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90095, USA

4Department of Pathology, City of Hope, Duarte, CA 91010, USA

Abstract

The rapid histopathological examination of bone tissue remains a challenge for orthopaedic 

oncologists due to the difficulty in performing cryosection-based analyses of bone tissue. 

Orthopaedic oncologists instead rely on pre-operative x-ray computed tomography or magnetic 

resonance imaging to identify the bony edge for a resection, a workflow which does not allow 

an accurate diagnosis or the confirmation of negative tumour margins in the resected tissue, 

leading to bone margin delimitation which can be up to 10-times wider than necessary in bony 

sarcomas (typically 2 cm from the tumour). Here, we report that 3-dimensional contour-scan 

reflection-mode ultraviolet (UV) photoacoustic microscopy (PAM) provides a label-free approach 

for the evaluation of unprocessed thick human bone specimens. The UV-PAM images of both 

undecalcified and decalcified bone specimens were validated with gold-standard hematoxylin 

and eosin stained images. An unsupervised deep learning algorithm based on cycle-consistent 

generative adversarial networks converted the UV-PAM images into H&E-like pseudocolor 

histologic images, allowing the pathologists to readily identify the cancerous features following 

existing pattern-recognition parameters.
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Approximately 18.1 million new cancer cases were diagnosed worldwide in 2018, while 

the number of new cancer cases per year is expected to rise to 29.5 million, with 9.6 

million cancer-related deaths by 20401. Despite the advances in cancer treatment, surgery 

remains the cornerstone, and more than 80% of cancer patients have a surgical procedure 

at some point in the cancer evolution2,3. In oncologic surgery, intraoperative pathological 

examination provides surgical guidance and identification of tumor margins4. The border of 

the removed tissue in tumor surgery is often examined by intraoperative frozen section 

to ensure negative margins, meaning normal tissue surrounding the resected tumor5. 

Most localized tumors with negative margin resection show much better outcomes and a 

lower chance of tumor recurrence. The intraoperative evaluation of tumor margins allows 

confirmation of complete tumor resection before oncologic surgeons close the surgical 

wound and helps patients avoid the second tumor resection surgery.

To provide rapid pathological examination and guide tumor resection, oncologic surgeons 

currently rely on the frozen section technique, which typically takes a small portion of 

tissue and freezes the tissue in a cryostat machine6. The frozen tissue is then cut into thin 

sections (5-8 μm) using a microtome or cryostat and stained for direct examination under 

a microscope. However, the need for sectioning the specimen into thin slices prevents this 

technique from being used for hard tissue and may also cause inevitable tissue loss. For 

instance, the rapid pathological examination of calcified bone (cortical bone and calcified 

tumors) often cannot be evaluated by the frozen section technique due to the ossification7,8. 

It is usually impossible to directly cut the undecalcified bone tissue into slices thin enough 

for traditional pathological examination. Instead, the bone must undergo a decalcification 

process that can take up to several days, which may introduce artifacts if under-decalcified 

or over-decalcified9.

The difficulties of rapid pathological examination of bone specimens have been a 

long-standing challenge for orthopedic oncologists in medical practice. For orthopedic 

oncologists resecting primary bone tumors, the need for time-consuming decalcification 

procedures often obviates pathological analysis during the operation. Thus, the surgeons 

tend toward wider margins based on pre-surgical imaging of bone tumors rather than 

intraoperative tissue analysis. Although wider margins are desirable for local tumor control, 

the functional loss can be much greater if those margins include vital structures such as 

tendons, nerves, blood vessels, or joints. Many surgeons use 2 centimeters as the ideal bony 

margin and measure this off the pre-operative imaging, while a meta-analysis performed 

in 2019 showed that a 2 millimeter margin is sufficient to avoid local recurrence10. 

Since calcified primary bone tumors, such as osteosarcoma, present most commonly in 

a periarticular location, 1.8 centimeters of margin difference could lead to joint salvage, 

increased patient bone stock for any future surgery needed, and less morbidity10. A modality 

that allows for fast, accurate bony margin analysis would be an invaluable tool in limb-

salvage surgery.

In recent years, rapid developments of imaging techniques have revolutionized many 

biological and biomedical areas as well as pathology. Multiple fluorescence microscopy 

methods have been demonstrated for diagnostic imaging, including confocal microscopy11, 

wide-field structured-illumination microscopy (SIM)12,13, light-sheet microscopy14, and 
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microscopy with UV surface excitation (MUSE)15. However, these fluorescence microscopy 

techniques require dye staining of the specimen to provide image contrast, which involves 

complicated and different procedures for various samples prior to imaging and needs highly 

experienced personnel. Label-free optical imaging techniques have also been developed for 

rapid pathological diagnoses, such as stimulated Raman scattering microscopy (SRS)16,17 

and coherence tomography/microscopy (OCT/OCM)18,19. However, although MUSE and 

SRS techniques provide fast surface imaging of slide-free specimens, they lack the depth-

resolving capability and suffer from the limited depth of field, resulting in blurred images 

of uneven surfaces with unprocessed slide-free specimens. The deconvolution-based image 

fusion and multi-layer z stacked images can be used to achieve an extended depth of field. 

