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Abstract

Objective: Resting state functional MRI (RS-fMRI) enables mapping of function within the 

brain, and is emerging as an efficient tool for pre-surgical evaluation of eloquent cortex. Models 

capable of reliable and precise mapping of resting state networks (RSN) with reduced scanning 

time would lead to improved patient comfort while reducing cost per scan. The aims of this study 

were to develop a deep 3D convolutional neural network (3DCNN) capable of voxelwise mapping 

of language (LAN) and motor (MOT) resting state networks (RSN) with minimal quantities of 

RS-fMRI data.

Methods: Imaging data was gathered from multiple ongoing studies at Washington University 

School of Medicine and other thoroughly characterized, publicly available data sets. All 

study participants (n=2252 healthy adults) were cognitively screened and completed structural 
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neuroimaging and RS-fMRI. Random permutations of RS-fMRI regions of interest were used 

to train a 3DCNN. After training, model inferences were compared using varying amounts of 

RS-fMRI data from the control data as well as five patients with glioblastoma multiforme.

Results: The trained model achieved 96% out of sample validation accuracy on data 

encompassing a large age range collected on multiple scanner types and varying sequence 

parameters. Testing on out of sample control data showed 97.9% similarity between results 

generated using either 50 or 200 RS-fMRI time points, corresponding to approximately 2.5 and 

10 minutes respectively (96.9% LAN, 96.3% MOT true positive rate). In evaluating data from 

patients with brain tumors, the 3DCNN was able to accurately map LAN and MOT networks in 

spite of structural and functional alterations.

Conclusion: Functional maps produced by the 3DCNN can inform surgical planning in patients 

with brain tumors in a time-efficient manner. We present a highly efficient method for pre-surgical 

functional mapping, hence, improved functional preservation in patients with brain tumors.
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1. Introduction

MRI-based brain imaging is an integral part of patient care and medical research. 

Biomarkers of the neuropathogenesis and neurological manifestation of brain disorders 

can be identified by structural and/or functional MRI1. Most notably, MRI is of crucial 

importance for preoperative and intraoperative localization in brain tumor patients. 

Optimization of patient outcomes requires a balance between maximal extent of resection, 

which can reduce symptoms and extend the time until tumor recurrence, versus functional 

preservation, which impacts post-surgical quality of life. Structural MRI is routinely 

used by surgeons to identify the location and extent of resection necessary for maximal 

long-term survival. Functional MRI has been employed for preoperative planning, with 

the goal of minimizing the risk of functional impairment2,3. Studies have shown that 

gross total resection (as opposed to subtotal resection) in patients with gliomas leads to 

extended length of survival4. However, greater extent of resection increases the likelihood of 

functional deficits5. Specifically, deficits in language and motor networks have been shown 

to significantly impact quality of life4.

Functional MRI (fMRI) has emerged as a powerful tool for mapping clinically relevant 

functional brain areas (“eloquent cortex”) using the blood oxygen level dependent (BOLD) 

signal6,7. In current clinical practice, task-fMRI (T-fMRI) is most often used to “activate” 

particular parts of the brain (e.g., finger tapping to activate the hand motor area)8. 

However, recent work has demonstrated that these same regions can be mapped by 

appropriate analysis of task-free fMRI (“resting state” fMRI, RS-fMRI)9,10. Functionally 

related constellations of brain regions are widely known as resting state networks 

(RSNs)11. Multiple RSNs have been associated with specific sensory, motor and cognitive 

functions12,13. A major advantage of RS-fMRI is that RSNs can be mapped without the need 

for patient compliance with a task paradigm. Further, RS-fMRI can be acquired even under 
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sedation. Moreover, the failure rate of RS-fMRI is lower than that of task-based fMRI14. 

Thus, RS-fMRI may be optimal as a means of mapping the representation of function in the 

clinical setting.

A primary issue concerning RS-fMRI is the length of acquisition time required to obtain 

reliable data. The precision of RSN mapping using conventional computational techniques 

(Pearson correlation) fundamentally depends on the quantity of acquired data15. Acquisition 

time is important for multiple reasons. First, the likelihood that a patient will have 

significant head motion and/or fall asleep in the scanner, both of which can lead to systemic 

alterations in structural and functional MRI results, increases with longer scan times16,17. 

