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Abstract 

 Previous single-pulse extreme ultraviolet and X-ray coherent diffraction studies revealed 

that superfluid 4He droplets obtained in free jet expansion acquire sizable angular momentum, 

resulting in significant centrifugal distortion. Similar experiments with normal fluid 3He droplets 

may help elucidating the origin of the of the large degree of rotational excitation and highlight 

similarities and differences of dynamics in normal and superfluid droplets.   Here, we present the 

first comparison of the shapes of isolated 3He and 4He droplets following expansion of the 

corresponding fluids in vacuum at temperatures as low as ~ 2 K. Large 3He and 4He droplets with 

average radii of ~160 nm and ~350 nm, respectively, were produced. We find that the majority of 

the  3He droplets in the beam correspond to rotating oblate spheroids with reduced average angular 

momentum (Ʌ) and reduced angular velocities (Ω) similar to that of 4He droplets. Given the 

different physical nature of 3He and 4He, this similarity in Ʌ and Ω may be surprising and suggest 

that similar mechanisms induce rotation regardless of the isotope. We hypothesized that the 

observed distribution of droplet sizes and angular momenta stem from processes in the dense 

region close to the nozzle. In this region, the significant velocity spread and collisions between the 

droplets induce excessive rotation followed by droplet fission. The process may repeat itself 

several times before the droplets enter the collision-fee high vacuum region further downstream.     
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1. Introduction  

Bosonic superfluid helium-4 (4He) droplets, produced in molecular beams, constitute a 

versatile medium for experiments in physics and chemistry. Notably, droplets consisting of a few 

thousand He atoms are frequently used as ultra-cold matrices for the spectroscopic interrogation 

of single molecules, radicals, ionic species, and diverse clusters [1-10]. Single molecules 

embedded in 4He droplets can also provide a unique probe for superfluidity on atomic-length scales 

via renormalization of molecular rotational constants [11-15]. More recently, experiments with 

superfluid 4He have been extended to much larger droplets, containing up to ~1011 atoms, and 

ranging in diameter from hundreds of nanometers up to a few micrometers [16, 17]. Single droplets 

in this size range have been studied by ultrafast coherent scattering using femtosecond X-ray and 

XUV pulses from free electron lasers (FEL) and intense, laboratory-based high-order harmonics 

sources [18-23]. It was found that large 4He droplets have sizable angular momentum and are 

subject to considerable centrifugal distortion [18, 21-23]. Rotation of superfluid 4He droplets is 

associated with the creation of quantum vortices, a physical manifestation of quantized angular 

momentum in these bosonic species [24-27]. Quantum vortices inside 4He droplets have been 

visualized by doping them with a large number of xenon (Xe) atoms. The dopants are attracted by 

the vortices, leading to aggregation around the vortex cores and the formation of filament-shaped 

clusters [18-20].  

Experiments involving droplets of the rare fermionic helium-3 isotope (3He) have also been 

performed [11, 28-36]. While 3He may exist as a superfluid at temperatures T ≲ 1 mK, it 

constitutes of a normal fluid under typical molecular beam temperatures of ≈ 0.15 K [37, 38]. 

Recent density functional calculations show that the rotating 3He should follow corresponding 

classical shapes [39]. It is important to expand X-ray imaging experiments to rotating 3He droplets 

to enable a direct comparison of droplet shapes and rotational properties for the two quantum 

fluids. The comparison of the angular momenta and angular velocities of droplets consisting of 

two different isotopes may also shed light on the origin of rotation in droplets produced via fluid 

expansion into vacuum, which remains obscure.     