But it usually takes much longer imaging time and requires careful camera calibration and 

tedious experimental measurement of the point spread function, which are highly sensitive 

to noise or image variability20. While OCT has the depth-resolving capability, it cannot 

provide direct nuclear contrast within tissues since the optical scattering contrast does not 

have sufficient chromophore specificity21. Thus, OCT images cannot well match the current 

pathology standard of hematoxylin and eosin (H&E) staining in detail, which limits its 

application as a pathological diagnostic tool. The comparison between different imaging 

modalities and traditional pathology approaches can be found in Supplementary Table 1.

Flatness is difficult to achieve in calcified bone tumors resected during operation, as cutting 

hard and calcified bone inevitably leads to rough surfaces. To address these challenges, 

we have developed the real-time 3D contour-scan ultraviolet photoacoustic microscopy (UV-

PAM) and demonstrated the label-free imaging of thick unprocessed bone, which requires 

minimal tissue preparation. The capability of imaging the non-sectioned bone specimen 

allows direct visualization of well-preserved structure and composition of calcifications, 

which could make UV-PAM potentially an ideal tool for rapid diagnosis of challenging 

tissues like thick calcified bone specimens. As a hybrid imaging modality, photoacoustic 

tomography (PAT) detects either endogenous or exogenous contrast-induced ultrasound 

signals through light absorption22,23. The wavelength-dependent absorption allows PAT 

to quantitatively measure the concentration and distribution of different optical absorbers, 

while the less scattering ultrasound detection enables high-resolution deep tissue imaging. 

The unique advantage of scalable spatial resolutions and imaging depths makes PAT 

attractive for various applications, ranging from imaging of nanometer-scale mitochondria 

to millimeter-level blood vessels in deep tissue22. Based on the imaging resolution and 

reconstruction approaches, PAT can be implemented in the form of either photoacoustic 

computed tomography (PACT) or photoacoustic microscopy (PAM)23. While PACT is 

mostly used for deep tissue imaging at the ultrasound resolution, PAM is often implemented 

with the optical diffraction-limited resolution. Utilizing the nonlinear absorption or 

Grüneisen parameter, PAM is also capable of achieving super-resolution imaging beyond the 

optical diffraction limits24-26. Depending on the illumination wavelength, various contrasts 

have been imaged by label-free PAM, including but not limited to hemoglobin27,28, DNA/

RNA29, cytochrome30, water31, lipid32, and protein33.

In this study, we developed the UV-PAM system using a 266 nm nanosecond pulsed 

laser and demonstrated histology-like imaging of bone specimens. We implemented a real-

time 3D contour-scanning mechanism to ensure consistent and optical diffraction-limited 
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resolution for uneven bone specimen surfaces, which does not need prior knowledge of the 

surface profile. Using the UV-PAM system, we demonstrated the histology-like imaging of 

unprocessed thick bone specimens with rough surfaces, which is challenging for traditional 

histological techniques. The UV-PAM images of both decalcified and undecalcified 

bone sections were acquired and compared with gold-standard H&E-stained images for 

validation. In addition, we present an unsupervised deep learning-based method to perform 

virtual H&E staining of grayscale UV-PAM images to provide the pathologist with 

complementary contrast and help interpret PAM images. Unlike supervised deep learning 

methods such as generational adversarial networks (GAN)34,35, our unsupervised deep 

learning method based on cycle-consistent generational adversarial networks (CycleGAN) 

does not require coupled pairs of stained and unstained images36,37. It avoids the need for 

well-aligned UV-PAM and H&E-stained images for neural network training, which can be 

challenging to acquire due to artifacts caused by sample preparation-induced morphology 

changes. All experiments and protocols in this study are approved by the Institutional 

Review Boards at the California Institute of Technology, the University of California at Los 

Angeles, and the City of Hope.

Results

Histopathological examination of bone tissue via UV-PAM.

With optical focusing and the time-of-flight information from photoacoustic (PA) signals, 

PAM images the contrast distribution in 3D. The PA signal was received by a 42 MHz 

ultrasound transducer and digitized by a data acquisition card sampling at 500 MHz. We 

found that PAM can localize the z positions of the sample surface with accuracy finer 

than the acoustical resolution (~40 μm) by approximately a factor of 10 as limited by the 

signal-to-noise ratio. The UV-PAM employs a 266 nm nanosecond pulsed laser to image the 

DNA/RNA. While the penetration depth depends on the sample type, in bone specimens, we 

found that the UV light penetration is less than the acoustical resolution. Thus, no deep PA 

signal is generated and mixed with surface signals, allowing direct imaging of the surfaces 

of thick bone specimens. While soft tissue can be sampled or squeezed with a flat surface, 

unprocessed hard tissues (i.e., calcified primary bone, Supplementary Fig. 1) usually have a 

rough surface due to tissue extraction.

