus sive telescopium (The Eye Also of a Telescope or an 
Artificial Teledioptricus) (Johann Christoph Lochner, Nuremberg, 1702).

4. Daniel M, “Daguerre (1787–1851) and the Invention of Photography,” (2004).

5. Jeffrey Easby R, “Early Photography: Niépce, Talbot and Muybridge,” (2015).

6. Geiger A, Lenz P, Stiller C, and Urtasun R, “Vision meets robotics: The KITTI dataset,” The Int. J. 
Robotics Res 32, 1231–1237 (2013).

7. Cornacchia M, Ozcan K, Zheng Y, and Velipasalar S, “A survey on activity detection and 
classification using wearable sensors,” IEEE Sensors J. 17, 386–403 (2016).

8. Eliakim R, Fireman Z, Gralnek IM, Yassin K, Waterman M, Kopelman Y, Lachter J, Koslowsky 
B, and Adler SN, “Evaluation of the PillCam Colon capsule in the detection of colonic pathology: 

Boominathan et al. Page 22

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results of the first multicenter, prospective, comparative study,” Endoscopy 38, 963–970 (2006). 
[PubMed: 17058158] 

9. Wei S-E, Saragih J, Simon T, Harley AW, Lombardi S, Perdoch M, Hypes A, Wang D, Badino H, 
and Sheikh Y, “VR facial animation via multiview image translation,” ACM Transactions on Graph. 
(TOG) 38, 67 (2019).

10. Ren Z, Meng J, and Yuan J, “Depth camera based hand gesture recognition and its applications 
in human-computer-interaction,” in 2011 8th International Conference on Information, 
Communications & Signal Processing, (IEEE, 2011), pp. 1–5.

11. Tan J, Niu L, Adams JK, Boominathan V, Robinson JT, Baraniuk RG, and Veeraraghavan A, “Face 
Detection and Verification Using Lensless Cameras,” IEEE Transactions on Comput. Imaging 5, 
180–194 (2018).

12. Boominathan V, Adams JK, Asif MS, Avants BW, Robinson JT, Baraniuk RG, Sankaranarayanan 
AC, and Veeraraghavan A, “Lensless Imaging: A computational renaissance,” IEEE Signal 
Process. Mag 33, 23–35 (2016).

13. Hartley R and Sing Bing Kang, “Parameter-Free Radial Distortion Correction with Center of 
Distortion Estimation,” IEEE Transactions on Pattern Analysis Mach. Intell 29, 1309–1321 
(2007).

14. Debevec PE and Malik J, “Recovering high dynamic range radiance maps from photographs,” in 
ACM SIGGRAPH 2008 classes on - SIGGRAPH ‘08, (ACM Press, New York, New York, USA, 
2008), p. 1.

15. Wadhwa N, Garg R, Jacobs DE, Feldman BE, Kanazawa N, Carroll R, Movshovitz-Attias Y, 
Barron JT, Pritch Y, and Levoy M, “Synthetic depth-of-field with a single-camera mobile phone,” 
ACM Transactions on Graph. 37, 1–13 (2018).

16. Buades A, Coll B, and Morel J-M, “A Non-Local Algorithm for Image Denoising,” in 2005 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2 
(IEEE, 2005), pp. 60–65.

17. Liba O, Murthy K, Tsai Y-T, Brooks T, Xue T, Karnad N, He Q, Barron JT, Sharlet D, Geiss R, 
Hasinoff SW, Pritch Y, and Levoy M, “Handheld mobile photography in very low light,” ACM 
Transactions on Graph. 38, 1–16 (2019).

18. Nayar S, “Computational Cameras: Redefining the Image,” Computer 39, 30–38 (2006).

19. Ozcan A and Demirci U, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8, 
98–106 (2008). [PubMed: 18094767] 

20. Ozcan A and McLeod E, “Lensless Imaging and Sensing,” Annu. Rev. Biomed. Eng 18, 77–102 
(2016). [PubMed: 27420569] 

21. DeWeert MJ and Farm BP, “Lensless coded-aperture imaging with separable Doubly-Toeplitz 
masks,” Opt. Eng 54, 023102 (2015).

