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ABSTRACT: A series of stable Pt(IV) corrole complexes with the general
formula PtIV[TpXPC](m/p-C6H4CN)(py), where TpXPC3− is the trianion
of a tris(p-X-phenyl)corrole and X = CF3, H, and CH3, has been synthesized,
affording key physicochemical data on a rare and elusive class of
metallocorroles. Single-crystal X-ray structures of two of the complexes
revealed very short equatorial Pt−N distances of 1.94−1.97 Å, an axial Pt−C
distance of ∼2.03 Å, and an axial Pt−N distance of ∼2.22 Å. The complexes
exhibit Soret maxima at ∼430 nm, which are essentially independent of the
meso-aryl para substituents, and strong Q bands with the most intense peak
at 595−599 nm. The substituent-independent Soret maxima are consistent
with an innocent PtIV−corrole3− description for the complexes. The low
reduction potentials (−1.45 ± 0.08 V vs saturated calomel reference
electrode) also support a highly stable Pt(IV) ground state as opposed to a
noninnocent corrole•2− description. The reductions, however, are irrever-
sible, which suggests that they involve concomitant cleavage of the Pt−aryl bond. Unlike Pt(IV) porphyrins, two of the
complexes, PtIV[TpXPC](m-C6H4CN)(py) (X = CF3 and CH3), were found to exhibit room-temperature near-IR
phosphorescence with emission maxima at 813 and 826 nm, respectively. The quantum yield of ∼0.3% is comparable to
those observed for six-coordinate Ir(III) corroles.

■ INTRODUCTION

The 5d metallocorroles constitute a unique class of size-
mismatched complexes that incorporate a large 5d transition-
metal ion within a sterically constrained macrocyclic ligand.1

Despite a steric mismatch inherent in their structures, the
majority of them exhibit remarkable chemical and photo-
chemical stabilities. A number of them also exhibit room-
temperature near-IR phosphorescence,2 which has led to
applications as oxygen sensors3−5 and as photosensitizers in
photodynamic therapy and dye-sensitized solar cells.6,7

Platinum(IV) corroles, of which there has been only a single
report,8 are particularly intriguing because of their potential for
axial reactivity. They are, however, only accessible via a low-
yielding, serendipitously discovered reaction, which involves
the interaction of a free-base corrole and Pt4(OAc)8·2HOAc in
benzonitrile at high temperature. The initially formed Pt(IV)
products, PtIV[TpXPC](m/p-C6H4CN)(PhCN), where
TpXPC is the trianion of a meso-tris(para-X-phenyl)corrole
(X = CF3, H, and CH3) and the m/p-C6H4CN group derives
from the solvent (i.e., PhCN), proved unstable, but could be
derivatized to stable, paramagnetic products PtIV[TpXPC•2−]-

(m/p-C6H4CN)(Ar), which proved amenable to single-crystal

X-ray structure determination.8 Here, we report that in situ
exposure of the initially formed Pt(IV)-PhCN products to
pyridine leads to a new class of stable, nonradical Pt(IV)
corroles with the general formula PtIV[TpXPC](m/p-
C6H4CN)(py), which have been variously characterized with
single-crystal X-ray structure determination, electrochemical
studies, and UV−vis−NIR absorption and emission spectros-
copy (Figure 1). Although the results represent modest
progress from a synthetic viewpoint, the physicochemical
measurements afford significant insight into the electronic
properties of a rare and elusive class of substances.

■ RESULTS AND DISCUSSION

As mentioned above, the Pt(IV) corroles PtIV[TpXPC](m/p-
C6H4CN)(py) (X = CF3, H, and CH3) were obtained rather
simply by the addition of pyridine to the reaction mixture at
the end of the Pt insertion. For all compounds, purity and
composition were established via thin-layer chromatography,
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high-resolution electrospray ionization mass spectrometry, and
1H NMR spectroscopy (Figures 2 and 3). Elemental analyses,
however, could not be obtained because of the very small
quantities available. Single-crystal X-ray structures could be
obtained for two of the complexes, providing unambiguous
proof of structure (Table 1). Both structures revealed a Pt
atom located exactly or nearly exactly in the mean plane of a
planar corrole ligand. For PtIV[TpCF3PC](m-C6H4CN)(py),

the two axial ligands, m-C6H4CN and pyridine, were found to
occupy symmetry-equivalent sites in the crystal, each with 50%
occupancy, and were modeled such that the atoms of the two
six-membered rings were superimposed (Figure 4). Accord-
ingly, the axial Pt−C/N distances for this structure only
represent an average of the “true” Pt−C and Pt−N distances.
Fortunately, the second structure, PtIV[TPC](m-C6H4CN)-
(py) (TPC = triphenylcorrolato), was found to be fully

Figure 1. Current status of Pt−corrole chemistry; the complexes prepared in the course of this study are schematically depicted in blue.