The 3D contour-scanning UV-PAM (Fig. 1a) allows direct imaging of thick specimens with 

rough surfaces, provides the possibility of rapid pathological diagnosis of undecalcified 

thick bone. Since the height differences in adjacent B-scan positions (0.625 μm away from 

each other) can be reasonably assumed to be much smaller than the depth of focus (DOF) 

of our UV-PAM (~9 μm), the z contour-scanning trajectory can be predicted and updated 

in real-time after the first seed B-scan for the full field of view (FOV), without the prior 

knowledge of the surface contour (Supplementary Fig. 2). Thus, the real-time 3D contour 

scanning UV-PAM can ensure the distance between the image position and focal plane 

is within the DOF, resulting in a consistent diffraction-limited lateral resolution for rough 

surface imaging. The performance of the proposed contour scanning mechanism has been 

tested using a phantom with a bent black tape, which showed well-compensated distances 
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in the full FOV (Supplementary Fig. 3a-c). The measured lateral resolution is 0.96 μm 

(Supplementary Fig. 3d).

After acquiring a grayscale UV-PAM image of the sample surface, the unsupervised deep 

learning method based on CycleGAN is used to implement the virtual staining. The deep 

learning network architecture (Fig. 1b) for virtual staining consists of two generators (G 

and F) and corresponding adversarial discriminators (DPA and DHE). Each pair of generators 

and discriminators are trained so that the outputs of G and F are indistinguishable from real 

PAM and H&E-stained images, respectively. The generators are further regularized using the 

cycle-consistency loss – transforming an image from one domain and back should recover 

the original input. This process ensures that the transformations are bijective and produce 

corresponding morphology. The combination of cycle consistency and discriminator loss 

terms avoids the necessity for well-aligned paired datasets, which are needed in traditional 

l2-norm or similar loss training between a network output and a target label. With the neural 

network well trained, it takes less than 5 seconds to virtually stain an image of 1600×1600 

pixels.

Thanks to the real-time 3D contour-scanning UV-PAM system and deep learning-assisted 

virtual staining, the rapid diagnosis of unprocessed bone becomes possible. The workflows 

of both PA histology and traditional H&E histology of bone clearly reveal the advantage 

of PA histology (Fig. 1c). While the frozen section technique is not applicable to hard 

bone specimens, conventional H&E histology techniques for bone can take up to 7 days. In 

contrast, the PA histology technique can produce virtually stained images of unprocessed 

bone for pathological examination within 11 minutes (0.625 μm step size, 1×1 mm2 FOV).

3D contour-scanning UV-PAM of thick patient bones.

To demonstrate the imaging of unprocessed thick bone specimens for rapid pathological 

diagnosis, we extracted mineralized primary bone specimens from patients in a tumor 

resection surgery. Unprocessed bone specimens were immediately fixed in the formalin 

solution after surgical excision to prevent degradation. No further cutting or sectioning was 

implemented with the bone specimen, avoiding the need for paraffin or agarose embedding. 

Then, the bone specimen was placed onto a customized water-immersed sample holder 

for scanning. We obtained the left tibia bone specimens from a patient with osteofibrous 

dysplasia-like adamantinoma, which has a rough surface due to the surgical excision by an 

oscillating saw. The image acquired by 2D raster scanning without contour compensation 

(Fig. 2a) shows a large portion of the out-of-focus area within the FOV (2.5×6.25 mm2), 

resulting in an inconsistent resolution and poor image quality. The rough bone surface 

profile is reconstructed by the PA signal time-of-flight information (Fig. 2b), revealing a 

large fluctuation in surface height and less than 10% of the pixels within the DOF. In 

contrast, the UV-PAM image acquired by the 3D contour scanning of the same area showed 

significantly improved image quality and consistent resolution across the FOV (Fig. 2c). 

More than 92% of the surface area is within the small DOF during the 3D contour scanning 

(Fig. 2d). Another comparison between the 2D raster-scanning PAM image and the 3D 

contour-scanning PAM image of unprocessed patient bone can be found in Fig. 2e and Fig. 

2f. As shown in Fig. 2f, important bone structures, such as trabeculae and marrow, can 
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be visualized by UV-PAM with specimen integrity. More 3D contour-scanning UV-PAM 

demonstrations of undecalcified thick bone specimens can be found in Supplementary Fig. 4 

and Supplementary Fig. 5. It clearly shows that the 3D contour-scanning UV-PAM system is 

capable of imaging the rough surfaces of unprocessed thick bone specimens. In contrast, it 

is difficult to acquire high-quality images using the traditional 2D raster-scanning approach. 

Since UV-PAM imaging is non-destructive, the unprocessed bone specimens can be used for 

further pathological diagnosis.

H&E validation for label-free UV-PAM of bone specimens.

Since the traditional H&E-stained slice of bone usually requires decalcification and cutting 

into thin sections (i.e., 5-8 μm), we first demonstrated UV-PAM imaging of a formalin-fixed 

paraffin-embedded (FFPE) decalcified bone fragment without malignancy on a glass slide. 

As shown in Figs. 3a and 3c, obvious bone structures, including decalcified mineralized 

bone, can be readily visualized. In addition, the close-up images (Figs. 3b and 3d) 

demonstrate profiles and nests of metastatic carcinoma within the medullary space of the 

bone. The decalcified bone specimen from the patient with chondroblastic osteosarcoma is 

also imaged by UV-PAM and shown in Supplementary Fig. 6.