22. Asif MS, Ayremlou A, Sankaranarayanan A, Veeraraghavan A, and Baraniuk RG, “FlatCam: 
Thin, Lensless Cameras Using Coded Aperture and Computation,” IEEE Transactions on Comput. 
Imaging 3, 384–397 (2017).

23. Boominathan V, Adams JK, Robinson JT, and Veeraraghavan A, “PhlatCam: Designed Phase-Mask 
Based Thin Lensless Camera,” IEEE Transactions on Pattern Analysis Mach. Intell 42, 1618–1629 
(2020).

24. Kuo G, Antipa N, Ng R, and Waller L, “DiffuserCam: Diffuser-Based Lensless Cameras,” in 
Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), vol. Part F46-C (OSA, 
Washington, D.C., 2017), p. CTu3B.2.

25. Kuo G, Linda Liu F, Grossrubatscher I, Ng R, and Waller L, “On-chip fluorescence microscopy 
with a random microlens diffuser,” Opt. Express 28, 8384 (2020). [PubMed: 32225465] 

26. Adams J, Boominathan V, Gao S, Rodriguez A, Yan D, Kemere C, Veeraraghavan A, and Robinson 
J, “In vivo fluorescence imaging with a flat, lensless microscope,” bioRxiv p. 2020.06.04.135236 
(2020).

27. Adams JK, Boominathan V, Avants BW, Vercosa DG, Ye F, Baraniuk RG, Robinson JT, 
and Veeraraghavan A, “Single-frame 3D fluorescence microscopy with ultraminiature lensless 
FlatScope,” Sci. Adv 3 (2017).

Boominathan et al. Page 23

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Reshetouski I, Oyaizu H, Nakamura K, Satoh R, Ushiki S, Tadano R, Ito A, and Murayama J, 
“Lensless Imaging with Focusing Sparse URA Masks in Long-Wave Infrared and Its Application 
for Human Detection,” in Lecture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12364 LNCS (2020), pp. 237–
253.

29. Candès E, “Compressive sampling,” in Proceedings of the International Congress of 
Mathematicians Madrid, August 22–30, 2006, vol. 3 (European Mathematical Society Publishing 
House, Zuerich, Switzerland, 2006), pp. 1433–1452.

30. Candes E and Wakin M, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag 
25, 21–30 (2008).

31. Yanny K, Antipa N, Liberti W, Dehaeck S, Monakhova K, Liu FL, Shen K, Ng R, and Waller L, 
“Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy,” Light. Sci. & Appl 
9, 171 (2020).

32. Linda Liu F, Kuo G, Antipa N, Yanny K, and Waller L, “Fourier DiffuserScope: single-shot 
3D Fourier light field microscopy with a diffuser,” Opt. Express 28, 28969 (2020). [PubMed: 
33114805] 

33. Monakhova K, Yanny K, Aggarwal N, and Waller L, “Spectral DiffuserCam: lensless snapshot 
hyperspectral imaging with a spectral filter array,” Optica 7, 1298 (2020).

34. Antipa N, Oare P, Bostan E, Ng R, and Waller L, “Video from Stills: Lensless Imaging with 
Rolling Shutter,” in 2019 IEEE International Conference on Computational Photography, ICCP 
2019, (Institute of Electrical and Electronics Engineers Inc., 2019).

35. Richardson J, Grant L, and Henderson R, “Low dark count single-photon avalanche diode structure 
compatible with standard nanometer scale cmos technology,” IEEE Photonics Technol. Lett 21, 
1020–1022 (2009).

36. Kirmani A, Jeelani H, Montazerhodjat V, and Goyal VK, “Diffuse imaging: Creating optical 
images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett 19, 
31–34 (2012).

37. Wu D, Wetzstein G, Barsi C, Willwacher T, Dai Q, and Raskar R, “Ultra-fast Lensless 
Computational Imaging through 5D Frequency Analysis of Time-resolved Light Transport,” Int. J. 
Comput. Vis 110, 128–140 (2014).

