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If you can’t model it, you don’t understand it.

If you don’t understand it, you can’t improve it.

Prof. Michael Doherty, at the start of every senior design class
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Abstract

Enhancing Mechanistic Crystal Growth Models

by

Carl Jonathan Tilbury

Crystal growth shapes must be optimized with respect to product functionality. Rapid

in silico calculations of crystal habits, coupled with theoretical understanding of the phys-

ical processes that drive them, will enable intelligent navigation across the vast design

space of growth conditions. This dissertation focuses on upgrading a multi-scale mecha-

nistic modeling framework to realize such a design aid for systematic shape engineering.

First, underlying kinetic rate expressions for growth unit attachment and detachment

are clarified, and the incorporation mechanism is considered. Second, a method for pre-

dicting the dominant growth regime operating on each face is introduced, which enables

the effect of supersaturation on crystal shape to be accounted for. Third, the effect of

solvent on crystal shape is investigated and a practical technique to account for it is de-

tailed. Fourth, a model for the velocity of a step edge with non-centrosymmetric growth

units is developed, which can account for complex instability phenomena unique to this

general class of crystals. For each model development, predictions are tested against

experimental crystal morphologies (or kinetic Monte Carlo simulations for the case of

step velocities), to confirm accuracy. Finally, the strategy for overall model execution

and automation is detailed.

These developments act to increase predictive accuracy and enable application of

mechanistic models to a wider array of systems and growth conditions, while providing

insight for rational crystal engineering.
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Chapter 1

Multi-Scale Models of Crystal

Growth: An Engineering Design Aid

Reproduced in part with permission from:

Jinjin Li, Carl J. Tilbury, Seung Ha Kim and Michael F. Doherty, “A design aid for

crystal growth engineering,” Progress in Materials Science, 2016, 82, 1-38.

DOI: 10.1016/j.pmatsci.2016.03.003. Copyright 2016 Elsevier.

Summary

This chapter has three major objectives:

1. Present the motivations for engineering crystal shapes and using in silico models

2. Explain how mechanistic models offer the greatest potential

3. Outline the developments in this dissertation that enable mechanistic models to

achieve their potential and facilitate crystal shape engineering

1
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Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

1.1 Motivations for Shape Engineering and Models

Crystal growth is a fundamental process in nature and is prevalent in industry for

synthesis and purification [1–3]. Crystal morphology plays an important role in pharma-

ceutical manufacture and other practical applications, with different crystal habits (i.e.

rods, needles, plates, blocks) possessing different physicochemical characteristics [4–7].

Key applications include:

• Pharmaceuticals. Bioavailability is central to pharmaceutical efficacy and can be

impacted by the crystal shape [7–9]. Additionally, high-aspect-ratio, needle-shaped

crystals are typically undesirable for pharmaceutical applications, where the shape

impacts downstream processing such as filtration [10,11].

• Electronic materials. In contrast to pharmaceuticals, high-aspect-ratio crystals may

be preferred, to enhance performance of the active layer in devices [12–15].

• Catalysts. Activity is typically face-dependent, according to the different types of

surface site, so improved catalysts can result with preferential expression of the

crystal faces with optimal activity [6].

• Explosives. The crystal morphology can alter shock sensitivity [16, 17], which has

important implications for storage and safety.

Figure 1.1 demonstrates a variety of crystal habits for pharmaceutical crystals; their

faceted nature is evident with well-defined crystallographic planes. Control over the

environmental conditions during crystal growth, such as solvent, temperature, super-

saturation and the presence of impurities/additives/stabilizers, can enable dramatically

different morphologies to be accessed; consequently subsequent processing and end-use

functionality are strongly affected. Often an optimal or at least improved morphology

2



Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

       (a) Rods                                                                      (b) Blocks                   

 (c) Needles                                                                         (d) Plates                   

Figure 1.1: Examples of crystal growth shapes under optical microscopy: rods (a),
blocks (b), needles (c), plates (d). Image courtesy of N. Variankaval, Merck and Co.
(private communication) [1]

can be imagined based on knowledge of the product’s function, but the vast design space

of growth conditions is difficult to fully explore experimentally.

As understanding of how crystal shapes affect product functionality continues to

improve, the ability to synthesize a particular morphology will become even more desir-

able. Despite much theoretical development, however, scientifically and systematically

engineering the shape of crystalline solids remains a challenging task. The typical ex-

perimental search for optimal growth conditions [3,4] is both an inefficient use of limited

3



Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

resources and not guaranteed to find the optimum form. Accurate and practical in silico

modeling would offer a powerful tool to enable this shape optimization through a sys-

tematic sweep of design conditions that could better target the experimental search [4].

1.2 The Potential of Mechanistic Models

A useful crystal-growth-shape model should have high physicochemical fidelity, so

as to capture important effects such as temperature, solvent and supersaturation. To

achieve this, our research group has developed [18–20] a multi-scale mechanistic modeling

framework based on established theories crystal growth physics. These models have

been successfully applied by Koo and co-workers to various crystalline explosives, where

accurate morphological predictions have been obtained for 1,3,5-Trinitroperhydro-1,3,5-

triazine (RDX) [21], β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) [22] and

2,2-Dinitroethene-1,1-diamine (DADNE or FOX-7) [23].

Before describing the underlying physics of crystal growth on which this multi-scale

mechanistic modeling framework is based, let us first review various non-mechanistic

crystal growth models.

1.2.1 Non-Mechanistic Models for Crystal Habit

Gibbs developed the first criteria for describing equilibrium crystal shapes [24], with

the underlying principal that the total surface free energy of the fluid-solid interface

should be minimized. The work of crystallization can be expressed by the Gibbs-Thomson

formula [25]:

∆G = −V∆µ

VX
+
∑
i

γiAi (1.1)

where the reward for crystallization from a supersaturated solution is based on the chem-

4



Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

ical potential difference ∆µ between a growth unit (e.g., molecule, dimer, ion, cluster,

etc.) in the growth environment and in the crystal (V and VX are the crystal volume and

molecular volume, respectively); the penalty is due to surface energies (γi) of each facet

(having area Ai). The equilibrium shape (i.e., at vanishingly small ∆µ) corresponds to

the minimum in ∆G, which for a fixed crystal size implies:

∑
i

γidAi = 0 (1.2)

i.e., the surface free energy is minimized. The shape that solves this problem is given by

the famous Wulff construction [3, 25–28]:

γ1

H1

=
γ2

H2

= · · · = γi
Hi

. (1.3)

Hi is the perpendicular distance of face i from the crystal center, which is, therefore,

proportional to its surface energy for the equilibrium shape. This shape ensures that

the lowest energy faces are dominantly expressed on the morphology and high surface

energy faces can be excluded if their Hi is large enough to produce a plane geometrically

beyond where adjacent faces would intersect (i.e., high energy faces lie outside the convex

hull). Note that the orientation of each face is fixed based on the crystallography, which

determines the angles between planes in forming this construction and also gives rise to

the anisotropic γi’s based on the distinct crystallographic surface structures.

In contrast to fluids, however, solids offer a strong resistance to shape deformation;

essentially, there is an activation energy that typically prevents an equilibrium shape

being achieved. The barrier to reorganization is reduced with size, leaving nanocrystals

as potential candidates to reach their equilibrium shape, but for most crystalline products

it is kinetics, instead of thermodynamics alone, that is expected to govern the crystal

5



Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

morphology. This observation was remarkably noted by Gibbs as a footnote [3, 24],

stressing that the kinetically slow-growing faces determine the crystal habit and
∑

i γiAi

will not usually be minimized.

One can predict the actual (non-equilibrium) crystal habit providing the perpendic-

ular growth rate of each face, Gi, is known. For constant Gi (i.e., in an unchanging

growth environment), there exists a steady-state morphology that a crystal will evolve

towards regardless of its initial seed shape [29, 30]. This can be calculated using the

Frank-Chernov condition [31,32]:

G1

H1

=
G2

H2

= · · · = Gi

Hi

. (1.4)

where Hi is again the perpendicular distance of face i from the crystal center. This

is analogous to the Wulff construction with surface energies replaced by growth rates.

Therefore, the path to predicting real crystal shapes lies in determining the perpendic-

ular growth rate Gi of each crystallographic face, which via eq 1.4 fixes the relative Hi

distances and provides the shape.

BFDH Model

The initial foray into a non-equilibrium model for crystal growth morphology was pro-

vided by Bravais, Friedel, Donnay and Harker [33–35] via the now-termed BFDH model.

This was the first approach at predicting crystal growth rates, which through the Frank-

Chernov condition (eq 1.4) allows one to predict the steady-state crystal morphology.

The BFDH model takes the form of a trend between growth rate and crystallographic

structure; the perpendicular growth rate Ghkl is assumed to be inversely proportional to

6
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the interplanar spacing, dhkl, between successive planes with Miller indices (hkl):

Ghkl ∝
1

dhkl
(1.5)

This method is solely based on geometrical crystallographic considerations so does not

account for any solid-state energetics or modifications from the growth environment.

This fixed interplanar spacing for each (hkl) plane can be calculated using the following

equations [36]:

dhkl =

√
1

rhkl
(1.6)

rhkl =(1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ)−1[
h2

a2
sin2 α +

k2

b2
sin2 β +

l2

c2
sin2 γ +

2kl

bc
(cos β cos γ − cosα)

+
2lh

ac

(
cosα cos γ − cos β +

2kh

ab
(cosα cos β − cos γ)

)]
(1.7)

where h, k, l are Miller indices, a, b, c are unit cell dimensions and α, β, γ are the

corresponding crystallographic angles. Extinction conditions for the space group should

also be considered to select the appropriate Miller indices in each direction, upon which

the growth rates are fixed for a crystal system and the morphology can be determined.

The BFDH model is easily implemented since it merely requires knowledge of the

crystallography. It is commonly used for this advantage and is built into the commercial

software Mercury [37] from the CCDC. While the general trend that faces with large

interplanar spacings dominate the crystal habit can be true (best results are obtained

for the case of vapor growth [38, 39]), using eq 1.5 to make a quantitative prediction of

crystal shape usually fails to match experimentally observed morphologies, particularly

for solution-grown crystals [39, 40]. For a given crystallography (i.e., fixed a, b, c, α, β

7
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and γ) it is the Miller indices that determine dhkl via eqs 1.6-1.7; high-Miller-index faces

have a small dhkl and are usually not displayed on the steady-state crystal habit due to

their commonly high growth rates (a trend that eq 1.5 does predict). A crystal system

has only a single shape prediction via the BFDH model (defined by the crystallography)

regardless of growth environment, rendering the BFDH model additionally powerless

to predict morphological changes as a result of solvent, supersaturation, additives or

other imposed growth conditions. Its use should, therefore, be limited to a qualitative

prediction of the faces that are likely present for a given crystal; actual shape predictions

are ill-advised since the model has no consideration of energetics or surface chemistry

effects.

Hartman-Perdok Theory

In 1955, Hartman and Perdok published three landmark papers [41–43] in the science

of crystal growth. They established a connection between solid-state interactions and

crystal morphology, proposing the concept of periodic bond chains (PBCs) and their use

to classify crystal faces.

A periodic bond chain is a repeating array of growth units in a single direction held

together by strong inter-growth-unit interactions within the crystal. For organic molec-

ular crystals, these strong interactions usually represent the short bonds within the first

co-ordination sphere around a particular growth unit in the lattice [41–44]. As a result

of these favorable interactions, on each face crystalline surface structures are typically

bounded by the in-plane PBCs (a PBC vector denotes the full translation distance of

the chain’s repeat unit in the PBC direction). These strong interactions represent bonds

formed between growth units during crystallization [41–44] and therefore exclude any

intra-growth-unit interactions. More detailed properties of PBCs are presented in Section

6.3.1, alongside our algorithm for PBC determination in complex non-centrosymmetric

8



Multi-Scale Models of Crystal Growth: An Engineering Design Aid Chapter 1

       F face (flat)   ≥  2  PBCs

 S face (stepped)  =  1  PBC

K face  (kinked)  =  0  PBC

Figure 1.2: F, S and K face classification for a Kossel crystal (cubic growth unit
with isotropic interactions). Image adapted and reprinted from Lovette et al. [3] with
permission from ACS.

systems.

Hartman and Perdok also introduced a qualitative theory of crystal faces according

to their in-plane PBCs, where faces fall into three categories: F (Flat), S (Stepped) and

K (Kinked), as shown in Figure 1.2. The dominant faces on the steady-state crystal

morphology are slow growing and almost always F faces, which contain two or more

PBCs and are, therefore, flat and stable by way of the in-plane growth unit interactions.

S faces, containing only one PBC, and K faces, containing no PBCs, have high surface

energies (from broken PBCs extending out-of-plane) and usually grow extremely fast.

Attachment Energy (AE) Model

Following the connection between solid-state interactions and characterization of

faces, Hartman and Bennema developed [45] the attachment energy (AE) model as a

simple method that could predict crystal growth rates relatively well in lieu of a fully

9
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mechanistic model. Since its inception this model has been used extensively to predict

crystal shapes [39, 46–50] and remains routinely used today. The underlying principle

is that if stronger bonds are formed when a growth unit attaches to a face, then this

process will require less time and lead to a faster growth rate [41,45,51]:

Eatt
m > Eatt

n ⇒ Gm > Gn (1.8)

with m and n being two different faces. The attachment energy for a face (hkl), Eatt
hkl,

is defined as the energy per growth unit released upon crystallization of a new slice of

thickness dhkl; it includes interactions perpendicular to the terrace alone (equivalently, it

represents the average energy to remove a terrace-adsorbed growth unit) [41]. For each

plane, the lattice energy (which is constant for the crystal, representing the total lattice

interaction energy per growth unit) is divided between this attachment energy (out-of-

plane interactions) and the slice energy (in-plane interactions for slice dhkl) [45, 51]:

Elatt = Eatt
hkl + Eslice

hkl (1.9)

where each energy is usually reported as positive.

While faces with a larger attachment energy have faster growth rates, without a func-

tional form for the relationship between Ghkl and Eatt
hkl, no quantitative shape predictions

can be made. When using the AE model, therefore, growth rates are typically assumed

proportional to attachment energies [52]:

Ghkl ∝ Eatt
hkl (1.10)

This assumption has no physical basis and was introduced purely to enable shape pre-

dictions by way of the Frank-Chernov condition once attachment energies for each face

10
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have been calculated. Even for simple crystal systems containing high symmetry, mech-

anistic expressions remain non-linear and do not collapse to eq 1.10. Nonetheless, the

approximation can occasionally hold and the AE model usually predicts the correct mor-

phological faces (since low attachment energies lead to low perpendicular growth rates

and faces that dominate the morphology).

The AE model is generally an improvement on the BFDH model due to the inclusion

of solid-state energetics. Although these interactions, albeit on a more complicated level,

do govern the physics of crystal growth, the functional form for the AE model remains

arbitrary. As such, the AE model should not be expected to perform well at predicting

the crystal shape universally or for complex systems and in particular, the influence of

external factors on crystal growth, such as solvent, additives, and supersaturation are

not included.

Modified Attachment Energy (MAE) Models

There is growing interest in using modified attachment energy (MAE) models [53–59]

to capture effects of the growth environment, such as solvent, supersaturation or addi-

tives, which the AE model has no architecture for dealing with. Under MAE approaches,

molecular simulations are typically used to model how the growth environment interacts

with a crystal face, introducing solvent and/or solute molecules around relevant surface

sites and determining resulting energetics (typically binding energies, which are used with

Eatt
hkl to create a composite MAE variable). Adopting molecular simulations to study the

interface can provide a much more sophisticated picture of the surface chemistry than

what is currently able to be incorporated into rapid mechanistic methods (see Chapter 4

later) and much insight can be gained by considering the crystallization process in such

detail. Nonetheless, the drawback to using MAE models for shape predictions, beyond

the computational expense, is the need to assume or correlate a functional form for the
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MAE variable and its relation to face growth rates. Developed MAE models may pro-

duce agreement with observed morphologies in certain cases, but with no grounding in

mechanistic theories their ability to predict the crystal habit of a general system appears

limited.

1.2.2 The Multi-Scale Mechanistic Model of Crystal Growth

Neither the BFDH or AE model is able to provide a high-fidelity description of crystal

morphology as a function of the growth environment. MAE approaches are an improve-

ment, but their scope appears limited due to the simplistic functional form that limits

generic applicability across all crystal systems and environmental conditions.

A mechanistic approach still determines face growth rates, but instead of obtaining

them from a general correlation, our models consider how crystals grow and we de-

velop face-specific parameters describing the relevant processes in detail, across multiple

length scales and time scales. Considering the anisotropic face growth rates from a ki-

netic standpoint is the only way of reliably estimating crystal shapes, as Gibbs himself

emphasized [3, 24].

The driving force for crystallization is a chemical potential difference between the

solute in its growth environment and in the crystalline lattice. This chemical potential

difference can be defined in terms of the supersaturation ratio S [2, 60]:

∆µ = kT lnS (1.11)

This supersaturation ratio can be defined as S = C/Csat (or S = x/xsat) for solution

growth and S = P/Psat for vapor growth. For S = 1 the environment is saturated and

crystals do not change in size, while growth occurs in the supersaturated state (S > 1)

and dissolution occurs in the under-saturated state (S < 1). Note that eq 1.11 does
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not require the solution to be ideal; it assumes only that the activity coefficients of a

saturated solution and a supersaturated solution are approximately equal (see Chapter

2 for more detail).

Stable incorporation of growth units into the crystal occurs where multiple bonds

can be formed with neighboring growth units in the lattice, which we can determine

from PBC theory. Stepped and, particularly, kinked faces are typically those planes with

higher Miller indices; they have an extremely high density of these stable incorporation

sites. This usually leads to a fast, rough growth mechanism, and these faces do not

commonly appear on steady-state morphologies; if they are present, it will result in a

high-aspect-ratio needle or platelet shape [3]. The crystal habit is instead bounded by the

slower-growing F faces, which typically grow under a layer-by-layer mechanism. Layered

growth is amenable to modeling, since it results from the action of polygonal surface

structures (spirals, 2D nuclei). These surface structures complete successive face layers

through the forward advance of their respective step edges [61]. These steps move due to

the successive addition of growth units into the favorable sites for attachment on the step

edge: kink sites [1–3,61–65]. If the net rate of incorporation into such sites is positive, in

general the step will advance; this net rate depends on the balance of individual growth

unit attachment/detachment processes [66].

Figure 1.3 summarizes the structure of this mechanistic approach across multiple

scales. Face growth rates are determined from consideration of kink incorporation, the

corresponding advance of step edges emanating from a specific surface structure and,

finally, how these structures act to complete new face layers. At each scale, multiple

types of event/site/structure exist for the specific crystal system (e.g., on a given face

there are multiple types of step, on each step there are multiple types of kink, etc.).

To model this entire process accurately, the contribution from each category’s distinct

constituents must be accounted for.
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Kink Events

Kink 

Step

Spiral / 2D Nuclei

Face

Crystal shape

Attachment/detachment events drive kink motion along step
Need to model each type of event at a kink

Kink motion drives step velocity
Need to model each type of kink on a step 

Steps drive advance of surface structures
Need to model each type of step around a surface structure

Advance of surface structures drives face growth
Need to model each type of surface structure on a face

Relative face growth rates determine crystal shape
Need to model each face family on a crystal

~105 s-1

~nm

~μm

~μm2

~mm2

~mm3

Figure 1.3: The multi-scale mechanistic modeling framework going from molecular
events to crystal shapes. Rough scales for each stage are indicated, though these are,
of course, highly system specific.

Figure 1.4 shows an example of a step edge on an F face, with kink sites indicated.

As can be seen, the forward propagation of a step edge acts to complete the incomplete

face layer. Kink sites are renewable upon attachment and furthermore are continually

regenerated via thermal roughening [3,61,67,68] (see Figure 1.5 (a) and (b)). Centrosym-

metric crystals necessarily have the same kink-site interactions on each edge and face,

but for non-centrosymmetric crystals each edge on each face can generally have multiple

distinct kink sites containing different sets of interactions. Figure 1.5(c) indicates a tiered

array of steps moving across the surface, which is typical of a spiral mechanism; normal

growth of the face results from the successive completion of several layers.

Vapor (Sublimation) Growth

In vapor growth, solute particles are provided from a source via sublimation and are

deposited directly into the growing crystal. A temperature difference between source
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TerraceStepKink sites

Incoming growth unit 

Bulk crystal

Figure 1.4: Schematic illustration of the surface structure on a faceted crystal with
cubic growth units, indicating kink sites, step edge and the terrace. Although not
shown here, typically for organic molecular crystals the incorporation process involves
sequential adsorption at the terrace and then the step before entering the kink site
[1, 61,69–72]; see Chapters 2 and 4 for more detail.
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v
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hkl

(a) (b)

(c)

Figure 1.5: At 0K the step edge is straight (a), while above 0K the propensity for
rearrangement via thermal fluctuation leads kinks to exist at all times (b) [3,61,67,68].
(c): The forward velocity, v, of successive steps gives rise to the normal growth rate
of the face, Ghkl; h is the step height (usually the interplanar spacing dhkl) and y
is the inter-step distance. Image adapted and reprinted from Lovette et al. [3] with
permission from ACS.
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(TS) and the growing crystal (TD) is usually used to drive crystallization, which the

supersaturation is often expressed as; S = TS/TD should not simply be substituted into

eq 1.11, however. Features of the vapor growth include the following:

(a) Growth rates can be slow with the small amount of solute vapor impinging on

the crystal. This can be useful for facile surface manipulation (e.g., semiconductor man-

ufacture), but is typically inefficient for growing larger crystals [73].

(b) Well-defined facets often form to define the crystal [73]. This can be reasoned

through the relatively high surface energies in the absence of favorable solvation effects,

which creates a large driving force to crystallize in the most favorable surface structures.

Note that this effect is still felt mechanistically even when the Wulff shape is not achieved.

(c) The barrier to attachment is low, consisting primarily of the need to properly

orient into the lattice position [60]. Surface diffusion effects are, therefore, expected to

be more important than in solution growth, where relatively higher attachment barriers

(representing the required desolvation - see below) usually result in a kinetic surface-

integration-limited regime.

Solution Growth

The chemical potential driving force in solution is a result of the excess concentration

of solute in solution above the saturated concentration. Both the crystal surface and

solute growth units in solution are solvated, so following approach of a growth unit to

the surface, desolvation must precede attachment. This requirement to desolvate kink

and surface represents the principal energetic barrier in solution growth [2,66], which can

be significant and often leads to a kinetic regime where the attachment process determines

the rate of crystal growth. The various processes taking a growth unit from solution to

being attached at the kink site are listed below (see also Figure 1.4) [1, 61,69–72]:

(a) Bulk transport (convection/diffusion) from solution to the terrace
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(b) Terrace adsorption (partial desolvation)

(c) Surface diffusion across the terrace to a step edge

(d) Edge adsorption (partial desolvation)

(e) Diffusion along the edge to a kink site

(f) Attachment to a kink site (remaining desolvation)

This picture is for an organic molecule; in contrast, inorganic growth units are expected

to attach at kink sites directly from solution due to high diffusive barriers on the surface

resulting from like-charge repulsion. Coincident with desolvation, the latent heat of

crystallization is released and must be transported away, though this is expected to

occur on a much faster timescale than the processes described above [70].

The growth rate of a crystal face is limited by the slowest of these processes [70, 74].

For molecular organic crystals growing via a layered mechanism, kink attachment (i.e.,

surface integration) is expected to be rate-limiting [2]. The density of kink sites on the

step is, therefore, an important parameter influencing the growth rate and depends on

the strength of intermolecular interactions (discussed later).

Rough Growth

In contrast to layered growth, rough growth occurs when favorable attachment is

available across the entire crystal face. This is by definition the case on stepped (S) and

particularly kinked (K) faces, which grow under a rough mechanism from any environ-

ment. The growth rate of S and K faces are usually significantly higher than F faces

due to this increased density of kink sites [3]. Rough growth can also occur on F faces

if the environment (e.g., supersaturation, temperature, etc.) is such that attachment is

favorable at terrace and step sites in addition to kinks, i.e., a roughening transition has

been reached which will destroy any surface structures from layered mechanisms [3, 75].

Under the rough mechanism, crystal growth is expected to be limited by transport of
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solute growth units to the surface, instead of attachment kinetics. This bulk transport-

limited growth rate, GBT , is then proportional to the concentration driving force between

bulk solution (C) and the crystal surface (Csat under fast surface integration) [3, 60]:

GBT ∝ (C − Csat) (1.12)

Crystals under rough growth tend to lose their faceted nature and are instead bounded

by high index planes or rounded, non-crystallographic surfaces. This leads to spherulitic

shapes, or, in extreme cases of transport-limited growth, fractal and dendritic morpholo-

gies [76].

Two-Dimensional (2D) Nucleation-and-Growth

The 2D nucleation-and-growth mechanism was the first model used to describe lay-

ered crystal growth [62, 63, 77]. With increasing supersaturation, the 2D nucleation rate

increases and the critical size of a 2D nucleus decreases [20], so in the limit of high su-

persaturation this mechanism essentially represents a rough regime. The critical size of a

2D nucleus can be determined via classical nucleation theory: it is the size beyond which

growth is favorable over dissolution [20], which represents a maximum in free energy when

considering the volume reward of crystallization (due to the chemical potential difference

∆µ) against the surface energy penalty.

At low nucleation rates a single 2D nucleus can grow to the face edges and complete

the layer before an additional nucleation event (mononuclear growth), while at higher

nucleation rates (e.g., higher supersaturation) multiple nuclei form and collectively com-

plete face layers following their subsequent growth across the surface (termed a birth-and-

spread regime) [3,20,60,65,73]. The growth rate under 2D nucleation depends, therefore,

on the coverage time.
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Earlier models for 2D-nucleation growth regimes rely on simplifying assumptions such

as circular nuclei, constant spreading velocities or Kossel growth units [78, 79]. Notable

recent models exist for the birth-and-spread regime, considering anisotropic spreading

for rectangular [80] and general nucleus shapes [20].

Spiral Growth

The spiral growth mechanism reconciles the discrepancy between observed crystal-

lization at low supersaturation and the extremely slow growth rates expected for 2D

nucleation under such an environment. This spiral mechanism was developed by Burton,

Cabrera and Frank [61] (BCF) in arguably the most revolutionary paper within the field

of crystal growth. Noting that kink sites on steps were critical for growth unit incorpo-

ration, they proposed that a screw dislocation could provide a continuous source of steps

for a self-sustaining growth mechanism, rather than waiting for 2D nucleation events that

would become increasingly scarce at low supersaturations. This explains the dominance

of spirals at low supersaturation and accounting for this mechanism is critical to describ-

ing the growth of crystals under such conditions. Note the controlled crystallization of

APIs often uses a low supersaturation, to ensure good product purity and a uniform,

faceted crystal morphology.

Faces of a real crystal are rarely perfect and so screw dislocations exist almost uni-

versally, enabling the spiral mechanism to operate for most systems. As growth units

attach to the exposed step at the dislocation and lead to its advance across the surface,

an adjacent edge appears. There is usually a critical length before this newly exposed

edge itself advances, at which point the next adjacent edge appears and the process re-

peats [18]. Therefore, the emerging edges essentially rotate about the point of the screw

dislocation and eventually the original edge reappears one layer higher (corresponding

to the interplanar spacing, dhkl, for an elementary step height). Each edge continues its
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advance outwards to the face’s ends (or upon meeting another step or equivalent bound-

ary), and so the action of the rotating spiral leads to a normal growth rate of the face,

with steps continually emerging from the spiral in the edge directions, separated by a

regular distance called the inter-step spacing. This process is illustrated in Figure 1.6.

For the BCF spiral mechanism, the growth rate of face (hkl), GS,hkl, has been ex-

pressed as [3, 18]:

GS,hkl =
hv

y
=

h

τS
(1.13)

where h is the step height (e.g., dhkl or a simple multiple of it), v is the step velocity and

y is the inter-step distance (y/v represents the time taken to advance the face a single

layer of growth units in the normal direction - see also Figure 1.5(c)). This time y/v is

additionally equal to the spiral rotation time, τS. With the step height defined for each

face based on the crystallographic geometry, the problem of calculating a face’s growth

rate under the spiral growth mechanism is essentially reduced to finding τS.

To determine τS, one must consider both the critical length and the step velocity of

each spiral side. For kinetically limited growth, which is expected at low supersaturations

where the spiral regime operates, one must consider both the density of kink sites on a

step as well as the net rate of solute incorporation into each kink site [19]. This net

attachment rate is termed the kink rate, and is the balance between attachment and

detachment events that can be considered as elementary reactions (see Chapter 2) [64,81].

1.2.3 Molecular Simulations

From a simulation perspective, kinetic Monte Carlo (KMC) algorithms [22,23,23,80,

82–89] and Molecular Dynamics [88, 90–92] have each been utilized in modeling spiral

and 2D-nucleation growth mechanisms. A noteworthy example of such an approach is

the MONTY algorithm [86, 87], which considers the influence of supersaturation, tem-
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l > lC

Top view                              Perspective view
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i

Figure 1.6: The mechanism of spiral growth. The initial dislocation edge advances
(1) and exposes the next edge (2), which is stationary while it remains below its
critical length, lC . The newly exposed edge advances (3) once it has surpassed its
critical length, due to motion of the preceding step. This process repeats (4), (5),
until the original edge reappears one layer higher (6). Image adapted and reprinted
from Lovette et al. [3] with permission from ACS.
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perature, concentration, and dissolution free energy.

In terms of providing rapid shape predictions for screening purposes, these approaches

remain too slow due to the computational expense and the fact that growth mechanisms

for each face are common inputs that may have to be determined for each set of tested

growth conditions before use. However, such molecular simulations can provide extremely

valuable insight to guide model development; indeed, Chapter 5 utilizes KMC simulations

to validate a new step velocity model.

1.3 Dissertation Outline: Model Developments

The focus of this dissertation is on the development of mechanistic models and their

automation. Not only does a mechanistic approach to in silico crystal shape prediction

offer greater accuracy, but it enables individual portions of the modeling framework to

be systematically upgraded. Figure 1.7 summarizes the focus of each subsequent chapter

and which areas of the modeling framework have been addressed. These developments

have removed assumptions, increased accuracy and otherwise generalized the modeling

applicability to new crystal systems or growth conditions. Figure 1.7 also indicates the

top-down and bottom-up modeling strategy. Starting from a crystal, the relevant faces

must be determined, then surface structures, steps, kinks and events. Calculating rates

at each stage, starting with attachment/detachment events, allows one to progress back

up and produce the shape prediction.

1.3.1 Chapter 2: Attachment/Detachment Rate Expressions

The central kinetic processes defining layer-by-layer crystal growth or dissolution are

the attachment and detachment rates of growth units at kink sites [2, 3, 66]; the net

balance of these activated processes leads to either crystal growth or dissolution. Various
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Figure 1.7: The mechanistic modeling approach operates across multiple scales. The
focus of each subsequent chapter is indicated.

sets of rate expressions for attachment and detachment processes have been used in the

literature, in each case attempting to most appropriately capture the underlying surface

chemistry. As these kinetic processes are a pivotal component of mechanistic crystal

growth models, it is important that their rate expressions are accurately formulated and

self-consistent.

Chapter 2 examines various sets of such rate expressions that have been previously

utilized. By applying detailed balance criteria and crystallization thermodynamics, the

most appropriate set of rate expressions is identified.

1.3.2 Chapter 3: Connecting Growth Regimes

We have established that under layered crystal growth, steps are generated on F

faces as a result of two mechanisms: two-dimensional (2D) nucleation on the surface

or screw dislocations (leading to spiral growth). Since both mechanisms are able to
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operate concurrently, whichever leads to the fastest normal growth rate will dominate on

a face. The dominant mechanism can be different for different faces on the same crystal

and depends on both growth conditions and surface interactions (both solid-state and

interfacial). At low supersaturation, the spiral growth mechanism with steps emanating

from a screw dislocation is dominant [61]. As the supersaturation increases, 2D nuclei

form more readily and a 2D-nucleation growth regime can overtake the spiral mechanism.

At a sufficiently high supersaturation an F face can also transition to a rough growth

regime [3, 75].

Chapter 3 introduces a general mechanistic framework that can predict the domi-

nant growth regime operating on each face at specified crystallization conditions. This

model adopts stationary nucleation rate theory to formulate the 2D nucleation rate in

terms of face-specific mechanistic parameters that can be readily calculated. To connect

layered-growth regimes and calculate crossover supersaturations, growth rate expressions

are reformulated in terms of supersaturation-independent parameter groups. This devel-

opment confers the ability to accurately predict morphological changes resulting from

changing supersaturation; principally, face families may grow out of the morphology or

the crystal aspect ratio may become supersaturation-dependent. The model is applied to

a variety of examples, confirming the predictive capability to account for supersaturation-

dependent morphologies.

1.3.3 Chapter 4: Accounting for the Effect of Solvent

Under solution growth, the interfacial chemistry induces an energetic modification

that can affect crystal shapes. Accurately predicting this effect is important for crystal

engineering, since the solvent is a critical design decision. Essentially, various mechanistic

parameters that underpin the overall growth model must be modified from their base
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sublimation-growth values.

Chapter 4 details an investigation into pragmatic approaches to accurately calculate

the effect of solvent on crystal shapes. This chapter reviews available techniques that

can be feasibly integrated into an automated implementation of the modeling framework

and identifies the most practical strategy. The necessity of such pragmatic treatment is

to retain the potential functionality of an industrial screening step. Sublimation- and

solution-growth predictions are compared to experimental results for various systems,

isolating the effect of solvent and verifying the accuracy of this proposed technique for

interfacial energetic modification.

1.3.4 Chapter 5: Modeling Velocities of Complex Steps

While the typically studied case of a Kossel crystal provides a dramatic reduction

in complexity, the model of cubic growth units with isotropic interactions perpendicular

to each face is insufficient for real crystal systems. Instead, the anisotropic bonding

network and face-dependent geometry must be considered. The easiest class of real

crystals to model are centrosymmetric, where inversion centers present within the lattice

force interactions to extend equally in opposite directions. Centrosymmetric crystals

have kink sites that are half-crystal positions, containing the same set of interactions

regardless of the specific edge or face. For centrosymmetric crystals, the kink rates and

step velocities have simple expressions that are well established. However, most crystal

growth units are non-centrosymmetric, which produces interaction anisotropy within a

crystal lattice. This anisotropy generates multiple types of kink sites on each crystal step

and repeating patterns of rows with different growth units from the perspective of the

lattice interaction environment, even for pure molecular crystals. As a result, unstable

edge rows may be generated that dissolve under conditions of crystal growth. A method
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to account for edge surface structures, considering such effects, is required to accurately

model the step velocity, which is vital for a mechanistic description of crystal growth.

Chapter 5 introduces a model that can handle this complexity and accurately calcu-

late the velocity of a step with non-centrosymmetric growth units. This model accounts

for the interdependent effect of various step surface structures, identifying both thermo-

dynamic and kinetic contributions to step row instability. Beyond capturing important

non-centrosymmetric phenomena, the developed expressions also collapse to the cen-

trosymmetric formulation under appropriate limits. The increased predictive power of

this model is demonstrated by application to various examples of an alternating-row A–

B step; the results compare favorably to kinetic Monte Carlo simulations across a wide

range of interaction anisotropy.

1.3.5 Chapter 6: Automation and Implementation Strategy

Although mechanistic models of crystal growth enable greater predictive capacity, to

achieve significant impact, and actually facilitate rational design of crystalline products,

they must be made accessible for industrial uptake.

Chapter 6 summarizes various algorithms and tactics for implementing the presented

mechanistic approaches, providing a roadmap to go from crystallography to shape pre-

diction. Specific focus is given to crystals with non-centrosymmetric growth units, which

complicate the automation and require careful consideration. The implementation strat-

egy is described within the context of proof-of-concept, academic software called ADDICT

(Advanced Design and Development of Industrial Crystallization Technology) that pro-

vides an automated execution of the spiral growth model for non-centrosymmetric organic

molecules. ADDICT provides a pathway for both current and future state-of-the-art

mechanistic models to be automated and transferred to industrial researchers, enabling
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next-generation design of crystalline products.

1.3.6 Chapter 7: Conclusion and Future Developments

Chapter 7 reviews the presented advancements to mechanistic models, summarizing

how capabilities have been extended. This chapter also identifies areas for improvement

and refinement, to further expand the predictive power, applicability and utility of future

mechanistic models.
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Chapter 2

Rate Expressions for Kink

Attachment and Detachment during

Crystal Growth

Reproduced in part with permission from:

Jinjin Li, Carl J. Tilbury, Mark N. Joswiak, Baron Peters and Michael F. Doherty,

“Rate Expressions for Kink Attachment and Detachment During Crystal Growth,” Crys-

tal Growth & Design, 2016, 16, 3313-3322.

DOI: 10.1021/acs.cgd.6b00292. Copyright 2016 American Chemical Society.

2.1 Introduction

The key underlying kinetic processes during crystal growth or dissolution are the

attachment and detachment of growth units (atoms, molecules, ions, etc.) at lattice

sites [1]; the balance between the two determines whether crystals grow or dissolve. The

sites for attachment and detachment are special locations called kink sites, where growth
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units can complete multiple interactions with neighbors in the lattice and adopt the

solid-state configuration [2–5]. The importance of kink sites as the locales of crystal

growth was first recognized in classic models proposed by Kossel and Stranski, where

crystal growth was considered to progress by successive addition of growth units to a

kink site until completion of the row (kink sites are renewable since incorporation at one

regenerates a new kink site); the addition of a growth unit to this completed row would

then reform a kink site and the process could continue [6–8]. In reality this addition of

a growth unit to a completed row is seldom necessary, due to the continual creation of

kinks from thermally induced step reorganizations [3, 9–11].

At low supersaturations, crystals usually possess well-defined facets that undergo lay-

ered growth, where successive layers of the interplanar spacing form as a result of spiral

growth or 2D-nucleation mechanisms [2,3]. Typically, under such conditions, bulk diffu-

sion of growth units to and from the surface is sufficiently fast that the activated process

of surface integration at kink sites is rate-determining [3]. Figure 2.1 shows a typical

surface structure; the terrace corresponds to flat layers of the crystallographic plane and

edges of incomplete layers are called steps. Kinks exist on steps even at equilibrium

conditions where no crystal growth or dissolution occurs, as a result of thermal reor-

ganization. The distribution of kink sites on the step can be estimated by considering

Boltzmann statistics [9,11]. An appropriately non-equilibrium formulation has also been

developed [12] to predict the steady-state kink density under conditions of growth or

dissolution (i.e., when the supersaturation ratio S 6= 1).

Modeling layered crystal growth via either a spiral or 2D-nucleation-and-growth mech-

anism requires the step velocity of each edge (vi for edge i, see Chapter 3 for face growth

rate expressions) [10,15–17]. Initial mechanistic expressions for vi were formulated [10,18]

via a diffusion problem, determining the flux towards each step. More recently, the step

velocity on edge i (normal to the step) has been treated [1, 2, 8, 11, 16, 19–23] as limited
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 aP,i

vi

Bulk      Kink

Bulk      Terrace

Terrace      Step Edge

Step Edge      Kink

Figure 2.1: Schematic illustration of the surface structure on a faceted crystal with
spherical growth units, indicating kink sites (white dashed circles), the step and the
terrace. A direct bulk-to-kink incorporation mechanism is indicated alongside a ter-
race-edge-kink process. Although the latter is expected for organic molecular crys-
tals [4, 10, 13, 14] (see also Chapter 4), both mechanisms have the same driving force
and (for adsorption without dissociation) the same dependence on solute concentra-
tion in solution. The forward step velocity, vi, results from successive incorporation
events at each kink site, acting to advance the step a distance aP,i (the propagation
length for a step monolayer).
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by attachment and detachment kinetics,

vi = aP,iρiui (2.1)

where aP,i is the step propagation length, ρi is the kink density (kink sites per step edge

site) and ui is the kink rate (net rate of growth unit addition per kink site). The step

propagation length is the magnitude in the edge normal direction (i.e., direction of step

motion perpendicular to the step edge) of a vector connecting identical growth units in

adjacent layers. For non-centrosymmetric growth units, it may be necessary to consider

non-adjacent layers to connect identical growth units and then divide by the number of

layers advanced to obtain an average, per-layer aP,i. To further analyze eq 2.1, consider

that 1/ρi represents the average number of sites (along the edge) each kink must advance

in order to complete a new step row; 1/ui represents the average time for a kink to

advance one edge site (via growth unit incorporation). Therefore, the time to complete a

new row is 1/(ρiui), which advances the step a distance aP,i, justifying the form of eq 2.1

for the step velocity. Equation 2.1 assumes a single kink cycle on the edge; see Chapter

5 for a generalization beyond this, which is important for non-centrosymmetric growth

units.

An alternative expression for vi has also been utilized [1–3, 17–20], which takes the

form

vi = βiVm,XCsat(S − 1)

= aP,iρiVm,XCsat(S − 1)ν0exp

(
−∆G‡

kT

) (2.2)

S = C/Csat is the supersaturation ratio based on solute concentration, so (S − 1) cor-

responds to the driving force for crystallization; Vm,X is the solute molar volume, so

39



Rate Expressions for Kink Attachment and Detachment during Crystal Growth Chapter 2

Vm,XCsat represents the volume fraction of solute in solution; βi is termed the step ki-

netic coefficient and is an edge-dependent proportionality constant (units length/time)

producing the step velocity. The step kinetic coefficient can be formulated from TST,

[2, 11, 16, 22, 24] Kramers-type barrier crossing, [2, 19, 25] or via a Smoluchowski-Debye

incorporation pathway [2,19]. In each case, βi can be written in the form

βi = aP,iρiν0exp

(
−∆G‡

kT

)
(2.3)

where ν0 is a frequency factor and ∆G‡ is the height of the attachment free energy

barrier. Note that in TST, ν0 involves kinematic factors, whereas in the Kramer’s regime

ν0 involves the diffusion coefficient along the reaction coordinate at the top of the barrier,

as well as the barrier curvature. For centrosymmetric growth units and certain rate

expressions, eq 2.2 can be derived from eq 2.1.

Thus, the kink rate ui is a critical quantity required to calculate the step velocity,

which enables crystal growth to be modeled mechanistically. To this end, various sets of

attachment/detachment rate expressions have been utilized in the literature to determine

the kink rate [8, 20, 23,26, 27], but it is not immediately obvious which expressions most

accurately capture the underlying surface chemistry. To address this issue, we consider

crystallization thermodynamics and detailed balance criteria to evaluate different sets

of rate expressions, which leads us to make specific recommendations for the best rate

expressions to use.

2.2 Kink Rate Calculation

Before examining attachment and detachment rate expressions, we first introduce

the framework for their incorporation into the kink rate calculation. For crystals with
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non-centrosymmetric growth units, kink sites do not generally contain the same set of

interactions and are instead specific to that particular ‘half-crystal’ position; various sites

can exist along on an edge. The case of a molecular (or dimeric, but not ionic) growth

unit will be considered. The kink rate ui represents the difference between opposing

fluxes: the attachment rate of solute molecules into kink sites (j+, assumed isotropic –

see later) and the detachment rates of solute molecules from kink sites (j−k,i for kink k on

edge i); as successive kink attachments take place in series, these must be weighted by

populations of the different kink types (i.e., the relative time spent in each state). Both

j+ and j−k,i are event frequencies on a per kink site basis, so an appropriate expression

for uk,i into kink k on edge i is

uk,i = n(j+Pk,i − j−k+1,iPk+1,i) (2.4)

where Pk,i is the probability of a kink existing as type k and n is the number of distinct

kink sites for a single direction along the edge (i.e., all ‘east’ or all ‘west’ kinks [28]).