Figure 2. Representative 1H NMR spectrum: Pt[TpCF3PC](m-C6H4CN)(py).
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ordered (Figure 5). The structures exhibit some of the shortest
Pt−N distances known, which for the equatorial nitrogens are
1.955 ± 0.015 Å, reflecting the sterically constrained character
of 5d metallocorroles. The axial Pt−C and Pt−N distances in
the TPC complex are longer, 2.033(7) and 2.216(6) Å,
respectively.
All six complexes exhibit slightly split Soret bands (Table 2

and Figures 6 and 7), which are essentially unaffected by the
para substituents on the meso-aryl groups as well as strong Q
bands. Over a long series of studies, we have shown that such
substituent-insensitive Soret maxima are indicative of an
innocent, nonradical corrole macrocycle, which is typical of
the great majority of stable 4d and 5d metallocorroles,
including MoO,9 RuN,10 OsN,11 TcO,12 ReO,13 and Au14−17

corroles as well as Mo18 and W biscorroles.19 In contrast, the
Soret maxima of the PtIV[TpXPC•2−](m/p-C6H4CN)(Ar)
were found to redshift dramatically in response to increasing
electron-donating character of the para substituent X,7 a
phenomenon that is also observed for other noninnocent
metallocorroles, such as MnCl,20,21 FeCl,22,23 FeNO,24,25

Fe2(μ-O),
26 and Cu corroles.27−35

Cyclic voltammetry measurements were carried out for the
meta-cyanophenyl series PtIV[TpXPC](m-C6H4CN)(py),
which could be obtained in somewhat higher yields than the
para series (Figure 8 and Table 2). Given the instability of the
Pt(V) state, the oxidation potentials, which range from 0.56 V
(for X = CH3) to 0.74 V (for X = CF3), may be safely assigned
to corrole-centered oxidation. The low values of the reduction

potentials, which range from −1.53 V (for X = CH3) to −1.37
V (for X = CF3), underscore the high stability of the PtIVAr−
corrole unit toward reduction. That said, although the
electrochemical HOMO-LUMO gap of 2.1 eV is typically
indicative of a redox-inactive metal center and of ligand-
centered oxidation and reduction,10−13,16,36 the fact that the
reduction is irreversible suggests concomitant cleavage of the
Pt−Ar bond.
Photophysical measurements were carried out on two of the

complexes, PtIV[TpXPC](m-C6H4CN)(py) for X = CF3 and
CH3 (Table 3 and Figures 9 and 10). Both are clearly
phosphorescent, which was confirmed by almost complete
quenching of the emission in the presence of oxygen (Figure
9b,d), measurement of the decay time (Figure 10) and by
acquisition of luminescence excitation spectra (Figure 9a,c).
The latter are essentially identical to the absorption spectra;
the small deviations are due to nonlinearities ascribable to
strong absorption in the Soret region (the concentration used
was necessary for obtaining high-quality emission spectra with
excitation in the Q-band). The NIR phosphorescence is rather
weak, but the quantum yields are in the same order of
magnitude as those observed for Ir(III) corroles.2 This
observation is interesting, considering that Pt(IV) porphyr-
ins,37 in contrast to Pt(II) porphyrins,38−41 have been reported
to be nonemissive.42 Weak red fluorescence (not quenchable
by oxygen) was also clearly detected for the two compounds
studied. The quantum yields for the fluorescence were
estimated to be about an order of magnitude lower than

Figure 3. Representative 1H NMR spectrum: Pt[TpCF3PC](p-C6H4CN)(py).
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those for the phosphorescence. Upconversion with a triplet
annihilator, which proved feasible with OsN corroles,4 was
found to be very weak due to the relatively low energy of the
triplet state and the short triplet state decay times.