Further confounding the issue is the fact that, in general, multiple sequences (e.g., T1 pre- 

and post-contrast, T2, DTI, fMRI, SWI, ASL) are collected during a single scan session. In 

these circumstances, scanner time must be optimized in a manner that allows for reliable 

imaging data while still minimizing the total time in the scanner. Thus, computational 

models capable of reliable image reconstruction with less data could lead to less scan time, 

increased efficiency, and lower cost.

Convolutional Neural Networks (CNN) are a type of deep learning model inspired by 

the visual system. Applications of CNNs range from object detection and classification 

to natural language processing18. Pertaining to structural MRI, multiple studies have 

demonstrated the ability of CNNs to meet the state of the art in tumor segmentation, image 

inverse problems (recovering/reconstructing images from sets of noisy measurements), 

reducing the amount of contrast necessary for MRI scans, and reducing the sequence time 

necessary to obtain high resolution images19–21. To a lesser extent, CNNs have also been 

applied to functional MRI, predominantly for disease classification22,23.

This study utilizes a large cohort of healthy participants (n=2252) to develop a 3D 

convolutional neural network (3DCNN) capable of efficient and accurate voxelwise mapping 

of language and motor RSNs with less than 5 minutes of data. After training, model 

results were compared using varying amounts of RS-fMRI data from a thoroughly 

characterized publically available fMRI data set24. Further, we compare functional maps 

generated with the 3DCNN to aggregated task fMRI (T-fMRI) maps compiled in the 

Neurosynth platform (www.neurosynth.org)25. Lastly, model results were evaluated on five 

patients retrospectively recruited from the Neurosurgery brain tumor service at Washington 

University School of Medicine26. Our results indicate that the 3DCNN is capable of reliable 

functional mapping with minimal amounts of data in both healthy controls and patients with 

brain tumors. Further, stable results were achieved on data encompasing a wide age range, 

multiple scanner types, and multiple scanner sequences. This technology has the potential to 

improve patient outcomes and reduce costs in patients requiring functional imaging.

2. Methods

2.1 Participants

Normal human RS-fMRI data (n=2252) were obtained from publicly available data sets27,28 

and internal studies at Washington University in St. Louis (Table 1). All participants 

were cognitively normal based on study-specific performance testing. The appropriate 
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Institutional Review Board approved all studies, and all participants provided written 

informed consent for the use of their de-identified data.

2.2 Magnetic resonance imaging (MRI) acquisition

All imaging was performed on 3T Siemens scanners (Siemens AG, Erlangen, Germany) 

equipped with the standard 12-channel head coil. A high-resolution, 3-dimensional, sagittal, 

T1-weighted, magnetization-prepared rapid gradient echo scan (MPRAGE) was acquired 

(echo time [TE] = 1.54–16 ms, repetition time [TR] = 2200–2,400 ms, inversion time = 

1,000–1100 ms, flip angle = 7–8°, 256 × 256 acquisition matrix, 1.0–1.2 mm3 voxels). 

RS-fMRI scans were collected using an echo planar sequence (voxel size = 3–4 mm3, TR 

= 2200–3000 ms, FA = 80°-90°) sensitive to BOLD contrast. Resting state fMRI data was 

processed using standard methods developed at Washington University29. Multi-echo data 

was collected on either a Siemens scanner equipped with a 20-channel head coil or a GE 

MR750 3T MRI scanner (GE, Milwaukee, WI) equipped with an eight channel head coil. 

Structural imaging included T1-weighted (MP-RAGE; TR = 2,400 ms, TE = 3.036–3.16 

ms, TI = 1,000 ms; 1 × 1 × 1 mm voxels) and T2-weighted (TR = 2,500–3,200 ms, TE 

= 73.37–458 ms; 1 × 1 × 1 mm voxels) anatomical images. RS-fMRI was acquired with a 

multi-echo sequence (TR = 2740–2,960 ms, TE = 14.8–15, 28.4–31.3, 42–47.6, 55.6–63.9 

ms; 4 × 4 × 4 mm voxels)30.