38. Satat G, Tancik M, and Raskar R, “Lensless Imaging With Compressive Ultrafast Sensing,” IEEE 
Transactions on Comput. Imaging 3, 398–407 (2017).

39. Kim G, Isaacson K, Palmer R, and Menon R, “Lensless photography with only an image sensor,” 
Appl. optics 56, 6450–6456 (2017).

40. Caroli E, Stephen JB, Di Cocco G, Natalucci L, and Spizzichino A, “Coded aperture imaging in X- 
and gamma-ray astronomy,” Space Sci. Rev 45, 349–403 (1987).

41. Tajima K, Shimano T, Nakamura Y, Sao M, and Hoshizawa T, “Lensless light-field imaging with 
multi-phased fresnel zone aperture,” in 2017 IEEE International Conference on Computational 
Photography (ICCP), (IEEE, 2017), pp. 1–7.

42. Wu J, Zhang H, Zhang W, Jin G, Cao L, and Barbastathis G, “Single-shot lensless imaging with 
fresnel zone aperture and incoherent illumination,” Light. Sci. Appl 9, 2047–7538 (2020).

43. Yang D-K and Wu S-T, Fundamentals of liquid crystal devices (John Wiley & Sons, 2014).

44. Huang G, Jiang H, Matthews K, and Wilford P, “Lensless imaging by compressive sensing,” in 
2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, (2013), pp. 
2101–2105.

45. Zomet A and Nayar SK, “Lensless imaging with a controllable aperture,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2006), 
pp. 339–346.

46. Hua Y, Nakamura S, Asif MS, and Sankaranarayanan AC, “SweepCam - Depth-Aware Lensless 
Imaging Using Programmable Masks,” IEEE Transactions on Pattern Analysis Mach. Intell 42, 
1606–1617 (2020).

47. Wu Y, Sharma MK, and Veeraraghavan A, “WISH: wavefront imaging sensor with high 
resolution,” Light. Sci. Appl 8, 2047–7538 (2019).

Boominathan et al. Page 24

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, and Baraniuk RG, “Single-pixel 
imaging via compressive sampling,” IEEE Signal Process. Mag 25, 83–91 (2008).

49. Yuan X, Huang G, Jiang H, and Wilford PA, “Block-wise lensless compressive camera,” in 2017 
IEEE International Conference on Image Processing (ICIP), vol. 2017-Septe (IEEE, 2017), pp. 
31–35.

50. Moazeni S, Pollmann EH, Boominathan V, Cardoso FA, Robinson JT, Veeraraghavan A, and 
Shepard KL, “A Mechanically Flexible Implantable Neural Interface for Computational Imaging 
and Optogenetic Stimulation over 5.4 × 5.4 mm 2FoV,” Dig. Tech. Pap. - IEEE Int. Solid-State 
Circuits Conf. 64, 288–290 (2021).

51. Wu Y and Ozcan A, “Lensless digital holographic microscopy and its applications in biomedicine 
and environmental monitoring,” (2018).

52. Gill PR and Stork DG, “Lensless ultra-miniature imagers using odd-symmetry spiral phase 
gratings,” in Optics InfoBase Conference Papers, (Optical Society of America (OSA), 2013), 
p. CW4C.3.

53. Antipa N, Kuo G, Heckel R, Mildenhall B, Bostan E, Ng R, and Waller L, “DiffuserCam: lensless 
single-exposure 3D imaging,” Optica 5, 1 (2018).

54. Zheng G, Lee SA, Yang S, and Yang C, “Sub-pixel resolving optofluidic microscope for on-chip 
cell imaging,” Lab on a Chip 10, 3125–3129 (2010). [PubMed: 20877904] 

55. Greenbaum A, Zhang Y, Feizi A, Chung P-L, Luo W, Kandukuri SR, and Ozcan A, “Wide-field 
computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. 
Medicine 6, 267ra175–267ra175 (2014).

56. Luo W, Greenbaum A, Zhang Y, and Ozcan A, “Synthetic aperture-based on-chip microscopy,” 
Light. Sci. & Appl 4, e261–e261 (2015).