Note that Pk,i should not be confused with ρi; Pk,i represents the fraction of kinks that

exist as type k at steady-state and is determined from kinetics, whereas ρi represents the

fraction of sites along the step edge that are kink sites (which we estimate from Boltzmann

statistics). The prefactor n corresponds to the number of growth units within the repeat

unit along the edge, where each growth unit represents distinct molecular orientations

and/or interaction sets. This prefactor is necessary to ensure uk,i represents the net

number of attaching growth units per kink site, as required by eq 2.1; it was wrongly

omitted in our earlier formulations [22, 23, 29] of eq 2.4. For example, the case of n = 2

but identical kinetics (i.e., equivalent growth unit interactions), would have Pk = 0.5

(since the steady-state probabilities must be identical); the prefactor of n = 2 ensures

uk,i retains the appropriate per kink site basis from j+ and j−k,i. The form of eq 2.4
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Kink k

j+

-

uk= n(j+Pk - jk+1Pk+1 )    

Kink k+1Kink k-1
Pk-1

XS

Pk Pk+1

j+

jk jk+1
-

-

XS

Figure 2.2: The kink rate is the net rate of growth unit incorporation per kink site;
it is determined from attachment and detachment rates between kinks k and k + 1,
alongside the probabilities of kinks existing as such types. XS refers to a growth unit
in solution; each transition between adjacent kink sites exchanges a growth unit with
the solution.

reflects the net transition rate through the kink site progression, according to the edge

periodicity; this is also illustrated in Figure 2.2 (subscript i removed for clarity).

The steady-state master equation (eq 2.5, i subscripts omitted) accounts for each

relevant transition into or out of kink k [23].

(j+ + j−k )Pk = j+Pk−1 + j−k+1Pk+1 (2.5)

Kink k is created upon attachment to kink k − 1 or detachment from kink k + 1, while

it is destroyed upon either attachment to or detachment from kink k. At steady-state

these rates balance exactly, leading to no change in the kinetic distribution of kinks;

as mentioned before, Pk represents the fraction of kinks on the step edge that exist as

type k. Note that this probability distribution of kink sites determined from steady-state

kinetics ignores thermal reorganization of the step edge, which we expect to occur on a
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longer timescale than the individual kinetic processes.

Solving eq 2.5 for j+Pk and substituting into eq 2.4 yields

uk,i = n(j+Pk−1,i − j−k,iPk,i) = uk−1,i (2.6)

By recursion, the steady-state solution of the kink rate is necessarily the same for each

kink site within the same cycle; the k subscript can be dropped assuming a single cycle

is considered. Solving for the Pk’s (using n− 1 iterations of eq 2.5 and
n∑
k=1

Pk = 1), one

obtains the following equations for the kink rate on edge i in terms of the attachment

and detachment rates from different kink sites [23]:

ui = n

(j+)n −
n∏
k=1

j−k,i

n∑
r=1

(j+)n−r(j−i )r−1

, (2.7)

(j−i )r−1 =
n∑
k=1

(j−k j
−
k+1...j

−
k+r−2)i (2.8)

A reasonable estimate of an upper bound to n is the number of asymmetric molecules

in the unit cell (i.e., n ≤ ZJ , where Z is the number of asymmetric units within the

cell and J is the number of molecules in the asymmetric unit); this allows for an edge

that cycles through each molecular orientation within the lattice. Chains where n > ZJ

necessitate duplicate instances of a specific orientation within the chain’s repeat unit,

which seems highly unlikely to produce a ‘straight’ chain that is favorable to bound

crystallization surface structures such as spirals and 2D nuclei. The total number of kink

sites is 2n, considering both east and west orientation directions. The periodic progression

of an edge through different kink sites is analogous to the progression around a catalyzed

reaction cycle (kink sites could be viewed as catalysts enabling lattice incorporation;

they are regenerated upon the attachment of n growth units). Thus, eq 2.7 resembles the
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kinetic analysis of catalytic cycles developed by Christiansen and Temkin [30–32] (the

prefactor n illustrates that lattice incorporation occurs during each k → k+1 transition).

If a multi-process (terrace → edge → kink) incorporation mechanism is adopted, only

the nearest-neighbor interactions parallel to an edge must be used within the detachment

rate j−k,i. Since there exists a cyclic interaction periodicity along the edge, eq 2.7 provides

the same kink rate in both the east and west directions for this case.

Multiplying ρi (which represents every type of kink) by the kink rate ui provides the

rate at which a new row forms on the step edge, which is converted into a velocity by

aP,i. Introduction of the prefactor n in eq 2.7 permits it to collapse to the well-known

centrosymmetric expression,

u = j+ − j− (2.9)

for both isotropic j−k,i = j− cases (i.e., n > 1 but ∆Wk,i are all equal) and the case

n = 1, where the i subscript has been removed since the detachment rate is no longer

edge-dependent (due to the symmetry, this is discussed later). For the centrosymmetric

case at equilibrium, eq 2.9 requires that j+ = j− in order to ensure the net rate of

incorporation is zero.

The crystallization environment (e.g., solvent, additives, impurities, counterions, tem-

perature, etc.) can dramatically influence the rates of attachment and detachment, so

rate expressions providing an accurate description of reality are important in order to

capture these effects and facilitate rational crystal engineering. We subsequently evalu-

ate various rate expressions and summarize our recommendation for the case that best

captures the underlying kinetics and thermodynamics.
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2.3 Attachment and Detachment Rate Expressions

Figure 2.3 illustrates the activated attachment and detachment directly from bulk

solution. State S corresponds to a growth unit in solution, which, along with the kink

site, is solvated (the solvent molecules are indicated by the blue V’s in Figure 2.3).

The transition state ‡ corresponds to partial desolvation between the growth unit and

kink site. At state X the surface is re-solvated following growth unit incorporation.

Chernov is credited [2] with first considering the growth process as a “reaction” and

connecting this incorporation barrier to desolvation under solution growth, which remains

the consensus [1, 2, 17, 19, 22, 23, 33]. The reaction coordinate, q, characterizes progress

toward incorporating a single growth unit, and it can be comprised of various collective

variables, such as distances [34], coordination numbers [35], energy gaps [36], local water

density [37] etc. It is assumed that a reaction coordinate exists which yields the free

energy profile shown in Figure 2.3, with two basins (S and X) separated by a high free

energy barrier (∆G‡ at state ‡); under equilibrium conditions the free energy difference

between S and X becomes zero.

A similar diagram might be constructed for the mechanism of attachment/detachment

from sites adjacent to the kink, as depicted in Figure 2.1 (a model for terrace-mediated

incorporation is developed in Appendix 2.A). Each process in such a terrace-mediated

mechanism will give rate laws that have the same dependence on solute concentration in

solution as the direct-from-solution attachment mechanism. The one exception is cases

where diffusion on the terrace becomes rate-limiting and zeroth order in solute concentra-

tion, due to a fractional coverage of terrace-adsorbed growth units (θT ) that approaches

unity. We assume θT is small and, therefore, adopt an effective direct attachment rate

expression that is first order in dissolved solute for all subsequent analysis.

Adopting a standard definition of rate constants leads to eqs 2.10 and 2.11 for at-
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Detachment

Attachment

State S

State X

State ‡G

q

ΔG‡

GS - GX

j+

jk,i 
-

Figure 2.3: Schematic diagram of the detachment (rate j−k,i) and attachment (rate j+)
processes to/from bulk solution and the corresponding free energy profile along the
reaction coordinate, q. At state ‡, ∆G‡ represents the free energy barrier for partial
desolvation in the incorporation direction; this is required to progress from state S
(growth unit in solution and kink k − 1 solvated) to state X (growth unit attached
forming kink k on step i and surface re-solvated). GS−GX is the free energy difference
between states S and X, which depends on the supersaturation (GS − GX > 0 for a
supersaturated solution). A simple interpretation of the reaction coordinate q could
be a relation to the distance of the growth unit from the kink site. The filled red
circles represent the molecule which is attaching to/detaching from the kink site, and
the open black circle represents the unoccupied kink site.
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tachment and detachment, respectively:

k+ = ν0exp

(
−∆G‡

kT

)
(2.10)

k−k,i = k+exp

(
−

∆G0
k,i

kT

)
' k+exp

(
−∆Wk,i

kT

)
(2.11)

where a frequency factor ν0 and energy barrier ∆G‡ appear, similar to eq 2.2. As indi-

cated previously, for solution growth the barrier ∆G‡ is expected to result largely from

desolvation. For vapor growth, ∆G‡ is expected [20] to result instead from orienta-

tional effects (imposing a small barrier). The additional barrier ∆G0
k,i in the detachment

rate constant represents the standard free energy required to detach a growth unit from

a kink-incorporated state. Note that the ∆ corresponds to solution–crystal (in lieu of

final–initial) as is commonly practiced in describing thermodynamics of crystal growth [2].

Additionally, ∆G0
k,i is not equal to GS − GX , in which the difference is entirely due to

the supersaturation in solution and vanishes for x = xsat (x is the mole fraction of solute

in solution). In a mechanistic approach to morphology predictions, the entropic portion

of ∆G0
k,i is often assumed to be zero [11, 16, 22, 23, 28, 33], in order to facilitate rapid

calculations that are useful for guiding experiments. Under such an approach, ∆G0
k,i is

calculated as the energetic detachment work from kink k on edge i, ∆Wk,i. This is most

justifiable for a solute molecule displacing a single solvent molecule upon attachment,

as the reduction in degrees of freedom for the solute can be compensated by the corre-

sponding gain from the freed solvent [2]. This detachment work, ∆Wk,i, represents the

change in energy between initial and final states (i.e., under the formulation here, the

work required to detach from kink to solution). In vapor growth, ∆Wk,i represents the

periodic bond chains in the solid-state lattice that must be broken to detach a growth

unit. In solution growth, ∆Wk,i must consider the surface energy penalty of the created
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faces in the terrace, edge and kink directions, in order to account for the solvent-induced

energetic modification of these interfacial energies. See Chapters 4 and 5 for more details

(the general expression for ∆Wk,i is given by eq 5.15).

For molecular crystals, to a first approximation k+ is considered isotropic on each

kink on each edge on each face. This enables relative growth rate predictions and the

calculation of crystal shapes without the need for accurate estimates of ν0 and ∆G‡.

Calculation of these quantities requires molecular simulations, but the potential number

of kink sites for crystal systems with non-centrosymmetric growth units renders this

approach somewhat impractical as an engineering tool. This isotropic approximation

is most justifiable for centrosymmetric molecules, where the same set of interactions

exist on each kink site on each edge on each face. Solvation effects should, therefore,

be approximately uniform when considering the transition from solution to crystal. For

centrosymmetric growth units the detachment work, ∆Wk,i, is also necessarily isotropic

due to the same symmetry, leading to a constant value k−k,i = k−.

Various pairings of rate expressions, j+ and j−, for attachment to and detachment

from kink sites, respectively, have been employed. To compare each case, we employ

thermodynamic relations for a crystal–solution system and discuss kinetic implications

in regards to the kink rate. For simplicity, we focus on centrosymmetric growth units

first before discussing non-centrosymmetric growth units.

The chemical potentials of the solute in solution (µS) and crystal (µX) can be written

as

µS = µ0
S + kT lna = µ0

S + kT lnγx (2.12)

µX = µ0
X (2.13)

where a is the solute’s activity in solution; γ is the corresponding activity coefficient
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and x is its mole fraction. At equilibrium, µS(xsat) = µX ; thus, the driving force for

crystallization is zero, ∆µ = µS−µX = 0, which defines the solute solubility mole fraction,

xsat. It follows that the equilibrium constant for crystallization is Keq = aX/asat =

1/xsat = k+/k− (aX is the crystal activity, which is equal to unity; asat is the activity

of solute in a saturated solution, which is equal to xsat assuming a solution activity

coefficient of unity). The rate constants correspond to attachment to and detachment

from kink sites because these processes (i) are rate limiting and (ii) do not alter the surface

(i.e. no change in surface free energy). Furthermore, the standard Gibbs free energy

change (per growth unit exchange between crystal and solution) is ∆G0 = µ0
S − µX =

kT lnKeq, which can, therefore, be related to solubility: xsat = e−∆G0/kT . Note that µ0
S

is the standard state chemical potential of the solute in solution and also note that ∆G0

is greater than zero, consistent with xsat < 1.

Under conditions of crystal growth, the driving force becomes

∆µ

kT
= ln

a

asat
= ln

γx

γsatxsat
= ln

γ̃C

γ̃satCsat
= lnS (2.14)

The common definitions of supersaturation ratio are S = x/xsat and S = C/Csat, which

arise from the assumptions that γ = γsat and γ̃ = γ̃sat (i.e., equal activity coefficients

for supersaturated and saturated solutions, which should be appropriate for small x;

note that γ̃ is the activity coefficient based on solute concentration). In the subsequent

analysis we adopt S = x/xsat as our definition of supersaturation. Upon attachment of a

growth unit to a kink site, the free energy of the system will decrease by ∆µ (no change

in the surface free energy). While this change is in terms of the chemical potential of the

solute, it also includes changes to the solvent through the definition µS. That is, µS is

the total free energy change of the solution upon a differential change in the number of

solute molecules in solution.
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A good set of rate expressions should follow the aforementioned thermodynamic re-

lations for crystallization. Namely, we expect that k−/k+ = xsat and GS −GX = ∆µ =

kT lnS (GS and GX are the free energies of states S and X in Figure 2.3). To test the

validity of rate expression sets, we adopt a relationship with the same form as detailed

balance that connects attachment and detachment rates under both equilibrium and

non-equilibrium conditions; for centrosymmetric growth units this is [1, 21,38,39]

j+exp

(
−GS

kT

)
= j−exp

(
−GX

kT

)
(2.15)

Note that the rate j+ is the rate of transition from state S to X (vice versa for j−) and the

probabilities of states S and X are related to their free energies. At equilibrium (S = 1),

GS = GX and j+ = j−; this is consistent with the kinetics expressed in eq 2.9 and

represents both detailed balance and microscopic reversibility. Combining eqs 2.14 and

2.15 (GS−GX = ∆µ) yields a relationship between rate expressions and supersaturation

ln
j+

j−
=
GS −GX

kT
= lnS (2.16)

Various treatments of crystal growth [23,27] have used a simple set of rate expressions:

j+ = k+S (2.17)

j− = k− (2.18)

In eq 2.17 the attachment process at a kink site is indirectly first order in the mole

fraction of solute in solution (j+ = (k+/xsat)x), based on the need for solute growth

units to exist in solution if they are to adsorb and eventually incorporate at a kink.

However, the detachment process in eq 2.18 is conversely zeroth order, since by definition

a molecule that could potentially detach already exists adjacent to each unoccupied
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kink site. Equating eqs 2.17 and 2.18 at S = 1 leads to k+/k− = 1 6= 1/xsat, where

the inequality emphasizes that this pair of rate expressions does not agree with the

thermodynamic expectation. Additionally, the step velocity should be influenced by

solubility [40], which does not result from eqs 2.17 and 2.18. Thus, we do not recommend

eqs 2.17 and 2.18 and have not considered this set as a candidate case for further study.

Instead, the rate expressions must include an explicit solute dependence. An attach-

ment rate that is first order in x and a detachment rate that is zeroth order in x is

considered in each subsequent case that we investigate. The kink density is accounted

for in the step velocity through eq 2.1, removing the need to consider the concentration

of kink sites in rate expressions. Note that one could remove the kink density from eq

2.1 and make the attachment rate “bimolecular” (e.g., j+ = k+ρix) and the detachment

rate “monomolecular” (e.g., j−k,i = k−ρi). This provides an alternative view of these

processes but results in the same expression for step velocity. It does suggest, however,

that k+ and k−k,i should actually be considered as second and first order rate constants,

respectively, since the rates are essentially multiplied by kink densities within eq 2.1.

However, the beauty of rate expressions that use mole fractions is that their rate con-

stants always have units of inverse time, regardless of the reaction “order”. This is not

true for concentration-based rate expressions.

Next, we discuss three different cases of rate expressions in more detail. We have cast

these expressions into “reaction schemes”, which are shown in Table 2.1. The significant

difference between these cases is how the solvent near the kink site is treated. The inclu-

sion of solvent in the rate expressions has more commonly been interpreted as accounting

for the absence of a solute growth unit nearby the kink. We discuss this in more detail for

case II rate expressions. While the net reaction for case III is equivalent to case I, it may

be important to account for the non-reacting solvent in the rate expressions (there are

many cases where rate laws explicitly involve seemingly innocent spectator solvents [41]
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or carrier gas species [42]).

Table 2.1: The three descriptions of attachment and detachment rates that we ex-
amine. XS is a crystal growth unit in solution, Xk represents kink site k and W
corresponds to the solvent and any solvation-assisting species; xW is the correspond-
ing mole fraction.

“Reaction scheme” j+ j−k,i

Case I XS +Xk � Xk+1 k+xsatS k−k,i
Case II XS +Xk � Xk+1 +W k+xsatS k−k,ixW
Case III XS +Xk +W � Xk+1 +W k+xsatSxW k−k,ixW

2.3.1 Case I

The next set of expressions are of the form in eq 2.19 and 2.20 and shall be termed

case I (note eq 2.19 now contains solubility-dependence).

j+I = k+x = k+xsatS (2.19)

j−I = k− (2.20)

This form has been presented [8,20] for use in the kink rate, both when state S corresponds

to the vapor (under sublimation growth) and when state S corresponds to a terrace-

adsorbed growth unit. The adoption of such rate expressions may have been influenced

by previous treatments [10, 43] for other processes deemed important to crystal growth

(e.g, terrace adsorption/desorption).

Here, the solvent molecules or solvation-assisting species are not considered as reac-

tants in either the forward or reverse reaction. The forward reaction at a kink site (Xk)

only requires an approaching growth unit (XS), while the reverse reaction by definition

has a detachable growth unit at the kink site. The resulting reaction is XS +Xk � Xk+1.

For this scheme, the attachment rate (j+I , eq 2.19) is, therefore, a first-order reaction
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depending on the solute mole fraction in solution x = xsatS, with the rate constant k+

(eq 2.10), which is assumed isotropic as discussed earlier. The detachment rate (j−I , eq

2.20) is instead zeroth order with rate constant k− (eq 2.11). For these rate expressions,

influence of the growth environment resides exclusively within the energy barriers.

In a saturated solution (S = 1), a centrosymmetric growth unit requires j+I = j−I ,

which under case I implies xIsat = k−/k+, which is in agreement with expectations from

thermodynamics. Note that the subsequent relationship between detachment work and

solubility is xIsat = e−∆W/kT . In practice, the detachment work is computed based on an

atomistic force field and bulk interface approximations to account for the solvent; ∆W

is then employed to self-consistently determine xsat. The reverse, defining ∆W based

on the solubility, is more difficult because xsat for the atomistic force field employed in

modeling (i.e., to find periodic bond chains) is almost never known.

We refer to the free energy difference between states S and X (Figure 2.3) as ∆G =

GS −GX . Using case I rate expressions and xIsat in eq 2.15 yields ∆GI = kT lnS, which

agrees with that expected from crystallization thermodynamics (eq 2.16). Using eqs 2.19,

2.20 and xIsat in eq 2.9 leads to a centrosymmetric kink rate and step velocity of the form:

uI = k−(S − 1) (2.21)

vi = aP,iρiu
I = aP,iρik

−(S − 1) (2.22)

Note vi contains the expected (S − 1) scaling that appeared in eq 2.2; this dependence

has also been experimentally observed [19, 44, 45]. Incorporating eq 2.11 into eq 2.21

produces eq 2.23 (i and k subscripts dropped given the isotropic nature):

uI = k+exp

(
−∆W

kT

)
(S − 1) (2.23)
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A steady-state kinetic analysis of a multi-process incorporation mechanism is detailed

in Appendix 2.A and results in the following kink rate:

uI = k+T exp

(
−∆WK

i + ∆WE
i + ∆W T

kT

)
(S − 1) (2.24)

k+T = ν0exp

(
−∆G‡T

kT

)
(2.25)

where k+T is the rate constant for terrace adsorption. The sum of the terrace, edge and

kink detachment work (∆W T , ∆WE
i and ∆WK

i , respectively) corresponds to the overall

crystal-to-solution detachment work, ∆W (∆Wk,i for non-centrosymmetric growth units).

For molecular crystals, the transition state desolvation barrier for terrace adsorption

(∆G‡T ) can be assumed isotropic (i.e., the same for each face) in a similar fashion to

∆G‡. Therefore, with k+ and k+T both being isotropic, relative growth rate predictions

using either the solution-to-kink (eq 2.23) or multi-process (terrace adsorption, edge

adsorption, kink attachment; eq 2.24) mechanism will be identical.

2.3.2 Case II

An alternative pair of rate expressions (termed case II) has been presented [20, 26]

for the kink rate under solution growth

j+II = k+x = k+xsatS (2.26)

j−II = k−xW = k−(1− xsatS) (2.27)

where xW is the solvent mole fraction. Case II has been used extensively [11, 16, 22, 33]

in recent mechanistic crystal growth modeling. Accounting for the solvent mole fraction

(xW = 1 − x) in the detachment rate is designed to represent the requirement of free

54



Rate Expressions for Kink Attachment and Detachment during Crystal Growth Chapter 2

space in solution within the region around the kink site. The case II reaction scheme

(XS +Xk � Xk+1 +W ) effectively considers the solvent as a product of the attachment

process that becomes liberated from solvating the crystal surfaces.

Equating j+II = j−II at S = 1 results in an expression for the centrosymmetric

solubility: xIIsat = k−/(k+ +k−). This differs from that expected from our thermodynamic

analysis. Using case II rate expressions and xIIsat in eq 2.15 yields

∆GII = kT lnS − kT ln
xW
xW,sat

(2.28)

where xIIW,sat is the solvent mole fraction at saturation (i.e. xIIW,sat = 1 − xIIsat). The last

term in eq 2.28 appears to represent a change in the solvent chemical potential upon

growth unit attachment. However, there is no solvent driving force for crystallization;

the case II rate expressions do not align with the expected ∆G = kT lnS.

Interestingly, while case II does not reproduce the required thermodynamic relations,

it still yields the same kink rate as case I, eq 2.21, upon using the self-consistent solubility

xIIsat (this equivalence only holds for centrosymmetric growth units). Note that the solu-

bilities computed with case I and case II expressions are not equivalent, though for most

crystals the difference is less than 10% and this difference decreases as ∆W increases.

2.3.3 Case III

Another formulation for the rate expressions is provided by eqs 2.29 and 2.30 (case

III). The detachment rate is the same as case II, but now xW is also included in the

attachment rate to involve the solvent in both processes. This represents a reaction

scheme where the solvent molecules do not just act as spectators and are necessary to
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achieve the correct kinetics: XS +Xk +W � Xk+1 +W .

j+III = k+xxW = k+xsatS(1− xsatS) (2.29)

j−III = k−xW = k−(1− xsatS) (2.30)

The expression for centrosymmetric solubility (from j+III = j−III at S = 1) is iden-

tical to case I: xIIIsat = k−/k+. From incorporating case III rate expressions and xIIIsat into

eq 2.15, the involvement of solvent in both processes reduces the free energy change dur-

ing crystallization to that expected from thermodynamics: ∆GIII = kT lnS. Therefore,

cases I and III are equivalent from the perspective of our test criteria. The kink rate for

case III is simply uIII = uI
(
1− xIsatS

)
. This relation is valid for non-centrosymmetric

growth units as well (see Appendix 2.B).

Case III is designed to account for a strong effect of solvent molecules acting beyond

spectator species (i.e., participating in both attachment and detachment kinetics). Such

effects can be captured through mass-action rate law dependence [46] and would be most

pronounced in mixed solvent crystallization, where xW can vary appreciably. Nonethe-

less, a stronger effect might instead be changing activity coefficients as a result of the

multicomponent growth medium. For crystallization from pure solvents (i.e., xW ≈ 1),

the presented mass-action dependence will have a weak effect and the utility of case III

over case I is minimal.

2.4 Discussion of Cases

Each of these three cases of rate expressions portrays slightly different chemistry, as

displayed in the “reaction” schemes (Table 2.1). For centrosymmetric growth units the

choice of case does not have an impact on relative growth rates or shape predictions (the
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kink rates for cases I and II are in fact identical). Thus, for centrosymmetric growth

units, the principal source of step velocity anisotropy is the kink density. Steps with high

kink energies will have low kink densities and low step velocities, which can lead to low

face growth rates, though the entire set of in-plane edges, including their crystallographic

orientations, must be considered. For non-centrosymmetric and/or ionic growth units,

the choice of case does affect the computed kink rate. Furthermore, the choice of case

impacts the attachment rate, even for centrosymmetric growth units, as the computed

value of xsat differs. The attachment rate is important for a mechanistic description of 2D

nucleation (see Chapter 3); the case-dependent xsat implies that the same supersaturation

represents different solution compositions under different cases.

Rate expressions should be selected to form an accurate mechanistic description for

non-centrosymmetric and/or ionic growth units (or centrosymmetric growth units under

a 2D-nucleation regime). These expressions should obey detailed balance, i.e., predict

the correct change in free energy upon kink incorporation. As shown earlier in the text

for centrosymmetric growth units, cases I and III obey detailed balance but case II does

not (unless a self-consistent, but incorrect, form of xsat is adopted). This is also the case

for non-centrosymmetric growth units, which is shown in Appendix 2.B. Although they

have significant thermodynamic differences, the calculated kink rates for case I and case

II (identical for centrosymmetric growth units) remain similar for non-centrosymmetric

growth units. This is shown in Figure 2.4 for a non-centrosymmetric growth unit with

n = 2. As ∆W1 and ∆W2 become more similar the crystal system approaches the

centrosymmetric result, where the two cases converge as expected. Note also that the

discrepancy between case I and II increases with S and at low supersaturations the kink

rates are essentially identical. The overall similarity may be due to the self-consistent

determination and use of xsat in each case.

Another notable difference between cases I and II for non-centrosymmetric growth
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W /k T1 B W /k T2 B

Figure 2.4: Plot of the ratio between case I and II kink rates for a non-centrosymmetric
growth unit with two different kink sites (n = 2) and various pairs of ∆W1 and ∆W2.
See Appendix 2.B for the non-centrosymmetric kink rate expressions.
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units is in the relation between solubility and the average detachment work per kink site

along edge i, ∆Wi =
∑n

k=1 ∆Wk,i/n. Note that n is the number of different kink sites

(in a single direction) along the edge and thus the addition of n growth units to an edge

does not alter the surface structure.

Case I : lnxIsat = −∆Wi

kT
(2.31)

Case II : ln
xIIsat

1− xIIsat
= −∆Wi

kT
(2.32)

Equations 2.31 and 2.32 (see Appendix 2.B for derivation) display the scaling of solubility

with temperature, which, for case I, is in line with the van’t Hoff relationship. Both

are of the form ∆G0/kT = lnKeq; the key difference is that they pertain to different

crystallization equilibrium constants:

Case I : KI
eq =

1

xIsat
(2.33)

Case II : KII
eq =

1− xIIsat
xIIsat

(2.34)

The equilibrium constant for case I agrees with our earlier thermodynamic treatment,

while case II disagrees.

To summarize, we determined the thermodynamic and kinetic implications of assum-

ing different rate expressions (Table 2.1) for attachment to and detachment from kink

sites. We found that rate expression sets under cases I and III agreed with crystalliza-

tion thermodynamics, whereas case II disagreed. From a kinetic viewpoint, cases I and

II predict the same kink rate for centrosymmetric crystals (so long as xsat and/or ∆W

are determined self-consistently). However, the non-centrosymmetric kink rates for cases

I and II are not equivalent, but are approximately identical at low supersaturations. For
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sparingly soluble compounds (i.e. large ∆W ), case II will collapse to case I.

2.5 Conclusions

Kink sites are the locations where growth units incorporate into the crystal lattice

under layered growth mechanisms. The net attachment rate is an important quantity

required to calculate the step velocity of a spiral or 2D nucleus edge, which is essential

for mechanistic growth shape predictions. In this chapter, three sets of expressions for

attachment and detachment processes have been presented, which differ in how to ac-

count for the solvent (or absence of a growth unit). The thermodynamic implications

of assuming cases I and III agree with crystallization thermodynamics, whereas case II

disagrees. Cases I and III account for the solvent in the attachment and detachment pro-

cess, via the activation barrier (I and III) and as a reactant/product (III only). While

it is generally accepted that the solvent impacts ∆G‡, it is unclear if the solvent should

be considered as a reactant/product. Cases I and III appear equally valid, but it seems

that case III has no practical advantages except where the active solvent molecule is a

minor component of the solvent mixture.

For centrosymmetric growth units, it is not necessary to distinguish between cases;

relative growth rates (under the spiral mechanism) are unaffected. However, for non-

centrosymmetric or ionic growth units the kink rate does depend on which set is adopted,

which could potentially affect morphology predictions. It should be noted that cases I and

II are nearly identical at low supersaturations or for low kink anisotropy (i.e., low range of

∆Wk,i’s) because of conventions for defining solubility and detachment free energy; thus,

errors introduced through the use of case II may be insignificant under such conditions.

Nonetheless, in addition to the more rigorous agreement of case I with crystallization

thermodynamics, which should bestow increased accuracy under more general conditions,
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it also presents the advantage of simplicity and so is clearly preferable.

Although we have not discussed the inclusion of additives in these rate laws, they

have been shown to have a significant impact on the growth of calcite [47–49], and many

other crystals [50, 51], via a variety of mechanisms. For example, additives can assist

desolvation and thus alter the energy barrier, ∆G‡. Additionally, the additive–surface

interaction may differ significantly from the solvent–surface interaction. The interfacial

surface energies should be appropriately modified to account for the work of adhesion from

all species in solution. Additives also have the ability to adsorb differently on each crystal

face, step or kink as a result of their interaction anisotropies [52], which can affect crystal

shapes by modifying the surface chemistry at different locations. Beyond affecting surface

energies, additives can have mechanistic effects, such as kink density reduction [18, 53],

step pinning [54] and spiral pinning [52,55]. These effects can potentially have dramatic

morphological impacts at low additive concentrations.

Appendices

2.A Microkinetic Growth Unit Incorporation Model

Reproduced in part with permission from Carl J. Tilbury, Daniel A. Green, William

J. Marshall and Michael F. Doherty, “Predicting the Effect of Solvent on the Crystal

Habit of Small Organic Molecules,” Crystal Growth & Design, 2016, 16, 2590–2604.

DOI: 10.1021/acs.cgd.5b01660. Copyright 2016 American Chemical Society.

In the presented expression for step velocity (eq 2.1), the kink density, ρi, is a dimen-

sionless probability and the kink rate, ui, has units of inverse time. The kink density

accounts for the concentration of kink sites along an edge, whereas the kink rate considers

the net frequency of attachment at each site and is identical (at steady-state) for each
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kink in the cycle (see eq 2.6). The solution-terrace-edge-kink incorporation mechanism

will be considered initially. For a centrosymmetric crystal, the kink rate is:

ui = j+K
i − j−Ki (2.35)

where j+K
i and j−Ki are the attachment and detachment fluxes to and from a kink on

edge i (from and to an edge site on the step, respectively); these rates must also have

units of inverse time.

Terrace and edge adsorption can be considered as reversible, elementary reaction

processes. The rate of incorporation at a kink on edge i (j+K
i , eq 2.36) should, therefore,

be first order in fractional coverage of edge sites with adsorbed growth units (θEi , which

is considered constant for a particular edge since edge diffusion is expected to have a

lower energetic barrier and be much faster than attachment/detachment events). The

attachment rate constant k+K
i has units of inverse time (from the frequency prefactor ν0)

and contains the transition state barrier ∆G‡Ki that, under solution growth, represents

partial desolvation in the kink direction.

j+K
i = k+K

i θEi = ν0exp

(
−∆G‡Ki

kT

)
θEi (2.36)

The reverse (i.e., detachment) rate (j−Ki , eq 2.37) is a zeroth order process with

detachment rate constant k−Ki (units inverse time) that additionally contains the kink

detachment work (∆WK
i , eq 3.16) as a barrier.

j−Ki = k−Ki = ν0exp

(
−(∆G‡Ki + ∆WK

i )

kT

)
(2.37)

To calculate the kink rate, θEi must be determined. To obtain this, one must first
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consider rates for the preceding processes of terrace and edge adsorption and desorption.

The rate of terrace adsorption (j+T , eq 2.38, units inverse time) can be treated as

first order in solute mole fraction in solution (x). Excluding kinks, each terrace site is

available for adsorption, so there is no need for a fractional terrace coverage term. The

terrace adsorption rate constant (k+T , units inverse time) contains the transition state

desolvation barrier ∆G‡T , which is now in the terrace direction.

j+T = k+Tx = ν0exp

(
−∆G‡T

kT

)
x (2.38)

The rate of terrace desorption in the vicinity of edge i (j−Ti , eq 2.39) is instead first

order in the fractional coverage of terrace sites around edge i with adsorbed growth units

(θTi ). The terrace desorption rate constant (k−T , units inverse time) additionally contains

the terrace detachment work (∆W T , eq 3.20) as a barrier.

j−Ti = k−T θTi = ν0exp

(
−(∆G‡T + ∆W T )

kT

)
θTi (2.39)

The rate of adsorption to edge i (j+E
i , eq 2.40) is first order in θTi . Again, excluding

kinks, each edge site is available for adsorption, so no fractional edge coverage term is

included. The edge adsorption rate constant (k+E
i , units inverse time) has a transition

state desolvation barrier in the edge direction, ∆G‡Ei .

j+E
i = k+E

i θTi = ν0exp

(
−∆G‡Ei

kT

)
θTi (2.40)

The rate of desorption from edge i (j−Ei , eq 2.41) is first order in the fractional

coverage of edge sites on edge i with adsorbed growth units (θEi ). The edge desorption

rate constant (k−Ei , units inverse time) additionally contains the edge detachment work

63



Rate Expressions for Kink Attachment and Detachment during Crystal Growth Chapter 2

(∆WE
i , eq 3.19) as a barrier.

j−Ei = k−Ei θEi = ν0exp

(
−(∆G‡Ei + ∆WE

i )

kT

)
θEi (2.41)

The kink rate requires the steady-state fractional edge coverage on edge i, θE,ssi .

Considering how each of the elementary reactions above influence the populations θEi

and θTi in the vicinity of a single kink site, the balances shown in eqs 2.42 and 2.43 result.

Note that the solute mole fraction in solution, x, is treated as a constant on the timescale

of these processes (essentially a large quantity of solution is assumed).

[
dθEi
dt

= j+E
i + j−Ki − j−Ei − j+K

i

]
θT,ss
i ,θE,ss

i

= 0 (2.42)

[
dθTi
dt

= j+T + j−Ei − j−Ti − j+E
i

]
θT,ss
i ,θE,ss

i

= 0 (2.43)

Substituting eqs 2.36-2.37 and 2.40-2.41 into eq 2.42 and rearranging, we obtain the

steady-state fractional terrace coverage:

θT,ssi =
θE,ssi (k−Ei + k+K

i )

k+E
i

− k−Ki
k+E
i

(2.44)

which can be substituted into eq 2.43 together with eqs 2.38-2.41, simplifying to:

θE,ssi =
k+E
i k+Tx+ k−Ki k−T + k−Ki k+E

i

k+K
i k+E

i + k+K
i k−T + k−Ei k−T

(2.45)

Using eqs 2.36, 2.37 and 2.45 in eq 2.35 results in:

ui =
k+K
i k+E

i k+Tx− k−Ki k−Ei k−T

k+K
i k+E

i + k+K
i k−T + k−Ei k−T

(2.46)
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The mole fraction in solution can be written as x = Sxsat (from S = x/xsat). At S = 1

(x = xsat), the kink rate must be zero to ensure a zero step velocity and no crystal growth

or dissolution. Equating j+K
i = j−Ki we obtain:

θEsat,i =
k−Ki
k+K
i

(2.47)

To ensure a steady-state, j+E
i = j−Ei and j+T = j−Ti must also be true, which leads to:

θEsat,i =
k+E
i

k−Ei
θTsat,i (2.48)

θTsat,i =
k+T

k−T
xsat (2.49)

Using eqs 2.47-2.49 we obtain:

xsat =
k−Ki k−Ei k−T

k+K
i k+E

i k+T
(2.50)

Substituting into eq 2.46:

u = (S − 1)
k−Ki k−Ei k−T

k+K
i k+E

i + k+K
i k−T + k−Ei k−T

(2.51)

This contains the expected linearity in supersaturation at constant T , which has been

experimentally measured [19, 44, 45]. If ∆G‡T + ∆W T > ∆G‡Ei and ∆G‡T + ∆W T +

∆WE
i > ∆G‡Ki , both of which are expected in the absence of extremely anisotropic

interactions, then the first term on the denominator dominates, leading to:

u = (S − 1)
k−Ki k−Ei k−T

k+K
i k+E

i

(2.52)
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Upon evaluating rate constants, the kink rate becomes:

ui = (S − 1)exp

(
−(∆WK

i + ∆WE
i + ∆W T )

kT

)
ν0exp

(
−∆G‡T

kT

)
(2.53)

which is eq 2.24 in the text.

Considering the solution-terrace-kink mechanism, one can define rates of kink attach-

ment from/detachment to the terrace (j+KE
i and j−KEi , respectively). The equations

become

ui = j+KE
i − j−KEi (2.54)

j+KE
i = k+KE

i θTi (2.55)

j−KEi = k−KEi = k+KE
i exp

(
−(∆WK

i + ∆WE
i )

kT

)
(2.56)[

dθTi
dt

= j+T + j−KEi − j−Ti − j+KE
i

]
θT,ss
i

= 0 (2.57)

Solving for θT,ssi , substituting into the expression for ui and determining an expression

for xsat reproduces eq 2.53 (providing ∆G‡T +∆W T > ∆G‡KEi ). Thus, eq 2.53 inherently

describes both terrace-mediated incorporation mechanisms, so should perform adequately

regardless of the kink density (see Chapter 4 for further discussion).

Note that an analogous terrace-mediated model for non-centrosymmetric molecules

would consider k−Ki , k−Ei and/or k−T values for each different growth unit present, but

the centrosymmetric analysis presented here provides the interesting result that only

desolvation in the terrace direction (barrier ∆G‡T ) is important for the kink rate.

In addition to the kink rate, the 2D nucleation model (Chapter 3) requires an ex-

pression for j+K
i alone; which eq 2.58 shows in general form. As described above, the

first term in the denominator of eq 2.58 is expected to dominate due to the absence of
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detachment work barriers that exist in the other terms. Similarly, this is also expected

for the first term in the numerator (note that in forming eq 2.46 the second two terms

in the numerator canceled, so such an approximation was unnecessary). Retaining just

the dominant first terms and using eq 2.50, the resulting expression for j+K
i is given in

eq 2.59.

j+K
i = k+K

i θE,ssi =
k+K
i k+E

i k+Tx+ k+K
i k−Ki k−T + k+K

i k−Ki k+E
i

k+K
i k+E

i + k+K
i k−T + k−Ei k−T

(2.58)

j+K
i = k+TSxsat = Sexp

(
−(∆WK

i + ∆WE
i + ∆W T )

kT

)
ν0exp

(
−∆G‡T

kT

)
(2.59)

2.B Extension to Non-Centrosymmetric Growth Units

In this section, we extend our analysis for the rate expressions in Table 2.1 to non-

centrosymmetric growth units. Written for this more general case, eq 2.15 becomes:

j+exp

(
−GS,k,i

kT

)
= j−k+1,iexp

(
−GX,k,i

kT

)
(2.60)

where GS,k,i is the free energy of state S with kink k exposed and GX,k,i is the free energy

of state X following attachment at kink k (which generates the subsequent kink k + 1

according to the edge periodicity). Rewriting eq 2.60

∆Gk,i = (GS,k,i −GX,k,i) = kT ln
j+

j−k+1,i

(2.61)

Considering addition of n growth units to the edge (i.e., the repeat unit along the

edge), defining an aggregate ∆nGi =
∑n

k=1 ∆Gk,i and noting j−n+1,i = j−1,i we obtain:

∆nGi = kT ln
(j+)n∏n
k=1 j

−
k,i

(2.62)
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2.B.1 Case I

The case I rate expressions for non-centrosymmetric molecules are as follows:

j+I = k+xsatS (2.63)

j−Ik,i = k−k,i (2.64)

For case I, eq 2.62 becomes :

∆nG
I
i = kT ln

(xIsatS)n∏n
k=1 exp(−∆Wk,i/kT )

(2.65)

which upon use of eq 2.68 collapses to:

∆nG
I
i = nkT lnS (2.66)

Upon substitution of eqs 2.63 and 2.64 into the eq 2.7, the general non-centrosymmetric

kink rate expression under case I is:

uIi = nk+

(xIsatS)n − exp

(
−

n∑
k=1

∆Wk,i/kT

)
n∑
r=1

(xIsatS)n−r
∑n

k=1 exp(−
∑r−2

j=0 ∆Wk+j,i/kT )
(2.67)

For a saturated solution (S = 1), the kink rate is zero, leading to the following equation:

nlnxIsat = −
n∑
k=1

∆Wk,i/kT (2.68)
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Rearranging eq 2.68 provides eq 2.31:

lnxIsat = −

n∑
k=1

∆Wk,i

n

kT
≡ −∆Wi

kT
(2.69)

2.B.2 Case II

Under case II, the non-centrosymmetric rate expressions become:

j+II = k+xsatS (2.70)

j−IIk,i = k−k,ixW (2.71)

Applying eq 2.62 to case II and making use of eq 2.74 forms an apparent driving force

for crystallization:

∆nG
II
i = nkT lnS − nkT ln

xW
xW,sat

(2.72)

The general kink rate expression for case II is:

uIIi = nk+

(xIIsatS)n − (1− xIIsatS)nexp

(
−

n∑
k=1

∆Wk,i/kT

)
n∑
r=1

(xIIsatS)n−r(1− xIIsatS)r−1
∑n

k=1 exp(−
∑r−2

j=0 ∆Wk+j,i/kT )
(2.73)

At equilibrium (ui = 0, S = 1), we obtain eq 2.32:

ln
xIIsat

1− xIIsat
= −∆Wi

kT
(2.74)
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2.B.3 Case III

For case III, the non-centrosymmetric expressions are:

j+III = k+xsatSxW (2.75)

j−IIIk,i = k−k,ixW (2.76)

Making use of eq 2.62 together with eq 2.79, the apparent crystallization driving force

for case III is again identical to case I:

∆nG
III
i = nkT lnS (2.77)

The kink rate for Case III is:

uIIIi = nk+(1− xIIIsatS)

(xIIIsatS)n − exp

(
−

n∑
k=1

∆Wk,i/kT

)
n∑
r=1

(xIIIsatS)n−r
∑n

k=1 exp(−
∑r−2

j=0 ∆Wk+j,i/kT )
(2.78)

which is the case I expression with the additional prefactor (1−xsatS). However, relative

growth rates do not depend on this prefactor, which drops out of the equations together

with k+; so in terms of shape predictions cases I and III are identical. Considering eq

2.78 at equilibrium provides the same solubility relation as case I:

nlnxIIIsat = −
n∑
k=1

∆Wk,i/kT (2.79)

Therefore, cases I and III are equivalent for the purpose of steady-state crystal growth

habit predictions under a spiral mechanism.
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2.B.4 Kink Rates for Two Different Kink Sites

Here, we present the kink rates under each case for a non-centrosymmetric growth

unit with two different kink sites. We label the detachment works ∆W1 and ∆W2.

uI = 2k+(xIsat)
2 S2 − 1

2xIsatS + e−∆W1/kT + e−∆W2/kT
(2.80)

uII = 2k+(xIIsat)
2

S2 −
(

1−xIIsatS
1−xIIsat

)2

2xIIsatS + (1− xIIsatS) (e−∆W1/kT + e−∆W2/kT )
(2.81)

uIII = uI
(
1− xIsatS

)
(2.82)
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Chapter 3

Modeling Layered Crystal Growth

at Increasing Supersaturation by

Connecting Growth Regimes

Reproduced in part with permission from:

Carl J. Tilbury and Michael F. Doherty, “Modeling Layered Crystal Growth at In-

creasing Supersaturation by Connecting Growth Regimes,” AIChE Journal, 2017, 63,

1338-1352.