In molecular beam experiments, He droplets are produced by expanding pressurized He 

through a cryogenic nozzle into vacuum [2, 8, 9, 16]. Figure 1(a) and (b) illustrate the production 

of 4He and 3He droplets via corresponding pressure-temperature (P-T) phase diagrams. The 

adiabatic expansion proceeds along isentropes, i.e., lines of constant entropy, starting at an initial 
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condition defined by the nozzle temperature, T0, and a stagnation pressure, P0 and ending at a set 

of final values Tf, Pf on the saturated vapor pressure (SVP) curve. Large droplets are obtained 

when the isentrope crosses the SVP curve from the fluid side, corresponding to boiling of the fluid 

and its fragmentation into droplets. Larger droplets are obtained at lower Tf, at which less violent 

boiling leaves larger droplets intact. In vacuum, the temperature of the droplets further decreases 

via evaporative cooling down to 0.15 K and 0.38 K for 3He [37, 38] and 4He, [11, 40] respectively. 

It is worth noticing that 4He becomes superfluid below 2.17 K. In the superfluid state, boiling 

ceases, which may lend further stability to the insipient 4He droplets. Due to fast evaporative 

cooling [8], 4He droplets become superfluid close to the nozzle, however the location of the 

superfluid transition as well as the kinetics of the droplet cooling upon expansion remain unknown.  

In this article, we report on the characterization of 3He droplets produced with nozzle 

temperatures as low as ≈ 2 K. Using ultrafast X-ray scattering at an X-FEL, the properties of 

individual, free 3He and 4He droplets are analyzed and compared, in particular, with respect to 

their size, shape and angular momenta. A wide range of 3He and 4He droplets sizes are obtained 

with average radii of 162 nm and 355 nm, respectively. The aspect ratio of droplets from both 

isotopes are found to have similar average values of 1.055 for 3He and 1.076 for 4He. Accordingly, 

the reduced angular momentum and reduced angular velocity in 3He and 4He droplets are 

comparable. Comparison of the results obtained with 4He and 3He at different expansion conditions 

may help to gain a better understanding of the mechanism underlying the production of rotating 

droplets in free nozzle beam expansion sources. 
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Figure 1. P-T phase diagrams for (a) 4He and (b) 3He. The diagrams are based on refs. [41, 42] 

for 4He and  [43, 44] for 3He. The pink SVP curves mark the saturated vapor pressure boundaries.  

 

2. Experimental  

He droplets are produced by expanding pressurized He through a cryogenic nozzle with a 5 μm 

orifice into vacuum, the details of which are described elsewhere [2, 8, 9, 16]. Considering the 

lower critical point of 3He (TC = 3.3 K, PC = 1.1 atm) compared to that of 4He (TC = 5.2 K, PC = 

2.3 atm), lower nozzle temperatures are required to obtain 3He droplets of the same sizes as those 

consisting of 4He. For example, for P0 = 20 bar, 4He droplets with an average size of <N4> = 107 

are produced at T0 = 7 K, [16] while T0 = 5 K is required to obtain 3He droplets of the same size  

<N3> [31-33, 44]. The temperature difference of 2 K correlates well with the corresponding 

difference in critical temperatures of the two isotopes. In a spherical droplet, the radius and the 

number of the atoms it contains are related by 𝑅3,4 = 𝛽3,4 ∙ √𝑁3,4
3 , where the coefficient 𝛽 can be 

obtained from the number density of the corresponding liquid to be 0.245 nm and 0.222 nm in 3He 

and 4He droplets, respectively [38, 42]. Large 4He droplets can be produced with modern closed-

cycle refrigerators that can reach temperatures down to ≈ 3.5 K. However, to reach the lower 

temperatures required to produce large 3He droplets, we instead employ a liquid helium flow 

cryostat with a cooling power of up to 1 W at 1.8 K. 3He and 4He droplets are produced at constant 

P0 = 20 bar and varying T0, ranging from 2 to 4.5 K.  
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Due to the considerable cost of 3He gas, a recycling system is employed during the experiments 

as described in the Supplementary Material (SM) [45]. Filling the gas handling system requires 

about 10 Lbar of room temperature 3He. For comparison, at standard operating conditions (T0 = 

3 K, P0 = 20 bar), the flow rate of the He gas is ~3 cm3bar/s and the filling amount of gas would 

only be sufficient for about 1 hour of operation. During the experiments, 3He gas is continuously 

collected from the exhausts of the backing scroll pumps, purified in a liquid nitrogen cooled zeolite 

trap, pressurized by a metal membrane compressor and resupplied to the nozzle with minimal 

losses. The 3He gas used is 99.9% pure with the remaining 0.1% impurity being mostly 4He.  