2.3 MRI processing

RS-fMRI data were preprocessed using previously described techniques31. Preprocessing 

included compensation for slice dependent time shifts, elimination of systemic odd-even 

slice intensity differences (for interleaved, single-echo data), and rigid body correction for 

head movement. Atlas transformation was achieved by composition of affine transforms 

connecting the fMRI volumes with the T2-weighted and MPRAGE structural images, 

resulting in a volumetric time series registered to the MNI152 template in (3 mm cubic) 

atlas space. In tumor patients, due to the compromised quality of atlas registration owing 

to destruction of normal tissue and anatomical distortions, non-linear registration with cost-

function masking was used as described in32. In brief, the warping map was computed 

using the Advanced Normalization Tools (ANTs) diffeomorphic algorithm registration 

(https://www.nitrc.org/projects/ants) with a tumor mask. The affine transformation matrix 

and deformation fields were composed to register structural images to the MNI152 nonlinear 

asymmetric atlas as the standard template (http://nist.mni.mcgill.ca/?p=904). Additional 

preprocessing included spatial smoothing (6 mm full width half maximum Gaussian blur 

in 3D), voxelwise removal of linear trends over each run, and temporal low pass filtering 

retaining frequencies <0.1 Hz. Spurious variance was reduced by regression of nuisance 

waveforms derived from head motion correction and extraction of the time series from 

regions of white matter and CSF segmented by FreeSurfer33. The global signal was included 

as a nuisance regressor34. Frame censoring was performed to minimize the impact of head 

motion29,35. All RS-fMRI data were resampled in standard atlas space. Similar methods 

were used for the multi-echo data after weighted averaging of the echos30.
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2.4 3DCNN

A 3D convolutional neural network (3DCNN) with 60 layers was trained to classify 

each voxel as belonging to the motor (MOT), language (LAN), or other (OTH) RSN. 

The 3DCNN had a densely connected architecture36 that included residual layers nested 

within dense blocks. One, three, and seven cubic convolutions were performed. Each dense 

block was directly connected to the cross entropy layer after global average pooling and 

20% dropout. Layers were generally arranged as convolution→ batch normalization→ 
“Swish” activation. Max pooling (2x2x2 with stride 2) was used between dense blocks for 

dimensionality reduction. Training was terminated if the accuracy did not improve after 3 

validations. The 3DCNN was implemented in Matlab R2021b (www.mathworks.com).

2.5 Training Data

Training data was generated by random subsampling of voxels previously shown to belong 

to either the MOT, LAN, or OTH RSN, where OTH is defined as not MOT or LAN37. 

Subsamples of voxels in a given network were averaged and used to classify the signal 

into one of the three RSNs based on the highest correlation between the mean subsampled 

signal and the mean signal for each network. Then, a 3D similarity map was generated 

by computing the distance correlation between the mean of the subsampled BOLD signals 

and every other voxel in the brain. Only 50–75 time points from the original BOLD signal 

were used to generate the 3D similarity map, thereby simulating a short scan duration. 

However, all time points were used to label the sample into one of the three classes. 

The exact number of subsampled voxels and the number of time points used for each 

voxel was generated by a uniform random number generator. This process was repeated 

multiple times for each network and for each data sample. A total of 1,501,970 training 

instances were generated across all networks. The number of per-network training samples 

was approximately equal to ensure the model did not favor a particular class. During 

training, samples were augmneted by a combination of 3D random affine transformations 

(rotations (±15 mm), translations (±15 mm)), scaling (between 0.9–1.1), sheering (±15 mm), 

and adding gaussian noise. Two hundred BOLD scans from our training data set were 

reserved as validation data for the 3DCNN. Approximately 200,000 validation samples were 

generated from the held out scans. Training and validation samples were stratified by age, 

sex, and study. Once the model was fully trained and validated, the 3D similarity maps 

generated for testing were constructed in the same manner as above. However, each map was 

derived from a single voxel’s time series (as opposed to the mean of random subsamples).