■ CONCLUSIONS
In what is only the second report on platinum corroles, we
have described the synthesis of the first set of stable Pt(IV)
complexes, in which the corrole is thought to be an innocent
ligand (i.e., without radical character). These have the general
formula PtIV[TpXPC](m/p-C6H4CN)(py), where X = CF3, H,
and CH3. Although the yields are low (typically <5%), the

compounds could be characterized with the standard
spectroscopic methods and in two cases single-crystal X-ray
crystallography providing rare insight into an elusive class of
molecules. The structures revealed short equatorial Pt−N
distance of 1.94−1.97 Å, an axial Pt−C distance of ∼2.03 Å,
and an axial Pt−N distance of ∼2.22 Å. The UV−vis spectra
revealed Soret maxima at ∼430 nm, which are essentially
independent of the meso-aryl para substituents and strong Q
bands with the most intense peak at 595−599 nm. The
substituent-independent Soret maxima are consistent with an
innocent PtIV−corrole3− description for the new complexes.
The low reduction potentials (−1.45 ± 0.08 V vs saturated
calomel reference electrode (SCE)) also support a highly
stable Pt(IV) ground state and rule out a corrole•2−

description. The reductions, however, were found to be
irreversible, which suggests that they involve concomitant
cleavage of the Pt−aryl bond. Somewhat to our surprise and
unlike Pt(IV) porphyrins, two of the complexes, PtIV[TpXPC]-
(m-C6H4CN)(py) (X = CF3 and CH3), were found to exhibit
room-temperature near-IR phosphorescence with emission
maxima at 813 and 826 nm, respectively. The quantum yield of

Table 1. X-ray Crystallographic Data for the Two Crystals
Analyzeda

sample Pt[TPC](Ar)(py) Pt[TpCF3PC](Ar)(py)

chemical formula C49H32N6Pt C52H29F9N6Pt
formula mass 899.89 1103.90
crystal system triclinic monoclinic
space group P1̅ C2/c
λ (Å) 0.7293 0.8857
a (Å) 9.4792(15) 18.9584(10)
b (Å) 12.0922(19) 16.8577(8)
c (Å) 16.675(3) 14.0096(7)
α (deg) 109.102(3) 90
β (deg) 95.415(3) 111.553(3)
γ (deg) 90.850(3) 90
Z 2 4
V (Å3) 1795.9(5) 4164.3(4)
temperature (K) 173(2) 100(2)
density (g/cm3) 1.664 1.761
measured reflections 47 230 20 649
unique reflections 11 271 4807
parameters 506 340
restraints 0 58
Rint 0.1151 0.0544
θ range (deg) 2.217−31.857 2.237−21.225
R1, wR2 all data 0.0583, 0.1336 0.0482, 0.0746
S (GooF) all data 1.033 1.037
max/min res. dens. (e/Å3) 3.436/−1.496 0.968/−0.872

aAr = m-C6H4CN.

Figure 4. Thermal ellipsoid plot for PtIV[TpCF3PC](m-C6H4CN)(py). Selected distances (Å): Pt1−N1 1.950(3), Pt1−N2 1.971(3), and Pt1−C/
N101 2.148(4).

Figure 5. Selected distances (Å): Pt1−N1 1.944(5), Pt1−N2
1.966(5), Pt1−N3 1.955(6), Pt1−N4 1.944(5), Pt1−N101
2.216(6), and Pt1−C201 2.033(7).

ACS Omega Article

DOI: 10.1021/acsomega.8b01149
ACS Omega 2018, 3, 9360−9368

9363

http://dx.doi.org/10.1021/acsomega.8b01149


∼0.3% is in the same order of magnitude as those of six-
coordinate Ir(III) corroles.

