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CLASS NUMBERS OF MULTINORM-ONE TORI

FAN-YUN HUNG AND CHIA-FU YU

Abstract. We present a formula for the class number of a multinorm one torus TL/k associ-
ated to any étale algebra L over a global field k. This is deduced from a formula for analogues
of invariants introduced by T. Ono, which are interpreted as a generalization of Gauss genus
theory. This paper includes the variants of Ono’s invariant for arbitrary S-ideal class numbers
and the narrow version, generalizing results of Katayama, Morishita, Sasaki and Ono.

1. Introduction

Let K/k be a finite extension of number fields. Ono [20, 21] introduced the following alter-
nating products of class numbers

(1.1) E(K/k) :=
h(K)

h(k) · h(R(1)
K/kGm,K)

and E+(K/k) :=
h+(K)

h+(k) · h+(R
(1)
K/kGm,K)

,

where RK/k denotes the Weil restriction of scalars from K to k, R
(1)
K/kGm,K ⊂ RK/kGm,K is the

norm one torus, and h (resp. h+) denotes the class number (resp. the narrow class number).
When the extension K/k is Galois, Ono computed these invariants in terms of cohomological
invariants [21, Section 2, Theorem, p. 123] and thus gave a class number relation among h(K),

h(k) and h(R
(1)
K/kGm,K), as well as their narrow variants. Particularly, this yields a formula for

the class number h(R
(1)
K/kGm,K) of the norm one torus R

(1)
K/kGm,K . Restricted to the special case

where K is a CM field and k = K+ is its maximal totally real subfield, Ono’s formula gives an
alternative proof of the following class number formula (see [26, (16), p. 375])

(1.2) h(R
(1)
K/K+Gm,K) =

hK

hK+

1

QK/K+ · 2t−1
,

where QK/K+ = [O×
K : µKO×

K+ ] is the Hasse unit index and t is the number of finite places of

K+ ramified in K. This formula was applied to compute the number of polarized CM complex
abelian varieties in [6].

Ono observed that the class number relation deduced from E+(K/k) generalizes Gauss’s
theorem on the genera of quadratic forms. For example, in the simplest case where K is any
quadratic extension of k = Q, Ono’s formula for E+(K/k) reads

h+(K) = h∗
K · 2t−1,

where t is the number of rational primes ramified in K and h∗
K is the class number of any genus

in the narrow ideal class group Cl+(K). On the other hand, when K/k is any cyclic Kummer
extension, Ono’s formula shows a direct relation with the ambiguous class number for K/k; see
[20, Equation (10)] for details. We refer for a few explorations of ambiguous class numbers to
[12, Chapter XIII, Section 4], [5] and [14].
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2 FAN-YUN HUNG AND CHIA-FU YU

There are generalizations and extensions of Ono’s work by several other authors. In [25]
Sasaki gave a more direct proof of Ono’s formulas which avoids K-theory. The formulas were
generalized by Katayama [9, 10] for any finite extension K/k using Ono-Shyr’s formula [26] for
isogenous tori. Morishita [16] generalized Ono’s formula to the S-arithmetical setting including
the function field case (still, as Sasaki and Ono, assuming K/k Galois). He adopted a new ap-
proach using Nisnevich cohomology and gave a different approach. As another generalization,
Morishita also showed a formula for the Ono invariant associated to the product K1×K2 of two
linearly disjoint Galois extensions K1 and K2, relating to Hürlimann’s result [8] on the Hasse
norm principle for K1 ×K2.

In this paper we generalize the results of Ono, Sasaki, Katayama and Morishita to an arbitrary
étale algebra over any global function k, including an arbitrary S-arithmetical setting (i.e. S is
nonempty or not). Our approach is close to that of Sasaki, which does not rely on K-theory nor
the Nisnevich cohomology and is more elementary.

Let L =
∏r

i=1 Ki be an étale algebra over a global field k with finite separable field extensions
Ki/k, and let NL/k =

∏r
i=1 NKi/k be the norm map from L to k. Set

TL/k := ker(NL/k : TL := RL/kGm,L → Gm,k),

called the multinorm-one torus TL/k associated to L/k. For simplicity, we write N for NL/k.
Let Ak and AL :=

∏
i AKi be the adele rings of k and L, respectively. Let S be a nonempty

finite set of places of k which contains all archimedean places if k is a number field. Let Ak,S

and AL,S be the S-adele rings of k and L, respectively; see (2.1). Let Ok,S := k ∩ Ak,S and

OL,S := L ∩ AL,S be the S-rings of integers in k and L, respectively. Denote by Uk,S := A×
k,S

(resp. UL,S := A×
L,S) the unit group of Ak,S (resp. AL,S).

For any k-torus T , let

ClS(T ) :=
T (Ak)

T (k)UT,S
and hS(T ) := |ClS(T )|

denote the S-class group and S-class number of T , respectively; see (2.2). If k is a number field,
we let Cl+S (T ) and h+

S (T ) denote the narrow S-class group and narrow S-class number of T ,
respectively; see (2.4). Following Ono, we define the following alternating products:

(1.3) ES(L/k) :=
hS(L)

hS(k)hS(TL/k)
and E+

S (L/k) :=
h+
S (L)

h+
S (k)h

+
S (TL/k)

,

where h
(+)
S (L) := h

(+)
S (TL) and h

(+)
S (k) := h

(+)
S (Gm,k) are the (narrow) S-class numbers of L

and k, respectively.
In the case where k is a global function field and S = ∅, the class group Cl∅(T ) =: Cl(T ) of a

k-torus T may be infinite. So instead we consider the class group Cl0(T ) ⊂ Cl(T ) of degree zero

of T (see (3.1)) and the class number h0(T ) := |Cl0(T )| of degree zero. Set

(1.4) E0(L/k) :=
h0(L)

h0(k)h0(TL/k)
,

where h0(L) := h0(TL), h0(k) := |A×,0
k /k× · Uk| and Uk =

∏
v O

×
kv

. Let UL :=
∏r

i=1 U
×
Ki

be the

unit subgroup of A×
L .

To describe our main results, we set some more notation. Let

(1.5) X(L/k) :=
k× ∩N(A×

L )

N(L×)
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denote the Tate-Shafarevich group of L/k. For any map α : A → B of abelian groups, the
q-symbol of α is defined by

(1.6) q(α) :=
| cokerα|
| kerα|

if both cokerα and kerα are finite. If k is a number field, we refer to (2.3) for the definition

of subgroups A
×,+
k ⊂ A×

k and A
×,+
L ⊂ A×

L , and for any subgroup A ⊂ A×
k (resp. A ⊂ A×

L ), set

A+ := A ∩ A
×,+
k (resp. A+ := A ∩A

×,+
L ).

Our main results give formulas for the invariants ES(L/k), E
+
S (L/k) and E0(L/k):

Theorem 1.1 (Theorems 2.6 and 3.5). Let L be an étale algebra over a global field k.

(1) When S is nonempty, we have

(1.7) ES(L/k) =
|X(L/k)|
[Lab : k]

· [Uk,S : N(UL,S)]

[O×
k,S : N(O×

L,S)]

and

(1.8) E+
S (L/k) =

|X(L/k)|
[Lab : k] · q(φ)

· [Uk,S : N(UL,S)]

[O×+
k,S : N(O×+

L,S)]
,

where Lab is the maximal abelian extension of k that is contained in all Ki and φ :
k×+/N(L×+) → k×/N(L×) is the canonical homomorphism.

