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ABSTRACT OF THE DISSERTATION

Statistical Analysis for On-Chip Power Grid Networks and Interconnects
Considering Process Variation

by

Ning Mi

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2009

Dr. Sheldon X.-D. Tan, Chairperson

With the aggressive scaling down of semiconductor VLSI devices from 65nm to

45 nm, 32nm, the process induced variability becomes the major design concern.

The fundamental change in VLSI chip design in current and future nodes is that

what has been designed will not agree with the products manufactured due to the

uncertainties in the manufacture processes. Even worse, the variabilities keep growing

as the technology scales down continually. The process induced variations manifest

themselves from wafer to wafer, die-to-die and device to device within a die. Some are

systematic variabilities and some are random variabilities, which have to leave extra

margin for worst case. The Monte Carlo method can come to the rescue by simulating

the probability of the worst case in a random way. However, it is well known this

approach is very time consuming and forbidding slow. It is highly desirable to have

more efficient statistical modeling and simulation techniques and tools to guide the

design in the presence of uncertainties in the nanometer VLSI regime.

In this dissertation, the influence of the variability, such as threshold voltage vari-

ation, interconnect wire height, width variation, on the performance of power grid
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delivery networks and signal interconnect circuits, are studied. First we develop a

new statistical method, which is based on concept of Hermite polynomial chaos, to

analyze power grid voltage drop variations of on-chip power grid networks. The new

approach considers both wire variations and sub-threshold leakage current variations,

which are modeled as lognormal distribution random variables. We also consider

spacial correlation of the leakage variables by applying orthogonal decomposition to

map the correlated random variables into independent ones before the analysis. Sec-

ond, we propose a more efficient statistical analysis approach, StoEKS, in which the

extended Krylov subspace method is used to speedup the solution procedure of the

variational circuit equations. By using the model order reduction technique, StoEKS

partially mitigates circuit-size increasing problem associated with the augmented ma-

trices from the Galerkin-based spectral statistical method. Finally, we propose an

efficient method to calculate variational interconnect delay, which is a crucial step in

the statistical static timing analysis(SSTA). We apply Numerical quadrature method

based on orthogonal polynomial representation (OPR) of statistical variations to de-

rive the non-linear, non-Gaussian analytic interconnect delay models in terms of the

interconnect wire width, height variations. It can take in variational parameters in

OPR form and outputs the delays computed in OPR form again, which is compatible

with existing SSTA methods.
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Chapter 1

Introduction

1.1 Motivation

This section presents the motivations of our work from the following three aspects:

the variability and uncertainty of integrated circuit, the on-chip power grid network

and the variability influence on it.

1.1.1 Variability and uncertainty on VLSI

With the scaling down of semiconductor and the rapid increased complexity of mod-

ern nano-meter technique, the difference between the integrated circuit design and

manufacturing becomes larger. The variability and uncertainty have to be seriously

considered when the scaling down continued [44]. The reason for this is that the

CMOS technology leads to the increasing complexity in the devices and the inter-

connects connecting to them. Also, there are differences, which are induced in the

process of manufacturing, existing between the simulation model and the hardware
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implementation. Variance induced in the process should be analysis to narrow or

even eliminate the gap in design and manufacturing, as to deleminate performance

fluctuations in the circuit behavior.

Variability can be classified in various ways. In the following, some classification

standards are introduced to present more information of variability in the integrated

circuit design and manufacturing.

From the aspect of source, the variation can be classified into physical variability

and environment variability. The integrated circuit consists of linear and non-linear

devices which fulfill functions for the whole circuit and the interconnect between

them. The physical variability are induced when creating these device, such as the

procedure of implantation, oxidation, polysilicon line definition, deposition, etching,

chemical-mechanical polishing and etc. The physical variability includes threshold

voltage variation, thin film thinkness variation, interconnect wire thickness, wideness

variation and etc. On the other hand, the circuit performance is still determined by

the environment in which the circuit operates. The environment variations, such as

temperature, power supply voltage and noise, have as similar impacts on the circuit

behavior as the physical variations.

Based on the location of the variation, the variation can be classified as within die

or intra-die variation, wafer-to-wafer variation, and chip-to-chip variations. We can

exam the spacial behavior of the variability as to give the joint distribution across

the die, wafer or chip.

Some kind of variations are known to be a function of specific design characteris-

tics. With a suitable model considering such variability, the manufacture process can

meet the requirement of the circuit performance. This kind of variation is referred
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as systematic variability because the models can be used to describe the variation

in advance. On the other hand, some physical or environment phenomenon is not

well understood, not enough available information is given to construct quantitative

models. To take this kind of variability into consideration, worst case analysis is

given to test the performance of the circuit, such as creating large enough margin for

the worst possible condition than may occur, or using statistical method to get the

random characteristic of the performing circuit.

As the scaling down of the semiconductor technology, the process variation in-

troduced above becomes more and more severe. As for the systematic variability,

models can be built and analysis can be done correctly. However, there are still

random variabilities which have to be solved using efficient methods. In this thesis,

some statistical methods are proposed to do analysis in power grid delivery network

considering process variation.

1.1.2 On-chip Power Grid Network

On-chip power grid network will be introduced in this part, including definition,

modeling, simulation and analysis of power grid network. Also, the process variation

influencing on the P/G network is briefly proposed in this part.

Power grid distribution networks distribute power and ground voltages from pad

locations to all devices on the chip [52].

Fig 1.1 shows a simple on-chip power grid [44]. Power supply wires for Vdd are in

an orthogonal grid across the various wiring levels, and are connected to the circuit

components at the bottom and to the package power terminals at the top.

Large current fluctuation in the power and ground networks, which is caused by the

3



External voltage source
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device
device

Figure 1.1: Representative of On-Chip Power Grid network

shrinking of the device size, increasing of switching frequencies and increasing power

consumption, would degrade the performance and reliability of power distribution

networks. Due to the interconnect resistance, there will be voltage drop through

the power grid network, which is named as IR drop. Also, the package supplies

currents to power grid network either by package lead or by C4 bump array in flip-

chip technology. The voltage drop can also be induced here because of the inductance

of the package leads, accompanied with the time-varying current drawn by the device

on the die, although the resistance of the package is quite small. This kind of voltage

drop is referred to as di/dt drop. As a result, the real voltage supplied to the device

is the supply voltage minus IR drop and di/dt drop. As the close relationship of

circuit delay and power dissipation with power supply voltage [44], the excessive

voltage drop on the power grid delivery network would cause excessive delay, which

would lead to false behavior of the device. Excessive delay would lead to the slowing

down of switching speeds and increasing noise margin of circuit, which would highly
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cause function failure. A robust power grid network is vital in meeting performance

guarantees and ensuring reliable operation.

Nowadays, tools are used here to do the simulation, analysis, optimization of

power grid network. In the process, it has to take into account the power delivery

network, on-chip decoupling capacitance, the package parasitics, as well as the par-

asitics associated with the board and possibly even the power regulator. Usually, to

perform power grid network analysis, there are two kinds: (1) DC voltage drop at

each component in the circuit and (2) time domain analysis considering capacitive

chip and inductive package and time varying current input of power grid network.

Different models are used for power grid delivery network according to different

requirements to analysis of the network. DC voltage computation, which is to cal-

culate IR drop, only requires resistance model. Most of the time, when time-varying

currents input to network are considered, capacitors should also be considered. The

capacitor here includes parasitic wire capacitances, between power wires and ground

wire, parasitic capacitance of transistors and explicitly placed decoupling capacitors.

When the switching speeding goes high, inductance should also be taken into account

because di/dt drop is becoming the important part of the total voltage drop.

It is too complex to simulate the power grid network with all the nonlinear device

connecting on the chip at the same time. One of the reasons is the huge size of the

network. To put them together to compute is infeasible. Therefore, it takes two

steps to do the simulation. First, the nonlinear device is simulated with ideal supply

voltages. Then, the currents drawn from the device and connected to the network is

computed. Second, with the input current, which is the current of simulated device

terminal connecting to power grid network, the voltage drop is simulated in the power
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grid network. The reason why the power grid network can be simulated in these two

steps is the voltage drop actually is less than %10 of node voltage and therefore, the

current interaction between the power grid and device in the circuit can be omitted.

As introduced in chapter 1.1.1, process variation should also be taken into con-

sideration in the analysis of power grid network. The variability includes the current

input variability brought from device on the chip, the interconnect variability, such as

interconnect wire length and width variability. Chapter4 and chapter5 will introduce

methods to analysis power grid delivery network with process variation. Chapter6 will

introduce sampling method to analysis interconnect variability for Statistical Static

Timing Analysis(SSTA).

1.2 Contributions and Organization

In this thesis, variational on-chip power grid delivery network and variational inter-

connect delay are studied. Fast analysis approaches are presented here and results

are compared with Monte Carlo method.

The rest of this dissertation is organized as follows. Chapter 2 provides back-

ground knowledge about on-chip power grid network and interconnect. It includes

some models which we will use in latter part of the disertation. Chapter 3 presents

knowledge about spectral statistical theory and relative algorithm used in the follow-

ing chapter. Chapter 4 presents an algorithm to do analysis of on-chip power grid

analysis considering leakage current variations. Chapter 5 proposes a fast analysis

algorithm to power grid network with consideration of both interconnect variation

and input current variation. Chapter 6 introduce a method to calculate variational

6



interconnect delay for statistical timing analysis. Finally, Chapter 7 concludes the

dissertation.
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Chapter 2

Background and Related Models

2.1 Variational Power Grid Models

2.1.1 On-chip Power Grid Network Models

The power grid networks in this paper are modeled as RC networks with known time-

variant current sources, which are obtained by gate-level logic simulations of the VLSI

systems. For a power grid (versus the ground grid), some nodes have known voltages

modeled as constant voltage sources. For C4 power grids, the known voltage nodes can

be nodes inside the power grid. Given known deterministic vector of current sources,

u(t), the node voltages can be obtained by solving the following linear differential

equation, which is formulated using modified nodal analysis (MNA) approach,

Gv(t) + C
dv(t)

dt
= Bu(t) (2.1)
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where G ∈ Rm×m is the conductance matrix, C ∈ Rm×m is the admittance matrix

resulting from storage elements. B ∈ Rm×l and u(t) ∈ Rl×1 is a vector of time-varying

node currents. m is the size of the given circuit and l is the number of input ports.

2.1.2 Power Grid Models Considered Process Variations

The G and C matrices and input currents u(t) depend on the circuit parameters,

such as metal wire width, length, thickness on power grids, and transistor parameters,

such as channel length, width, gate oxide thickness, etc. Some previous work assumes

that all circuit parameters and current sources are treated as uncorrelated Gaussian

random variables [23]. In this thesis, we consider both power grid wire variations and

the log-normal leakage current variations, caused by the channel length variations,

which is modeled as Gaussian (normal) variations [50].

Process-induced variations can also be classified into inter-die (die-to-die) varia-

tions and intra-die variations. In inter-die variations, all the parameters variations

are correlated. The worst case corner can be easily found by setting the parameters

to their range limits (mean plus 3σ). The difficulty lies in the intra-die variations,

where the circuit parameters are not correlated or spatially correlated within a die.

Intra-die variations also consist of local and layout dependent deterministic compo-

nents and random components, which typically are modeled as multivariate Gaussian

process with some spatial correlations [10]. For the spatial correlation as introduced

in detail in chapter4, we first assume we have a number of independent (uncorrelated)

transformed ortho-normal random Gaussian variables ξ(θ), i = 1, ..., n, which actu-

ally model the channel length and the device threshold voltage variations and other

variations. Then, we focus on strongly spatial correlation in the intra-die variation.
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The reasons is that weakly or uncorrelated random variations have smaller impacts on

the leakage and wire variations than that of the highly correlated random variables,

as the variance of the sum of n independent random variables is ∼ nσ2, while the

variance of the sum of n highly correlated random variables is ∼ n2σ2. We apply the

principal component analysis (PCA) method to transfer the correlated variables into

un-correlated variables before the spectral statistical analysis.

Let Ω denote the sample space of the experimental or manufacturing outcomes.

For ω ∈ Ω, let ξd(ω) = [ξ1d(ω), ..., ξrd(ω)] be a vector of r Gaussian variables to

represent the circuit parameters of interest. After the PCA operation, we obtain

independent random variable vectors ξ = [ξ1, ..., ξn]. Notice that n ≤ r in general.

Therefore, given the process variations, the MNA for Eq.2.1 becomes

G(ξ)v(t) + C(ξ)
dv(t)

dt
= Bu(t, ξ(θ)) (2.2)

The variation in wire width and thickness will cause variation in the conductance

matrix G(ξ) and capacitance matrix C(ξ). The variations are more related to back-

end-of-the-line (BEOL) as power grids are mainly metals at top or middle layers.

The input current vector, u(t, ξ(θ)), has both deterministic and random components.

To simplify our analysis, we assume the dynamic currents (power) caused by circuit

switching are still modeled as deterministic currents as we only consider the leakage

variations. Practically, the variations caused by the dynamic power of circuits can be

significant. But the voltage variations caused by the leakage variations can be viewed

as background noise, which can be considered together with dynamic power-induced

variations later.
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To obtain the variation current sources u(t, ξ(θ)), some library characterization

methods will be used to compute the u(t, ξ(θ)) once we know the effective channel

length (Leff ) variations, threshold voltage (Vth) variations and other variable sources

under different input patterns. With those variation-aware cell library, we can more

accurately obtain the u(t, ξ(θ)) based on the logic simulation of the whole chip under

some inputs.

Note that practical use perspective, user may be only interested in voltage varia-

tions over a period of time or worst case in a period of time. Those information can

be easily obtained once we know the variations in any given time instance. In other

words, the information we obtain here can be used to derive any other information

that is interesting to designers.

The problem we need to solve is to efficiently find the mean and variances of

voltage v(t) at any node and at any time instance. A straightforward method is

Monte Carlo (MC) based sampling methods. We randomly generate G(ξ), C(ξ)

and u(t, ξ(θ)), which is based on the log-normal distribution, solve Eq.2.2 in time

domain for each sampling and compute the means and variances based on sufficient

samplings. Obviously, MC will be computationally expensive. However, MC will

give the most reliable results and is the most robust and flexible method. In this

thesis, a method based on spectral statistical analysis is presented, which transforms

the statistical differential equation to a series of deterministic equation. It is more

efficient than MC. Chapter3 introduce basic knowledge of spectral statistical analysis.