2.6 Testing Data

After training, model outputs were compared using data from the midnight scan club24 

(MSC). The MSC contains data collected on 10 participants each with 10 scanning 

sessions with 30 minutes of RS-fMRI per session. MSC data was used to compare model 

results when using different sequence lengths (~2.5 vs ~10 minutes). Further, the trained 

classifier was tested on data acquired in 5 patients retrospectively recruited from the 

Neurosurgery brain tumor service at Washington University School of Medicine. Similarity 

between results was measured using accuracy, boundary F1, DICE, and multiscale structural 

similarity index (MSSI). Lastly, model results were compared with task activation maps 
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derived from the Neurosynth platform (neurosynth.org), which generates statistical maps 

of significance of T-fMRI responses to behavioral paradigms25. Neurosynth compiles and 

aggregates information from published T-fMRI studies, and extracts brain regions that 

are consistently reported in the literature based on pre-defined terms associated with task 

responses. The terms used in our analysis were “language” and “motor”. Similarity between 

3DCNN and T-fMRI results were measured using MSSI.

2.7 Data and Code Availability

The data used in this study are partially available by request through the appropriate online 

repositiory27,28. Other data may be made available after approval from the appropriate study 

PIs. Code will be made available upon request.

3. Results

Demographics of the cohort

Participant demographics are shown in Table 1. A majority of the cohort were Caucasian 

(71%) and female (60%), with an average age of 46.6±23.1 years (range 18–89 years) and 

15.1±2.4 years of education.

3.1 Model Results—The model achieved 96% out of sample validation accuracy 

(Supplemental Figure 1). After training, the MSC data was processed with the 3DCNN first 

using 10 minutes of available data (MSC200), then using only 2.5 minutes of data (MSC50). 

Figures 1 and 2 show the results for LAN and MOT, respectively. Highly symmetric results 

are characteristic of RS-fMRI analysis. Only minor differences were observed between 

the results from MSC200 and MSC50. Figure 3 and Supplemental Table 1 provides the 

similarity measures that accompany Figures 1 and 2. Figure 3 left shows the confusion 

matrix when comparing the winner take all (WTA) voxelwise results for the MSC200 vs 

MSC50 results. The overall accuracy when treating MSC200 as the “true class” and MSC50 

as the “predicted class” was 97.9%. The true positive rate (TPR) for all networks was greater 

than 96%, as well as the positive predictive value (PPV) for MOT and OTH. The lowest 

similarity measure observed was PPV for LAN, which was 85.7%. Figure 3 right shows 

the difference in softmax probabilities (MSC200-MSC50) produced by the 3DCNN for all 

networks. The majority of voxelwise probability differences were between [-.1, .1]. Further 

support for the high similarity between the two analyses can be seen in Supplemental Table 

1, with the Boundary F1, MSSI, and Dice score showing high values for all networks, as 

well as low STD between the scores computed across the individual MSC subjects. Similar 

to Figure 3, the lowest scores were observed in LAN.

Figure 4 shows the comparison of the 3DCNN probability maps averaged over the MSC 

data, with T-fMRI maps generated from the Neurosynth platform. When calculating the 

3DCNN probability maps, only 2.5 minutes of data were used. Of note, the LAN results 

from RS-fMRI analysis are more symmetric than that seen with T-fMRI. A high degree of 

similarity was observed for both networks, with an MSSI of 0.83 for LAN and 0.80 for 

MOT. In total, MOT maps generated from Neurosynth covered 26.2% of the total area of 

the gray matter, while the 3DCNN maps derived from RS-fMRI only covered 12.5% (0.2 
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threshold). Similairly, Neurosynth LAN covered 12.9% of the total area and the 3DCNN 

9.3%.

