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Abstract

Gene set enrichment is a mainstay of functional genomics, but it relies on gene function databases 

that are incomplete. Here we evaluate five large language models (LLMs) for their ability to 

discover the common functions represented by a gene set, supported by molecular rationale 

and a self-confidence assessment. For curated gene sets from Gene Ontology, GPT-4 suggests 

functions similar to the curated name in 73% of cases, with higher self-confidence predicting 

higher similarity. Conversely, random gene sets correctly yield zero confidence in 87% of cases. 

Other LLMs (GPT-3.5, Gemini Pro, Mixtral Instruct and Llama2 70b) vary in function recovery but 

are falsely confident for random sets. In gene clusters from omics data, GPT-4 identifies common 

Reprints and permissions information is available at www.nature.com/reprints.
✉Correspondence and requests for materials should be addressed to Trey Ideker or Dexter Pratt. tideker@health.ucsd.edu; 
depratt@health.ucsd.edu.
Author contributions
M.H., S.A., T.I. and D.P. designed the study. M.H. and S.A. developed and implemented the automated LLM-based gene set 
interpretation pipeline, performed the data analysis and organized the GitHub repository. S.A. developed and assessed the semantic 
similarity calculation. I.L. and M.H. contributed to the development of the citation search and validation pipeline. D.P. contributed to 
the coding and the evaluation of the analysis. R.T.P. assisted in the study design, prompt engineering and the evaluation of the analysis. 
M.H., R.T.P., R.B. and D.P. conducted the scientific review of the LLM output. M.H. and D.P. contributed to the user interface design 
for the GSAI tool. D.F. built the web interface for the GSAI tool, and K.S. set up the server for accessing open-source LLMs. M.H., 
S.A., T.I. and D.P. wrote the paper with input from all authors. All authors approved the final version of this paper.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Competing interests
T.I. is a cofounder and member of the advisory board and has an equity interest in Data4Cure and Serinus Biosciences. T.I. is a 
consultant for and has an equity interest in Ideaya Biosciences. The terms of these arrangements have been reviewed and approved 
by the University of California San Diego in accordance with its conflict-of-interest policies. The other authors declare no competing 
interests.

Extended data is available for this paper at https://doi.org/10.1038/s41592-024-02525-x.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41592-024-02525-x.

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-024-02525-x.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2025 January 13.

Published in final edited form as:
Nat Methods. 2025 January ; 22(1): 82–91. doi:10.1038/s41592-024-02525-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


functions for 45% of cases, fewer than functional enrichment but with higher specificity and gene 

coverage. Manual review of supporting rationale and citations finds these functions are largely 

verifiable. These results position LLMs as valuable omics assistants.

A fundamental goal of the omics sciences is to identify the groups of genes responsible for 

the distinct biological functions of life, health and disease. In this vein, numerous messenger 

RNA expression experiments over the past several decades have produced sets of genes 

that are differentially expressed across conditions or that cluster by common expression 

patterns. Similarly, proteomics experiments produce clusters of proteins that are coabundant, 

comodified or physically interacting, and gene knockout screens produce lists of genes 

required for fitness or a particular response. In all of these cases, the basic premise is that the 

identified genes work coherently toward the same biological process or function.

The usual approach to interpret the genes identified in omics experiments is through 

functional enrichment analysis1-9. This method seeks to identify similarities between a 

cluster of omics genes and those from a large predefined collection of gene sets organized 

by shared functions or pathway categories10-15. This predefined collection can come 

from literature-curated gene function databases, such as Gene Ontology (GO)16,17, Kyoto 

Encyclopedia of Genes and Genomes (KEGG)18-20 or Reactome11,21,22. Alternatively, 

one can perform enrichment analysis against databases of genes annotated from previous 

independent experiments, such as genes previously linked to the same disease in the 

Genome-Wide Association Studies Catalog23, genes linked to the same mouse knockout 

phenotypes in the Mouse Genome Database24,25, genes regulated by a common transcription 

factor26,27 or genes that serve as canonical biomarkers for a given cell type28-30.

Paradoxically, an omics gene cluster that is highly similar to gene sets in a reference 

database may be of lesser interest, since the cluster and its function have already been 

well characterized. Of greater interest are clusters of genes that have not been previously 

implicated, because it is precisely in these cases that new biological insights emerge. These 

less-studied cases may either show no statistically significant enrichment in the reference 

database, or they may return enrichments that are significant in terms of P value but not 

substantial in terms of gene set overlap. Here, an immediate next step is to explore the 

biological literature, as well as complementary datasets, to learn as much as possible about 

the genes in question. The goal is to mine knowledge pertinent to each gene and then use 

this knowledge to synthesize mechanistic hypotheses for a function that might be held in 

common by all or many genes in the set. This protracted process of discerning relevant 

findings from data and literature, then reasoning on this information to synthesize functional 

hypotheses, has not yet been widely automated but is one of the central tasks performed by a 

genome scientist.

The advent of generative artificial intelligence (AI) models and, specifically, large language 

models (LLMs) is highly relevant to these tasks. At its core, generative AI is an approach 

to machine learning by which a model is trained to recognize underlying patterns in data 

in a manner that allows it to generate new results with properties similar to the training 

data. The underlying technology behind LLMs is the transformer architecture31-33, which 
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uses a self-attention mechanism to understand context and handle long-range dependencies 

in text, delivering notable advancements in tasks such as text translation, summarization 

and generation. Recent AI research has produced a flurry of general-purpose LLMs, such as 

Generative Pre-trained Transformer 4 (GPT-4)34 by OpenAI, Llama235 by Meta, Mixtral36 

by MistralAI, and Gemini37 by Google, which incorporate information from an enormous 

corpus of sources, including the biomedical literature. Based on these developments, LLMs
present major opportunities to assist in the interpretation of gene sets derived from omics 

experiments38.

Here, we evaluate the degree to which LLMs provide insightful functional analyses of gene 

sets based on their embedded biological knowledge and text-generation capabilities. First, 

we develop a gene set analysis pipeline based on queries to a panel of current LLMs. We then 

test the ability of each LLM to propose succinct names describing the functions of gene sets 

of interest, as well as to support this choice by referenced text and an overall assessment 

of confidence. Finally, we discuss our findings and their implications for the general use of 

LLMs in functional genomics.

Results

Development of an LLM functional genomics pipeline

We designed a pipeline in which an LLM is instructed to analyze a gene set and then 

generate a short biologically descriptive name, a supporting analysis essay and a score 

reflecting the LLM’s ‘confidence’ in these results (Fig. 1a and Methods). A separate LLM
instruction was used to validate statements made in the analysis essay with pertinent 

literature citations (Extended Data Fig. 1 and Methods). The instruction to an LLM is called 

a ‘prompt’ and can include data and examples to guide the response. Best practices for 

formulating this prompt are the subject of ongoing experimentation39-42; here, our prompt 

was engineered to capture desired properties of the results to be generated, including guiding 

phrases such as “After completing your analysis, propose a short descriptive name for the 

most prominent biological process performed by the system”. The engineered prompt also 

included a single (one-shot) example to help the LLM imitate the desired format and thought 

process (Fig. 1a, Extended Data Fig. 1b and Extended Data Table 1). This LLM functional 

genomics pipeline is available for general use via the Gene Set AI (GSAI) web portal 

(https://idekerlab.ucsd.edu/gsai/).