DOI: 10.1002/aic.15617. Copyright 2017 American Institute of Chemical Engineers.

AIChE Journal Editor’s Choice April 2017.

3.1 Introduction

Crystal morphology is often supersaturation-dependent. As indicated in Chapter 1,

the simpler non-mechanistic models predict a single habit regardless of growth conditions;

they cannot account for supersaturation as an influential parameter. Simulations can offer

76

http://onlinelibrary.wiley.com/doi/10.1002/aic.15617/full


Modeling Layered Crystal Growth at Increasing Supersaturation by Connecting Growth Regimes
Chapter 3

insight, but are largely impractical for an industrial screening step and often require the

face growth mechanism as an input. In contrast, the mechanistic structure presented

in Figures 1.3 and 1.7 can account for the effect of supersaturation, by considering the

distinct operation of different growth regimes on each face. This chapter provides a

framework to determine the dominant growth regimes and, therefore, correctly account

for supersaturation.

Our group has previously developed a mechanistic description of spiral growth [1,

2]. Extensions to the model have been made for non-centrosymmetric molecules [3],

birth-and-spread two-dimensional (2D) nucleation [4] and inorganic systems [5, 6]. This

work extends the existing [4] model for 2D nucleation and introduces a framework for

connecting the various regimes of crystal growth, for centrosymmetric molecules (cer-

tain expressions would require generalization to describe the more general class of non-

centrosymmetric growth units). At low supersaturations, faces grow via a spiral growth

mechanism [7], but upon increasing the supersaturation faces can crossover to a 2D-

nucleation growth mechanism [1,4]. The new framework enables the crossover supersat-

uration to be predicted for each face, to ensure the correct growth rate expression is used

on each face at the particular supersaturation for which crystal growth is to be modeled.

One application of this model could be predicting the active layer morphology of organic

electronics fabricated from small conjugated molecules at large supersaturation [8–12].

Note that spiral and 2D-nucleation growth mechanisms can be readily identified upon

imaging the surface structure of grown crystals [13, 14] and transitions between regimes

have been observed experimentally for various systems, notably through the use of in-situ

atomic force microscopy (AFM) [15,16].

77



Modeling Layered Crystal Growth at Increasing Supersaturation by Connecting Growth Regimes
Chapter 3

3.2 Mechanistic Modeling of Growth Regimes

To model the crystal growth mechanistically, a face’s normal growth rate under a

layered mechanism is defined by

Ghkl =

(
h

τ

)
hkl

(3.1)

where h is the step height (an elementary step is assumed, leading to a step height equal

to the interplanar spacing, or a simple multiple of it depending on the growth unit and

the crystallography) and τ is the time taken to advance the face one layer. The form of

τ depends on the dominant growth regime operating on that face.

Expressions for τ under different layered growth mechanisms must consider how sur-

face structures such as spirals and 2D nuclei act to complete successive layers. Accounting

for the advance of crystal steps is important, which depends on incorporation at kink

sites (see Chapter 1). Layered mechanisms are typically governed by kinetics (see Chap-

ter 2), but mass transport effects can become important as the crystallization driving

force increases [1]. Note that the heat of crystallization must also be liberated, but this

process is usually fast in comparison [1, 17].

We define the relative supersaturation, σ, as

σ ≡ x− xsat
xsat

= S − 1 (3.2)

which can be related to the crystallization driving force (eq 2.14):

∆µ

kT
= ln(1 + σ) (3.3)

Note that the approximation ln(1+σ) ≈ σ is sometimes used in the literature, which holds
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2b) Diffusion to kink

Figure 3.1: The surface structure of a crystal, showing sequential events of the in-
corporation mechanism. Terrace (γT ), edge (γE) and kink (γK) surface energies are
defined, along with surface dimensions. Reprinted with permission from Tilbury et
al. [28]. Copyright 2016 American Chemical Society.

at low supersaturation but must be avoided for a model at higher σ. Additionally, for

certain multicomponent or ionic systems, it may be necessary to express the driving force

in terms of activities (see Chapter 2); however, eqs 3.2 and 3.3 are typically appropriate

for the crystallization of small organic molecules.

Growth unit incorporation at kink sites is favorable for three reasons: first, it produces

no change in total surface energy around the kink site (for centrosymmetric systems);

second, it completes solid-state interactions in three directions (terrace, edge and kink);

and third, it is regenerative (enabled by thermal step reorganization) [1,7,18–24]. Figure

3.1 portrays the surface structure of a face, including relevant surface energies in the

kink/edge/terrace directions and the terrace-mediated incorporation processes expected

for organic molecular crystals [7, 17, 23,25–27], see Chapter 4).

With known growth rates for each family of faces, one can determine the steady-state
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crystal growth shape using the Frank-Chernov condition [29,30]:

Ghkl

Hhkl

= constant (3.4)

where Hhkl is the perpendicular distance of face (hkl) from the crystal center. The

Frank-Chernov condition can be recast in terms of relative growth rates and distances

by normalizing with a reference face (Rhkl = Ghkl/Gref , xhkl = Hhkl/Href ) [31]:

Rhkl

xhkl
= 1 (3.5)

As will be shown later, relative growth rate expressions formed between surface-integration-

limited regimes can be calculated without the need for values of those parameters that

require molecular simulations for reliable estimates (the resulting expressions are inde-

pendent of such quantities). This technique enables rapid shape predictions, although it

cannot predict absolute growth rates or crystal sizes.

Within the mechanistic expressions for each regime, both solid-state crystal and inter-

facial (i.e., solvent-modified) energetics are required to obtain various parameters. The

crystallography is a primary input, so calculations are made for a selected polymorph.

Solid-state interaction energies between molecules are then calculated by applying a force

field; the CLP package developed by Gavezzotti [32] has been applied here. Under solu-

tion growth, the interfacial surface energies must be appropriately modified; full details

for this procedure are contained within Chapter 4.

Periodic bond chains (PBCs) are defined as directions of strong repeated interactions

within the solid state [33]. Their determination is essential to find the ‘flat’ faces on

a crystal, which contain 2 or more in-plane PBCs and are those faces that can grow

via a layered mechanism (rough growth occurs on ‘stepped’ (1 PBC) and ‘kinked’ (0
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PBC) faces) [33]. The PBC directions are also approximated as the edges of a spiral

or 2D nucleus [2, 4], which is an acceptable assumption providing the supersaturation

or temperature has not initiated a roughening transition [34] (at high driving forces,

or thermal energy, there is less preference to crystallize in these PBC directions). The

calculated intermolecular interactions are organized by face and PBC before the spiral

and 2D-nucleation growth models are implemented. An overview of the modeling process

and its potential automation, from crystallography to shape prediction, is described in

Chapter 6.

3.2.1 Spiral Growth

The presence of a screw dislocation on the surface of a face provides a continuous

source of steps, since as the initial step present at the dislocation advances it exposes

the next spiral edge, corresponding to the adjacent PBC [2, 7]. This process continues

until the initial edge has reappeared one layer higher (the spiral has gone through a full

rotation). The steps continue to flow outward to the face edges and complete the layers;

it is the spiral rotation time that must be used in eq 3.1.

There exists a critical length that an edge must reach before it will grow, since step

advancement lengthens the adjacent edges, introducing a surface energy penalty. The

critical length can be calculated by considering both the surface energy penalty and the

reward for crystallization (eq 3.3), to form the free energy change for monolayer step

addition: [2, 35, 36]

∆Gi(ni)

kT
= 2

(
φKi
kT

)
(1− δni

)− niln(1 + σ) (3.6)

The number of molecules along edge i is ni, which is related to the edge’s length, li, and
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intermolecular width along the edge, aE,i (see Figure 3.1):

ni =
li
aE,i

(3.7)

The surface energy penalty in eq 3.6 is represented by the kink energy [36], φKi , and the

Kronecker delta δni
is used to make this penalty term vanish at ni = 0. The critical

length is where eq 3.6 equals zero:

lC,i = 2
aE,i

ln(1 + σ)

(
φKi
kT

)
(3.8)

The kink energy relates to the energetic penalty of kink formation. It is possible to

determine this penalty by considering geometrical step transformations [7,20]. For either

solution or vapor growth, the kink energy is

φKi = γKi aP,ih (3.9)

where γKi is the interfacial surface energy in the kink direction for a kink on edge i, aP,i

is the step propagation length (normal to the edge) for addition of a new row and h is

the step height (see Figure 3.1). For vapor growth eq 3.9 reduces to half the total PBC

interaction energy in the kink direction: φKi = EK
PBC,i/2.

The spiral rotation time, τS, sums the time between each edge being exposed and

growing to its critical length due to the continual advance of the preceding edge [2]:

τS =
N∑
i=1

lC,i+1sin(αi,i+1)

vi
(3.10)

Here vi is the step velocity of edge i and αi,i+1 is the angle between edge i and i+1.

The Voronkov step velocity profile [37] is adopted in this work, which takes the form of
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a Heaviside function with zero velocity until the critical length is reached and a constant

value (v∞) afterwards. As a result, considering spiral edges emerging out of a screw

dislocation, a constant inter-step distance in each edge direction would be expected under

the Voronkov approximation. We expect this assumption to be reasonable, since constant

inter-step distances are exhibited for many systems, as evidenced by electron and atomic-

force microscopy [16,38–40]. Other forms for the step velocity profile consider a smoother

increase of step velocity with edge length (up to this same v∞ for a large edge) and have

been summarized previously [4]. The error introduced by the Voronkov approximation is

expected to be inconsequential for shape predictions, because it should be near-isotropic

(which leaves the relative growth rates essentially unaffected) [4]. Hereafter the term

‘step velocity’ or vi shall refer to v∞.

The step velocity for edge i can be described by

vi = aP,iρiui (3.11)

where ρi is the number density of kink sites along the edge (i.e., the probability of a

site being a kink) and ui is the kink rate, which is the net frequency of attachment to

each kink site [3,41]. The product ρiui provides the rate of step edge monolayer addition

(i.e., formation of a new row), which is converted into a velocity using the corresponding

distance of advance, aP,i. An equivalent construction considers the time needed for each

kink to advance the average number of sites between kinks [4].

The distribution of kink sites at thermodynamic equilibrium can be determined by

minimization of the Helmholtz free energy over an edge arrangement [20], or through the

use of Boltzmann statistics [7]. These approaches make use of the kink energy (φKi , eq
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3.9) as the energetic penalty of a kink existing and result in

ρi =
2exp

(
−φKi

kT

)
1 + 2exp

(
−φKi

kT

) (3.12)

More accurate (and more complicated) expressions have been developed [22] for low kink

energies, which we have used to calculate ρi on edges with φKi ≤ 3kT , where results

diverge from eq 3.12.

The kink rate is a balance between the attachment and detachment fluxes to a single

kink site, where a positive value leads to an advance of the kink along the step (i.e., crystal

growth) and a negative value leads to a retreat (i.e., crystal dissolution). These activated

process of attachment and detachment can be treated as elementary surface reactions,

where expressions are commonly developed from transition state theory [4, 7, 21]. Since

the kink density is separately accounted for in eq 3.11, these events occur at a single

kink site. As indicated previously, for organic crystals, the expected growth mechanism

involves solute molecules first adsorbing to the terrace, and then possibly to the step,

before attaching to a kink site [7, 23,25,26].

Assuming an edge-mediated incorporation process (see Appendix 2.A) the kink rate

for a centrosymmetric crystal is [3, 42, 43]

ui = j+K
i − j−Ki (3.13)

where j+K
i and j−Ki are the attachment and detachment fluxes to and from a kink on

edge i, respectively (these rates have units of inverse time). In Chapter 2, we determined

the preferred set of attachment–detachment rate expressions. The kink attachment rate,

j+K
i , is expressed as first order in the fractional coverage of adsorbed growth units on

84



Modeling Layered Crystal Growth at Increasing Supersaturation by Connecting Growth Regimes
Chapter 3

the step (θEi ):

j+K
i = k+K

i θEi = ν0exp

(
−∆G‡Ki

kT

)
θEi (3.14)

The attachment rate constant k+K
i has units of inverse time (from the frequency prefactor

ν0) and contains the transition state barrier ∆G‡Ki that represents partial desolvation in

the kink direction [21,41,44,45] (under solution growth).

The reverse rate (detachment, j−Ki ) is a zeroth order process, since a detachable

growth unit is, by definition, present at a kink site:

j−Ki = k−Ki = ν0exp

(
−∆G‡Ki + ∆WK

i

kT

)
(3.15)

The detachment rate constant k−Ki (also units inverse time) maintains this transition

state barrier and additionally incorporates the kink-direction detachment work, ∆WK
i :

∆WK
i = 2φKi = 2γKi aP,ih (3.16)

Note that the release of solvent molecules from the solvation ‘shell’ is assumed to compen-

sate the solute’s degree of freedom reduction upon crystallization (which seems reasonable

for small molecules [21]), so the detachment work represents an energetic barrier alone

(see Chapter 2 for more details).

To obtain θEi , a microkinetic model was developed (see Appendix 2.A) that considers

the steady-state resulting from the reversible processes of adsorption/desorption and

kink attachment/detachment in either a terrace-mediated or edge-mediated incorporation

mechanism (see Figure 3.1). The following kink rate results for centrosymmetric systems:

ui = k+T exp

(
−∆WK

i + ∆WE
i + ∆W T

kT

)
σ (3.17)
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In eq 3.17, k+T is the rate constant for terrace adsorption:

k+T = ν0exp

(
−∆G‡T

kT

)
(3.18)

where ∆G‡T is the transition state barrier involving desolvation in the terrace direction.

∆WE
i and ∆W T are the detachment barriers from edge-adsorbed to terrace-adsorbed,

and from terrace-adsorbed to solution, respectively:

∆WE
i = 2γEi aE,ih (3.19)

∆W T = 2γTaEaP (3.20)

where γEi and γT are edge and terrace surface energies and aEaP represents the average

area of a growth unit. Equation 3.17 produces the expected linearity with σ, which has

been demonstrated experimentally for various systems [46–48].

For a crystal with centrosymmetric growth units, the sum ∆WK
i + ∆WE

i + ∆W T is

constant for each kink, edge and face triad (under sublimation growth this sum is also

equivalent to the lattice energy, see Chapter 4). To a first approximation, k+T can be

taken as the same for each face, which, therefore, creates a single kink rate value for such

crystals. These isotropic quantities can be assimilated into an aggregate, overall rate

constant, kO:

ui = kOσ

kO ≡ k+T exp

(
−∆WK

i + ∆WE
i + ∆W T

kT

) (3.21)

Spiral edges can disappear during the spiral’s rotation if tangential step velocities

become negative [2]. This affects both whether to include them in eq 3.10 and their
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appearance in the steady-state spiral shape. Additionally, the fastest rotation direction

must be selected, since dislocations of both types should be present and faster growing

spirals will overtake slower spirals to dominate the growth rate. The tangential step

velocity, vti , is given by

vti =
vi+1 − vicos(αi,i+1)

sin(αi,i+1)
+
vi−1 − vicos(αi−1,i)

sin(αi−1,i)
(3.22)

Note that, in general, the density of dislocations on a face will not affect its growth

rate. Unless a spiral’s rotation time is influenced on its first turn, eq 3.10 is unaffected

(future annihilation of steps is irrelevant). If two dislocations are close enough, however,

the steps emanating from each can influence one another during the first turn. If the

dislocations are of opposite sense, their rotation rates can be slowed. Assuming an unaf-

fected dislocation exists elsewhere on the face, this produces no effect on the normal face

growth rate. If the dislocations are of the same sense, their rotation rates can be increased

(up to a multiple of two [7]), which could impact the face growth rate; nonetheless, since

this is a minor effect and the critical separation required reduces with supersaturation

(since first-turn rotation times decrease), we do not consider the dislocation density in

our model. For more detail see ref. [7].

3.2.2 Growth by Two-Dimensional (2D) Nucleation

Steps in the same crystallographic direction grow with identical velocity regardless

of whether they are born from a spiral or 2D nucleus. Growth by 2D nucleation has

various sub-regimes that depend on the rate of 2D nucleation, J , which is the number

of nuclei formed per area per time. At low J , the mononuclear regime exists, where

each nucleus completes a new crystal layer before another nucleation event [49–51]. The

mononuclear regime would require τ2D,mono = (JAface)
−1 in eq 3.1, but normally it cannot
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compete with spiral growth, so this regime does not warrant consideration [52]. As J

rises, nucleation events begin to happen faster than a single nucleus can complete the

layer, so the layer is formed from the combined action of multiple nuclei, where colliding

steps annihilate as they meet. J increases with supersaturation, so it is at higher σ

where growth by 2D nucleation becomes relevant against the spiral mechanism [4, 52].

Two limits can be used to model the action of 2D-nucleation crystal growth: when the

initial nucleated area is negligible (the ‘birth-and-spread’ regime [51, 53]) and when the

growth area is negligible (the ‘polynuclear’ regime [51]). It should be noted that the term

‘polynuclear’ has also been used to describe all regimes following mononuclear, but its

use here is limited to the negligible nucleus growth regime.

Within the birth-and-spread regime, although multiple nuclei now collectively com-

plete the layer, nucleation events are sparse enough that formation of the new crystal

layer is dominated by growth of these nuclei (i.e., the advance of their step edges with

velocity vi, eq 3.11). Step–step annihilation only occurs after significant growth since

it is unlikely for the sparse nucleation events to occur in close proximity, and so the

nucleated area is negligible compared to the growth (or face) area. On the other hand,

the polynuclear regime occurs at a very high nucleation rate, where the density of nuclei

formed on the surface is so large that formation in close proximity is guaranteed. Steps

emanating from adjacent nuclei quickly annihilate, which causes crystal layer formation

to be dominated by nucleation events as opposed to nucleus growth; essentially, polynu-

clear growth corresponds to a ‘patchwork’ formation of critically-sized nuclei. Note that

an interpretation of the polynuclear regime resulting from vi = 0 is not realistic, although

it produces the same growth rate expression; rapid step annihilation is instead the more

physical explanation.

The time to complete a new layer is required in eq 3.1. Considering descriptions

of the 2D birth-and-spread and 2D polynuclear growth mechanisms, expressions for the
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coverage time for a face growing by 2D nucleation, τ2D, can be developed. The fractional

surface coverage under the 2D birth-and-spread regime as a function of time, θ2D,B+S,

can be calculated from the growth of nuclei forming at rate J [53]:

θ2D,B+S =

∫ t

0

JA(t− τ)dτ (3.23)

Since the initial nucleated area is negligible compared to the growth area in this regime,

the time-dependent area excludes that of the critical nucleus and is based on growth

alone:

A(t) =
1

2

(
N∑
i=1

viv
t
i

)
t2 (3.24)

Note that vti refers to the tangential step velocity, defined by eq 3.22. Assuming a constant

nucleation rate, eq 3.23 solves to [4]

θ2D,B+S = Jft3 (3.25)

where f is defined by:

f ≡ 1

6

N∑
i=1

viv
t
i (3.26)

The fractional coverage for the 2D polynuclear case is given by

θ2D,P = JACt (3.27)

where AC is the area of a critical nucleus and can be determined using

AC =
1

2

N∑
i=1

H2D
C,i l

2D
C,i (3.28)

The term H2D
C,i is the perpendicular distance of edge i to the center of a critical nucleus;
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l2DC,i is the length of edge i on such a nucleus (see eqs 3.39 and 3.40 later, respectively).

The coverage time, τ2D, is obtained by solving for a fractional coverage of unity. For

2D birth-and-spread this yields

τ2D,B+S = (Jf)−1/3 (3.29)

which, when used in eq 3.1, provides the same growth rate scaling with nucleation rate

(G ∝ J1/3) as previously established models [51,54,55]; note that it also collapses to the

same step velocity scaling (G ∝ v2/3) under the assumption of isotropic step velocities

and rectangular nuclei. For 2D polynuclear the coverage time is given by

τ2D,P = (JAc)
−1 (3.30)

When eq 3.30 is substituted into eq 3.1 it corresponds to previous expressions for polynu-

clear growth [51, 56], but now provides a more general form than circular nuclei. To

account for the step velocity being non-zero in the polynuclear regime, one could instead

account for the packing problem on the surface by solving for a fractional coverage of

less than unity (e.g., θ2D,P = 0.7); however, this decision simply introduces a numerical

constant and does not affect the following framework.

Knowledge of J is required to use eqs 3.29 and 3.30. It can be defined by eq 3.31 [4],

using a prefactor κ2D and the free energy change upon forming a critical nucleus.

J = κ2Dexp

(
−∆GC

kT

)
(3.31)

To calculate ∆GC/kT , we consider the balance between a 2D nucleus’ (edge) surface

energy penalty and its volume reward for crystallization [4], akin to the balance in eq
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3.6:

∆G(n)

kT
=

(
sFφE

kT

)
n1/2 − nln(1 + σ) (3.32)

The shape factor sF is the critical 2D nucleus perimeter (P ) divided by the square root

of its area (A):

sF ≡
P

A1/2
=

∑N
i=1 l

2D
C,i(

1
2

∑N
i=1 H

2D
C,i l

2D
C,i

)1/2
(3.33)

sF connects n1/2 ≈ (A/V
2/3
X )1/2 to the number of edge molecules on the 2D nucleus

(≈ P/V
1/3
X ); VX is the solute’s molecular volume (VX = Vm,X/NA, where Vm,X is the

solute’s molar volume and NA is Avogadro’s number). The average edge energy per

molecule, φE, is given by eq 3.34, where nC,i is the number of molecules on critical

nucleus edge i (nC,i = l2DC,i/aE,i).

φE ≡
∑N

i=1 nC,iφ
E
i∑N

i=1 nC,i
=

∑N
i=1 nC,iγ

E
i aE,ih∑N

i=1 nC,i
(3.34)

Differentiating eq 3.32 to find the maximum in the curve of free energy change against

nucleus size results in eqs 3.35 and 3.36 for the number of molecules in the critical nucleus

and its free energy change, respectively [4].

nC =
1

4

(
sFφE

kT

)2(
1

ln(1 + σ)

)2

(3.35)

∆GC

kT
=

1

4

(
sFφE

kT

)2(
1

ln(1 + σ)

)
=

3F
ln(1 + σ)

(3.36)

F ≡ 1

12

(
sFφE

kT

)2

(3.37)

The parameter F provides a dimensionless measure of the surface energy penalty for 2D

nucleation on a given face.
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The balance in eq 3.32 can be re-written in terms of edge dimensions for an arbitrary

2D polygon with perpendicular distances H2D
i and lengths l2Di : [4]

∆G(l2D1 , ..., l2DN )

kT
= h

(
N∑
i=1

l2Di
γEi
kT

)
− ln(1 + σ)

VX
h

1

2

N∑
i=1

H2D
i l2Di (3.38)

Since VX is the solute’s molecular volume in the lattice, VX/h is the average growth unit

area. The general critical nucleus shape can be obtained using calculus of variations [4]

and corresponds to a 2D Wulff construction; the resulting perpendicular distance of each

side from the crystal center is

H2D
C,i =

VX
ln(1 + σ)

(
γEi
kT

)
(3.39)

A side’s length on the critical nucleus, l2DC,i, can then be calculated from

l2DC,i =
H2D
C,i+1 −H2D

C,icos(αi,i+1)

sin(αi,i+1)
+
H2D
C,i−1 −H2D

C,icos(αi−1,i)

sin(αi−1,i)
(3.40)

Equation 3.40 corresponds to the relation between normal and tangential velocities in eq

3.22. Note also that l2DC,i is different from lC,i (eq 3.8), which still applies as a condition

to be met before the forward step velocity via eq 3.11 is realized.

The second component to calculating J using eq 3.31 is the prefactor κ2D. An expres-

sion for this prefactor can be developed by adapting established theory for the stationary

2D-nucleation rate of circular nuclei to system-specific polygons, which correspond to

critically-sized nuclei whose edges are PBCs (the stationary rate is appropriate for mod-

eling growth at constant supersaturation). J can be written as

J = zw+
CC

2D
C (3.41)
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where z is the Zeldovich factor [57], C2D
C is the concentration of critically sized nuclei on

the surface and w+
C is the total rate of growth unit attachment to a critical nucleus [58].

The Zeldovich factor is given by [57–59]

z =
2β

π1/2(1− erf(β(1− nC)))
≈ β

π1/2
(3.42)

where β is defined by

β2 =
− d2∆G

dn2

∣∣∣
n=nC

2kT
(3.43)

Note the approximation in eq 3.42 is excellent for β(1−nC) < −1, which is expected [58].

The critical nucleus concentration can be expressed by [58]

C2D
C = C2D

0 exp

(
−∆GC

kT

)
(3.44)

where C2D
0 is the concentration of adsorption sites on the surface .

Substituting eqs 3.42-3.44 into eq 3.41 gives us a form that compares to eq 3.31, with

κ2D now expressed as

κ2D = zw+
CC

2D
0 =

− d2∆G
dn2

∣∣∣
n=nc

2πkT


1/2

w+
CC

2D
0 (3.45)

After differentiating eq 3.32 twice, the Zeldovich factor becomes

z =

(
sFφE

8πkTn
3/2
C

)1/2

(3.46)
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and upon use of eq 3.35

z =
1

π1/2

kT

sFφE
(ln(1 + σ))3/2 (3.47)

For w+
C , we form the rate of attachment to a critical nucleus by considering attachment

at each kink on each edge:

w+
C =

N∑
i=1

nC,iρij
+K
i (3.48)

where the rate of attachment at a given kink, j+K
i , is provided in Appendix 2.A:

j+K
i = k+T exp

(
−∆WK

i + ∆WE
i + ∆W T

kT

)
(1 + σ) = kO(1 + σ) (3.49)

Note that eq 3.49 also contains the isotropic overall rate constant (kO, eq 3.21), which

can be taken out of the sum in eq 3.48. Using nC,i = l2DC,i/aE,i, the resulting expression

for w+
C is

w+
C = kO(1 + σ)

N∑
i=1

l2DC,iρi

aE,i
(3.50)

The final quantity in eq 3.45 is the concentration of surface sites on the face, C2D
0 ,

which we estimate from the squared mean of the PBC intermolecular widths:

C2D
0 =

1

( 1
N

∑N
i=1 aE,i)

2
(3.51)

since each PBC width provides a characteristic dimension for growth units at the face

surface.

Using eqs 3.47 and 3.50, κ2D becomes

κ2D = kO
C2D

0

π1/2

kT

sFφE

(
N∑
i=1

l2DC,iρi

aE,i

)
(ln(1 + σ))3/2(1 + σ) (3.52)
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where each term can be calculated using the presented mechanistic expressions, with the

exception of kO, since the terrace adsorption rate constant k+T is unknown. Nonetheless,

with the assumption of an isotropic k+T , relative growth rate expressions between surface-

integration-limited regimes are independent of kO, enabling their calculation. Appendix

3.A.4 provides analytical expressions for possible relative growth rate expressions.

3.2.3 Connecting Surface-Integration-Limited Regimes

On each face, the surface integration mechanism with the largest normal growth rate

will dominate the surface structure. When no mass transport limitations are present,

the growth rate then corresponds to the kinetically-limited rate of surface integration

under the dominant mechanism. This section describes the procedure for connecting

surface-integration-limited regimes, enabling determination of the dominant mechanism

at a specified supersaturation. See Section 3.2.4 for comments relating to regimes that

appear beyond spiral and/or 2D nucleation, such as rough and mass-transport-limited

growth.

At a low supersaturation (i.e., low driving force for crystallization), the rate of 2D

nucleation on a crystal face is small due to the opposing surface energy penalty. In con-

trast to growth by 2D nucleation, the spiral mechanism provides a renewable source of

steps [7], so at lower σ this mechanism is dominant and commonly seen on the crystal

surface. Since the surface energy penalty for 2D nucleation remains constant, at higher

σ the increased driving force for crystallization increases the rate of 2D nucleation (this

dependence is manifested in the mechanistic expressions above). As a result, at higher

supersaturation 2D nuclei can overtake spirals as the primary source of steps and a 2D-

nucleation growth regime can become the dominant surface-integration mechanism; this

progression has been experimentally imaged using in-situ AFM on calcite [16]. Figure 3.2
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Figure 3.2: As supersaturation increases, a possible progression between regimes would
be spirals, to 2D birth-and-spread, to 2D polynuclear, to rough growth, to mass-trans-
port-limited, as indicated by the solid bold line. Subscripts are defined as follows: S =
spiral, 2D = 2D nucleation, B+S = birth-and-spread, P = polynuclear, 10 = a nucleus
size of 10 growth units, RG = rough growth and BT = bulk-transport-limited.

illustrates a possible progression between regimes (note to better portray the region of

interest σ = 0 is not illustrated, but each growth rate curve intercepts the origin, by defini-

tion). Depending on the many face-specific parameters for each mechanistic expression,

these curves can be dramatically shifted, potentially producing different progressions.

For example, although spirals will always dominate at a low enough supersaturation, the

2D-nucleation growth regimes can be skipped, if mass-transport limitations arise before

spirals are overtaken.

To find the crossover between different mechanisms on a face, we solve for the super-
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saturation at which growth rate expressions for the two regimes are equal. It is, therefore,

useful to make the σ-dependence explicit in the growth rate equations by extracting σ

from the various parameters. Similarly, it is useful to extract the assumed-isotropic kO

parameter.

For spiral growth, the supersaturation dependence of τS arises from the critical length

(lC,i ∝ (ln(1 + σ))−1) and the step velocity (vi ∝ σ). Thus, we write the spiral growth

rate as

GS =
h

τS
=
hσln(1 + σ)kO

τ ∗S
(3.53)

where τ ∗S is independent of σ and kO:

τ ∗S ≡
N∑
i=1

lC,i+1ln(1 + σ)sin(αi,i+1)

vrel,i
(3.54)

vrel,i ≡
vi
σkO

= aP,iρi (3.55)

Although τ ∗S is applicable to any supersaturation, it does depend on solvent and temper-

ature.

Following the same process for the 2D birth-and-spread regime, we get

G2D,B+S = h(Jf)1/3

= h(κ∗2DkO)1/3(ln(1 + σ))1/6(1 + σ)1/3exp

(
−F

ln(1 + σ)

)
(σ2(kO)2f ∗)1/3 (3.56)

where κ∗2D, F (eq 3.37) and f ∗ are the face-specific parameters that are independent of
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both supersaturation and the rate constant kO:

κ2D = κ∗2D(ln(1 + σ))1/2(1 + σ)kO (3.57)

κ∗2D =
C2D

0

π1/2

kT

sFφE

(
N∑
i=1

l2DC,iρiln(1 + σ)

aE,i

)
(3.58)

f ∗ ≡ 1

6

N∑
i=1

vrel,iv
t
rel,i =

f

(σkO)2
(3.59)

Similarly, for the 2D polynuclear mechanism:

G2D,P = hJAC

= hκ∗2DkO(ln(1 + σ))1/2(1 + σ)exp

(
−3F

ln(1 + σ)

)
A∗C

(ln(1 + σ))2
(3.60)

with A∗C as another face-specific parameter:

A∗C ≡ AC(ln(1 + σ))2 =
1

2

N∑
i=1

H2D
C,i l

2D
C,i(ln(1 + σ))2 (3.61)

The first crossover to calculate is σP , which connects the 2D birth-and-spread and

2D polynuclear regimes; we determine σP by setting equal eqs 3.56 and 3.60, for a single

face, and numerically solving for σ. Next, we compute the crossover from spiral to 2D

nucleation (σ2D), noting that this crossover is to the faster 2D regime at the relevant

supersaturation. Therefore, this solution must equate eq 3.53 with either eq 3.56 or 3.60

and once again solve numerically for σ. Further details are reported in Appendix 3.A.

Another aspect that should be considered is the applicability of the mechanistic model

for 2D nucleation. For very small nuclei, the assumption of defined edges with constant

kink densities breaks down; as a result, the model should not be used for a critical nucleus

size of less than ≈ 10 growth units. An expression for this supersaturation limit, σnC=10,
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can be analytically determined:

σnC=10 = exp

(
1

2
√

10

(
sFφE

kT

))
− 1 (3.62)

σnC=10 provides an upper bound on supersaturation for which to search for σP and σ2D,

which means neither is guaranteed to exist on a given face. The principle mechanistic

parameter in eq 3.62 is φE (i.e. the average edge energy penalty to 2D nucleation). In

the case of high edge energies, spirals can be predicted to remain the dominate growth

mechanism until the advent of a regime beyond 2D nucleation, such as rough or mass-

transport-limited growth.

To use eq 3.5 and determine the crystal shape, we require relative growth rates of the

form Rhkl(σ) = Ghkl(σ)/Gref (σ). Depending on the value of σ at which the crystal shape

prediction is desired, both Ghkl and Gref may each be within either a spiral, 2D birth-

and-spread or 2D polynuclear regime. With knowledge of the crossovers σ2D and σP for

each face, the correct growth rate expression, corresponding to the dominant regime, can

be selected. Appendix 3.A.4 lists functional forms of the relative growth rate expression

for potential combinations.

The typical change in crystal habit induced by an increase in supersaturation is either

the disappearance of a face family, or a change in the crystal’s aspect ratio. Both effects

are due to the acceleration of the relative growth rate of face family {hkl} with σ, once

σ > σ2D,hkl. When {hkl} and the reference face are both in the spiral regime there is no

supersaturation dependence of the relative growth rate (refer to eq 3.73). Once {hkl}

enters a 2D-nucleation growth regime, however, Rhkl increases rapidly with σ, which

leads to disappearance of those faces from the crystal shape, or if that is geometrically

impossible, to a shape which elongates in the normal direction of that {hkl} family. The

aspect ratio could correspondingly increase or decrease with supersaturation, when {hkl}
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represents the previously fast-growing or slow-growing faces, respectively.

We have assumed here that the spiral and 2D-nucleation growth mechanisms can be

treated exclusively (i.e., operating in isolation), as opposed to additively. With both

spirals and nucleated islands on the surface, growth units will clearly attach at steps

on either type of surface structure. If a spiral regime is dominant, the growth rate

depends on the rotation time. This rate is independent of whether or not 2D nuclei

are forming in front of advancing spiral steps, justifying considering the growth rate as

the spiral expression alone. With 2D nucleation as the dominant mechanism, advancing

spirals effectively lower the coverage by 2D nuclei needed to complete a face layer, by an

amount that depends on the density of spirals and their speed of face coverage relative

to the 2D-nucleation rate and nuclei growth. Deep in a 2D-nucleation regime this effect

can be ignored, since the density of steps from spirals should be much lower than from

2D nuclei, again leading to the 2D-nucleation growth rate expressions alone to be an

accurate representation of surface integration.

When in a 2D-nucleation regime but near the crossover point, where both mechanisms

alone would give a similar normal face growth rate, selecting exclusively the 2D-nucleation

rate expressions might underestimate the actual face growth rate, since the mechanisms

are additive. To resolve this issue, we could find the time to reach a fractional coverage

of less than 1, introducing a form of packing factor. However, in the birth-and-spread

regime, annihilation of steps between two nuclei are neglected, together with edge effects;

effectively, each nucleus is allowed to grow unhindered in contributing to reaching the

required fractional coverage. Therefore, there is a contrasting argument to solve for a

fractional coverage of greater than 1, since neglecting annihilation overestimates the rate

of coverage. A decision to solve for a coverage other than unity would only introduce

a numerical correction that propagates through the framework as a constant factor,

but due to these competing possibilities of under or overestimation, we have elected
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to solve for a coverage of unity. Note additionally that 2D birth-and-spread and 2D

polynuclear regimes are similarly treated as exclusive, in lieu of the more physical additive

interpretation. Effectively, the developed regimes are useful limiting cases for which

analytical expressions can be developed.

3.2.4 Rough and Mass-Transport-Limited Growth

Thermal roughening of the step edge at equilibrium corresponds to a phase transition,

beyond which the dividing point between upper and lower layers either side of a step edge

cannot be pinpointed [60, 61]; it depends on temperature and interfacial energies. Away

from equilibrium, the kink density similarly increases with temperature; the thermal

reorganization events assumed to continually regenerate kink sites may produce a rough

step. Under such conditions of crystal growth, roughening may result from increasing

supersaturation, whereby a higher driving force for crystallization can overcome larger

surface energy penalties. Thus, at higher supersaturations the crystal may appear less

faceted, exposing high energy surfaces instead of sharp edges and vertices; spirals/2D

nuclei may similarly lose their strictly faceted nature and expose non-PBC directions.

However, since crystal growth is usually governed by kinetics, the onset of a rough regime

is more likely to stem from favorable attachment at sites other than kinks on the crystal

surface; transitions to such kinetic roughening do remain closely related to surface energy

penalties [34]. Favorable step edge attachment can increase the density of incorporation

sites along the step dramatically, leading to a much greater step velocity and roughened

edge, though overall growth of the crystal face may remain layer-by-layer. The advent

of favorable terrace attachment will cause a similarly dramatic increase in the density

of incorporation sites on the face itself, which will would no longer grow in a layered

fashion. This latter form of kinetic roughening is similar to the 2D polynuclear regime

101



Modeling Layered Crystal Growth at Increasing Supersaturation by Connecting Growth Regimes
Chapter 3

as the nucleus size tends towards a single growth unit. While the rounding distance of a

straight spiral side has been shown to decrease with supersaturation [45], we nonetheless

expect crystals, spirals and 2D nuclei to become less faceted at high supersaturations.

The resolution of this apparent discrepancy may be due to decreasing critical lengths and

the aforementioned increasing density of favorable attachment sites around any vertices.

As the net rate of growth unit attachment at kink (or other) sites increases with super-

saturation, crystal growth will eventually become limited by solute transport (e.g., bulk

transport from solution, surface diffusion), instead of surface integration. On each face,

this limit may commence from either spiral, 2D-nucleation or rough growth mechanisms,

but becomes increasingly likely following the advent of kinetic roughening, where growth

rapidly accelerates with the increasing density of favorable attachment sites. Note that

before kinetic roughening, spiral/2D-nucleation surface features should still be visible,

but if mass transport limitations are in effect then the presented mechanistic expressions

must be modified to reflect the new rate-determining step, since the concentration of

solute near incorporation sites will no longer be equal to that in bulk solution.

We expect single crystal growth in a laboratory setting to have little or no mixing,

resulting in a low Peclet number; when the bulk transport limit becomes appropriate, it

should correspond to diffusion across the face’s boundary layer (see Supporting Informa-

tion for ref. [1]):

GBT =
D

δ
Vm,X(C − CS) (3.63)

D is the diffusivity of solute in solution, CS is the solute concentration at the crystal

surface and δ is the boundary layer thickness (over which ∆C = C −CS operates). Due

to fast kink incorporation in this regime, CS ≈ Csat; this produces

GBT =
DVm,X
δVm,S

xsatσ (3.64)
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where Vm,S is the average molar volume of solution.

Connecting surface-integration limited regimes to the mass-transport limit requires

an estimate for kO, which does not enter eq 3.64 so will not cancel upon equating eqs

3.53, 3.56 or 3.60 to eq 3.64. Similarly, kO is required to calculate relative growth rates

where one face is mass-transport-limited. Since molecular simulations are required to

accurately determine this overall rate constant, another method is required to estimate

the supersaturation at which a face becomes mass-transport-limited (σBT ).

The 2D-nucleation applicability limit could be used as an estimate for σBT , provided

the crossover to transport-limited occurs from a 2D-nucleation regime (i.e., not directly

from spiral growth). This supersaturation (σnC=10) represents the point at which increas-

ingly small nuclei are becoming stable; thereafter, it is expected that attachment becomes

favorable at sites other than kinks, i.e., the advent of a rough growth regime is imminent.

Figure 3.2 illustrates this point, where σRG,hkl is expected to follow shortly after σ10,hkl.

The slope of GRG,hkl vs. σ should be high as all surface sites become favorable; thus, the

crossover from rough growth to bulk-transport-limited (σBT,hkl) should not be sensitive

to GBT,hkl (the unknown position of this line relative to the surface-integration-limited

curves reflects the lack of a reliable value for kO). Thus, σnC=10 can be used as a proxy

for σBT , though the method would ideally be used when σ2D exists before σnC=10. In the

absence of a crossover to 2D nucleation, the mass transport limit is reached directly from

the spiral growth regime, which this estimate of σnC=10 ∼ σBT is perhaps less applicable

for; the GS,hkl → GBT,hkl crossover should instead utilize a value for kO if at all possible.

When the growth rate of {hkl} becomes mass-transport-limited, Rhkl starts to de-

crease with increasing σ (see relative growth rate expressions in Appendix 3.A.4), until

the reference face is also bulk-transport-limited; eq 3.64 has no face specific parameters,

so with both faces growing under the mass-transport limit, Rhkl = 1. Figure 3.3 shows

a possible profile: under the spiral mechanism Rhkl has no σ-dependence, upon reaching
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Figure 3.3: A typical progression of the relative growth rate, Rhkl, for a face family on
which 2D-nucleation growth regimes become dominant (at which point Rhkl increases
with σ). Once the mass transport limit is reached, Rhkl decreases with σ. Subscripts
are defined as follows: S = spiral, 2D = 2D nucleation, B+S = birth-and-spread, P
= polynuclear and BT = bulk-transport-limited.

a 2D-nucleation regime (σ2D,hkl) Rhkl accelerates (potentially leading to faces growing

out) up to a maximum at σBT,hkl, at which point it decreases to Rhkl = 1 at σBT,ref .

At some point, as Rhkl → 1, the {hkl} face family may grow back into the steady-state

crystal shape. Upon growing out of the shape an edge or vertex will be formed, which

can grow at a maximum rate corresponding to the mass transport limit; if this limiting

rate becomes insufficient for the face to remain absent from the morphology, due to ac-

celeration of the surrounding faces, the previously grown-out faces may reappear [62].