57. Lange D, Storment CW, Conley CA, and Kovacs GT, “A microfluidic shadow imaging system 
for the study of the nematode Caenorhabditis elegans in space,” Sensors Actuators B: Chem 107, 
904–914 (2005).

58. Seo S, Su TW, Tseng DK, Erlinger A, and Ozcan A, “Lensfree holographic imaging for on-chip 
cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009). [PubMed: 19255659] 

59. Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, and Yang C, “Optofluidic 
microscopy - A method for implementing a high resolution optical microscope on a chip,” Lab on 
a Chip 6, 1274–1276 (2006). [PubMed: 17102839] 

60. Cui X, Lee LM, Heng X, Zhong W, Sternberg PW, Psaltis D, and Yang C, “Lensless high-
resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. 
Natl. Acad. Sci. United States Am 105, 10670–10675 (2008).

61. GABOR D, “A new microscopic principle,” Nature 161, 777–778 (1948). [PubMed: 18860291] 

62. Gorocs Z and Ozcan A, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng 6, 29–46 (2013). 
[PubMed: 23558399] 

63. Goodman JW, Statistical optics (John Wiley & Sons, 2015), 2nd ed.

64. Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, 
Khademhosseini B, and Ozcan A, “Compact, light-weight and cost-effective microscope based 
on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 
(2010). [PubMed: 20401422] 

65. Kim MK, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1 – 51 
(2010).

66. Schnars U, Falldorf C, Watson J, and Jüptner W, Digital Holography (Springer Berlin Heidelberg, 
Berlin, Heidelberg, 2015), pp. 39–68.

67. Goodman JW, Introduction to Fourier Optics, Third Edition (Roberts & Co, 2004).

68. Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O, Luckhart S, and Ozcan A, “Holographic 
pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab on a 
Chip 11, 1276 (2011). [PubMed: 21365087] 

69. Greenbaum A, Sikora U, and Ozcan A, “Field-portable wide-field microscopy of dense samples 
using multi-height pixel super-resolution based lensfree imaging,” Lab on a Chip 12, 1242 (2012). 
[PubMed: 22334329] 

Boominathan et al. Page 25

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



70. Greenbaum A and Ozcan A, “Maskless imaging of dense samples using pixel super-resolution 
based multi-height lensfree on-chip microscopy,” Opt. Express, Vol. 20, Issue 3, pp. 3129–3143 
20, 3129–3143 (2012). [PubMed: 22330550] 

71. Fienup JR, “Phase retrieval algorithms: a comparison,” Appl. Opt 21, 2758 (1982). [PubMed: 
20396114] 

72. Horaud R, Hansard M, Evangelidis G, and Ménier C, “An overview of depth cameras and range 
scanners based on time-of-flight technologies,” Mach. Vis. Appl 27, 1005–1020 (2016).

73. Cova S, Longoni A, and Andreoni A, “Towards picosecond resolution with single-photon 
avalanche diodes,” Rev. Sci. Instruments 52, 408–412 (1981).

74. Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi MG, and Raskar R, “Recovering 
three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun 3, 
745 (2012). [PubMed: 22434188] 

75. O’Toole M, Lindell DB, and Wetzstein G, “Confocal non-line-of-sight imaging based on the 
light-cone transform.” Nature 555, 338–341 (2018). [PubMed: 29513650] 

76. “Hamamatsu photonics: Streak camera,” https://www.hamamatsu.com/us/en/product/photometry-
systems/streak-camera/operating-principle/index.html.

77. Shimano T, Nakamura Y, Tajima K, Sao M, and Hoshizawa T, “Lensless light-field imaging with 
Fresnel zone aperture: quasi-coherent coding,” Appl. Opt 57, 2841 (2018). [PubMed: 29714287] 

78. Stork DG and Gill PR, “Lensless Ultra-Miniature CMOS Computational Imagers and Sensors,” 
SENSORCOMM 2013: The Seventh Int. Conf. on Sens. Technol. Appl. pp. 186–190 (2013).

79. Stork DG and Gill PR, “Optical, mathematical, and computational foundations of lensless ultra-
miniature diffractive imagers and sensors,” Int. J. on Adv. Syst. Meas 7, 4 (2014).