We sought to evaluate this LLM pipeline using reference gene sets derived from two primary 

sources. The first source was literature curation, for which we evaluated sets of genes 

drawn from GO terms16,17 (Fig. 1b, evaluation task 1). The second data source was ‘omics 

analysis, for which we evaluated clusters of genes identified by various ‘omics platforms, 

including transcriptomics and proteomics (Fig. 1c, evaluation task 2). The goal of the first 

task was to benchmark how well LLMs recover gene set functions previously documented by 

a human-curated reference database, while the goal of the second task was to explore the 

extent to which LLMs provide complementary insights beyond what is obtained from such 

databases.
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Evaluation task 1

Recovery of literature-curated functions.—For the first task, we randomly sampled a 

representative corpus of terms from the GO biological process branch (GO-BP 2023-11-15 

release; Extended Data Fig. 2 and Methods). The gene set annotated to each term was 

used to prompt five different LLMs (GPT-4, Gemini Pro, GPT-3.5, Mixtral Instruct and 

Llama2 70b; Fig. 1b), after which the names suggested by the LLMs were compared with 

the term names assigned by the GO curators. In each case, performance was measured 

by the semantic similarity of the LLM name to the GO name. Semantic similarity43 is 

a quantitative score (range 0–1) that measures the closeness in meaning of two words 

or phrases, regardless of whether those phrases involve different words or expressions 

(Methods). For example, the word ‘socks’ is semantically closer to the word ‘shoes’ than it 

is to ‘airplane’.

The five LLMs required 7.9 s (Gemini Pro) to 61.8 s (Llama2 70b) to process a gene 

set and return a proposed concise name, a confidence score and supporting analysis 

text (Extended Data Table 2). Semantic similarity scores ranged from values as high as 

1.0, in cases where the LLM name exactly matched the GO name (for example, Gemini 

Pro: ‘synaptic vesicle exocytosis’, GO:0016079), to values below 0.1, in cases where the 

names were not intuitively similar (for example, GPT-3.5: ‘regulation of ion transport 

and cellular homeostasis’ versus GO: ‘negative regulation of CD8-positive, alpha–beta T 

cell differentiation’, GO:0043377) (Table 1 and Supplementary Table 1). We found that 

GPT-4, Gemini Pro, GPT-3.5 and Mixtral Instruct showed roughly equivalent performance 

in proposing a name that was similar to the GO name (median similarities in the range 0.45–

0.50), whereas the performance of Llama2 70b was significantly worse (median similarity 

0.40; Fig. 2a).

To interpret these similarity scores, we calibrated them against background semantic 

similarity distributions, defined by comparing each LLM-proposed name against the entire 

set of 11,943 term names documented in GO-BP (Methods). For example, the GPT-4 name 

(‘DNA damage response and repair’) had semantic similarity of 0.54 to the GO name 

(‘response to X-ray’), a score that was higher than 99% of semantic similarities between 

the GPT-4 name and every other term name in GO-BP (Fig. 2b and Supplementary Table 

2). Using this scoring approach, we found that 60% of gene set names proposed by GPT-4 

were close matches to the corresponding GO term names, with semantic similarities ranking 

above the 95th percentile (Fig. 2c,d). In approximately one-third of remaining cases, the 

LLM proposed a name matching a broader concept (Fig. 2d and Methods). For example, the 

gene set corresponding to the GO term ‘negative regulation of triglyceride catabolic process’ 

resulted in the GPT-4 name ‘lipid metabolism and trafficking’ with a semantic similarity of 

0.41 ranking in the 89th percentile. The GPT-4 name matched most closely to the GO term 

‘lipid metabolic process’, a less specific category higher in the ontology and annotated by 

a larger set of genes (Fig. 2e). Qualitatively similar results were observed when analyzing 

gene sets from the cellular component and molecular function branches (Extended Data Fig. 

3 and Supplementary Table 2).
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Assessment of LLM confidence.—We next focused on the self-confidence reported 

by each LLM. As noted above (Fig. 1a), we asked each LLM to provide a continuous 

confidence score44,45 for each gene set analysis, in the range 0–1. For gene sets for which 

the LLM assigned a confidence of ‘0’, we requested the LLM to return ‘system of unrelated 

proteins’ rather than a proposed name, since it could not confidently determine a collective 

functional description. We observed that these quantitative confidence scores were not 

uniformly distributed but clustered around distinct modes; hence, we further thresholded 

scores to high/medium/low confidence outcomes based on this distribution (Extended Data 

Fig. 4a).

To gain insight into whether the LLM self-confidence assessments were informative and 

useful, we introduced in our evaluation the concept of contaminated gene sets. Specifically, 

each of the GO terms used previously (‘real GO term’; Fig. 3a) was substituted with a 

synthetic gene set containing 50% of genes randomly selected from that GO term and 50% 

of genes randomly selected from the background pool of all genes with GO annotations 

(‘50/50 mix’). We also examined a fully random variant whereby 100% of genes were 

randomly selected from background (‘random’).

We observed that all LLM models, except for Llama2, showed a significant reduction in 

self-confidence when asked to generate names for the 50/50 mix and random gene sets (Fig. 

3b). GPT-4 was the most likely of the five LLMs to correctly associate lower confidence with 

contaminated gene sets, and it gave zero confidence for (refusing to name) most of the gene 

sets that were fully random (87%). In contrast, GPT-4 rated nearly all analyses involving 

real gene sets as medium confidence or above (96%; Fig. 3b), with quantitative confidence 

scores that were predictive of the accuracy of name recovery (Extended Data Fig. 4b). These 

GPT-4 confidence assessments approximately agreed with those from manual independent 

review, in which a human reviewer rated 25 real gene sets for the degree to which the GPT-4 

analysis essay supported its proposed gene set name (Extended Data Table 3).

Lastly, we compared these results with those of classic functional enrichment analysis run 

on the same real, contaminated and random gene sets (g:Profiler46, Benjamini–Hochberg 

(BH)-adjusted P ≤ 0.05; Methods). As expected, enrichment analysis always returned the 

correct GO term for the real gene set, while for most random gene sets, it failed to meet the 

significance cutoff (73%; Fig. 3b). In contrast, enrichment analysis nearly always returned 

significant GO terms for 50/50 mix contaminated gene sets, indicating that in this respect it 

was less conservative than a GPT-4 confidence assessment.