The experiments are performed using the LAMP end station at the Atomic, Molecular and 

Optical (AMO) instrument of the Linac Coherent Light Source (LCLS) XFEL. [46, 47] The 

focused XFEL beam (~2 μm full-width-at-half-maximum, FWHM) intersects the He droplet beam 

~70 cm downstream from the nozzle. The XFEL is operated at 120 Hz, a photon energy of 1.5 keV 

(λ = 0.826 nm), a pulse energy of ~1.5 mJ and a pulse duration of ~100 fs (FWHM). The small 

pulse length and large number of photons per pulse (~1012) enable the capture of instantaneous 

shapes of individual droplets. Diffraction images are recorded with a pn-charge-coupled device 

(pnCCD) detector containing 1024×1024 pixels, each 75×75 μm2 in size, which is centered along 

the XFEL beam axis ~735 mm downstream from the interaction point. The detector consists of 

two separate panels (1024×512 pixels each), located closely above and below the X-ray beam. 

Both panels also have a central, rectangular section cut-out to accommodate the primary X-ray 

beam. The diffraction patterns are recorded at small scattering angles and, thus, predominantly 

contain information on the column density of the droplets in the direction perpendicular to the 

detector plane. 

 

3. Results 

Figure 2 shows several diffraction patterns from pure 3He droplets. The images are 

characterized by sets of concentric contours. Images in Figures 2(a) and (b) exhibit a series of 

circular and elliptical contours, respectively, with different spacings. Figure 2(c), however, shows 

an elongated diffraction contour with pronounced streaks radiating away from the center. The 

collected diffraction patterns are characteristic of spherical (Figure 2(a)), and spheroidal (oblate) 

or capsule (prolate) (Figure 2(b) and(c)) droplet shapes, as previously observed in 4He droplets 
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[18, 23, 48]. Spheroidal and prolate shapes, in particular, result from the centrifugal deformation 

of droplets with considerable angular momentum.  

The droplet shapes are characterized by the distances between the center and the surface in 

three mutually perpendicular directions: a ≥ b ≥ c. For an oblate axisymmetric droplet, a = b > c, 

with c along the rotation axis, whereas a > b > c in the case of triaxial prolate shapes with c along 

the rotation axis [16, 21]. The observed diffraction patterns do not provide direct access to the 

actual values of a, b and c, due to the droplets' unknown orientations with respect to the X-ray 

beam. Instead, the images are characterized by two semi-axes of the projection of a droplet onto 

the detector plane, which will be referred to as A and C (A > C), corresponding to a projection 

aspect ratio, AR = A / C. For an axisymmetric droplet with an unknown orientation with respect to 

the X-ray beam, the value of A corresponds to the a-axis, whereas the value of C only constitutes 

an upper bound for the c-axis. In the case of a triaxial droplet, the value of A gives a lower bound 

for the a-axis, whereas the value of C gives a lower bound for the b-axis and an upper bound for 

the c-axis. In this section, we will discuss the experimental results in terms of the apparent A, C 

and AR values, from which the average actual sizes of the axisymmetric droplets are obtained. The 

values of A and C are obtained from the diffraction patterns as described elsewhere (supplementary 

material in Reference [21]). 

The values of the half axes A and C, as well as their ARs, are noted for each panel in Figure 2. 

The calculated A and C values from Figure 2(a) are very similar (within ~ 3%), indicative of a 

spherical droplet shape or a spheroid with its symmetry axis aligned perpendicular to the detector 

plane. The diffraction pattern shown in Figure 2(b) originates from a larger droplet (larger half-

axis values). Here, the two half-axes differ by ~ 34% (AR = 1.34), which is indicative of a 

spheroidal or ellipsoidal droplet. The streaked diffraction image in Figure 2(c) corresponds to a 

strongly deformed, capsule-shaped droplet with AR = 1.95. The capsule shape is indicated by the 

small curvature of the streak, as discussed earlier [21, 23]. 