To validate the PA histology of bone fragments, we compared UV-PAM images of both 

decalcified and undecalcified bone specimens with gold-standard H&E-stained images 

acquired by a traditional optical microscope. Here, the contrast of PAM images is reversed 

to highlight the high absorption region in dark color for better comparison with H&E-stained 

images. A comparison between the original grayscale image and the image in reversed 

contrast can be found in Supplementary Fig. 7. The decalcified bone section on a glass 

slide extracted from a patient with metastatic adenocarcinoma was imaged by UV-PAM 

(Fig. 4a) and compared with its corresponding H&E-stained image (Fig. 4c). The UV-PAM 

image demonstrates the key features present in the H&E-stained image, in which abnormal 

tumor glands are readily observable (indicated by arrows). Meanwhile, the PAM image of 

a decalcified fragments of bone and hematopoietic marrow with no evidence of metastatic 

carcinoma (Fig. 4b) also shows the same structure as its corresponding H&E result (Fig. 4d). 

Furthermore, the undecalcified bone slices were imaged by PAM and compared with H&E-

stained images, which avoids potential artifacts introduced by the decalcification procedures. 

Since these specimens were harvested from a portion of the tumor with low calcification, 

they did not require the decalcification procedure to section the specimen into thin slices. 

The PAM images (Fig. 5a-c) of undecalcified bone sections on a glass slide are presented 

in reverse contrast. Fig. 5a and Fig. 5b demonstrate features of osteoblastic osteosarcoma, 

while Fig. 5c demonstrates the myxoid lobules of chordoma. The corresponding H&E-

stained images are acquired by the digital whole slide scanning microscope with a 40X 

objective (Fig. 5d-f)., showing essentially identical structures as the PAM images. Close-up 

images in sliding windows are shown in Supplementary Movie 1. Another example of 

UV-PAM and H&E comparison can be found in Supplementary Fig. 8, which was from a 

decalcified bone slice with high-grade osteosarcoma from the femur. The necrotic tumor 

(Supplementary Fig. 8b) and the viable tumor (Supplementary Fig. 8c-d) can be identified 

using the PAM images, which also showed comparable features as the H&E-stained images 

(Supplementary Fig. 8f-g).
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Photoacoustic virtual histology via deep learning.

To match traditional histologic images, we performed virtual H&E staining on the grayscale 

PAM images using a CycleGAN based deep learning method36. The virtual staining 

CycleGAN network architecture is shown in Fig. 6. More detailed procedures of generating 

virtually H&E-stained PAM images are described in Methods. The example UV-PAM 

images of the bone section are shown in grayscale contrast (Supplementary Fig. 9) and 

histology-like pseudocolor (Fig. 7a and Fig. 7c), which demonstrate architectural features 

as well as cellular details similar to the corresponding H&E images (Fig. 7b and Fig. 

7d). The close-up virtual histologic PAM images (Fig. 7a1-a2 and Fig. 7c1-c2) clearly 

demonstrate histologic features that would be important in the interpretation of pathological 

examination and correspond to the close-up H&E images (Fig. 7b1-b2 and Fig. 7d1-d2). 

The virtual histologic images have been reviewed by three pathologists and one orthopedic 

surgeon, who confirmed the comparable and interpretable histologic features present in 

H&E-stained slides that might be used for clinical diagnosis. More details of close-up 

images from the virtually stained PAM images and corresponding H&E-stained images are 

shown in Supplementary Movie 2 and Supplementary Movie 3 for side-by-side comparison. 

The cell nuclear counts, nuclear cross-sectional areas, and internuclear nearest neighbor 

distances are quantitatively compared in Supplementary Fig. 10 and Supplementary Table. 

2, demonstrating a good match between the virtual staining photoacoustic image and the 

corresponding real H&E-stained image. As shown in Supplementary Table. 2, internuclear 

distances in two images match within the errors. The cell counts and nuclear cross-sectional 

areas are slightly different, which is expected as we were looking at neighboring sections 

taken at different axial positions instead of the same section.

Discussion

The development of 3D contour-scanning UV-PAM in reflection mode enables more 

rapid pathological examination of bone specimens. In contrast, traditional pathological 

examination techniques for bone involve time-consuming decalcification procedures, and 

the frozen section technique is often not applicable. With the bone mineral as its major 

component, dense cortical bones can take days to decalcify before it is soft enough to 

be sectioned into thin slices, which prevents rapid intraoperative diagnosis. Currently, 

orthopedic surgeons heavily rely on pre-operative x-ray CT or MRI to identify the 

extent of the tumor for the planning of resection margins. But these imaging modalities 

cannot provide accurate diagnosis and intraoperative confirmation of tumor margins. The 

reflection-mode contour-scanning UV-PAM enables label-free imaging of unprocessed thick 

bone samples with rough surfaces, which provides detailed information for pathological 

examination of the tumor margin rapidly, meeting a critical need for intraoperative margin 

analysis.