(2) When k is a global function field and S is empty, we have

(1.9) E0(L/k) =
|X(L/k)|
[Lab : k]

· q(φ0) · [Uk : N(UL)]

[F×
q : N(

∏
i F

×
qi)]

,

where φ0 : A×,0
k /N(A×,0

L ) → A×
k /N(A×

L ) is the canonical homomorphism.

When k is a number field and S = ∞ is the set of archimedean places, the class number hS(T )
will be denoted by h(T ).

Corollary 1.2. Let L =
∏

i=1 Ki be an étale algebra over a number field and TL/k be the
associated multinorm-one k-torus. Then

(1.10) h(TL/k) =
h(L)

h(k)
· [Lab : k]

|X(L/k)| ·
[O×

k : N(O×
L )]

[Uk : N(UL)]
.

Using Ono’s formula on Tamagawa numbers of tori [19, Main Theorem, p. 68] (also see [17,
Chapter IV, Corollary 3.3, p. 56]), one observes that [Lab : k]/|X(L/k)| is equal to the Tamagawa
number τ(TL/k) of TL/k. The formula (1.10) can also be written as

(1.11) h(TL/k) =
h(L)

h(k)
· τ(TL/k) ·

[O×
k : N(O×

L )]

[Uk : N(UL)]
.

We give the proof of Theorem 1.1 in Sections 2 and 3. In Section 4, we explore the terms of
our formulas in Theorem 1.1 and give a few examples. Some of them are classical computational
problems, for example, computing the unit group O×

k of Ok. We also discuss some very recent
results on the group X(L/k) and indicate particularly that the term |Xk(T

′)| in the main
theorem of Morishita [16, p. 135] is always equal to 1.
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2. S-class numbers of multinorm-one tori

Let k be a global field and ks a fixed separable closure of k. Let L =
∏r

i=1 Ki be an étale
k-algebra, where each Ki is a separable field extension of k in ks. Let Ak and AL =

∏r
i=1 AKi

be the adele rings of k and L, respectively. For each place v of k, denote by kv the completion
of k at v and set Lv := L⊗k kv =

∏
w|v Lw. Here a place w of L is a place of Ki for some i and

its completion Lw is simply Ki,w. If v is finite, let Ov be the valuation ring of kv and OLv the
maximal Ov-order of Lv, which is the product of the valuation rings OLw of Lw for all w|v.

Let S be a nonempty finite set of places of k which contains all archimedean places if k is a
number field. The S-adele rings of k and L are

Ak,S :=
∏

v∈S

kv ×
∏

v 6∈S

Ov, and AL,S :=
∏

v∈S

Lv ×
∏

v 6∈S

OLv .(2.1)

Let Ok,S := k ∩ Ak,S and OL,S := L ∩ AL,S be the S-rings of integers in k and L, respectively.
Denote by Uk,S := A×

k,S (resp. UL,S := A×
L,S) the unit group of Ak,S (resp. AL,S). Let NL/k :

A×
L → A×

k be the norm map, and let A
(1)
L := kerNL/k ⊂ A×

L be the norm one subgroup. For any

subgroup A ⊂ A×
L , denote by A(1) := A ∩ A

(1)
L its norm one subgroup.

The S-class group and S-class number of a k-torus T are defined as

(2.2) ClS(T ) :=
T (Ak)

T (k)UT,S
, hS(T ) := |ClS(T )|,

where UT,S := T (Ak,S) =
∏

v∈S T (kv)×
∏

v 6∈S T (Ov) is the S-unit subgroup of T (Ak).
When k is a number field, we let

(2.3) T (Ak)
+ ⊂ T (Ak)

denote the subgroup consisting of elements (xv), such that xv lies in the neutral component
T (kv)

0 of the Lie group T (kv) for all real places v. For any subgroup A ⊂ T (Ak), define
A+ := A ∩ T (Ak)

+. The narrow S-class group and narrow S-class number of a k-torus T are
defined as

(2.4) Cl+S (T ) :=
T (Ak)

T (k)U+
T,S

, h+
S (T ) := |Cl+S (T )|.

Denote by AS
k :=

∏′
v/∈S kv the prime-to-S adele ring of k.

Lemma 2.1. If k is a number field, we have Cl+S (T ) ≃ T (Ak)/T (k)
+UT,S.

Proof. Clearly, T (Ak)/T (k)
+UT,S = T (AS

k )/T (k)
+US

T , where US
T =

∏
v 6∈S T (Ov) is the max-

imal open subgroup of T (AS
k ). Since T is connected, real approximation implies that T (k) ⊂

T (k∞) =
∏

v|∞ T (kv) is dense. Thus, T (Ak) = T (k)T (Ak)
+ and the surjective map T (Ak)

+ →
T (k)T (Ak)

+/T (k)U+
T,S induces an isomorphism T (Ak)

+/T (k)+U+
T,S

∼→ T (Ak)/T (k)U
+
T,S, while

the left hand side is T (AS
k )/T (k)

+US
T . This proves the lemma.

Let IL,S =
∏r

i=1 IKi,S (resp. PL,S =
∏r

i=1 PKi,S , P+
L,S =

∏r
i=1 P

+
Ki,S

) be the group of frac-

tional ideals (resp. principal ideals, principal ideals generated by totally positive elements) of L
which are prime to S. We set

ClS(L) :=

r∏

i=1

ClS(Ki) =

r∏

i=1

IKi,S/PKi,S

(resp. Cl+S (L) :=
∏r

i=1 Cl
+
S (Ki) =

∏r
i=1 IKi,S/P

+
Ki,S

) to be the S-ideal class group (resp. narrow

S-ideal class group) of L. We denote by

hS(L) := |ClS(L)| and h+
S (L) := |Cl+S (L)|
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the S-class number and narrow S-class number of L, respectively. Furthermore, we denote by

I
(1)
L,S the kernel of the norm map NL/k : IL,S → Ik,S and write P

(1)
L,S = PL,S ∩ I

(1)
L,S .

If T = RL/kGm,L, then we have ClS(L) = ClS(T ) = A×
L/L

×UL,S and Cl+S (L) = Cl+S (T ) =

A×
L/L

×U+
L,S, the S-ideal class group of L and its narrow version, and we have hS(T ) = hS(L) and

h+
S (T ) = h+

S (L). Recall that TL/k := ker
(
NL/k : RL/kGm,L → Gm,k

)
denotes the multinorm-one

torus associated to L/k. We have

hS(TL/k) = [A
(1)
L : L(1)U

(1)
L,S] and h+

S (TL/k) = [A
(1)
L : L(1)U

(1)+
L,S ] = [A

(1)
L : L(1)+U

(1)
L,S],

where U
(1)+
L,S = U

(1)
L,S ∩ U+

L,S and L(1)+ = L(1) ∩ A
(1)+
L . Following Ono, we extend the definition

of the invariants in (1.1) to L/k:

Definition 2.2. Let L/k and S be as above, the Ono invariant and its narrow version are
defined as

(2.5) ES(L/k) :=
hS(L)

hS(k)hS(TL/k)
and E+

S (L/k) :=
h+
S (L)

h+
S (k)h

+
S (TL/k)

,

where the narrow version is defined only when k is a number field.