To assess the ability of the 3DCNN to accurately map functional networks in the presence 

of pathological structural and functional alterations, we analyzed retrospective data from 5 

patients with glioblastoma multiforme. Figure 5 and 6 shows these results. Again, for these 

analysis, only 2.5 minutes of data were used to generate 3DCNN probability maps. Despite 

the presence of a tumor, the 3DCNN was able to map LAN and MOT in regions associated 

with those networks. Further, the maps were able to follow the structural alterations caused 

by the GBMs, which can be seen by comparing the lesional/contralesional probability maps 

for the individual patients. This is especially apparent in the motor network (GBM 1, 2, and 

4), which unlike LAN, is highly symmetric across hemispheres. In Figure 5, the slices are 

selected at the level of the tumor, and in Figure 6 the slices are centered at anatomically 

similar levels to facilitate comparison across patients. Lastly, in regions especially close to 

the tumor “core”, the probabilities begin to decline, which is likely due to the presence of 

necrotic tissue and neurovascular uncoupling distorting the BOLD signal. This can easily 

be seen in GBM1. Figure 7 shows the probability maps of the MOT network on GBM1 

with varying threshold intensities. The figure demonstrates that the MOT probability around 

the tumor is decreased as compared to the contralateral side. As the threshold changes the 

asymmetry between the normal side and the area surrounding the tumor becomes more 

pronounced.

4. Discussion

There is strong evidence in the literature that accurate preoperative functional MRI planning 

prior to the resection of brain tumors reduces postsurgical morbidity38. With current task-

based methods, however, the time it takes to get adequate information can extend scan time 

up to an hour. Thus, there is a high degree of significance to the neurosurgeon in obtaining 

optimal imaging quality while reducing imaging time and cost. This research was performed 

primarily in a large number of normal subjects (with only a few examples of application in 

brain tumor patients) and this was necessitated by the needs of machine learning algorithms. 

Still, the current work demonstrates the utility of a 3DCNN for voxelwise mapping of 

language and motor RSNs using only 2.5 minutes of RS-fMRI data (Figures 1–3). This 

represents a roughly 60% decrease in the quantity of data conventionally thought necessary 

to map resting state networks15,39. Since head motion increases with scan length, a short 

scan time tends to improve data quality. The problem of head motion is magnified in 

children, the elderly, and patients uncomfortable in the scanner owing to their disease. 

Further, in the clinical setting there is a limited amount of time for BOLD fMRI as several 

anatomic sequences must be obtained in addition to functional imaging. Reducing the 

imaging time, while maintaining the functional mapping quality, provides a solution to 

patients requiring a complete radiologic evaluation. Thus, utilization of the 3DCNN could 

yield more positive imaging outcomes and increased comfort to the patient while preserving 

accuracy and reducing costs.

The 3DCNN was highly accurate at the voxel level and capable of mapping regions 

known to associate with LAN and MOT networks (Figures 1 and 2). Further, the varying 
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topography of the probability maps produced by the 3DCNN show that the model was able 

to capture individual anatomical variability in patients with brain tumors (Figures 5 and 6). 

Thus, the 3DCNN does not simply reproduce group level or atlas-based results. This is of 

vital importance for pre-surgical planning, which requires precise subject-specific mapping 

to facilitate functional preservation. Lastly, a clinically useful tool should be capable of 

accurate mapping regardless of the patient demographics and institution utilizing the tool. 

The 3DCNN achieved 96% validation accuracy on data from multiple studies, originating 

from multiple sites with different scanners and sequence parameters, representing a broad 

span of adult ages. These results suggest that the 3DCNN should be widely applicable for 

purposes of pre-surgical functional mapping.

Tumors induce mass effects, i.e., structural displacements that can distort functional 

maps40,41. Figures 5 and 6 show that the 3DCNN mapping results obtained in 5 patients 

with glioblastoma multiforme are remarkably similar to the results obtained in healthy 

individuals, regardless of tumor location. Additionally, we observed inter-hemispheric 

asymmetries in functional maps, i.e., impaired functional connectivity in the side of the 

tumor. Tumors destroy functional tissue and induce abnormal neovasculature which can 

lead to dysfunctional autoregulation and neurovascular uncoupling42. The BOLD signal is 

thought to indirectly reflect neural activity via neurovascular coupling between blood flow, 

blood volume, and oxygen metabolism43. Note the decrease in RSN probability near to the 

tumor core in the MOT map of patient GBM1. Similar findings could provide a means 

of assessing regions with the most severe damage (e.g., necrotic tissue) or the greatest 

abnormality in neurovascular coupling. In contrast, edematous tissue further from the tumor 

core showed little to no abnormality in the RSN maps. Thus, the maps produced by the 

3DCNN can provide significant information that could aid in the management of patients 

with brain tumors.