When rendering a diagnosis from standard H&E-stained slides, pathologists examine 

the architecture morphology and cellular features such as cell nuclei, cytoplasm, and 

extracellular matrix. The H&E staining approach has been long and widely used in 

histology, as it provides a clear contrast between cell nuclei and cytoplasmic parts by 

staining them in different colors. Thus, pathologists are accustomed to the stained and 
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counterstained appearance of H&E-stained tissue samples, which show extracellular matrix 

and cytoplasm as pink, and cell nuclei as blue/purple. At the UV wavelength of 266 nm38, 

the cell nuclei have a much higher absorption coefficient and PA amplitudes than the 

extracellular matrix and cytoplasm, allowing the virtual labeling of them in different colors 

like H&E staining. We processed the grayscale PAM images and generated the pseudocolor 

images for virtual H&E staining by applying the deep learning approach with CycleGAN, 

which does not need well-aligned PAM and H&E-stained image pairs for neural network 

training. The virtually stained pseudocolor PAM images demonstrated cellular, nuclear, and 

cytoplasmic detail, matching the corresponding H&E-stained images. With more clinically 

relevant PAM virtual histology results, the deep convolutional neural network technique may 

be further used to potentially achieve automatic diagnosis and tumor margin detection16.

Although we have demonstrated the potential of UV-PAM for rapid diagnosis of 

unprocessed bone specimens, further improvements can be made toward better clinical 

use. One key challenge is to improve the image speed to allow for faster feedback 

intraoperatively. The current UV-PAM system employs a pulsed 266 nm laser with a pulse 

repetition rate up to 50 kHz, which limited the theoretical image speed to an A-line rate 

of 50 kHz. However, due to the accuracy and stability of step motors, it is challenging 

to ensure a good image quality of UV-PAM at high motor speeds. The current system is 

running at 10 kHz laser repetition rate, which takes about 10 minutes in practice to scan a 

FOV of 1x1 mm2 at the step size of 0.625 μm. To achieve higher imaging speeds, we can 

use faster optical scanning approaches and even higher laser repetition rates39. Moreover, 

multichannel parallel imaging can be used to further boost the imaging speed, where 

multiple focal spots and an ultrasound transducer array are used for image reconstruction. 

For instance, a microlens array can be utilized to create multiple focal spots for multichannel 

parallel imaging, which has been reported to improve the imaging speed of UV-PAM by 

40 times40. However, the limited numerical aperture and the short working distance of 

the microlens array can only be used in transmission-mode UV-PAM, which impedes its 

practical use for high-resolution images of thick unprocessed biological samples. Reflection-

mode multichannel UV-PAM with high resolution will be needed for faster intraoperative 

diagnosis.

Due to the physical limit of z-motor mechanical movement, which cannot adjust the position 

fast enough, a small portion (e.g., ~6.3% in Fig. 2c) of the areas may still fall out of the 

DOF if we scan a large FOV (e.g., 6x8 mm2). To further improve the performance of 

high-resolution PAM imaging of rough surfaces, an electrically tunable lens (ETL) may be 

integrated into our system to allow faster optical focus shifting with high accuracy41. Since 

the acoustical DOF of the focused ultrasonic transducer is often much longer (i.e., hundreds 

of microns) than the optical DOF, the optical focus shifting within the acoustic DOF can 

be used to compensate for the steep height fluctuation, while the time-dependent gain 

compensation technique can be used to compensate for the transducer sensitivity difference 

within the acoustic DOF42.

Compared with traditional intraoperative pathological methods (i.e., frozen sectioning), 

photoacoustic histology can lower the cost by reducing the turnaround time and avoiding 

highly specific personnel for sample preparation and specimen transportation. It may also 

Cao et al. Page 8

Nat Biomed Eng. Author manuscript; available in PMC 2023 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enable remote and automatic pathological diagnostics in the future. The current UV-PAM 

system employs a Q-switched Nd: YLF nanosecond pulsed UV laser at the wavelength 

of 266 nm to generate photoacoustic signals of cell nuclei, which may be challenging for 

in vivo imaging due to the safety concern of UV laser. The need for nanosecond pulsed 

UV laser increases the cost of the PAM system. Further developments using longer laser 

wavelengths for photoacoustic histological imaging will not only enable in vivo imaging 

but also significantly lower the equipment cost. Another limitation is that the current 

system requires specimens to be mounted onto a sample holder and immersed into water 

for mechanical scanning and acoustic coupling, which is suboptimal for high-throughput 

histological imaging. A better configuration that allows the specimen outside the water tank 

will ensure even easier sample handling for rapid high-throughput histological imaging.

In summary, we have demonstrated label-free UV-PAM as a valid way to image unprocessed 

bone without the need for tissue sectioning. The immediate clinical indication for these 

results is to provide the possibility of rapid pathological examination of bone tumor margins. 

Since no physical sectioning is needed, it does not need highly specific trained technicians 

for bone specimen preparation. Moreover, the undestructed bone specimen can be further 

examined by other techniques after label-free UV-PAM imaging. In this paper, we focused 

on the demonstration of bone, which is one of the most challenging biological tissues for 

rapid pathological diagnosis. But the system can also be applied to various other types of 

specimens. We believe it has great potential for revolutionizing the pathological diagnosis 

and providing immediate feedback for determining the tumor margin.