Proposition 2.3. We have

hS(TL/k) =
[I

(1)
L,S : P

(1)
L,S ][O

×
k,S ∩N(L×) : N(O×

L,S)]

[Uk,S ∩N(A×
L ) : N(UL,S)]

;(2.6)

h+
S (TL/k) =

[I
(1)
L,S : P

(1)+
L,S ][O×+

k,S ∩N(L×+) : N(O×+
L,S)]

[Uk,S ∩N(A×
L ) : N(UL,S)]

.(2.7)

Proof. We prove (2.7); the proof of (2.6) is the same where one deletes “+” from the terms.
Consider the following two commutative diagrams

1 UL,S A×
L IL,S 1

1 Uk,S A×
k Ik,S 1;

N N N

1 O×+
L,S L×+ P+

L,S 1

1 O×+
k,S k×+ P+

k,S 1.

N N N

The snake lemma gives the following two exact sequences

1 U
(1)
L,S A

(1)
L I

(1)
L,S

Uk,S

N(UL,S)

A×
k

N(A×
L )

· · ·δ1

1 O
(1)+
L,S L(1)+ P

(1)+
L,S

O×+
k,S

N(O×+
L,S)

k×+

N(L×+)
· · ·δ2

Clearly, Im δ1 =
(
Uk,S ∩N(A×

L )
)
/N(UL,S) and Im δ2 =

(
O×+

k,S ∩N(L×+)
)
/N(O×+

L,S) and these

two abelian groups are finite. Thus, we have a commutative diagram
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1 A
(1)
L /U

(1)
L,S I

(1)
L,S

(
Uk,S ∩N(A×

L )
)
/N(UL,S) 1

1 L(1)+/O
(1)+
L,S P

(1)+
L,S

(
O×+

k,S ∩N(L×+)
)
/N(O×+

L,S) 1.

f ′ f f ′′

Therefore,

[I
(1)
L,S : P

(1)+
L,S ] = q(f) = q(f ′)q(f ′′)

= [A
(1)
L : L(1)+U

(1)
L,S]

[Uk,S ∩N(A×
L ) : N(UL,S)]

[O×+
k,S ∩N(L×+) : N(O×+

L,S)].

This proves the proposition.

For any k-torus T , we denote by T̂ its character group Homk(T,Gm,k). Also, for any finite
commutative group G, let G∨ := Hom(G,Q/Z) denote the Pontryagin dual.

Theorem 2.4. There are canonical isomorphisms

A×
k

k× ·N(A×
L )

≃ H1(T̂L/k)
∨ ≃ Gal(Lab/k),(2.8)

where Lab is the maximal abelian extension of k that is contained in all Ki.

Proof. Let K be a finite Galois extension of k containing all Ki and G = Gal(K/k). Denoting
by CK the idele class group of K, one has the exact sequence

1 K× A×
K CK 1.

Let T be a k-torus splitting over K. Following Ono in [19], we apply Hom(T̂ , ·) to the above
exact sequence with the canonical identifications,

T (K) = Hom(T̂ ,K×), T (AK) = Hom(T̂ ,A×
K)

and define

CK(T ) := T (AK)/T (K) ≃ Hom(T̂ , CK).

The short exact sequence

1 −→ T (K) −→ T (AK) −→ CK(T ) −→ 1

induces the long exact sequence

1 → T (k) → T (Ak) → CK(T )G → H1(T (K)) → H1(T (AK)) → H1(CK(T )) → · · ·

We claim that for T = RL/kGm,L or T = Gm,k, we have CK(T )G = T (AK)/T (k). If T = Gm,k,

this assertion holds since H1(G, T (K)) = H1(k,Gm,k) = 0 by Hilbert’s Theorem 90. If T =
RL/kGm,L, for each Ki, by Shapiro’s lemma we have

H1(k,RKi/kGm,Ki) = H1(Ki,Gm,Ki) = 0

and hence H1(G, T (K)) = H1
(
k,
∏r

i=1 RKi/KGm,Ki

)
=
∏r

i=1 H
1(k,RKi/KGm,Ki) = 0.

Now suppose we have the following exact sequence of k-tori splitting over K:

(2.9) 1 T ′ T T ′′ 1.ι N

Putting in K −֒→ AK , we obtain the commutative diagram
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1 T ′(K) T (K) T ′′(K) 1

1 T ′(AK) T (AK) T ′′(AK) 1.

ι N

ι N

By the snake lemma, we have the short exact sequence

1 CK(T ′) CK(T ) CK(T ′′) 1,ι N

which induces the long exact sequence

· · · CK(T )G CK(T ′′)G H1(G,CK(T ′)) H1(G,CK(T )) · · ·N ι

and the long exact sequence

(2.10) 1 cokerN H1(G,CK(T ′)) H1(G,CK(T )) · · · .ι

Taking (2.9) to be

(2.11) 1 TL/k RL/kGm,L Gm,k 1,ι N

we find that

cokerN =
A×

k

k× ·N(A×
L )

.

We have

H1(G,CK(RL/kGm,L)) =
r∏

i=1

H1(Gal(K/k), CK(RKi/kGm,Ki))

where for each i,

CK(RKi/kGm,Ki) =
(Ki ⊗ AK)×

(Ki ⊗K)×
= (A×

K/K×)[K:Ki].

By Theorem 9.1 in [27], we have H1(Gal(K/k),A×
K/K×) = 0, so H1(G,CK(RL/kGm,L)) = 0.

Thus,

cokerN
∼→ H1(G,CK(TL/k)) ≃ H1(G, T̂L/k)

∨,

where the second isomorphism is Nakayama’s duality [22, Theorem 6.3].
Setting TL = RL/kGm,L and taking duals from the exact sequence of k-tori (2.11) , we obtain

1 Z T̂L T̂L/k 1.N̂ ι̂

Denoting the Galois group Gal(Ki/k) by Hi, we obtain

H1(G, T̂L) =

r⊕

i=1

H1
(
G, IndGHi

Z

)
=

r⊕

i=1

H1(Hi,Z) = 0.

We have the following long exact sequence

1 H1(G, T̂L/k) H2(G,Z)
r⊕

i=1

H2(Hi,Z) · · ·

Hom(G,Q/Z)
r⊕

i=1

Hom(Hi,Q/Z)

N̂

≀ ≀

r
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where the map r is f 7→ (f |Hi)i. We describe ker r explicitly:

H1(G, T̂L/k) = ker r = {f : G → Q/Z | f |Hi = 0 for all i }
= {f : G → Q/Z | f |[G,G]H1···Hr

= 0}
≃ {f : G/([G,G]H1 · · ·Hr) → Q/Z}.

The fixed field of [G,G]H1 · · ·Hr is exactly Lab, the maximal abelian extension of k contained
in all Ki. Thus

H1(G, T̂L/k) ≃ Hom(Gal(Lab/k),Q/Z) = Gal(Lab, k)
∨.

Altogether,

A×
k

k× ·N(A×
L )

≃ H1(T̂L/k)
∨ ≃ Gal(Lab/k),

where each isomorphism is canonical.

Remark 2.5. We can show the consequence A×
k /k

×·N(A×
L ) ≃ Gal(Lab/k) of Theorem 2.4 directly.

Indeed, by class field theory, the maximal abelian subextension Ki,ab of Ki/k corresponds to the

subgroup k× ·NKi/k(A
×
Ki

) of finite index. Thus, their intersection ∩Ki,ab = Lab corresponds to

the subgroup k× ·N(A×
L ) of finite index.