■ EXPERIMENTAL SECTION
Materials. Free-base meso-triarylcorroles were synthesized

according to a literature procedure.43 Platinum(II) chloride
was purchased from Sigma-Aldrich and used to synthesize
tetranuclear platinum(II) acetate, as described in the
literature.44 Platinum insertion reactions were carried out in
a Biotage microwave reactor using 20 mL of microwave vials.
Silica gel 60 (0.04−0.063 mm particle size, 230−400 mesh,
Merck) was used for flash chromatography, and silica gel 60
preparative thin-layer chromatography (PTLC) plates (20 cm
× 20 cm, 0.5 mm thick, Merck) were used for final purification
of all complexes.
Instrumental Methods. UV−visible−NIR spectra were

recorded on an HP 8454 spectrophotometer. 1H NMR spectra

were recorded on 400 MHz Bruker AVANCE III HD
spectrometer equipped with a 5 mm BB/1H SmartProbe at
298 K in CDCl3 and referenced to residual CHCl3 at 7.26
ppm. Mass spectra were recorded on a Thermo Scientific LTQ
Orbitrap XL spectrometer with an Ion-Max electrospray ion
source.
Cyclic voltammetry was carried out at 298 K with an EG&G

model 263A potentiostat having a three-electrode system: a
glassy carbon working electrode, a platinum wire counter
electrode, and a saturated calomel reference electrode (SCE).
Anhydrous CH2Cl2 (Aldrich) was used as solvent and
tetrakis(n-butyl)ammonium perchlorate, recrystallized twice
from absolute ethanol and dried in a desiccator for at least 2
weeks, was used as the supporting electrolyte. The reference
electrode was separated from the bulk solution using a fritted
glass bridge filled with the solvent/supporting-electrolyte
mixture. The electrolyte solution was purged with argon for
at least 2 min, and all measurements were carried out under an
argon blanket. All potentials were referenced to the SCE.
Emission and excitation spectra were acquired on a

FluoroLog 3 spectrofluorometer (Horiba Scientific) equipped
with a NIR-sensitive R2658 photomultiplier (Hamamatsu).
Relative quantum yields at room temperature were estimated
using a solution of Pt(II) tetraphenyltetrabenzoporphyrin in
toluene as a reference (Φ = 21%).40 The dye solutions were

Table 2. Spectroscopic and Electrochemical Properties: UV−vis λmax (nm) and E1/2 Values (V) of Pt[TpXPC](m/p-
C6H4CN)(py)

complex λmax (Soret) λmax (Q) E1/2(ox2) E1/2(ox1) E1/2(red1) ΔE
Pt[TpCF3PC](m-C6H4CN)(py) 430 569, 595 1.37 0.74 −1.37 2.11
Pt[TPC](m-C6H4CN)(py) 427, 437 567, 596 1.12 0.61 −1.49 2.10
Pt[TpCH3PC](m-C6H4CN)(py) 427, 438 567, 599 1.11 0.56 −1.53 2.09
Pt[TpCF3PC](p-C6H4CN)(py) 430 571, 595
Pt[TPC](p-C6H4CN)(py) 427, 437 568, 597
Pt[TpCH3PC](p-C6H4CN)(py) 427, 438 567, 599

Figure 6. UV−vis spectra of Pt[TpXPC](m-C6H4CN)(py), X = CF3,
H, and CH3.

Figure 7. UV−vis spectra of Pt[TpXPC](p-C6H4CN)(py).

Figure 8. Cyclic voltammograms of Pt[TpXPC](m-C6H4CN)(py) (X
= CF3, H, and CH3) in CH2Cl2 recorded at a scan rate of 100 mV/s.

Table 3. Summary of Photophysical Properties Measured in
Deoxygenated Toluene at 25 °C

complex
λmax,em
(nm)

Φ
(%)

decay time
(μs)

PtIV[TpCF3PC](m-C6H4CN)(py) 813 0.27 22.9
PtIV[TpCH3PC](m-C6H4CN)(py) 826 0.19 17.5

ACS Omega Article

DOI: 10.1021/acsomega.8b01149
ACS Omega 2018, 3, 9360−9368

9364

http://dx.doi.org/10.1021/acsomega.8b01149


deoxygenated in a screw-cap cuvette (Hellma, Mülheim,
Germany) by bubbling argon through the solution for 12
min. Phosphorescence decay times were acquired in time
domain on the FluoroLog 3 spectrofluorometer using a 390
nm SpectraLED (Horiba) as the excitation source.
General Procedure for the Synthesis of Pt[TpXPC](m/

p-C6H4CN)(py), Where X = CF3, H, CH3. To a 20 mL
microwave vial containing PhCN (5 mL) and a magnetic
stirring bar were added a free-base corrole H3[TpXPC] (0.114
mmol) and Pt4(OAc)8·2HOAc (1 equiv). The vial was sealed
and heated for 2 h at 150 °C under microwave irradiation.
Upon completion of the reaction, pyridine (0.5 mL) was added
and the contents of the vial were transferred to a round-bottom