Evaluation task 2

Exploration of omics gene clusters.—The second major task we evaluated was in 

naming gene sets that had been identified experimentally, via clustering of omics data. Here, 

we focused on GPT-4, given its good performance in task 1, especially its superiority in 

refusing to name noncoherent gene sets. The omics gene clusters included the following: 

(1) genes differentially expressed in transcriptomic profiles collected in response to a panel 

of drug treatments (n = 126 gene clusters, Integrated Network-Based Cellular Signatures 

(LINCS) L1000 Connectivity Map Signatures)47,48, (2) genes differentially expressed upon 
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infection by a panel of viruses (n = 48 clusters, Gene Expression Omnibus (GEO) Signatures 

of Differentially Expressed Genes for Viral Infections)49 and (3) genes encoding complexes 

of interacting proteins in cancer proteomics data (n = 126 clusters, Nested Systems in 

Tumors (NeST))50 (Methods). Together, these sources comprised 300 gene clusters of sizes 

ranging from 3 to 100 genes (Extended Data Fig. 5).

When prompted with each of these omics clusters, we found that GPT-4 proposed a name in 

135 cases (45%) and otherwise deferred with zero confidence. As a comparative benchmark, 

we also subjected each cluster to functional enrichment analysis against the GO biological 

process database, yielding significant GO term names for 229 clusters (g:Profiler46, BH-

adjusted P ≤ 0.05; Methods). Preliminary inspection of these naming results suggested 

that both GPT-4 and GO enrichment could produce names with low specificity, that is, 

that apply to only a small fraction of genes in the cluster or, conversely, apply broadly to 

numerous genes outside. To quantify this specificity, for each cluster we characterized the 

degree of overlap between the set of genes comprising the cluster and the set of all human 

genes associated with the proposed name (Jaccard index; Methods). Indeed, even a modest 

specificity requirement eliminated the majority of proposed cluster names. For example, 

requiring a minimum specificity of 10% left 42 clusters named by GPT-4 and 33 named 

by functional enrichment; increasing the minimum to 20% left 21 clusters named by GPT-4 

and 4 named by functional enrichment (Fig. 4a and Extended Data Table 4). In general, 

GO enrichment was more likely to name a cluster, whereas GPT-4 tended to yield names 

supported by a greater number of cluster genes (Fig. 4b).

Direct comparison of the GPT-4 versus GO names across clusters revealed that the GPT-4 

name was often semantically similar to one of the functionally enriched terms but with 

additional implicated genes (65% of clusters; Fig. 4b). An example was protein interaction 

cluster NeST:2–105, which yielded the GPT-4 name ‘regulation of cullin–RING ubiquitin 

ligase (CRL) complexes’ (Figs. 4c and 5). GPT-4 analysis text and citations connected 

ubiquitin ligase complexes to all 16 proteins in the cluster, whereas the most relevant GO 

term match, ‘protein ubiquitination’, covered 8 of the 16 proteins. Both analyses associated 

ubiquitination with members of the potassium channel tetramerization domain (KCTD) and 

Kelch-like (KLHL) gene families, which have been implicated as substrate adaptors for 

E3 ubiquitin ligases51,52, and they also both implicated WNK153. Among the additional 

cluster members covered by the GPT-4 analysis were RHOBTB proteins, which have 

also been studied as E3 adaptors54, the additional KCTD member SHKBP151, additional 

WNK family members55,56 and the understudied protein ANKRD39 based on its predicted 

ubiquitin transferase activity57. Notably, the term ‘protein ubiquitination’ was neither the 

most significantly enriched nor the highest overlap, since it broadly covers many genes; 

rather, the top match was the unrelated concept ‘negative regulation of pancreatic juice 

secretion’ based on inclusion in the cluster of three of five genes annotated to this term. 

Furthermore, the association of WNK1 with protein ubiquitination (by both methods, GPT-4 

and functional enrichment) is speculative and needs further study to determine whether 

WNK proteins are merely a target of ubiquitin ligation or integral to the mechanism.

Assessment and validation of supporting analysis text.—An important concern 

with LLM outputs is the potential to ‘hallucinate’, that is, to generate plausible but 
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unverifiable or nonfactual statements34. We therefore evaluated the analysis essays generated 

by GPT-4 in support of its proposed gene cluster names to determine the degree to 

which hallucination might influence its analyses. For this purpose, four human scientists 

participated in a structured review process for 403 sentences generated in the analysis 

of 20 omics gene sets (Methods). As a conservative criterion, we considered a sentence 

‘verified’ only if the reviewer found evidence in the literature for every stated fact. Of the 

403 sentences evaluated, we found 354 to be fully verifiable (88%; Supplementary Table 

4). Examination of the 49 remaining sentences revealed two major types of unverified facts: 

(1) miscategorization of gene functions (n = 15, 4%) and (2) speculation of gene functions 

(n = 34, 8%). In one case relevant to type 1, GPT-4 stated that WDTC1 “is involved in 

the regulation of the cell cycle and apoptosis…” when in fact, it is an E3 ubiquitin ligase 

and is involved in adipogenesis and obesity58 (Supplementary Table 4). Relevant to type 2, 

GPT-4’s speculation that REN “may be affected by vesicular trafficking processes” could 

not be verified (Supplementary Table 4).

To facilitate statement verification, we developed a separate GPT-4-based system to add 

citations to the analysis essay in support of key statements made (Extended Data Fig. 1, 

Supplementary Table 4 and Methods). In formulating the engineered prompt for this task, 

we did not stipulate that the title or abstract of a publication must be primarily about 

the statement; it was sufficient that a supporting fact was present. The 403 previously 

reviewed sentences returned 489 citations through this automated system. In 383/489 cases, 

the paper title or abstract provided clear evidence for the cited statement. For example, the 

statement that RHOBTB2 and RHOBTB3 “have been implicated in the regulation of CRL3 

complexes” was supported in the title of Berthold et al. (2008)54 and the abstract of Ji and 

Rivero (2016)59 (see analysis paragraph 4 and its citations in Fig. 5). The remaining 106 

citations (22%) did not verifiably support their corresponding LLM statements, although we 

reviewed titles and abstracts only without a systematic review of the main manuscript text. 

These results suggest that most but not all citations found by this procedure are reliable, such 

that they may be viewed as useful guidance for further study but not unquestioned facts.

Discussion

The evaluations performed here suggest that LLMs have notable potential as automated 

assistants for understanding the collective functions of gene sets. In the analysis of gene sets 

from GO, four out of five LLMs performed comparably in proposing names similar to the 

names assigned by the GO curators, producing highly similar names for most gene sets. The 

accompanying analysis text was found to be largely factual, although GPT-4’s occasional 

generation of unverifiable statements shows that even current state-of-the-art LLMs should be 

coupled to fact-checking and/or reference validation, whether automated or manual.