80. Singh AK, Pedrini G, Takeda M, and Osten W, “Scatter-plate microscope for lensless microscopy 
with diffraction limited resolution,” Sci. Reports 7, 1–8 (2017).

81. Dicke RH, “Scatter-Hole Cameras for X-Rays and Gamma Rays,” The Astrophys. J 153, L101 
(1968).

82. Nakamura Y, Shimano T, Tajima K, Sao M, and Hoshizawa T, “Lensless Light-field Imaging with 
Fresnel Zone Aperture,” Tech. rep (2016).

83. Donoho D, “Compressed sensing,” IEEE Transactions on Inf. Theory 52, 1289–1306 (2006).

84. Reshetouski I, Tadano R, Oyaizu H, Nakamura K, and Murayama J, “Lensless Mismatched Aspect 
Ratio Imaging,” in 2021 IEEE International Conference on Computational Photography (ICCP), 
(IEEE, 2021).

85. Khan SS, Sundar V, Boominathan V, Veeraraghavan A, and Mitra K, “FlatNet: Towards 
Photorealistic Scene Reconstruction from Lensless Measurements,” IEEE Transactions on Pattern 
Analysis Mach. Intell (2020).

86. Born M, Wolf E, Bhatia AB, Clemmow PC, Gabor D, Stokes AR, Taylor AM, Wayman PA, and 
Wilcock WL, Principles of Optics (Cambridge University Press, 1999).

87. “Nanoscribe gmbh,” https://www.nanoscribe.de/.

88. Gill PR, Tringali J, Schneider A, Kabir S, Stork DG, Erickson E, and Kellam M, “Thermal Escher 
sensors: Pixel-efficient lensless imagers based on tiled optics,” in Optics InfoBase Conference 
Papers, vol. Part F46-C (OSA - The Optical Society, 2017), p. CTu3B.3.

89. Tian F, Hu J, and Yang W, “Geomscope: Large field-of-view 3d lensless microscopy with low 
computational complexity,” Laser & Photonics Rev. 15, 2100072 (2021).

90. Chi W and George N, “Phase-coded aperture for optical imaging,” Opt. Commun 282, 2110–2117 
(2009).

91. Chi W and George N, “Optical imaging with phase-coded aperture,” Opt. Express 19, 4294 (2011). 
[PubMed: 21369259] 

92. Fienup JR, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” 
Opt. Express 14, 498 (2006). [PubMed: 19503364] 

93. Fenimore EE and Cannon TM, “Coded aperture imaging with uniformly redundant arrays,” Appl. 
Opt 17, 337 (1978). [PubMed: 20174412] 

94. Gottesman SR and Fenimore EE, “New family of binary arrays for coded aperture imaging,” Appl. 
Opt 28, 4344 (1989). [PubMed: 20555874] 

Boominathan et al. Page 26

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.hamamatsu.com/us/en/product/photometry-systems/streak-camera/operating-principle/index.html
https://www.hamamatsu.com/us/en/product/photometry-systems/streak-camera/operating-principle/index.html
https://www.nanoscribe.de/


95. Golomb SW and Others, Shift register sequences (Aegean Park Press, 1967).

96. Fresnel A-J, “Calcul de I’intensité de la Lumière au centre de l’ombre d’un Écran et d’une 
Ouverture circulaires éclairés par un point radieux,” in Mémoires de l’Académie des sciences de 
l’Institut de France, (Imprimerie royale (Paris), 1821), chap. Note I., pp. 456–464.