Chapter4 and chapter5 presents the methods based on spetral statistical analysis to

the statistical analysis of power grid network.
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2.2 Variational Interconnect Modeling

2.2.1 Interconnect Modeling

The interconnects here are modeled as RCL linear time-invariant networks. Given

known vector of excitation, u(t), the output x(t) can be obtained by solving the fol-

lowing linear differential equation, which is formulated using modified nodal analysis

(MNA) approach,

Gx(t) + C
dx(t)

dt
= Bu

y(t) = LT x(t) (2.3)

with conductance matrix G ∈ ℜm×m, capacitor matrix C ∈ ℜm×m, input position

matrix B ∈ ℜm×l and output matrix L ∈ ℜm×l. Given the specific input (step,

or ramp), we can then compute the delay of the interconnects from the transient

waveforms (by measuring the 50%-50% delay or other delay formula).

2.2.2 Interconnect Modeling Considered Process Variations

As introduced in previous, the G and C matrices depend on the circuit parameters,

such as metal wire width, length, metal thickness and interlevel-dielectric (ILD) thick-

ness on interconnects. In this thesis, we assume that we have a number of independent

(uncorrelated) transformed orth-normal Gaussian random variables ξi(θ), i = 1, ..., n,

which model the interconnect geometrical variations. The spatial correlation in the

intra-die variation can be processed by using the principal component analysis method

(or other methods like Karhunen-Loeve transformation and principal factor analysis
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etc.) to transform the correlated variables into un-correlated variables before spectral

statistical analysis [23, 38]. Let Θ denote the process sampling space. Let θ ∈ Θ,

ξi : θ → R denote a normalized Gaussian variable and ξ(θ) = [ξ1d(θ), ..., ξnd(θ)] is a

vector of n Gaussian variable. After orthogonal transformation operation, we obtain

independent random variable vectors ξ = [ξ1, ..., ξn]. Notice that n ≤ r in general.

Therefore, given the process variations, the MNA equation for Eq.2.3 becomes

G(ξ)x(t, ξ) + C(ξ)
dx(t, ξ)

dt
= Bu

y(t, ξ) = LT x(t, ξ) (2.4)

Here, L = B. The problem we need to solve is to efficiently compute the delays from

the specific input to specific outputs in terms of orthogonal polynomial form under

step or ramp inputs without using the time-consuming sampling-based method, such

as Monte-Carlo.
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Chapter 3

Spectral Statistical Based

Simulation

In this chapter, main methods to solve statisitcal differential equation will be reviewed

in section 3.1. In section 3.2, the definite and basic concept of Hermite Polynomial

Choas will be introduced. Section 3.3 would introduce Galerkin Method, which is a

method to solve stochastic differential equation.

3.1 Preview

From chapter 2, we know that the statistical problem needs to solve is in fact a

statistical differential equation problem. The system[21] is with random operator

and random input as in Eq.3.1:

Ax = f (3.1)
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where A is a statistical differential operator, x is the random response, and f is

the possibly random input. Deterministic A and random input f has been studied

extensively, while only approximate solutions to the problem are given with both

random operator A and random input f.

From the aspect of engineering to solve the statistical differential equation, which

would consider with intricate geometries, boundary conditions and various types of

excitations, the widely used method is the perturbation method[21]. The reason

for this is probably the simplicity of the perturbation method from the engineering

aspect. This method is to do expansion to all the random quantities around their

respective mean values via a Taylor series. However, it is complex to compute higher

order beyond the first and the second order. Also, the instability problem of the

approximate solution would appear in higher order terms. The above two lead to the

fact that perturbation method also only restricts to involving small randomness.

Another method is the hierarchy closure approximation[7]. This method is based

on expressing joint statistical moments of the output and of the system as functions

of lower order moments. However, the difficulties is to form higher order moments

which limits the method only to small random fluctuations.

Stochastic Green’s function[3] and decomposition method[4] for solving nonlinear

differential equation are introduced later. The inverse of the random solution process

is expanded in a Neumann series[14] or in delta method[54]. However, the high or-

der moments computation is cumbersome since it involves averaging of products of

random matrix. The limit here is still the small random fluctuations. Later Monte

Carlo Expansion(MCE)[64] method, which constitutes of the Neumann expansion

with Monte Carlo simulation is introduced. This method generates random matrix
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based on Neumann expansion of inverse of stochastic coefficient matrix. Good match

with standard Monte Carlo can be reached with large coefficients of variation. How-

ever, the simulation process takes time especially when sizable random fluctuations

are involved.

The previous existing solutions to statistical differential equations either limits

to the small random fluctuation or to the time consuming problem. The spectral

statistical method introduced in the following can be applied to large fluctuation

comparing and is much more efficiently than Monte Carlo.

3.2 Stochastic Finite Element

3.2.1 Mathematical Model

In this section, the concept of Hilbert space and spectral analysis will be introduced.

Hilbert space of functions defined over a domain D, with value on the real line, is

denoted by H. Let(Ω, Γ, P) represents a probability space. Suppose x ∈ D and

θ ∈ Θ. Then, the space of functions mapping Ω onto the real line is denoted by Θ.

Then Each map Θ → R represents a random variable. The equation below represents

the random physical model.

A(x, θ)u(x, θ) = f(x, θ) (3.2)

A(x, θ) represents random differential operation. In other words, A(x, θ) is a dif-

ferential operator with coefficients exhibition random fluctuations with one or more

random variables. Here, u(x, θ) is the function needs to be solved. Usually, as prac-
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tical use, the second order expansion of A(x, θ) is enough because most physical

measurement are of the second order type.

The procedure of solving Equation 3.2 includes two steps. First is to use a random

distribution to represent A(x, θ) and u(x, θ). After obtaining the distribution, the

problem turns to how to solve the random equation. Usually, invoking central limit

theorem, Gaussian distribution most likely appears in the physical models [21].

As for the solution procedure, usually, a general form of the solution process can

be expressed as

u = g[δ(x, θ), f(x, θ), x] (3.3)

Here, g[.] is some nonlinear functional of its arguments. δ(x, θ) is represented as

ai(x, θ) = āi(x) + δ(x, θ) (3.4)

ai(x, θ), which are the coefficients of A(x, θ), can be decomposed to deterministic part

āi(x) and purely random part δ(x, θ). āi(x) is the expectation of ai(x) and δi(x, θ) is

zero-mean random process.

As in equation 3.3, complete description of the response should includes the joint

distribution in it. However, it is out of the capability to compute given the infinite

dimensional structure [21]. Finite dimension is required here. The finite dimension

representation cannot be achieved through partitioning the space because of the na-

ture of the random process. Therefore, alternatively, an abstraction of the discretiza-

tion process can be introduced which is mathematically equivalent to a discretization

with respect to a spectral measure.

The following will introduce the method of spectral representation of random
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process which is in the use of following work.

There are two kinds of representations used in the development of the stochastic

finite element method. They are Karhunen-Loeve expansions and the Homogeneous

Chaos(PC) expansion. The Karhunen-Loeve expansion method requires knowing the

covariance function of the process that needs to be expanded. It is able to be obtained

for the operation part. However, it cannot be implemented for the solution process,

since the covariance function of solution part is always not known.

The Homogeneous Choas expansion involves a basis of known random functions

with deterministic coefficients. This expansion also means to be found by minimizing

some norm of the error resulting from a finite representation. Equation 3.3 is rewritten

as

u = h[ξi(θ), x] (3.5)

Here, ξi represents the random variables in the random system. If the variables are

following Gaussian distribution, which means the nonlinear expansion of h[.] are in

terms of Gaussian, the expansion is known as Homogenous Choas. In other words, it

can be viewed as an orthogonal development for nonlinear functionals with Gaussian

measure.

3.2.2 Concept of Hermite PC

In the following, a random variable ξ(θ) is expressed as a function of θ, which is the

random event. Hermite PC utilizes a series of orthogonal polynomials (with respect

to the Gaussian distribution) to facilitate stochastic analysis [63]. These polynomials

are used as the orthogonal base to decompose a random process in a similar way that
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sine and cosine functions are used to decompose a periodic signal in a Fourier series

expansion.

Note that for the Gaussian and log-normal distributions, Hermite polynomial is

the best choice as they lead to exponential convergence rate [21]. For non Gaussian

and non log-normal distributions, there are other orthogonal polynomials such as

Legendre for uniform distribution, Charlier for Poisson distribution and Krawtchouk

for Binomial distribution etc [20, 59].

For a random variable v(t, ξ) with limited variance, where ξ = [ξ1, ξ2, ...ξn] is a

vector of zero mean orthonormal Gaussian random variables. The random variable

can be approximated by truncated Hermite PC expansion as follows [21]:

v(t, ξ) =

P∑

k=0

akH
n
k (ξ) (3.6)

where n is the number of independent random variables, Hn
k (ξ) is n-dimensional

Hermite polynomials and ak are the deterministic coefficients. The number of terms

P is given as

P =

p∑

k=0

(n − 1 + k)!

k!(n − 1)!
(3.7)

where p is the order of the Hermite PC. If only one random variable is considered,

the one-dimensional Hermite polynomials are expressed as follows:

H1
0 (ξ) = 1, H1

1 (ξ) = ξ, H1
2(ξ) = ξ2 − 1, H1

3 (ξ) = ξ3 − 3ξ, ... (3.8)

Hermite polynomials are orthogonal with respect to Gaussian weighted expectation
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(the superscript n is dropped for simple notation):

< Hi(ξ), Hj(ξ) >=< H2
i (ξ) > δij (3.9)

where δij is the Kronecker delta and < ∗, ∗ > denotes an inner product defined as

follow:

< f(ξ), g(ξ) >=
1√

(2π)n

∫
f(ξ)g(ξ)e−

1

2
ξT ξdξ (3.10)

Like Fourier series, the coefficient ak can be found by a projection operation onto

the Hermite PC basis:

ak(t) =
< v(t, ξ), Hk(ξ) >

< H2
k(ξ) >

, ∀k ∈ {0, ..., P}. (3.11)

3.3 Simulation Approach Based on Hermite PCs

To simplify the presentation, we first assume that C and G are deterministic in Eq.2.2.

We will remove this assumption later. In case that v(t, ξ) is unknown random variable

vector (with unknown distributions) like node voltages in Eq.2.2, then the coefficients

can be computed by using Galerkin method, which states that the best approximation

of v(t, ξ) is obtained when the error ∆(t, ξ), which is defined as

∆(t, ξ) = Gv(t) + C
dv(t)

dt
− Bu(t, ξ(θ)) (3.12)

is orthogonal to the Hermite polynomials. That is

< ∆(t, ξ), Hk(ξ) >= 0, i = 0, 1, ..., P (3.13)
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In this way, we transform the statistical analysis process to a deterministic process,

where we only need to compute the coefficients of its Hermite PC. Once we obtain

those coefficients, the mean and variance of the random variables can be easily com-

puted.
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Chapter 4

Statistical Analysis considering

Leakage Current Variations With

Spatial Correlation

4.1 Problem Statement

4.1.1 Leakage Current in Power Grid Network

One important aspect of the variations comes from the chip leakage currents. Leakage

currents come from different sources. The dominant factor is the sub-threshold leak-

age current. The reason is that sub-threshold leakage current has a rapid increasing

rate (about 5X-10X increase per technology generation [16]), and it is highly sensitive

to threshold voltage Vth variations, owning to the exponential relationship between
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sub-threshold current Ioff and threshold voltage Vth as shown below [56],

Ioff = Is0e
Vgs−Vth

nVT (1 − e
−Vds
VT ) (4.1)

where Is0 is a constant related to the device characteristics, VT is the thermal voltage,

and n is a constant. It was shown in [28] that leakage variations for 90nm can be

20×. Based on the ITRS 2005 [2], the leakage power accounts for more than 60% at

45nm, there are many consequences for chip design, especially for design of the power

grid. The grid will develop voltage drop at all the nodes that are correspondingly

significant with a strong within-die components. The voltage drop is unavoidable and

manifests itself as a background noise on the grid which has an impact on the circuit

delay and operation.

Clearly, the leakage current has exponential dependency on the threshold voltage

Vth. In the sequel, the leakage current is mainly referred to as the sub-threshold

leakage current. Detailed analysis shows that Ioff is also an exponential function of

the effective channel length Leff [50]. Actually Leff are strongly correlated with Voff

as Voff variations typically are caused by the Leff . So if we model Vth or Leff as the

random variables with Gaussian variation caused by the inter-die or intra-die process

variations, then the leakage currents will have a log-normal distribution as shown

in [50]. On top of this, those random variables are spatially correlated within a die,

owning to the nature of the many physical and chemical manufacture processes [40].
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4.1.2 Statistical analysis of Power Grid with Leakage Varia-

tions

On-chip power grid analysis and designs have been intensively studied in the past

due to the increasing impacts of excessive voltage drops as technologies scale [61,

65, 29, 51, 57, 58, 13, 24, 62, 17, 53]. Owning to the increasing impacts of leakage

currents and its variations on the circuit performances, especially on the on-chip power

delivery networks, a number of research works have been proposed recently to perform

the statistical analysis of power grid networks under process-induced leakage current

variations. The voltage drop of power grid networks subject to the leakage current

variations was first studied in [18, 19]. This method assumes that the log-normal

distribution of the node voltage drop caused by the log-normal leakage current inputs

and is based on a localized Monte Carlo (sampling) method to compute the variance

of the node voltage drop. However, this localized sampling method is limited to the

static DC solution of power grids modeled as resistor-only networks. Therefore, it can

only compute the responses to the standby leakage currents. However, the dynamic

leakage currents become more significant, especially when the sleep transistors are

intensively used nowadays for reducing leakage powers. In [55, 45], impulse responses

are used to compute the means and variances of node voltage responses caused by

general current variations. But this method needs to know the impulse response

from all the current sources to all the nodes, which is expensive to compute for a

large network. In [50], the probability density function (pdf) of leakage currents is

computed based on the Gaussian variations of channel lengths.

Recently, a statistical simulation method for interconnect and power grid networks

has been proposed [60, 23, 59]. This method is based on the orthogonal polynomial
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chaos expansion of random processes to represent and solve for the statistical re-

sponses of linear systems. The major benefit of this method is its compatibility with

current transient simulation framework: it solves for some coefficients of the orthog-

onal polynomials, which can be done by using normal transient simulations of the

original circuits with deterministic inputs to compute variances of node responses.