Note that Figure 3.3 is an example profile only and it is possible for G2D,P ,hkl to decrease

with σ (because the nucleation rate is increasing, but AC is decreasing); the exact profile

is heavily dependent on the numerous face-specific parameters buried in the complex

σ-dependence of these relative growth rates.
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The above picture presents the limit of a faceted sphere in mass-transport-limited

growth, which tends towards a fully spherical form following roughening transitions be-

tween faces. However, a sphere is an unstable growth form in the diffusive transport

limit, where a concentration gradient exists in solution [63–66]. Fluctuations from a

perfect sphere, through solute deposition, extend farther out to solution and experience

locally higher supersaturations, an effect which is even more pronounced for edges and

vertices on a faceted shape. The adsorption rate is, therefore, expected to be higher at

these points; thus, if this effect cannot be dispersed by fast surface diffusion (in relation

to incorporation rates) then such edges and vertices grow faster and lead to dendritic or

spherulitic growth shapes (e.g., snowflake crystals [66, 67]). Thus, the dendritic regime

becomes relevant once kinetic roughening and mass-transport limitations are in effect.

While our model does not consider this growth regime mechanistically, at a high enough

supersaturation it will be reached; we direct readers to ref. [66] for further details.

3.3 Case Study: Naphthalene Grown in Ethanol or

Cyclohexane

The next sections present modeling results for various candidate crystal growth sys-

tems, which are compared to experimental shapes reported in the literature. It is impor-

tant to note that the experimental growth of crystals under the same conditions usually

results in a distribution of similar shapes (due to fluctuations in local growth conditions),

though sometimes only a typical example is reported. Our predictions give us a single

crystal growth shape, which we have compared to experimental habits (these predic-

tions could be turned into a distribution of shapes via sensitivity analysis of operating

conditions and physicochemical parameters). Minor discrepancies in predicted and re-
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ported habits are, therefore, tolerable and expected. Aspects of naphthalene, biphenyl

and pentaerythritol relating to the solvent effect are discussed in Chapter 4; mechanis-

tic parameters relating to growth regimes, for each crystal system, are contained within

Appendices 3.B and 4.A.

Naphthalene presents a useful case to model, with supersaturation-dependent growth

shapes reported for both ethanol and cyclohexane. When grown in ethanol, the {111}

family of faces grows out of the crystal habit as supersaturation is increased [68]; this

result had been predicted successfully using our earlier formulation [4] of the presented

mechanistic approach.

For modeling purposes, naphthalene’s crystallography was taken from Cambridge

Structural Database (CSD) CIF file code NAPHTA10 [69]. Table 3.1 summarizes the

predicted relative growth rates (with reference to face (001), i.e., Rhkl = Ghkl/G001) for

the predicted-dominant F faces of naphthalene grown in ethanol, at various supersatu-

rations, using the current formulation of the model. Unless both faces are in the spiral

regime, the relative growth rate is a function of supersaturation, so σ values for each

set of relative growth rates are indicated. Crossovers from spiral to 2D nucleation (σ2D)

and 2D birth-and-spread to 2D polynuclear (σP ) are listed; if no crossover is predicted

before the applicability limit of our modeling, it is marked not applicable (n.a.). This

applicability limit is σnC=10
, which is also shown and serves as an estimate to the onset

of rough growth (this estimate is expected to be more accurate if σ2D exists). Finally,

the free energy change (in units of kT ), ∆G2D

kT
(σ2D), to form a critical nucleus at σ2D is

provided.

Figure 3.4 shows the predicted shapes for these relative growth rates alongside those

which have been reported experimentally [68]. In the new formulation of the model, at

σ = 0.13 the {111} family of faces is predicted to cross over to a 2D birth-and-spread

mechanism, at which point its relative growth rate accelerates with σ and leads it to grow
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Table 3.1: Relative growth rates and mechanistic crossovers for dominant naphthalene
F faces when grown in ethanol (n.a. = not applicable)

Face
(001) (201̄) (110) (111̄)

R(σ < 0.13) 1 1.24 1.18 1.13
R(σ = 0.16) 1 1.24 1.18 2.10
R(σ = 0.35) 1 1.24 1.56 5.64

σ2D n.a. 0.36 0.30 0.13
∆G2D

kT
(σ2D) n.a. 9.1 10 13

σnC=10
3.1 0.70 0.67 0.49

σP n.a. n.a. n.a. 0.35

out of the crystal shape. This value of σ2D,111̄ is similar to before [4], but note that the

estimate of ∆G2D

kT
(σ2D,111̄) = 9.1 is substantially less than the estimated range of 35± 10

for generic values in molecular organic systems stated in ref. [4].

The {110} and {201} families are also predicted to cross over to 2D nucleation (though

not 2D polynuclear); these crossovers are predicted to exist at σ = 0.30 and σ = 0.36,

respectively. Conversely, 2D nucleation on the {001} family is not predicted to overtake

spirals up to our modeling applicability limit; we predict a crossover to rough or mass-

transport-limited growth directly from the spiral regime. Since σnC=10
is significantly

higher for the {001} family, it suggests that the surrounding faces will each enter a rough

regime at a much lower supersaturation than the {001} faces. With these surrounding

faces growing under rough mechanisms we would expect high relative growth rates and

a platelet shape, which has been experimentally shown [4] (note the aspect ratio would

be supersaturation-dependent).

Table 3.2 contains the analogous mechanistic predictions for naphthalene grown in

cyclohexane. The reference face for relative growth rates is again (001). The {111}

family is predicted to cross over to 2D birth-and-spread at σ = 0.0023 and 2D polynu-

clear at σ = 0.0033; consequently, it grows out of the steady-state growth shape at very
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Model predictions Experimental habits

Naphthalene grown from ethanol

Low supersaturation

High supersaturation

(001)

(111)

(110)
(201)

(001)

(110)(201)

σ < 0.13

(001)

(111)

(110)(201)

σ = 0.16

(001)

(110)(201)

σ = 0.35

(001)

(110)(201)

Figure 3.4: Predicted shape progression for naphthalene grown in ethanol as super-
saturation is increased (left), showing the growth-out of the (111) family of faces
and changing aspect ratio after that. Corresponding experimentally reported shapes
(right, schematics traced from Grimbergen et al. [68]). Reprinted with permission
from Tilbury et al. [28]. Copyright 2016 American Chemical Society.

108



Modeling Layered Crystal Growth at Increasing Supersaturation by Connecting Growth Regimes
Chapter 3

Table 3.2: Relative growth rates and mechanistic crossovers for dominant naphthalene
F faces when grown in cyclohexane (n.a. = not applicable)

Face
(001) (201̄) (110)

R(σ = 0.0061) 1 2.32 2.13
R(σ = 0.0070) 1 2.32 3.83
R(σ = 0.0082) 1 2.32 18.3

σ2D n.a. 0.011 0.0055
∆G2D

kT
(σ2D) n.a. 13.9 18.3

σnC=10
0.96 0.13 0.11

σP n.a. 0.012 0.0070

low supersaturation, a fact which is supported by its absence from all the experimental

morphologies [68, 70]. The {110} and {201} families are both predicted to cross over

to 2D birth-and-spread (σ = 0.0055 and σ = 0.011, respectively) and 2D polynuclear

(σ = 0.0070 and σ = 0.012, respectively), while the {001} family is again predicted to

remain under spiral growth up to the applicability limit of our 2D-nucleation model.

These predictions give rise to a supersaturation-dependent aspect ratio, which Figure 3.5

demonstrates; such shape predictions show good agreement to the experimental deter-

minations.

3.4 Case Study: Biphenyl Grown in Toluene

Biphenyl grown in toluene is another example previously studied by our group, using

earlier formulations of mechanistic models for both spiral growth and 2D nucleation [71].

Using crystallography from CSD CIF file code BIPHEN04 [72], biphenyl’s growth in

toluene was modeled to appraise the current mechanistic approach relative to earlier pre-

dictions. Table 3.3 summarizes the predicted faces, mechanistic parameters and relative

growth rates (again with reference to face (001), i.e., Rhkl = Ghkl/G001), at various su-
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Model predictions Experimental habits

Naphthalene grown from cyclohexane

Low supersaturation

High supersaturations

σ = 0.0061

σ = 0.007

σ = 0.0082

(001)

(110)(201)

(001)

(110)(201)

(001)

(110)(201)

(001)

(110)(201)

Figure 3.5: Predicted shape progression for naphthalene grown in cyclohexane as
supersaturation is increased (left), demonstrating the changing aspect ratio. Corre-
sponding experimentally reported shapes (right, schematics traced from Grimbergen
et al. [68] and Wells [70]). Reprinted with permission from Tilbury et al. [28]. Copy-
right 2016 American Chemical Society.
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Table 3.3: Relative growth rates and mechanistic crossovers for dominant biphenyl F
faces when grown in toluene (n.a. = not applicable)

Face
(001) (110) (111̄)

R(σ = 0.005) 1 1.3 17
R(σ = 0.006) 1 3.2 84
R(σ = 0.007) 1 15 240

σ2D n.a. 0.005 0.003
∆G2D

kT
(σ2D) n.a. 20 21

σnC=10
0.93 0.10 0.09

σP n.a. 0.006 0.004

persaturations. At σ = 0.003 and σ = 0.004, the {111̄} face family is predicted to cross

over to 2D birth-and-spread and then 2D polynuclear, respectively; thus, these faces grow

out of the crystal shape at very low supersaturation. The {110} face family has higher

values at σ2D,110 = 0.005 and σP,110 = 0.006. No crossover to 2D nucleation is predicted

for the {001} family, so above σ = 0.005 the predicted crystal habit is a rhombic platelet

bounded by {110} faces with an aspect ratio that increases with supersaturation, as

shown in Figure 3.6. This rhombic platelet has been experimentally reported [73].

The previous modeling effort by Winn and Doherty [71] predicted a roughening tran-

sition for the {110} faces at σ = 0.0069 and Jetten et al. [73] also noted that above

σ = 0.007 this family begins to lose its faceted nature. Using the calculated value

σnC=10,110 = 0.1 as a bound for rough growth would, therefore, appear to overestimate

this transition. However, since σP,110 = 0.006, this reduction in faceted nature may

instead result from growth becoming mass-transport-limited immediately following the

transition to a 2D polynuclear regime (which could permit the reappearance of higher

index faces).
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Biphenyl grown from toluene predictions

σ = 0.007

(001)

(110)

(001)

σ = 0.006

(001)

(001)

(110)

(110)

(110)

Figure 3.6: Two views of the predicted shapes of biphenyl grown in toluene at
σ = 0.006 (left) and σ = 0.007 (right). Reprinted with permission from Tilbury
et al. [28]. Copyright 2016 American Chemical Society.

3.5 Case Study: Pentaerythritol Grown in Water

Pentaerythritol grown in water was modeled using CSD CIF code PERYTO04 [74].

Table 3.4 summarizes the relevant face predictions, where relative growth rates are with

reference to face (101), i.e., Rhkl = Ghkl/G101. At σ = 0.15 the {110} face family is

predicted to cross over to 2D birth-and-spread, growing out of the crystal shape by

σ = 0.18.

Figure 3.7 shows the predicted shapes at low and high supersaturation. The low su-

persaturation shape with the {110} faces included has been reported experimentally [70]

and following the predicted disappearance of the {110} family at higher supersaturation,

the commonly observed [75,76] bipyramidal crystal habit is produced.
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Table 3.4: Relative growth rates and mechanistic crossovers for dominant pentaery-
thritol F faces when grown in water (n.a. = not applicable)

Face
(101) (101̄) (110)

R(σ < 0.15) 1 1 0.86
R(σ = 0.18) 1 1 1.87

σ2D n.a. n.a. 0.15
∆G2D

kT
(σ2D) n.a. n.a. 17

σnC=10
6.1 6.1 0.61

σP n.a. n.a. n.a.

Model predictions Experimental habits

Pentaerythritol grown from water

σ < 0.15

σ ≥ 0.18

(101)

(101)

(110)

(101)

(101)

(101)

(101)

(110)

(101)

(101)

Figure 3.7: Predicted morphologies of pentaerythritol grown in water at σ < 0.15
and σ ≥ 0.18 (left); experimentally reported habits (right: schematics traced from
Wells [70] (top) and Bernardo and Giulietti [76] (bottom)). Reprinted with permission
from Tilbury et al. [28]. Copyright 2016 American Chemical Society.
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Table 3.5: Relative growth rates and mechanistic crossovers for dominant β-HMX F
faces when grown in acetone (n.a. = not applicable)

Face
(011) (110) (020) (101)

R 1 3.64 1.07 2.97

σ2D n.a. n.a. n.a. n.a.
∆G2D

kT
(σ2D) n.a. n.a. n.a. n.a.

σnC=10
11 4.5 3.0 2.0

σP n.a. n.a. n.a. n.a.

3.6 Case Study: β-HMX Grown in Acetone

The growth of β-HMX (a crystalline explosive) in acetone has recently been studied

by Shim and Koo [77], who utilized an earlier formulation [4] of this mechanistic model

for 2D nucleation alongside kinetic Monte Carlo techniques to successfully predict an

elongated morphology at high supersaturation (they verified this change in crystal habit

experimentally).

We used CSD CIF code OCHTET14 [78] to model the growth of β-HMX in ace-

tone; Table 3.5 summarizes the relevant results, where relative growth rates are Rhkl =

Ghkl/G011. Up to the 2D-nucleation applicability limit of our current mechanistic frame-

work, no crossover to 2D nucleation is predicted on any of the dominant F faces. The

calculated crystal morphology is shown in Figure 3.8 alongside the reported [77] experi-

mental shapes at low and high supersaturation; the predicted habit corresponds favorably

to the spectrum of experimentally produced crystals at low supersaturation. Figure 3.9

compares predicted spirals on the (020) and (011) faces to the informative experimen-

tal images from Shim and Koo [77]. These spiral shapes are fairly well predicted by

the model, though the aspect ratio for the (020) spiral is over-estimated. Note the ex-

perimental (011) spiral is slightly asymmetric, which is unexpected since β-HMX is a

nonpolar [79] lattice with a centrosymmetric growth unit.
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Model predictions Experimental habits

β-HMX grown from acetone

Low supersaturation

High supersaturation

(020)

(011)

(101)

(110)

(020)

(011)

(101)

(110)

Figure 3.8: Two views of the predicted morphology of β-HMX grown in acetone (left);
images of experimental habits at low and high supersaturation (right, reprinted with
permission from Shim and Koo [77], copyright 2015 American Chemical Society).
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Model predictions Experimental images

Spiral shapes for β-HMX grown in acetone

Face (011)

Face (020)

Figure 3.9: Predicted spiral shapes on the (020) and (011) faces of β-HMX grown in
acetone, alongside corresponding experimental images reprinted with permission from
Shim and Koo [77], copyright 2015 American Chemical Society).
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Our current formulation of the model suggests that the faces have different transitions

to a rough growth mechanism, the order of which can be estimated by comparing values

for σnC=10
. Note that this rough mechanism may contain characteristics of 2D nucleation,

but the shrinking nucleus size renders the picture of a nucleus with well-defined PBC

edges and average kink densities ill-advised. The {101} and {020} face families have the

lowest σnC=10
values, so are expected to transition to a rough regime first, leading to their

disappearance from the crystal shape (i.e., they grow out). When the {110} face family

enters a rough growth regime, it cannot geometrically grow out of the crystal shape,

so instead the aspect ratio elongates with supersaturation. Therefore, the difference

in σnC=10
values is able to qualitatively explain the observed supersaturation-dependent

growth shape. This explanation additionally aligns with the reported [77] image of the

rough {110} surface on the elongated crystal morphologies.

3.7 Conclusions

The mechanistic approach presented provides a framework with which it is possible

to connect the important regimes of layered crystal growth and predict supersaturation-

dependent morphologies. The primary effects, as supersaturation is increased, are face

families growing out of the crystal shape or producing a changing aspect ratio; these

effects result from crossing over to 2D nucleation or rough growth. Comparing predicted

crossover supersaturations between face families can determine the order of such events

and provide further insight into the possible morphological changes with supersaturation.

This new formulation of determining crossovers develops face-specific parameters and

values, as opposed to typical estimates for organic molecular growth units, which are

unlikely to provide a universal description for each face on every crystal system. We tested

the model for a variety of centrosymmetric cases, and it is able to predict morphological
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changes in a fashion that should prove useful for enabling rational design within crystal

shape engineering.

Experimentally imaging the surface structure during a transition between different

growth mechanisms on a specific face may be challenging via single crystal growth in

solution, since the face can disappear from the crystal morphology following such tran-

sitions. Instead, epitaxial growth and in-situ imaging of a single face may provide the

ability to more quantitatively test the accuracy of predicted crossovers.

Appendices

3.A Crossovers and Relative Growth Rates

In determining crossovers, we equate rate expressions and solve for the supersatu-

ration. Upper and lower bounds can be set in searching for the solution, for example,

picking a very low (e.g., σ = 0.0001) supersaturation as a lower bound and the limit of

2D applicability (σnC=10) as the upper bound. The typical case of a single crossover can

be solved using a simple half interval method.

3.A.1 2D Birth-and-Spread to 2D Polynuclear Crossover (σP)

We consider this crossover first, since it is independent of the other regimes. Setting

equal eqs 3.56 and 3.60, we obtain

(f ∗)1/3

A∗C(κ∗2D)2/3
=

(1 + σP )2/3

σ
2/3
P (ln(1 + σP ))5/3

exp

(
−2F

ln(1 + σP )

)
(3.65)

Using eqs 3.37, 3.58, 3.59 and 3.61, the only unknown in eq 3.65 is σP , which can

subsequently be solved for numerically. Note that the value of kO is not required. Below
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σP , the birth-and-spread mechanism should be used for the 2D nucleation growth regime,

while above σP , the 2D polynuclear mechanism should be used. The growth rate may be

underestimated near σP , since either initial nucleation area or nucleus growth has been

ignored.

3.A.2 Spiral to 2D Nucleation Crossover (σ2D)

For the crossover from a spiral to a 2D nucleation growth mechanism, we first assume

a crossover to the 2D birth-and-spread regime. After this σ2D is found, if σP < σ2D we

must re-solve instead considering a crossover from spiral growth to the 2D polynuclear

regime. Setting equal eqs 3.53 and 3.56, eq 3.66 results, which again can be numerically

solved to find σ2D (using eqs 3.37, 3.54, 3.58 and 3.59).

1

τ ∗S(f ∗κ∗2D)1/3
=

(1 + σ2D)1/3

σ
1/3
2D (ln(1 + σ2D))5/6

exp

(
−F

ln(1 + σ2D)

)
(3.66)

After determining σ2D from eq 3.66, if σP < σ2D, σ2D should be re-calculated from

1

τ ∗SA
∗
Cκ
∗
2D

=
(1 + σ2D)

σ2D(ln(1 + σ2D))5/2
exp

(
−3F

ln(1 + σ2D)

)
(3.67)

3.A.3 Crossover to Mass-Transport-Limited Growth (σBT )

The crossover to mass-transport-limited growth can occur from any surface-integration-

limited regime, depending on which is the dominant mechanism when a face’s growth

rate becomes equal to (and then limited to) GBT (eq 3.64). Thus, which mechanism

precedes mass-transport-limited growth depends on face-specific mechanistic parameters.

This crossover supersaturation corresponds to a Damköhler (Da) number of unity (where

Da = GD
SI/GBT and GD

SI refers to the dominant surface-integration-limited mechanism).

One could determine σBT by solving GSI(σBT ) = GBT (σBT ) for each surface-integration-
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limited mechanism; the lowest σBT will be the correct crossover, since at this supersatu-

ration, the selected growth mechanism must be fastest and, therefore, dominant.

The crossover from spiral to mass-transport-limited growth (GBT = GS) can be solved

explicitly to

σBT = exp

(
Dτ ∗SVm,Xxsat
δhVm,SkO

)
− 1 (3.68)

On the other hand, the crossovers from 2D birth-and-spread (GBT = G2D,B+S) and

2D polynuclear (GBT = G2D,P ) result in eqs 3.69 and 3.70 respectively, which require

numerical solution:

DVm,Xxsat
δVm,Sh(f ∗κ∗2D)1/3kO

=
(ln(1 + σBT ))1/6(1 + σBT )1/3

σ
1/3
BT

exp

(
−F

ln(1 + σBT )

)
(3.69)

DVm,Xxsat
δVm,ShA∗Cκ

∗
2DkO

=
(1 + σBT )

σBT (ln(1 + σBT ))3/2
exp

(
−3F

ln(1 + σBT )

)
(3.70)

Note that kO appears in eqs 3.68 – 3.70 and an estimate must be provided to determine

σBT mechanistically.

With a reliable value for kO, these equations can be solved. The average molar volume

in solution, Vm,S, can be approximated as that of the pure solvent, while the diffusion

coefficient, D, can be estimated using the Stokes-Einstein equation:

D =
kT

6πηre
(3.71)

In eq 3.71, η is the dynamic viscosity of the solvent and re is the equivalent spherical

radius of a solute molecule, which can be calculated using

re =

(
3χVm,X
4πNA

) 1
3

(3.72)

where χ is a packing factor equaling 0.76 for hard spheres). Note that the diffusion
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coefficient is another avenue for the solvent effect. The boundary layer thickness, δ, can

be estimated from correlations, but has a degree of uncertainty based on the unknown

and/or varied fluid flow conditions during crystal growth.

3.A.4 Relative Growth Rates

Expressions for different forms of the relative growth rate Rhkl(σ) = Ghkl(σ)/Gref (σ)

are listed below.
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GS,hkl

GS,ref

=

hhklσln(1+σ)kO
τ∗S,hkl

hrefσln(1+σ)kO
τ∗S,ref

=
hhklτ

∗
S,ref

hrefτ ∗S,hkl
(3.73)

G2D,B+S,hkl

GS,ref

=
hhkl(κ

∗
2D,hkl)

1/3(ln(1 + σ))1/6(1 + σ)1/3exp
(
−Fhkl

ln(1+σ)

)
(σ2f ∗hkl)

1/3kO

hrefσln(1+σ)kO
τ∗S,ref

=
hhklτ

∗
S,ref (κ

∗
2D,hklf

∗
hkl)

1/3(1 + σ)1/3exp
(
−Fhkl

ln(1+σ)

)
hrefσ1/3(ln(1 + σ))5/6

(3.74)

G2D,P ,hkl

GS,ref

=
hhklκ

∗
2D,hklkO(ln(1 + σ))1/2(1 + σ)exp

(
−3Fhkl

ln(1+σ)

)
A∗

C,hkl

(ln(1+σ))2

hrefσln(1+σ)kO
τ∗S,ref

=
hhklτ

∗
S,refκ

∗
2D,hklA

∗
C,hkl(1 + σ)exp

(
−3Fhkl

ln(1+σ)

)
hrefσ(ln(1 + σ))5/2

(3.75)

G2D,B+S,hkl

G2D,B+S,ref

=
hhkl(κ

∗
2D,hkl)

1/3(ln(1 + σ))1/6(1 + σ)1/3exp
(
−Fhkl

ln(1+σ)

)
(σ2f ∗hkl)

1/3kO

href (κ∗2D,ref )
1/3(ln(1 + σ))1/6(1 + σ)1/3exp

(
−Fref

ln(1+σ)

)
(σ2f ∗ref )1/3kO

=
hhkl(κ

∗
2D,hklf

∗
hkl)

1/3exp
(
−Fhkl

ln(1+σ)

)
href (κ∗2D,reff

∗
ref )1/3exp

(
−Fref

ln(1+σ)

) (3.76)

G2D,P ,hkl

G2D,B+S,ref

=
hhklκ

∗
2DD,hklkO(ln(1 + σ))1/2(1 + σ)exp

(
−3Fhkl

ln(1+σ)

)
A∗

C,hkl

(ln(1+σ))2

href (κ∗2D,ref )
1/3(ln(1 + σ))1/6(1 + σ)1/3exp

(
−Fref

ln(1+σ)

)
(σ2f ∗ref )1/3kO

=
hhklκ

∗
2D,hklA

∗
C,hkl(1 + σ)2/3exp

(
−3Fhkl

ln(1+σ)

)
href (κ∗2D,reff

∗
ref )1/3σ2/3(ln(1 + σ))5/3exp

(
−Fref

ln(1+σ)

) (3.77)

G2D,P ,hkl

G2D,P ,ref

=
hhklκ

∗
2D,hklkO(ln(1 + σ))1/2(1 + σ)exp

(
−3Fhkl

ln(1+σ)

)
A∗

C,hkl

(ln(1+σ))2

hrefκ∗2D,refkO(ln(1 + σ))1/2(1 + σ)exp
(
−3Fref

ln(1+σ)

)
A∗

C,ref

(ln(1+σ))2

=
hhklκ

∗
2D,hklA

∗
C,hklexp

(
−3Fhkl

ln(1+σ)

)
hrefκ∗2D,refA

∗
C,refexp

(
−3Fref

ln(1+σ)

) (3.78)
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Note that when ref = hkl these equations reproduce the crossover equations presented

earlier. Equations 3.73 – 3.78 do not require estimates for kO to compute. Equations

3.79 – 3.81 (relative growth rates if a face is growing under a bulk transport limit) do,

however:

GBT,hkl

GS,ref

=

DVm,X

δVm,S
σxsat

hrefσln(1+σ)kO
τ∗S,ref

=
DVm,Xxsatτ

∗
S,ref

δVm,Shref ln(1 + σ)kO
(3.79)

GBT,hkl

G2D,B+S,ref

=

DVm,X

δVm,S
σxsat

href (κ∗2D,ref )
1/3(ln(1 + σ))1/6(1 + σ)1/3exp

(
−Fref

ln(1+σ)

)
(σ2f ∗ref )1/3kO

=
DVm,Xxsatσ

1/3

δVm,Shref (κ∗2D,reff
∗
ref )1/3(ln(1 + σ))1/6(1 + σ)1/3exp

(
−Fref

ln(1+σ)

)
kO

(3.80)

GBT,hkl

G2D,P ,ref

=

DVm,X

δVm,S
σxsat

hrefκ∗2D,refkO(ln(1 + σ))1/2(1 + σ)exp
(
−3Fref

ln(1+σ)

)
A∗

C,ref

(ln(1+σ))2

=
DVm,Xxsatσ(ln(1 + σ))3/2

δVm,Shrefκ∗2D,refA
∗
C,ref (1 + σ)exp

(
−3Fref

ln(1+σ)

)
kO

(3.81)

GBT,hkl

GBT,ref

=

DVm,X

δVm,S
σxsat

DVm,X

δVm,S
σxsat

= 1 (3.82)

3.B Case Study Parameters

For each case study presented in the text, a summary of relevant quantities in the

mechanistic model (for each family of F faces) is presented below. Those quantities listed

are sufficient to calculate the relative growth rates (as a function of supersaturation) that

are required for shape predictions.

In each case, the calculated lattice energy is within order RT of the experimental

sublimation enthalpy, which lends support to the force field used to determine solid-state

energetics. See Appendix 4.A for more details.
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For each face (where (hkl) represent its Miller indices), h is the elementary step

height (equal to a single interplanar spacing, dhkl) and relevant 2D nucleation mecha-

nistic parameters (see text for definitions) are indicated. For each periodic bond chain

(PBC) with crystallographic direction [uvw], H2D∗
C is the supersaturation-independent

distance of that edge from the center of a critical nucleus (i.e., H2D∗
C = H2D

C ln(1 + σ),

see eq 3.39); φK is the kink energy. See Appendix 4.A for aP (propagation length), aE

(growth unit width) and αi,i+1 (angle to next edge) values for naphthalene, biphenyl and

pentaerythritol.

3.B.1 Naphthalene Grown in Ethanol or Cyclohexane

CSD code NAPHTA10 [69] was used for modeling at a temperature of T = 291 K

(ethanol) and T = 290 K (cyclohexane), to match the experimental determinations [68].

The calculated lattice energy of 77.4 kJ/mol compares well with the sublimation enthalpy

of 76.1 kJ/mol (T = 328−398 K) [80]. Table 3.6 contains mechanistic parameters for the

dominant F faces of naphthalene grown in ethanol: (001), (111̄), (110) and (201̄). Table

3.7 contains mechanistic parameters for the dominant F faces of naphthalene grown in

cyclohexane: (001), (110) and (201̄).

3.B.2 Biphenyl Grown in Toluene

CSD code BIPHEN04 [72] was used for modeling at a temperature of T = 302 K, to

match the experimental determination [73]. The calculated lattice energy of 89.1 kJ/mol

compares well with the sublimation enthalpy of 83.3 kJ/mol (T = 283 − 338 K) [81].

Table 3.8 contains mechanistic parameters for the dominant F faces of biphenyl grown

in toluene: (001) and (110).
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Table 3.6: Naphthalene faces, grown in ethanol

Face (001)

Parameter Units Value

h nm 0.724
τ ∗S - 36.9
κ∗2D cm−2 9.28e+13
f ∗ cm2 2.15e−16
A∗C cm2 4.18e−14
C2D

0 cm−2 3.46e+14
sF - 3.74
F - 6.59

[010] PBC
H2D∗
C nm 1.04

φK kT 0.75

[1̄10] PBC
H2D∗
C nm 1.12

φK kT 1.00

[110] PBC
H2D∗
C nm 1.12

φK kT 1.00

Face (201̄)

Parameter Units Value

h nm 0.409
τ ∗S - 16.8
κ∗2D cm−2 6.22e+13
f ∗ cm2 4.52e−16
A∗C cm2 1.17e−14
C2D

0 cm−2 1.91e+14
sF - 3.83
F - 0.95

[010] PBC
H2D∗
C nm 0.468

φK kT 0.75

[1̄1̄2̄] PBC
H2D∗
C nm 0.667

φK kT 0.31

[1̄12̄] PBC
H2D∗
C nm 0.667

φK kT 0.31

Face (110)

Parameter Units Value

h nm 0.450
τ ∗S - 19.4
κ∗2D cm−2 6.82e+13
f ∗ cm2 3.92e−16
A∗C cm2 1.10e−14
C2D

0 cm−2 1.93e+14
sF - 3.92
F - 0.88

[001] PBC
H2D∗
C nm 0.656

φK kT 0.26

[1̄12̄] PBC
H2D∗
C nm 0.692

φK kT 0.31

[1̄10] PBC
H2D∗
C nm 0.427

φK kT 1.00

Face (111̄)

Parameter Units Value

h nm 0.465
τ ∗S - 21.0
κ∗2D cm−2 8.32e+13
f ∗ cm2 3.78e−16
A∗C cm2 6.78e−15
C2D

0 cm−2 2.05e+14
sF - 4.24
F - 0.52

[101] PBC
H2D∗
C nm 0.703

φK kT 0.37

[1̄10] PBC
H2D∗
C nm 0.294

φK kT 1.00

[1̄1̄2̄] PBC
H2D∗
C nm 0.551

φK kT 0.31
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Table 3.7: Naphthalene faces, grown in cyclohexane

Face (001)

Parameter Units Value

h nm 0.724
τ ∗S - 6.27
κ∗2D cm−2 1.04e+14
f ∗ cm2 2.70e−16
A∗C cm2 9.57e−15
C2D

0 cm−2 3.46e+14
sF - 3.75
F - 1.52

[010] PBC
H2D∗
C nm 0.485

φK kT 0.11

[1̄10] PBC
H2D∗
C nm 0.541

φK kT 0.20

[110] PBC
H2D∗
C nm 0.541

φK kT 0.20

Face (201̄)

Parameter Units Value

h nm 0.409
τ ∗S - 1.53
κ∗2D cm−2 8.05e+13
f ∗ cm2 4.82e−16
A∗C cm2 6.75e−16
C2D

0 cm−2 1.91e+14
sF - 4.30
F - 0.05

[010] PBC
H2D∗
C nm 0.081

φK kT 0.11

[1̄1̄2̄] PBC
H2D∗
C nm 0.208

φK kT 0.01

[1̄12̄] PBC
H2D∗
C nm 0.208

φK kT 0.01

Face (110)

Parameter Units Value

h nm 0.450
τ ∗S - 2.87
κ∗2D cm−2 1.10e+14
f ∗ cm2 4.37e−16
A∗C cm2 5.05e−16
C2D

0 cm−2 1.93e+14
sF - 4.79
F - 0.03

[001] PBC
H2D∗
C nm 0.201

φK kT 0.03

[1̄12̄] PBC
H2D∗
C nm 0.225

φK kT 0.01

[1̄10] PBC
H2D∗
C nm 0.058

φK kT 0.20
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Table 3.8: Biphenyl faces, growth in toluene

Face (001)

Parameter Units Value

h nm 0.947
τ ∗S - 5.68
κ∗2D cm−2 1.15e+14
f ∗ cm2 2.52e−16
A∗C cm2 8.70e−15
C2D

0 cm−2 3.74e+14
sF - 3.74
F - 1.45

[010] PBC
H2D∗
C nm 0.524

φK kT 0.065

[11̄0] PBC
H2D∗
C nm 0.490

φK kT 0.204

[110] PBC
H2D∗
C nm 0.490

φK kT 0.204

Face (110)

Parameter Units Value

h nm 0.462
τ ∗S - 3.82
κ∗2D cm−2 8.39e+13
f ∗ cm2 5.19e−16
A∗C cm2 5.82e−16
C2D

0 cm−2 1.46e+14
sF - 4.36
F - 0.029

[001] PBC
H2D∗
C nm 0.191

φK kT 0.021

[1̄12̄] PBC
H2D∗
C nm 0.200

φK kT 0.093

[11̄0] PBC
H2D∗
C nm 0.076

φK kT 0.204

3.B.3 Pentaerythritol Grown in Water

CSD code PERYTO04 [74] was used for modeling at a temperature of T = 313 K, to

match experimental determinations [76,82]. The calculated lattice energy of 184.5 kJ/mol

compares well with the sublimation enthalpy of 161.1 kJ/mol (T = 418 − 455 K) [83].

Table 3.9 contains mechanistic parameters for the dominant F faces of pentaerythritol

grown in water: (101), (101̄) and (110).

3.B.4 β-HMX Grown in Acetone

CSD code OCHTET14 [78] was used for modeling at a temperature of T = 293 K, to

match the experimental determination [77]. The calculated lattice energy of 161.5 kJ/mol

compares well with the sublimation enthalpy of 175.3 kJ/mol (T = 387 K; therefore a

difference of ∼ 4 RT) [84]. Tables 3.10 and 3.11 contain mechanistic parameters for the
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Table 3.9: Pentaerythritol faces, growth in water

Face (101)

Parameter Units Value

h nm 0.500
τ ∗S - 1398
κ∗2D cm−2 1.87e+12
f ∗ cm2 2.69e−18
A∗C cm2 6.76e−15
C2D

0 cm−2 2.67e+14
sF - 4.62
F - 12.9

[11̄1̄] PBC
H2D∗
C nm 0.356

φK kT 4.36

[1̄1̄1] PBC
H2D∗
C nm 0.356

φK kT 4.36

Face (101̄)

Parameter Units Value

h nm 0.500
τ ∗S - 1398
κ∗2D cm−2 1.87e+12
f ∗ cm2 2.69e−18
A∗C cm2 6.76e−15
C2D

0 cm−2 2.67e+14
sF - 4.62
F - 12.9

[111] PBC
H2D∗
C nm 0.356

φK kT 4.36

[11̄1] PBC
H2D∗
C nm 0.356

φK kT 4.36

Face (110)

Parameter Units Value

h nm 0.430
τ ∗S - 1398
κ∗2D cm−2 1.59e+12
f ∗ cm2 3.13e−18
A∗C cm2 5.05e−16
C2D

0 cm−2 2.06e+14
sF - 3.89
F - 0.748

[11̄1̄] PBC
H2D∗
C nm 0.113

φK kT 4.36

[11̄1] PBC
H2D∗
C nm 0.113

φK kT 4.36

dominant F faces of β-HMX grown in acetone: (011), (110), (020) and (101).
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Table 3.10: β-HMX faces, grown in acetone

Face (011)

Parameter Units Value

h nm 0.600
τ ∗S - 218
κ∗2D cm−2 2.51e+13
f ∗ cm2 5.34e−17
A∗C cm2 2.42e−13
C2D

0 cm−2 1.99e+14
sF - 4.12
F - 21.0

[1̄00] PBC

aP nm 0.656
aE nm 0.653
αi,i+1

◦ 58.2
H2D∗
C nm 1.82

φK kT 3.88

[111̄] PBC

aP nm 0.555
aE nm 0.772
αi,i+1

◦ 121.8
H2D∗
C nm 2.92

φK kT 1.51

Face (020)

Parameter Units Value

h nm 0.549
τ ∗S - 187
κ∗2D cm−2 2.81e+13
f ∗ cm2 7.10e−17
A∗C cm2 9.42e−14
C2D

0 cm−2 2.08e+14
sF - 4.52
F - 6.51

[1̄00] PBC

aP nm 0.717
aE nm 0.653
αi,i+1

◦ 77.4
H2D∗
C nm 0.938

φK kT 3.88

[001] PBC

aP nm 0.637
aE nm 0.735
αi,i+1

◦ 102.6
H2D∗
C nm 2.45

φK kT 1.32
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Table 3.11: β-HMX faces, grown in acetone (continued)

Face (110)

Parameter Units Value

h nm 0.551
τ ∗S - 55.0
κ∗2D cm−2 4.36e+13
f ∗ cm2 3.22e−16
A∗C cm2 1.14e−13
C2D

0 cm−2 1.85e+14
sF - 3.87
F - 9.69

[001] PBC

aP nm 0.635
aE nm 0.735
αi,i+1

◦ 65.0
H2D∗
C nm 1.74

φK kT 1.32

[11̄1] PBC

aP nm 0.666
aE nm 0.701
αi,i+1

◦ 59.6
H2D∗
C nm 2.37

φK kT 0.84

[1̄11] PBC

aP nm 0.604
aE nm 0.772
αi,i+1

◦ 55.4
H2D∗
C nm 1.50

φK kT 1.51

Face (101)

Parameter Units Value

h nm 0.432
τ ∗S - 52.7
κ∗2D cm−2 3.44e+13
f ∗ cm2 3.99e−16
A∗C cm2 7.12e−14
C2D

0 cm−2 1.29e+14
sF - 4.00
F - 3.99

[01̄0] PBC

aP nm 0.542
aE nm 1.10
αi,i+1

◦ 44.6
H2D∗
C nm 1.88

φK kT 0.51

[1̄11] PBC

aP nm 0.772
aE nm 0.772
αi,i+1

◦ 90.8
H2D∗
C nm 1.33

φK kT 1.51

[111̄] PBC

aP nm 0.772
aE nm 0.772
αi,i+1

◦ 44.6
H2D∗
C nm 1.33

φK kT 1.51
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Chapter 4

Predicting the Effect of Solvent on

the Crystal Habit of Small Organic

Molecules

Reproduced in part with permission from:

Carl J. Tilbury, Daniel A. Green, William J. Marshall and Michael F. Doherty, “Pre-

dicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules,” Crystal

Growth & Design, 2016, 16, 2590–2604.

DOI: 10.1021/acs.cgd.5b01660. Copyright 2016 American Chemical Society.

4.1 Introduction

The choice of solvent is perhaps the most critical design decision in crystallization

from solution, with implications for solubility and impurity rejection as well as crystal

morphology. Understanding and being able to predict its effect on crystal habit would be

valuable from an engineering perspective, so the optimum morphology can be achieved.
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Accounting for the interaction energetics is critical to the mechanistic model, and

the presence of a solvent alters the relevant surface interactions due to solvation of the

crystal surface. To correctly predict this effect one must determine how these interactions

are modified by the presence of a solvent, which is the focus of this chapter. The most

accurate method for obtaining the relevant free energies, kink densities and kink rates

used in the model (see Section 4.4) would be molecular simulations. This might be

practical for simple crystal systems where there are few types of kink sites, but even

so it would be computationally expensive. For more complicated crystal systems there

can be many distinct kink sites (the (101̄4) surface of calcite has 32 kink sites [1], while

aragonite has 112 distinct kinks [2]), which further multiplies the necessary number of

molecular simulations to obtain the input parameters required by the model, rendering

this approach impractical for engineering purposes. Using a mechanistic model that relies

on such simulations provides little advantage over an experimental screening of the design

space, due to the required computational time and effort.

The challenge was to find a practical method to estimate solvent-modified interactions

that offered an improvement upon previous methodologies adopted within the mechanis-

tic model [3–6]. The resulting short-cut methods are necessarily a compromise that

cannot compete with molecular simulations in terms of fidelity, but nonetheless result in

useful and rapid engineering predictions.

4.2 Intermolecular Interactions

Before considering models for interfacial energies in the presence of a solvent, types

of intermolecular interactions and how they are modeled will be briefly reviewed.

In principle, all intermolecular interactions are a result of coulombic effects from the

constituent sub-atomic particles [7, 8]. While the nuclear positions are often known, the
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electron cloud must be computed in order for this purely coulombic representation of

an interaction to be calculated. Such quantum mechanical calculations are not close to

being feasible for large numbers of molecules in the solid state, but for isolated molecules

they can be carried out at reasonable computational cost [8]. Intermolecular interactions

in condensed matter can instead be partitioned into various contributions (that together

account for the real interaction), estimates for which can be obtained by using information

on isolated molecule electron densities.

Van der Waals forces are a common subset and can refer to Keesom, Debye and

London interactions [9]. Keesom (orientation) forces exist between permanent dipoles,

Debye (induction) forces exist between a permanent dipole and one induced by it and

London (dispersion) forces exist between an instantaneous dipole and one induced by

it. While all three van der Waals forces are important in the vapor phase, it is the

London dispersion forces that dominate in condensed phases [10, 11]. These dispersion

interactions are non-directional and exist between any pair of molecules.

Acid-base interactions represent the opposite picture, where there is a donating and

accepting character needed to form a bond, so the specific molecules involved dictate

whether an interaction will exist. Hydrogen bonds are the most ubiquitous of these and

are particularly strong owing to the small size of the hydrogen atom and its electron cloud.

These have some characteristics of weak covalent bonds, such as directionality, alongside a

significant electrostatic characteristic, where the partial charges on the functional groups

involved lead to a coulombic interaction. The strength of typical hydrogen bonds is of

the order of 10−40 kJ mol−1, hence far below full intramolecular covalent bonds or ionic

bonds (∼ 500 kJ mol−1) but above van der Waals interactions (∼ 1 kJ mol−1) [9].
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4.2.1 Solubility Parameters

Solubility parameters aim to correlate the intermolecular interactions between solvent

molecules. They represent a cohesive energy density (i.e., δ2 = energy per unit volume),

as indicated by eq 4.1, where δ is the overall (Hildebrand) solubility parameter, Vm is

the molar volume and ∆Hvap−RT is the enthalpy change between the condensed phase

and isolated molecules [12–16].

δ2 =
∆Hvap −RT

Vm
(4.1)

These are often split into components to separate the interactions according to their

type. Hansen has tabulated 3-component solubility parameters corresponding to disper-

sive, polarization and hydrogen bonding interactions [17, 18]. These parameters were

developed by splitting the interaction into a ‘non-polar’ portion (the dispersive param-

eter) and a ‘polar’ portion, which was further subdivided into contributions from per-

manent dipole Keesom forces (the polarization parameter) and hydrogen bonds (the

hydrogen bonding parameter) [19–21]. This subdivision of the polar portion is not on

sound theoretical footing [19] and more generally the use of the term ‘polar’ to describe

non-dispersive interactions has been criticized since these are more accurately termed as

acid-base interactions [10,11]. They depend on donating and accepting characteristics of

the solvent molecules, which the ‘polar’ designation oversimplifies (see Section 4.3.1).