It is somewhat unexpected that GPT-3.5 performs equally well to GPT-4 in the recovery 

of GO gene set names (Fig. 2a). In other applications, GPT-3.5 typically shows a 10–30% 

performance decrease relative to GPT-434,60,61. This comparable performance is important 

because GPT-3.5 is faster and less costly to execute than GPT-4 (Extended Data Table 

2). However, while GPT-3.5 performed well in gene set naming, it struggled to assess the 

confidence of its answers (Fig. 3b). Here, GPT-4 demonstrated a clear ability to assess 
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confidence, particularly in refusing to name incoherent gene sets. As LLMS continue to 

evolve, advances in speed, cost and output quality will probably impact the preferred model 

for gene set analysis.

When the GPT-4 name for a GO gene set was not similar to the curated name, in roughly 

a third of those cases, it was conceptually broader (Fig. 2d). For the remaining gene 

sets with discrepant naming, the mismatch could reflect a failure of GPT-4 to recover a 

well-documented function or an indication the GO term no longer reflects the up-to-date 

literature. Alternatively, it is possible that both GPT-4 and GO offer valid, but alternate, 

interpretations. We indeed find evidence for this last possibility: for example, dendritic cell 

dendrite assembly (GO:0097026) is annotated with two chemokines (CCL19 and CCL21) 

and their receptor (CCR7), but these proteins are also critical to the related process of 

lymphocyte homing, consistent with the GPT-4-proposed name ‘lymphocyte homing and 

immune response regulation’ (Supplementary Table 2).

In the analysis of gene clusters derived from omics studies, GPT-4 proposed gene set 

functions in 135 out of 300 cases. As such clusters reflect patterns in molecular data that 

may be noisy or include less-studied genes, it is perhaps not surprising that not all clusters 

are assigned confident names. When there is no predominant theme, the LLM’s text-based 

analysis will, nevertheless, discuss the range of biological processes characterizing the 

cluster. Functional enrichment analysis named more clusters (229 out of 300 cases) but 

typically with low specificity or coverage (Fig. 4b), and it was also more likely to name 

random gene sets (Fig. 3b). That said, functional enrichment could be given access to 

a broader range of candidate names when using databases such as Reactome, KEGG or 

the Phenotype Ontology; here, we chose to focus on the GO-BP branch as a universally 

accepted, comprehensive collection. An exciting possibility would be to integrate the best 

of both worlds, combining the statistical transparency of enrichment analysis with the 

up-to-date literature knowledge and reasoning of LLMs.

This work has some relation to a recent preprint38 that used GPT to extract terms from the 

GO database that best describe a gene set. Here, we have provided a broad selection of 

LLMs with the open-ended task of describing gene set functions without explicit reference 

to predefined databases. We also introduced a new metric, the LLM self-confidence score, to 

rate the functional coherence of a gene set and the quality of its functional summary. Via 

its self-confidence assessment, an LLM can potentially alert biologists to cases in which they 

should be skeptical of a simple ‘best match’ function proposal.

It is important to stress that the goal of this study was to assess the baseline capability 

of LLMs in functional genomics, using single queries and prompts developed by informal 

experimentation. Given this baseline, future studies might seek to build capability in several 

ways. A first major direction would be to further boost LLM accuracy and interpretability, 

for which recent techniques such as fine-tuning31 and retrieval-augmented generation62 

are showing considerable promise. A second would be to systematically investigate LLM
prompting strategies, including prompts that directly integrate LLMs with complementary 

tools63-68 such as gene set enrichment and literature searches. Future prompting strategies 

might also evaluate and include descriptions of the biological and experimental context in 
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which a gene set was discovered, information that seems likely to improve the specificity, 

depth and quality of the analysis. Such prior context has been difficult to capture using gene 

set functional enrichment tools, since their preexisting mapping of gene sets to functional 

terms is static and does not attempt to encode the practically infinite space of biological 

conditions.

Methods

LLM installation

Five LLMs were selected for the evaluation, including GPT-3.5 and GPT-4 from OpenAI, 

Gemini Pro from Google, Mixtral Instruct from MistralAI, and Llama2 70B from Meta. 

We used the ‘gpt-4-1106-preview’ and ‘gpt-3.5-turbo-1106’ versions of the OpenAI GPT-4 

and GPT-3.5 LLMs and the ‘Gemini Pro’ version of the Google Gemini model using their 

well-defined Application Programming Interfaces (APIs). Mixtral Instruct and Llama2 were 

downloaded from Ollama (https://ollama.com/) and queried through the API endpoint of 

Ollama.

Controlling the variability of LLM responses

Each LLM enables queries to set a ‘temperature’ parameter that controls the variability of 

the generated response, with lower temperatures producing more reproducible and reliable 

responses69,70. Exploring the effect of temperature on LLM analyses is outside the scope 

of this study, and therefore our queries used the lowest, most conservative/reproducible 

temperature value (0.0). In a manual inspection of repeated queries at temperature 0.0, we 

found that LLM names and analyses were conceptually equivalent but that the specific text 

could vary, from near identity to considerable differences in phrasing. The ‘seed’ parameter 

was set to 42 for all models and all runs. In addition, we made our manual review process 

manageable by forcing the responses to be concise. For this purpose, we set the maximum 

number of tokens (roughly corresponding to words) in each response to be 1,000.

Prompt engineering

The LLM prompt was organized into seven sections (Fig. 1a; see full prompt in Extended 

Data Table 1). (1) System content section: System content tells the role of the LLM when 

to process the prompt. Here, our analysis was associated with molecular biology; thus, we 

set the role to be ‘assistant of a molecular biologist’. (2) Task instruction section: The 

instructions were engineered to meet multiple criteria. Notably, the LLMs were guided to first 

perform the analysis before proposing a process name, encouraging a structured ‘chain of 

thought’. (3) Confidence score assignment section: This prompt section instructed the LLM
to generate a ‘confidence score’ expressing its confidence in its choice of name, taking into 

account the fraction of genes that participate in the corresponding biological process(es). 

The coherence score was specified to be between 0.00 and 1.00. The prompt was also 

engineered to handle situations where the genes in a set are not sufficiently related to 

warrant a name. In particular, the prompt instructed the LLM to output a zero confidence 

score and the name ‘system of unrelated proteins’ in these cases. (4) Format instruction 

section: We asked the LLM to place the name as a title in the final analysis for easy 
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extraction. (5) Analytical approach section: The instructions in this section guided the LLM
to be succinct, factual and focused on finding commonalities and relationships. (6) One-shot 

example section: This section contained an example of a gene set and the corresponding 

name, confidence score and analysis text. This format follows the ‘in-context learning’ 

approach, in which examples provide a template to help the LLM generate outputs consistent 

with the desired behavior and format. After substantial manual testing, we determined that 

the quality of the output was no different when using one example versus several examples; 

thus, we chose to use a ‘one-shot’ single example strategy, minimizing both prompt size and 

associated costs. (7) User input of genes/proteins section: The last section is the user’s input 

of the gene or protein list.