Some existing approaches [23, 59] model all the parameter variations as Gaussian (or

approximate them as Gaussian variations by using first-order Taylor expansion) [60].

Those methods also fail to consider the spatial correlation in the process parameter

random variables.

In this chapter, we apply the orthogonal polynomial based method (also called

spectral statistical method) to deal with leakage current inputs with log-normal distri-

butions and spatial correlations. We show how to represent a log-normal distribution

in terms of Hermite polynomials, assuming Gaussian distribution of threshold volt-

age Vth in consideration of intra-die variation. To consider the spatial correlation,

we apply orthogonal decomposition via principal component analysis to map the cor-

related random variables into independent variables. To the best knowledge of the

authors, the proposed method is the first method being able to perform statistical

analysis on power grids with variation dynamic leakage currents having lognormal

distributions and spatial correlations. Experiment results show that the proposed

method predicates the variances of the resulting log-normal-like node voltage drops

more accurately than Taylor expansion based Gaussian approximation method.

We remark that we only consider the leakage current inputs with log-normal dis-

tributions to emphasize our new contributions. The reason is that leakage currents

can be variable significantly. In 90nm, it can lead to 20X variations [28]. For the
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coming 45nm, it will dominate the currents of a chip (60% based on ITRS 2005 [2]).

Considering variations from leakage currents has significant practice relevance. Also

for general current variations from dynamic power of the circuits, which typically can

be modeled as Gaussian distribution, existing work [23] using Taylor series expansion

has been explored. The voltage variations caused by the dynamic power can be con-

sidered on top of the variations from the log-normal leakage currents. We notice that

similar work, which considers only leakage variations have been done before [18, 19].

Also we remark that Vdd drop will have impacts on the leakage currents, which

create a negative feedback for the leakage current itself as increasing Vdd drop leads

to lower Vgs in Eq.4.1, which leads to smaller Ioff . However, to consider the effect,

both the power grid and signal circuits need to be simulated together, which will be

very expensive. Hence practically, two-step simulation approach is used where power

grid and signal circuits are simulated separately but in an iterative way to consider

the coupling between them. In light of this simulation methodology, our proposed

method can be viewed as the only one step (power grid simulation step) in such a

method.

4.2 Hermite PCs For Log-Normal Leakage Cur-

rent Variation

In this section, we present the new method for representing the log-normal leakage

current distributions by using Hermite PCs independent Gaussian variables repre-

senting the channel length or threshold voltage variations. Our method, based on

[20], can be applied to one or more independent Gaussian variables.
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4.2.1 Using Galerkin equation for independent random vari-

able

For illustration purpose, considering one Gaussian variable ξ = [ξ1] and we then can

assume that the node voltage response can be written as a second order (p = 2)

Hermite PC:

v(t, ξ) = v0(t) + v1(t)ξ1 + v2(t)(ξ
2
1 − 1) (4.2)

Assuming that the input leakage current sources can also be represented by a second

Hermite PC:

u(t, ξ) = u0(t) + u1(t)ξ1 + u2(t)(ξ
2
1 − 1) (4.3)

By applying the Galerkin equation Eq.3.13 and note the orthogonal property of

the various orders of Hermite PCs, we end up with the following equations

Gvi(t) + C
dvi(t)

dt
= Bui(t) (4.4)

where i = 0, 1, 2, .., P − 1.

For two independent Gaussian variables, we have

v(t, ξ) = v0(t) + v1(t)ξ1 + v2(t)ξ2 + v3(t)(ξ
2
1 − 1)

+v4(t)(ξ
2
2 − 1) + v5(ξ1ξ2) (4.5)

Assuming that we have a similar second order Hermite PC for input leakage current
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u(t, ξ),

u(t, ξ) = u0(t) + u1(t)ξ1 + u2(t)ξ2 + u3(t)(ξ
2
1 − 1)

+u4(t)(ξ
2
2 − 1) + u5(ξ1ξ2) (4.6)

The Eq.4.4 is valid with i = 0, ..., 5. For more (more than two) Gaussian variables, we

can obtained the similar results with more coefficients of Hermite PCs to be solved

by using Eq.4.4.

Once we obtain the Hermite PC of v(t, ξ), we can obtain the mean and variance

of v(t, ξ) trivially as (one Gaussian variable case):

E(v(t, ξ)) = v0(t)

V ar(v(t, ξ)) = v2
1(t)V ar(ξ1) + v2

2(t)V ar(ξ2
1 − 1)

= v2
1(t) + 2v2

2(t) (4.7)

One critical problem remains so far is how to obtain the Hermite PC Eq.4.3 for

leakage current with log-normal distribution.

4.2.2 Hermite PC representation of log-normal variables

Let g(ξ) be the Gaussian random variable, denoting threshold voltage or device chan-

nel length. Let l(ξ) be the random variable obtained by taking the exponential of

g(ξ)

l(ξ) = eg(ξ), g(ξ) = ln(l(ξ)) (4.8)
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Obviously, for the MOS device leakage current equation Eq.4.1, leakage current,

Ioff = cIl(Vth) = ce−Vth , where the leakage component Il(Vth) is a log-normal random

variable. Let the mean and the variance of g(ξ) as µg and σ2
g , then the mean and

variance of l(ξ) are

µl = e(µg+
σ2

g

2
) (4.9)

σ2
l = e(2µg+σ2

g)[eσ2
g − 1] (4.10)

respectively.

For a general Gaussian variable g(ξ), it can always be represented in the following

affine form:

g(t, ξ) =
n∑

i=0

ξigi(t) (4.11)

where ξi are orthonormal Gaussian variables. i.e. < ξiξj >= δij, < ξi >= 0 and ξ0 = 1

and gi is the coefficient of the individual Gaussian variables. Note that such form can

always be obtained by using Karhunen-Loeve orthogonal expansion method [21]

In our problem, we need to represent the log-normal random variable l(t, ξ) by

using the Hermite PC expansion form:

l(t, ξ) =
P−1∑

k=0

lk(t)H
n
k (ξ) (4.12)

where l0(t) = exp[µg(t) +
σ2

g

2
]. Here the mean is timing varying and standard deviation

is not changed with time. To find the other coefficients, we can apply Eq.3.11 on
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l(t, ξ). Therefore, we have

lk(t) =
< l(t, ξ), Hk(ξ) >

< H2
k(ξ) >

, ∀k ∈ {0, ..., P}. (4.13)

It was shown in [20], l(t, ξ) can be written as

l(t, ξ) =
< Hk(ξ − g) >

< H2
i (ξ) >

= exp[µg +
1

2

n∑

j=1

g2
j ] (4.14)

where n is the number of independent Gaussian random variables.

The log-normal process can then be written as

u(t, ξ) = l0(t)(1 +

n∑

i=1

ξigi +

n∑

i=1

n∑

j=1

(ξiξj − δij)

< (ξiξj − δij)2 >
gigj + ...) (4.15)

where gi is defined in Eq.4.11.

4.2.3 Hermite PC representation with one Gaussian variable

In this case, ξ = [ξ1]. For the second order Hermite PC (P = 2), following Eq.4.15,

we have

u(t, ξ) = l0(t)(1 + σgξ1 +
1

2
σ2

g(ξ
2
1 − 1)) (4.16)

Hence, the desired Hermite PC coefficients, u0,1,2, can be expressed as l0, l0σg and

1
2
l0σ

2
g respectively.
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4.2.4 Hermite PC representation of two and more Gaussian

variables

For two random variables (n = 2), assume that ξ = [ξ1, ξ2] is a normalized uncorre-

lated Gaussian random variable vector that represents random variable g(ξ):

g(t, ξ) = µg(t) + σ1ξ1 + σ2ξ2 (4.17)

Note that

< (ξiξj − δij)
2 >=< ξ2

i ξ
2
j >=< ξ2

i >< ξ2
j >= 1

Therefore, the expansion of the log-normal random variables using second order

Hermite PCs can be expressed as

u(t, ξ) = l0(t)(1 + σ1ξ1 + σ2ξ2 +
σ2

1

2
(ξ2

1 − 1) +
σ2

2

2
(ξ2

2 − 1) +

2σ1σ2ξ1ξ2) (4.18)

where

µl(t) = l0(t) = exp(µg(t) +
1

2
σ2

1 +
1

2
σ2

2)

Hence, the desired Hermite PC coefficients, u0,1,2,3,4,5, can be expressed as l0, l0σ1,

l0σ2,
1
2
l0σ

2
1,

1
2
l0σ

2
2 , and 2l0σ1σ2 respectively.

Similarly, for four Gaussian random variables, assume that

ξ = [ξ1, ξ2, ξ3, ξ4] is a normalized, uncorrelated Gaussian random variable vector. The

random variable g(t, ξ) can be expressed as
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g(t, ξ) = µg(t) +

4∑

i=1

σiξi (4.19)

As a result, the log-normal random variable l(ξ) can be expressed as

u(t, ξ) = l0(t)(1 +

4∑

i=1

ξiσi +

4∑

i=1

1

2
(ξ2

i − 1)σ2
i +

4∑

i=1

4∑

j=1

ξiξjσiσj + ...) (4.20)

where

µl(t) = l0(t) = exp(σ0 +
1

2

4∑

i=1

σ2
i )

Hence, the desired Hermite PC coefficients can be expressed using the equation

Eq.4.20 above.

Once we have the Hermite PC representation of the leakage current sources u(t, ξ),

the node voltages v(t, ξ) can be computed by using equations Eq.4.4 with proper order

p of the PCs to obtain all the Hermite PC coefficients of v(t, ξ).

4.3 Spatial Correlation

In this section, we consider the spatial correlation among different variations within

a die. Spatial correlations exist in the intra-die variations in different forms and have

been modeled for timing analysis [41, 10]. The general way to consider spatial correla-

tion is by means of mapping the correlated random variables into a set of independent

variables. This can be done by using some orthogonal mapping techniques, such as

principal component analysis(PCA). In this part, we also apply PCA method in our

spectral statistical analysis framework for power/grid statistical analysis.
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4.3.1 Concept of principal component analysis

We first briefly review the concept of principal component analysis, which is used

here to transform the random variables with correlation to uncorrelated random vari-

ables [26].

Suppose that x is a vector of n random variables, x = [x1, x2, ..., xn]T , with co-

variance matrix C and mean vector µx = [µx1
, µx2

, ..., µxn
]. To find the orthogonal

random variables, we first calculate the eigenvalue and corresponding eigenvector of

covariance matrix C. Then, by ordering the eigenvectors in descending order eigen-

values, the orthogonal matrix A will be obtained. Here, A is expressed as

A = [eT
1 , eT

2 , ..., eT
n ]T (4.21)

where ei is the corresponding eigenvector to eigenvalue λi, which satisfies

λiei = Cei, i = 1, 2, ..., n (4.22)

and

λi < λi−1, i = 2, 3, ..., n (4.23)

With A, we can perform the transformation to get orthogonal random variables y,

y = [y1, y2, ..., yn]
T by using

y = A(x − µx) (4.24)

where, yi is a random variable with Gaussian distribution. The mean, µyi
, is 0 and
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the standard deviation, σyi
, is

√
λi on the condition that [26]

eT
i ei = 1, i = 1, 2, ..., n (4.25)

Here, because of the orthogonal property of matrix A

A−1 = AT (4.26)

To reconstruct the original random variables, we use the following equation:

x = AT y + µx (4.27)

4.3.2 Spatial correlation in statistical power grid analysis

To consider intra-die variation in Vth, the chip is divided into n regions. Assuming

Φ = [Φ1, Φ2, ..., Φn] is a random variable vector, representing the variation of Vth on

different part of the circuit. In other words, in the ith region, the leakage current

Ioffi
= ceVth(Φi), follows the log-normal distribution. Here, Φi is a random variable

with Gaussian distribution. µΦ = [µΦ1
, µΦ2

, ..., µΦn
] is the mean vector of Φ and C is

the covariance matrix of Φ.

With PCA, we can get the corresponding uncorrelated random variables φ =

[φ1, φ2, ..., φn] from the equation

φ = A(Φ − µΦ) (4.28)
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Also, the original random variables can be expressed as

Φi =

n∑

j=1

aijφj + µΦi
, i = 1, 2, ...n (4.29)

where aij is the ith row, jth column element in the orthogonal mapping matrix defined

in Eq.4.24. φ = [φ1, φ2, ..., φn] is a vector with orthogonal Gaussian random variables.

The mean of φj is 0 and variance is λj , j = 1, 2, ..., n. The distribution of φi can be

written as

φi = µφi
+ σφi

ξ̂i, i = 1, 2, ..., n (4.30)

ξ̂ = [ξ̂1, ξ̂2, ..., ξ̂n] is a vector with orthogonal normal Gaussian random variable. Φi

can be expressed with normal random variables, ξ̂ = [ξ̂1, ξ̂2, ..., ξ̂n] :

Φi =
n∑

j=1

aij

√
λj ξ̂j + µΦi

, i = 1, 2, ..., n (4.31)

With Eq.4.31, the leakage current can be expanded as Hermite Polynomial Chaos:

u(Φi) ∼ eΦi = e
Pn

j=1
gj ξ̂j+µΦi = µi(1 +

n∑

j=1

ξ̂jgj +

n∑

j=1

n∑

k=1

(ξ̂j ξ̂k − δjk)

< (ξ̂j ξ̂k − δjk)2 >
gjgk + ...) (4.32)

Here,

gj = aij

√
λj, j = 1, 2, ..., n (4.33)

Therefore, the MNA equation with correlated random variables Φ in current source
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can be expressed in terms of uncorrelated random variables ξ̂ as follows:

Gv(t) + C
dv(t)

dt
= Bu(t, ξ̂) (4.34)

With orthogonal property of ξ̂, Eq.4.34 will be simply solved by using Eq.4.4, i =

0, 1, ..., P − 1.