In order to use the equations in Section 4.3, solvent surface energies are required.

Correlations exist to convert solubility parameters into interfacial energies. The simplest

approach is to relate the overall solubility parameter to the measured solvent surface

energy; the value of the empirical constant ε is found that satisfies eq 4.2. This approach

is used by Kaelble [22] and can be generalized to any solvent for which an overall solubility

parameter (δ, units (cal/cm3)0.5 or MPa0.5), the molar volume (Vm) and an experimental
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value for the surface energy (γexps ) exists.

γexps = ε

(
Vm
NA

)1/3

δ2 (4.2)

More specifically however, interfacial energy models require knowledge of a subset of

the solvent’s interactions. One could use the proportionality constant ε determined using

eq 4.2 alongside component solubility parameters (Hansen’s 3-component, for example),

to obtain component values for the interfacial energy (e.g. γds using δd, where s denotes

the solvent and d denotes the dispersive portion).

However, this assumes the various portions of the solvent interaction as described by

solubility parameters contribute equally to the interfacial energy. Beerbower developed

correlations for three classes of solvents using 3-component Hansen parameters with

different constants in front of each term [20]. For alcohols, the correlation is:

γs = 0.0715V 1/3
m (δ2

d + δ2
p + 0.06δ2

h) (4.3)

For acids, phenols, amines and water the correlation is:

γs = 0.0715V 1/3
m (δ2

d + 2.0δ2
p + 0.481δ2

h) (4.4)

For all other solvents the correlation is:

γs = 0.0715V 1/3
m (δ2

d + 0.632δ2
p + 0.632δ2

h) (4.5)

These correlations use solubility parameters in units of cal1/2cm−3/2, molar volume in

units of cm3mol−1 and produce surface energies in units of erg cm−2.

This, in principle, allows for a more physical description, since for alcohols there is
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a tendency to align the OH groups inwards away from an interface that cannot form

hydrogen bonds, so as to satisfy them internally. Therefore, the measured surface energy

has a reduced contribution from the solvent’s hydrogen bonds (hence the 0.06 prefactor

in eq 4.3).

In using Hansen parameters and Beerbower’s correlations, one should apply an extra

correction factor (ε) to scale the resulting surface energy to match a measured value from

experiments, in the same way as eq 4.2. This should help account for temperature effects,

since the correlations are developed for 25◦C, but nonetheless the correction should be

close to unity or it is doubtful the solvent’s energetics are being described appropriately.

For example for alcohols one could write:

ε =
γexps

0.0715V
1/3
m (δ2

d + δ2
p + 0.06δ2

h)
(4.6)

Thus, the predicted solvent hydrogen bonding-component surface energy for an alco-

hol would then be:

γhs = 0.0715εV 1/3
m 0.06δ2

h (4.7)

4.2.2 Force Fields

Atom-atom force fields are entrenched within the physical sciences [8,23] as a means of

describing forces between atoms and by extension between molecules, upon consideration

of the relevant interatomic force pairs (i.e. summation of potential Eij between atom i

in molecule 1 and atom j in molecule 2 as indicated in eq 4.8 as a per molecule energy).

E12 =
1

2

∑
i

∑
j

Eij (4.8)

All such force fields choose a functional form for the potential and fit various param-

143



Predicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules Chapter 4

eters to reproduce existing physical data. The function is often chosen to represent the

individual components of intermolecular interactions; commonly there is a term to the

inverse sixth power of the distance corresponding to attractive van der Waals forces. The

total interaction strength is directly linked to physical data used in the parameterization,

so one can have confidence in its value. On the other hand, it is difficult to trust that

the functional decomposition provides accurate values of these contributions, since it is

entirely possible that a cancellation of errors provides the correct total interaction [23].

Atom-atom force fields commonly assign point charges to atoms in a molecule, based

on a quantum mechanical electron density calculation performed for an isolated molecule.

This description is an inherently inaccurate picture of the real interactions (which are ef-

fectively purely coulombic), even if the electron cloud were not distorted in the solid state.

The PIXEL method [24, 25] uses a discretized electron cloud in order to better account

for this coulombic interaction and move away from a simple point-charge description,

but is necessarily more complicated to compute. Regardless of whether a point-charge

or density description of the coulombic portion around the isolated molecule is used,

extra terms in the functional form of the force field aim to account for how the cloud is

distorted in the solid state and how this contributes to the intermolecular force [23].

The force field that is used in this study’s mechanistic modeling is the CLP force field

developed by Gavezzotti [23]. This is particularly relevant since it has been principally

parameterized to crystal lattice energies, so is more appropriate for solid state modeling

than other force fields that are often developed focusing on gas or liquid phase properties.

This force field contains 4 terms: a (C)oulombic term (∝ r−1), a polarization term

(∝ r−4), a (L)ondon dispersion term (∝ r−6) and a (P)auli repulsion term (∝ r−12).

The coulombic term represents interactions between the point charges, i.e. electrostatic

forces from nuclei and the electron density (corresponding to the undistorted cloud from

an isolated molecule) and also relates to the Keesom forces between permanent dipoles.
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The polarization term represents distortion of the electron cloud by the surroundings

and hence Debye permanent dipole-induced dipole interactions. The London dispersion

term represents the instantaneous dipole-induced dipole effects from electron motion

correlation, and the Pauli term accounts for short-range repulsion due to electronic spin

exclusion. This partitioning is useful for describing effects between different types of

intermolecular interactions, where high dipoles and hence significant partial charges are

reflected in the coulombic term; molecules that are easily polarized have higher polar-

ization and London components, while repulsion comes into play at short distances, for

example in hydrogen bonds. Atom-specific parameters are used to develop these terms,

such as polarizabilities, ionization potentials, partial charges and valence electrons; this

should help parameterization retain a reflection of the underlying physics within these

separate terms [26]. One should not forget that this is still an atom-atom approach,

which is inherently unrealistic as none of these contributions depend solely on the nu-

clear positions [7].

The hydrogen atoms’ positions can be critical to the intermolecular interaction, since

for nearest neighbors in an organic crystal lattice these are often the peripheral atoms

so have shorter interatomic distances [23]. Their positions as determined from x-ray

diffraction are inaccurate, hence their positions are renormalized within the CLP software

package according to known configurations [27]. Atomic partial charges are also assigned

within the software package (using a Mulliken population analysis on an Extended Huckel

Theory wavefunction, which gives similar point charges to an MP2/6-31G** calculation

[23]) and the force field has been parameterized using this internal method, so to be

consistent our modeling will adopt this also in lieu of using a commercial package such

as Gaussian [28].

All three van der Waals components (Keesom, Debye, London) can be represented by

a term (∝ r−6) and in the vapor phase all are important. However, for condensed matter
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the dominant contribution comes from London dispersion forces and the other two can

effectively be neglected [10,11]. Therefore, although the coulombic and polarization terms

might appear to represent Keesom/Debye forces, they in fact mainly confer information

about the possible acid-base interactions that can exist, which up to now have been

absent from the force field picture, but are clearly present and important in reality.

Hydrogen bonding is the principal acid-base interaction and should such a bond exist

and be described by the force field it will manifest primarily through increased coulombic

and polarization terms [23], though the repulsive term is also modified.

Although based on some fundamental physics, attaching much physical meaning to

the partitioned force field energetics is still ill-advised [8,29]. Nonetheless, the dispersion

energies are similar to those calculated using the more physical PIXEL and dispersion-

corrected DFT approach [30]. There is also some disparity between force field partitions

and the theory of intermolecular interactions dividing them into van der Waals and acid-

base forces. Furthermore, the solubility parameter description is again different from

either, with the polarization solubility parameter corresponding to Keesom forces and

therefore under the CLP force field this corresponds, if any, to the coulombic and not

the polarization term. Deciphering this mixture of descriptions for both solvent (through

solubility parameters) and crystal (through the atom-atom CLP force field), in order to

use interfacial energy models, is treated in the Section 4.4.

4.3 Interfacial Energy Models

The focus of this chapter is determining how to appropriately modify the crystal

surface energies at edge and kink sites in the presence of the solvent. The bulk interface

approximation (eq 4.9) describes an interfacial energy in terms of the two phases’ own
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cohesive energies (γ1 and γ2) and their work of adhesion (Wad,12).

γ12 = γ1 + γ2 −Wad,12 (4.9)

All terms in eq 4.9 have units of energy per unit area. In order to form a new crystal

surface in solution the internal crystalline and internal solvent bonds must be broken

(hence the cohesive energy penalty), but crystal-solvent bonds can then form (hence

the adhesive energy reward). How favorable this work of adhesion is depends on the

degree to which the different phases match and what interactions can be reformed; for a

hypothetical internal interface in a pure substance the work of adhesion must correspond

to the work of cohesion so γii should be zero using any formulation of Wad,ii. Expressions

for the work of adhesion will now be presented. The simplest is a simple geometric mean

of the cohesive energies (eq 4.10), which historically stems from the empirical Berthelot

relation for attractive constants in the van der Waals equation of state [12,31–33].

Wad,12 = 2
√
γ1γ2 (4.10)

This expression for the work of adhesion fails to consider the type of interactions, so

it is unable to account for how solutes prefer different solvents based on their ability to

form acid-base interactions. Girifalco and Good proposed [32] the first modification and

incorporated a parameter ξ to correct the geometric mean expression (eq 4.11).

Wad,12 = 2ξ
√
γ1γ2 (4.11)

Another modification was proposed by Owens and Wendt [34]; they split the internal

cohesive energy into ‘non-polar’ (dispersive, superscript d) and ‘polar’ (superscript p)

interactions (γi = γdi + γpi ), then use separate geometric mean terms for these respec-
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tive types (eq 4.12). While this attempts to match like-interactions, the ‘polar’ portion

accounts for internal acid-base interactions within each phase, so may not correspond

to those formed against a new phase, with a potentially different donating or accepting

characteristic than the original phase.

Wad,12 = 2
√
γd1γ

d
2 + 2

√
γp1γ

p
2 (4.12)

The geometric mean for the dispersive component of Wad,12 actually has a theoretical

basis based on London’s theory; if the molecules are assumed to have the same ionization

potential, the geometric mean results and is an acceptable approximation [33, 35–38].

Wu instead proposed a harmonic mean (eq 4.13) for the dispersive component [38, 39],

based on assuming equal polarizability, but this results in only a small change compared

to the geometric mean [33, 35]. Note that these justifications do not extend to the

‘polar’ term but such forms have been adopted anyway. One would expect the Girifalco

and Good parameter ξ to therefore be close to unity if both phases are composed of

predominantly dispersive forces, whereas the low value of ξ for water in hydrocarbons

indicates a mismatch of interactions [32].

Wad,12 =
4
√
γd1γ

d
2

γd1 + γd2
+

4
√
γp1γ

p
2

γp1 + γp2
(4.13)

These simple models suffer from an inability to accurately describe the acid-base

contribution to the work of adhesion, which prompted the development of new interfacial

models with higher fidelity. We now introduce these more recent interfacial models and

evaluate their practicality for our purposes.
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4.3.1 Fowkes’ Method

Fowkes has strongly criticized using a geometric mean for ‘polar’ (more accurately

acid-base) contributions to the work of adhesion [10, 37, 40]. The term ‘polar’ also over-

simplifies the variety of possible acid-base interactions, instead a more specific description

should be used [10, 11, 40]. A polar compound can be monopolar (with either electron-

accepting acidic character, e.g., chloroform, or electron-donating basic character, e.g.,

pyridine) or bipolar (which could also be described as amphoteric or self-associating,

e.g., water). Such a description accounts for the ability to act as a donor and/or an

acceptor within acid-base interactions. A monopolar liquid has no self-association or

internal hydrogen bonds, but is still able to form acid-base interactions with molecules in

the other phase that have either a bipolar character or a monopolar one of the opposite

sense.

To enable the acid-base (superscript AB) component of adhesion, WAB
ad,12, to capture

the possible interactions between any types of molecules, Fowkes and Mostafa proposed

[41] eq 4.14 (note the dispersive contribution to the work of adhesion retains the geometric

mean). This relates the acid-base adhesion component to the enthalpy of formation for

an acid-base adduct, ∆HAB
12 (normally negative), and the density of sites for adduct

formation across an interface, nAB12 . The prefactor f12 acts as an entropy correction that

has been approximated as unity [37,40,41], but may be far lower and system specific [42].

Wad,12 = 2
√
γd1γ

d
2 +WAB

ad,12 (4.14)

WAB
ad,12 = −f12n

AB
12 ∆HAB

12

The principal requirement for this method is an estimate of the acid-base enthalpy be-

tween phases 1 and 2. Fowkes proposes two approaches; firstly, one could use Gutmann’s
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donor/acceptor numbers (DN1 and AN2 in eq 4.15, where phase 1 is the donor and

phase 2 is the acceptor), providing tabulated values are available for various compounds

to determine ∆HAB
12 (in kcal/mol) [43].

∆HAB
12 =

DN1.AN2

100
(4.15)

Secondly, one could use Drago’s EC model (eq 4.16, which assumes phases 1 and 2 to

have acidic and basic character, respectively), where parameters have been tabulated for

various compounds [44–46]. The E and C parameters exist to describe the electrostatic

(E) and covalent (C) characteristics of an acid-base interaction.

∆HAB
12 = EA,1EB,2 + CA,1CB,2 (4.16)

This, in principle, allows for a much more physical description of any acid-base ef-

fects, since it directly considers specific compounds and the functional groups that are

responsible. However, the available data is limited and dominated by highly acidic and

basic compounds, omitting many solvents that could be applicable to crystallization. One

could follow the method and tabulate E and C values for new donors or acceptors, which

may be feasible for the solvent but could be difficult to perform for crystals, since effects

are face-dependent. Critically, it would also be essentially impossible to obtain specific E

and C parameters for individual edge and kink sites, whose energies are important values

in the mechanistic model but steric effects differentiate their solvation from adduct for-

mation between free molecules (on which the Drago EC model is based). Essentially, for

us to apply this method we would have to infer E and C parameters based on available

data for molecules with similar functional groups to those exposed at edge and kink sites,

which might prove unreliable.
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Additionally, it is unclear how to deal with amphoteric molecules via this method (e.g.

adipic acid crystallization in water), a property that Drago largely chose to ignore [10].

One could generalize eq 4.16 to have an extra 2 terms on the right hand side that switched

subscripts 1 and 2, providing that one has EA, CA, EB and CB values for each compound.

For such a self-associating compound, the internal interfacial energy (γ11) is zero, so the

required WAB
ad,11 could be calculated from known cohesive energies. If EA,1 and CA,1 are

known and the basic counterparts are assumed to have the same E/C ratio, they can be

calculated. This is not necessarily an advisable approach, since for water the acidic and

basic E/C ratios do not correspond [47].

As a result of these limitations and the f parameter uncertainty, the application of

Fowkes’ model to our mechanistic crystal growth modeling is not possible with much

confidence. It does highlight ideal characteristics of how the solvent effect should be

treated, however, particularly the requirement to be functional group-dependent.

4.3.2 The van Oss, Chaudhury and Good (vOCG) Method

The method developed by van Oss, Chaudhury and Good [11, 48, 49] represents the

cohesive energy as a dispersive component plus an acid-base component, which is formed

as a geometric mean of electron accepting (Lewis acid, γ+
i ) and electron donating (Lewis

base, γ−i ) components (see eq 4.17).

γi = γdi + γABi

γABi = 2
√
γ+
i γ
−
i (4.17)

The dispersive work of adhesion is then the usual geometric mean; the form for

WAB
ad,12 arbitrarily retains geometric mean terms, but crucially it matches the donating
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characteristic of phase 1 with the accepting of phase 2, and vice-versa.

Wad,12 = 2
√
γd1γ

d
2 +WAB

ad,12

WAB
ad,12 = 2

√
γ+

1 γ
−
2 + 2

√
γ−1 γ

+
2

(4.18)

Incorporating the vOCG model into eq 4.9, one can divide the interfacial energy into

dispersive and acid-base components (γ12 = γd12 + γAB12 ):

γd12 = γd1 + γd2 − 2
√
γd1γ

d
2

γAB12 = 2
√
γ+

1 γ
−
1 + 2

√
γ+

2 γ
−
2 − 2

√
γ+

1 γ
−
2 − 2

√
γ−1 γ

+
2

(4.19)

While γd12 = (
√
γd1 −

√
γd2)2 must be greater than or equal to zero, γAB12 can be

negative. For example if phase 1 is monopolar basic (γ+
1 = 0) and phase 2 is monopolar

acidic (γ−2 = 0), the cohesive terms vanish but the −2
√
γ−1 γ

+
2 adhesion term remains.

Therefore, this formulation is able to deal with interactions across the interface that are

different to internal ones.

The special case of γ+
1 = γ−1 and γ+

2 = γ−2 actually recovers the geometric mean

expression (eq 4.12, with γp’s replaced with γAB’s). Thus we can expect the geometric

mean to hold for the acid-base portion providing both compounds across the interface

are themselves equally donating and accepting (e.g., the solid-state hydrogen bonding of

adipic acid).

Values for γ+ and γ− cannot be obtained without a choice of reference compound. In

the original vOCG scale, water was selected to be equally donating and accepting (fixing

γ+
w = γ−w = γABw /2 = 25.5 mJ/m2) and tabulated values for other compounds [35, 50, 51]

are tethered to this assumption. A criticism of the vOCG scale is that many compounds

appear largely basic [52–54]. However, the resulting value of WAB
ad is independent of scale,
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providing it is implemented consistently [52–55]; as a result Della Volpe and Siboni devel-

oped [52,56] an alternative scale (DVS), with parameters for water at γ+
w = 48.5 mJ/m2

and γ−w = 11.2 mJ/m2. The DVS scale will be adopted here, since on the whole its result-

ing parameters align more closely with chemical intuition. As indicated in the next sec-

tion, utilizing the vOCG model requires us to determine the electron accepting/donating

γ+/γ− ratio for both the solvent and solute. Some solvents have been parameterized

under the DVS scale, but for solute molecules and other solvents, this ratio may require

estimation. Neutral compounds (e.g., alkanes) have no acid-base character so a ratio

γ+/γ− = 1 is appropriate; amphoteric compounds should have a γ+/γ− ratio near unity

(e.g., formamide); acidic compounds (e.g., chloroform) should have a high γ+/γ− ratio

and basic compounds (e.g., methyl iodide, acetone) should have a low γ+/γ− ratio.

The mechanistic crystal growth model requires kink and edge energies in order to cal-

culate relative growth rates. Experimentally determining γ+ and γ− for a specific edge

or kink site appears infeasible via current measurement techniques; instead, we use an

atom-atom force field to obtain location specific energies (see eqs 4.21 and 4.22). How-

ever, terrace surface energies can be measured; Heng et al. determined γ+’s and γ−’s

for 3 facets of a macroscopic aspirin crystal [57] (demonstrating prior application of the

vOCG model to crystalline systems). The range of terrace γ+/γ− ratios measured for a

crystalline system might be combined with the determination of specific edge and kink

site energetics from the applied force field to form an improved description of the surface

chemistry. An alternative technique to contact angle measurements is inverse gas chro-

matography, which can determine surface energies of powders and non-flat surfaces [58].

This produces an energy distribution and deconvolution into individual surface energies

has been demonstrated [59, 60]. While such techniques have downstream industrial im-

portance, the ability to pinpoint the surface energy at each specific edge or kink site

would be required to incorporate such results directly into mechanistic crystal growth
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models.

Chen and Chang proposed another interfacial energy model that is similar to that of

van Oss et al. but with a slightly different functional form for the acid-base work of adhe-

sion that actually allows for a repulsive WAB
ad,12 [33,35,61,62]. The evidence for repulsive

acid-base adhesion is that the dispersive geometric mean over-predicts the measured ad-

hesive energy for some perfluoro polymers in methyl iodide; a negative (repulsive) WAB
ad,12

would align the interfacial model with experiments in this case and entropic effects are

suggested as a possible explanation [62]. In the crystallization of small organic solute

molecules, however, entropic forces will be reduced and we expect the solvent molecules

to be capable of reorienting at the interface to mitigate any repulsive acid-base interac-

tions. Thus, we do not expect these forces to manifest in our systems and including a

functional form capable of describing them is unnecessary.

The vOCG model allows for an appropriate description of acid-base interactions and

is considered to be one of the more successful models [33, 35, 53, 54, 63, 64], but criticism

still exists, such as the lack of an entropic effect [63,65]. Nonetheless, due to the absence

of a practical method that corrects its various shortcomings, the vOCG interfacial model

will be incorporated into our mechanistic crystal growth model.

4.4 Incorporation into Mechanistic Models

The mechanistic parameters introduced in Chapter 3 require us to estimate surface

energies in the kink, edge, and terrace directions (γK , γE, and γT , respectively) along

each periodic bond chain. These directional surface energies are indicated in Figure 4.1,

alongside the incorporation mechanism (a terrace-mediated process is typically expected

[66–68]).

This incorporation mechanism is realistic since it offers a pathway of incremental
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Terrace 
surface 
energy

Edge 
surface
energy

Kink 
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aPaE

1) Terrace 
adsorption

2a) Diffusion 
to step

2a) Step adsorption

2a) Diffusion 
to kink

3) Kink incorporation
(rate-limiting) h

γT
γE

γK

2b) Diffusion to kink

Figure 4.1: The surface structure of a crystal, showing sequential events of the incor-
poration mechanism (either solution-terrace-edge-kink or solution-terrace-kink). Ter-
race (γT ), edge (γE), and kink (γK) surface energies are defined, alongside surface
dimensions.

desolvation and accounts for the low density of kink sites on the face. Upon arrival

from solution, a solvated growth unit is likely to impinge on a terrace site (not a kink

site), where it can attach following desolvation of both the growth unit and surface. It

can then diffuse on the surface until contacting an edge. For low kink densities it is

unlikely to arrive at a kink directly following terrace diffusion, and so will adsorb to the

edge after additional desolvation. It can diffuse along the step edge until finding a kink

site, where the remaining desolvation precedes actual incorporation. Alternatively, for

high kink densities the growth unit may diffuse directly to a kink from the terrace, and

incorporate without prior edge adsorption. Both mechanisms are indicated on Figure 4.1

(for kinetic models, see Appendix 2.A). These terrace-mediated processes reflect relative

site densities and represent pathways with lower energy barriers than incorporation direct

from solution.
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Of course, we have assumed fast surface diffusion for the above analysis. This assump-

tion is often accurate for organic molecules, where favorable interactions exist between

each molecule on the surface and diffusion simply requires hopping between local free

energy minima, a process which should have low energetic barriers. For ionic systems,

however, diffusion across the surface or along an edge would be much slower, owing to

repulsive interactions between like ions; as a result, kink incorporation directly from

solution seems more applicable.

Kink incorporation is the rate-limiting step, even within a terrace-mediated process;

again, this is due to relative site densities and desolvation barriers. The solvent has 360◦

to ‘escape’ for terrace adsorption, 180◦ for edge adsorption and 90◦ for kink incorporation.

This effect, coupled with the density of kink sites on a face being far lower than that of

edge or terrace sites, renders the final stage, kink incorporation, rate-limiting.

For the detailed mechanistic growth rate expressions, see Chapter 3. Here, we summa-

rize which mechanistic parameters are influenced by the interfacial energies: γKi , γEi , and

γT . For centrosymmetric growth units, kink and edge energies are specific to step edge i

on face (hkl), while terrace energies are specific to face (hkl). For non-centrosymmetric

growth units, multiple types of each site can exist on each step edge (see Chapter 5).

Note that the energetic modification to account for the solvent must be implemented

individually for each type of site on each crystal face. The base mechanistic parameters

affected are the kink, edge and terrace energies (centrosymmetric formulations presented

below); key mechanistic parameters that these energies then influence are indicated:

• Kink energy φKi = γKi aP,ih

– Critical length: eq 3.8

– Kink density: eq 3.12

– Kink detachment work: eq 3.16
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• Edge energy φEi = γEi aE,ih

– Critical 2D nucleus size, free energy, and shape: eqs 3.35, 3.36, and 3.39

– 2D nucleation rate prefactor: 3.52

– Edge detachment work: eq 3.19

• Terrace energy φT = γTaEaP

– Terrace detachment work: eq 3.20

Note aP,i is the propagation length of the step, aE,i is the intermolecular width along the

step, and h is the step height (see Figure 4.1). Note also that the detachment work in

each direction is related to the corresponding energy by a multiple of two, to account for

two surfaces being formed (i.e., ∆WK
i = 2φKi , ∆WE

i = 2φEi , ∆W T = 2φT ).

The kink energy impacts both step velocity (eq 3.11, through the kink density) and

the spiral rotation time (eq 3.10, through the critical length and step velocity). Step

velocities are also important in the 2D birth-and-spread regime (eq 3.56) and the kink

density enters into the 2D nucleation rate prefactor (eq 3.52). Thus, the kink energy is an

important parameter for each surface-integration-limited regime (spirals, 2D birth-and-

spread, 2D polynuclear). For the 2D regimes, the edge energy is additionally important,

affecting both the 2D nucleation rate (eq 3.31, through both the prefactor and free energy)

and critical nucleus area (eq 3.28).

For centrosymmetric crystals under sublimation growth, the sum ∆W = ∆WK
i +

∆WE
i +∆W T (see eq 3.17) corresponds to the lattice energy (it is the same for each kink

on the crystal due to symmetry, and corresponds to the total work required to remove a

growth unit from the crystal). Although under solution growth each surface is modified

due to the solvent, the isotropic nature of ∆W should be maintained, since the entire set

of solid-state interactions are involved. Thus, for centrosymmetric crystals, the kink rate
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is isotropic under both sublimation and solution growth (i.e., it has the same value for a

given crystal-solvent system, regardless of kink site type). This isotropic kink rate drops

out of relative growth rate expressions, so the effect of solvent on kink rate is not relevant.

For non-centrosymmetric growth units, however, the effect of solvent on anisotropic kink

rates becomes relevant (the unique detachment work from each site must be applied:

∆Wk,i, for site k on edge i, see Chapters 2 and 5).

For sublimation growth, there are no solvent effects, so the required surface energies

are determined by summing all the solid-state intermolecular interactions (obtained us-

ing the CLP force field alone) that must be broken to form the surface. Considering

terrace surface energies (γT ), the PBCs broken upon detachment from terrace-adsorbed

to solution are summed (the full solid-state interaction energy, EPBC , in each case) and

divided by 2aEaP , since 2 surfaces are formed (aP,i’s and aE,i’s are averaged to represent

the surface area of a typical terrace growth unit). Edge and kink surface energies follow

the same procedure but for γEi , it is detachment from edge-adsorbed to terrace-adsorbed

and the area is 2aE,ih; for γKi , it is detachment from kink-incorporated to edge-adsorbed

and the area is 2aP,ih. As a result, for sublimation growth, the kink energy is equal to

half the in-chain (K direction) PBC interaction energy: φKi = EK
PBC,i/2.

Within this analysis, periodic bond chains (PBCs) [69–71] are assumed to represent

the energetics entirely (they are the strong, directional, repeating interactions within the

crystal). An energy cutoff of 0.5kT is used that allows the PBCs to encompass at least

90 % of the lattice energy; furthermore, this should be appropriate since 1kT serves as a

boundary estimate for step roughening [72–74].

Eq 4.20 describes the overall bulk interface approximation used to modify the surface

energies when accounting for the solvent effect. Subscript X refers to the crystal (γ could
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be γT , γEi or γKi but this has been omitted for clarity) and S refers to the solvent.

γXS = (γdX + γABX ) + (γdS + γABS )− (W d
ad,XS +WAB

ad,XS) (4.20)

For the solvent, the dispersive energy γdS is calculated using the dispersive solubility

parameter in the form of eq 4.7. The acid-base energy γABS is calculated by subtracting

γdS from the total experimentally determined solvent surface energy. This circumvents

the need to deal with polarization and hydrogen bonding solubility parameters that are

less rigorously partitioned.

For the crystal, the following equations are used:

γdX =

∑
L

C+L
EPBC

SA
(4.21)

γABX =

∑
C

C+L
EPBC

SA
(4.22)

This technique is the same as for sublimation surface energies: it uses full PBC inter-

action strengths (EPBC) broken during the relevant detachment events indicated earlier

and the surface area (SA) is 2aEaP for γT , 2aE,ih for γEi and 2aP,ih for γKi . To find

dispersive and acid-base portions, the total PBC strengths are scaled using terms from

the CLP force field: ‘L’ refers to the r−6 London dispersion term and ‘C’ refers to the sum

of the r−1 and r−4 terms, which are important for hydrogen bonds [23]. This methodol-

ogy is necessary as partitioned force field terms are not required to retain their physical

interpretations following parameterization; it is only the total interaction strength which

can be trusted as accurate. The dispersive component may be most justifiable but even

this cannot be taken as an absolute value; for example, considering the hydrogen-bonded

PBC in adipic acid, the r−6 London term has a greater magnitude than the total inter-

action, which, if true, would require a repulsive acid-base effect that is not a physical
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description of the hydrogen bond. There are 3 attractive terms: dispersive, polarization

and coulombic (for acid-base interactions this is attractive due to a manifestation as op-

posite dipoles by a force field). Therefore, using the ratios of these terms to divide the

total interaction into dispersive and acid-base effects (as indicated in eqs 4.21 and 4.22)

provides the most practical method to determine these required quantities from the force

field.

Additionally, when implementing the vOCG method, we determine the locations

of potential sites for acid-base interactions between the solvent and the crystal. To

a first approximation these can be taken as those PBCs corresponding to solid-state

hydrogen bonds (or more general acid-base interactions, examples of which are self-

association in acetonitrile, dimethylformamide and nitrobenzene [40]). For such sites,

their partitioned energies are determined using eqs 4.21 and 4.22. For non-hydrogen-

bonded PBCs, however, the solid-state acid-base energy is taken as zero and the entire

PBC interaction is taken as the dispersive contribution, which leads to a bulk interface

approximation in the form of eq 4.23. One would expect a dominant London term

anyway in these cases, but this manual correction helps remove acid-base artifacts from

a solvent with large γABS , when in actuality no such interaction exists (i.e., because the

solvent molecules can rotate and orient acid/base groups away from the surface to satisfy

interactions internally).

γXS = (γdX + γABX ) + (γdS + γABS )− 2
√
γXγdS (4.23)

Therefore, WAB
ad,XS only exists for the hydrogen-bonded PBCs. With γdS, γABS , γdX and

γABX determined, we must split the acid-base portions further into electron donating (-)

and accepting (+) characteristics. Alongside eq 4.17, this requires values for the ratios

γ+
X/γ

−
X and γ+

S /γ
−
S . If parameters exist for the chosen solvent or can be inferred from
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compounds with similar functional groups, these ratios could be determined, but as will

be demonstrated later (see adipic acid case study), predicted crystal shapes are often

insensitive to their actual values. The bulk interface approximation for the hydrogen-

bonded PBCs is given by eq 4.24.

γXS = (γdX + γABX ) + (γdS + γABS )− (2
√
γdXγ

d
S + 2

√
γ+
Xγ
−
S + 2

√
γ−Xγ

+
S ) (4.24)

This insensitivity to accepting/donating ratios is due to the significant contribution

of WAB
ad,XS (usually resulting in a low surface energy) for those PBCs capable of forming

acid-base interactions with the solvent (termed hydrogen-bonded PBCs for simplicity).

Thus, under an appropriate solvent, a step with hydrogen-bonded PBCs in the kink

direction can have low kink energy, high kink density and fast step velocity. Under the

spiral mechanism, the rotation time on a face can be independent of the fastest growing

edges [5], so faces with few in-slice hydrogen-bonded PBCs may have growth rates that

are not sensitive to exact kink energies on those hydrogen-bonded-PBC edges (providing

they remain low relative to the other edges that do not represent hydrogen-bonded PBCs).

On faces with multiple in-slice hydrogen-bonded PBCs, one would expect a low spiral

rotation time and fast face growth rate; such faces typically grow out of the crystal

morphology and the shape is again insensitive to the uncertainty in WAB
ad,XS. When the low

energy hydrogen-bonded PBCs are in the edge direction, the penalty for 2D nucleation

is reduced, which is another effect leading faces with multiple in-slice hydrogen-bonded

PBCs to have fast growth rates. In summary, hydrogen-bonded PBCs often grow out

of spirals, and faces with many hydrogen-bonded PBCs often grow out of the crystal

shape, so the shape predictions can be insensitive to estimated accepting/donating ratios.

Adjusting this ratio provides a sensitivity test of whether the prediction is robust and

the uncertainty can be tolerated.
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However, this formulation still struggles to account for solvent-crystal acid-base ad-

hesion interactions when both phases separately have no acid-base contributions (e.g.,

solvent molecules act purely as donors and crystal molecules act purely as acceptors).

Relying on a force field (to describe internal crystal interactions) and solubility param-

eters (to describe internal solvent interactions) provides limited information to estimate

donating and accepting characteristics that only manifest upon contact with a molecule

of opposite character. Therefore, a monopolar acidic solvent and monopolar basic crystal

will have an acid-base interfacial interaction that is not easily determined. A potential

solution would be taking a typical hydrogen bond strength and adding it manually to

the adhesion interaction where appropriate.

Finally, there are cases where it makes sense to manually activate or deactivate WAB
ad,XS

to better describe real systems. Steric hindrance might prohibit solvation of a surface

in certain cases. As explained for pentaerythritol later, it is possible for solvent-crystal

adhesive forces in the terrace direction (γT ) to only become satisfied upon formation of

step edges, where growth units at the edge can complete such interactions as the adjacent

crystal growth units previously obstructing solvation have been removed. In this case

WAB
ad,XS should be activated for the edge surface energy, following the same procedure

for hydrogen-bonded PBCs (even if no solid-state hydrogen-bonded PBCs extend out in

the edge direction). This can correct for acid-base crystal-solvent interactions that are

completed after the formation of the surface they technically extend from.

Asymmetric spirals might also result if the solvent-accessible surface area [75, 76] is

different on symmetrically opposite spiral edges or, alternatively, for non-centrosymmetric

crystal systems where different functional groups are accessible on opposite edges. These

effects could lead to different solvent-modified edge and kink energies on symmetrically

opposite spiral edges, which in turn would provide different step velocities and asymmetric

spirals. Manually activating or deactivating the acid-base portion of the solvent effect
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formulation presented here may offer a way to account for these effects upon inspection

of the relevant edges using crystal visualization software such as Mercury [77].

These modifications may provide success for more complicated systems. However, if

subtler solvent effects cannot be accounted for, molecular simulations could be required to

determine surface energies or other relevant quantities needed in the mechanistic model.

This would, unfortunately, render the developed framework less applicable as a practical

engineering tool.

4.5 Comparing Sublimation and Solution Shapes

Evaluating predictions obtained from the mechanistic model against experimentally

determined crystal shapes provides a useful test of our modeling performance. Moreover,

a comparison between such tests for both sublimation and solution growth of crystals

provides a way to isolate the effect of the solvent and determine whether it has been

captured accurately. The sublimation growth of crystals provides a general test of the

modeling framework without any energetic modifications due to the solvent (i.e., a test

solely of the solid-state chemistry and surface physics of the crystal growth model).

Therefore, if modeling predictions align with experimental shapes for both vapor and

solution growth, it supports the accuracy of both our mechanistic framework as well as

our ability to modify energetics appropriately and account for the solvent effect. Four

example cases are reported; predicted and experimental shapes are summarized, while

details of relevant parameters within the mechanistic model for each face are contained

in Appendix 4.A. For the final example, naphthalene, we selected 2 solvents for solution

growth predictions. This demonstrates the applicability of our approach not only across

different crystal-solvent systems, but also for the same crystal growing from multiple

solvents.
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Figure 4.2: Thermal gradient sublimation apparatus with glass sublimation tubes
containing biphenyl and pentaerythritol in the foreground.

To determine sublimation growth morphologies of biphenyl, adipic acid and pentaery-

thritol, crystals were grown with a thermal gradient sublimation apparatus using glass

tubes of length 60 cm and 1 cm inside diameter. Solid material was lowered in a small

glass open-ended vial to ensure no crystals were on the inner surface of the tube before

crystallization. The tube was placed under vacuum prior to and during heating. The

apparatus and final sublimation tubes are shown in Figure 4.2.

Single crystal X-ray diffraction data for face indexing were collected using a 3-circle

Bruker Platform goniometer equipped with Mo radiation. The data were indexed to give

unit cell parameters and the orientation relative to the diffractomer enabling the faces to

be determined. The Bruker APEX-II suite of programs were used for indexing and face

determination.

When modeling each crystal system, the CLP force field [23] (including renormaliza-

tion of the hydrogen atomic positions) was used to determine the intermolecular inter-

actions from the crystallography. For the solvent, Hansen 3-component parameters [18]

were used with appropriate correlations [20].
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Figure 4.3: An image of biphenyl crystals inside the sublimation tube indicating the
overall non-uniformity of grown crystal shapes and the dominant expression of the
{001} family.

4.5.1 Case Study: Biphenyl Grown from Toluene

Biphenyl crystallizes in the monoclinic space group P21/a with lattice parameters:

a = 8.12 Å, b = 5.63 Å, c = 9.51 Å and β = 95.1◦ [78] (CSD CIF file code BIPHEN04

was used for modeling). Biphenyl crystals were grown by thermal gradient sublimation

under vacuum with a source temperature of ∼ 40◦C. The data crystal (right hand side,

Figure 4.4) was indexed via our X-ray diffraction measurements with monoclinic unit cell

parameters a = 8.13 Å, b = 5.66 Å, c = 9.54 Å and β = 95.2◦ in space group P21/c. The

overall shapes of the crystals were not uniform (see Figure 4.3), but did uniformly have

the {001} family as the largest faces.

Figure 4.4 shows the predicted crystal habit for sublimation growth of biphenyl using

the mechanistic model, alongside one instance from the population of experimentally

grown sublimation shapes. The model correctly predicts the {001} family to be the
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(001)

(110)

Model prediction Experimental habit

Biphenyl sublimation growth

(001) (110)

Figure 4.4: Two views of the crystal habit prediction for sublimation growth of
biphenyl (left) and corresponding experimentally grown shape (right). The model
correctly predicts the {001} family to be largest faces.

largest faces on the crystal habit. This is the one common feature of the experimentally

grown crystals, which are overall non-uniform. Of the surrounding indexed faces, the

{110} family is indeed predicted to exist on the steady-state morphology, while the (100)

face is predicted to be an F face but narrowly grow out of the steady-state crystal growth

shape. The (210) face is predicted to be an S face (i.e., containing a single PBC), so

one would not expect its presence on the steady-state morphology. The imaged crystal is

asymmetric, which should not be the case for unhindered growth of a non-polar crystal.

This implies part of the shape is an artifact of the sublimation experiment, which did

not correspond to free, unhindered growth of each face (the situation for which we model

crystal growth). Furthermore, it is unclear whether the (100) and (210) faces that are not

predicted to appear on the steady-state morphology exist prevalently on the other grown

crystals. Since each face is predicted to grow under a spiral mechanism and the crystal is

centrosymmetric, the shape has no supersaturation-dependence (while it remains in the

layered growth regime).
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Biphenyl grown from toluene predictions

σ = 0.007

(001)

(110)

(001)

σ = 0.006

(001)

(001)

(110)

(110)

(110)

Figure 4.5: Two views of the crystal habit prediction of biphenyl grown from toluene
at σ = 0.006 (left) and σ = 0.007 (right).

The growth of biphenyl from toluene presents the simplest possible solvent effect,

with both biphenyl and toluene containing entirely dispersive interactions. Thus, there

are no acid-base terms to consider and one would expect the geometric mean to perform

adequately in the interfacial energy model.

Figure 4.5 shows the predicted crystal habit of biphenyl grown from toluene. Above

σ ≈ 0.005, each face family except {001} is predicted to grow via a 2D-nucleation mech-

anism. Most faces, therefore, grow out of the crystal habit at low supersaturation; the

{110} family is not geometrically able to do so, which leads to a rhombic {001} platelet

bounded by the {110} family (this shape has been experimentally reported [79]). The

aspect ratio increases with supersaturation, as shown in Figure 4.5 (see Chapter 3 for

more detail).
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4.5.2 Case Study: Adipic Acid Grown from Water

Adipic acid crystallizes in the monoclinic space group P21/c with lattice parameters:

a = 10.01 Å, b = 5.15 Å, c = 10.06 Å and β = 136.8◦ [80] (CSD CIF file code ADIPAC was

used for modeling; almost identical results are obtained using other CIF files: ADIPAC04

[81], ADIPAC09 and ADIPAC14 [82]). Adipic acid crystals were grown by thermal

gradient sublimation under vacuum with a source temperature of ∼ 160◦C. The data

crystal (right hand side, Figure 4.6) was indexed with monoclinic unit cell parameters

a = 7.24 Å, b = 5.17 Å, c = 10.12 Å and β = 110.7◦ in space group P21/n. This

corresponds to a different choice of unit cell but otherwise equivalent crystallography to

the CIF file used for modeling purposes. The observed crystals showed a rod/needle-like

morphology.

Figure 4.6 shows the predicted crystal habit for sublimation growth of adipic acid

using the mechanistic model, alongside an experimentally grown sublimation shape; the

rod/needle-like morphology is correctly predicted. There is a mismatch between the faces

predicted to be on the steady-state morphology and those indexed experimentally, even

when correcting for the different unit cell choice. This could be a result of the small face

areas available for indexing. Similarly to biphenyl, each face is predicted to grow via the

spiral mechanism so there is no dependence of shape on supersaturation.

For adipic acid crystals grown from water, both crystal and solvent have internal

hydrogen bonds, so there exists a potential for acid-base adhesion at the interface. Using

the DVS scale for water, γ+
S /γ

−
S = 4.35; for adipic acid we have estimated γ+

X/γ
−
X = 1

since it possess both donating and accepting character.

Figure 4.7 shows the predicted crystal habit of adipic acid grown from water. The

calculated {100} hexagonal platelet shape aligns closely with experimental reports [83,84].

Each face is predicted to grow under a spiral growth mechanism so no supersaturation-
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Model prediction Experimental habit

Adipic acid sublimation growth

(100)

(011)

(100)

(011)

Figure 4.6: Two views of the crystal habit prediction for sublimation growth of
adipic acid (left) and the corresponding experimentally grown shape (right). The
rod/needle-like morphology is correctly predicted.

dependent shape is expected. This dramatic change of shape from the rod/needle-like

sublimation shape can be explained through an increase in the growth rate of the {011}

family of faces compared to the {100} family. In sublimation growth the hydrogen-bonded

PBC within the {011} family has a high kink energy, which leads to a low kink density

and step velocity, causing large spiral rotation times and thus low growth rates. During

solution growth, water can hydrogen bond with this exposed PBC, dramatically lowering

the kink energy via the contribution from WAB
ad . This lowered kink energy decreases the

spiral rotation time for the {011} family relative to the {100} family and leads to the

predicted and observed shape change.