Download and parsing of GO

GO (2023-11-15 version) was obtained from the geneontology.org website in the Open 

Biomedical Ontologies71,72 format. The ontology file was subsequently divided into its three 

constituent branches: biological processes (BP), cellular component (CC) and molecular 

function (MF). The gene set corresponding to each GO term was determined by aggregating 

the genes with which it was directly annotated with those of all its ontological descendants. 

We randomly drew 1,000 human gene sets from terms in each branch (sampling terms from 

3 to 100 genes) for evaluation task 1. We found that 1,000 gene sets were sufficient to 

achieve statistical significance via a representative distribution (Extended Data Fig. 2). We 

limited the size to 100 gene sets for the comparison of confidence scores between five LLMs
owing to the cost of LLM queries as well as the required computing time (Extended Data 

Table 2; relevant to Figs. 2 and 3, Extended Data Figs. 3 and 4 and evaluation task 1).

Calculation of semantic similarity

Semantic similarity between names was determined using the SapBERT model73 from 

huggingface (cambridgeltl/SapBERT-from-PubMedBERT-fulltext) via the transformers 

package74 (version 4.29.2). SapBERT produces embeddings of each name and then 

computes the cosine similarity between the embeddings, yielding a similarity score 

ranging from 0 (no similarity) to 1 (identical). SapBERT is a domain-specific language 

representation model pretrained on large-scale biomedical data, including Unified Medical 

Language System, a massive collection of biomedical ontologies with 4M+ concepts. Since 

models like Bidirectional Encoder Representations from Transformers (BERT)31 are trained 

on vast amounts of textual data, they can learn general patterns and relationships and capture 

context by considering surrounding words, providing a measure of similarity based on 

semantics rather than lexical matching. Although both SapBERT and GPT-4 are LLMs, they 

are separate models with different purposes, model architecture, training objectives and data. 

SapBERT therefore provides an independent evaluation of similarity.

Calibrating the similarity between GPT-4 names and GO names

To evaluate the performance of the GPT-4 model in recapitulating GO names, we computed 

the semantic similarity between the GPT-4 name and the assigned name of the GO term 

query, using SapBERT as described above. We then performed this semantic similarity 

calculation for the same GPT-4 name against every other GO term name in the biological 
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process branch (GO-BP), yielding a background distribution of semantic similarity scores 

for each GO term query. The actual and background similarities were then concatenated 

into a single list, sorted in descending order (largest to smallest), and the rank of the 

actual similarity was recorded and expressed as a percentile. This percentile score is thus 

the percentage of GO-BP term names that are less similar to the GPT-4 name than to the 

assigned name of the GO term query.

Definition of ‘broader concepts’

A proposed name is said to capture a ‘broader concept’ than that represented by a query 

gene set, as follows:

Q: target gene set for analysis;

Ni(X): name of gene set X proposed by method i = {LLM, GO}; P i = LLM: complete gene set 

annotated to GO term that is closest to the name proposed by the LLM, that is, maximizing 

sim(NGO(Q), NLLM(Q));

P i = GO: complete gene set annotated to name proposed by GO term enrichment.

The proposed name Ni(Q) expresses a ‘broader concept’ if ∣P i∣ > ∣Q∣ and ∣P i ∩ Q∣ ≥ 0.5∣Q∣, 
that is, P i is larger than Q and contains at least half of it. We selected 0.5 as the threshold on 

the grounds that concepts (P i) that apply to a majority of the genes in Q can reasonably be 

considered as related.

Omics data processing

NeST data are raw files from a previous study of cancer protein clusters50 obtained through 

personal communication with M. R. Kelly. The L1000 data and viral infection data were 

downloaded from the Harmonizome platform75 (https://maayanlab.cloud/Harmonizome/; 

LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules 

and GEO Signatures of Differentially Expressed Genes for Viral Infections). For each omics 

source, we selected gene sets with a size between 3 and 100 genes. Furthermore, in the 

L1000 dataset, we selected the context with the greatest number of observations (cell line 

‘MCF7’, duration 6.0 h, dosage 10.0 μm). For the viral disease perturbations dataset, we 

used a z-score cutoff of 2.

Gene set enrichment analysis

We used the g:Profiler46 API service to perform gene set enrichment analysis for both task 

1 and task 2. We used an adjusted P value ≤ 0.05 calculated by Benjamini–Hochberg false 

discovery rate to determine significantly enriched GO-BP terms. In task 2, we updated 

the omics gene set gene symbols, downloaded on 27 June 2024 from the HUGO Gene 

Nomenclature Committee database76 (https://www.genenames.org/). We then computed the 

Jaccard index for enriched GO terms as ∣ P i = GO ∩ Q ∣
∣ P i = GO ∪ Q ∣  (related to Fig. 4a and Extended Data 

Table 4).
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Evaluation of specificity of naming for omics gene sets

For a given LLM-proposed name and analysis essay, we prompted GPT-4 to analyze the 

essay to identify all genes mentioned in support of the name and return them as a list GLLM. 

This prompt (Extended Data Table 5) included the instruction to only consider definite 

assertions about the gene rather than conjectures. We found via manual inspection of 

approximately 20 essays that GPT-4 was able to reliably perform this task. We computed 

the semantic similarities between the LLM-proposed name and all GO-BP term names 

(2023-11-15 version) to extract the gene set from the closest GO-BP term name (P i = LLM). The 

specificity was computed on the basis of the Jaccard index:

∣ GLLM ∣
∣ P i = LLM ∪ Q ∣ ,

where Q is the omics gene set used as the query.

Identification and validation of relevant references (citation module)

We followed a five-step process to identify and evaluate references for statements made in 

the LLM-generated analysis text. For each paragraph in the analysis text, we performed the 

following (Extended Data Fig. 1):

1. Prompt the LLM to extract two types of keyword from the analysis paragraph: 

(1) gene symbols explicitly mentioned in the paragraph and (2) up to three 

keywords associated with gene functions or biological processes, ordered by 

their importance. Paragraphs that do not yield at least one gene symbol and one 

functional keyword are skipped, returning ‘unknown’. The prompt incorporates a 

one-shot example of a paragraph and corresponding keywords.

2. Assemble a PubMed query expression to find scientific publications in which 

either the title or abstract contains one or more of the gene symbols and one or 

more of the function keywords.

3. Query PubMed via its web API, sorting the returned publication list by 

relevance.

4. Further prioritize the publications on the basis of the number of matching genes 

in the abstract. We prefer publications that provide information on the most 

genes.

5. For each of the top three publications, prompt the LLM to assess whether the title 

and abstract provide evidence for one or more statements of fact in the analysis 

paragraph. Return the publication as a reference if the LLM considers that it 

satisfies that requirement.