4.3.3 Variations in wires and leakage currents

In this section, we will consider variations in width (W ), thickness(T ) of wires of

power grids, as well as threshold voltage(Vth) in active devices which are reflected

in the leakage currents. Meanwhile, without loss of generality, these variations are

supposed to be independent of each other. As mentioned in [23], the MNA equation

for the ground circuit will becomes:

G(ξg)v(t, ξ) + C(ξc)
dv(t, ξ)

dt
= Bu(ξu, t) (4.35)

The variation in width W and thickness T will cause variation in conductance matrix

G and capacitance matrix C while variation in threshold voltage will cause leakage

current input variation in u. Thus, the conductance and capacitance of wires can be

expressed as in [23]:

G(ξg) = G0 + G1ξg

C(ξc) = C0 + C1ξc (4.36)
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G0, C0 represents the deterministic components of conductance and capacitance of

the wires. G1, C1 represents sensitivity matrices of the conductance and capacitance.

ξg, ξc are normalized random variables with Gaussian distribution, representing pro-

cess variation in wires of conductance and capacitor, respectively. As mentioned in

previous section, the variation in leakage current can be represented by a second

Hermite PC as in equation Eq.4.16:

u(t, ξu) = u0(t) + u1(t)ξu + I2(t)(ξ
2
u − 1) (4.37)

here, ξu is a normalized Gaussian distribution random variable representing variation

in threshold voltage. u(t, ξu) follows lognormal distribution as

u = eg(ξu)

g(ξu) = µu + σuξu (4.38)

As in previous part, the desired Hermite PC coefficients, u0,1,2, can be expressed as

u0, u0σu and 1
2
u0σ

2
u respectively. u0 is the mean of leakage current source, which is

expressed as

u0 = eµu+ 1

2
σ2

u (4.39)
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Considering the influence of ξg, ξc, ξu, the node voltage is therefore expended by Her-

mite PC in the second order form as

v(t, ξ) = v0(t) + v1(t)ξg + v2(t)ξc + v3(t)ξu

+v4(t)(ξ
2
g − 1) + v5(t)(ξ

2
c − 1) + v6(t)(ξ

2
u − 1)

+v7(t)ξgξc + v8(t)ξgξu + v9(t)ξcξu (4.40)

Now the task is to compute coefficients of the Hermite PC of node voltage v(t, ξ).

Applying Galerkin equation Eq.3.13, we only need to solve the equations as follows:

< ∆(t, ξ), 1 >= 0; < ∆(t, ξ), ξg >= 0;

< ∆(t, ξ), ξc >= 0; < ∆(t, ξ), ξu >= 0;

< ∆(t, ξ), ξ2
g − 1 >= 0; < ∆(t, ξ), ξ2

c − 1 >= 0;

< ∆(t, ξ), ξ2
u − 1 >= 0; < ∆(t, ξ), ξgξc >= 0;

< ∆(t, ξ), ξgξu >= 0; < ∆(t, ξ), ξcξu >= 0; (4.41)

With the distribution of ξg,ξc,ξu, we can get these coefficients v(t) = [v0(t), v1(t), ..., v9(t)]
T

of node voltage as

G̃v(t) + C̃
dv(t)

dt
= ũ(t) (4.42)
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G̃ =




G0 G1 0 0 0 0 0 0 0 0

G1 G0 0 0 2G1 0 0 0 0 0

0 0 G0 0 0 0 0 G1 0 0

0 0 0 G0 0 0 0 0 0 0

0 G1 0 0 G0 0 0 0 0 0

0 0 0 0 0 G0 0 0 0 0

0 0 0 0 0 0 G0 0 0 0

0 0 0 0 0 0 0 G0 0 0

0 0 0 G1 0 0 0 0 G0 0

0 0 0 0 0 0 0 0 0 G0




(4.43)

C̃ =




C0 0 C1 0 0 0 0 0 0 0

0 C0 0 0 0 0 0 C1 0 0

C1 0 C0 0 0 2C1 0 0 0 0

0 0 0 C0 0 0 0 0 0 0

0 0 0 0 C0 0 0 0 0 0

0 0 C1 0 0 C0 0 0 0 0

0 0 0 0 0 0 C0 0 0 0

0 0 0 0 0 0 0 C0 0 0

0 0 0 0 0 0 0 0 C0 0

0 0 0 C1 0 0 0 0 0 C0




(4.44)

39



ũ(t) = [u0(t), 0, 0, u1(t), 0, 0, u2(t), 0, 0, 0]T (4.45)

Knowing Hermite PC coefficients of node voltage v(t, ξ), it is easy to get the mean

and variance of v(t, ξ), which describe the random characteristic of node voltage in

the given circuit.

We remark that the proposed method will lead to large circuit matrices, which

will add more computation costs. To mitigate this scalability problem, for really large

power grid circuits, we can apply partitioning strategies to compute the variational

responses for each subcircuits, which will be small enough for efficient computation,

as done in the existing work [65, 13]. We can also use model order reduction like

simulation method, which will be introduced in next Chapter.

4.4 Experiments

This section describes the simulation results of circuits with log-normal leakage cur-

rent distributions for a number of power grid networks. All the proposed methods

have been implemented in Matlab. Sparse techniques are used in the Matlab. All the

experimental results are carried out in a Linux system with dual Intel Xeon CPUs

with 3.06Ghz and 1GB memory.

The power grid circuits we test are RC mesh circuits based on the values from

some industry circuits, which are driven by only leakage currents as we are only

interested in the variations from the leakage currents. The resistor values are in the

range 10−2Ω and capacitor values are in the range of 10−12 farad.
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4.4.1 Comparison with Taylor expansion method

We first compare the proposed method with the simple Taylor expansion method for

one and more Gaussian variables.

For simplicity, we assume one Gaussian random variable g(ξ), which is expressed

as

g = µg + σgξ (4.46)

where ξ is a normalized Gaussian random variable with < ξ > = 0, and < ξ2 > = 1.

The log-normal random variable l(ξ), obtained from g(ξ), is written as

l(ξ) = eg(ξ) = exp(µg + σgξ) (4.47)

Expand the exponential into Taylor series and keep all the terms up to second

order, then we have

l(ξ) = 1 +
1∑

i=0

ξigi +
1

2

1∑

i=0

1∑

j=0

ξiξjgigj + ...

= 1 + µg +
1

2
µ2

g +
1

2
σ2

g + (σg + µgσg)ξ +

1

2
σ2

g(ξ
2 − 1) + ... (4.48)

We observe that the second-order Taylor expansion, as shown in Eq.4.48, is sim-

ilar to second order Hermite PC in Eq.4.18. Hence, the Galerkin method can still

be applied, we then use Eq.4.4 to obtain the Hermite PC coefficients of node voltage

v(t, ξ) accordingly. We want to emphasize, however, that the polynomials generated

by Taylor expansion in general are not orthogonal with respect to Gaussian distribu-

41



δg 0.01 0.1 0.3 0.5 0.7
HPC (%) 3.19 1.88 2.07 5.5 2.92
Taylor (%) 3.19 1.37 2.41 16.6 24.02

Table 4.1: Accuracy comparison between Hermite PC (HPC) and Taylor Expansion.

tions and can’t be used with Galerkin method, unless we only keep the first order of

Taylor expansion results (with less accuracy). In this case, the resulting node voltage

distribution is still Gaussian, which obviously is not correct.

We note that the first order Taylor expansion has been used in the statistic timing

analysis [10]. The delay variations, owning to interconnects and devices, can be

approximated with this limitation. The skew distributions may be computed easily

with Gaussian distribution.

To compare these two methods, we use the Monte Carlo method to measure the

accuracies of two methods in terms of standard deviation. For Monte Carlo, we

sample 2000 times, which represents 97.7% accuracy. The results are summarized

in Table 4.1. In this table, δg is the standard deviation of the Gaussian random

threshold voltage Gaussian variable in the log-normal current source, HPC is the

standard deviation from the Hermite PC method in terms of relative percentage

against the MC method. Taylor is the standard deviation from the Taylor expansion

method in terms of relative percentage against the MC method.

We can observe that when the variation of current source increases, the Taylor

expansion method will result in significant errors compared to the MC method. While

the proposed method has the smaller errors for all cases. This clearly shows the

advantage of the proposed method, which is suitable for big variation.
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4.4.2 Examples without spatial correlation

Fig.4.1 shows the node voltage distribution at one node on a certain point of a ground

network with 1720 nodes. The Monte Carlo results are obtained by 2000 samples.

The standard deviations of the log-normal current sources with one Gaussian variable

is 0.1. The mean and 3σ computed by the Hermite PC method are also marked in

the figure which fits very well with the MC results. Fig.4.2 shows the node voltages

and its variations caused by the leakage currents from 0ns to 126ns. The circuit

selected contains 64 nodes with one Gaussian variable of 0.06 in the current source.

The blue dotted lines are mean, upper bound and lower bound. The cyan lines are

node voltages of Monte Carlo with 2000 times. Most of the MC results are in between

upper bound and lower bound.
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Figure 4.1: Distribution of the voltage in a given node with one Gaussian variable,
σg = 0.1, at time 50ns when the total simulation time is 200ns.

Another observation is that when standard deviation, σg, is small, the shape
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Figure 4.2: Distribution of the voltage caused by the leakage currents in a given node
with one Gaussian variable, σg = 0.5, in the time instant from 0ns to 126ns.

looks like Gaussian as in Fig. 4.1, but it is log-normal indeed. In the case of two

random variables with one large and the other small standard deviations, the larger

one dominates, which shows the shape of log-normal as in Fig. 4.3.

To consider multiple random variables, we divide the circuit into several partitions.

We first divide the circuit into two parts. Fig. 4.3 shows the node voltage of one node

of a particular time instance of a ground network with 336 nodes with two independent

variables. The standard deviations for two Gaussian variations are σg1 = 0.5, σg2 =

0.1. The 3σ variations are also marked in the figure.

Table 4.2 and table 4.3 shows the speedup of the Hermite PC method over Monte

Carlo method with 2000 samples considering one and two random variables, respec-

tively.

In two tables, #node is the number of nodes in the power grid circuits. p is

44



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

20

40

60

80

100

120

140

160

180

200

← µ + 3 δ← µ← µ − 3 δ

Distribution of voltage at given node (two variables, σ = 0.1 and 0.5)

Voltage (volts)

N
um

be
r 

of
 o

cc
ur

an
ce

s

Figure 4.3: Distribution of the voltage in a given node with two Gaussian variables,
σg1 = 0.1 and σg2 = 0.5, at time 50ns when the total simulation time is 200ns.

Ckt #node p n MC(s) #MC HPC(s) Speedup
gridrc 6 280 2 1 766.06 2000 1.0156 754.3
gridrc 12 3240 2 1 4389 2000 8.3281 527.0
gridrc 5 49600 2 1 2.3 × 105 2000 298.02 771.76

Table 4.2: CPU time comparison with the Monte Carlo method of one random vari-
able.

Ckt #node p n MC (s) #MC HPC (s) Speedup
gridrc 3 280 2 2 1.05 × 103 2000 2.063 507.6
gridrc 5 49600 2 2 2.49 × 105 2000 445.6 558.7
gridrc 9 105996 2 2 6.11 × 105 2000 1141.8 535.1

Table 4.3: CPU time comparison with the Monte Carlo method of two random vari-
ables
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the order of the Hermite PCs and n is the number of independent Gaussian random

variables. #MC is the number of samples used for Monte Carlo method. HPC and MC

represent the CPU times used for Hermite PC method and MC method respectively.

It can be seen that the proposed method is about two order of magnitude faster than

the MC method.

When more Gaussian variables are used for modeling intra-die variations, we need

more Hermite PC coefficients to compute. Hence, the speedup will be smaller if the

MC method uses the same number of samples as shown in gridrc 12. Also, one

observation is that the speedup depends on the sampling size in MC method. The

speedup of the proposed method over the MC method depends on many factors such

as the order of polynomials, number of variables, etc. In general, speedup should not

have a clear relationship with the circuit sizes. We still use 2000 samples for MC,

which represent about 97.7% accuracy (as the error in MC is roughly 1/
√

2000 for

2000 samples).

4.4.3 Examples with spatial correlation

To model the intra-die variations with spatial correlations, we divide the power grid

circuit into several parts. We first consider that circuit is partitioned into two parts.

In this case, we have two independent random current variables , ξ1 and ξ2. The cor-

related variables for the two parts are Φ1 = ξ1 +0.5ξ2 and Φ2 = ξ2 +0.5ξ1 respectively

as shown in Fig. 4.4.

Φ1 = ξ1 + 0.5ξ2 Φ2 = ξ2 + 0.5ξ1

Figure 4.4: Correlated random variables setup in ground circuit divided into two
parts.
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Mean Std Dev
ckt #nodes Non-PCA PCA Non-PCA PCA

% error % error % error % error

1 336 10.3 0.52 18.8 1.13
2 645 8.27 0.59 11.4 1.16
3 1160 10.8 0.50 2.6 0.73

Table 4.4: Comparison between non-PCA and PCA against Monte Carlo methods.

Table 4.4 shows the error percentage of mean and standard deviation of the com-

parison between Monte Carlo and HPC with Principal Component Analysis (PCA)

and the comparison between Monte Carlo and HPC without PCA. As shown in the

table, it is necessary to use PCA when spatial correlation is considered. Fig.4.5 shows

the node voltage distribution of one certain node in a ground network with 336 nodes,

using both PCA and non-PCA method.
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Figure 4.5: Distribution of the voltage in a given node with two Gaussian variables
with spatial correlation, at time 70ns when the total simulation time is 200ns.

To get more accuracy, we divide the circuit into four parts and each part has

correlation with its neighbor as shown in Fig.4.6. φ is the correlated random variable
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φ1=ζ1+0.5ζ2+0.5ζ3 φ3=ζ3+0.5ζ1+0.5ζ4

φ2=ζ2+0.5ζ1+0.5ζ4 φ4=ζ4+0.5ζ2+0.5ζ3

Figure 4.6: Correlated random variables setup in ground circuit divided into four
parts.

vector we use in the circuit. ζ = [ζ1, ζ2, ζ3, ζ4] are independent Gaussian distribution

random variables with standard deviations ζ1 = 0.1, ζ2 = 0.2, ζ3 = 0.1 and ζ4 = 0.5.

Fig.4.7 is the voltage distribution of a given node. The mean voltage and voltages

of worst case are given as the dashed line. Fig.4.8 is the voltage distribution of a

circuit with 1160 nodes. The circuit is partitioned into 25 parts of five rows and five

columns with spatial correlation. The dashed blue lines are mean, upper bound and

lower bound by Hermite PC. While the solid red lines are mean, upper bound and

lower bound by Monte Carlo of 2000 times.