Methods

Label-free reflection-mode UV-PAM.

The reflection-mode UV-PAM system used an Nd: YLF (neodymium-doped yttrium lithium 

fluoride) Q-switched 266 nm nanosecond pulsed laser (QL266-010-O, CrystaLaser). A 

bandpass glass filter (FGUV5, Thorlabs) was placed at the laser output to reject the leaked 

pump light. After passing the colored glass filter, a small portion of the beam was reflected 

by a UV fused silica beam sampler (BSF10-UV, Thorlabs) and directed to a Si photodiode 

(PDA36A, Thorlabs) for pulse-to-pulse fluctuation compensation. The UV laser beam was 

expanded by a pair of plano-convex lenses and spatially filtered by a 15 μm high-energy 

pinhole (900PH-15, Newport). The expanded and collimated beam was then focused onto 

the sample by a custom-made water-immersion UV objective lens (consisting of an aspheric 

lens, a concave lens, and a convex lens (NT49-696, NT48-674, NT46-313, Edmund Optics)) 

with a numerical aperture (NA) of 0.16. A customized ring-shaped ultrasonic transducer (42 

MHz center frequency, 76% −6 dB two-way bandwidth) with a central aperture was used 

to detect the PA signal, which allows the optical and acoustical confocal alignment. The 

detected signal was amplified by two low noise amplifiers (ZFL-500LN+, Mini-Circuits) 

and digitized by the data acquisition card (ATS 9350, Alazar Technologies) at a 500 MHz 

sampling rate. The PAM image was acquired by scanning the water-immersed sample 

mounted onto a customized 3D scanner (consisting of 3 step motors, PLS-85, PI Micos, 

GmbH). The reconfigurable I/O device (myRIO-1900, National Instruments) with a field-
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programmable gate array (FPGA) was used to control and synchronize laser pulses, motor 

movements, and data acquisition.

Real-time 3D contour-scanning UV-PAM.

To allow imaging of the rough surface of unprocessed thick samples like bone, we developed 

the contour scanning mechanism without prior knowledge of the sample surface using a 

3-axis motorized stage, which ensures consistent lateral resolution within a large field of 

view. For consistent and optimized optical resolution, the distance between the sample and 

optical focus should be maintained within the DOF during scanning. In contour scanning, 

the time-of-flight information of PA signals is used to calculate the distance between the 

sample and the focal spot, which can be adjusted by the z-motor during scanning. With the 

numerical aperture of 0.16, the DOF of our UV-PAM microscope is only about 9 μm, which 

corresponds to 6 ns ultrasound propagation for the speed of sound at 1500 m/s in room 

temperature water. The acquired PA signal was digitized at the sampling rate of 500 MHz 

(ATS9350, AlazarTech). The z-profile of the sample surface can be accurately calculated 

using the time-of-flight information of PA signals, enabling contour scanning for z-position 

compensation.

Prior to PAM imaging, the optical and acoustic foci are confocally aligned, while the 

propagation time of the acoustic signal from the optical focus is recorded to determine the 

focal spot position. To extract the ultrasound propagation time, we calculate the centers 

of positive and negative peak positions in PA A-line signals, which are converted to the 

sample position. Without prior knowledge of the sample surface profile, one seed B-scan 

with the z-motor disabled is implemented to calculate the starting contour trajectory. To 

avoid potential noise interference and remove outliers, a 100-point moving average is used 

to generate a smooth z scanning trajectory. During the contour scanning, both the x-axis 

motor and the z-axis motor move simultaneously. After the first contoured B-scan, the 

z-motor trajectory and the distance between the sample surface and the ultrasonic transducer 

are calculated and used to compute the accurate surface profile. Due to the small y step 

(0.625 μm), we set the second z-motor trajectory to follow the surface profile from the 

previous contoured B-scan43. Then, the surface profile is updated according to the second 

contoured B-scan. This process is repeated until the whole scanning is completed. Real-time 

data processing and system control are implemented using MATLAB and LabVIEW hybrid 

programming.

Bone specimen preparation and H&E imaging.

The bone specimens for UV-PAM imaging were procured from larger specimens in the 

pathology laboratory with informed consents of patients, surgically removed from patients at 

the City of Hope and UCLA medical center. All bone specimens were fixed in 10% buffered 

formalin prior to any other procedures. For thick undecalcified specimens in this study, the 

specimens were mounted to the sample holder for imaging without further processing. To 

decalcify specimens, we treated the bone specimens with a decalcifying solution containing 

chelating agents in dilute HCl, while the treatment time varied depending on the size and 

hardness of the specimens. After fixation and decalcification, the specimen was embedded in 

paraffin wax, sectioned into 5-micron thick slices, and placed on glass slides. Specimens 
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with less calcification were sectioned without decalcification. These slices were then 

processed with standard H&E staining and cover-slipped. The H&E-stained slides were 

imaged using either the standard optical microscope or the digital whole slide scanning 

(Leica Aperio AT2) with a 40X objective.

UV-PAM virtual histology via CycleGAN.