Reviewer fact-checking of GPT-4 analysis text

We performed a structured review of 403 sentences from the analysis text generated by 

GPT-4 based on 20 selected omics gene sets (Supplementary Table 3). In this review, each 

of the four reviewers recorded the number of unverified statements of fact for each analysis 
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in the corresponding column. A statement was considered ‘unverified’ if no supporting 

evidence was found within roughly 10 min, using the following method:

• Check simple per-gene statements against information from National Center for 

Biotechnology Information (NCBI) gene content maintained by the National 

Library of Medicine (http://www.ncbi.nlm.nih.gov).

a. For example, ‘Oxytocin (OXT) is a neuropeptide hormone that binds to 

its receptor, oxytocin receptor (OXTR).’ can be quickly verified by the 

NCBI Gene entries for the two genes.

b. If the NCBI entry verifies one or more statements, add the uniform 

resource locator for the entry to the evidence column, for example, 

‘NLM: OXT http://www.ncbi.nlm.nih.gov/gene/5020’.

• For statements not verified by NCBI Gene, search PubMed for publications to 

provide evidence for the statement. Search strategies include:

a. Search using gene–keyword pairs, such as ‘TP53 cell cycle’.

b. For paragraphs that discuss multiple genes, search for review articles 

with phrases such as ’acute phase response proteins’.

c. Search for family member proteins together, such as ‘TAS2Rs bitter 

taste’.

Reviewer evaluation of references

The reviewers evaluated references on the basis of the same criteria with which the LLM was 

prompted in step 5 of the reference-finding process (above). Reviewers separately recorded 

whether the title or the abstract successfully provided evidence for a statement of fact, along 

with the number of irrelevant references for a paragraph.
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Extended Data

Extended Data Fig. 1 ∣. Schematic of the citation module.
a, GPT-4 is asked to provide gene symbol keywords and functional keywords separately. 

Multiple gene keywords and functions are combined and used to search PubMed for relevant 

paper titles and abstracts in the scientific literature. GPT-4 is queried to evaluate each 

abstract, saving supporting references. b, Prompts used to query the GPT-4 model.
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Extended Data Fig. 2 ∣. Distribution of GO term gene sizes.
a, Distribution of term size (number of genes) for terms in the Biological Process branch 

(GO-BP). Terms with 3-100 genes shown (n = 8,910). b, Distribution of term size for the 

1000 GO terms used in Task 1.

Extended Data Fig. 3 ∣. Evaluation of GPT-4 in recovery of GO-CC and GO-MF names.
a, Cumulative number of GO-CC term names recovered by GPT-4 (y-axis) at a given 

similarity percentile (x-axis). 0 = least similar, 100 = most similar. Blue curve: semantic 

similarities between GPT-4 names and assigned GO-CC term names. Grey dashed curve: 

semantic similarities between GPT-4 names and random GO-CC term names. The red dotted 

line marks that 642 of the 1000 sampled GO-CC names are recovered by GPT-4 at a 

similarity percentile of 95%. b, As for panel a, but for GO-MF terms rather than GO-CC. 

The red dotted line marks that 757 of the 1000 sampled GO-MF names are recovered by 

GPT-4 at a similarity percentile of 95%.

Extended Data Fig. 4 ∣. Supplemental analysis of the confidence score.

Hu et al. Page 15

Nat Methods. Author manuscript; available in PMC 2025 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a, Distribution of confidence scores (n = 300) assigned by GPT-4 with confidence 

level threshold set based on the distribution pattern. “High confidence” (red): 0.87–1.00; 

“Medium confidence” (blue): 0.82–0.86; “Low confidence” (dark orange): 0.01–0.81; 

“Name not assigned” (gray): 0. b, Scatter plot of naming accuracy versus GPT-4 self-

assessed confidence score for real gene sets drawn from GO (points, n = 100). Accuracy 

is estimated by the semantic similarity between the GPT-4 proposed name and the real GO 

term name. The best-fit regression line is shown in dark gray. The correlation coefficient (R) 

is determined by a two-sided Pearson’s correlation with p-value shown.

Extended Data Fig. 5 ∣. Distribution of ‘omics gene set sizes.
Distribution shown for all ‘omics gene sets considered in this study (n = 300).

Extended Data Table 1 ∣

Engineered prompt for gene set analysis

System 
content

You are an efficient and insightful assistant to a molecular biologist

Task 
instruction

Write a critical analysis of the biological processes performed by this system of interacting proteins.
Base your analysis on prior knowledge available in your training data.
After completing your analysis, propose a short descriptive name for the most prominent biological 
process performed by the system.
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Confidence 
score 
assignment 
instruction

After completing your analysis, please also assign a confidence score to the process name you 
selected. This score should follow the name in parentheses and range from 0.00 to 1.00. A score 
of 0.00 indicates the lowest confidence, while 1.00 reflects the highest confidence. This score helps 
gauge how accurately the chosen name represents the functions and activities within the system of 
interacting proteins. When determining your score, consider the proportion of genes in the protein 
system that participate in the identified biological process. For instance, if you select "Ribosome 
biogenesis" as the process name but only a few genes in the system contribute to this process, 
the score should be lower compared to a scenario where a majority of the genes are involved in 
"Ribosome biogenesis".

Format 
instruction

Put your chosen name at the top of the analysis as 'Process: <name>’.

Analytical 
approach

Be concise, do not use unnecessary words.
Be factual, do not editorialize.
Be specific, avoid overly general statements such as 'the proteins are involved in various cellular 
processes'.
Avoid listing facts about individual proteins. Instead, try to group proteins with similar functions 
and discuss their interplay, synergistic or antagonistic effects, and functional integration within the 
system.
Also, avoid choosing generic process names such as 'Cellular Signaling and Regulation'.
If you cannot identify a prominent biological process for the proteins in the system, I want you to 
communicate this in your analysis and name the process: “System of unrelated proteins”. Provide a 
score of 0.00 for a "System of unrelated proteins".

One-shot 
example

To help you in your work, I am providing an example system of interacting proteins and the 
corresponding example analysis output.

The example system of interacting proteins is: PDX1, SLC2A2, NKX6-1, GLP1, GCG.

The example analysis output is:

Process:

Pancreatic development and glucose homeostasis (0.96)

1. PDX1 is a homeodomain transcription factor involved in the specification of the early pancreatic 
epithelium and its subsequent differentiation. It activates the transcription of several genes including 
insulin, somatostatin, glucokinase and glucose transporter type 2. It is essential for maintenance of the 
normal hormone-producing phenotype in the pancreatic beta-cell. In pancreatic acinar cells, it forms a 
complex with PBX1 b and MEIS2b and mediates the activation of the ELA1 enhancer.