97. Miller JR, Wang CY, Keating CD, and Liu Z, “Particle-based reconfigurable scattering masks for 
lensless imaging,” ACS Nano 14, 13038–13046 (2020). [PubMed: 32929968] 

98. Jiang H, Huang G, and Wilford P, “Multi-view in lensless compressive imaging,” (2014).

99. Yuan X and Pu Y, “Parallel lensless compressive imaging via deep convolutional neural networks,” 
Opt. Express 26, 1962 (2018). [PubMed: 29401917] 

100. Levoy M and Hanrahan P, “Light field rendering,” (ACM Press, 1996), pp. 31–42.

101. Gortler SJ, Grzeszczuk R, Szeliski R, and Cohen MF, “The lumigraph,” (ACM Press, 1996), pp. 
43–54.

102. Monakhova K, Yurtsever J, Kuo G, Antipa N, Yanny K, and Waller L, “Learned reconstructions 
for practical mask-based lensless imaging,” Opt. Express 27, 28075 (2019). [PubMed: 31684566] 

103. Wu J, Cao L, and Barbastathis G, “DNN-FZA camera: a deep learning approach toward 
broadband FZA lensless imaging,” Opt. Lett 46, 130 (2021). [PubMed: 33362033] 

104. Beck A and Teboulle M, “A fast iterative shrinkage-thresholding algorithm for linear inverse 
problems,” SIAM J. on Imaging Sci 2, 183–202 (2009).

105. Stephen B, Neal P, Eric C, Borja P, and Jonathan E, “Distributed optimization and statistical 
learning via the alternating direction method of multipliers,” Foundations Trends Mach. Learn 3, 
1–122 (2011).

106. Khan SS, Adarsh RV, Boominathan V, Tan J, Veeraraghavan A, and Mitra K, “Towards 
photorealistic reconstruction of highly multiplexed lensless images,” Proc. IEEE Int. Conf. on 
Comput. Vis. 2019-Octob, 7859–7868 (2019).

107. Haris M, Shakhnarovich G, and Ukita N, “Deep Back-Projection Networks For Super-
Resolution,” Proc. IEEE Comput. Soc. Conf. on Comput. Vis. Pattern Recognit. pp. 1664–1673 
(2018).

108. Tan J, Boominathan V, Veeraraghavan A, and Baraniuk R, “Flat focus: depth of field analysis 
for the FlatCam lensless imaging system,” in 2017 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), (IEEE, 2017), pp. 6473–6477.

109. Bishara W, Su T-W, Coskun AF, and Ozcan A, “Lensfree on-chip microscopy over a wide 
field-of-view using pixel super-resolution,” Opt. Express 18, 11181 (2010). [PubMed: 20588977] 

110. Jiang S, Zhu J, Song P, Guo C, Bian Z, Wang R, Huang Y, Wang S, Zhang H, and Zheng 
G, “Wide-field, high-resolution lensless on-chip microscopy: via near-field blind ptychographic 
modulation,” Lab on a Chip 20, 1058–1065 (2020). [PubMed: 32073018] 

111. Sanz M, Picazo-Bueno JÁ, Granero L, Garciá J, and Micó V, “Compact, cost-effective and 
field-portable microscope prototype based on MISHELF microscopy,” Sci. Reports 7, 1–12 
(2017).

112. Tobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, and Garcia-Sucerquia 
J, “Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope,” 
Appl. Opt 60, A205 (2021). [PubMed: 33690371] 

113. Porat A, Andresen ER, Rigneault H, Oron D, Gigan S, and Katz O, “Widefield lensless imaging 
through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016). [PubMed: 
27464136] 

114. Shekel N and Katz O, “Using fiber-bending-generated speckles for improved working distance 
and background rejection in lensless micro-endoscopy,” Opt. Lett 45, 4288 (2020). [PubMed: 
32735281] 

115. Shin J, Tran DN, Stroud JR, Chin S, Tran TD, and Foster MA, “A minimally invasive lens-free 
computational microendoscope,” Sci. Adv 5, eaaw5595 (2019). [PubMed: 31840055] 

116. Tan J, Khan SS, Boominathan V, Byrne J, Baraniuk R, Mitra K, and Veeraraghavan A, 
“CANOPIC: Pre-digital privacy-enhancing encodings for computer vision,” Proc. - IEEE Int. 
Conf. on Multimed. Expo 2020-July, 0–5 (2020).

Boominathan et al. Page 27

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



117. Nguyen Canh T and Nagahara H, “Deep compressive sensing for visual privacy protection 
in flatcam imaging,” in Proceedings - 2019 International Conference on Computer Vision 
Workshop, ICCVW 2019, (Institute of Electrical and Electronics Engineers Inc., 2019), pp. 
3978–3986.