flask (50 mL) and evaporated to dryness. The resulting solid
was dissolved in dichloromethane (5 mL) and loaded onto a
silica gel column and eluted with a mixture of dichloromethane
and n-hexane (the exact ratio of which is stated below for each
case). All fractions containing Pt[TpXPC](m/p-C6H4CN)-
(py), characterized by a Soret λmax between 426 and 430 nm,
were collected and evaporated to dryness. The product thus
obtained was separated into the meta and para regioisomers
with PTLC using a dichloromethane/n-hexane mixture as
eluent, as indicated below.

Synthesis and Separation of Pt[TpCF3PC](m/p-
C6H4CN)(py). The crude reaction product was chromato-
graphed on a silica gel column with 3:2 dichloromethane/n-
hexane as eluent. The fractions with a UV−vis λmax of 430 nm
were collected and evaporated to dryness, resulting in a
combined yield of 3.69 mg (6.6%) for the Pt[TpCF3PC](m/p-
C6H4CN)(py) regioisomers. PTLC with 1:1 dichlorome-
thane/n-hexane as eluent was then used to separate the m-
and p-isomers; the top band was identified as Pt[TpCF3PC]-
(m-C6H4CN)(py) and the lower band as Pt[TpCF3PC](p-
C6H4CN)(py) based on 1H NMR analysis. Dark purple X-ray
quality crystals of the meta isomer were grown by slow
evaporation of a dichloromethane/n-hexane solution of the
complex over a period of 15 days. Spectroscopic character-
ization data for the two isomers are as follows (see also Figures
2 and 3).

Pt[TpCF3PC](m-C6H4CN)(py). Yield 2.15 mg (3.52%).
UV−vis (CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 430
(10.70), 498 (0.60), 531 (0.72), 569 (1.62), 595 (3.08). 1H
NMR δ: 9.16 (d, 2H, 3JHH = 4.08 Hz, β-H); 8.92 (d, 2H, 3JHH
= 4.60 Hz, β-H); 8.73 (d, 2H, 3JHH = 4.04 Hz, β-H); 8.68 (d,
2H, 3JHH = 5.12 Hz, β-H); 8.43 (d, 2H, 3JHH = 8.12 Hz, 5,15-
o1-Ph); 8.37 (d, 2H, 3JHH = 7.60 Hz, 5,15-o2-Ph); 8.25

Figure 9. Optical properties of Pt(IV) corroles: (a, c) absorption and luminescence excitation spectra of the PtIV[TpCH3PC](m-C6H4CN)(py)
and PtIV[TpCF3PC](m-C6H4CN)(py), respectively, in toluene solution at 25 °C; (b, d) luminescence spectra of PtIV[TpCH3PC](m-
C6H4CN)(py) and PtIV[TpCF3PC](m-C6H4CN)(py), respectively, in toluene under anoxic and air-saturated conditions at 25 °C.

Figure 10. Phosphorescence decay for Pt(IV) corroles in anoxic
toluene (25 °C, detected at 815 ± 7 nm).
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(overlapping doublets, 2H, 3JHH = 8.12 Hz, 10-o1-Ph and 10-
o2-Ph); 8.07 (overlapping doublets, 4H, 3JHH = 7.60 Hz, 5,15-
m1-Ph and 5,15-m2-Ph); 8.00 (overlapping doublets, 2H, 3JHH
= 8.12 Hz, 10-m1-Ph and 10-m2-Ph); 6.34 (br s, 1H, 4-py);
5.72 (d, 1H, 3JHH = 7.44 Hz, C6H4CN ortho1); 5.47 (br s, 2H,
3,5-py); 5.00 (t, 1H, C6H4CN meta); 1.73 (br s, 2H, 2,6-py),
0.57 (d, 1H, C6H4CN para; overlapping with s, 1H, C6H4CN
ortho2). High-resolution mass spectrometry (HRMS) (major
isotopomer): M+ = 1103.2123 (expt), 1103.1952 (calcd for
C52H29N6F9Pt).
Pt[TpCF3PC](p-C6H4CN)(py). Yield 1.12 mg (1.83%).