Note that the size of the ground networks we analyzed is mainly limited by the

solving capacity of Matlab on a single Intel CPU Linux workstation. Given long

simulation time of large Monte Carlo sampling runs, we limit the ground network

size to about 3000 nodes.

Also note that for more accurate modeling, we need to have more partitions of the

circuits and thus more independent Gaussian variables are needed as shown in [10].

4.4.4 Consideration of variations in both wire and currents

Considering variation in conductance, capacitor and leakage current, Fig. 4.9 shows

the node voltage distribution at one node of ground circuit, Circuit4, which contains

280 nodes. The maximum 3δ variation are 10% in ξg, ξc and ξI . In the figures, the
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Figure 4.7: Distribution of the voltage in a given node with four Gaussian variables
with spatial correlation, at time 30ns when the total simulation time is 200ns.
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Figure 4.8: Distribution of the voltage in a given node with circuit partitioned of 5*5
with spatial correlation, at time 30ns when the total simulation time is 200ns.
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solid lines are the mean voltage and worst case voltages using HPC method. The

histogram bars are the Monte Carlo results of 2000 samples. The dotted lines are the

mean voltage and worst case voltage of the 2000 samples. From the figures we can

see that results getting from two methods match very well.
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Figure 4.9: Distribution of the voltage in a given node in circuit5 with variation on
G,C,I, at time 50ns when the total simulation time is 200ns.

Table 4.5 shows the CPU speedup of HPC method over MC method. The sample

numbers of Monte Carlo is 3500 and we can see that the proposed method is about

two orders of magnitudes faster than the Monte Carlo method when considering

variations in conductance, capacitors and voltage sources. The speedup becomes

smaller for larger circuits. This is because the super-linear time complexity of linear

solver as the augmented matrices in Eq.4.45 grow faster than each individual matrices

Gi and Ci. The proposed method does not favor very large circuits. Practically, this

scalability problem can be mitigated by using partitioning-based strategies [13].
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Ckt #node MC(s) HPC(s) Speedup
gridrc 6 280 1320.1 9.25 142.7
gridrc 12 3240 12183 141.4 86.2
gridrc 62 9964 63832 3261 19.6

Table 4.5: CPU time comparison with the Monte Carlo method considering variation
in G,C,I.

4.5 Summary

In this section, we have proposed a new statistical simulation method for fast esti-

mating the voltage variations from the process-induced log-normal leakage current

variations with spatial correlations. The new analysis is based on the Hermite poly-

nomial chaos (PC) representation of random processes. We extended the existing

Hermite PC based power grid analysis method [23] by considering log-normal leak-

age distributions as well as the consideration of the spatial correlations. The new

method considers both log-normal leakage distribution and wire variations at the

same time. Our experimental results show that the new method is more accurate

than the Gaussian-only Hermite PC using the Taylor expansion method for analyz-

ing leakage current variations and two orders of magnitude faster than Monte Carlo

methods with small variation errors. In the presence of spatial correlations, method

without considering the spatial correlations may lead to large errors, roughly 8%-10%

in our tested cases, if correlation is not considered. Experimental results show the

correctness and high accuracy of the proposed method. It leads to about 1% or less

of errors in both mean and standard deviations and is about two orders of magnitude

faster than Monte Carlo methods. However, with the increase of the number of ran-

dom variables, the size of the augmented matrices grows bigger very fast. It would

be timing consuming then. Chapter5 will introduce an improved method.
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Chapter 5

Fast Variational Simulation of

Power Grids considering Process

Variation

5.1 Problem Statement

In this chapter, we propose a new stochastic method for analyzing the voltage drop

variations of on-chip power grid networks with log-normal leakage current variations.

The new method, called StoEKS, still applies the spectral stochastic method to solve

for the variational responses. But different from the existing spectral-stochastic-based

simulation method, the extended Krylov subspace method (EKS) is employed to com-

pute variational responses using the augmented matrices consisting of the coefficients

of Hermite polynomials. Our work is inspired by recent spectral-stochastic-based

model order reduction method [66]. We apply this work to the variational analysis

52



of on-chip power grid networks considering the variational leakage currents with the

log-normal distribution.

Our contribution lies in the acceleration of the spectral stochastic method using

the extended Krylov subspace method to fast solve the variational circuit equations

for the first time. By using the Krylov-subspace based reduction technique, the

new method partially mitigates the increased circuit-size problem associated with

the augmented matrices from the Galerkin-based spectral stochastic method. We

will show how the coefficients of Hermite PCs are computed for variational circuit

matrices and for the current moments used in EKS with log-normal distribution.

Experimental results show that the proposed StoEKS is about two order magnitude

faster than the existing Hermite PC based simulation method, having similar error

compared with Monte Carlo method. StoEKS can analyze much larger circuits than

the existing Hermite PC method in the same computation platform.

5.1.1 Considering both wire and leakage variation

In this chapter, we assume that we have a number of independent (uncorrelated)

transformed ortho-normal Gaussian random variables ξi(θ), i = 1, ..., n, which actually

model the channel length and the device threshold voltage variations. The spatial

correlation in the intra-die variation can be processed by using the Karhunen-Loeve

(K-L) transformation, principal component analysis method, which is the discretized

version of K-L method [35], to transform the correlated variables into un-correlated

variables before spectral statistical analysis [23, 38].

Let Θ denote the process sampling space. Let θ ∈ Θ, ξi : θ → R denote a normal-

ized Gaussian variable and ξ(θ) = [ξ1d(θ), ..., ξrd(θ)] is a vector of r Gaussian variables.
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After orthogonal transformation operation, we obtain independent random variable

vectors ξ = [ξ1, ..., ξn]. Notice that n ≤ r in general. The PCA method can be either

used to strongly correlated dependent random variables or weak correlated random

variables. The difference between the two circumstance is the number of independent

variables, which is denoted as n here. After doing PCA, strongly correlated random

variables, the independent random variable vector ξ = [ξ1, ..., ξn] are in small size.

In other words, the number of random variables are reduced a lot. While for weak

correlated, the number of independent random variables is not reduced a lot. Our

method can deal with both strongly and weak correlated random variables.

Therefore, given the process variations, the MNA equation for Eq.2.1 becomes

G(ξ)v(t, ξ) + C(ξ)
dv(t, ξ)

dt
= Bu(t, ξ) (5.1)

In this part, we assume that the varitional current source in Eq.5.1, u(t, ξ), consists

of two components:

u(t, ξ) = ud(t) + uv(t, ξ) (5.2)

where ud(t) is the dynamic current vector from circuit switching, which are still

modeled as deterministic currents as we only consider the leakage variations. uv(ξ, t)

is the variational leakage current vector, which is dominated by sub-threshold leakage

currents and it may change over time also. uv(t, ξ) follows the log-normal distribution.

The problem we need to solve is to efficiently find the mean and variance of

voltage u(t, ξ) at any node at any time instance without using the time-consuming

sampling-based method, such as Monte-Carlo.
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5.2 EKS review

5.2.1 Krylov subspace

In this subsection, we briefly introduce model order reduction used in Power Grid

network simulation and the definition of Krylov subspace, from which comes the

Extended Krylov Subspace(EKS).

One of the critical issue of power grid network is the large size of the network,

sometimes it is over millions. It is slow to do the simulation and optimization of

such power grid network. One of the solutions to this problem is to do model order

reduction of the network with equivalent admittance and currents at the interface

points as in Figure5.1. This approach works well since the reduction of the power

grid network involves solving a symmetric positive-definite system.

Power Grid network
            

On−chip devices On−chip devices

Figure 5.1: Moder Order Reduction used in Power Grid network simulation

One of the model order reduction method uses Krylov subspace as the basic to
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reduce the system matrix. The definition of Krylov subspace is as follows:

Kr(A,b) = span{b,Ab,A2b, ...,Ar−1b} (5.3)

A here is an n-by-n matrix and b is with dimension of n. Span here represents linear

subspace spanned by the images of b under the first r powers of A.

Model order reduction method [43, 47] is to reduce the MNA matrix

Cẋn = −Gxn + Bun

ir = BT xn (5.4)

Here, C ∈ Rn×n, G ∈ Rn×n and B ∈ Rn×r. We can use model order reduction

method such as balanced truncated method [46] or Krylov-based model order reduc-

tion method [43] to reduce the dimension of C, G and B to C̃ ∈ Rq×q, G̃ ∈ Rq×q,

B̃ ∈ Rq×r, while preserving the system characteristic such as moments matching of

the system transfer function. Here q is much smaller than n.

The Krylov-based model order reduction method, PRIMA [43], for example, would

use Krylov subspace to reduce the size of the matrix dumped from the circuit via

MNA. In the MNA equation for power grid circuit as in Eq. 5.4, the Krylov subspace

is written as

Kr(A,R,q) ≡ colsp[R,AR,A2R, ...,Ak−1R,Akr0,A
kr1, ...,A

krl],

k = ⌊q/N⌋, l = q − kN (5.5)

Here, A = −G−1C and R = G−1B. Based on this, X ∈ Rn×q is obtained, which is

56



an orthonormal matrix spanning the Krylov space.

Then, the system matrix A is reduced to a small block upper Hessenberg matrix

Hq. The procedure involves successively filling in the columns of X in the relation

AX = XHq subject to XT X = Iq. Then, xn can be obtained by

xn = Xzq (5.6)

zq ∈ Rq×1 here is the reduced-order system variable as

C̃żq = −G̃zq + B̃un

ir = B̃T zq (5.7)

Here, C̃ ∈ Rq×q, G̃ ∈ Rq×q, B̃ ∈ Rq×r obtained from

C̃ = XT CX, G̃ = XT GX, B̃ = XT B (5.8)

5.2.2 Extended Krylov subspace

In this subsection, we briefly review the extended Krylov subspace (EKS) method

in [61] and [32] for fast computation of responses from linear dynamic systems.

The EKS method uses the Krylov-like reduction method to speedup the simula-

tion process. Different from the Krylov-based model order reduction method, EKS

performs the reduction considering both system matrices and input signals before

the simulation (so the subspace is no longer Krylov subspace). So it essentially is a

simulation approach using the Krylov subspace reduction method. It assumes input
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signals can be represented by piece-wise linear (PWL) sources.

Let V = [v̂1, v̂2, ...v̂k] be an orthogonal basis for moment subspace (m0, m1, ..., mk)

of input u(t). Fig5.2 is the high-level description of the EKS algorithm [61].

Algorithm: EKS algorithm

Input: G,C,B,u(t) and moment order q
Output: Orthogonal basis V =
{v̂0, v̂2, ...v̂q−1}
1 v̂0 = α0v0, where v0 = G−1Bu0, α0 =

1
norm(v0)

;

2 set hs = 0;
3 for i = 1 : q − 1
4 vi = G−1{Πi−1

j=0αjBui − C(v̂i−1 +
αi−1hs)};
5 hs = 0;
6 for j = 0 : i − 1
7 h = v̂T

j vi;
8 hs = hs + hv̂j ;
9 end
10 v̄i = vi − hs;
11 αi = 1

norm(v̄i)
;

12 v̂i = αiv̄i

13 end

Figure 5.2: The EKS algorithm.

Then the original circuit described by Eq.2.1 can be reduced to a smaller system

G̃z + C̃
dz(t)

dt
= B̃u (5.9)
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where

G̃ = V T GV,

C̃ = V T CV,

B̃ = V T B,

v(t) = V z(t)

After the reduced system in Eq.5.9 has been solved for the given input u(t), the

solution z(t) can then be mapped back into original space by v(t) = V z(t).

As the EKS models a PWL source as a sum of delayed ramps in Laplace domain,

the terms, however, contain 1/s and 1/s2 moments [61], while the traditional Krylov

space starts from 0th moment. Therefore, moment shifting must be made in EKS,

which would cause complex computation and more errors. This problem is resolved

in [32] in the IKES algorithm, which shows that the moments of 1/s and 1/s2 are

zeros for PWL input sources.

Assume that we want to obtain a single input source uj(s) in the following moment

form:

uj(s) = u1 + u2s + u3s
2 + ... + uLsL−1

A PWL source uj(t) is represented by a series of value-time pairs such as (a1, τ1),

(a2, τ2),..., (aK+2, τK+2) and L moments needed to be calculated. As proposed in [32],

the mth moment for current source uj(t) in a current source vector u(s) can be
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calculated as

uj,m = (a1 − α1
τ1

m + 1
)β

(m)
1 −

k∑

i=1

(αi − αi+1)β
(m+1)
i+1

−(aK+2 − αK+1
τk+2

m + 1
)β

(m)
K+2, m = 1, ..., L. (5.10)

Here,

β
(m)
i =

(−τi)
m

m!
, αi =

ai+1 − ai

τi+1 − τi

The EKS/IEKS method, however, has its limitations. One major drawback is

that current sources have to be represented in the explicit moment form, which may

not be accurate and not numerical stable when high order moments are employed

for high-frequency rich current waveforms owning to the well-known problem in the

explicit moment matching method [48].

5.3 New Stochastic EKS method – StoEKS

In this section, we present the new stochastic simulation algorithm, StoEKS, which

is based on both the spectral stochastic method and the extended Krylov subspace

method. The main idea is that we use the spectral stochastic method to convert the

statistical simulation into a deterministic simulation problem. Then we apply EKS

to solve the converted problem.
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5.3.1 StoEKE algorithm flowchart

First, we present StoEKS algorithm flowchart, which is shown in Fig. 5.3. The algo-

u_sts by IEKS for every current source

     Given varience of 
               G, C, u

G_sts, C_sts,B_sts,u_sts
 Get augmented system

get mean and variance of the voltage
                    of every node

based on orthogonal basis V

Project back to original circuit

                 x(t)=Vz(t)

Obtain orthogonal basis V

StoEKS algorithm

Solve reduced system, z(t),

Compute first L moments of  

by IEKS on the augmented system

Figure 5.3: Flowchart of the StoEKS algorithm

rithm starts with variational G(ξ), C(ξ) and variational input source u(t, ξ). Then,

it applies spectral stochastic method to convert the variational system Eq.2.2 into

a deterministic system, which consists of augmented matrices of G(ξ) and C(ξ) and

position matrix B in Eq.2.2 with new unknowns. Then we generate the first L mo-

ments of coefficients of Hermite polynomial of current sources, UL with log-normal

distribution. Finally, we apply EKS/IEKS to solve the obtained deterministic system

61



for response Z using the computed projection matrix V . After this we get back to

the transient response of the original augmented system by v(t) = V z(t). Finally we

compute the mean and variance of any voltage nodes from v(t).