The predicted shape is not sensitive to the assumed ratio of γ+
X/γ

−
X = 1 for adipic

acid. This is because no faces on the steady-state growth shape have spiral sides with

hydrogen bonds in the kink direction. Faces including the hydrogen-bonded PBCs in the

kink direction are fast growing, since the favorable acid-base adhesion with the solvent

produces a low kink energy (fast step velocity and face growth rate). The γ+
X/γ

−
X ratio
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Model prediction Experimental habit

Adipic acid grown from water

(011)

(100)

(102)

(111)

(011)
(100)

(102)

(011)

(100)

(102)

(111)

Figure 4.7: Two views of the crystal habit prediction of adipic acid grown from water
(left) and the experimentally reported shape (right: schematic traced from Davey
et al. [83]). The model correctly predicts a hexagonal shape with the {100} family
dominant and surrounding faces to include the {011}, {1̄11} and {1̄02} families.

only affects these hydrogen-bonded PBCs, so the shape prediction is insensitive to our

assumption and is robust.

4.5.3 Case Study: Pentaerythritol Grown from Water

Pentaerythritol crystallizes in the tetragonal space group I 4̄ with lattice parameters:

a = b = 6.09 Å and c = 8.76 Å [85] (CSD CIF file code PERYTO04 was used for model-

ing). The growth unit is near-centrosymmetric, which alongside the singular orientation

within the lattice leads to a centrosymmetric network of interactions. Crystals of pen-

taerythritol were grown by thermal gradient sublimation under vacuum with a source

temperature of ∼ 140◦C. The data crystal (right hand side, Figure 4.8) was indexed with

tetragonal unit cell parameters a = b = 6.09 Å and c = 8.76 Å in space group I 4̄. The

overall shapes of the crystals were not uniform but did uniformly have the {001} family

as the largest faces.
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Model prediction Experimental habit

Pentaerythritol sublimation growth

(002)

(101) (011)

(002)

(101) (011)

Figure 4.8: Two views of the crystal habit prediction for sublimation growth of pen-
taerythritol (left) and corresponding experimentally grown shape (right). The model
correctly predicts the {002} family to be the largest faces.

Figure 4.8 shows the predicted crystal habit for sublimation growth of pentaerythritol

using the mechanistic model (the spiral mechanism is predicted on each face so the

shape is independent of supersaturation), alongside an experimentally grown sublimation

shape. The model correctly predicts the {002} family to be the largest on the crystal

habit. Similarly to biphenyl, the asymmetric shape is not predicted and this discrepancy

is expected to result from hindered growth of certain faces during the course of the

sublimation experiment, leading to the observed non-uniformity of crystal shapes. The

mismatch between the predicted and indexed surrounding faces is also expected to stem

from this non-uniformity, in addition to the small face areas available for indexing.

Growth of pentaerythritol from water provides a similar test to adipic acid, since

hydrogen bonds are present within both phases, so at the crystal-solvent interface an

acid-base interaction exists with both phases possessing some accepting and donating

character. For water we again use γ+
S /γ

−
S = 4.35; for pentaerythritol we have estimated

γ+
X/γ

−
X = 3.79 (DVS value for glycerol).
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On the {110} family in pentaerythritol, water molecules are not expected to be able

to interface with the recessed layer of −OH groups on the terrace, which is a steric

effect that prohibits completion of the potential solvent-crystal acid-base interaction in

the terrace direction. Upon the formation of steps on the surface this steric hindrance is

eliminated, however, meaning the edge surface energy possesses some acid-base character

due to completion of solvation in the terrace direction. To account for this, the work of

adhesion is applied using eq 4.24 (to introduce a contribution from WAB
ad,XS) even though

there are no hydrogen-bonded PBCs in the edge direction. Note that the terrace surface

energy does not enter the mechanistic model (since centrosymmetric expressions apply),

so its change is irrelevant. The necessity of including such a manual modification for a

general system can be determined by using Mercury [77] to visualize the crystal faces,

but the decision to activate or deactivate the acid-base effect may not always be simple.

Figure 4.9 shows the predicted crystal habits of pentaerythritol grown from water,

alongside experimentally reported shapes [86,87]. For σ < 0.15, each face is predicted to

grow via a spiral mechanism, which leads to the top-left shape in Figure 4.9 and corre-

sponds to the shape reported by Wells [86]. At σ = 0.15, the {110} family is predicted

to cross over to a 2D-nucleation growth mechanism, so upon increasing supersaturation

these faces grow out of the steady-state growth shape. This leads to a bipyramidal form

predicted for σ ≥ 0.18, which is the commonly reported morphology [87–89].

The predicted crossover supersaturation for the {110} face family to hit 2D nucleation

is sensitive on the selected γ+
X/γ

−
X ratio, but shape predictions within each regime are not.

This is a result of the steric effect included above, where sterically hindered hydrogen

bonds in the terrace direction can be solvated upon edge formation, leaving the edge

surface energy to have a dependence on the acid-base adhesion. As a result, the predicted

crossover supersaturation should be treated as an estimate with significant uncertainty.

Interestingly, using the solvent-modified terrace surface energies within the attach-
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Model predictions Experimental habits

Pentaerythritol grown from water

σ < 0.15

σ ≥ 0.18

(101)

(101)
(110)

(101)

(101)

(101)

(101)

(110)

(101)

(101)

Figure 4.9: Crystal habit predictions of pentaerythritol grown from water at σ < 0.15
and σ ≥ 0.18 (left) and experimentally reported shapes (right: schematics traced from
Wells [86] (top) and Bernado and Giulietti [87] (bottom)).

ment energy model provides the bipyramidal shape prediction also, which is a vast im-

provement on the base attachment energy prediction [90]. This demonstrates the broad

utility of successfully modifying crystal energies to describe the solvent effect, but the

ability to reproduce the low supersaturation growth shape of pentaerythritol using the

attachment energy model is clearly lost, alongside any potential mechanistic insights.

4.5.4 Case Study: Naphthalene Grown from Ethanol or Cyclo-

hexane

The final example presented is naphthalene, which crystallizes in the monoclinic space

group P21/a with lattice parameters: a = 8.21 Å, b = 5.97 Å, c = 8.67 Å and β = 123.4◦

[91] (CSD CIF file code NAPHTA10 was used for modeling).

Figure 4.10 shows the predicted crystal habit for sublimation growth of naphthalene

using the mechanistic model, alongside an experimentally reported [92] shape. The model

173



Predicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules Chapter 4

Model prediction Experimental habit

Naphthalene sublimation growth

(001)

(110)(201)

(111)

(001)

(110)
(201)

(111)

(001)

(110)(201)

(111)

Figure 4.10: Two views of the crystal habit prediction for sublimation growth of
naphthalene (left) and corresponding experimentally reported shape (schematic traced
from Grimbergen et al. [92]; right).

correctly predicts the dominant face families and the calculated habit is close to the

experimental shape. Each face is predicted to grow under a spiral mechanism.

For studying the solution growth of naphthalene, the first solvent we selected was

ethanol. Naphthalene itself has negligible internal acid-base character, unlike ethanol,

which is self-associating with internal hydrogen bonds. As a result, there exists little

potential for interfacial acid-base adhesion between the crystal and solvent. Additionally,

since ethanol molecules have the ability to orient back into solution and present their

non-polar ends towards the growing crystal, the cohesive energy of the solvent must

be modified to remove the hydrogen-bonding portion of the internal interaction (these

interactions can still be satisfied internally). This is calculated using eq 4.7 with the

hydrogen-bonding solubility parameter and is subtracted from the total solvent surface

energy to form a modified cohesive energy that reflects what portion is actually broken

upon the formation of the crystal-solvent interface.

Figure 4.11 shows predicted crystal habits of naphthalene grown from ethanol at vari-
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Model predictions Experimental habits

Naphthalene grown from ethanol

Low supersaturation

High supersaturation

(001)

(111)

(110)(201)

(001)

(110)(201)

σ < 0.13

(001)

(111)

(110)(201)

σ = 0.16

(001)

(110)(201)

σ = 0.35

(001)

(110)(201)

Figure 4.11: Crystal habit predictions of naphthalene grown from ethanol at σ < 0.13,
σ = 0.16 and σ = 0.35 (left) and experimentally reported shapes (schematics traced
from Grimbergen et al. [92]) at low and high supersaturation (right). The model
correctly predicts the dominant face families and is able to capture the observed
supersaturation-dependence shape, where the {11̄1̄} family grows out after crossing
over to a 2D-nucleation growth regime.
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ous supersaturations, alongside experimentally reported [92] shapes. The model correctly

predicts the dominant face families in the morphology. The {11̄1̄} family is predicted

to cross over to 2D nucleation at σ = 0.13 and grow out of the crystal growth shape at

higher supersaturation, matching the experimental observation. The {11̄0} and {201̄}

families are predicted to cross over to 2D-nucleation regimes at σ = 0.30 and σ = 0.36,

respectively. These faces do not grow out of the crystal morphology, but instead cause

a supersaturation-dependent aspect ratio, which aligns well with the experimentally re-

ported [92] shape pictured bottom right in Figure 4.11 and also explains the {001} platelet

morphology that has been observed [93] during growth at very high supersaturation.

The second solvent we considered for the crystallization of naphthalene was cyclo-

hexane. The interfacial action in this case is purely dispersive, since cyclohexane is a

neutral solvent offering no acid-base character. Figure 4.12 displays the predicted crys-

tal habits of naphthalene grown from cyclohexane at various supersaturations, alongside

experimentally reported shapes [86,92]. The model correctly predicts the morphology to

include the {001}, {11̄0} and {201̄} face families and matches the experimentally deter-

mined shapes. The {11̄0} and {201̄} families are predicted to grow via 2D nucleation,

which is responsible for the aspect ratio that increases with supersaturation.

4.6 Conclusions

The solvent can significantly affect crystal habit and, thus, accurately accounting

for it is important for a useful predictive modeling tool. Rapid predictions are desired,

to ensure practical utility, which leaves bulk interface approximations as the principal

option to include solvent-induced energetic modifications within the mechanistic model.

Of these, the interfacial model by van Oss, Chaudhury and Good represents the most

practical option for small organic molecules and provides the ability to properly account
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Model predictions Experimental habits

Naphthalene grown from cyclohexane

Low supersaturation

High supersaturations

σ = 0.0061

σ = 0.007

σ = 0.0082

(001)

(110)(201)

(001)

(110)(201)

(001)

(110)(201)

(001)

(110)(201)

Figure 4.12: Crystal habit predictions of naphthalene grown from cyclohexane at
σ = 0.0061, σ = 0.007 and σ = 0.0082 (left) and experimentally reported shapes
(schematics traced from Grimbergen et al. [92] and Wells [86]) at low and high super-
saturations (right). The model correctly predicts the dominant face families and the
supersaturation-dependent shape and aspect ratio.
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for acid-base interactions across the interface.

Nonetheless, challenges exist to forming an accurate description of the crystal surface

chemistry with the vOCG interfacial model; these are summarized below, with comments:

1. The potential sites for interfacial acid-base interactions between the crystal and

solvent must be located; it is here that the acid-base work of adhesion is relevant

and must be calculated. One should consider existing solid-state hydrogen bonds

and relevant functional groups.

2. Selecting the γ+/γ− ratio in the absence of tabulated data requires either ex-

periments (time-consuming) or estimation via chemical intuition (prone to error).

Nonetheless, as described earlier in the text, shape predictions are often insensitive

to this uncertainty.

3. Steric effects on solvation are not naturally accounted for. Manual activation or de-

activation of the acid-base portion of adhesion may be able to account for recessed,

inaccessible hydrogen-bonding solute groups, though this technique is somewhat

crude.

4. For oppositely monopolar solute/solvent pairs, force fields and solubility param-

eters contain no information about potential acid base interactions. In this case

experiments would be required, or typical interaction strengths could be introduced.

Overall, the simplest interfacial system to model is where either the solute or solvent

is exclusively dispersive. Where acid-base effects exist, applying the vOCG model has the

potential to describe the surface chemistry; ideally one would use experiments to guide

selection of γ+/γ− ratios as far as possible, but we have shown the ability to obtain useful

predictions from sensible estimates. More complicated effects might be accounted for as

described in points 3 and 4 above, but molecular simulations may prove unavoidable to
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ensure an accurate treatment in the most complex of these cases. In our approach, such

simulations are a last resort not a first resort.

The interfacial model was tested within a mechanistic crystal growth model for cen-

trosymmetric small organic molecules growing via either a spiral or 2D-nucleation mech-

anism. The procedure for calculating the interfacial energy is equally applicable to more

general models such as the non-centrosymmetric spiral growth model [94].

Evidently, the effect of solvent on crystal habit can either be significant (e.g., adipic

acid, pentaerythritol) or relatively minor (e.g., naphthalene, biphenyl). The mechanistic

model has been able to account accurately for both scenarios, which supports the utility

of the proposed methodology. There are a variety of assumptions and input data uncer-

tainties in both the interfacial model and mechanistic framework, yet satisfactory and

useful results have been obtained. Furthermore, one should remember that experimen-

tally reported crystals are themselves a sample of the distribution; whereas our model

predicts a single shape. Thus, the discrepancies between predicted and observed crystal

habits are relatively minor and although bulk interface models do have limitations, they

offer an attractive option for rapidly predicting the effect of solvent on the crystal habit

of small organic molecules.

Finally, our investigation suggests an optimum path for process development. By first

performing a sublimation experiment, one obtains information about the crystal habit

without first requiring a ‘suitable’ solvent (reasonable solubility, habit etc.). Comparing

the sublimation shape to that which is desired determines how relative growth rates must

be modified, if at all. Considering the functional groups exposed at the relevant faces

may then enable the selection of candidate solvents to achieve a desirable modification.

In essence, starting with a sublimation experiment and combining mechanistic/chemical

intuition could facilitate crystal habit engineering.
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Appendices

4.A Mechanistic Parameters

Relevant quantities within the mechanistic model (those which enable the crystal

habit calculation) are summarized in the sections below for each system studied. For each

face family present on a steady-state growth shape prediction, a single face’s parameters

are provided.

The calculated lattice energy for each crystal can be compared to an experimentally

reported sublimation enthalpy. The two quantities differ through a degree of freedom

correction, so if the difference between the calculated lattice energy and experimental

sublimation enthalpy is of the order RT (which is the case for each system) it lends

support to the accuracy of the force field used and, therefore, the energetic calculations

within the mechanistic model.

For each face (miller indices (hkl)), h is the step height (a single interplanar spacing,

dhkl) and R is the relative growth rate, where the reference face is indicated on the

denominator. If the face is predicted to cross over to 2D nucleation and growth, the

crossover supersaturation (σ2D) is listed, alongside the supersaturation corresponding to

a critical nucleus size of 10 growth units (σnC=10), which serves as a limit of our modeling

applicability within the 2D regime. Unlike when both faces are in the spiral regime,

if a face is growing via 2D nucleation and growth its relative growth rate is dependent

on the supersaturation, so σ values for the supplied relative growth rates are indicated

where relevant. Refer to Chapter 3 for detailed explanations of and expressions for the

mechanistic parameters.

Periodic bond chains (PBCs) on each face are also listed, where their vector [uvw]

corresponds to the crystallographic axes. For each PBC, aP is the propagation length,
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aE is the width of a growth unit along the step, αi,i+1 is the angle between that edge and

the next and φK is the kink energy (note in calculating the kink density, the multi-site

expressions developed by Lovette and Doherty [95] have been used where φK ≤ 3kT .

4.A.1 Biphenyl

The lattice energy of biphenyl (CSD code BIPHEN04 [78]) is calculated to be 21.3

kcal/mol. The sublimation enthalpy has been reported [96] as 19.9 kcal/mol for T =

283− 338 K, which corresponds to a difference of ∼ 2 RT from the lattice energy.

Sublimation Growth

Table 4.1 contains the relevant mechanistic parameters for the (001) and (110) faces

of biphenyl under sublimation growth. Crystal growth was modeled at T = 313 K,

corresponding to the crystals grown by sublimation at T ∼ 40◦C.

Table 4.1: Biphenyl faces, sublimation growth

Face (001)

Parameter Units Value

h Å 9.47
R = G001

G001
- 1

[11̄0] PBC

aP Å 4.63
aE Å 4.94
αi,i+1

◦ 69.5
φK kT 4.39

[110] PBC

aP Å 4.63
aE Å 4.94
αi,i+1

◦ 110.5
φK kT 4.39

Face (110)

Parameter Units Value

h Å 4.62
R = G110

G001
- 2.43

[11̄0] PBC

aP Å 9.48
aE Å 4.94
αi,i+1

◦ 85.8
φK kT 4.39

[001] PBC

aP Å 4.93
aE Å 9.51
αi,i+1

◦ 94.2
φK kT 1.35
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Growth from Toluene

Table 4.2 contains the relevant mechanistic parameters for the (001) and (110) faces of

biphenyl grown from toluene. Crystal growth was modeled at T = 302 K, corresponding

to the experimentally reported [79] crystals grown from toluene at T = 28.85◦C.

Table 4.2: Biphenyl faces, growth from toluene

Face (001)

Parameter Units Value

h Å 9.47
R = G001

G001
- 1

[010] PBC

aP Å 4.06
aE Å 5.63
αi,i+1

◦ 55.3
φK kT 0.065

[11̄0] PBC

aP Å 4.63
aE Å 4.94
αi,i+1

◦ 69.5
φK kT 0.204

[110] PBC

aP Å 4.63
aE Å 4.94
αi,i+1

◦ 55.3
φK kT 0.204

Face (110)

Parameter Units Value

h Å 4.62
(σ = 0.006) R = G110

G001
- 3.2

(σ = 0.007) R = G110

G001
- 15

σ2D - 0.005
σnC=10 - 0.1

[001] PBC

aP Å 4.93
aE Å 9.51
αi,i+1

◦ 28.3
φK kT 0.021

[1̄12̄] PBC

aP Å 4.51
aE Å 10.4
αi,i+1

◦ 65.9
φK kT 0.093

[11̄0] PBC

aP Å 9.48
aE Å 4.94
αi,i+1

◦ 85.8
φK kT 0.204
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4.A.2 Adipic Acid

The lattice energy of adipic acid (CSD code ADIPAC [80]) is calculated to be 31.9

kcal/mol. The sublimation enthalpy has been reported [97] as 30.8 kcal/mol for T =

298− 353 K, which corresponds to a difference of ∼ 2 RT from the lattice energy.

Sublimation Growth

Table 4.3 contains the relevant mechanistic parameters for the (011) and (100) faces

of adipic acid under sublimation growth. Crystal growth was modeled at T = 433 K,

corresponding to the crystals grown by sublimation at T ∼ 160◦C.

Table 4.3: Adipic acid faces, sublimation growth

Face (011)

Parameter Units Value

h Å 4.13
R = G011

G011
- 1

[100] PBC

aP Å 4.30
aE Å 10.0
αi,i+1

◦ 49.6
φK kT 5.53

[01̄1] PBC

aP Å 7.62
aE Å 5.65
αi,i+1

◦ 130.4
φK kT 2.60

Face (100)

Parameter Units Value

h Å 6.86
R = G100

G011
- 14.0

[01̄1̄] PBC

aP Å 4.58
aE Å 5.65
αi,i+1

◦ 54.2
φK kT 2.60

[01̄1] PBC

aP Å 4.58
aE Å 5.65
αi,i+1

◦ 125.8
φK kT 2.60

Growth from Water

Table 4.4 contains the relevant mechanistic parameters for the (100), (011), (111̄)

and (102̄) faces of adipic acid when grown from water. Crystal growth was modeled at

T = 307 K, corresponding to experimentally reported [83] crystals grown from water at

T = 34◦C.
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Table 4.4: Adipic acid faces, grown from water

Face (100)

Parameter Units Value

h Å 6.86
R = G100

G100
- 1

[010] PBC

aP Å 5.03
aE Å 5.15
αi,i+1

◦ 62.9
φK kT 5.19

[01̄1̄] PBC

aP Å 4.58
aE Å 5.65
αi,i+1

◦ 54.2
φK kT 5.63

[01̄1] PBC

aP Å 4.58
aE Å 5.65
αi,i+1

◦ 62.9
φK kT 5.63

Face (102̄)

Parameter Units Value

h Å 4.78

R = G102̄

G100
- 2.46

[010] PBC

aP Å 7.22
aE Å 5.15
αi,i+1

◦ 70.4
φK kT 5.19

[2̄1̄1̄] PBC

aP Å 4.85
aE Å 7.67
αi,i+1

◦ 39.2
φK kT 3.86

[21̄1] PBC

aP Å 4.85
aE Å 7.67
αi,i+1

◦ 70.4
φK kT 3.86

Face (111̄)

Parameter Units Value

h Å 4.51

R = G111̄

G100
- 1.89

[01̄1̄] PBC

aP Å 6.97
aE Å 5.65
αi,i+1

◦ 114.6
φK kT 5.63

[21̄1] PBC

aP Å 5.14
aE Å 7.67
αi,i+1

◦ 65.4
φK kT 3.86

Face (011)

Parameter Units Value

h Å 4.13
R = G011

G100
- 1.79

[01̄1] PBC

aP Å 7.62
aE Å 5.65
αi,i+1

◦ 96.3
φK kT 5.63

[21̄1] PBC

aP Å 5.62
aE Å 7.67
αi,i+1

◦ 83.7
φK kT 3.86
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4.A.3 Pentaerythritol

The lattice energy of pentaerythritol (CSD code PERYTO04 [85]) is calculated to

be 44.1 kcal/mol. The sublimation enthalpy has been reported [98] as 38.5 kcal/mol for

T = 418− 455 K, which corresponds to a difference of ∼ 6 RT from the lattice energy.

Sublimation Growth

Table 4.5 contains the relevant mechanistic parameters for the (002), (101) and (101̄)

faces of pentaerythritol under sublimation growth. Crystal growth was modeled at T =

413 K, corresponding to the crystals grown by sublimation at T ∼ 140◦C.

Growth from Water

Table 4.6 contains the relevant mechanistic parameters for the (101), (101̄) and (110)

faces of pentaerythritol when grown from water. Crystal growth was modeled at T =

313 K (within the range of typical experimentally reported [87, 89] temperatures for

pentaerythritol grown from water).
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Table 4.5: Pentaerythritol faces, sublimation growth

Face (002)

Parameter Units Value

h Å 4.38
R = G002

G002
- 1

[100] PBC

aP Å 6.09
aE Å 6.09
αi,i+1

◦ 90
φK kT 7.85

[010] PBC

aP Å 6.09
aE Å 6.09
αi,i+1

◦ 90
φK kT 7.85

Face (101)

Parameter Units Value

h Å 5.00
R = G101

G002
- 9.34

[01̄0] PBC

aP Å 5.33
aE Å 6.09
αi,i+1

◦ 60.3
φK kT 7.85

[11̄1̄] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 59.4
φK kT 1.88

[1̄1̄1] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 60.3
φK kT 1.88

Face (101̄)

Parameter Units Value

h Å 5.00

R = G101̄

G002
- 9.34

[01̄0] PBC

aP Å 5.33
aE Å 6.09
αi,i+1

◦ 60.3
φK kT 7.85

[111] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 59.4
φK kT 1.88

[11̄1] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 60.3
φK kT 1.88
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Table 4.6: Pentaerythritol faces, growth from water

Face (101)

Parameter Units Value

h Å 5.00
R = G101

G101
- 1

[11̄1̄] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 59.4
φK kT 4.36

[1̄1̄1] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 120.6
φK kT 4.36

Face (101̄)

Parameter Units Value

h Å 5.00

R = G101̄

G101
- 1

[111] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 59.4
φK kT 4.36

[11̄1] PBC

aP Å 5.29
aE Å 6.14
αi,i+1

◦ 120.6
φK kT 4.36

Face (110)

Parameter Units Value

h Å 4.30
(σ < 0.15) R = G110

G101
- 0.86

(σ = 0.18) R = G110

G101
- 1.87

σ2D - 0.15
σnC=10 - 0.61

[11̄1̄] PBC

aP Å 6.14
aE Å 6.14
αi,i+1

◦ 89.0
φK kT 4.36

[11̄1] PBC

aP Å 6.14
aE Å 6.14
αi,i+1

◦ 91.0
φK kT 4.36

187



Predicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules Chapter 4

4.A.4 Naphthalene

The lattice energy of naphthalene (CSD code NAPHTA10 [91]) is calculated to be

18.5 kcal/mol. The sublimation enthalpy has been reported [99] as 18.2 kcal/mol for

T = 328− 398 K, which corresponds to a difference of ∼ 0.5 RT from the lattice energy.

Sublimation Growth

Table 4.7 contains the relevant mechanistic parameters for the (001), (111̄), (110)

and (201̄) faces of naphthalene under sublimation growth. Crystal growth was modeled

at T = 283 K, corresponding to the growth temperature of experimentally reported [92]

sublimation-grown crystals.

Growth from Ethanol

Tables 4.8 and 4.9 contains the relevant mechanistic parameters for the (001), (111̄),

(110) and (201̄) faces of naphthalene when grown from ethanol. Crystal growth was

modeled at T = 291 K, corresponding to the experimentally reported [92] crystals grown

from ethanol.

Growth from Cyclohexane

Tables 4.10 and 4.11 contains the relevant mechanistic parameters for the (001),

(110) and (201̄) faces of naphthalene when grown from cyclohexane. Crystal growth was

modeled at T = 290 K, corresponding to the experimentally reported [92] crystals grown

from cyclohexane.
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Table 4.7: Naphthalene faces, sublimation growth

Face (001)

Parameter Units Value

h Å 7.24
R = G001

G001
- 1

[1̄10] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 72.1
φK kT 3.85

[110] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 107.9
φK kT 3.85

Face (111̄)

Parameter Units Value

h Å 4.65

R = G111̄

G001
- 2.98

[1̄10] PBC

aP Å 7.52
aE Å 5.08
αi,i+1

◦ 73.0
φK kT 3.85

[1̄1̄2̄] PBC

aP Å 4.86
aE Å 7.86
αi,i+1

◦ 107.0
φK kT 1.27

Face (110)

Parameter Units Value

h Å 4.50
R = G110

G001
- 2.89

[1̄12̄] PBC

aP Å 5.02
aE Å 7.86
αi,i+1

◦ 81.1
φK kT 1.27

[1̄10] PBC

aP Å 7.77
aE Å 5.08
αi,i+1

◦ 98.9
φK kT 3.85

Face (201̄)

Parameter Units Value

h Å 4.09

R = G201̄

G001
- 3.84

[010] PBC

aP Å 7.27
aE Å 5.97
αi,i+1

◦ 67.7
φK kT 2.99

[1̄1̄2̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 44.6
φK kT 1.27

[1̄12̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 67.7
φK kT 1.27
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Table 4.8: Naphthalene faces, grown from ethanol

Face (001)

Parameter Units Value

h Å 7.24
R = G001

G001
- 1

[010] PBC

aP Å 4.11
aE Å 5.97
αi,i+1

◦ 54.0
φK kT 0.75

[1̄10] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 72.1
φK kT 1.00

[110] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 54.0
φK kT 1.00

Face (201̄)

Parameter Units Value

h Å 4.09

(σ < 0.36) R = G201̄

G001
- 1.24

σ2D - 0.36
σnC=10 - 0.70

[010] PBC

aP Å 7.27
aE Å 5.97
αi,i+1

◦ 67.7
φK kT 0.75

[1̄1̄2̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 44.6
φK kT 0.31

[1̄12̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 67.7
φK kT 0.31
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Table 4.9: Naphthalene faces, grown from ethanol (continued)

Face (110)

Parameter Units Value

h Å 4.50
(σ < 0.30) R = G110

G001
- 1.18

(σ = 0.35) R = G110

G001
- 1.56

σ2D - 0.30
σnC=10 - 0.67

[001] PBC

aP Å 4.55
aE Å 8.67
αi,i+1

◦ 35.3
φK kT 0.26

[1̄12̄] PBC

aP Å 5.02
aE Å 7.86
αi,i+1

◦ 81.1
φK kT 0.31

[1̄10] PBC

aP Å 7.77
aE Å 5.08
αi,i+1

◦ 63.6
φK kT 1.00

Face (111̄)

Parameter Units Value

h Å 4.65

(σ < 0.13) R = G111̄

G001
- 1.13

(σ = 0.16) R = G111̄

G001
- 2.10

(σ = 0.35) R = G111̄

G001
- 5.64

σ2D - 0.13
σnC=10 - 0.49

[101] PBC

aP Å 4.76
aE Å 8.02
αi,i+1

◦ 69.7
φK kT 0.37

[1̄10] PBC

aP Å 7.52
aE Å 5.08
αi,i+1

◦ 73.0
φK kT 1.00

[1̄1̄2̄] PBC

aP Å 4.86
aE Å 7.86
αi,i+1

◦ 37.3
φK kT 0.31
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Table 4.10: Naphthalene faces, grown from cyclohexane

Face (001)

Parameter Units Value

h Å 7.24
R = G001

G001
- 1

σ2D - n/a
σnC=10 - 0.96

[010] PBC

aP Å 4.11
aE Å 5.97
αi,i+1

◦ 54.0
φK kT 0.11

[1̄10] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 72.1
φK kT 0.20

[110] PBC

aP Å 4.83
aE Å 5.08
αi,i+1

◦ 54.0
φK kT 0.20

Face (201̄)

Parameter Units Value

h Å 4.09

(σ < 0.011) R = G201̄

G001
- 2.32

σ2D - 0.011
σnC=10 - 0.13

[010] PBC

aP Å 7.27
aE Å 5.97
αi,i+1

◦ 67.7
φK kT 0.11

[1̄1̄2̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 44.6
φK kT 0.01

[1̄12̄] PBC

aP Å 5.53
aE Å 7.86
αi,i+1

◦ 67.7
φK kT 0.01
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Table 4.11: Naphthalene faces, grown from cyclohexane (continued)

Face (110)

Parameter Units Value

h Å 4.50
(σ = 0.0061) R = G110

G001
- 2.13

(σ = 0.0070) R = G110

G001
- 3.83

(σ = 0.0082) R = G110

G001
- 18.3

σ2D - 0.0055
σnC=10 - 0.11

[001] PBC

aP Å 4.55
aE Å 8.67
αi,i+1

◦ 35.3
φK kT 0.03

[1̄12̄] PBC

aP Å 5.02
aE Å 7.86
αi,i+1

◦ 81.1
φK kT 0.01

[1̄10] PBC

aP Å 7.77
aE Å 5.08
αi,i+1

◦ 63.6
φK kT 0.20
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5.1 Introduction

As indicated in Chapter 3, under conditions of controlled crystallization the dominant

faces on crystal morphologies typically grow via layered mechanisms: spiral growth or

two-dimensional nucleation regimes [1, 2]. The presented mechanistic formulations for

face growth rates under either of these regimes depend on the velocity of step edges on
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the crystal surface. Obtaining an accurate expression for the step velocity is, therefore,

vital for a successful mechanistic description of layered crystal growth.

The step velocity essentially depends on two factors: the concentration of kinks on the

step (the kink density) and the net rate of growth unit incorporation into those kink sites

(the kink rate) [3–9]. Kink sites on the step edge are the favorable positions for growth

unit attachment and assimilation into the lattice, since no additional surfaces are created

and solid-state interactions can be formed in kink, terrace, and edge directions [2, 5, 10].

Centrosymmetric growth units possess an inversion center of symmetry within the

molecule. As a result, the interaction sphere around a crystal growth unit in the lat-

tice is symmetric, which produces energetically identical sites along the step edge and

provides significant simplifications to calculating kink densities, kink rates, and step ve-

locities [3]. However, most molecules of industrial relevance are not centrosymmetric.

Mechanistic models must, therefore, be extended to capture phenomena that appear for

the more general non-centrosymmetric case. With no inversion center forcing equivalent

opposite interactions, these growth units typically have asymmetric interaction spheres

and multiple types of spheres within the lattice. We consider these distinct molecular

orientations/environments as different types of growth units [3]; they are distinguishable

much like the case of ionic or cocrystal growth units, although the differentiation only

occurs following lattice incorporation, not in solution. The presence of different types of

growth units (whether the difference is present in solution or solely in the lattice) pro-

duces various distinct kink sites on each step edge and each crystal face. These different

sites commonly show anisotropic kinetics that greatly affect growth shapes; Poloni et

al. [11] recently examined such growth kinetics and energies on 32 distinct kink sites on

dissymmetric surfaces of a nonopioid drug candidate for chronic pain treatment. Appro-

priately accounting for multiple sites in kink densities, kink rates and their combination

into an overall step velocity is the central complication for modeling non-centrosymmetric
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crystal growth. While we consider the case of identical molecules in solution, the follow-

ing models could be adapted to growth units of different chemical entities in solution by

considering procedures previously developed for ionic systems [12].

Kuvadia and Doherty provided an approach [3] to modeling non-centrosymmetric

molecules, which proved successful for paracetamol and lovastatin. This technique has

been successfully applied by Shim and co-workers to various other crystal systems (RDX

[13], L-Methionine [14] and ε-HNIW [15]), further supporting its utility. In this approach,

Kuvadia and Doherty introduced the concept of unstable step rows (their terminology was

layers), which may show dissolution behavior under conditions of overall crystal growth.

Their case-by-case tactic was to consider only the dominant kink site surface structure

and progression on each step edge. We expect this approach to be valid only for suffi-

cient interaction anisotropy between rows; at less extreme differentials, the contributions

of other surface structures and progressions must not be neglected. Mechanistic habit

predictions require step velocities of each step edge on each face and rely on capturing

their differences accurately. Thus, we require a model that is generally applicable across

different degrees of anisotropy.

The focus of this chapter is to investigate step edge row instability and develop

a more general step velocity model that captures the emergence of instability and its

increasing effect on edge surface structures and step motion, considering both thermo-

dynamic and kinetic contributions. We first summarize the step velocity determination

for centrosymmetric growth units and then establish new phenomena that exist for non-

centrosymmetric systems and present our framework to account for them. We consider

in depth the specific example of an A–B step edge (alternating rows of A and B growth

units), to illustrate these concepts and compare our modeling results to kinetic Monte

Carlo simulations.
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5.2 Centrosymmetric Step Velocities

Figure 5.1 shows an example of a centrosymmetric growth unit: adipic acid. The

monoclinic form [16] does technically contain two distinct growth units (from the per-

spective of spatial orientation within the lattice), but due to symmetry these molecules

have identical and spatially symmetric interaction environments. Figure 5.1 also shows

a tetragonal form of pentaerythritol [17], which does not have an inversion center, but

contains a single molecular orientation within the lattice that again shows symmetric

interactions. In either case, the centrosymmetric expressions are applicable, since each

molecule is in the same energetic environment.

Before introducing mechanistic expressions, it is important to clarify our definitions

of surface energies (consistent with Kuvadia and Doherty [3]), since these quantities will

be used throughout this chapter. Figure 5.2 indicates these definitions, which are divided

into kink, edge, and terrace directions (and the reverse of each); note that in the presence

of solvent all these surface energies are modified from the base solid-state interactions

(Chapter 4).

For the purpose of calculating kink densities and kink rates, we require absolute values

of energies, rather than surface energies. The following equations for kink (K), edge (E),

and terrace (T ) energies demonstrate the conversion:

φKk,i = γKk,iaP,ih (5.1)

φEk,i = γEk,iaE,ih (5.2)

φTk,i = γTk,iaP,iaE,i (5.3)

where the subscripts refer to a growth unit in single-row kink (single-kink) k on step

edge i; k cycles across both rows, growth units, and kink directions (either “east” or
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Inversion centre

[010]

[010]

Figure 5.1: Top: A view of the [010] step on the (100) face of adipic acid (CSD code
ADIPAC [16]); two growth units exist in the lattice, but both have identical and
symmetric interaction environments. Bottom: A view of the [010] step on the (101)
face of pentaerythritol (CSD code PERYTO04 [17]); a single growth unit exists, again
with a symmetric interaction environment. Images created using Mercury [18].
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Figure 5.2: Our definitions of directional surface energies around a specific growth unit
(edge and growth unit subscripts are omitted for clarity). Interactions are classified as
intrarow (kink), inter-row (edge), or interslice (terrace). Note that all interactions in
each class should be included, though nearest and next-nearest neighbor contributions
should dominate. The orthogonal directions pictured above are merely intended as
aggregate descriptors. The terrace (γT ), edge (γE), and kink (γK) surface energies
correspond to incomplete lattice interactions, while reverse terrace (γRT ), reverse
edge (γRE), and reverse kink (γRK) hypothetical-surface energies represent completed
interactions binding the growth unit to the bulk crystal lattice. Step dimensions are
also pictured: step height (h), propagation length (aP ), and growth unit width (aE).
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“west”, depending on the side exposed to form a kink [19]). The sublimation surface

energies are determined from half of each solid-state interaction that must be broken to

form the surface (see Chapter 4). Reverse energies follow identical constructions; Figure

5.2 indicates their directions, alongside illustrations of the step height (h), propagation

length (aP,i) and growth unit width (aE,i). For the centrosymmetric case, reverse energies

are equivalent: φKi = φRKi , φEi = φREi , and φTi = φRTi ; this produces just one type of

single-kink site on step edge i, so we have dropped the k subscript.

For centrosymmetric systems, it is simple to combine the effect of kink density (ρi)

and kink rate (u) in forming the velocity (vi) of step edge i: [5, 7]

vi = aP,iρiu (5.4)

The propagation length aP,i corresponds to the normal advance of a step with deposition

of a new row (see Figure 5.2). For centrosymmetric systems the kink rate is edge-

independent [3].

5.2.1 Centrosymmetric Kink Density

The centrosymmetric kink density, ρi, can be determined from Boltzmann statis-

tics [20] or minimization of Helmholtz free energy [21, 22]. The former tactic uses ge-

ometrical step transformations to extract the energetic penalty of kink formation; the

latter considers kinks as disturbances and determines the number by considering both

this energetic penalty and entropic effect of different edge configurations. Both strategies

are simplified by the existence of only one type of single-kink site for each edge. The

resulting expression is

ρi =
2exp

(
−φKi

kT

)
1 + 2exp

(
−φKi

kT

) (5.5)
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φKi is the penalty of kink formation on step edge i (see Figure 5.2 and eq 5.1); φEi and φTi

are site-independent across step edge i, so do not need to be included. Since φKi can be

edge-dependent, even for a centrosymmetric system with a symmetric interaction sphere,

ρi varies between edges. Strictly, eq 5.5 represents the kink density under equilibrium

conditions, which we adopt as an approximate description of the crystal surface during

growth; nonequilibrium formulations have also been developed [23], which are asymptotic

to eq 5.5 as S → 1.

5.2.2 Centrosymmetric Kink Rate

The kink rate, u, is the net incorporation rate into a kink site. For centrosymmetric

systems, u can be calculated from the difference between rates of kink attachment (j+)

and detachment (j−) [4–9,24]:

u = j+ − j− (5.6)

From Chapter 2, the most appropriate attachment and detachment rate expressions

are:

j+ = k+x = k+xsatS (5.7)

j− = k− (5.8)

The attachment rate is first order in solute solution concentration, x (which can be related

to supersaturation ratio: S = x/xsat), while the detachment rate is zeroth order. The
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rate constants are given by

k+ = ν0exp

(
−∆G‡

kT

)
(5.9)

k− = k+exp

(
−∆W

kT

)
(5.10)

In eq 5.9, ν0 is a frequency factor and ∆G‡ represents a desolvation barrier (for solution

growth) [5,6,8]. To predict crystal growth shapes mechanistically, k+ is often assumed to

be site-independent [3,4,12,22,24,25]. In eq 5.10, ∆W represents a reference free energy

that we calculate as the work required to detach a growth unit from kink to solution (or

vapor), which depends on that growth unit’s reverse energies:

∆W = 2φRKi + 2φREi + 2φRTi (5.11)

The factors of 2 in eq 5.11 account for the creation of two surfaces in each direction

upon detachment (reverse energies are modified by the solvent akin to their outward-

facing counterparts, to properly account for this process). For centrosymmetric systems,

∆W is edge-independent, since the combined interactions collectively form half of the

symmetric interaction sphere.

The attachment and detachment rate expressions in eqs 5.7 and 5.8 can be considered

as aggregate descriptions that represent the terrace/edge-adsorption-mediated incorpo-

ration process that is expected for organic molecules [20,26,27]. Considering either these

aggregate kinetics, or a more complete microkinetic description (Appendix 2.A), the same

kink rate results:

u = (S − 1)k+exp

(
−∆W

kT

)
(5.12)

which is edge-independent. Thus, the principal factor driving anisotropic step velocities
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for centrosymmetric systems is the kink density (in eq 5.4, ρi can vary much more than

aP,i).

5.3 Non-Centrosymmetric Step Velocities

For non-centrosymmetric growth units, the step velocity still derives from the com-

bined action of kink densities and kink rates, but now there are extra phenomena to

consider when calculating these quantities and developing a subsequent step velocity

expression. Reverse kink/edge/terrace energies are no longer necessarily equivalent to

their kink/edge/terrace counterparts, which means all interactions must be considered

in developing Boltzmann penalties for kink formation. Additionally, there may now be

multiple growth units with distinct, asymmetric interaction spheres within the lattice;

these produce site-dependent ∆Wk,i’s, which can vary between each step edge (subscript

i) and each kink (subscript k, which depends on the specific kink along the step edge, i.e.,

row, growth unit, orientation). With multiple ∆Wk,i’s possible on each edge, different

surface structures and incorporation progressions may exist; their motion may be inter-

dependent and their collective contribution to step velocity must be correctly accounted

for.

5.3.1 Non-Centrosymmetric Kink Density

The typical strategies employed to derive centrosymmetric kink densities become im-

practical for non-centrosymmetric growth units. To generalize the equilibrium Boltzmann

distribution of eq 5.5, we form site-specific energy penalties by directly considering the

kink, edge, and terrace energies from eqs 5.1–5.3. Introducing edge and terrace ener-

gies into the Boltzmann weightings allows us to capture a thermodynamic effect of row

stability (note that incorporating edge energies has also been applied by Cuppen and
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co-workers [28]).

Figure 5.3 illustrates our method. We define a “site” to be the junction between

growth units, then formulate its energy penalty to include the following contributions:

1. Half the average terrace energy for the row that is west of the junction

2. Half the average edge energy for the row that is west of the junction

3. Half the average terrace energy for the row that is east of the junction

4. Half the average edge energy for the row that is east of the junction

5. The full kink energies of any growth units exposed in the kink direction

This definition ensures a fair comparison between edge and kink sites. Using half of

the row-averaged terrace and edge energies ensures the summation of penalties across

all sites along an edge would reproduce the overall surface energy present at the step

front. The row-averaging of terrace/edge contributions is necessary for rows containing

multiple growth units; this captures thermodynamic stability/instability of the full row,

which is our goal.

With this site definition and consideration of surrounding surface energies, we can

form a Boltzmann weight for any site and, by considering each possible edge/kink site on

the step, calculate the corresponding distribution for kinks of any depth (i.e., spanning

any number of rows in the edge direction). Note that east and west orientations must be

included for kink sites (always) and edge sites (when different growth units exist either

side of the junction; see Chapter 6 for examples). With anisotropic interactions, multirow

kinks can become thermodynamically favorable, given that they can avoid expressing

high φEk,i’s or φTk,i’s, at the cost of additional φKk,i contributions. Considering Figure 5.3, if

φTB/2+φEB/2 > φTA/2+φEA/2+φKA , the Boltzmann weight for (b) is greater than (c) (note,
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Figure 5.3: Example site definitions and corresponding Boltzmann weights for (a) A
edge site, (b) B single-kink site (east), (c) AB double-kink site (east). East/west kinks
directions are defined using north as the direction of step motion (equivalently, north
= edge direction, south = reverse edge direction). Each site represents a junction
between adjacent growth units in the east–west direction. Contributions to the Boltz-
mann penalty are labeled numerically by type (see text) and color-coded as follows:
orange = A/B terrace energy, green = A edge energy, red = B edge energy, blue =
A/B kink energy.
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we removed φKB + φEA/2 + φTA/2 from both sides of the inequality); this would indicate

double-row kink (double-kink) favorability and the potential thermodynamic influence of

unstable rows.