Boominathan et al. Page 28

Optica. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Lensless cameras can be classified into several types: illumination-modulated refers 

to controlled illumination, mask-modulated refers to using a fixed amplitude/phase 

plate (modulator) in front of the sensor, and programmable-modulator systems have a 

programmable dynamic spatial light modulator (SLM) in front of the sensor. All types use a 

computational algorithm to reconstruct the scene from the captured 2D image.
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Fig. 2. 
Illumination-modulated lensless microscopy systems. (A) In this case, the sample is placed 

close to the sensor and trans-illuminated by a light source placed much farther from the 

sample (modified from [20]). (B) Shadow imaging super-resolution by combining multiple 

low-resolution frames with sub-pixel shifts (image modified from [54]). (C) Wide field-of-

view holographic imaging [55]. (D) Color holographic imaging by combining reconstruction 

from three wavelengths of illumination (image modified from [56]). Panels (C) and (D) 

show the captured hologram, reconstructed lensless image, and comparison with the image 

taken with a high-NA microscope.
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Fig. 3. 
Types of masks used in mask-modulated lensless imaging systems. Binary amplitude masks 

either block or allow light to pass through, giving amplitude modulation of either 0 or 1. 

Binary phase gratings have two heights of transparent material, giving phase modulation of 

either 0 or π. Diffusers have continuous but random surface heights for continuous phase 

modulation. Multi-level phase masks have ‘n’ discrete material heights, giving discrete 

phase modulations.
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Fig. 4. 
(Top) Images of various lensless camera prototypes. (A) FlatScope (image modified 

from [27]. (B) FlatCam [22] (image modified from [11]). (C) Fresnel Zone Apertures 

(FZA)-based lensless imager (image modified from [77]). (D) Random microlens diffuser 

microscope (image modified from [25]). (Bottom) Images of various masks used. (E) 

Separable amplitude mask (image modified from [27]). (F) Amplitude mask with multiple 

FZA of different fringe phases (image modified from [77]). (G) Spiral phase gratings (image 

modified from [79]). (H) Phase mask that generates contour PSF (image modified from 

[23]).
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Fig. 5. 
Example mask-modulated lensless imaging results. Microscopy: (A) modified from [25], 

(B) modified from [23]. Photography: (C) modified from [85], (D) modified from [23]. 

Lightfield and re-focusing (E), modified from [46]. Thermal imaging (F), modified from 

[28]. Compressive imaging: (G) 3D image modified from [53], (H) Video from single 

capture, modified from [34], and (I) Spectral imaging from single capture, modified from 

[33].
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Fig. 6. 
Experimental point-spread-functions (PSFs) of mask-modulated lensless systems. (A) 

Separable PSF, generated by the amplitude mask in [21]. (B) Spiral PSF of binary phase 

gratings, used in [79]. (C) Caustic PSF of diffuser used in DiffuserCam [53]. (D) Contour 

PSF of phase mask used in PhlatCam [23]. (E) Sparse URA PSF, by amplitude mask, used 

in [84]. All the images were modified from respective references.
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Fig. 7. 
Reconfigurable nanoparticles to achieve dynamic scattering masks [97]. The particles are 

silica-coated gold nanowires suspended in water to form a scattering mask. The nanowires 

are highly polarizable, exhibit a strong response to the applied electric field, and can be 

oriented in different ways depending on the direction of the applied field. Image modified 

from [97].
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Fig. 8. 
Data-driven approaches to reconstruct lensless images. (A) is modified from [85], (B) is 

modified from [102]. (C) is modified from [103].
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Fig. 9. 
Reconstruction results using data-driven techniques. ADMM and TV-ADMM use iterative 

convex optimization techniques. Le-ADMM-U [102] and FlatNet [85], outlined in green 

box, use feed-forward neural network, trained with data, to reconstruct. The data-driven 

methods drastically outperform, in quality, the optimization techniques. (A) is modified from 

[102] and (B) is modified from [85].
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