Theorem 2.6. Let the notation be as above. We have

(2.12) ES(L/k) =
|X(L/k)|
[Lab : k]

· [Uk,S : N(UL,S)]

[O×
k,S : N(O×

L,S)]

and

(2.13) E+
S (L/k) =

|X(L/k)|
[Lab : k] · q(φ)

· [Uk,S : N(UL,S)]

[O×+
k,S : N(O×+

L,S)]
,

where Lab is the maximal abelian extension of k contained in all Ki and φ : k×+/N(L×+) →
k×/N(L×) is the canonical homomorphism.

Proof. We shall prove the formula (2.13). The proof of (2.12) is the same where one deletes
“+” from the terms. Let ã : k×/N(L×) → A×

k /N(A×
L ) be the canonical homomorphism and put

a := ã ◦ φ. Consider the commutative diagram whose rows are exact:

1 O×+
k,S /O

×+
k,S ∩N(L×+

S ) k×+/N(L×+) k×+/O×+
k,SN(L×+) 1

1 Uk,S/Uk,S ∩N(A×
L ) A×

k /N(A×
L ) A×

k /Uk,SN(A×
L ) 1.

a′ a a′′

From the commutative diagram

1 O×+
k,S ∩N(L×+)/N(O×+

L,S) O×+
k,S/N(O×+

L,S) O×+
k,S /O

×+
k,S ∩N(L×+) 1

1 Uk,S ∩N(A×
L )/N(UL,S) Uk,S/N(UL,S) Uk,S/Uk,S ∩N(A×

L ) 1

b′ b a′

we have

q(a′) =
q(b)

q(b′)
=

[Uk,S : N(UL,S)]

[O×+
k,S : N(O×+

L,S)]
·
[O×+

k,S ∩N(L×+) : N(O×+
L,S)]

[Uk,S ∩N(A×
L ) : N(UL,S)]

.

Now, the diagram
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1 P+
L,S IL,S Cl+L,S 1

1 P+
k,S Ik,S Cl+k,S 1

N ′ N N ′′

induces the exact sequence

I
(1)
L,S kerN ′′ P+

k,S/N
′(P+

L,S) Ik,S/N(IL,S) cokerN ′′ 1

k×+/O×+
k,SN(L×+) A×

k /UL,SN(A×
L ).

δ c

a′′

≀ ≀

Then

q(a′′) = q(c) =
|cokerN ′′|
|ker c| = |cokerN ′′| ·

[I
(1)
L,S : P

(1)+
L,S ]

|kerN ′′|

= q(N ′′)[I
(1)
L,S : P

(1)+
L,S ] = [I

(1)
L,S : P

(1)+
L,S ] · h

+
S (k)

h+
S (L)

.

Thus using Proposition 2.3, we have

q(a) = q(a′)q(a′′) =
[Uk,S : N(UL,S)]

[O×+
k,S : N(O×+

L,S)]
·E+

S (L/k)−1.

On the other hand,

q(a) = q(ã)q(φ) =
[A×

k : k×N(A×
L )]

[k× ∩N(A×
L ) : N(L×)]

· q(φ).

Using Theorem 2.4, we obtain the formula

E+
S (L/k) =

|X(L/k)|
[Lab : k] · q(φ)

· [Uk,S : N(UL,S)]

[O×+
k,S : N(O×+

L,S)]
.

3. Class numbers of degree zero

Let k be a global function field and T a k-torus. Here we fix a separable closure ks over k
and denote by Γk the Galois group Gal(ks/k). Considering the degree map degk : A×

k → Z, we

define A
×,0
k := ker(degk). Suppose that χ1, . . . , χr is a Z-basis for T̂ Γk . Consider the map

T (Ak)
χ=(χ1,...,χr)−−−−−−−−→ (A×

k )
r (degk)i−−−−−→ Zr −→ 0.

We define T (Ak)
0 := ker(deg ◦χ) and set the class group of degree zero of T as

(3.1) Cl0(T ) :=
T (Ak)

0

T (k)UT
,

where UT =
∏

v T (Ov) is the maximal open compact subgroup of T (Ak). The order of this class

group is finite an d is denoted by h0(T ) := |Cl0(T )|, called the class number of degree zero of T .
Now let L =

∏r
i=1 Ki be an étale k-algebra and TL = RL/kGm,L. We set

(3.2) h0(L) := h0(TL), h0(k) := |A×,0
k /k× · Uk|.

Recall that TL/k = ker(NL/k : TL → Gm,k) is the multinorm-one torus associated to L/k.
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Definition 3.1. The Ono invariant of degree zero is defined as

(3.3) E0(L/k) :=
h0(TL)

h0(k)h0(TL/k)
.

Lemma 3.2. If k is a global function field, we have

h0(TL/k) = [A
(1)
L ∩ A

×,0
L : L(1)U

(1)
L ],

where A
×,0
L :=

∏r
i=1 A

×,0
Ki

.

Proof. Denoting the norm map by Ni = NKi/k, we have the following commutative diagram

A
×,0
L

TL/k(Ak) A×
L

(A×
k )

r

Zr A×
k

χ
(Ni)i NL/k

(degk)i

∏

where
∏
(a1, . . . , ar) =

∏r
i=1 ai. We have

TL/k(Ak)
0 =

{
x = (xi) ∈ A×

L :

r∏

i=1

Ni(xi) = 1, deg ◦Ni(xi) = 0 for all i

}
= A

(1)
L ∩ A

×,0
L .

Also, since L× and UL are already subsets of A×,0
L , we have TL/k(k) = L(1) ∩ A

×,0
L = L(1) and

UTL/k
= U

(1)
L ∩A

×,0
L = U

(1)
L . This completes the proof. So

Cl0(TL/k) = TL/k(Ak)
0/TL/k(k)UTL/k

= (A
(1)
L ∩ A

×,0
L )/L(1)U

(1)
L .

This completes the proof.

In the following, for an abelian subgroup A ⊂ AL, we set A0 := A ∩ A
×,0
L .

Let Fq be the constant subfield of k and X the geometrically connected projective smooth
algebraic curve over Fq with k = Fq(X). Denote by |X | the set of closed points of X . Recall
that the group of divisors on X is

Div(X) =
∑

P∈|X|

nPP, nP = 0 for all but finitely many P ∈ |X |

and the degree map on Div(X),

deg(D) =
∑

P∈|X|

nP deg(P ) for D =
∑

P∈|X|

nPP, where deg(P ) = [k(P ) : k].

The group of divisors of degree zero is denoted as Div0(X). Now for any rational function f ∈ k×

on X , we define

div(f) :=
∑

P∈|X|

ordP (f)P

and the group of principal divisors

P (X) := {div(f) : f ∈ k×}.
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Since P (X) ⊂ Div0(X), we can consider the quotient Pic0(X) := Div0(X)/P (X). Finally we
have the isomorphisms

Pic0(X) ≃ A
(1)
k

k×
∏

v O
×
v
, Div0(X) ≃ A

(1)
k∏

v O
×
v
.

Recall L =
∏r

i=1 Ki. For each i, let Yi → X be a finite cover over Fq with Ki = Fq(Yi).
Note that Yi may not be geometrically connected over Fq. Let Fqi = Γ(Yi,OYi) be the constant
subfield of Ki. We define similarly Div(Yi) to be the group consisting of

∑
P∈|Yi|

nPP . Although

different definitions of the degree of a divisor on Yi may differ by a constant, the notions of
Div0(Yi) and Pic0(Yi) are still well-defined.