In the following subsections, we present the detailed descriptions for some critical

steps of the StoEKS algorithm.

5.3.2 Generation of the augmented circuit matrices

We first show how we convert the variational circuit equation into a deterministic

one, which is suitable for EKS. Our work follows the recent proposed stochastic

model order reduction (SMOR) method [66]. SMOR is based on Hermite Polynomial

Chaos and the Krylov-based projection method.

We first assume that G(ξ), C(ξ) and u(t, ξ) in Eq.5.1 are represented in Hermite

PC forms with a proper order P :

G(ξ) = G0 + G1H1(ξ) + G2H2(ξ) + ... + GP−1HP−1(ξ)

C(ξ) = C0 + C1H1(ξ) + C2H2(ξ) + ... + CP−1HP−1(ξ)

u(t, ξ) = (u0(t) + ud(t)) + u1(t)H1(ξ) + ... + uP−1(t)HP−1(ξ)

Here, Hi(ξ) are the Hermite PC basis functions for G(ξ), C(ξ) and u(t, ξ). P is also

the number of these basis functions, which depends on the number of random variables

n and the expansion order p in Eq.3.7. Gi, Ci and ui are the Hermite polynomial

coefficients of conductance, capacitors and current source. G0 and C0 are the mean

value of conductance and capacitors. Gi and Ci are variational part for conductance

and capacitors.
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Ideally, to obtain the G and C in the HPC format, i.e., to compute Gi and Ci

from the width, length variables, one can use stochastic spectral analysis method [30],

which is a fast Monte-Carlo method or other extraction methods. For this paper, we

simply assume that we obtain such information, The detail of how Gi and Ci are

obtained as follows:

Gi = ai ∗ G0, Ci = ai ∗ C0, i = 1, ..., P − 1 (5.11)

ai is the variational percentage for Hi.

Substitute Eq.5.11 into Eq.5.1, the system equations become:

P−1∑

i=0

P−1∑

j=0

GivjHiHj + s
P−1∑

i=0

P−1∑

j=0

CivjHiHj =

ud(t) +

P−1∑

i=0

ui(t)Hi (5.12)

Here, vi are the coefficients of Hermite Polynomial of node voltages v(t, ξ) as:

v(t, ξ) = v0(t) + v1(t)H1 + v2(t)H2 + ... + vP−1(t)HP−1 (5.13)

After performing the inner product of Hk on both sides of the equation Eq.5.12, it

will become

P−1∑

i=0

P−1∑

j=0

Givj < HiHj, Hk > +s
P−1∑

i=0

P−1∑

j=0

Civj < HiHj , Hk >

=

P−1∑

i=0

ui < Hi, Hk > + < Hk, 1 > vd(t), k = 0, 1, ..., P − 1 (5.14)
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where < HiHj, Hk > is the inner product of HiHj and Hk. On the right hand side

of Eq.5.14, the inner product is calculated based on Hi and Hk.

Notice that < Hk, 1 >= 1, when k = 0; < Hk, 1 >= 0 when k 6= 0. In general,

the coefficients of HiHj are calculated in Eq.5.12 and the inner product is defined as

< HiHj, Hk >=

∫ +∞

−∞

HiHjHkdξ (5.15)

considering the independent of Hermite Polynomial Hi, Hj and Hk. Also, the inner

product is similar for

< Hi, Hj >=

∫ +∞

−∞

HiHjdξ (5.16)

The inner product is a constant and can be computed a priori and stored in a table

for fast computation. Based on the P equations and the orthogonal nature of the

Hermite polynomials, these equations can be written in matrix form as

(Gsts + sCsts)V = Bstsusts (5.17)
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Gsts =




G00 . . . G0P−1

...
. . .

...

GP0 . . . GP−1P−1




,

Csts =




C00 . . . C0P−1

...
. . .

...

CP−10 . . . CP−1P−1




,

usts =




u0(t) + ud(t)

u1(t)

...

uP−1(t)




, V =




V0(t)

V1(t)

...

VP−1(t)




, (5.18)

Bsts =




B0 . . . 0

...
. . .

...

0 . . . BP−1




(5.19)

Bi = B, Gkj =

P−1∑

i=0

Gi < HiHj , Hk >, Ckj =

P−1∑

i=0

Ci < HiHj, Hk >

where Gsts ∈ RmP×mP , Csts ∈ RmP×mP Bsts ∈ RmP×l, m is the size of the original

circuit and P is the number of Hermite polynomials. In [66], PRIMA-like reduction

is performed on Eq.5.17 to obtain the reduced variational system.
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5.3.3 Computation of Hermite PCs of current moments with

log-normal distribution

In this section, we show how to compute the Hermite coefficients for the variational

leakage currents and their corresponding moments used in the augmented equation

Eq.5.17.

Let ui
v(t, ξ) be the ith current in the current vector uv(t, ξ) in Eq.5.2, which is a

function of the normalized Gaussian random variables ξ = [ξ1, ξ2, ..., ξn] and time t.

ui
v(t, ξ) ∼ eg(t,ξ) = e

Pn
j=0

gj(t)ξj (5.20)

The leakage current sources are therefore following lognormal distribution. We can

then present ui
v(t, ξ) by using Hermite PC expansion form:

ui
v(t, ξ) =

P∑

k=0

ui
vk(t)H

n
k (ξ)

= ui
v0(t)(1 +

n∑

i=1

ξigi(t) +

n∑

i=1

n∑

j=1

(ξiξj − δij)

< (ξiξj − δij)2 >
gi(t)gj(t) + ...) (5.21)

where

ui
v0(t) = eg0(t)+ 1

2

Pn
i=1

gi(t)2 , P =

p∑

k=0

(n − 1 + k)!

k!(n − 1)!
(5.22)

n is the number of random variables and p is the order of Hermite PC expansion.
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As a result, the variational variable u(t, ~ξ) leads to the usts in Eq.5.17:

usts = [u0(t)
T + ud(t)

T , u2(t)
T , ..., uP−1(t)

T ]T (5.23)

Note that ud(t) is the deterministic current source vector.

In the EKS method, we need to compute the moments of input sources in frequency

domain. Suppose (ai1, τi1), (ai2, τi2),..., (aiK+2, τiK+2) are PWL series of value-time

pairs for ui(t) or u0(t)+ud(t) in Eq.5.23. Using equation Eq.5.10, we can get the first

L moments for each ui, i = 1, 2, ..., P in Eq.5.23 respectively, and we have

ui(s) = mui1
+ mui2

s+, ..., muiL
sL−1 (5.24)

where muik
is the kth order moment vector of Hermite PCs coefficient for ui. In

this way, we can compute the moments of Hermite PC coefficients for every current

sources.

5.3.4 The StoEKS algorithm

Given the Gsts, Csts and usts in moment forms, we can obtain the orthogonal V using

the EKS algorithm. The reduced systems then can be obtained by these orthogonal

basis V from equation Eq.5.10. The reduced system will become

G̃stsz(t) + C̃sts

dz(t)

dt
= B̃stsusts (5.25)
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Here,

G̃sts = V T GstsV, C̃sts = V T CstsV, B̃sts = V T Bsts (5.26)

The reduced system can be solved in the time domain by any standard integration

algorithm. The solution of the reduced system, z(t), can then be projected back to

original space by ṽ(t) = V z(t).

By solving the augmented equation in Eq.5.17, we can obtain mean and variance

of any node voltage v(t) by

E(v(t)) = E(v0(t) +

P−1∑

i=1

vi(t)Hi) = v0

var(v(t)) = var(v0(t) +
P−1∑

i=1

vi(t)Hi) =
P−1∑

i=1

vi(t)
2var(Hi)

Further the distribuation of v(t) can also be easily calculated by the characteristic

of Hermite PC and the distribution of ξ1,ξ2,...,ξN . Fig. 5.4 is the StoEKS algorithm

for given Gsts, Csts, Bsts, usts.

5.3.5 A walk-through example

In the following, we consider a simple case where we only have three independent

variables to illustrate the method. We assume that there are three independent

variables ξg, ξc and ξI associated with matrices G and C and input sources respectively

in the circuit.

We assume that the variational component in Eq.5.2. uv(t, ξI), follows lognormal
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Algorithms: StoEKS

Input: augmented system Gsts, Csts, Bsts,
usts

Output: the HPC coefficients of node volt-
age, v
1 Get the first L moments of usts for each
current source
2 Compute the orthogonal basis of subspace
from Eq.5.17 V
3 Obtain the reduced system matrix from

Ĝ = V T GstsV , Ĉ = V T CstsV , B̂ = V T Bsts

4 Solve Ĝz(t) + Ĉ dz(t)
dt

= B̂usts(t)
5 Project back to original space to get v(t)
= Vz(t)
6 Compute the variational values (means,
variance) of the specified nodes

Figure 5.4: The proposed StoEKS algorithm.

distribution as

uv(t, ξI) = eg(t,ξI ), g(t, ξ) = µI(t) + σI(t)ξI (5.27)

Then equation Eq.2.2 becomes

G(ξg)v(t, ξ) + C(ξc)
dv(t, ξ)

dt
= Bu(t, ξI) (5.28)

ξ = [ξg, ξc, ξI ]. The variation in width W and thickness T will cause variation in

conductance matrix G and storage matrix C while variation in threshold voltage will

cause variation in leakage currents u(t, ξI). Thus, the resulting system can be written
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as [23]:

G(ξg) = G0 + G1ξg, C(ξc) = C0 + C1ξc (5.29)

G0, C0 represents the deterministic component of conductance and capacitance of the

wires. G1, C1 represents sensitivity matrices of the conductance and capacitance.

ξg, ξc are random variables with normalized Gaussian distribution, representing pro-

cess variation in wires of conductance and capacitor, respectively.

ξI is a normalized Gaussian distribution random variable representing variation

in threshold voltage.

Using Galerkin method as in [39] with second-order Hermite PCs, we end up

solving the following equation

Gstsv(t) + Csts

dv(t)

dt
= Bstsusts(t) (5.30)
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where

Gsts =




G0 G1 0 0 0 0 0 0 0 0

G1 G0 0 0 2G1 0 0 0 0 0

0 0 G0 0 0 0 0 G1 0 0

0 0 0 G0 0 0 0 0 G1 0

0 G1 0 0 G0 0 0 0 0 0

0 0 0 0 0 G0 0 0 0 0

0 0 0 0 0 0 G0 0 0 0

0 0 G1 0 0 0 0 G0 0 0

0 0 0 G1 0 0 0 0 G0 0

0 0 0 0 0 0 0 0 0 G0




(5.31)
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Csts =




C0 0 C1 0 0 0 0 0 0 0

0 C0 0 0 0 0 0 C1 0 0

C1 0 C0 0 0 2C1 0 0 0 0

0 0 0 C0 0 0 0 0 0 C1

0 0 0 0 C0 0 0 0 0 0

0 0 C1 0 0 C0 0 0 0 0

0 0 0 0 0 0 C0 0 0 0

0 C1 0 0 0 0 0 C0 0 0

0 0 0 0 0 0 0 0 C0 0

0 0 0 C1 0 0 0 0 0 C0




(5.32)

usts(t) = [u0(t) + ud(t), 0, 0, u3(t), 0, 0, u6(t), 0, 0, 0]T

One observation we have is that although the augmented circuit matrices are much

bigger than before, they are very sparse and also consist of repeated coefficient ma-

trices from the HPC. As a result, the reduction techniques can significantly improve

the simulation efficiency.

5.3.6 Computional complexity analysis

In this subsection, we analyze the computing costs for both StoEKS and HPC methods

and show the theoretical advantage of StoEKS over the non-reduction based HPC

method.
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First, if the PCA operation is performed, which essentially uses singular value

decomposition(SVD) on the covariance matrix, its computation cost is O(ln2). Here

l is the number of original correlated random variables and n is the first n dominant

singular values, which is also the number of independent random variables after PCA.

Since the random viable l is typically much smaller than the circuit size, the running

time of PCA is is not significant for the total cost.

After we transform the original circuit matrices into the augmented circuit ma-

trices in Eq.5.17, which are still very sparse, the matrix sizes grow from m × m to

Pm × Pm, where P is the number of Hermite polynomials used. The number is de-

pendent on the Hermite polynomial order and the number of variable used as shown

in Eq.3.7.

Typically solving a n × n linear matrix takes O(nα) (typically, 1 ≤ α ≤ 1.2 for

sparse circuits), and matrix factorizations take O(nβ) (typically, 1.1 ≤ β ≤ 1.5 for

sparse circuits). For HPC, assuming that we need to compute w time steps in transient

analysis (taking w forward and backward substitutions after one LU decomposition),

the computing cost then is

O(w(mP )α + (mP )β). (5.33)

While for StoEKS, we only need to approximately take q, the order of the reduced

model, steps (after the one LU decomposition) to compute the projection matrix V .

So the total computational cost is

O(q(mP )α + (mP )β + mPq2 + q3 + wq2). (5.34)
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without considering the cost of the PCA operations (ln2) as we did not perform

the PCA in our experiments. The last three items are the costs of performing the

reductions (QR operation) and transient simulation of the reduced circuit (which have

very dense matrices) in time domain. Since q ≪ w, the computing cost of StoEKS can

be significant lower than HPC. Also the proposed method can be further improved

by using the hierarchical EKS method [9].

5.4 Experimental results

This section describes the simulation results of circuits with both capacitance, conduc-

tance variation and leakage current variation. The leakage current variation follows

log-normal distribution. The capacitance and conductance variations follows Gaus-

sian distribution.

All the proposed methods have been implemented in Matlab 7.0. All the experi-

mental results are carried out on a Dell PowerEdge 1900 workstation (using a Linux

system) with Intel Quadcore Xeon CPUs with 2.99Ghz and 16GB memory. To solve

large circuits in Matlab, an external linear solver package UMFPACK [1] has been

used, which is linked with Matlab using Matlab mexFunction.

We assume that the random variables used in the paper for G and C and current

sources are independent after the PCA transformation.