This approach can be feasibly implemented for non-centrosymmetric edges of any

complexity and can capture thermodynamic row stability. Another key quality is that it

collapses to the centrosymmetric expression when each growth unit has the same terrace,

edge and kink interactions; equation 5.13 demonstrates this for the case of one growth

unit, though it remains true for multiple growth units under the same limit (see Chapter

6):

ρi =
2exp

(
−φTi +φEi +φKi

kT

)
exp

(
−φTi +φEi

kT

)
+ 2exp

(
−φTi +φEi +φKi

kT

) =
2exp

(
−φKi

kT

)
1 + 2exp

(
−φKi

kT

) (5.13)

This ensures that for infinitesimal anisotropy results tend to the centrosymmetric case,

which is necessary for a physically realistic model.

5.3.2 Non-Centrosymmetric Kink Rate

The lack of interaction symmetry for non-centrosymmetric growth units leads to an

anisotropic detachment rate:

j−k,i = k−k,i = k+exp

(
−∆Wk,i

kT

)
(5.14)

since the detachment-to-solution work, ∆Wk,i, now depends on the specific kink/edge/face

combination:

∆Wk,i = 2φRKk,i + 2φREk,i + 2φRTk,i (5.15)

This is edge- and site-dependent due to the asymmetric interaction sphere.

Kinks progress along an edge according to periodic cycles of growth unit incorpora-
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tion. Kuvadia and Doherty developed [3] an expression for the net incorporation rate

around a cycle containing n growth units (eqs 5.16–5.17, see Chapter 2 for more detail),

following previous treatments for the cases of two [9] and three [8] growth units.

uk,i = n

(j+)n −
n∏
k=1

j−k,i

n∑
r=1

(j+)n−r(j−i )r−1

, (5.16)

(j−i )r−1 =
n∑
k=1

(j−k j
−
k+1...j

−
k+r−2)i (5.17)

equations 5.16–5.17 enable calculation of the kink rate, provided the cycle progression is

specified, with rate constants calculated from eqs 5.7 and 5.14.

Kinks within the same cycle have equivalent uk,i (this can be proved from the cycle’s

master equation, see Chapter 2), but for non-centrosymmetric growth units, different

cyclic kink progressions may exist on the same step edge. We consider a cycle for each

possible single-junction starting kink structure k on the step edge (i.e., for each kink site

accounted for in our kink density formulation above). If multiple types of rows exist, kink

structures spanning more than one row will have different cycles from those on a single

row (“single-kinks”); furthermore, each row’s single-kink cycle will be distinct, according

to the sets of growth units contained. Figure 5.4 portrays example cycles with n = 4

for starting kinks of various depths (the four types of growth units – A, B, C, D – form

the unit cell and are repeated throughout the lattice due to translational symmetry).

When we consider multirow kink cycles, we assume a fill order that acts to maintain

the full depth of the starting kink: each “column” is filled before advancing the kink

farther along the edge. Intermediate structures in multirow cycles (e.g., Figure 5.4b,c)

can span multiple sites/junctions; separate cycles should be considered with each kink

(i.e., single-junction site) on these intermediate structures as the starting kink. Our
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fill order assumption is justified by considering sequential attachment events. In Figure

5.4c, for example, the addition of growth unit A produces two adjacent kink sites, which

will compete for incoming growth units. Only successive attachment to the B row (on

top of the A row) corresponds to our definition of a stable multirow kink structure;

if the next attachment is also into the A row it implies that row should be treated

independently (we consider unstable multirow kinks to immediately split into their most

stable intermediates). Kinetic aspects of row stability are discussed later; the important

point here is that the incorporation rate into kinks of any depth can be described via the

cyclic consideration of eqs 5.16–5.17.

The concept of stable and unstable edge rows was introduced by Kuvadia and Doherty

[3]; this phenomenon can appear when multiple types of rows exist on the step, with

anisotropic interactions. Their condition for stability was φRE + φRT ≥ φE + φT : the

step row is stable when interactions binding it to the lattice are greater than or equal to

incomplete interactions extending out to solution; otherwise, the row is unstable. Their

subsequent tactic was to determine the favorable multirow kink exposing only the rows

with low edge energy and declare a fill order that best captured stability; this was then

taken to be the exclusive structure by which the step advances. As shown later in this

chapter, such a case is essentially the limit of sufficiently high anisotropy, where that

multirow kink cycle is indeed the only relevant step edge structure.

Our new framework aims to capture the degree of instability present, i.e., relative

stability between rows, rather than adopt a binary classification of being either stable

or unstable. Additionally, we divide our description of stability into thermodynamic

and kinetic components. The step rows with highest φEk,i + φTk,i (i.e., averaged across the

growth units within that row) are the most thermodynamically unstable; we capture

this by incorporating those row-averaged terrace and edge energies into the Boltzmann

weights to appropriately penalize the expression of sites involving such rows along the
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Figure 5.4: Top views of steps with example east-direction cyclic kink progressions of
edge-direction depth (a) = 1 row, (b) = 2 rows, and (c) 4 rows (all cycles contain four
growth units, with starting kinks indicated by red dotted lines). Paracetamol (CSD
HXACAN01 [29]) has steps corresponding to each case (a): step [110] face (110); (b):
step [010] face (001); (c): step [001] face (110); see also Figure 12 in [11] for other
examples of type-b) steps. Detachment rates are anisotropic, according to the work
required to remove that growth unit. The dashed lines indicate the point in each cycle
where an ABCD repeat unit has either been deposited or removed. The vertical fill
order corresponds to a stable multirow kink; additional cycles must be considered for
kinks on the intermediate structures (see text).
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Figure 5.5: Example non-centrosymmetric step structure (top view) with four distinct
growth units. If the AB row has lower edge energy it is more likely to be exposed
on the advancing step. With increasing anisotropy, double-kinks may become the
principal step edge surface structures, but the effect of single-kinks should not be
neglected.

edge. Similarly, the step rows with lowest (or most negative) single-kink incorporation

rates are the most kinetically unstable (because detachment rates are large relative to

attachment rates). This effect is examined further in the following section.

The picture of an edge with only the most thermodynamically stable kink structure

present is unlikely to be accurate except in the limit of significant anisotropy. Until

Boltzmann fractions of less stable kink structures do become negligible, their contribu-

tions to step motion must be considered. Figure 5.5 portrays an example AB–CD step

configuration. If the CD row is thermodynamically unstable, double-kinks exposing the

AB row’s edge may indeed be favorable surface structures, but for a complete description

of how the step advances, the AB and CD single-kink cycles should also be considered.

Double-kinks may also exist for centrosymmetric systems, though their kink rate is iden-

tical to that of a single-kink. See Appendix 5.A for the centrosymmetric kink density

expression that accounts for double-kinks.

The new picture of multiple types of kink cycles acting on each step edge is more

physically correct; however, it introduces new phenomena, since each distinct kink cycle

has a unique kink rate (eq 5.16); i.e., the AB and CD single-kink incorporation rates will
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typically be different. By moving at different speeds along the edge, distinct kink struc-

tures can collide and transform, so their motion is no longer independent. Additionally,

we will show that distinct kink structures may actually move in different directions (i.e.,

one can grow while the other dissolves, even under supersaturated conditions of overall

growth), since the solute mole fraction in solution that divides growth and dissolution

regimes becomes different for each kink cycle. We next discuss the determination of xsat

for non-centrosymmetric systems and the phenomenon of kinetic row stability.

5.3.3 Determination of xsat for Non-Centrosymmetric Growth

Units

With our established choice of attachment/detachment rate expressions (Chapter 2),

the solution to uk,i(x
∗
k,i) = 0 is

(k+x∗k,i)
n =

n∏
k=1

k+exp

(
−∆Wk,i

kT

)
(5.18)

x∗k,i = exp

(
−
∑n

k=1 ∆Wk,i

nkT

)
= exp

(
−∆W k,i

kT

)
(5.19)

where n is the number of growth units (and, therefore, events) in the kink cycle; n is

uniquely defined by the starting kink k and our fill order assumption presented earlier.

The average detachment work, ∆W k,i, is equivalently an average binding energy for

growth units within the cycle; ∆W k,i can vary between cycles and cause different kink

structures to stop growing at distinct solute concentrations, x∗k,i. This introduces a key

question: is there an edge-dependent xsat,i, or a single constant (isotropic) value xsat (at a

given T ) for each crystal-solvent system? An edge-dependent xsat,i implies different edges

and crystal faces stop growing at different solute concentrations in solution. Even with a

spiral mechanism operating on each face, this would lead to dramatic changes in steady-
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state growth habit as solute concentration is decreased; as some faces stop growing,

other faces that still have a sufficient number of supersaturated spiral sides may grow

out of the shape or change the aspect ratio. Where such morphological changes do occur,

they result from transitions to two-dimensional nucleation or other mechanisms rather

than manifesting from spiral growth alone [24] (see Chapter 3). Thus, we hypothesize

that a single constant value of xsat exists (according to the crystal system and growth

conditions), and each edge on each face should stop growing at this solute concentration.

Nonetheless, distinct kink cycles retain unique mathematical solutions to eq 5.19. To

resolve this, we select our definition of xsat to be when cycles containing every type of

growth unit within the crystal lattice (maximal cycles) do not grow or dissolve:

xsat = exp

(
−
∑N

k=1 ∆Wk,i

NkT

)
= exp

(
−∆W sat

kT

)
(5.20)

where N is the number of growth units in the unit cell (this is the maximum number

of growth units in a cycle, i.e., n ≤ N). Such maximal cycles ensure a constant average

growth unit binding energy, ∆W sat, by involving the full set of crystalline interactions.

This thermodynamic criterion results in the same value of xsat for each step edge i; it

must be satisfied for a consistent implementation of our model (refer to Section 6.3.2 for

some practical comments relating to its application).

This tactic ensures that maximal cycles (i.e., those containing every type of growth

unit) halt at x = xsat; such cycles correspond to a repeat unit structure on the step. For

kink cycles that do not contain every type of growth unit (submaximal cycles), the de-

tachment work contains only a subset of lattice interactions. Thus, the behavior of these

submaximal cycles along the edge then depends on whether their average detachment

work, ∆W k,i, is larger or smaller than that of the repeat unit kink cycle, ∆W sat. The
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numerator of eq 5.16 has the following scaling:

unumk,i ∝ Sn −
(
x∗k,i
xsat

)n
(5.21)

If ∆W k,i > ∆W sat, x
∗
k,i < xsat and kink cycle k, i will have a faster net incorporation

rate than a maximal cycle (it essentially experiences a site-specific supersaturation, S∗k,i =

x/x∗k,i, that is higher than the overall supersaturation ratio, S = x/xsat). Conversely, if

∆W k,i < ∆W sat, x
∗
k,i > xsat and then kink cycle k, i will have a slower incorporation rate

than a maximal cycle, which may be negative (dissolution) for sufficient anisotropy. The

condition for dissolution is x∗k,i > Sxsat (i.e., site-specific undersaturation S∗k,i = x/x∗k,i <

1). Note that if a non-centrosymmetric step has multiple rows, but each row contains

only one type of growth unit, the single-kink incorporation rates retain the form j+− j−,

but this form no longer collapses to eq 5.12, since xsat is defined for the edge as a whole

(see Case 2 later).

Thus, kinetic instability is determined by detachment work anisotropy: rows may

dissolve if growth unit removal is easy relative to other rows. At xsat, submaximal kink

cycles may still grow or dissolve, but will soon collapse with other rows to transform

into the starting kink structure of a maximal cycle, which is then stationary. Thus, this

model ensures each edge stops moving at the calculated value of xsat.

5.3.4 Developing a New Step Velocity Expression

The Boltzmann construction presented earlier allows us to calculate the site distribu-

tion along a non-centrosymmetric step edge and extract specific densities for each type

of kink (including multiple-row kinks). Each kink then belongs to a cycle, which is the

sequence of growth units that must be added in order to regenerate the original kink.

With their cycles defined, we can calculate the net incorporation rates into each type of
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kink using eqs 5.16–5.17.

Next, we must consider the potential interactions between kink structures having

different cycles, some of which may exist as kinetically unstable rows. The overall step

velocity results from incorporation events into all of these sites, but with kink cycles

moving at different speeds, their motion is no longer independent. This phenomenon of

interacting kink structures is not relevant for the centrosymmetric case, where all cycles

move at the same net incorporation rate.

Kink collisions are either transformations, where rows combine to form a new kink

structure that can continue to grow, or annihilations, where kinks are lost as rows com-

plete (or disappear under dissolution annihilations). Both possibilities must be considered

to accurately portray step motion. The general assumption in modeling the steady-state

step velocity is that the edge remains in its Boltzmann distribution, due to the propensity

for thermal reorganization above absolute zero Kelvin [2, 20–22]. If this rearrangement

were instantaneous, the step velocity would be a simple summation of site densities

multiplied by incorporation rates (i.e., eq 5.4, for each kink). However, instantaneous

reorganization is unphysical, and instead we would expect it to occur over some finite

time frame. Thus, we expect kinks to move at their respective incorporation rates until

collision with another kink; if this corresponds to a transformation, then the combined

rows move at a new incorporation rate (according to the new kink structure) until reor-

ganization to the step’s Boltzmann distribution. Kinks where the collision time scale is

larger than the reorganization time scale continually move at their native rates (they do

not transform before annihilation).

We can determine the possible kink transformations and annihilations on a given

edge, according to which rows / kink structures may collide (this is fixed by the pattern

of growth units on the step). For each type of collision, we can calculate a time scale

using relative kink structure speeds along the edge (from kink rates) and a characteristic
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distance between sites (from the kink density). Using such time scales, we can develop

an approximate mathematical description of non-centrosymmetric step motion. This ap-

proach has elements of a population balance, but considers dominant effects rather than

attempting a comprehensive description; as will be demonstrated, the model nonetheless

shows a powerful ability to capture important new phenomena. We denote the transfor-

mation time scale for a given kink structure k as τTk ; up to this point the kink moves at its

native incorporation rate, uk, and beyond τTk it moves at a new kink rate, uTk , according

to the structure formed. Though the new kink will span additional rows, uTk should de-

scribe just the contribution to completing those of the original kink structure. To obtain

the step’s reorganization time scale, τR, we must determine the relative importance of

potential annihilation events and choose the dominant method by which kinks disappear.

The relevant time scale for kink annihilation corresponds to reorganization since we are

interested in modeling the steady-state step velocity; any loss in kinks must be balanced

by their regeneration during the reorganization for a step to continue advancing. The

following expression demonstrates this step velocity framework:

vi = aP,i
∑
k

ρk,i

[
τTk
τR
uk +

(
1− τTk

τR

)
uTk

]
i

, if
τTk
τR

< 1 (5.22)

= aP,i
∑
k

ρk,iuk,i , if
τTk
τR
≥ 1

The subscript k loops over the relevant kink sites (and their respective cycles) on step

edge i; ρk,i is the density of each kink structure along the step (where the starting

structure for each cycle is considered, to ensure a single “junction” for the kink density

description). Equation 5.22 assumes one transformation for each kink structure, but

could be generalized beyond this. The fractional time scale τTk /τ
R is a dimensionless

group describing the average fraction of k-type sites moving at their native incorporation
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rate. Thus, eq 5.22 represents an aggregate steady-state description of the step velocity

for an edge containing multiple sites of each type. Note if τTk /τ
R ≥ 1, then all kink

structures of type k move at their native velocity.

With the assumption of an isotropic attachment rate constant, each kink rate shows

proportional dependence: uk,i ∝ k+. This enables us to calculate fractional time scales

τTk /τ
R (see later for example expressions), without the need to estimate k+. The form

of eq 5.22 also maintains this proportional dependence (vi ∝ k+), which allows us to

calculate relative step velocities and face growth rates, again without an estimate for k+.

As demonstrated in Chapter 3, this assumption is a key tactic employed in mechanistic

modeling to predict crystal shapes quickly, which is an ability preserved by this more

general step velocity framework.

The next section will illustrate application of this strategy to calculate the step ve-

locity of a simple non-centrosymmetric step.

5.4 Example: A–B Step

The above concepts and strategies are best illustrated by example; we have elected

to study an alternating-row A–B step, where within each row there is one type of growth

unit. For this case, φKA = φRKA , φKB = φRKB , φREA = φEB and φREB = φEA. As indicated

previously, we are studying the case of identical molecules in solution that form different

types of growth units upon incorporation into the crystal lattice. We consider three cases:

centrosymmetric, anisotropic edge energies, and anisotropic kink energies.

5.4.1 Case 1: Centrosymmetric

The centrosymmetric case (φKA = φKB ≡ φK , φEA = φEB ≡ φE, φTA = φRTA = φTB =

φRTB ≡ φT ) permits us to benchmark the performance of simple expressions (eqs 5.4,
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5.5, and 5.12), against kinetic Monte Carlo (KMC) simulations (performed using the

KMCLib program [30]). We shall also use further KMC results to judge our new frame-

work’s predictions for non-centrosymmetric cases; see Appendix 5.A for explanation of

parameters and rate expressions. Since aP and k+ are constants, we can extract them

and plot a normalized step velocity (vA−B/aPk
+xsat), where we have also extracted xsat.

As ∆W sat increases, xsat and the resulting step velocity decrease; it is useful to remove

this effect and retain contributions to changing step velocities from kink densities and

kinetic instability alone. Figure 5.6 shows the comparison between calculated step ve-

locities and those determined from the simulations (after a steady-state is reached); it

is clear that the centrosymmetric expressions accurately describe step motion (in this

case, the change in normalized step velocity is primarily due to the kink density). We

have included double-kinks in the Boltzmann expression for kink density here, which

provides marginally improved results at low φK from the base expression in eq 5.5, which

accounts only for single-kinks (the contribution from double-kinks becomes negligible for

φK > 3kT ). The minor discrepancies that exist may result from using the equilibrium

Boltzmann kink density under nonequilibrium conditions, or from neglecting the con-

tribution to step growth from molecular attachment during one-dimensional nucleation

events.

5.4.2 Case 2: Anisotropic Edge Energies

In this scenario, the kink/terrace energies on both rows are equal (φKA = φKB ≡ φK ,

φTA = φTB ≡ φT and, by extension, φRTA = φRTB ≡ φT ), but the B row has greater edge

energy. The [001] step on the (200) face of paracetamol is an example of such a step (see

Figure 5.7).
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Figure 5.6: Plot of normalized step velocity against kink energy for a centrosymmetric
step at S=1.1 (isotropic φE and φT ). Blue squares are values determined from the
KMC simulations, and the red solid line shows calculated values from eq 5.4.
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Figure 5.7: [001] step on a slice of the (200) face of paracetamol has alternating rows
of growth units (CSD code HXACAN01 [29]; the (200) slice is in the plane of the page,
the a axis is angled out of the page). The interactions in the kink direction on each
row are symmetric and equivalent, but the edge energies are anisotropic. To avoid
exposing the high-edge-energy unstable row, double-kinks may form on the step edge.
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Kink Densities

A reasonable bound for the maximum size of multirow kink is the number of distinct

step rows. Multirow kinks have increasing kink energy penalties, so are generally only

relevant when this effect is counteracted by lower edge and/or terrace energy penalties,

which can exist by exposing only the most stable rows. A kink of depth equal to the

number of step rows can expose the row with lowest edge and terrace energy on either

side; any kinks of greater depth necessarily have higher energy penalties, so should have

negligible contribution to the Boltzmann distribution. Thus, for our case of a two-row

step, only single and double-kinks need to be considered.

Figure 5.8 indicates the edge/kink sites for this A–B step, along with their Boltzmann

penalties and our labeling convention. The east and west orientations are equivalent

(because each row has one type of growth unit), so essentially four kink structures exist:

A, B, AB, and BA. The corresponding kink densities are

ρA =
2exp

(
−0.5(φEA+φEB)+φKA

kT

)
Q

(5.23)

ρB =
2exp

(
−0.5(φEA+φEB)+φKB

kT

)
Q

(5.24)

ρAB =
2exp

(
−φEA+φKA +φKB

kT

)
Q

(5.25)

ρBA =
2exp

(
−φEB+φKA +φKB

kT

)
Q

(5.26)

Q = exp

(
−φ

E
A

kT

)
+ exp

(
−φ

E
B

kT

)
(5.27)

+ 2exp

(
−0.5(φEA + φEB) + φKA

kT

)
+ 2exp

(
−0.5(φEA + φEB) + φKB

kT

)
+ 2exp

(
−φ

E
A + φKA + φKB

kT

)
+ 2exp

(
−φ

E
B + φKA + φKB

kT

)
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where the factors of 2 account for both kink orientations (east, west). For simplicity

of presentation, we have elected to study the case of row-independent terrace energies,

where φT contributions cancel out of the Boltzmann density expressions, so have not

been included above. Figure 5.9 shows the relative population of kinks for increasing

edge energy anisotropy and φKA = φKB = 2kT .

Kink Rates

The solution of eq 5.19 for the double-kink defines the saturation solute mole fraction:

xsat,AB = exp

(
−∆WA + ∆WB

2kT

)
= exp

(
−∆WAB

kT

)
(5.28)

where ∆WA and ∆WB follow eq 5.15 (∆WA = 2φK + 2φEB + 2φT and ∆WB = 2φK +

2φEA + 2φT , since φREA = φEB and φREB = φEA). Growth of A and B single-kinks follows the

centrosymmetric construction (j+ − j−), with xsat defined by eq 5.28. Their kink rates

are given by

uA = k+xsat,AB

[
S − exp

(
−∆WA −∆WAB

kT

)]
(5.29)

uB = k+xsat,AB

[
S − exp

(
−∆WB −∆WAB

kT

)]
(5.30)

The edge anisotropy dictates ∆WA − ∆WAB = φEB − φEA > 0 and ∆WB − ∆WAB =

φEA − φEB < 0; uA > uB, and with sufficient anisotropy, uB can become negative. These

kink rates represent the net number of incorporations per unit time; since the kinks are

single-row, they equivalently correspond to the speed of kink motion on the step edge in

terms of sites per time.
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Figure 5.8: Relevant surface sites for an AB step: (a) A edge, (b) B edge, (c) A
single-kink, (d) B single-kink, (e) AB double-kink, (f) BA double-kink. Boltzmann
weights are indicated in terms of solid state interactions: green = A edge energy, red
= B edge energy, blue = A/B kink energy. Note terrace energies have been omitted,
since these contributions cancel out for row-independent terrace interactions. Only
the east kink orientations are shown (the west orientations are energetically equivalent
in this case).

230



Modeling Step Velocities and Edge Surface Structures during Growth of Non-Centrosymmetric
Crystals Chapter 5

Edge energy anisotropy

0.25

0.20

0.15

0.10

0.05

0.00
0 1 2 3 4 5

Figure 5.9: Plots of overall (ρ =
∑
ρk) and site-specific (ρk) kink densities using eqs

5.23–5.26 for φKA = φKB = 2kT , as a function of increasing edge energy anistropy. For
φEB − φEA > 4kT , the AB double-kink has the lowest energy penalty.
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The AB double-kink incorporation rate is given by

uAB = 2k+x2
sat,AB

S2 − 1

2Sxsat,AB + exp
(
−∆WA

kT

)
+ exp

(
−∆WB

kT

) (5.31)

At S = 1, uAB = 0. Since the double kink spans two rows, uAB no longer corresponds

to the speed at which the double-kink advances along the step, which is instead given

by uAB/2 (two incorporations are needed to advance the double-kink one site along the

edge).

A cycle starting with the BA double-kink is unphysical, since the upper B row moves

more slowly (or in the opposite direction) to the A row below. Thus, BA double-kinks

instantly split into two single-kinks, according to our steady-state framework. The Boltz-

mann contribution of BA double-kinks should, therefore, increase the effective distribu-

tion of single-kinks (i.e., ρeA = ρA + ρBA and ρeB = ρB + ρBA). Note that the AB

double-kink is a physical cycle because uA > uB, which requires the rows to advance

together.

Kink Transformations and Annihilations

The A–B step row presents a simple example from the perspective of possible trans-

formations, since we only need to consider A kinks colliding with B kinks on the row

below. This collision does not occur in a steady-state framework for the centrosymmetric

case, where their kink rates are identical. As anisotropy increases and uA > uB, this

collapse is feasible; for negative uB, it becomes increasingly rapid. Figure 5.10 illustrates

the transformation. To determine the time scale, we divide a characteristic number of

sites between kinks (1/ρ) by the relative kink rate (uA − uB):

τA:B =
1

(uA − uB)ρ
(5.32)
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Figure 5.10: Diagram of A:B kink transformation, indicating characteristic separation
distance and kink speeds along the edge. Note that uAB is the rate of growth unit
addition to an AB kink; its speed along the edge is half that due to completing two
rows.

Note that this kink density is the sum ρ = ρA + ρB + ρAB + ρBA from eqs 5.23–5.26.

Although the BA kink is unstable and we established ρBA should be added to both ρA

and ρB for computing effective densities, it is the original Boltzmann probabilities that

should be used for eq 5.32. The A and B kinks emerging from an unstable BA site appear

at the same point and diverge; this split does not act to reduce the characteristic distance

between sites that can collapse under this transformation.

Possible kink annihilations are A:A, B:B, and AB:AB, which are shown in Figure

5.11. To determine the reorganization time scale, we must consider which annihilation

events dominate the loss of kink sites. Expressions for each time scale are given by

τA:A =
1

2uAρ
(5.33)

τB:B =
1

2|uB|ρ
(5.34)

τAB:AB =
1

uABρeAB
(5.35)

In eqs 5.33 and 5.34, the overall Boltzmann kink density (ρ) should be used, as in eq

5.32. The absolute value of uB is needed in eq 5.34 to ensure a positive time scale

during dissolution events where the B single-kink incorporation rate is negative. In eq
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Figure 5.11: Diagrams of A:A, B:B, and AB:AB annihilations, indicating character-
istic separation distances and kink speeds along the edge. The B:B annihilation is
shown for the case of negative uB, i.e., B edge dissolution.

5.35, there is no factor of 2 since the double-kink drift velocity along the edge is half the

incorporation rate uAB. The effective density of double-kinks (ρeAB) is required in eq 5.35,

to avoid underestimating the characteristic number of sites between double-kinks; to a

first approximation we can assume all single-kinks become double-kinks: ρeAB = ρAB +ρeA

(note that ρeA = ρeB for the case of equal kink energies).

To determine whether single-kink or double-kink annihilations are most important,

we compare τA:A to τA:B, since this comparison determines whether single-kinks have

the tendency to transform before annihilation. If the transformation to double-kink is fa-
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vored, then τAB:AB is the appropriate reorganization time scale; if single-kink annihilation

occurs before transformation, then τA:A better characterizes step reorganization.

Note we do not consider τB:B for investigating the importance of single-kink anni-

hilation, since uB goes from growing to dissolving and τB:B will diverge to infinity at

this crossover. Furthermore, B:B annihilation under conditions of negative uB can be

neglected since the B layer will not nucleate without a stabilizing A row on top. Since

the step must eventually become stoichiometric upon advance, using τA:A and τA:B we

can determine the relative importance of single- and double-kink annihilations.

The reciprocals (τA:A)−1 and (τA:B)−1 relate to the rates of A:A annihilation and A:B

transformation. However, the A:A annihilation requires a completed B row below, in

between the annihilating kinks. With increasing B edge instability, it becomes more dif-

ficult for a B edge to advance without the stabilizing influence of an A row on top (i.e., an

AB double-kink); this makes completed B rows unlikely. To account for this and penalize

the A:A annihilation, we incorporate a scaling factor describing kinetic instability of the

B row: exp(−(∆WAB −∆WB)/kT ). This factor decreases with increasing B instability,

capturing the reduced probability of finding a completed B row; it simplifies to describe

edge anisotropy: exp(−(φEB−φEA)/kT ). The relative annihilation rate between single and

double-kinks, RAR1−2, can then be calculated as

RAR1−2 =
P (A : A)

P (AB : AB)
=

(τA:A)−1 exp
(
−∆WAB−∆WB

kT

)
(τA:B)−1

=
(τA:A)−1 exp

(
−φEB−φ

E
A

kT

)
(τA:B)−1

(5.36)

RAR1−2 can also be interpreted as the relative probability of A:A and AB:AB collapse.

If RAR1−2 > 1, we expect single-kink annihilations to be the dominant factor driving

loss of kink sites; in this region we use τR = τA:A. Conversely, if RAR1−2 < 1, we expect

double-kink annihilations to be dominant and use τR = τAB:AB.

The step velocity for the A–B step, vA−B, can then be determined using eq 5.22,
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which results in

If RAR1−2 > 1, vA−B =aPρ
e
AuA + aPρ

e
BuB + aPρABuAB

If RAR1−2 < 1, vA−B =aPρ
e
A

(
τA:B

τAB:AB

uA +

(
1− τA:B

τAB:AB

)
uAB

2

)
+ aPρ

e
B

(
τA:B

τAB:AB

uB +

(
1− τA:B

τAB:AB

)
uAB

2

)
+ aPρABuAB

(5.37)

The three contributions are from A single-kinks, B single-kinks, and AB double-kinks.

Effective kink densities are used for A and B kinks, to account for BA kinks that separate;

the effective kink density for AB kinks is not used, since it includes contributions from

the single-kinks. Both A and B kinks have the same transformation (collapse to an

AB double-kink), with time scale τA:B; τR is determined by considering eq 5.36, as

indicated above. When single-kink annihilation is dominant, all kinks move entirely at

their native rates. Upon double-kink annihilation becoming appropriate, the single-kinks

move at their native rates for a fraction of τR; following the transformation they move

at uAB/2 for the remaining fraction, where the 1/2 factor appears since half the double-

kink incorporation rate is attributed to each single-kink. Original double-kinks from the

Boltzmann distribution show no transformations.

Comparison to Kinetic Monte Carlo Simulations

Kinetic Monte Carlo simulations provide a useful test of our model’s ability to capture

instability phenomena. By extracting xsat, our normalized step velocity depends only on

edge/terrace energy anisotropy, rather than absolute values. We modeled step motion

using φKA = φKB = 2kT at S = 1.1. The simulations permit attachment and detachment

events from solution at kink sites according to eqs 5.9 and 5.10; similar rates follow for

edge attachment/detachment. This captures one-dimensional nucleation along the step
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edge. Note a multirow step edge typically forms and overhangs are not permitted (see

Appendix 5.A for further details).

We applied our mechanistic framework to calculate kink densities, kink rates, time

scales and step velocities for the same kink/edge energies and supersaturation that we

simulated. These quantities are tabulated and available online (see Supporting Infor-

mation for ref. [31]), and various trends can be observed (refer back to Figure 5.9 for

plots of kink densities). In the centrosymmetric limit (φEB − φEA = 0kT ), the Boltzmann

distribution is dominated by single-kinks, i.e., ρA = ρB � ρAB; at the extreme range

of our tested anisotropy (φEB − φEA = 5kT ), ρAB > ρA = ρB: now AB double-kinks are

the most favorable structure, but single-kinks still show an appreciable probability. The

thermodynamic effect of row stability is, therefore, somewhat minor, since AB double-

kinks only dominate the Boltzmann distribution at extremely high anisotropy. Next, for

φEB−φEA ≥ 0.1kT (when ∆WAB−∆WB > kT lnS, see eq 5.30), we calculate a negative B

single-kink incorporation rate, uB; only minor anisotropy is required for exposed B rows

to dissolve. This effect leads to a small τA:B transformation time scale; with increasing

anisotropy, the collapse of single-kinks to double-kinks becomes rapid. The kinetic effect

of instability appears more potent than the thermodynamic one: step motion becomes

dominated by AB double-kinks primarily due to rapid collapse of single-kinks, rather

than by AB kink thermodynamic dominance from the Boltzmann distribution. A value

of RAR1−2 = 1 is reached at φEB − φEA = 0.25kT . This reinforces how the A:B transfor-

mation occurs at low anisotropy: τR = τA:A is the relevant annihilation time scale only

for φEB − φEA < 0.25kT ; for φEB − φEA > 0.25kT , τR = τAB:AB.

In addition to applying our new non-centrosymmetric formulation, we can predict

the step velocity under the assumption of AB kink thermodynamic dominance (refer

to Appendix 5.A). This is essentially the earlier approach proposed by Kuvadia and

Doherty [3]. We expect their method to underestimate the step velocity, particularly for
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minor anisotropy, since it does not include contributions from single-kinks. For infinite

anisotropy, the kink densities under either approach become mathematically identical

(AB double-kinks are indeed the only thermodynamically possible surface structure),

leading to equivalent predictions.

Figure 5.12 shows the calculated (using both eq 5.37 and the previous method [3]) and

determined (from KMC simulations) values for normalized step velocity, plotted against

φEB − φEA. As indicated earlier, extracting the variable xsat removes its kinetic effect on

step velocity, which allows us to plot against degree of anisotropy rather than absolute

energetic values. For clarity, we include an expanded insert of the low anisotropy region

(0kT < φEB − φEA < 1kT ).

Our predicted step velocities using eq 5.37 and the presented framework compare

very favorably to those from our KMC simulations. At φEB − φEA = 0kT , we recover the

centrosymmetric case; note that eq 5.22 (and, therefore, eq 5.37) are equivalent to eq

5.4 for such symmetric interactions. Critically, eq 5.37 is able to successfully describe

step motion from this centrosymmetric regime to where significant anisotropy exists;

our formulation describes the emergence and increase of instability on the edge. At

φEB−φEA = 5kT , ρAB is not yet the exclusive structure in the Boltzmann distribution (see

Figure 5.9), but beyond this point the assumption of its thermodynamic dominance does

provide accurate results. For this case, therefore, the two approaches converge before

their kink densities are strictly equivalent, which may be due to single-kinks behaving

primarily as double-kinks with increasingly quick kinetic collapse. The greatest discrep-

ancy between our new model and the KMC simulations appears around RAR1−2 = 1,

where the reorganization time scale switches from single-kink to double-kink annihilation.

At this point, there is a discontinuity in step velocity due to the difference in τA:A and

τAB:AB. It is difficult to account for the combined action of both single and double-kink

annihilations while retaining a simple model; our approximation of only considering the
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Figure 5.12: Plots of normalized step velocity against edge energy anisotropy (S=1.1,
φKA = φKB = 2kT , φTA = φTB). Blue squares are values determined from the KMC
simulations, the red solid line shows calculated values from eq 5.37, and the green
dashed line shows calculated values assuming only AB double-kinks (the previous
approach by Kuvadia and Doherty [3]). The shaded regions indicate where single-kink
annihilation is dominant and characterizes step reorganization.
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dominant mechanism provides a practical solution that nonetheless produces favorable

results.

5.4.3 Case 3: Anisotropic Kink Energies

We now consider the case of an A–B step with anisotropic kink energies, φTA = φTB ≡

φT and φEA = φEB ≡ φE. Much of the mechanistic description is identical to the previ-

ous case, though there are some important distinctions. The parameter values we have

modeled are S = 1.1, φKA = 4kT and varying φKB = 2kT − 4.3kT .

The expressions for kink densities are unchanged from eqs 5.23–5.26, but now ρA 6=

ρB, except for the centrosymmetric case; calculated values are plotted in Figure 5.13.

With no terrace or edge energy anisotropy, double-kinks are not thermodynamically rel-

evant. Thus, to accurately describe step motion for this case, multiple kink cycles must

be considered; there is no region where the previous mechanistic treatment is appro-

priate, since instability derives purely from kinetic effects rather than thermodynamic

dominance of the Boltzmann distribution.

Kink rates still obey eqs 5.29–5.31, but now ∆WA = 2φKA + 2φE + 2φT and ∆WB =

2φKB +2φE+2φT . For φKB < 4kT , the B row (and BA double-kink) is kinetically unstable,

so uA > uB and the A:B transformation is relevant. For φKB > 4kT , the A row (and AB

double-kink) is kinetically unstable, so uB > uA and the B:A transformation is relevant

(forming a BA double-kink). If we consider the relative Boltzmann populations, we see

that in each case the kinetically unstable row has a greater kink density on the step edge,

due to a lower kink energy. This impacts possible transformations, since ρeA 6= ρeB. In

either case, the minimum of ρeA and ρeB determines the potential number of A:B or B:A

transformations.

For φKB < 4kT , our strategy is similar to case 2. Here, ρeA < ρeB, ρeA = ρA + ρBA,
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Figure 5.13: Plots of overall (ρ =
∑
ρk) and site-specific (ρk) kink densities using

eqs 5.23–5.26 for isotropic edge and terrace energies and φKA = 4kT , as a function of
increasing B kink energy; φKB = 4kT corresponds to the centrosymmetric case.
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ρeB = ρB +ρBA, and ρeAB = ρAB +ρeA. We can still determine transformation/annihilation

time scales using eqs 5.32 – 5.35, but the kinetic instability scaling factor in eq 5.36 now

reflects kink energy anisotropy:

RAR1−2 =
P (A : A)

P (AB : AB)
=

(τA:A)−1 exp
(
−∆WAB−∆WB

kT

)
(τA:B)−1

=
(τA:A)−1 exp

(
−φKA−φ

K
B

kT

)
(τA:B)−1

(5.38)

Determination of τR is unchanged, but our expression for vA−B must consider that since

ρeB > ρeA, not all B single-kinks may transform to double-kinks. As for case 2 above, when

single-kink annihilation is dominant, each kink moves at its native rate. When double-

kink annihilation becomes dominant, however, we assume that ρeA single-kinks undergo

the A:B transformation; the remainder of B single-kinks (ρeB−ρeA) would annihilate after

τB:B:

If RAR1−2 > 1, vA−B =aPρ
e
AuA + aPρ

e
BuB + aPρABuAB

If RAR1−2 < 1, vA−B =aPρ
e
A

(
τA:B

τAB:AB

uA +

(
1− τA:B

τAB:AB

)
uAB

2

)
+ aPρ

e
A

(
τA:B

τAB:AB

uB +

(
1− τA:B

τAB:AB

)
uAB

2

)
+ aP (ρeB − ρeA)

(
τB:B

τAB:AB

uB

)
+ aPρABuAB

(5.39)

For φKB > 4kT , we must switch our expressions to account for the BA double-kink

becoming kinetically relevant (the AB double-kink is instead unstable). Now, ρeB < ρeA,

ρeA = ρA + ρAB, ρeB = ρB + ρAB, and ρeBA = ρBA + ρeB. Our transformation time scale is

now

τB:A =
1

(uB − uA)ρ
(5.40)
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and annihilation time scales are

τA:A =
1

2|uA|ρ
(5.41)

τB:B =
1

2uBρ
(5.42)

τBA:BA =
1

uBAρeBA
(5.43)

Determining the dominant annihilation now considers the stable B row:

RAR1−2 =
P (B : B)

P (BA : BA)
=

(τB:B)−1 exp
(
−∆WAB−∆WA

kT

)
(τB:A)−1

=
(τB:B)−1 exp

(
−φKB−φ

K
A

kT

)
(τB:A)−1

(5.44)

Note the scaling factor here reflects that ∆WB > ∆WA (φKB > φKA ). If RAR1−2 > 1,

τR = τB:B; if RAR1−2 < 1, τR = τBA:BA. Finally, our expressions for vA−B are

If RAR1−2 > 1, vA−B =aPρ
e
AuA + aPρ

e
BuB + aPρABuAB

If RAR1−2 < 1, vA−B =aPρ
e
B

(
τB:A

τBA:BA

uA +

(
1− τB:A

τBA:BA

)
uBA

2

)
+ aP (ρeA − ρeB)

(
τA:A

τBA:BA

uA

)
+ aPρ

e
B

(
τB:A

τBA:BA

uB +

(
1− τB:A

τBA:BA

)
uBA

2

)
+ aPρBAuBA

(5.45)

Figure 5.14 shows predicted step velocities for this A–B step as a function of φKB ,

alongside values from KMC simulations. As indicated above and illustrated in Figure

5.13, the prior mechanistic treatment assuming double-kink thermodynamic dominance

is invalid for this step edge; instead, row instability is a purely kinetic phenomenon, and

different kink structures contribute to step motion. Our new formulation is capable of

capturing these effects and again shows good agreement with KMC simulations. Non-
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monotonic behavior of vA−B with increasing φKB is demonstrated by the simulations and

correctly predicted using our model.

The centrosymmetric limit occurs at φKB = 4kT for this step edge, and in this region

single-kink annihilations are dominant. As φKB moves away from this point, anisotropy in-

creases and kink transformations lead double-kink annihilations to become dominant. For

decreasing φKB (below 4kT ) the B row becomes increasingly unstable, and for increasing

φKB (above 4kT ) the A row becomes increasingly unstable. This step presents a chal-

lenging case for our modeling framework, since those kinks most dominantly expressed

in the Boltzmann distribution correspond to unstable rows; nonetheless, the presented

framework is able to quite accurately portray step motion.

Note that the case of anisotropic terrace energies may correspond to either case 2 or

3. If φTB > φTA, the B row is thermodynamically unstable (assuming isotropic φK and

φE). Depending on the stacking of layers in the terrace direction, φRTB may be greater

or less than φRTA . If φRTB < φRTA , then ∆WB < ∆WAB and the B layer is kinetically

unstable (in addition to being thermodynamically unstable); in this case, the terrace

anisotropy will produce results corresponding to case 2. If φRTB > φRTA , however, then

∆WA < ∆WAB and the A layer is instead kinetically unstable; this is similar to case 3

where thermodynamic and kinetic instabilities are decoupled.

5.5 Conclusions

Non-centrosymmetric growth units can generate interaction anisotropy and multiple

types of kink sites on a step edge. Our method for site identification and kink den-

sity calculation is applicable to any step edge and provides a simpler alternative to a

transformation-based approach. Furthermore, it collapses to the established centrosym-

metric expressions if growth unit interactions are equivalent (see Chapter 6), and also to
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Figure 5.14: Plot of normalized step velocity against B kink energy (S=1.1, φKA = 4kT ,
φEA = φEB, and φTA = φTB). Blue squares are values determined from the KMC simu-
lations, and the red solid line shows calculated values using eqs 5.39 and 5.45. The
shaded region indicates where single-kink annihilation is dominant and characterizes
step reorganization.
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the method of Kuvadia and Doherty [3] at high edge row anisotropy.

Interaction anisotropy can also cause different rows on the step to be thermodynam-

ically and/or kinetically unstable, relative to one another. Thermodynamic instability

of a row implies its kink/edge sites have a low relative presence on the step edge at

equilibrium; this is determined by the terrace/edge/kink energies that enter each Boltz-

mann weight. Kinetic instability implies a slower (or negative) net incorporation rate

for the single-kink on a row; this is determined by anisotropy in growth unit detachment

work (i.e., ∆W k,i − ∆W sat, which depends on each site’s reverse kink/edge/terrace en-

ergies). Kinetic instability can lead to transformations between kink structures on the

step edge that move at different speeds according to their distinct kink cycles. With

sufficient anisotropy, unstable edge rows can have negative kink rates, corresponding to

dissolution, under overall conditions of crystal growth.