For patients with brain tumors, the current standard of care includes a pre-operative T-fMRI 

study prior to surgery to inform surgical planning. A recent meta-analysis has demonstrated 

that presurgical planning with T-fMRI improves morbidity and mortality38. Multiple studies 

have demonstrated that RS-fMRI mapping can complement T-fMRI and provide necessary 

mapping when a patient is unable to cooperate with the study or the task fails for some 

other reason10. The low failure rate of RS-fMRI, automated localization capability of the 

3DCNN, and the need for far less scanner time makes the proposed method an attractive 

choice for pre-operative assessment in tumor patients. Moreover, the current results suggest 

that there is little difference in the network topographies produced from deep learning-based 

probability maps derived from RS-fMRI as compared to T-fMRI (Figure 4). Although 

the obtained maps are topographically comparable, RS-fMRI has several advantages over 

T-fMRI from the clinical perspective. First, each network mapped with T-fMRI requires 

a dedicated imaging sequence and patient compliance with the task. Recommendations 

for T-fMRI paradigm selection emphasize the need for at least 2 task paradigms to fully 

localize different components of the language system44. Thus, at a minimum, for motor 

and language, 3 T-fMRI runs would need to be performed, which would be approximately 

an order of magnitude longer in acquisition time. Additionally, RS-fMRI maps may be 

functionally more specific as compared to T-fMRI. The performance of a task necessarily 

recruits non-specific brain regions for the performance of the task (see Luckett et al.45 for 
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discussion). As an example, performing a task requires attention and visual processing to 

monitor and respond to a cue. These additional functional regions would not be part of the 

areas mapped using RS-fMRI. This distinction becomes evident when comparing the total 

area of each network across the brain. The MOT task maps generated from the Neurosynth 

platform covered 26.2% of the total area of the gray matter, while the 3DCNN maps only 

covered 12.5%. For LAN mapping, Neurosynth covered 12.9% of the total gray matter area 

and the 3DCNN 9.3%. Concurrent responses to finger tapping in dorsolateral prefrontal 

cortex reflect motor planning. Concurrent responses to the language paradigm occur in 

antero-lateral prefrontal cortex, superior parietal lobule, and non-dominant anterior insula. 

As previously discussed, these responses reflect cognitive process, e.g., task control, that are 

not specific to language10,45. Other possible reasons for the difference in mappings could 

be due to the difference in analysis techniques (e.g., our use of an optimized deep learning 

model versus the aggregation of published maps based on keywords used by Neurosynth), as 

well as the thresholds used by the different methods.

One limitation of our study is that we did not compare our fMRI results with the gold 

standard of DCES. Although several studies have taken this approach, by their nature these 

studies are much smaller in size and thus the data may not be amenable to machine learning 

tools that require large data sets. Thus, within the scope of this study it was not practical to 

use DCES data. A follow-up limitation of our study is that unlike in our results in normal 

subjects, we have no good estimation of mapping accuracy in patients with brain tumors, 

especially with large tumors that are close to the motor and language networks, which is 

when the findings are most critical to the surgeon. However, the same limitations and effects 

of neurovascular uncoupling apply also to T-fMRI in this population. Validation results 

obtained in both healthy controls (MSC) and patients with brain tumors were limited to a 

few examples in this study. Future work will involve further model validation on healthy 

controls collected at multiple institutions to test the effect of varying the amount of data. 

Similarly, future work will also include a larger tumor patient sample and data acquired 

using both T-fMRI and RS-fMRI for comparison.