To reconstruct the UV-PAM images, we first calculated the PA amplitude of each A-line 

signal after the Hilbert transform. The pulse energy measured by the photodiode was 

used to normalize the PA amplitude and compensate for the laser pulse fluctuation. The 

axial position of the specimen surface was calculated by detecting the peak of the A-line 

signal after the Hilbert transform. The 2D MAP (maximal amplitude projection) image was 

self-normalized. Since the PA amplitude of the contrast is proportional to its absorption 

coefficient, it can be used to effectively differentiate cell nuclei, cytoplasm, and the 

background. The cell nuclei have the largest absorption coefficient at 266 nm and the highest 

PA signals. After calculating the grayscale UV-PAM, we use a trained neural network to 

perform virtual H&E staining, which is more familiar to pathologists and thus easier for 

them to interpret.

We use the CycleGAN architecture36, shown in Fig. 6, which can learn how to map images 

from the UV-PAM domain, PA, to the H&E domain, HE, without the need for well-aligned 

image pairs. We use an adversarial loss to learn the transformations G: PA HE and F: 

HE PA, such that the images G(PA) and F(HE) are indistinguishable from HE and PA, 

respectively. The discriminators are trained to distinguish between real images and those 

produced by the generators. The loss function for DHE is given by44

lDHE = DHE(G(PA))2 + (1 − DHE(HE))2, (1)

where PA is a UV-PAM image patch, and HE is an H&E-stained image patch. Similarly, the 

loss function for DPA is given by

lDPA = DPA(F (HE))2 + (1 − DPA(PA))2 . (2)

The generators are trained to try and fool the discriminators by producing images that 

match the statistical properties of the target domain. To ensure G doesn’t simply produce 

convincing but irrelevant H&E images, an additional loss term is necessary. Conventionally, 

this would be the l2 or l1 norm loss between the network output and some known ground truth 

image. However, this requires well-aligned paired datasets, which are challenging to acquire 

after sample preparation.

Instead, the CycleGAN architecture learns the inverse transformation so that cycle 

consistency can be used to ensure the images are of the same structures. The total loss 

for the generators is

lG = 1 − DHE(G(PA)) 2 + 1 − DPA(F (HE)) 2 + λ ∣ F (G(PA)) − PA ∣ + λ ∣ G
(F (HE)) − HE ∣ , (3)
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where the regularization parameter λ is set to 10.

The generators are residual networks consisting of an input convolutional layer, two 

convolutional layer and downsampling blocks, nine residual network blocks, two 

convolutional and upsampling blocks, and finally, an output convolutional layer45. Instance 

normalization and rectified linear unit (ReLU) layers are used after each convolutional 

layer. For the discriminator, we use PatchGAN consisting of convolutional layer and 

downsampling blocks, which classify whether the image is real on overlapping 70x70 pixel 

image patches46. This patch size is a compromise between promoting high spatial frequency 

fidelity and avoiding tiling artifacts. In the discriminator networks, instance normalization 

and leaky ReLU (lReLU) layers, lReLU(x) = max(0.2x, x) are used after each convolutional 

layer. Anti-alias downsampling and upsampling layers are used in both the generators and 

discriminators to improve shift invariance47.

The training dataset consisted of UV-PAM images of undecalcified bone specimens. These 

images were converted into 17940 and 26565 286x286 pixel image patches for UV-PAM 

and H&E histology, respectively. During training, these were further randomly cropped to 

256x256 for data augmentation. The training was performed with the Adam solver with a 

batch size of 4 and an initial learning rate of 0.0002, decaying to zero over 100 epochs48. 

Once trained, we used the generator G to transform UV-PAM data in overlapping 256x256 

pixel image patches, which were recombined with linear blending. To validate the virtual 

histology performance, we have quantitatively assessed the accuracy of our virtual staining 

method. We have segmented the cell nuclei in comparative regions of interest to compare 

their numbers, sizes, and densities. The nuclear segmentation was performed via Qupath49, 

using the default cell detection settings with the threshold set to 0.3 to reduce false positives. 

The cell counts, average nuclear areas, and average nearest neighbor internuclear distances 

were calculated for comparison of the UV-PAM virtual histology and H&E results.
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Refer to Web version on PubMed Central for supplementary material.
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Code availability

The original code for CycleGAN is available at https://github.com/junyanz/pytorch-

CycleGAN-and-pix2pix. We applied this to our dataset with the customized settings 

described in Methods. MATLAB was used for creating image tiles for the network and 

restitching output image tiles. The quantitative analysis of photoacoustic virtual histology 

was done via QuPath (https://qupath.github.io/). The system control software and the data 

collection software are proprietary and used in licensed technologies.
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Fig. 1. Rapid label-free UV photoacoustic (PA) histology via deep learning.
a, schematic of the 3D contour scan UV-PAM system. The UV laser is spectrally filtered by 

a bandpass colored glass filter (BF) and spatially filtered and expanded using a pair of lenses 

and a pinhole (PH). The beam sampler (BS) is placed before the lens to pick up a small 

fraction of the beam for photodiode measurement to compensate for the laser pulse-to-pulse 

energy fluctuation. The collimated and expanded beam is focused through a ring-shaped 

ultrasound transducer using a customized water immersed objective and illuminates the 

specimen for photoacoustic excitation. The 3D contour scanning of the specimen placed 

on the sample holder is implemented for UV-PAM imaging. b, Deep learning network 

architecture for virtual staining of PAM images. The CycleGAN model consists of two 

generators, G: PA→H&E and F: H&E→PA, and corresponding adversarial discriminators, 