To construct a multirow step velocity model that accounts for the effect of all possible

sites on step motion, including instability phenomena, we consider both kink transforma-

tions and annihilation events. By calculating and comparing time scales, we can deter-

mine how kink structures move at their native and then post-transformation rates, before

being regenerated via thermal reorganization (to counter the effect of annihilations).

We have applied this framework to the example of an A–B step with alternating

rows containing different types of growth units, under conditions of both edge and kink

interaction anisotropy. Our mechanistic predictions compare favorably to kinetic Monte

Carlo simulations of such steps and confirm our ability to successfully predict changes in

step velocity according to the degree of interaction anisotropy. This model connects the

centrosymmetric regime to that of extreme anisotropy by capturing the emergence and

increasing effect of row instability.

The kinetic effect of stability appears more important than thermodynamics, since

single-kink to double-kink transformations cause an edge to grow primarily as double-
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kinks before double-kink dominance of the Boltzmann distribution. Step rows with high

edge/terrace energies (relative to other rows) are likely to have low detachment work,

so thermodynamic and kinetic stability may be coupled, though this is not mandatory.

Anisotropic kink energies can also decouple the two types of instabilities, where low kink

energies may produce unstable rows that are actually the most prevalent kink structure

in the Boltzmann distribution.

The method of assuming the stable-kink’s thermodynamic dominance [3] provides a

useful model check, since this should underestimate actual step velocities and become

accurate under certain limits. It can, therefore, be used as a lower bound on vi and guide

whether or not the relevant transformations/annihilations are being captured effectively.

The challenges in applying this framework to a general step edge consisting of many

rows and many kink types are 2-fold: determining possible kink transformations and

determining the appropriate edge reorganization time scale. The number of collisions

to consider depends on how many distinct rows exist on the step. Although we have

presented the case for an A–B step here, our framework should be functionally identical

for a two-row AB–CD step, except now the single and double-kink rates must encompass

two and four growth units within the cyclic progression, respectively. The case of three

rows seems unlikely from a symmetry perspective, and we expect the generalization to

four rows and above to be feasible. Essentially, one must evaluate each row’s stability,

consider possible transformations and annihilations, and then use time scales to estimate

dominant contributions and capture the most important effects of interaction anisotropy.

Overall, this framework acts as a more systematic treatment of instability that provides

an improved description of crystal growth physics for non-centrosymmetric systems.
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Appendices

5.A Mechanistic Calculations and KMC Simulation

Data

The spreadsheet online (Supporting Information, ref. [31]) contains mechanistic pa-

rameters for each studied case: 1) centrosymmetric, 2) A–B with anisotropic edge en-

ergies and 3) A–B with anisotropic kink energies. Our normalized step velocities are

independent of isotropic terrace/edge energies, in both the simulations and mechanistic

calculations. Thus, we can construct the simulations with such isotropic quantities set

to zero for convenience of increased speed. For Case 2 (anisotropic edge energy), the

isotropic kink energies are set above zero to maintain reasonable kink densities. We em-

ploy equivalent attachment rates for A and B, j+ = k+xsatS. The detachment work of

growth unit i from site type m (kink, step, etc.) is the sum of bonds which must be bro-

ken, ∆Wm,i, and the detachment rates are then j−m,i = k+e−∆Wm,i/kT . We have arbitrarily

set k+ = 105 s−1 and aP = 1 nm, to obtain realistic values for rates, timescales and step

velocities in the given units. Normalized step velocities extracted from kMC simulations

are included alongside our mechanistic calculations, for comparison.

For Case 1 (centrosymmetric), we include double-kinks in the kink density formula-

tion:

ρsingle =
2 exp

(
−φK

kT

)
1 + 2 exp

(
−φK

kT

)
+ 2 exp

(
−2φK

kT

) (5.46)

ρdouble =
2 exp

(
−2φK

kT

)
1 + 2 exp

(
−φK

kT

)
+ 2 exp

(
−2φK

kT

) (5.47)
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When assuming AB kink thermodynamic dominance for Case 2, we use the following

expressions for kink density and step velocity:

ρ∗AB =
2 exp

(
−φKA +φKB

kT

)
1 + 2 exp

(
−φKA +φKB

kT

) (5.48)

v∗A−B = aPuABρ
∗
AB (5.49)
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6.1 Introduction

The mechanistic models presented thus far offer the ability to accurately predict

shapes of crystalline products, according to the choice of growth conditions. Coupled

with the theoretical understanding developed, these models can be implemented to en-
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able rational design of crystalline products and engineer crystal shapes, tailoring them

to specific applications. However, the utilization of these mechanistic models requires

significant investment, both in developing the required expertise and building codes to

execute the overall framework and underlying calculations at each stage.

To address this drawback and facilitate adoption of these methods, we have devel-

oped proof-of-concept software called ADDICT (Advanced Design and Development of

Industrial Crystallization Technology). This program demonstrates the feasibility of au-

tomating mechanistic models, motivating their continued development, and is acting to

transfer these techniques to industrial researchers in the pharmaceutical industry. AD-

DICT aims to be a visual and convenient prototype tool, useful for both theorists and

experimentalists, that is simple enough for novice users to obtain rapid predictions, while

enabling more experienced users extra functionality to cater for advanced design. This

chapter provides an overview of ADDICT and strategies for model execution.

6.2 ADDICT: A Design Aid for Spiral Crystal Growth

from Solution

ADDICT is designed to act both as a ‘black box’, for non-experts, and a transparent

vehicle, for users proficient in mechanistic models. Thus, the base operation requires only

three inputs:

1. The crystallography (ADDICT predictions are made for a specific polymorph)

2. A partial charge calculation (e.g., using Gaussian [1]/Antechamber [2])

3. Growth conditions: solvent, supersaturation, temperature

With these inputs, a shape prediction is produced (taking on the order of seconds or

253



Implementation and Automation Strategy Chapter 6

minutes for a standard desktop PC). Thus, the main development of ADDICT has been

to organize and execute the framework automatically for a general, non-centrosymmetric

molecule. Beyond this fundamental execution, additional features include an automatic

sweep of solvents to predict multiple habits, evaluation and visualization of possible

shapes given the crystallography and provision of mechanistic data and parameters (i.e.,

insight into the calculations) to guide shape engineering. ADDICT is currently optimized

for small organic molecules, however, future modifications are planned to broaden the

applicability to organic salts, via inclusion of recent developments for ionic crystal systems

[3–10]. This section provides a structural blueprint that describes the process of obtaining

a crystal growth shape prediction for a real (i.e., complex, non-centrosymmetric) system.

The primary goal of ADDICT is to calculate relative growth rates of the predicted

crystal faces for a specific solute polymorph and growth environment. Relative growth

rates are sufficient to determine the crystal habit using the Frank-Chernov condition (see

Section 6.2.5).

Since MATLAB is an ideal language to build a graphical user interface tool, most

codes of ADDICT are written in MATLAB, with some compiled C codes integrated into

the program to improve computational efficiency. To deal with ADDICT’s complexity

and manage different types of information, object-oriented program design is applied,

where classes are created for various types of information (e.g. lattice symmetry, growth

unit/kink/edge/plane properties). A full account of ADDICT’s internal operation is

beyond the scope of this chapter, which will instead provide an overview of its function

without addressing finer computational details. The main structure of ADDICT can be

divided into 5 modules:

(1) Input parameter preparation. This generates the input panel, which reads the crys-

tallography input alongside all growth conditions and program operation specifications.

Partial charges are obtained using external electron density calculation software.
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(2) Solid-state interactions. A lattice supercell is generated along with all solid-state

interactions using the Generalized Amber Force Field (GAFF) [11], which is applied

internally within ADDICT.

(3) Plane and periodic bond chain (PBC) determination. The relevant crystal planes

and their corresponding PBCs are determined.

(4) Energetic and mechanistic calculations. The important quantities for the crystal

growth model are evaluated (e.g., kink densities, net attachment rates, step velocities

etc.) and used to calculate relative growth rates of the crystal faces.

(5) Outputs. ADDICT’s results are generated and displayed.

This blueprint is presented in Figure 6.1. The segments are colored according to

functionality, each of which will now be discussed in more detail.

6.2.1 Input Parameter Preparation (Yellow)

The input panel in ADDICT reads specifications of the crystal system, growth con-

ditions (temperature, solvent, supersaturation) and desired program functionality. One

can browse for the crystallography input file and select a directory to save the results.

Crystallography data can be provided by a CIF (Crystallographic Information File) or

PDB (Protein Data Bank) file format and ADDICT is currently compatible with 194

out of 230 space groups. The user may select either a monomer or dimer growth unit;

when a dimer is selected ADDICT treats interactions between the constituent dimer

growth units as intramolecular and ignores them, while all the relevant intermolecular

interactions between separate dimer pairs are used to calculate inter-dimer interactions.

Cell lengths and angles, atoms types and positions, and symmetry operations are

read, stored and used to generate a Gaussian 09 input file (.com), which must be used

to perform an electron density calculation with the commercial software [1]. The default
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Figure 6.1: Schematic diagram for the structure of ADDICT.
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functional and basis set in the .com file are B3LYP/6-31G*, which could be adjusted

by an expert user. Antechamber from AmberTools (open source software) [2] must then

be run, using the Gaussian output to calculate restrained electrostatic potential (RESP)

charges, for a more accurate description of the electron density than the Mulliken point

charges calculated using Gaussian. The output from Antechamber is a .mol2 file which

should be added to the same directory as the CIF/PDB file before continuing to run

ADDICT.

6.2.2 Solid-State Interactions (Green)

From the crystallography, symmetry operations are applied to the asymmetric unit

to generate the unit cell, which is translated in the crystallographic directions to form a

9× 9× 9 supercell. Intermolecular interactions within the supercell are then calculated

using the GAFF parameter database within ADDICT and the obtained RESP point

charges; Kirkwood-Slater mixing rules are used to determine atom-atom parameters us-

ing polarizabilities [12]. A cutoff distance beyond which interactions are neglected is

determined by considering lattice energy convergence. If an intermolecular interaction

is included, even interatomic interactions with distances larger than the cutoff must be

included to ensure there are no false coulombic artifacts from the atomic partial charges.

The total interaction strengths are stored, alongside dispersive (r−6) and coulombic (r−1)

portions in order to appropriately modify energetics in accounting for the solvent effect

later (see Section 6.3.3).

6.2.3 Plane and PBC Determination (Orange)

As described in Section 6.3.1, a list of low Miller index planes is developed according

to the crystal space group, alongside the most stable slice for each; following this, PBCs
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are determined for each slice.

The default slice shift setting is ‘Auto Slice’, where the selected number of displace-

ments (4 by default) are generated to shift the slice incrementally from its initial position

up to a single interplanar spacing. If ‘No Slice’ was selected then no shifting occurs

and the ‘User-Defined’ option allows specification of both the number of slices and the

displacement between each slice (removing the constraint of reaching a displacement of

one interplanar spacing). The highest slice energy configuration is selected, but this is

an advanced technique that is often not required.

6.2.4 Energetic and Mechanistic Calculations (Blue)

This section calculates parameters for, and then executes, the mechanistic growth

model on each face. Relevant energies (e.g. kink/edge/terrace energy at each site) are

calculated, accounting for the solvent (see Chapter 4; parameters for 31 solvents are

presently contained within ADDICT). The identified PBC directions are taken as spiral

edges; step velocities are determined, and spiral rotation times are calculated for each face

(on a relative basis). Note the current formulation of the spiral model within ADDICT is

based on ref. [13], but the program is being steadily upgraded to incorporate the recently

developed models described in Chapters 3 and 5.

With the growth rate of a face expressed as G = h/τS, the relative growth rates of

faces (with reference to the slowest-growing facet) are then calculated, to remove the

need to estimate ∆G‡ and ν0, as discussed in Chapter 3. Absolute growth rates cannot

be calculated without estimates for these uncertain parameters, hence our predictions

are for the crystal shape, not size.
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Figure 6.2: The Frank-Chernov condition to predict the steady-state growth morphol-
ogy, considering a cross-sectional view of the crystal showing 6 faces, where Gi is the
growth rate of face i and Hi is the perpendicular distance of face i from the center of
the crystal.

6.2.5 Outputs (White)

From the relative growth rates, one can predict the steady-state crystal morphology

by re-casting the Frank-Chernov condition [14,15] (Figure 6.2) to:

R1

X1

=
R2

X2

=
R3

X3

=
Rn−1

Xn−1

= 1 (6.1)

where Ri = Gi/Gn is the growth rate of face i relative to a reference face n and Xi =

Hi/Hn is the perpendicular distance of face i from the crystal center relative to the

corresponding distance for face n. The Xi values are used in ADDICT to construct the

steady-state growth shape of the crystal.

Upon running ADDICT, outputs appear within the graphical user interface. The
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steady-state crystal growth shape is rendered, alongside spiral shapes on each face. Rel-

ative growth rates and relevant energetics are also available and saved as data files. The

attainable region sub-module allows the user to discover the range of possible shapes

through cycles of growth and dissolution [16].

6.3 Practical Considerations for Model Implementa-

tion

While Section 6.2 provides an overview of the implementation strategy, there are a

variety of subtleties at each stage of the mechanistic shape calculation. These consider-

ations are discussed in the following sections, to provide more detailed insight.

6.3.1 Periodic Bond Chain (PBC) Algorithm

Based on the theory established by Hartman and Perdok (Section 1.2.1), ADDICT

calculates relative growth rates of flat ‘F’ faces (stepped and kinked faces are assumed to

grow fast in comparison). If a stepped/kinked face cannot grow out and lead to a closed

solid object, a needle-like or plate-like crystal could form, in which case an arbitrarily

large relative growth rate is assumed. For each F face, ADDICT identifies a slice, which

has a thickness corresponding to the deposited layer for a single elementary growth step.

The Generalized Amber Force Field (GAFF) [11] is used in ADDICT to determine

intermolecular interactions; GAFF extended AMBER [17] from proteins to pharmaceu-

tical molecules for use in drug design and should, therefore, be sufficient to accurately

describe API molecules. The total interaction is divided into dispersive and coulombic

portions using the corresponding GAFF terms, which is required for the solvent effect

(see Section 6.3.3).
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ADDICT currently works for pure organic molecules, where nearest-neighbor inter-

actions in the crystal dominate the lattice energy due to a lack of significant charges that

could result in a larger coulombic term in GAFF (the long-ranged portion of the interac-

tion). In ADDICT, an energy cutoff is used in forming PBCs, which can be modified in

the input panel. Typically a cutoff of 1 kT allows the PBCs to represent at least 90% of

the lattice energy, while exclusively containing nearest neighbor interactions. From this

point on the energetics are assumed to be completely represented by the PBCs.

ADDICT calculates the growth of F faces that are important for a particular space

group, based on extinction conditions. To calculate the intermolecular bonds used to

form PBCs, all interatomic interactions between a pair of growth units are summed,

with the bond vector determined using the center of mass of each growth unit. PBCs are

easily determined for centrosymmetric crystal structures, such as naphthalene, since each

intermolecular bond corresponds to a PBC: the same bond into a growth unit from one

side extends out in the exact opposite direction on the other side (energies are identical).

Thus, centrosymmetric growth units produce straight PBCs, and growth units or kink

sites along an edge are identical in terms of energy. For non-centrosymmetric structures,

such as paracetamol, lovastatin and RDX (1,3,5-Trinitroperhydro-1,3,5-triazine), the de-

termination of PBCs is much more complicated and the constituent bonds of a repeat

PBC unit are in general not all aligned with the overall PBC direction (the PBCs can

be somewhat jagged along the overall straight direction).

The PBC algorithm for non-centrosymmetric systems in ADDICT uses a combi-

nation of hard and “soft” rules in order to optimize the selection of PBCs for each

slice. This method could benefit other crystallography researchers, since periodic bond

chains are a useful tool in understanding crystal growth and their determination for

non-centrosymmetric systems is non-trivial.

Figure 6.3 summarizes the algorithm. Firstly, the slice is defined; the PBC algorithm
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Generate low index planes

Make all possible chains by connecting

equivalent growth units within the supercell

Hard rules to 

shortlist potential

PBCs

Eliminate chains whose PBC vector is 

not perpendicular to the face normal

Eliminate chains containing weak bonds

(below strength cutoff)

“Soft” rules to 

order PBCs

Determine angles between successive 

bonds and with overall PBC vector

Use energetic and angle 

information to order PBCs

For each 

face

Where PBCs share bonds or have

similar directions, keep only the most 

preferred (straighter/stronger chain)

Find F faces

(containing 2 or more PBCs)

Figure 6.3: Algorithm for finding PBCs and F faces.
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is applied on each face individually. A list of the lowest Miller index faces is developed

and the unique faces in each direction are selected to investigate, from which the slice

thickness is defined based on the interplanar spacing (which can be calculated from

the Miller indices). Symmetry (extinction) conditions for the crystal polymorph’s space

group are applied to determine if a reduced interplanar spacing should be selected in any

direction, which corresponds to a set of higher Miller indices and can exist for the special

directions in the space group lattice where symmetry dictates repeated slices per unit

cell as the face grows.

The second step is to generate a list of all possible periodic bond chains. The core con-

cept is that to be periodic, chains must contain a repeat unit which starts and ends on the

same growth unit. Chains can, therefore, be generated by considering each growth unit

within the crystal and connecting two such growth units by a path of additional growth

units. Single connection chains directly connect growth units, 2-connection chains sep-

arate growth units by bonding to a different growth unit and so on. Single connection

chains are developed by considering each growth unit within the crystal lattice in turn

and finding the intermolecular interactions that connect it to itself. In developing 2-

connection chains, for each growth unit considered as the start and end points, one must

loop through other growth units (and their different positions within the supercell) that

can act as an intermediate connection. This tactic is continued for higher connection

chains and does not change except in complexity. While forming these chains, one can

apply priority rules to determine whether such a chain is remotely physical and warrants

further investigation. Firstly, the PBC vector defining the repeat unit cannot have any

component perpendicular to the slice, because upon extending the chain indefinitely it

will not remain in the slice. Secondly, chains should not be formed using any intermolec-

ular bonds under the strength cutoff provided in the input panel. This should be of the

order 1 kT or lower (corresponding to the roughening transition [18–20]) and if no value
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is provided ADDICT uses 0.2 kcal/mol by default. These two rules enable the search for

candidate PBCs to be reduced to a practical problem using the above approach based

on connecting growth units in a periodic fashion.

With the list of candidate chains, ADDICT ranks PBCs based on soft priorities, in

order to select the best PBCs for that slice. The desire is to have PBCs correspond

to the most stable step edges on a crystal surface, i.e., those sides naturally emerging

from a screw dislocation during spiral growth, which is why the algorithm effectively

finds the most physically stable surface structures. ADDICT treats each spiral itself as

a faceted object composed exclusively of those in-slice PBCs. Such straight-sided spirals

have been experimentally imaged [21, 22] and this picture is essentially exact while the

step edges remain below their roughening transition; above this point, step curvature

begins to appear. The assumption of straight edges is expected to be valid in the spiral

regime and, with relative growth rates being calculated (Section 6.2.5), errors introduced

from this approximation should prove inconsequential.

The main priority in ranking PBCs is to consider tradeoffs between straightness and

strength. In general, the least jagged chain in the edge direction should be selected;

angles between successive bonds or between a bond and the overall PBC vector should

be considered. Protrusion in the edge/reverse-edge direction is most important; in con-

trast, the terrace/reverse-terrace direction is largely irrelevant from the perspective of

determining PBCs (it is, however, critically important in predicting fill order of kinks or

step rows). Ordering PBCs with respect to this strength and straightness information is

necessarily subjective, but providing enough PBCs are considered the subsequent calcu-

lations will not be affected (unimportant PBCs will grow out of spirals and not affect the

rotation time calculation, see eq 3.22). Nonetheless, when bonds are shared or the PBC

vector is very similar between multiple PBCs, the chain with higher priority can be kept

and the other eliminated, leaving unique PBCs that offer the ‘best use’ of interactions
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within the slice to form low-edge energy spiral sides with maximum in-chain interactions.

The slice can be shifted, while maintaining its thickness that is defined by the Miller

indices, in order to maximize the slice energy (the contained PBCs). This is an advanced

technique and often unnecessary, but for complicated non-centrosymmetric cases where

the slice is not readily apparent, it can be useful to once again ground the model in an

energetically favorable face and edge configuration, which is essential in moving forward

for the mechanistic growth calculation to be applicable.

6.3.2 Step Velocity Calculation

Implementing the step velocity model described in Chapter 5 requires some additional

considerations. First, sites must be correctly identified. To assist with this, we illustrate

the non-centrosymmetric kink density calculation and site identification, by example, in

Appendix 6.A. We chose naphthalene to describe the process, since two growth units

exist from the perspective of lattice orientation. Thus, Appendix 6.A also demonstrates

the appropriate collapse of our non-centrosymmetric formulation to the expected cen-

trosymmetric expressions, when energetics are such to render growth units equivalent.

Furthermore, Appendix 6.A describes determination of the fill order along an edge (or

as the step advances).

Second, in Section 5.3.3, we indicated that an isotropic xsat (i.e., common to each

edge on the crystal) was required for a consistent implementation of our model. The

following describes some practical aspects to achieve this under solution growth.

Calculating xsat for Solution Growth

To ensure model consistency, we established that the value of ∆W sat, which cor-

responds to maximal kink cycles, must be the same regardless of edge. This average
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detachment work ∆W sat also represents the average growth unit binding energy to the

lattice, which includes every crystal interaction for maximal cycles. Under vapor growth

the detachment work includes only the solid-state interactions, since there are no solu-

tion effects; thus, the vapor-growth ∆W sat is simply the lattice energy of the crystal.

When periodic bond chains (PBCs) can be approximated as the only relevant solid-state

interactions, the vapor-growth ∆W sat then corresponds to the PBC portion of the lattice

energy.

For solution growth, the surface energetics are modified to account for interfacial

solvent effect (see Chapter 4); in this case, ∆W sat depends on the surfaces (interfaces)

that are created upon growth unit detachment. The energetic-modification process is

applied to each site-specific surface, containing some subset of the total interactions;

since each individual intermolecular interaction will extend from various surfaces across

different edges/faces, the effect of this modification will vary slightly with location. An

artifact of this technique is the introduction of minor edge variation in ∆W sat. To ensure

consistency, one should determine an average value for ∆W sat following the solvent mod-

ification and then rescale the solvent-modified surface energies at each site to converge

all maximal cycles to this average value of ∆W sat and, therefore, maintain an isotropic

value for xsat.

6.3.3 Solvent Effects

Chapter 4 described the process of modifying interfacial energies to account for the

solvent, from the perspective of using the CLP force field [23]. Since ADDICT uses the

Generalized Amber Force Field (GAFF), we will briefly mention how crystal energies are

divided into dispersive and acid-base contributions. First, locations of potential acid-

base interactions are found by analyzing PBCs with a large coulombic character (r−1
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term in GAFF). The dispersive portion of crystal energy is calculated by multiplying the

total PBC interaction strengths by d/(d + c), where d and c correspond to the r−6 and

r−1 terms from GAFF, respectively. The acid-base portion is calculated by multiplying

instead by c/(d + c). This fractional treatment is used because partitioned force field

terms are less reliable than the total interaction energy [24].

6.4 Conclusions

This chapter demonstrates the automated execution feasibility of mechanistic mod-

els and describes their implementation from the perspective of proof-of-concept software,

ADDICT. The program has been tested for a variety of organic compounds and predicted

shapes are generally in good agreement [25] with experimental reports. Additionally, AD-

DICT makes it possible to evaluate a wide variety of crystal systems quickly. As a result,

it allows us to identify deficiencies in the methodology that are otherwise difficult to

uncover and permits rapid testing of alternative approaches. Model augmentations that

further improve accuracy or applicability can then be incorporated. Indeed, ADDICT is

being continually upgraded based on concurrent research developments.

ADDICT currently implements a model for spiral growth, so supersaturation-dependent

shape effects that result from transitioning to different growth mechanisms (i.e. 2D nu-

cleation) are not yet accounted for. Note that the kink rate for non-centrosymmetric

molecules has a complex supersaturation-dependence that leads to relative growth rates

that do depend on the supersaturation (albeit usually to a minor degree) even with all

faces in the spiral regime. For centrosymmetric systems however, there is no depen-

dence on supersaturation for the relative spiral growth rates (see eq 3.73), so shapes

are independent of supersaturation. These limitations are likely acceptable for the con-

trolled synthesis of pharmaceuticals, where low supersaturations and a spiral regime are
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applicable.

Appendices

6.A Kink Density Example: Naphthalene Face (001)

We demonstrate the non-centrosymmetric kink density calculation for a real crystal by

considering the [010] and [110] steps on the (001) face of naphthalene under sublimation

growth. This is an example of a centrosymmetric crystal containing two centrosymmetric

growth units, which are equivalent in terms of interaction energetics but distinct from

the perspective of lattice orientation. This section will demonstrate the collapse of our

new non-centrosymmetric formulation to the centrosymmetric case.

Figure 6.4 indicates our growth unit definitions for naphthalene. Tables 6.2a and 6.2b

contain the energetic parameters for the [010] and [110] steps, respectively, on face (001).

Refer to the subsequent figures for visualization of the relevant in-slice intermolecular

interactions responsible for these energetics. Under sublimation, the kink energy is half

the total kink-direction periodic bond chain (PBC) strength; edge energies similarly

involve half interaction strengths of PBCs extending from that growth unit in the edge

direction. For the centrosymmetric case reverse kink/edge/terrace energies are equivalent

to their kink/edge/terrace counterparts, which is clearly demonstrated by the symmetry

evident in the forthcoming step images. Furthermore, note that the detachment work,

∆W , is the same for each step; as indicated in Chapter 5, symmetry dictates that a

centrosymmetric system will show this isotropic nature.
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A

B

A

B

Figure 6.4: A and B growth units for naphthalene.
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Table 6.1: Energetic parameters for the (a) [010] and (b) [110] steps on face (001)
of naphthalene (sublimation growth at T = 283K, calculated using the CLP force
field [23]). Note that although 2 growth units exist, A and B parameters are identical
due to symmetry. All values are in units of kT .

A B

EPBC 6.0 6.0
φK = φRK 3.0 3.0
φE = φRE 7.7 7.7
φT = φRT 3.9 3.9
∆W 29.2 29.2

(a) Step 010

A B

EPBC 7.7 7.7
φK = φRK 3.9 3.9
φE = φRE 6.8 6.8
φT = φRT 3.9 3.9
∆W 29.2 29.2

(b) Step 110
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6.A.1 Step [010]

The [010] step on the (001) face of naphthalene contains two rows, each with a single

growth unit. The following sites must be considered:

• A0 (A edge site)

• B0 (B edge site)

• A1W (west A single-kink)

• A1E (east A single-kink)

• B1W (west B single-kink)

• B1E (east B single-kink)

• A2W (west AB double-kink)

• A2E (east AB double-kink)

• B2W (west BA double-kink)

• B2E (east BA double-kink)
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A A

[010] direction = 6.0 kT
[110] direction = 7.7 kT

Figure 6.5: A0 edge site. The relevant intermolecular in-slice interactions are also
pictured. Edge energy interactions correspond to surface energies, which represent
half of the solid-state interaction strength. For our Boltzmann weighting we use
a further half of the edge energy for each growth unit either side of the junction.
Terrace interactions are not pictured.

Figure 6.5 shows the definition of an A0 edge site. Since there are no kink energy

contributions, the Boltzmann weighting (wA0) is half the combined row-averaged edge

and terrace energy from each growth unit either side of the junction: wA0 = 1/2(φEA +

φTA + φEA + φTA) = φEA + φTA.
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B B

Figure 6.6: B0 edge site indicating edge interactions.

Figure 6.6 shows the definition of an B0 edge site. The Boltzmann weighting (wB0)

is: wB0 = 1/2(φEB + φTB + φEB + φTB) = φEB + φTB.
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Figure 6.7 shows the definition of a A1W and A1E single-kink sites (west and east).

The Boltzmann weighting is identical for east and west; it accounts for the full kink

energy exposed and half the (row-averaged) edge + terrace energy from the growth units

either side: wA1W = wA1E = φKA + 1/2(φEB + φTB + φEA + φTA). It is clear that for this

case the successive rows of growth units are not aligned perfectly on top of each other.

Although in Chapter 5 we drew our examples with aligned growth units for convenience,

in reality this skewed nature is common. This illustrates the importance of formulating

row-averaged edge and terrace energies for the Boltzmann weightings, to avoid the need

to decide which growth unit’s edge energy should be included. In Figure 6.7, selecting

the partially exposed B growth unit below the A growth unit would render a different

edge + terrace contribution and not reflect a full growth unit. For step [010], each row

has only a single growth unit, so the row-averaging has no effect, but a full growth unit

must be used.
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A

B B B B

A

Figure 6.7: A1W and A1E single-kink sites (west=left and east=right), indicating
kink and edge-direction interactions.
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A

BB

A A

Figure 6.8: B1W and B1E single-kink sites (west and east), indicating kink and
edge-direction interactions.

Figure 6.8 shows the definition of B1W and B1E single-kink sites (west and east).

Both Boltzmann weightings are wB1W = wB1E = φKB + 1/2(φEB + φTB + φEA + φTA).
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Figure 6.9 shows the definition of A2W and A2E AB-double-kink sites (west and

east). The Boltzmann weightings are: wA2W = wA2E = φKA + φKB + 1/2(φEA + φTA +

φEA + φTA) = φKA + φKB + φEA + φTA. Figure 6.9 also indicates another complication: which

way is the double kink oriented? Figure 6.10 illustrates an alternative choice of double-

kink surface structure. To determine which option is most physically realistic, we need

to consider the optimal fill order. If overhangs are not permitted, the structures in

Figure 6.9 must be formed regardless of which starting kink is realistic. Thus, we can

consider which attachment event is most favorable at this point. We can determine

the ∆W that would result from attachment at a position (equivalently, the detachment

work of removing a growth unit that was deposited in such a position). In Figure 6.9,

the growth unit attachment work to the B row is greater than the A row, due to the

completion of an extra [110] interaction. This justifies our selection of Figure 6.9 as

the optimal surface structure and indicates that Figure 6.10 is not physically realistic.

Note for the centrosymmetric case distinguishing between these options is not required,

since they produce identical mechanistic results due to symmetry. However, our tactic

for fill order determination (maximizing the attachment work at each sequential event)

becomes important when non-centrosymmetric skewed double-kinks must be considered.

Furthermore, this consideration is equally important in determining the order of step

row deposition during edge advance. From this point on, all figures will indicate the

double-kink starting structures according to this rule of maximizing ∆W .
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A

B

A

A

B

A A

Figure 6.9: A2W and A2E AB-double-kink sites (west and east).

A

B

A

A

B

A A

B B

Figure 6.10: Unfavorable AB double-kink sites.
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A

B

BB

B

B B

A

Figure 6.11: B2W and B2E BA-double-kink sites (west and east).

Figure 6.11 shows the definition of B2W and B2E BA-double-kink sites (west and

east). The Boltzmann weightings are: wB2W = wB2E = φKA + φKB + 1/2(φEB + φTB + φEB +

φTB) = φKA + φKB + φEB + φTB.
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The partition function for the Boltzmann distribution, Q[110] accounts for each pos-

sible site (note β = 1/kT ):

Q[110] = exp (−βwA0) + exp (−βwB0)

+ exp (−βwA1E) + exp (−βwA1W ) + exp (−βwB1E) + exp (−βwB1W )

+ exp (−βwA2E) + exp (−βwA2W ) + exp (−βwB2E) + exp (−βwB2W ) (6.2)

Since each growth unit has identical interactions (centrosymmetric case, see Table 6.2b),

we find wA0 = wB0 ≡ w0, wA1W = wA1E = wB1W = wB1E ≡ w1 and wA2W = wA2E =

wB2W = wB2E ≡ w2, with the following definitions:

w0 = φE + φT (6.3)

w1 = φK + φE + φT (6.4)

w2 = 2φK + φE + φT (6.5)

Our kink densities reduce to

ρsingle =
4 exp (−βw1)

Q[110]

(6.6)

=
4 exp (−βw1)

2 exp (−βw0) + 4 exp (−βw1) + 4 exp (−βw2)
(6.7)

=
4 exp

(
−β(φK + φE + φT )

)
2 exp (−β(φE + φT )) + 4 exp (−β(φK + φE + φT )) + 4 exp (−β(2φK + φE + φT ))

(6.8)

=
2 exp

(
−βφK

)
1 + 2 exp (−βφK) + 2 exp (−2βφK)

(6.9)
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and

ρdouble =
4 exp (−βw2)

Q[110]

(6.10)

=
4 exp (−βw2)

2 exp (−βw0) + 4 exp (−βw1) + 4 exp (−βw2)
(6.11)

=
4 exp

(
−β(2φK + φE + φT )

)
2 exp (−β(φE + φT )) + 4 exp (−β(φK + φE + φT )) + 4 exp (−β(2φK + φE + φT ))

(6.12)

=
2 exp

(
−2βφK

)
1 + 2 exp (−βφK) + 2 exp (−2βφK)

(6.13)

Equations 6.9 and 6.13 are identical to eqs 5.46 and 5.47; thus, our non-centrosymmetric

treatment of this centrosymmetric edge collapses to the expected centrosymmetric ex-

pressions.

Table 6.2a (and 6.2b) further demonstrates that an isotropic ∆W exists for cen-

trosymmetric systems. Thus, each kink cycle produces the same net incorporation rate.

As indicated in Chapter 5, transformations are not relevant for this case and the step

velocity simply results from the combined kink density multiplied by this isotropic kink

rate.

6.A.2 Step [110]

The [110] step on the (001) face of naphthalene contains a single row that contains

both A and B growth units. The following sites must be considered:

• A0 (AB edge site)

• B0 (BA edge site)

• A1W (west A single-kink)
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• A1E (east A single-kink)

• B1W (west B single-kink)

• B1E (east B single-kink)

• A2W (west AB double-kink)

• A2E (east AA double-kink)

• B2W (west BA double-kink)

• B2E (east BB double-kink)

Figures 6.12 - 6.16 portray these kink structures; Boltzmann weights are provided in

the captions. Note that each row is identical and has row-averaged terrace + edge energy

equal to 0.5(φEA + φTA + φEB + φTB).
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BAB A

Figure 6.12: A0 AB-edge (right) and B0 BA-edge (left) sites. Boltzmann weights:
wA0 = wB0 = 0.5(φEA + φTA + φEB + φTB).
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A A

A AB B

Figure 6.13: A1W and A1E single-kink sites (west and east). Boltzmann weights:
wA1W = wA1E = φKA + 0.5(φEA + φTA + φEB + φTB).

284



Implementation and Automation Strategy Chapter 6

B

B A

B

B A

Figure 6.14: B1W and B1E single-kink sites (west and east). Boltzmann weights:
wB1W = wB1E = φKB + 0.5(φEA + φTA + φEB + φTB).
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A

B

A

BB A

A

A

Figure 6.15: A2W (west) and A2E (east) double-kink sites. Boltzmann weights:
wA2W = φKA +φKB + 0.5(φEA +φTA +φEB +φTB), wA2E = 2φKA + 0.5(φEA +φTA +φEB +φTB).
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B A

B

BB

B

A

A

Figure 6.16: B2W (west) and B2E (east) double-kink sites. Boltzmann weights:
wB2W = φKA +φKB + 0.5(φEA +φTA +φEB +φTB), wB2E = 2φKB + 0.5(φEA +φTA +φEB +φTB).

Since φKA = φKB , φEA = φEB and φTA = φTB, the resulting kink densities collapse to the

centrosymmetric case, in essentially identical fashion to the [010] step. Note, of course,

φK[010] 6= φK[110], so the actual kink density values for each step are different.
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Chapter 7

Conclusions and Future Work

Controlling crystal growth shapes to improve product functionality is highly desirable

in every industry that manufactures or uses crystalline products. An engineering tool

to screen through the available design space and find growth conditions that confer

an optimum crystal morphology would, therefore, be extremely valuable. Mechanistic

models for crystal growth serve as the foundation upon which such a predictive tool can

be realized. This dissertation details various developments to mechanistic models that

enhance their accuracy and applicability for general systems. These improvements are

summarized below, and then avenues for continued research are suggested.

7.1 Summary of Model Improvements

Figure 7.1 summarizes again how the developments contained in this dissertation fit

into the multi-scale modeling structure presented in Chapter 1.

Chapter 2 analyzed various sets of attachment/detachment rate expressions and con-

sidered the growth unit incorporation mechanism at kink sites on the step edge. These

kinetic processes underpin the entire mechanistic formulation, so it is important to ensure
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Figure 7.1: An indication of where each modeling development fits into the overall
multi-scale mechanistic structure.

an accurate description is contained. Sets of rate expressions used in previous mechanis-

tic models are evaluated with respect to crystallization thermodynamics and kinetics; the

most consistent set is then proposed. Interestingly, this preferred set of rate expressions

is actually simpler than alternative formulations.

Chapter 3 addresses the critical issue of modeling the correct growth regime on each

crystal face. It is essential to model the dominant mechanism, which is potentially

different for each face family, and account for the mechanistic parameters that drive

regime progressions as supersaturation is increased. The introduction of a mechanistic

expression for the 2D nucleation rate prefactor enables us to connect regimes and pre-

dict face-specific crossovers; the presented framework, using new mechanistic parameter

groupings within growth rate expressions, offers a reliable way to calculate the impact

of supersaturation. This is demonstrated via successful predictions for various systems,

which confirm the model’s accuracy.
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Chapter 4 details an investigation into accounting for the effect of solvent by im-

plementing an energetic modification at the crystal–solvent interface. Various practical

options for determining the work of adhesion are reviewed, and the model by van Oss,

Chaudhury and Good [1] is selected as offering the best balance between predictive power

and feasible application into automated shape-prediction models. Sublimation and so-

lution growth shape predictions are compared to experimental determinations, which

confirm the predictive capacity of the proposed technique.

Chapter 5 introduces a step velocity model for non-centrosymmetric growth units

that, for the first time, accounts for multiple kink cycles and interdependent surface struc-

tures on the step. Both thermodynamic and kinetic contributions to step row instability

are discussed and accounted for, which are phenomena unique to non-centrosymmetric

growth units (such growth units represent most industrially relevant compounds). Criti-

cally, this model collapses to the centrosymmetric formulation under appropriate limits,

so it offers vastly increased potential for model automation, while simultaneously offering

improved description of surface growth physics at the step edge.

Finally, Chapter 6 describes the strategy for implementing mechanistic models to

obtain a shape prediction. This strategy is presented from the perspective of proof-of-

concept software, called ADDICT, which is serving to transfer these high-fidelity crystal

growth models to researchers in the pharmaceutical industry and facilitate methodology

adoption. Specific tactics are discussed relating to periodic bond chain determination,

amongst other automation details, to offer deeper insight into program operation and

how to execute these calculations. Ultimately, this software reinforces that mechanistic

models can actually deliver the ability to improve design of crystalline products; their

continued development is not just a theoretical exercise.
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7.2 Areas for Future Enhancement

A significant advantage of adopting a mechanistic approach is the ability to refine and

assimilate future developments to increase model performance and utility. The following

sections indicate interesting avenues for further model enhancements, divided according

to estimated feasibility.

7.2.1 Shorter Term

The developments detailed in Chapter 5 pave the way to generalize the framework

in Chapter 3 to non-centrosymmetric growth units. The base rate expressions for 2D-

nucleation regimes do not require modification and can incorporate the non-centrosymmetric

step velocity model directly. Furthermore, the average edge energy for each critical nu-

cleus side can be calculated assuming a Boltzmann distribution of edge rows along the

step front, adopting a similar methodology to the kink density tactics from Chapter 5.

This circumvents the complication of alternating edge energies as the critical nucleus

grows, and is more physically realistic for organic molecular crystals, where we expect

the step edge to reorganize according to instability effects.

In Chapter 4, we indicated the need to estimate electron accepting/donating ratios

using chemical intuition. Although shapes may not prove sensitive to this value, the

Hydrogen Bond Propensity (HBP) analysis [2–5] available within the CCDC Mercury

software [6] may prove useful for a more systematic determination, where necessary.

This has an additional advantage of being a data-driven model based on the wealth of

crystal structures contained in the Cambridge Structural Database [7]; it could enable

ratios to be tailored to specific functional groups exposed at surface sites.

At various stages, we have mentioned the possibility of obtaining mechanistic pa-

rameters, such as kink energies or kinetic rate constants, using molecular simulations.
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Such accurately determined parameters can be readily incorporated within the model-

ing framework; a notable example of this is Dogan and coworkers [8], who applied the

spiral growth model under dissolution and used simulated parameters to compute abso-

lute rates. Though we have focused on shape engineering for practicality, the potential

convergence of techniques reinforces the intrinsic value of this mechanistic framework.

7.2.2 Longer Term

Obtaining solvent-modified interfacial energies through simulations is largely incom-

patible with a fast engineering tool, due to the number of surface sites and the need to

screen a vast design space (each set of conditions requires new simulations). A middle

ground, between computationally expensive methods and the approximate techniques in

Chapter 4, might be found using the COSMOlogic suite of programs [9–11]. COSMO-RS

theory [12–15] is able to determine thermodynamic properties of mixtures by considering

statistics of interacting molecular surface segments, each with defined charge density. A

molecule’s distribution of surface charges (σ-profile) is the result of a COSMO calcula-

tion [16] (taking on the order of hours–days depending on molecular size, theory level

and parallelization), which only has to be done once for each molecule. Thus, one could

perform a COSMO calculation, overlay the molecular σ-profile onto the CIF file, and

propagate this information through the crystal supercell generated during the mechanis-

tic model execution. At each surface site, a subset of the σ-profile could be generated

according to the exposed fraction of the molecule. The COSMOlogic software could then

calculate interfacial thermodynamics against the solvent for each reduced, site-specific

σ-profile. While less automatable than the current formulation, this tactic is much more

suitable for design space screening than molecular simulations, since the semi-expensive

portion of the calculation is required just once [17]. Alongside potentially increased accu-
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racy, this would also facilitate mixed solvent growth shape predictions (using an average

solution σ-profile).

Our current strategy to verify force field accuracy for a given crystal is to compare

the predicted lattice energy to reported sublimation enthalpies. However, crystal shapes

depend on relative growth rates, and so our predictive capability depends primarily on

how well our calculated energetics match relative interaction strengths. Thus, while

a lattice energy that closely corresponds is reassuring, it would be optimal to instead

compare predicted relative interaction strengths for the dominant PBCs against some

benchmark.

While the presented models consider single crystal growth in solution, modeling epi-

taxial growth of thin films could broaden predictive utility to the production of organic

electronic devices made from small conjugated molecules, which is an area of rising in-

terest. The techniques for connecting growth regimes established in Chapter 3 might

serve as a starting point, but any additional mechanisms and the effect of substrate must

be accounted for (e.g., lattice mismatch, presence of dislocations etc.). Nonetheless,

evidence exists of steps on inkjet-printed single-crystal thin films [18], and engineering

aligned crystalline domains within device active layers could improve product character-

istics [19].

Finally, broadening these models beyond crystal shapes is another area of current

focus in our research group. Considering appropriate solute and solvent descriptors of the

underlying attachment/detachment kinetic processes shows great promise for developing

models that could be assimilated within the framework and predict absolute rates. This

opens up the connection to predictive population balance modeling of crystal systems.
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