UV−vis (CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 430
(10.82), 498 (0.56), 531 (0.70), 571 (1.64), 595 (3.23). 1H
NMR δ: 9.16 (d, 2H, 3JHH = 3.68 Hz, β-H); 8.92 (d, 2H, 3JHH
= 5.20 Hz, β-H); 8.73 (d, 2H, 3JHH = 4.28 Hz, β-H); 8.68 (d,
2H, 3JHH = 5.02 Hz, β-H); 8.43 (d, 2H, 3JHH = 7.96 Hz, 5,15-
o1-Ph); 8.35 (d, 2H, 3JHH = 7.96 Hz, 5,15-o2-Ph); 8.24
(overlapping doublets, 2H, 3JHH = 8.12 Hz, 10-o1-Ph and 10-
o2-Ph); 8.06 (d, 4H, 3JHH = 8.12 Hz, 5,15-m1-Ph and 5,15-m2-
Ph); 8.00 (overlapping doublets, 2H, 3JHH = 8 Hz, 10-m1-Ph
and 10-m2-Ph); 6.33 (br s, 1H, 4-py); 5.46 (br s, 2H, 3,5-py);
5.19 (d, 2H, 3JHH = 6.88 Hz, C6H4CN ortho); 1.70 (br s, 2H,
2,6-py), 0.46 (d, 2H, 3JHH = 8.16 Hz, C6H4CN meta). HRMS
(major isotopomer): M+ = 1103.2118 (expt), 1103.1952
(calcd for C52H29N6F9Pt).
Synthesis and Separation of Pt[TPC](m/p-C6H4CN)-

(py). The crude reaction product was initially chromato-
graphed on a silica gel column with 2:1 dichloromethane/n-
hexane as eluent. The fractions with a λmax of 427 nm were
collected and evaporated to dryness, resulting in combined
yield of 3.59 mg (7.2%) for the Pt(TPC)(m/p-C6H4CN)-
(PhCN) regioisomers. PTLC with 3:2 dichloromethane/n-
hexane as eluent was then used to separate the isomers; the top
band was identified as Pt[TPC](m-C6H4CN)(py) and the
lower band as Pt[TPC](p-C6H4CN)(py) based on 1H NMR
analysis.
Pt[TPC](m-C6H4CN)(py). Yield 2.1 mg (4.21%). UV−vis

(CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 427 (9.41), 437
(7.99), 496 (0.46), 528 (0.64), 567 (1.56), 596 (3.25). 1H
NMR δ: 9.09 (d, 2H, 3JHH = 4.88 Hz, β-H); 8.93 (d, 2H, 3JHH
= 4.88 Hz, β-H); 8.73 (d, 2H, 3JHH = 4.88 Hz, β-H); 8.67 (d,
2H, 3JHH = 4.24 Hz, β-H); 8.32 (d, 2H, 3JHH = 6.80 Hz, 5,15-
o1); 8.24 (d, 2H, 3JHH = 6.56 Hz, 5,15-o2); 8.10 (overlapping
doublets, 2H, 3JHH = 8.12 Hz, 10-o1 and 10-o2); 7.68−7.83
(m, 9H, overlapping 5,10,15-m-Ph and 5,10,15-p-Ph); 6.29 (br
s, 1H, 4-py); 5.70 (d, 1H, 3JHH = 6.92 Hz, C6H4CN ortho1);
5.43 (br s, 2H, 3,5-py); 4.99 (t, 1H, 3JHH = 6.92 Hz, C6H4CN
meta); 1.79 (br d, 2H, 2,6-py), 0.68 (d, 1H, C6H4CN para
overlapping with s, 1H, C6H4CN ortho2). HRMS (major
isotopomer): M+ = 899.2327 (expt), 899.2331 (calcd for
C49H32N6Pt).
Pt[TPC](p-C6H4CN)(py). Yield 1.08 mg (2.16%). UV−vis

(CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 427 (10.98), 437
(9.02), 496 (0.61), 528 (0.78), 568 (1.78), 597 (3.72). 1H
NMR δ: 9.08 (d, 2H, 3JHH = 4.28 Hz, β-H); 8.92 (d, 2H, 3JHH
= 4.92 Hz, β-H); 8.73 (d, 2H, 3JHH = 4.32 Hz, β-H); 8.66 (d,
2H, 3JHH = 4.28 Hz, β-H); 8.31 (d, 2H, 3JHH = 7.96 Hz, 5,15-
o1-Ph); 8.24 (d, 2H, 3JHH = 6.88 Hz, 5,15-o2-Ph); 8.10
(overlapping doublets, 2H, 3JHH = 8.12 Hz, 10-o1-Ph and 10-
o2-Ph); 7.83−7.68 (m, 9H, overlapping 5,10,15-m-Ph and
5,10,15-p-Ph); 6.30 (br s, 1H, 4-py); 5.43 (br s, 2H, 3-py);
5.19 (d, 2H, 3JHH = 6.80 Hz C6H4CN ortho); 1.77 (br s, 2H,
2,6-py); 0.56 (d, 2H, 3JHH = 6.08 Hz, C6H4CN meta). HRMS

(major isotopomer): M+ = 899.2331 (expt), 899.2331 (calcd
for C49H32N6Pt).

Synthesis and Separation of Pt[TpCH3PC](m/p-
C6H4CN)(py). The crude reaction product was chromato-
graphed on a silica gel column with 3:1 dichloromethane/n-
hexane as eluent. The fractions with a λmax of 427 nm were
collected and evaporated to dryness, resulting in combined
yield of 4.17 mg (8.0%) for the Pt[TpCH3PC](m/p-
C6H4CN)(py) regioisomers. PTLC with 3:1 dichlorome-
thane/n-hexane as eluent was then used to separate the
isomers; the top band was identified as Pt[TpCH3PC](p-
C6H4CN)(py) and the lower band as Pt[TpCH3PC](m-
C6H4CN)(py) based on 1H NMR analysis.

Pt[TpCH3PC](m-C6H4CN)(py). Yield 2.3 mg (4.41%).
UV−vis (CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 427
(9.19), 438 (7.59), 498 (0.41), 528 (0.62), 567 (1.47), 599
(3.28). 1H NMR δ: 9.06 (d, 2H, 3JHH = 4.40 Hz, β-H); 8.92
(d, 2H, 3JHH = 4.36 Hz, β-H); 8.72 (d, 2H, 3JHH = 4.44 Hz, β-
H); 8.66 (d, 2H, 3JHH = 4.40 Hz, β-H); 8.21 (d, 2H, 3JHH =
7.96 Hz, 5,15-o1-Ph); 8.12 (d, 2H, 3JHH = 6.68 Hz, 5,15-o2-
Ph); 7.98 (overlapping doublets, 2H, 3JHH = 8.24 Hz, 10-o1-Ph
and 10-o2-Ph); 7.60 (d, 2H, 3JHH = 8.24 Hz, 5,15-m1-Ph); 7.57
(d, 2H, 3JHH = 7.96 Hz, 5,15-m2-Ph); 7.51 (overlapping
doublets, 2H, 3JHH = 8.12 Hz, 10-m1-Ph and 10-m2-Ph); 6.28
(br s, 1H, 4-py); 5.69 (d, 1H, 3JHH = 6.84 Hz, C6H4CN
ortho1); 5.42 (br s, 2H, 3-py); 4.98 (t, 1H, 3JHH = 8.36 Hz,
C6H4CN meta); 2.69 (s, 6H, 5,15-p-CH3); 2.65 (s, 3H, 10-p-
CH3); 1.79 (br s, 2H, 2,6-py), 0.69 (d, 1H, C6H4CN para and
s, 1H, C6H4CN ortho2). HRMS (major isotopomer): M+ =
941.2897 (expt), 941.2800 (calcd for C52H38N6Pt).