Similarly to the case when k is a number field, we shall write I0k = Div0(X) and Pk = P (X).
We also define

I0L :=

r∏

i=1

I0Ki
, PL :=

r∏

i=1

PKi and Cl0(L) := I0L/PL =

r∏

i=1

Cl0(Ki).

Finally, the norm map N : A×,0
L → A

×,0
k induces a map N : I0L → I0k , which we also call norm,

and we denote by I
0(1)
L its kernel and P

0(1)
L := P 0

L ∩ I
0(1)
L .

Proposition 3.3. With the above notation, we have

h0(TL/k) =
[I

(1)
L : P

(1)
L ][F×

q ∩N(L×) : N(
∏r

i=1 F
×
qi)]

[Uk ∩N(A×,0
L ) : N(UL)]

.

Proof. Consider the two commutative diagrams

0 UL A
×,0
L I0L 0

0 Uk A
×,0
k I0k 0

N N N

and

1
r∏

i=1

F×
qi L× PL 1

1 F×
q k× Pk 1

NL/k

div

NL/k N

div

where the norm map NL/k =
∏

NKi/k restricted to
∏r

i=1 F
×
qi is given by

NL/k((xi)) =

r∏

i=1

NKi/k(xi) =

r∏

i=1

(
NFqi

/Fq
(xi)

)[Ki/k]/[Fqi
:Fq]

for xi ∈ Fqi

and we denote by
(∏r

i=1 F
×
qi

)(1)
its kernel. By the snake lemma, each diagram gives an exact

sequence, respectively:

0 U
(1)
L A

0(1)
L I

(1)
L Uk/N(UL) A

×,0
k /N(A×,0

L ) · · · ;δ1

1
(∏r

i=1 F
×
qi

)(1)
L(1) P

(1)
L F×

q /N(
∏r

i=1 F
×
qi) k×/N(L×) · · · .δ2

The images Im δ1 and Im δ2 are finite abelian groups. Thus we have
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1
A

×,0
L ∩A

(1)
L

U
(1)
L

I
(1)
L

Uk ∩N(A×,0
L )

N(UL)
1

1
L(1)

(∏r
i=1 F

×
qi

)(1) P
(1)
L

F×
q ∩N(L×)

N(
∏r

i=1 F
×
qi)

1.

f ′ f f”

Since q(f) = q(f ′)q(f”),

[I
(1)
L : P

(1)
L ] = [A×,0

L ∩ A
(1)
L : L(1)U

(1)
L ]

[Uk ∩N(A×,0
L ) : N(UL)]

[F×
q ∩N(L×) : N(

∏r
i=1 F

×
qi)]

.

Lemma 3.4. We have

[k× ∩N(A×,0
L ) : N(L×,0)]

[A×,0
k : k×N(A×,0

L )]
=

|X(L/k)|
[Lab : k]

· q(φ0),

where φ0 : A×,0
k /N(A×,0

L ) → A×
k /N(A×

L ) is the canonical homomorphism.

Proof. Noting that A
×,0
k is the kernel of the degree map degk : A×

k → Z, we have

kerφ0 =
A

×,0
k ∩N(AL)

N(A×,0
L )

, cokerφ0 =
A×

k

A
×,0
k N(A×

L )
≃ Z

degk(N(A×
L ))

and then

q(φ0) =
[Z : degk(N(A×

L )])

[A×,0
k ∩N(A×

L ) : N(A×,0
L )]

.

Let b be the canonical homomorphism b : A×,0
k /

(
k×N(A×,0

L )
)
→ A×

k /
(
k×N(A×

L )
)
. Then we

have

ker b =
k×
(
A

×,0
k ∩N(A×

L )
)

k×N(A×,0
L )

, coker b =
A×

k

A
×,0
k k×N(A×

L )
≃ Z

degk(N(A×
L ))

.

From the finiteness of domain and codomain of b and the exact sequence

1
k× ∩N(A×

L )

k× ∩N(A×,0
L )

A
×,0
k ∩N(A×

L )

N(A×,0
L )

ker b 1

we compute that

[A×
k : k×N(A×

L )]

[A×,0
k : k×N(A×,0

L )]
= q(b) =

[Z : degk(N(A×
L ))]

|ker b|
(∗)
= q(φ0) · [k× ∩N(A×

L ) : k
× ∩N(A×,0

L )]

= q(φ0) · [k× ∩N(A×
L ) : N(L×)]

[k× ∩N(A×,0
L ) : N(L×)]

.

In (∗) we use the fact that for abelian subgroups A, B, and C of an abelian group G with
B ⊂ A, we have

[A : B] = [A ∩C : B ∩ C][AC : BC].

This follows from considering the exact sequences
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0 (A ∩BC)/B A/B AC/BC 0;

0 B ∩ C A ∩ C (A ∩BC)/B 0.

Finally, using Theorem 2.4 we obtain

[k× ∩N(A×,0
L ) : N(L×)]

[A×,0
k : k×N(A×,0

L )]
= q(φ0) · [k

× ∩N(A×
L ) : N(L×)]

[A×
k : k×N(A×

L )]
= q(φ0) · |X(L/k)|

[Lab : k]
.

Theorem 3.5. Let the notation be as above. We have

E0(L/k) =
|X(L/k)|
[Lab : k]

· q(φ0) · [Uk : N(UL)]

[F×
q : N(

∏
i F

×
qi)]

.

Proof. Let a : k×/N(L×) → A
×,0
k /N(A×,0

L ) be the canonical homomorphism. Consider the
commutative diagram

1 F×
q k×/N(L×) k×/F×

q N(L×) 1

1 Uk/Uk ∩N(A×,0
L ) A

×,0
k /N(A×,0

L ) A
×,0
k /UkN(A×,0

L ) 1

a′ a a′′

From the commutative diagram

1 F×
q ∩N(L×)/N(

∏
i F

×
qi) F×

q /N(
∏

i F
×
qi) F×

q /F
×
q ∩N(L×) 1

1 Uk ∩N(A×,0
L )/N(UL) Uk/N(UL) Uk/Uk ∩N(A×,0

L ) 1

b′ b a′

we have

q(a′) =
q(b)

q(b′)
=

[Uk : N(UL)]

[F×
q : N(

∏
i F

×
qi)]

· [F
×
q ∩N(L×) : N(

∏
i F

×
qi)]

[Uk ∩N(A×,0
L ) : N(UL)]

.

Now the diagram

1 PL I0L Cl0(L) 1

1 Pk I0k Cl0(k) 1

N ′ N N ′′

induces the exact sequence

I
0(1)
L kerN ′′ Pk/N

′(PL) I0k/N(I0L) cokerN ′′ 1

k×/F×
q ·N(L×) A

×,0
k /UL ·N(A×,0

L )

δ c

a′′

≀ ≀

Then

q(a′′) = q(c) =
|cokerN ′′|
|ker c| = |cokerN ′′| · [I

0(1)
L : PL]

|kerN ′′|

= q(N ′′)[I
0(1)
L : PL] = [I

0(1)
L : PL] ·

h0(k)

h0(L)
.

Using Proposition 3.3, we have

q(a) = q(a′)q(a′′) =
[Uk : N(UL)]

[F×
q : N(

∏
i F

×
qi)]

· E0(L/k)−1.
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On the other hand from the definition of q(a),

q(a) =
[A×,0

k : k×N(A×,0
L )]

[k× ∩N(A×,0
L ) : N(L×)]

.