First, we assume a time-variant leakage model, in which we assume that ui
v(t, ξ) in

Eq.5.20 is a function of time t and further assume that gj(t), the standard deviation,

is a fixed percentage, say 10%, of vd(t) in Eq.5.2, i.e. gi(t) = 0.1udi(t), where udi(t)

is the ith component of the PWL current vd(t).
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Fig. 5.5, Fig. 5.6 and Fig. 5.7 show the results at one particular node under this

configuration.
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Figure 5.5: Distribution of the voltage variations in a given node by StoEKS, HPC
and Monte Carlo of a circuit with 280 nodes with 3 random variables. gi(t) = 0.1udi(t)

Fig. 5.5 shows the node voltage distribution at one node of a ground network with

280 nodes, considering variation in conductance, capacitance and leakage current

(with three random variables). The standard deviation (s.d.) of the log-normal

current sources with one Gaussian variable is 0.1udi(t). The s.d. in conductance and

capacitance are also 0.1 of the mean. The mean and s.d. computed by the Hermite

PC method, Hermite PC with EKS are also marked in the figure, which fit very well

with the Monte Carlo (MC) results. In Fig. 5.5, the dotted lines are the mean and

s.d. calculated by MC. The solid lines are the mean and s.d. by the algorithm [38],

which is named as HPC. The dashed line are the results from the new StoEKS. The

Monte Carlo results are obtained by 3000 samples. The reduced order for EKS is 5.
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Figure 5.6: Distribution of the voltage variations in a given node by StoEKS, HPC and
Monte Carlo of a circuit with 2640 nodes with 7 random variables. gi(t) = 0.1udi(t)

Fig. 5.6 shows the distribution at one node of a ground network with 2640 nodes.

The parameter gi(t) value is set to the same as the ones in the circuit with 280 nodes.

The s.d. in conductance are 0.02, 0.05 and 0.1 of the mean for three variables. The

s.d. in capacitance are 0.02, 0.02 and 0.1 of the mean for three variable. There are

totally seven random variables. The dotted lines represent the Monte Carlo results.

And the dashed lines represent the results given by StoEKS. From these two figures,

we can only see marginal difference between the three different methods. The reduced

order for EKS is also 5, q = 5.

Fig. 5.7 shows the distribution at one node of a ground network with 280 nodes.

But the variation setting of parameters is different. The standard divisions in con-
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Figure 5.7: Distribution of the voltage variations in a given node by StoEKS and
Monte Carlo of a circuit with 2640 nodes with 11 random variables. gi(t) = 0.1udi(t)

ductance are set to 0.02, 0.02, 0.03, 0.05 and 0.05 of the mean for five variables

respectively, i.e their a1 in Eq.5.11 are set to those values. The standard divisions in

capacitances are set to 0.02, 0.03, 0.04, 0.05 and 0.05 of the mean for five variables

respectively also. The standard deviation of the log-normal current sources is 0.1 of

the mean. There are eleven random variables in all. It is even harder for HPC to

compute mean and s.d. of the circuit. The dotted lines represent the Monte Carlo

results. And the dashed lines represent the results given by StoEKS. The reduced

order for EKS is 10.

Table 5.1 shows the speedup of the StoEKS and HPC methods over Monte Carlo

method under different number of random variables. In the table, #RV is the number

77



#nodes #RV MC StoEKS speedup HPC [38] speedup
280 3 694.35 0.3 2314.5 2.37 292.97
280 7 671.46 2.37 283.31 227.94 2.94
280 11 684.88 24.26 28.23 914.34 0.74
2640 3 5925.7 4.33 1368.5 55.35 107.1
2640 7 5927.6 25.02 236.9 1952.2 3.04
2640 11 6042.2 693.27 8.72 − −
12300 3 3.54 × 104 21.62 1637.4 298.84 118.5
12300 7 3.30 × 104 151.71 217.65 − −
119600 3 − 258.21 − − −
119600 7 − 2074.8 − − −
1078800 3 − 1830.4 − − −

Table 5.1: CPU time comparison of StoEKS and HPC with the Monte Carlo method.
gi(t) = 0.1udi(t)

of random variables used. In the table there are 3, 7, 11 random variables. The

variation value setup of 3 random variable is the same as the circuit used in Fig. 5.5.

The variation value setup of 7 random variable is the same as the circuit used in

Fig. 5.6. The variation value setup of 11 random variable is the same as the circuit

used in Fig. 5.7. The first speedup is the speedup of StoEKS over MC and the second

speedup is the speedup of StoEKS over HPC.

From the table, we observe that, we can’t obtain the results from HPC or MC

when the circuit becomes large enough in reasonable time. Meanwhile, StoEKS can

deliver all the results. However, when the number of random variable becomes large,

because the reduction process of the augmented system takes time, the speedup of

StoEKS is not much as small number of random variables with MC.

We remark that the intra-die variations are typically very spatially correlated [12].

After the transformation like principal component analysis (PCA), the number of

variables can be significantly reduced. As a result, in our examples, we do not assume
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#nodes #RV Mean Std Dev
MC StoEKS HPC MC StoEKS HPC

280 3 0.047 0.047 0.047 0.0050 0.0048 0.0048
2640 3 0.39 0.39 0.39 0.048 0.046 0.046
12300 3 1.66 1.66 1.66 0.16 0.17 0.17
280 7 0.047 0.047 0.047 0.0056 0.0055 0.0055
2640 7 0.39 0.39 0.39 0.048 0.046 0.046
12300 7 2.56 2.56 − 0.31 0.30 −
280 11 0.047 0.047 0.047 0.0039 0.0039 0.0040
2640 11 0.39 0.39 − 0.033 0.033 −

Table 5.2: Accuracy comparison of different methods, StoEKS, HPC and Monte
Carlo. gi(t) = 0.1udi(t)

large number of variables.

Table 5.2 and Table 5.3 show the mean and s.d. comparison of different meth-

ods over the MC method for several circuits. Again #RV is the number of random

variables used. Table 5.2 contains the values we obtain from different methods and

Table 5.3 presents the error comparison of StoEKS and HPC over Monte Carlo, re-

spectively. We can see that StoEKS only has marginal difference from Monte Carlo

while it is able to perform simulation on much larger circuit than the existing HPC

method on the same platform.

Finally, we use a time-invariant leakage model, in which we assume that ui
v(ξ) in

Eq.5.20 is not a function of time t and further assume that gj, which is the standard

deviation, is a fixed percentage, of a constant current value in Eq.5.2. In our test

cases, we use the peak current, Ip ≈ 41mA as shown in Fig. 5.8, as the constant value.

Fig. 5.9 shows the results in this configuration.

79



#nodes #RV StoEKS % HPC % StoEKS % HPC %
Error in µ Error in µ Error in σ Error in σ

280 3 0.19 0.28 3.14 3.10
2640 3 1.23 1.05 4.31 4.51
12300 3 0.10 0.08 2.95 2.98
280 7 0.063 0.17 1.12 1.54
2640 7 0.076 0.11 4.18 4.60
12300 7 0.23 − 0.23 −
280 11 0.42 0.21 0.18 0.52
2640 11 0.18 − 0.30 −

Table 5.3: Error comparison of StoEKS and HPC over Monte Carlo methods. gi(t) =
0.1udi(t)
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Figure 5.8: A PWL current source at certain node.
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Figure 5.9: Distribution of the voltage variations in a given node by StoEKS, HPC
and Monte Carlo of a circuit with 280 nodes with three random variables using the
time-invariant leakage model. gi = 0.1Ip
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5.5 Summary

In this chapter, we have proposed a fast stochastic method for analyzing the voltage

drop variations of on-chip power grid networks. The new method, called StoEKS,

applies Hermite polynomial chaos (HPC) to represent the random variables in both

power grid networks and input leakage currents with log-normal distribution. This

HPC method transforms a stochastic analysis problem into a deterministic analysis

problem where increased augmented circuit matrices are created. The augmented

circuit matrices consist of the coefficients of Hermite polynomials representing both

variational parameters in circuit matrices and input sources. We then applied the

extended Krylov subspace method (EKS) to compute variational responses from the

augmented circuit equations. The proposed method does not require any sampling

operations as used by collocation based spectral stochastic analysis method. Exper-

imental results have shown that the proposed method is about two-order magnitude

faster than the existing Hermite PC based simulation method and more order of mag-

nitudes faster than Monte Carlo method with marginal errors. StoEKS also increases

the analysis capacity of pervious statistical simulation methods based on the spectral

stochastic method.
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Chapter 6

Non-linear Variational

Interconnect Delay calculation

6.1 Problem Statement

The process-induced variability has huge impacts on the circuit timing in the sub-

100nm VLSI technologies [40, 8]. Process variations include variations at different

levels (wafer level, die-level and within a die) and they are caused by different sources

(lithograph, materials, aging etc) [12]. Some of the variations are systematic like

those caused by lithography process. Some are purely random like the doping density

of impurities and edge roughness.

Process variational impacts on the interconnect circuit delay have to be charac-

terized for robust statistical static timing analysis (SSTA). The state of art SSTA

engines now assume non-linear delay models from both the interconnect and gates in

the so-called canonical form to ensure the accuracy of SSTA [11, 31, 8]. As a result,
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close form expressions for delays of interconnects in terms of variable parameters are

required.

Existing works on the statistical interconnect modeling and analysis works, how-

ever, mainly focus on deriving the probability density function (PDF) or accumulated

distribution function (CDF) of interconnect delays. One simple way to do this is by

means of Monte Carlo (MC) based sampling method, which can be applied to exist-

ing delay modeling method such as Elmore delay, first time moment [27], and D2M

based on the first two moments [6]. Monte Carlo method is most flexible and trusted

method. However, its high computing costs render its applications limited to very

small circuits. Also MC can’t generate closed form delay expressions in terms of

variable parameters, required by the SSTA.

The closed form delay model for interconnect was proposed in [5], which, however,

only assumes linear and Gaussian delay models for interconnect. On the other hand,

many fast statistical interconnect modeling techniques have been proposed in the past

to compute the PDF/CDF of delays [34, 15, 60, 33, 37, 22].

Method in [34] is based on the model order reduction (MOR) with the Taylor se-

ries representation (first-order and second order) of the variations. Authors in [15, 33]

applied multi-dimensional MOR, where moments with respect to complex frequency

variables s and random variables are computed. But its computation costs grow very

rapidly with the increasing number of variables as the number of moments grow ex-

ponentially. Interval-valued statistical modeling and model order reduction methods

were proposed in [37, 36]. Interval methods in general suffer the over-pessimism prob-

lem in spite of the recent improvement by using affine interval arithmetic. Also, the

errors are accumulated with the arithmetic operations.
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Recently statistical interconnect analysis and modeling based on the orthogo-

nal polynomial analysis was proposed [60, 59, 22], where statistical variations are

presented by orthogonal polynomial representation (OPR) and Galerkin approach is

used to obtain the coefficients. The major benefit of this method is that it can convert

a statistical problem into a deterministic problem as one only needs to solve for the

coefficients of the polynomials deterministically in order to compute the variations of

the responses or performance metrics. The authors in [60, 59] first applied the Her-

mite polynomial method to obtain the statistical voltage and delaying information.

The Hermite-polynomial method, however, can result in very large circuit matrices

(called augmented matrices) and the matrix sizes grows with the increase of random

variable count. Also the method can’t generate delays in the OPR forms, which are

needed for the SSTA. This problem is partially mitigated by [22], which compute the

statistical moment in Hermite polynomial form. But the final delay expressions are

only represented by those moments, not the variable parameters.

In this chapter, we propose a general approach to generate the non-linear intercon-

nect analytic delay models in terms of variable parameters. The new delay models are

represented by the OPR form, which can easily be converted to many existing delay

canonical forms required by the SSTA methods. Our approach is different from the

existing orthogonal polynomial based method [60, 22] in the following aspects: First

the new approach computes the analytic delay models (the coefficients of orthogonal

polynomials) directly using the efficient numerical quadrature method. While [60, 59]

computes the closed form expression only for voltage response first and then MC-like

method is used to compute the CDF/PDF of the delays. While method [22] only

computes closed form expressions in terms of variational moments in the OPR form.
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Experimental results show that the proposed delay models is very accurate compared

with MC simulation in estimating statistical delay of interconnects.

6.2 New method for Variational Interconnect De-

lay model

In this section, we present the proposed new method, which is based on efficient

numerical Gaussian quadrature and spare grid quadrature to compute the analytic

variational interconnect delays. Once the delay in the form of Hermite polynomial is

obtained, the variational characteristic of the delay, such as mean, standard deviation

can further be computed.

6.2.1 New algorithm flowchart

First, we present new algorithm, QuadDelay, which is shown in Fig. 6.1. We first

generate Gaussian quadrature point Θ2
1 = {γ1, γ2, γ3} set and weight w = {w1, w2, w3}

set for one dimension of level two (for order two Hermite polynomials) in step 1. Based

on one-dimension points and weights, in step 2, we then generate the Smolyak spare

grid quadrature point and weight sets to get n dimension Gaussian quadratures point

Θ2
n = {γ1, γ2, ..., γl} set and weight w = {w1, w2, ..., wl} set of level two, considering

the number of n random variables in conductance G(ξ) and capacitors C(ξ), where l

is the size of Θ2
n.

For each given quadrature point, we compute the delay, d(γi) of a specific node in

step 4 and step 5. To speed up the delay computation, we perform the reduction on

the interconnect system first and then perform the transient simulation to compute
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the delay for the given input u(t), which can be step or ramp function.

Finally, when the delays d(γ1),...,d(γl) at all the quadrature points are computed,

we can precede, step 7, to compute the Hermite polynomials coefficients for the final

analytic delay expression, d(ξ), in terms of random variables ξ.

Algorithms: QuadDelay

Input: variational interconnect system
G(ξ), C(ξ), B, u(t)
Output: the HPC coefficients of delays of
specific nodes, d(xi)

1. Generate the one-dimensional quadra-
ture point set of second order Θ2

1 and
weight set w.

2. Generate the n-dimensional Smolyak
quadrature point sets of second order
Θ2

n and corresponding weight set wn.

3. For i = 1 to size(Θ2
n)

4. Perform the PRIMA-like reduction
on G(γi), C(γi), B to get reduced
model G(γi), C(γi), B.

5. Calculate the delay d(γi) at the cur-
rent quadrature point

6. end

7. Compute the coefficients of Hermite
polynomials for the delay d(ξ)

Figure 6.1: The proposed QuadDelay algorithm.