Pt[TpCH3PC](p-C6H4CN)(py). Yield 1.17 mg (2.22%).
UV−vis (CH2Cl2) λmax (nm, ε × 10−4 M−1 cm−1): 427
(9.67), 438 (7.79), 496 (0.46), 528 (0.62), 567 (1.40), 599
(3.21). 1H NMR δ: 9.06 (d, 2H, 3JHH = 4.16 Hz, β-H); 8.92
(d, 2H, 3JHH = 3.80 Hz, β-H); 8.72 (d, 2H, 3JHH = 4.16 Hz, β-
H); 8.66 (d, 2H, 3JHH = 5.20 Hz, β-H); 8.21 (d, 2H, 3JHH =
8.00 Hz, 5,15-o1-Ph); 8.12 (d, 2H, 3JHH = 8.68 Hz, 5,15-o2-
Ph); 7.98 (overlapping doublets, 2H, 3JHH = 8.64 Hz, 10-o1-Ph
and 10-o2-Ph); 7.60 (d, 2H, 3JHH = 8.64 Hz, 5,15-m1-Ph); 7.57
(d, 2H, 3JHH = 7.96 Hz, 5,15-m2-Ph); 7.51 (overlapping
doublets, 2H, 3JHH = 7.96 Hz, 10-m1-Ph and 10-m2-Ph); 6.29
(br s, 1H, 4-py); 5.42 (br s, 2H, 3,5-py); 5.18 (d, 2H, 3JHH =
6.80 Hz, C6H4CN ortho); 2.69 (s, 6H, 5,15-p-CH3); 2.65 (s,
3H, 10-p-CH3); 1.76 (br s, 2H, 2,6-py), 0.57 (d, 2H, C6H4CN
meta). HRMS (major isotopomer): M+ = 941.2897 (expt),
941.2800 (calcd for C52H38N6Pt).

X-ray Crystallographic Analyses. X-ray data for Pt-
[TPC](m-C6H4CN)(py) and Pt[TpCF3PC](m-C6H4CN)(py)
were collected on beamline 11.3.1 at the Advanced Light
Source, Lawrence Berkeley National Laboratory. Each crystal
was mounted on a MiTeGen Kapton loop and placed in a
nitrogen cold stream provided by an Oxford Cryostream 800
Plus low-temperature apparatus on the goniometer head of a
Bruker D8 diffractometer. The diffractometer was equipped
with a PHOTON 100 CMOS detector for Pt[TPC](m-
C6H4CN)(py) and a PHOTONII CPAD detector for
Pt[TpCF3PC](m-C6H4CN)(py), each operating in shutterless
mode. Diffraction data were collected with synchrotron
radiation monochromated using silicon (111) to a wavelength
of 0.7293(1) Å for Pt[TPC](m-C6H4CN)(py) and 0.7749(1)
Å for Pt[TpCF3PC](m-C6H4CN)(py). An approximate full
sphere of data was collected on each crystal using a
combination of ϕ and ω scans. The crystals of Pt[TPC](m-
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C6H4CN)(py) were found to be twinned, the components
were separated using the CELL_NOW program.45 Absorption
corrections were applied with SADABS46 for Pt[TpCF3PC](m-
C6H4CN)(py) and with TWINABS47 for Pt[TPC](m-
C6H4CN)(py). The structures were solved by intrinsic phasing
(SHELXT)48 and refined by full-matrix least squares on F2

(SHELXL-2014)49 using the ShelXle GUI.50 All non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were
geometrically calculated and refined as riding atoms.
The two axial ligands in Pt[TpCF3PC](m-C6H4CN)(py),

pyridine and C6H4CN, were found to occupy symmetry-
equivalent sites within the crystal, each with 50% occupancy,
and were modeled such that the atoms of the two six-
membered rings were superimposed. The C and N atoms that
coordinate to the Pt center (C101 and N101) were
constrained to have identical x, y, and z coordinates via the
EXYZ command in SHELX and were refined under separate
PART instructions. Each of the remaining five atoms of the
aromatic ring was modeled as common to both orientations
with full occupancies, since attempts to independently model
the two rings were unsuccessful. The CN and H substituents
bound to C105 were refined under the same PART
instructions as C101 and N101, respectively. The disordered
axial ligands led to disorder in the unique C6H4CF3
substituent, causing the CF3 group to be positionally
disordered over two symmetry-equivalent sites. The atoms
belonging to this CF3 group were refined with an occupancy of
0.5, but no attempt was made to model disorder in the
aromatic ring of this substituent. Rotational disorder was also
found for the CF3 groups on the other two C6H4CF3
substituents, and each CF3 group was accordingly modeled
over two orientations with complementary occupancies.
Equivalent disordered atoms (e.g., N101/C101) were con-
strained to have equal Uij values via the EADP command in
SHELX. Additional crystallographic information has been
summarized in Table 1, and full details can be found in the
Crystallographic Information File provided as Supporting
Information.
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