Using Lemma 3.4, we obtain the formula

E0(L/k) =
|X(L/k)|
[Lab : k]

· q(φ0) · [Uk : N(UL)]

[F×
q : N(

∏
i F

×
qi)]

.

4. Exploration of terms in Theorem 2.6 and examples

In this section we explore the terms appearing in the class number relation arising from
multinorm-one tori (Theorem 2.6).

4.1. Local norm indices [Uk,S : N(UL,S)].

4.1.1. Suppose that K/k is a finite separable extension of local fields. We denote by Kab and
Kur the maximal abelian and unramified subextensions of K/k, respectively. Local class field
theory says that NK/k(K

×) = NKab/k(K
×
ab) and we have a commutative diagram

0 O×
k /N(O×

Kab
) k×/N(K×

ab) Z/fZ 0

0 Gal(Kab/Kab,ur) Gal(Kab/k) Gal(λ/κ) 0

≀ Art≀ ≀

where λ and κ are the residue fields of Kab and k, respectively, and f = [λ : κ] is the residue
degree of Kab over k. In particular, we have

(4.1) [O×
k : N(O×

K)] = e(Kab/k),

the ramification index of Kab over k.

4.1.2. Recall

Uk,S =
∏

v∈S

k×v ×
∏

v 6∈S

O×
v and UL,S =

∏

v∈S

L×
v ×

∏

v 6∈S

O×
Lv

, where Lv =
∏

w|v

Lw,

and we have

[Uk,S : N(UL,S ] =
∏

v∈S

[k×v : N(L×
v )] ·

∏

v 6∈S

[O×
v : N(O×

Lv
)].

Fix a separable closure kv,s of kv and let kabv and kurv be the maximal abelian and unramified
extensions of kv in kv,s, respectively. One has Gal(kabv /kurv ) ≃ O×

v . For each place w|v of L, we
choose an embedding ι : Lw →֒ kv,s over kv. Since Lw,ab is Galois over kv, its image ι(Lw,ab) is
independent of the choice of ι, which we denote by Lw,ab again for simplicity. Put

(4.2) Lv,ab :=
⋂

w|v

Lw,ab

and

(4.3) L̃v,ab := the compositum of the abelian extensions Lw,ab of kv for all w|v.
If v is a finite place of k, we choose a finite unramified extension k′v of kv which contains the

maximal unramified subextension (L̃v,ab)ur of L̃v,ab/kv and set

(4.4) L′
w,ab := k′vLw,ab and L′

v,ab :=
⋂

w|v

L′
w,ab.
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The degree [L′
v,ab : k′v] does not depend on the choice of k′v. If there is a place w|v of L which is

unramified in L/k, then [L′
v,ab : k′v] = 1. For this reason, we write

(4.5) ev(L/k) := [L′
v,ab : k′v].

When Lv is an abelian field extension of kv, the invariant ev(L/k) coincides with the ramification
index of v in L/k.

Proposition 4.1. (1) For any place v, we have [k×v : N(L×
v )] = [Lv,ab : kv].

(2) For any finite place v, we have [O×
v : N(O×

Lv
)] = [L′

v,ab : k′v].

Proof. (1) By local class field theory, we have

(4.6) NLv,ab/kv
(L×

v,ab) =
∏

w|v

NLw,ab/kv
(L×

w,ab) =
∏

w|v

NLw/kv
(L×

w) = N(L×
v )

and get

(4.7) [Lv,ab : kv] = [k×v : NLv,ab/kv
(L×

v,ab)] = [k×v : N(L×
v )].

(2) The open subgroup corresponding to Lur
w,ab = kurv Lw,ab is Uw := NLw/kv

(O×
Lw

). If we put

Uv = ∩w|vUw, then it corresponds to the field extension (L̃v,ab)
ur. We have

Gal((L̃v,ab)
ur/Lur

w,ab) ≃ Gal((L̃v,ab)
′/L′

w,ab) ≃ Uw/Uv.

and hence

Gal((L̃v,ab)
′/L′

v,ab) ≃
∏

w|v

Uw/Uv =


∏

w|v

Uw


 /Uv = N(O×

Lv
)/Uw.

Therefore,
[L′

v,ab : k′v] = [O×
v : N(O×

Lv
)].

Remark 4.2. In Proposition 4.1 we make an auxiliary base change of Lv by a sufficiently large
unramified extension k′v so that Gal(L′

w,ab/k
′
v) ≃ [Ov× : NLw/kv

(O×
Lw

)] and take the intersection

∩w|vL
′
w,ab. This is necessary even when each field extension Lw/kv is abelian and totally ramified.

Indeed, one has Gal(Lw/kv) ≃ O×
v /NLw/kv

(O×
Lw

) and

Gal(Lv,ab/kv) ≃ O×
v /(N(L×

v ) ∩O×
v ).

However, we only have the inclusion N(O×
Lv

) ⊂ (N(L×
v ) ∩O×

v ) and no equality in general.
For example, let kv = Qℓ where ℓ is an odd prime. By local class field theory, there are

exactly two ramified quadratic fields Lw1
and Lw2

. By weak approximation, there exist quadratic
extensions K1 and K2 such that (K1)v ≃ Lw1

and (K2)v ≃ Lw1
. Put L = K1 ×K2 and hence

Lv = Lw1
×Lw2

. We have N(L×
v ) = k×v and N(L×

v )∩O×
v = O×

v , while N(O×
Lv

) ⊂ O×
v is of index

two.

4.2. The global unit norm index [O×
k,S : N(O×

L,S)].

Proposition 4.3. Let FL be a free part of O×
L,S, that is, FL is a finitely generated free subgroup

such that O×
L,S = µL × FL, where µL =

∏
µKi is the group of roots of unity in L.

(1) We can choose a free part Fk of O×
k,S such that O×

k,S = µk × Fk and N(FL) ⊂ Fk. Then

we have O×
k,S/N(O×

L,S) ≃ µk/N(µL)× Fk/N(FL).

(2) Moreover, let {ξj} be a system of fundamental units of O×
L,S and let πd : Fk → Fk/(Fk)

d

be the natural projection, where d is the greatest common divisor of [Ki : k], 1 ≤ i ≤ r.
Then Fk/N(FL) ≃ (Fk/(Fk)

d)/EL, where EL is the subgroup generated by πd(ξj) for
all j.
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Proof. (1) Note that N(FL) is a finitely generated free subgroup of O×
k,S . By Zorn’s lemma,

there exists a maximal finitely generated free subgroup Fk of O×
k,S such that N(FL) ⊂ Fk. Then

O×
k,S/N(O×

L,S) =
µk × Fk

N(µL)×N(FL)
≃ µk/N(µL)× Fk/N(FL).

(2) Note that the group O×
L,S =

∏r
i=1 O

×
Ki,S

contains the subgroup
∏r

i=1 O
×
k and hence the

free subgroup FL contains the free subgroup
∏r

i=1 Fk. Therefore, we have

(4.8) N(FL) ⊃ N

(
r∏

i=1

Fk

)
= F

[K1:k]
k · · ·F [Kr:k]

k = F d
k ,

and Fk/N(FL) is the quotient of the Fk/F
d
k by its image of N(FL). This shows statement (2).