We remark that we are to obtain better accuracy by using the higher order or-

thogonal polynomials. But we find that the second order Hermite polynomials are
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accurate enough for the delay calculation.

In the following, we elaborate some important steps in the proposed method.

6.2.2 Gaussian quadrature technique

The Gaussian quadrature method is an efficient numerical method to compute the

definite integral of a function [25]. We apply it to compute the coefficients ak(t)

in Eq.3.11 as:

ak(t) =
< v(t, ξ), Hk(ξ) >

< H2
k(ξ) >

(6.1)

We review the method based on the Hermite polynomial below.

Our goal is to compute the integral equation < x(ξ), Hj(ξ) > numerically. In this

case, this problem boils down to the one-dimensional numerical quadrature problem

based on the Hermite polynomials [49]. Specifically, for Hermite polynomials, we have

< x(ξ), Hk(ξ) > =
1√
(2π)

∫
x(ξ)Hk(ξ)e

− 1

2
ξ2

dξ (6.2)

≈
P∑

i=0

x(ξi)Hi(ξi)wi (6.3)

Here, ξ = {ξ}, contains only one random variable. ξi and wi are Gaussian Hermite

quadrature abscissas (quadrature points) and weights.

The Quadrature rule basically says that if we select the roots of P th Hermite

Polynomial as the quadrature points, the quadrature is exact for all polynomials of

degree 2P − 1 or less for Eq.6.2. This is called (P -1)-level accuracy of Gaussian-

Hermite quadrature here.

For multiple random variables, which require multi dimensional quadrature. The
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traditional way to compute the multi dimensional quadrature is to use a direct ten-

sor product based on one dimensional Gaussian Hermite quadrature abscissas and

weights [42]. With this method, the number of quadrature points need for n di-

mension (variables) and P th level is about (P + 1)n, which is well known as the

curse-of-dimensionality.

6.2.3 Smolyak quadrature for multi-dimensional integration

Smolyak quadrature [42] is used as an efficient method to reduce the number of

quadrature points (also called sparse grid quadrature). Let’s define one-dimensional

sparse grid quadrature point set ΘP
1 = {γ1, γ2, ..., γP}, which uses P points to achieve

degree 2P + 1 of exactness. The level-P sparse grid for n-dimensional quadrature

chooses points from the following set:

ΘP
n = ∪

P+1≤|~i|≤P+n

(Θi1
1 × ... × Θin

1 ) (6.4)

where |~i| =
∑n

j=1 ij . And the corresponding weight is:

wi1...in
ji1

...jin
= (−1)P+n−|~i|




n − 1

n + P − |~i|


 Π

m
wim

jim
(6.5)

where




n − 1

n + P − |~i|


 is a combination number and w is the weight for the cor-

responding quadrature points. It was shown that interpolation on a Smolyak grid
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ensures an error bound for the mean-square error [42]

|EP | = O(N r
P (logNP )(r+1)(n−1)), (6.6)

where NP is the number of quadrature points and r is the order of the maximum

derivative that exists for the delay function. The number of quadrature points in-

creases as O( nP

(P )!
).

We further prove following Proposition 1 as our theoretical basis for choosing the

sparse grid level.

Proposition 1 Sparse grid of at least level P is required for an order P representa-

tion.

Proof Sketch. The approximation contains order P polynomials for both x(ξ) and

Hj(ξ) for some j, so there exists x(ξ)Hj(ξ) with order 2P , which requires sparse grid

of at least level P with degree 2P + 1 of exactness.

Therefore, level 2 and level 1 sparse grid are required for quadratic and linear

model, respectively. The number of quadrature points is about 2n and 2n2 for the

linear and the quadratic model respectively. The time cost is about the same as the

Taylor-conversion method, while keeping the accuracy of homogenous chaos expan-

sion.

In addition to the sparse grid technique, we also employs the several accelerating

techniques summarized as follows:

• When n is too small, the number of quadrature points for sparse grid may be

larger than that of direct tensor product of Gaussian quadrature. For example,

if there are only 2 variables, the number is 5 and 14 for level 1 and 2 sparse
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grid, compared to 4 and 9 for direct tensor product. In this case, the sparse

grid will not be used.

• The set of quadrature points (6.4) may contain the same points with different

weights. For example, the level 2 sparse grid for 3 variables contain 4 instances

of the point (0,0,0). Combining these points by summing the weights reduces 3

times of computation of x(~γi).

6.2.4 Gaussian quadrature method for variational delay cal-

culation

In this section, we discuss how to apply the Gaussian quadrature to compute the

variational delay based on the Hermite polynomials.

In our method, we assume that the wire width, W , and the wire thickness or the

pitch between wire, T are Gaussian variables. As a result, both the wire resistors

and capacitors are no longer Gaussian as R ∝ 1/TW and C ∝ W/T . The wire delay,

which approximately is RC, it is no longer Gaussian either.

In our work, we use the following second-order Hermite polynomials to present

the conductor and capacitor matrix, to model the distributions of conductor and

capacitor:

G(ξ) = G0 + G1ξW + G2ξT + G3ξW ξT

C(ξ) = C0 + C1ξW + C2ξT + C3ξW ξT (6.7)

For n random variable in conductance G(ξ) and capacitors C(ξ), we then generate

the Smolyak quadrature points based on the method presented in subsection 6.2.3.
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The selected set of point γi here is

γi = {γi1
1 , γi2

1 , ..., γin
1 ], γi ∈ Θ2

n (6.8)

where γi1
1 is a scalar value and a quadrature point γi is a vector. Each quadrature

point is associated with a weight computed in Eq.6.5.

After obtaining the quadrature points Θ2
n, we solve for the delay at each quadra-

ture point to compute the final analytic delay expression. We assume that the final

delay analytic expression is written as

d(ξ) =
N∑

k=0

tkH
2
k(ξ)

= t0 +

n∑

k=1

tkξk +

n∑

k=1

tn+k(ξ
2
k − 1) +

n−1∑

k=1

n∑

j=k

t2n+k+jξkξj (6.9)

where ξ = [ξ1, ξ2, ..., ξn]. Our task here is to compute the Hermite polynomial coeffi-

cients ti, i = 1, ..., P . Each tk in Eq.6.9 will be calculated as

tk =
< d(ξ), Hi(ξ) >

< H2
i (ξ) >

=

∑M

i=0 d(γi)Hk(γi)wi

< H2
i (ξ) >

(6.10)

Here, d(γi) is the delay computed at the quadrature point γi.

We need to compute the delays at all the quadrature point first. Then we can use

Eq.6.10 to compute the Hermite coefficients for the final delay expression. We remark

that the proposed method can use any deterministic delay computation method. In

our implementation, we first perform the reduction on the original networks and then
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solve the reduced network in the time domain to compute the delay for the given

input u(t) (step or ramp).

With the Hermite Polynomial coefficients of delay, we can calculate the mean,

standard deviation. We can also get the distribution of delay d(ξ) by the characteristic

of Hermite PC coefficients and the distribution of ξ = {ξ1, ξ2, ..., ξn}.

6.3 Experiments

All the proposed methods have been implemented in Matlab 7.0. All the experimental

results are carried out on a Linux workstation with quad-core Intel Xeon CPUs with

2.99Ghz and 16GB memory.

6.3.1 Statistical delay analysis

Fig. 6.2 and Fig. 6.3 show the comparison of variational delay distributions of PDF

and CDF forms, respectively. The variations in width and thickness are of 10% and

10%. The variation of second order is 10%×10% = 1% . The variation for capacitors

is 5%, 5% and the variation of second order is 5% × 5% = 0.25%.

The interconnect circuits is in the size of 100. From the two figures, we can see

that the PDF and CDF results of QuadDelay fit the curves of Monte Carlo very well.

Table 6.1 shows the CPU running time comparison between our proposed method

and Monte Carlo of 5000 times. The #nodes represents the number of node in the

testing interconnect in all. The speedup is the running time of our proposed method

over Monte Carlo with 5000 times. When the interconnect size is large, the model

order reduction method, PRIMA, is used to cut the computation complexity. From
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Figure 6.2: Comparison of the probability density functions (PDF) of delays between
QuadDelay and Monte Carlo

the table we can see that our proposed approach is about 100 times faster than Monte

Carlo. When the interconnect is large, it will take too long time to use Monte Carlo.

While QuadDelay takes reasonable time to calculate the delay.

6.3.2 QuadDelay with first and second order comparison

In this subsection, we show it is necessary to use the second order orthogonal poly-

nomials for the distribution of conductance and capacitors. To this line, we show the

accuracy differences by using first order and second order representations of delay in

QuadDelay.

Fig. 6.4 shows the comparison between Monte Carlo method with 5000 times and

our proposed method with sparse grid quadrature. The size of the circuit is 1089 and
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Figure 6.3: Comparison of the cumulative density functions (CDF) of delays between
QuadDelay and Monte Carlo

#nodes PRIMA QuadDelay MC speedup
4 N 0.15 47.10 94.2

100 N 1.92 219.17 114.2
1089 Y 4.79 695.5 145.2
14900 Y 131.99 12994.9 98.5
74800 Y 1119.01 − −
110889 Y 1778.46 − −

Table 6.1: CPU time comparison of QuadDelay with Monte Carlo method.
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model order reduction method is used here to reduce delay computation complexity.

The solid lines are the mean and standard deviation (s.d.), which are calculated by

MC. The dashed lines are the mean and standard deviation for the second order

expansion for QuadDelay. The dotted lines are the mean and standard deviation of

the first order expansion. From the figure we can see that the second order expansion

of QuadDelay has less error than the first order expansion.
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Figure 6.4: Variational delay comparison between 1st and 2nd order QuadDelay
against the Monte Carlo method.

Table 6.2 and table 6.3 are the accuracy and error comparison of first and second

order expansion of our proposed method, QuadDelay, over Monte Carlo. From these

two tables, we can see that, the error of first order expansion is much larger than that

of second order expansion. It is necessary to expand delay as Hermite Polynomials

for second order.
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# Mean Std Dev
nodes MC 2nd 1st MC 2nd 1st

×10−13 ×10−13 ×10−13 ×10−13 ×10−13 ×10−13

4 0.82 0.81 0.81 0.13 0.13 0.12
100 3.98 3.97 3.97 6.41 6.40 6.15
1089 4.92 4.90 4.92 8.18 8.19 7.76
14900 1966 1967 1966 315.2 316.6 304.4

Table 6.2: Accuracy comparison of QuadDelay and Monte Carlo.

# 2nd % 1st % 2nd % 1st %
nodes Error in µ Error in µ Error in σ Error in σ

4 0.38 0.36 1.66 5.30
100 0.13 0.18 0.11 4.03
1089 0.45 0.02 0.21 5.15
14900 0.09 0.02 0.43 3.43

Table 6.3: Error comparison of QuadDelay between the first order and second order
expansions against the Monte Carlo method.

6.4 Summary

In this chapter, we have proposed an efficient variational delay computation algo-

rithm, which is based on orthogonal polynomial representation (OPR) of statistical

variations to deal with non-linear non-Gaussian interconnect delay. We can calculate

the delay in form of OPR when taking in the process variation also in OPR form. We

calculated transient response (under step or ramp input) to get the variational delay

on corresponding points with corresponding weights obtained by efficient Gaussian

Hermite numerical quadrature method and Sparse Grid acceleration. Experimental

results show that the proposed method are very accurate comparing with Monte-Carlo

based sampling in estimation statistical delay in more efficient way.
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Chapter 7

Conclusion

This chapter concludes the dissertation and the research work about process variation

analysis.

With the scaling down of VLSI semiconductor technology to 45nm, 32nm, the

process variation analysis plays more important role in the integrated circuit design

procedure. Worst case has to be taken into consideration for design. Most of the time,

Monte Carlo is used to get the characteristic of the process variation influence on the

designed chips. In this thesis, some statistical methods are introduced to do process

variational analysis for power grid network analysis and variational interconnect delay

analysis.

Spectral statistical analysis for variational power grid network is proposed first.

The process variation in power grid network includes leakage current input variation,

which is considered as lognormal distribution, interconnect wire width and length

variation, which is considered as Gaussian distribution in extracted resistors and ca-

pacitors. Hermite Polynomial Choas are used here, based on which MNA matrix G, C
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and input u are expanded in Fourier-like polynomial. The statistical problem is trans-

formed to deterministic problem then. The experimental results show that it can deal

with random process with large fluctuation. While using Taylor expansion consider-

ing large variation, the error becomes large comparing with Monte Carlo. Also, when

spatial correlation is considered in intra-die variation, principal component analysis

(PCA) is used here to transform dependent random variables into independent ones

first. The experimental results show the necessity of the usage of principal component

analysis.

However, when the number of variables need to consider increases, the augmented

matrix would grow large faster. The approach StoEKS is presented as one of the

solution. First, Hermite Polynomial Choas are used to transform the statistical prob-

lem to a deterministic problem using Galerkin method. A deterministic augmented

matrix is obtained. It then uses extended Krylov subspace(EKS) to reduce the size

of the augmented matrix. StoEKS is able to take care of more random variable with

larger size circuit. Experimental results show it is either two magnitude faster than

only using Hermite Polynomial Choas or more faster than Monte Carlo, only with

marginal error.

All above are solving statistical linear process variation. Here, QuadDelay is

proposed for nonlinear and linear, non-Gaussian interconnect delay. The input and

output for the interconnect delay calculation are all orthogonal polynomial repre-

sentation of statistical variations. The calculation process includes the obtaining of

sampling points and corresponding points weights. The points and their weights are

obtained by Gaussian numerical quadrature method. The number of sampling points

is based on the number of points and the level of accuracy need to achieve. Still,
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the number is much less than the number of Monte Carlo samplings. QuadDelay is

efficient and as accurate as Monte Carlo. How to solve the problem with large number

of random variables efficiently still remains to be a problem. How to do the sampling,

which means to make less sampling points to achieve tolerant accurate still has room

to develop. Also, process variation considering non-linear and non-Gaussian random

variables need to be taken care of too.

Our research can also be extended. Nowadays, how to simulate large scale power

grid network is still a problem. This problem should also be solved with taking pro-

cess variations into consideration. How to calculate worst case under process variation

correctly and efficiently still need to be studied. Recently, parrellel computing, in-

cluding multicore and multithread, are used for large scale computation. How to use

use more threads in one computer or more computers can be investigated for process

variation analysis for power grid or interconnect.
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