2. NKX6-1 is also a transcription factor involved in the development of pancreatic beta-cells during 
the secondary transition. Together with NKX2-2 and IRX3, controls the generation of motor neurons 
in the neural tube and belongs to the neural progenitor factors induced by Sonic Hedgehog (SHH) 
signals.

3. GCG and GLP1, respectively glucagon and glucagon-like peptide 1, are involved in glucose 
metabolism and homeostasis. GCG raises blood glucose levels by promoting gluconeogenesis and is 
the counter regulatory hormone of Insulin. GLP1 is a potent stimulator of Glucose-Induced Insulin 
Secretion (GSIS). Plays roles in gastric motility and suppresses blood glucagon levels. Promotes 
growth of the intestinal epithelium and pancreatic islet mass both by islet neogenesis and islet cell 
proliferation.

4. SLC2A2, also known as GLUT2, is a facilitative hexose transporter. In hepatocytes, it mediates bi-
directional transport of glucose across the plasma membranes, while in the pancreatic beta-cell, it is 
the main transporter responsible for glucose uptake and part of the cell's glucose-sensing mechanism. 
It is involved in glucose transport in the small intestine and kidney too.

To summarize, the genes in this set are involved in the specification, differentiation, growth and 
functionality of the pancreas, with a particular emphasis on the pancreatic beta-cell. Particularly, the 
architecture of the pancreatic islet ensures proper glucose sensing and homeostasis via a number 
of different hormones and receptors that can elicit both synergistic and antagonistic effects in the 
pancreas itself and other peripheral tissues.

User input Here are the interacting proteins:
Proteins: {protein list}

The full prompt used to query the LLMs, separated into sections matching Fig. 1a.
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Extended Data Table 2 ∣

Overview of five language models

Models Version
Release Params

Context
Length
(tokens)

Company
Estimated Time

Usage
(second/gene set)

Estimated Cost
($/gene set)

GPT-4 Turbo Nov 2023 ~1.7T 128k OpenAI 36.5 ‡ 4.8×10−2

Gemini Pro Dec 2023 Unspecified 32k Google 7.9 0.0

GPT-3.5 Turbo Nov 2023 ~175B 16k OpenAI 9.6 2.8×10−3

Mixtral Instruct Dec 2023 13B (active), 47B 
(total) 32k MistralAI 46.4 0.0 †

Llama2 July 2023 70B 4k Meta 61.8 0.0 †

†
Does not consider the cost to host an open-source model.

‡
GPT-4 compute time was significantly shorter (1.1s) when asking for a gene set name but not further analysis.

List of facts for five large language models used in this study.

Extended Data Table 3 ∣

Confidence assessment by GPT-4 versus human

GPT-4 Self-assessed Confidence Score
Total

High Medium

Human Reviewer’s Proposed Confidence*
High 10 6 17

Medium 1 8 10

Total 11 14 25

†
Fisher’s exact test p-value (two-sided) = 0.033

*
Reviewer provided with GPT-4 gene set name and analysis essay but blinded to its self-reported confidence score.

We asked a human reviewer to read GPT-4’s proposed name and supporting analysis text for 25 gene sets and 
independently assign high or medium confidence (the reviewer was blinded to GPT-4’s own confidence assessment). 
The agreement between human and GPT-4 confidence assessment is presented in this table. Significance is determined 
using a two-sided Fisher’s exact test.

Extended Data Table 4 ∣

Clusters named by LLM (GPT-4) versus enrichment (g:Profiler)

Minimal
Gene Cluster
Specificity*

GPT-4 LLM
Total

Named † Unnamed

0%
g:Profiler Enrichment

Named‡ 124 105 229

Unnamed 11 60 71

Total 135 165 300

5%

 

Named† Unnamed

g:Profiler Enrichment
Named‡ 33 51 84

Unnamed 29 187 216

Total 62 238 300

10%  
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Minimal
Gene Cluster
Specificity*

GPT-4 LLM
Total

Named † Unnamed

Named† Unnamed

g:Profiler Enrichment
Named‡ 11 22 33

Unnamed 31 236 267

Total 42 258 300

20%

 

Named† Unnamed

g:Profiler Enrichment
Named‡ 0 4 4

Unnamed 21 275 296

Total 21 279 300

†
Omics clusters named by GPT-4 LLM analysis with default settings (self-confidence > 0).

‡
‘Omics clusters named by g:Profiler enrichment analysis with default settings (BH adjusted significance p ≤ 0.05).

*
Addl. requirement of a minimum % genes in cluster supporting the name (normalized by Jaccard index, Methods).

The number of omics gene clusters named by GPT-4 or by GO enrichment analysis using g:Profiler at the required 
specificity threshold measured by Jaccard Index (left most column).

Extended Data Table 5 ∣

Engineered prompt for identifying genes supporting a proposed name

Analyze the provided text, which describes a gene set's common functions and suggests a name reflecting its 
predominant function(s). Your task is to identify genes that support this name based solely on the information given in 
the text.

Context: Gene sets are groups of genes that share common biological functions, pathways, or other characteristics. 
Naming these sets based on their predominant functions helps researchers quickly understand their significance.

Input:
1. A list of gene symbols in the gene set, provided in comma-separated format:
<gene set>{genes_in_text}</gene set>

2. The analysis text:
<text>{text}</text>

3. The suggested name for the gene set:
<name>{name}</name>

Instructions:
1. Evaluate each gene from the provided list that is mentioned in the text.
2. Determine if the text makes a definite assertion about the gene that supports the given name.
- A definite assertion clearly states a gene's function or role without using speculative language.
- Example of a definite assertion: "XRCC1 is involved in the DNA damage response"
- Example of a non-definite assertion: "E2F1 may be involved in homologous recombination"
3. If a gene is mentioned multiple times, consider the strongest assertion made about it.
4. In case of contradictory statements about a gene, favor the most recent or specific assertion.
5. For each gene you determine supports the name:
- Briefly explain your reasoning (max 50 words per gene)
- Assign a confidence level (High, Medium, Low) based on the strength of the assertion
6. Handle acronyms or alternative gene names as equivalent to official gene symbols.
7. If no genes seem to support the name or if all genes support it, state this observation.

Output your analysis in the following format:

-- Summary --
[Provide a brief summary (max 100 words) of why the selected genes support the given name]

-- Explanation --
[Gene Symbol]: [Confidence Level]
[Explanation of reasoning (max 50 words)]

[Repeat for each supporting gene]

-- genes supporting the name: [List of gene symbols of genes supporting the name]
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Do not critique the analysis or the name. Base your evaluation solely on the information provided in the text.