4.1 Conclusion

The current study demonstrates the utility of deep learning for providing accurate mapping 

of eloquent cortex while using a reduced amount of RS-fMRI data. This result demonstrates 

an additional advantage of using RS-fMRI for pre-surgical planning beyond the inherent 

advantages of RS-fMRI, such as not requiring patient compliance with task paradigms. The 

capability of the 3DCNN to generate accurate functional maps given a minimal amount of 

data supports functional preservation in patients with brain tumors while increasing imaging 

efficiency and decreasing cost.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison of 3DCNN mapping of the language network on MSC subjects using 50 versus 

200 time points, corresponding to 2.5 and 10 minutes of data. Top 2 rows correspond to 

MSC 1–5, bottom 2 rows correspond to MSC 6–10. All images used .1 threshold (slice 71 in 

MNI atlas).
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Figure 2: 
Comparison of 3DCNN mapping of the motor network on MSC subjects using 50 versus 

200 time points, corresponding to 2.5 and 10 minutes of data. Top 2 rows correspond to 

MSC 1–5 (50 and 200), bottom 2 rows correspond to MSC 6–10. All images used .1 

threshold (slice 133 in MNI atlas).
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Figure 3: 
Left) Voxelwise comparison (winner take all) of MSC data using 50 time points (MSC50) 

corresponding to approximately 2.5 minutes of data versus 200 time points (MSC200) 

corresponding to approximately 10 minutes of data. Diagonal elements correspond to the 

percentage of correctly classified voxels relative to the total number of voxels for the 

given network. The sum of the diagonal (97.9%) corresponds to the overall accuracy. 

Right) Histogram of differences when subtracting MSC50 from MSC200. The majority of 

differences ranged between -.1 and .1.
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Figure 4: 
Comparison of the 3DCNN probability maps averaged over the MSC data with T-fMRI 

maps generated from the Neurosynth (NS) platform. When calculating the 3DCNN 

probability maps, only 50 time points (2.5 minutes) were used. A high degree of similarity 

was observed for both networks, with an MSSI of 0.83 for LAN and 0.80 for MOT.
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Figure 5: 
3DCNN mapping of language and motor networks using 50 time points (2.5 minutes) in 

GBM patients. Top and bottom row show T1-weighted post contrast axial and sagittal 

structural views of the tumor. Green cross hairs are centered on the tumor core. Second 

row shows mappings for the motor network in the given slice (absence of mapping (GBM5) 

indicates no part of that region encompassed the motor network). Third row shows mappings 

for the language network. Despite the presence of a tumor, the 3DCNN was able to map 

LAN and MOT in regions associated with those networks.
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Figure 6: 
3DCNN mapping of language and motor networks using 50 time points (2.5 minutes) in 

GBM patients. First and Second rows show mapping of the motor and language networks on 

anatomically similar slices of T1-weighted post contrast images. Bottom row shows sagittal 

structural views of the tumor. Green lines indicate the slice level used in the top two rows. 

Despite the presence of a tumor, the 3DCNN was able to map LAN and MOT in regions 

associated with those networks.
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Figure 7: 
3DCNN probability maps on GBM1 with varying threshold intensities for the motor 

network. Probabilities around the tumor are decreased as compared to the contralateral side. 

As the threshold increases, the region surrounding the tumor falls below the higher threshold 

value.
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Table 1:

Characteristics of training data.

Total MEDEX OASIS3 GSP HIV

Number of participants 2252 242 665 1139 206

Mean and STD of age 46.6±23.1 70.9±4.7 67.6±7.8 21.3±2.7 37.9±17.1

% Female 60% 71% 60% 59% 52%

Mean and STD for education 15.1±2.4 16.2±2.3 15.9±2.6 14.3±1.9 13.9±2.1

% Caucasian 71% 79% 86% 65% 44%

Scanner Siemens/ GE Siemens Siemens Trio/Prisma

TR (ms) 2740–2960 2200 3000 2200

Voxel Size (mm3) 4 4 3 4

TR=repetition time, STD=standard deviation, ms=milliseconds, mm=milimeters
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