It is rather easy to compute the index of torsion part [µk : N(µL)] for each given specific case.
However, finding a system of fundamental units is a classical problem in number theory, which
is known to be difficult in general. However, by Proposition 4.3, if the degrees [Ki : k] have only
the trivial common divisor, then O×

k,S/N(O×
L,S) = {1}, cf. (4.8).

If k = Q and S is the set of archimedean places, then we have that [O×
k,S : N(O×

L,S)] = [Z× :

N(O×
L )] is 1 or 2. Moreover,

[O×
k,S : N(O×

L,S)] = 1 ⇐⇒ −1 ∈ NKi/k(O
×
Ki

) for some i.

In particular, if one of the degrees [Ki : k] is odd, then [O×
k : N(O×

L )] = 1. When K is a real
quadratic field, one can use continued fractions to compute the fundamental unit ǫK (cf. [18])
and determine whether N(ǫK) = −1. In the case where K = Q(

√
p) and p is a prime, we know

(from [29, Lemma 2.4]) that

N(ǫK) =

{
1, if p ≡ 3 (mod 4);

−1, otherwise.
(4.9)

However, there is no known direct determination of N(ǫK) from the discriminant of K as (4.9)
in general.

4.3. The Tate-Shafarevich group X(L/k). The most interesting and involved term in the
class number formula for multinorm-one tori is |X(L/k)|. In this section we organize some
results about computation of X(L/k). In particular, we introduce a criterion for X(L/k) = 0.

First, we have an exact sequence of k-tori

1 TL/k RL/kGm,L Gm,k 1.ι N

By Hilbert’s Theorem 90, we have an isomorphism

(4.10) k×/NL/k(L
×)

∼−→ H1(k, TL/k).

Taking the kernel of the local-global map on each side, we have the isomorphisms

(4.11) X(L/k) ≃ X
1(k, TL/k) ≃ X

2(k, T̂L/k)
∨,

where the second isomorphism is given by Poitou-Tate duality [22, Theorem 6.10].
Let

(4.12) X
i
ω(k, T̂ ) :=

{
[C] ∈ Hi(k, T̂ ) | [C]v = 0 for almost all places v of k

}
,
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where [C]v denotes the class in Hi(kv, T̂ ) under the restriction map Hi(k, T̂ ) → Hi(kv, T̂ ). We
shall utilize the following exact sequence

0 −→ X
2(k, T̂ ) −→ X

2
ω(k, T̂ ) −→ A(T )∨ −→ 0,

where T (k) →֒∏
v T (kv) embeds diagonally and A(T ) :=

∏
v T (kv)/T (k) is the group measuring

the defect of weak approximation of T , or its dual version

(4.13) 0 −→ A(T ) −→ X
2
ω(k, T̂ )

∨ −→ X
2(k, T̂ )∨ −→ 0.

Here X
2(k, T̂ )∨ ≃ X

1(k, T ) and X
2
ω(k, T̂ ) ≃ H1(k,Pic(T )), where T is a smooth compactifica-

tion of T , by [28, Theorem 6]. By definition, the local-global principle for T holds if X1(k, T ) = 0,
and weak approximation for T holds if A(T ) = 0. From the second exact sequence (4.13) we see
that

X
2
ω(k, T̂ ) = 0 ⇐⇒ A(T ) = 0 and X

1(k, T ) = 0.

Recall that Hasse norm principle (HNP) holds for the étale k-algebra L/k if X(L/k) = 0 or

X
2(k, T̂L/k) = 0 by (4.11).
In the following, we collect some results from the literature. For a finite separable extension

K/k of global fields, we denote by Kc the Galois closure of K over k. We also write Xω(L/k)
for X

1
ω(k, TL/k).

Theorem 4.4. Let L =
∏r

i=1 Ki be an étale k-algebra and TL/k the associated multinorm-one
torus. The Hasse Norm Principle (HNP) holds for L/k, that is, X(L/k) = 0, if one of the
following conditions holds.
Case 1. Let r = 1 and L = K.

(1.a) K/k is Galois with Galois group G such that X3(G,Z) = 0.
(1.b) [K : k] is a prime.
(1.c) [K : k] = n and Gal(Kc/k) is isomorphic to the dihedral group Dn.
(1.d) [K : k] = n and Gal(Kc/k) is isomorphic to the symmetric group Sn.
(1.e) [K : k] = n and Gal(Kc/k) is isomorphic to the alternating group An, for n ≥ 5.

Case 2. Let r = 2 and L = K1×K2. We set F = K1∩K2 and let Xω(F/k) = X
1
ω(k, TF/k) denote

the quotient of the subgroup of k× which is a norm locally almost everywhere, by NF/k(F
×).

(2.a) K1 is a cyclic extension and K2 is an arbitrary finite separable extension.
(2.b) Kc

1 ∩Kc
2 = k.

(2.c) K1 and K2 are abelian extensions over k, and X(F/k) = 0.
(2.d) Xω(F/k) = 0.

Case 3. General r ≥ 2.

(3.a) K1, . . . ,Kr are Galois over of k, the field K1 · · ·Ki ∩ (Ki+1 · · ·Kr) equals to the inter-
section F :=

⋂r
i=1 Ki for some 1 ≤ i ≤ r − 1, and Xω(F/k) = 0.

(3.b) K1, . . . ,Kr are Galois over of k, and K1 · · ·Ki∩(Ki+1 · · ·Kr) = k for some 1 ≤ i ≤ r−1.
(3.c) K1, . . . ,Kr are distinct extensions over k of degree p, where p is a prime, with Ki is

cyclic for some i, and either the composition F̃ := K1 · · ·Kr has degree > p2 over k or

one local degree of F̃ is > p.

Proof. Case 1. r = 1 and L = K.

(1.a) This is a theorem of Tate, cf. [22, Theorem 6.11].
(1.b) See Bartels [2, Lemma 4], cf. [22, Proposition 6.3].
(1.c) See Bartels [1, Satz 1].
(1.d) This is a result of B. Kunyavskii and V. Voskresenskii; see [11], cf. [15, p. 2].
(1.e) See Macedo [15, Theorem 1.1].
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We remark the references for (1.a), (1.b), (1.d) and (1.e) are stated for number fields. However,
since the methods in loc. cit use Galois cohomology and group theory, the proofs also apply to
the global function field case.
Case 2. r = 2 and L = K1 ×K2.

(2.a) The case where K2/k is Galois is proved by Hürlimann in [8, Proposition 3.3] and the
general case is proved in [3, Proposition 4.1].

(2.b) Pollio and Rapinchuk proved that this condition implies X(L/k) = 0 in [24].
(2.c) In [23], Pollio proved that if K1 and K2 are abelian extensions of k, then X(L/k) =

X(F/k).
(2.d) This follows from Demarche and Wei’s work [4]. Applying [4, Theorem 6] to the case

I = {1} and J = {2}, we obtain Xω(L/k) = Xω(F/k). In particular, Xω(L/k) = 0
implies X(L/k) = 0.

Case 3. General r ≥ 2.

(3.a) In [4, Example 9], Demarche and Wei proved that if K1, . . . ,Kr are Galois extensions of
k and (K1 · · ·Ki) ∩ (Ki+1 · · ·Kr) = F =

⋂r
i=1 Ki for some 1 ≤ i ≤ r, then Xω(L/k) ≃

Xω(F/k).
(3.b) This condition originates from [4, Theorem 1].
(3.c) This is an application of Bayer-Fluckiger, T.-Y. Lee and Parimala’s [3, Proposition 8.5].