DPA and DHE. c, The workflow for PA histology and conventional H&E staining histology 

of bone samples (1x1 mm2 field of view).
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Fig. 2. Label-free 3D contour-scanning UV-PAM of thick (>1 cm) unprocessed bone specimens.
a, The UV-PAM images of the undecalcified left tibia bone extracted from a patient with 

osteofibrous dysplasia-like adamantinoma acquired by a 2D raster-scanning and c 3D 

contour scanning, showing the improved image quality by 3D contour scanning of the 

undecalcified bone specimen with a rough surface. Scale bar, 500 μm. The specimen surface 

position in the axial direction relative to the optical focal plane during b 2D raster scanning 

and d 3D contour scanning profiles are calculated by the time-of-flight information of the 

photoacoustic signal. A normal unprocessed thick bone sample is also imaged and compared 

using e 2D raster scanning and f 3D contour scanning. Scale bar, 250 μm.
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Fig. 3. Label-free UV-PAM of decalcified bone specimens.
a, PAM image of the formalin-fixed paraffin-embedded (FFPE) decalcified nonneoplastic 

bone fragment on a glass slide. A near vertically oriented trabecula of cancellous bone 

is seen in the middle portion of the image. Scale bar, 500 μm. b, A close-up image of 

a showing a portion of the cancellous bone at the left border of the image. Scale bar, 

100 μm. c, PAM image of the FFPE decalcified bone specimen with metastatic poorly 

differentiated adenocarcinoma of pulmonary origin shows neoplastic glandular profiles of 

metastatic carcinoma on a glass slide. Scale bar, 500 μm. d, The close-up image of c shows 

nests and glandular profiles of metastatic carcinoma. Scale bar, 100 μm.
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Fig. 4. Label-free UV-PAM for identifying tumors in decalcified bone fragments.
a, PAM image of the decalcified bone section on a glass slide with metastatic 

adenocarcinoma. b, PAM image of the decalcified bone section on a glass slide with normal 

bone fragment and hematopoietic marrow. The PAM contrast was reversed to highlight the 

high absorption region in dark color for better comparison. c-d, Corresponding H&E images 

of a and b. Neoplastic glands of metastatic carcinoma amongst bone fragments are indicated 

by arrows in a and c. Scale bars, 500 μm.
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Fig. 5. Label-free UV-PAM of the undecalcified bone specimen and H&E validation.
a-b, UV-PAM images of undecalcified patient bone sections on a glass slide from patient 

#1 with osteoblastic osteosarcoma showing neoplastic osteoid matrix, the lacy material 

in between the nuclei of the neoplastic cells, denoted by arrows. c, UV-PAM images of 

an undecalcified patient bone section on a glass slide from patient #2 with chordoma, 

demonstrating lobules of the myxoid tumor demonstrating myxoid lobules of the tumor, 

which are areas denoted by arrows. d-f, Corresponding H&E images acquired by the 

digital whole slide scanning microscope with a 40X objective with an essentially identical 

appearance. Scale bars, 500 μm.
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Fig. 6. Detailed network architecture for virtual staining.
The CycleGAN model consists of two generators, G: PA → HE and F: HE → PA, and 

corresponding adversarial discriminators, DPA and DHE. Each generator is composed of 

two downsampling blocks (a convolutional layer and anti-alias downsampling layer of 

stride two), nine residual blocks (two convolutional layers and a skip connection), and two 

upsampling blocks (an anti-alias upsampling layer of stride two and a convolutional layer). 

Each convolutional layer is followed by instance normalization and rectified linear unit 

(ReLU) activation layers. The discriminators are composed of three downsampling blocks, 

followed by an output convolutional layer. Each convolutional layer in the discriminators 

is followed by instance normalization and leaky ReLU activation layers. The network is 

applied to image patches of 256 by 256 pixels.
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Fig. 7. Label-free UV-PAM virtual histology of undecalcified bone via unsupervised deep 
learning.
a, c, Virtual-stained PAM images of undecalcified bone sections on a glass slide. b, d, 
Corresponding H&E histology images. Scale bars, 500 μm. a1-a2, Close-up images of a 
show neoplastic spindle cells (denoted by many long, spindle-shaped purple nuclei, red 

arrow) arranged in vague streaming and fascicular patterns in a1, and a nodule of neoplastic 

chondroid material in a2 (yellow circle), corresponding to the H&E-stained images in b1 
and b2. c1-c2, Close-up images of c show ribbons of neoplastic spindle cells (red arrow) 

in c1 and disorganized osteoid, the streaky bands denoted by the yellow circle in c2, 

corresponding to the H&E-stained images in d1 and d2. Scale bars, 100 μm.
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