All images in Figure 2 exhibit blank horizontal stripes along their middle sections. These result 

from the gap between the upper and the lower panels of the pnCCD detector.  Vertical stripes on 

the lower panel are caused by imperfect data readout for strong diffraction images. 
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Figure 2. Diffraction patterns of pure 3He droplets shown on a logarithmic color scale as indicated 

on the right. Images represent the central 660 × 660 detector pixels. Corresponding droplet 

projection half-axes (A, C) and their aspect ratio (AR) are displayed at the top of each image.  

 

 

 

During the measurements, approximately 900 intense diffraction images from pure 3He 

droplets are obtained, each providing a unique set of A and C values. Similar measurements are 

performed for 4He droplets, providing ~300 patterns as an independent reference for comparison. 

The measurements for a given isotopic fluid do not exhibit any systematic variation with 

temperature, thus, the results obtained at different temperatures are combined to improve statistics.  

Figure 3(a) displays the measured distribution of the droplet’s long axis, A, for 3He and 4He 

droplets, as represented by blue and red bars, respectively. The average sizes of 4He droplets are 

approximately a factor of two larger than those of 3He droplets. The sizes of the 3He droplets vary 

between A = 52 nm and A = 796 nm with an average of <A> = 162 (94) nm, whereas 4He droplets 

exhibit a larger spread, ranging from A = 55 nm to A = 1250 nm with an average of <A> = 355 

(260) nm. Throughout this article, values in parenthesis give the root mean square deviation of the 

corresponding quantity. Figure 3(b) shows the AR distribution for 3He and 4He droplets. The 

largest ARs are 1.99 for 3He and 1.72 for 4He. The AR histograms for the two isotopes appear more 

similar than the size distributions, with the vast majority of droplets exhibiting AR < 1.2. The 

average ARs for 3He and 4He droplets are very close with <AR>3 = 1.055 (0.082) and <AR>4 = 

1.067 (0.089), respectively. We also found that at AR < 1.4, where more than 98% of the droplets 
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were found, the distribution of the AR-1 values is well approximated by an exponential. The 

number of detected droplets with AR > 1.4 is too few to determine the distribution. Figure 3(c) 

shows the AR vs. half axis A for all data points used to produce Panels (a) and (b). The results for 

3He and 4He are shown by blue stars and red circles, respectively. It is readily apparent that for 

both isotopes, the fraction of droplets with large AR (> 1.2) is higher in larger droplets.    

 In contrast to the temperature-independent droplet sizes reported here, previous 

measurements on 4He droplets found continuously increasing sizes with decreasing temperature 

[16].  At T0 < 4 K and P0 = 20 bar, 4He expansion leads to the formation of a jet that breaks up into 

micron-sized droplets due to Rayleigh instability. [16, 49] This mechanism gives rise to an 

extremely collimated beam of droplets, the occurrence of which was not observed during this work 

with either 3He or 4He. We conclude that, most likely, the flow through the nozzle was affected by 

imperfections such as microscopic damage or partial obstruction of the nozzle by impurities. 

Previous experiments with 4He droplets in our group demonstrated that, under such conditions, 

decreasing the nozzle temperature below a certain value does not result in any increase in average 

droplet size [50], which is in agreement with the observations in this work.   
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 Figure 3. Droplet size (a) and aspect ratio (b) distributions for 3He (blue) and 4He (red) isotopes. 

Corresponding average values as obtained from the entire data sets (with root mean square 

deviations in parentheses) are listed in each plot and indicated by vertical dashed lines. The results 

for 4He were multiplied by a factor of 3 for ease of comparison, as the total number of diffraction 

images obtained for 3He and 4He were ~900 and ~300, respectively. Panel (c) shows the AR vs. 

half axis A for all data points used to produce (a) and (b). The results for 3He and 4He droplets are 

shown by blue stars and red circles, respectively.  
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4. Discussion  

4.1. Droplet size distribution 

Figure 3(a) shows that the observed droplet size distributions peak at some small values of 