Note that when r = 2 this recovers condition (2.a).

Remark 4.5. Theorem 4.4(2.b) implies that the term |Xk(T
′)| in the main theorem of [16, p. 135]

is equal to 1.

Corollary 4.6. Let the notation be as in Theorem 2.6 and in Proposition 4.1. Assume one of
the conditions in Theorem 4.4 holds. Then

(4.14) ES(L/k) =

∏
v∈S [Lv,ab : kv] ·

∏
v∈R(L/k)rS ev(L/k)

[Lab : k] · [O×
k,S : N(O×

L,S)]
,

(4.15) E+
S (L/k) =

∏
v∈S [Lv,ab : kv] ·

∏
v∈R(L/k)rS ev(L/k)

[Lab : k] · q(φ) · [O×+
k,S : N(O×+

L,S)]
,

and

(4.16) E0(L/k) =
q(φ0) ·∏v∈R(L/k) ev(L/k)

[Lab : k] · [F×
q : N(

∏
i F

×
qi)]

,

where Lv,ab is a finite abelian extension of kv defined in (4.2), ev(L/k) is defined in (4.5), and
R(L/k) is the finite set of finite places v of k for which none of the places w|v of L is unramified
in L/k.

Proof. This follows from Theorems 2.6 and 3.5, Proposition 4.1 and Theorem 4.4.

As in Theorem 4.4, there have already been many affirmative results for determining the HNP
for L/k. However, when the HNP for L/k fails, results for computing X(L/k) are only sporadic.

For r = 1 and K/k a Galois extension with group G, a theorem of Tate gives us a general
method for computing X(K/k) through the canonical isomorphism

X(K/k) ≃ X
3(G,Z).

Via the natural isomorphism H3(G,Z) ≃ Hom(H2(G,Z),Q/Z), this reduces the problem to
computing the Schur multiplier M(G) ≃ H2(G,Z) of G and computing the cokernel of the map

⊕

v

M(Gv) → M(G),
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where v runs through all places of k ramified in K and Gv denotes the ramification group of v.
For higher r, Bayer-Fluckiger, Lee and Parimala [3] made a breakthrough for computing

X(L/k) in the case where one factor of L is cyclic over k. Morever, when every factor of L is a
cyclic extension of k, the authors gave a necessary and sufficient condition for X(L/k) = 0 under
a mild condition. Extending the work [3], Lee [13] gave a general formula for computing X(L/k)
when all factors of L have p-power degrees. Combining Lee’s result and a reduction result [3,
Proposition 8.6], the group X(L/k) is essentially known when all factors of L are cyclic.

As the last part of this article, we present briefly Lee’s formula for X(L/k), and describe
a further result [7] for computing a certain class of X(L/k). Let us write L =

∏m
i=0 Ki and

assume that each Ki/k is cyclic and that ∩r
i=0Ki = k. By [3, Proposition 8.6], each p-primary

subgroup X(L/k)(p) is isomorphic to X(L(p)), where L(p) is the maximal étale k-subalgebra
of L of p-power degree. Thus, without loss of generality we may assume that each Ki/k has
p-power degree, say degree pǫi .

For any 0 ≤ i, j ≤ m, set

(i) pei,j = [Ki ∩Kj : k], and
(ii) ei = ǫ0 − e0,i.

We may assume that ei ≥ ei+1 and that ǫ0 = min0≤i≤m{ǫi}. For 0 ≤ r ≤ ǫ0, set

Ur := {i ∈ I| e0,i = r}.
Definition 4.7. (1) Let i, j ∈ I := {1, . . . ,m} and l be a nonnegative integer. We say that i, j
are l-equivalent , denoted by i∼

l
j, if ei,j ≥ l or i = j. For any nonempty subset c of I, let nl(c)

be the number of l-equivalence classes of c.
(2) For each subset c ⊆ I with |c| ≥ 1, the level of c is defined by

L(c) := min{ei,j : i, j ∈ c}.
In [13, Theorem 6.5], Lee proves the following general formula:

(4.17) X(L/k) ∼=
⊕

r∈Rr{0}

Z/p∆r−rZ
⊕

r∈R

⊕

l≥L(Ur)

⊕

c∈Ur/∼
l

(Z/pfc−rZ)nl+1(c)−1,

where R = {0 ≤ r ≤ ǫ0| Ur 6= ∅}. We refer to [13, Sections 4 and 5] (also see [7, Section
2]) for the definitions of the patching degree ∆r of Ur and of the degree of freedom fc of each
l-equivalence class c.

In [7], Huang, Liang and the present authors investigate the invariants ∆r and fc in Lee’s
formula when L =

∏m
i=0 Ki is assumed to be of Kummer type, namely each cyclic extension Ki

is of the form k(α1/pǫi
) for some α ∈ k×. A basic idea is to describe these invariants in terms

of a combinatorial way. The authors also implemented computer programs for computing the
X(L/k) in the following cases:

• k = Q(ζpn) is a pnth cyclotomic field extension;

• F := k(ℓ
1/pn

1 , ℓ
1/pn

2 ) is a bicyclic extension over k with distinct rational primes ℓ1 and ℓ2;
and

• each Ki is a cyclic subextension of F , that is, Ki = k(ℓ
ai/p

n

1 ℓ
bi/p

n

2 ) for some integers
0 ≤ ai, bi < pn.

The programs have input data: p, n, {ai, bi}0≤i≤m, and compute several invariants including ∆r,
c, nl(c) and fc in Lee’s formula (4.17). The programs use the mathematical software SageMath
and can be found on

https://github.com/hfy880916/Tate-Shafarevich-groups-of-multinorm-one-torus.

https://github.com/hfy880916/Tate-Shafarevich-groups-of-multinorm-one-torus
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Example 4.8. We put p = 3 and n = 3, so k = Q(ζ27). Choose the primes ℓ1 = 5 and ℓ2 = 19.

We consider the multinorm-one torus defined by the following extensions over k: K0 = k( 27
√
5),

K1 = k( 27
√
5× 19), K2 = k( 27

√
52 × 193), K3 = k( 27

√
53 × 195), K4 = k( 27

√
55 × 1911). We list ai

and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5,

b0 = 0, b1 = 1, b2 = 3, b3 = 5, b4 = 11.

Using Lee’s formula (4.17) and the computer program, we compute the Tate-Shafarevich group

X(L/k) ≃ (Z/3Z)3.

Example 4.9. Let p, n, k, ℓ1, ℓ2,m be the same as in Example 4.8. Consider a different multinorm-
one torus defined by the following field extensions: K0 = k( 27

√
5), K1 = k( 27

√
5× 19), K2 =

k( 27
√
52 × 193), K3 = k( 27

√
54 × 199), K4 = k( 27

√
510 × 1919). We list ai and bi as follows:

a0 = 1, a1 = 1, a2 = 2, a3 = 4, a4 = 10,

b0 = 0, b1 = 1, b2 = 3, b3 = 9, b4 = 19.

In this case we obtain X(L/k) ≃ Z/3Z.

In the first example Ki are linearly disjoint. Our computation result agrees with [13, Propo-
sition 7.3]. In the second example some of Ki are not linearly disjoint so there are some contri-
butions from Ur for r ≥ 1. We refer the reader to [7] for the details.
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