The full prompt used to query GPT-4 to identify genes supporting the proposed name.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Detailed information on data download and parsing procedures, along with all datasets 

used in this paper, are available in our GitHub repository at https://github.com/idekerlab/
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llm_evaluation_for_gene_set_interpretation or Code Ocean77 (https://doi.org/10.24433/
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Fig. 1 ∣. Use and evaluation of LLMs for functional analysis of gene sets.

a, The LLM prompt (left boxes) includes system content, detailed chain of thought 

instructions, and an example gene set query with desired response (full prompt given in 

Extended Data Table 1). The specific list of genes is inserted into the ‘user input of genes/

proteins’ field at the end of the prompt template, resulting in generation of a proposed name, 

a supporting analysis essay and a confidence score (right flowchart). b, Benchmarking LLM
names against names assigned by GO (evaluation task 1). The proposed name from each 

of five LLMs (left robot icons) is compared with the name assigned by the GO curators 

(handshake icon). GPT-4 (crowned) was the winning model for this task. c, Exploration of 

gene sets discovered in omics data (evaluation task 2). The GPT-4 name and analysis are 

scored for novelty and accuracy (right green check marks). Gene sets derived from three 

different data types (left database icons).
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Fig. 2 ∣. Evaluation of LLMs in recovering GO gene set names.

a, The performance of each LLM (colors) scored by semantic similarity between its proposed 

name for a gene set and the name assigned by GO curators. Results for 100 GO terms 

are shown (dots; the horizontal black lines show median semantic similarities). Significant 

difference in distributions is determined using a two-sided Mann–Whitney U test. b, The 

percentile calibration of semantic similarity between the GO and GPT-4 names for a gene 

set, shown for the GO term ‘response to X-ray’ and the corresponding GPT-4 name ‘DNA 

damage response and repair’. The plot shows the semantic similarity between these two 

names (vertical dark-green line, 0.54) versus the complete distribution of semantic similarity 

scores between the GPT-4 name and each name in the GO biological process database 

(GO-BP, gray). The GPT-4 name score is converted to a percentile, that is, the percentage 

of all names in GO with lower similarity (here, 99%). The dashed red line denotes the 95th 

percentile threshold. c, The cumulative number of GO term names recovered by GPT-4 (y 
axis) at a given similarity percentile (x axis). 0, least similar; 100, most similar. The dark-
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green curve shows the semantic similarities between GPT-4 names and assigned GO term 

names. The dashed gray curve shows the semantic similarities between GPT-4 names and 

random GO term names. The dotted red line marks the number of GO names recovered by 

GPT-4 at the 95th similarity percentile. d, A pie chart summarizing the results of the GPT-4 

name/GO name similarity comparison. e, A hierarchical view of the GO term ‘negative 

regulation of triglyceride catabolic process’ and its ancestors. Blue box: gene set query; 

yellow box: gene set of best match GO name (most similar GO name to GPT-4 name); 

dashed lines with arrows: semantic similarities between names; red text: GPT-4 proposed 

name.
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Fig. 3 ∣. Evaluation of LLM self-confidence.

a, Investigation of model-assigned confidence scores (chat bubbles) for the ability to 

distinguish real GO terms from 50/50 mix and random gene sets (light DNA strands from 

the same GO term, dark DNA strands randomly selected from outside the GO term). b, 

Bar graphs showing the confidence rating assigned by each model for real, contaminated 

or random gene sets. Increasing shades of purple indicate low to high score bins. ‘High 

confidence’ (dark purple): 0.87–1.00; ‘medium confidence’ (medium purple): 0.82–0.86; 

‘low confidence’ (light purple): 0.01–0.81; ‘name not assigned’ (gray): 0. For comparison 

with functional enrichment (rightmost group of bars), ‘high confidence’ for a gene set 

is defined as BH-adjusted P ≤ 0.05 (dark purple, g:Profiler46 with Benjamini–Hochberg 

correction), otherwise ‘name not assigned’ (gray) is used. A significant difference in 

confidence distributions between real, 50/50 mix and random is determined using a two-

sided chi-squared test.
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Fig. 4 ∣. Evaluation of GPT-4 in naming ‘omics gene clusters.
a, The number of omics gene clusters (y axis, log10 scale) named by GPT-4 (dark green) or 

by GO enrichment analysis using g:Profiler (black; BH-adjusted P ≤ 0.05) versus the gene 

cluster specificity threshold measured by the Jaccard index (x axis; Methods). The vertical 

dashed red lines mark the same specificity thresholds shown in Extended Data Table 4. 

b, The number of cluster genes overlapping the genes associated with g:Profiler enriched 

GO term (y axis) is plotted against the number of genes in support of the GPT-4 name 

(x axis). The red points represent GPT-4 names highly similar to a significant g:Profiler 

name (semantic similarity ≥0.5); otherwise, navy color is used. The dotted black diagonal 

denotes equal specificity for the GPT-4 and g:Profiler names. c, Alternate names for cluster 

NeST:2-105 are shown (rows), with yellow boxes indicating which names support each 

of the cluster genes (columns). The GPT-4 name is shown first in bold (top), while the 

remaining rows highlight two of the significant g:Profiler results: the GO term with the best 

P value of enrichment (middle) and the term most conceptually similar to the GPT-4 name 

(bottom).
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Fig. 5 ∣. Representative analysis for protein interaction clusters (NeST:2-105).
Input gene set, 16 genes (top left pink box); GPT-4 generated cluster name (top right green 

box); GPT-4 confidence score (middle right green box); GPT-4 analysis text (bottom green 

box). Each generated paragraph is followed by the associated citations found by the citation 

module (Extended Data Fig. 1 and Methods).
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Table 1 ∣

Best and worst LLM names for GO terms by semantic similarity

GO name
(GO term ID)

LLM name Semantic
similarity

LLM

Synaptic vesicle exocytosis
(GO:0016079)

Synaptic vesicle exocytosis 1.00 Gemini Pro

Synaptic vesicle exocytosis
(GO:0016079)

Synaptic vesicle exocytosis and neurotransmitter 
release

0.94 GPT-3.5

Pentose-phosphate shunt
(GO:0006098)

Pentose phosphate pathway 0.89 GPT-3.5

Glucose-6-phosphate transport
(GO:0015760)

Glucose-6-phosphate metabolism and transport 0.89 Mixtral Instruct

Protein quality control for misfolded or incompletely 
synthesized proteins
(GO:0006515)

Protein quality control and degradation 0.88 GPT-4

Negative regulation of fat cell differentiation
(GO:0045599)

Regulation of Wnt signaling and cellular stress 
response

0.13 GPT-4

Negative regulation of CD8-positive, alpha–beta T cell 
differentiation
(GO:0043377)

Regulation of iron homeostasis 0.11 Llama2 70b

Negative regulation of peptide secretion
(GO:0002792)

Glucose homeostasis and energy metabolism 0.09 GPT-3.5

Negative regulation of peptide secretion
(GO:0002792)

Glucose homeostasis and energy metabolism 0.09 Mixtral Instruct

Negative regulation of CD8-positive, alpha–beta T cell 
differentiation
(GO:0043377)

Regulation of ion transport and cellular 
homeostasis

0.09 GPT-3.5
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