A, decrease sharply towards smaller A, and decrease more gradually towards larger A. The 

measured distribution reflects the actual distribution in the beam multiplied by the probability to 

detect a droplet of value A in the diffraction experiment. In the SM [45], it is shown that for a 

spherical droplet, the detection probability scales as 𝑙𝑛
𝑅4

𝑅0
4 if R ≥ R0 and 0 if R < R0, where R is the 

radius of the droplet and R0 ≈ 50 nm is the radius of the smallest detectable droplet. Accordingly, 

for R >> R0 the detection probability is a slowly changing logarithmic function of R and can often 

be ignored. However, as R approaches R0,  detection probability goes to zero, which explains the 

decrease of the counts at small A in Figure 3(a). 

In the literature, droplet size distributions are usually discussed in terms of the number of 

atoms per droplet, owing to the detection technique, which is often based on mass spectroscopy 

[51]. Figure 4 shows the size distribution for 3He droplets in a logarithmic representation. For N3 

< 2×109, the 3He droplet size distribution is approximately exponential, 𝑃(𝑁3) =

𝑆∙∆

<𝑁3>
 exp (−

𝑁3

<𝑁3>
), with <N3> ≈ 5.6 × 108 and S being the total number of the detected droplets 

and Δ is the bin size. For N3 > 2×109, the probability of detecting droplets becomes greater than 

predicted by an exponential dependence and extends to very large droplet sizes, up to about N3 = 

2×1010 (not shown). An exponentially declining size distribution was also found in a recent study 

of 4He droplets at the FERMI FEL.[23] On the other hand, the size distribution of smaller 3He 

droplets with N3 ≤ 107 obtained at P0 = 20 bar and T0 ≥ 5 K was found to be close to log-normal 

[44]. 
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Figure 4. Size distribution of 3He droplets. The red line represents an exponential distribution. See 

text for details.  

 

4.2. Droplet aspect ratio  

The aspect ratios AR provide access to the angular momentum and angular velocity of the 

droplets. Unfortunately, the actual aspect ratio, ar = a/c, cannot be obtained from the individual 

diffraction images at small scattering angle due to the unknown orientation of the droplets with 

respect to the X-ray beam. However, one can obtain the average actual aspect ratio ar from the 

average apparent aspect ratio AR assuming a random droplet orientation as described in the 

following. 

In classical droplets, the largest aspect ratio of stable, axially symmetric droplets is 

ar = 1.47 [52, 53].  About 99% of the measurements in Figure 3 have AR < 1.4 in agreement with 

previous measurements in 4He droplets [18, 21-23]. Here, we assume that the overwhelming 

majority of droplets with AR < 1.4 have oblate, axially symmetric shapes. We also assume that the 

data contain less than ~10 events from prolate 3He droplets that are oriented in such a way that 
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their projections yield AR < 1.4 but, within the accuracy of the data analysis, the corresponding 

diffraction images cannot be distinguished from those for oblate droplets. This estimate is based 

on the number of events producing AR > 1.4, which are entirely ascribed to prolate droplets. For 

shapes with AR < 1.4,  the average values for the observed major half axis A and aspect ratio AR 

of: <A3> = 160 ± 3 nm, <AR3> = 1.049 ± 0.003, <A4> = 348 ± 14 nm, <AR4> = 1.059 ± 0.005.  

 To translate the measured <AR> into the actual <ar>, we assume a spheroid with a well-

defined ar and calculate its projection on the detector plane when its symmetry axis c subtends an 

angle α with the normal to the plane. The aspect ratios of the diffraction pattern (AR) and of the 

spheroid of which the x-rays diffract (ar) are related by: 𝐴𝑅 = √𝑐𝑜𝑠2(𝛼) + 𝑎𝑟2𝑠𝑖𝑛2(𝛼), see eq. 

(S2.8) in the SM to [18]. The average AR of an ensemble of randomly aligned droplets is then 

calculated as 〈𝐴𝑅〉 = ∫ 𝐴𝑅(𝛼) ∙ 𝑠𝑖𝑛(𝛼)
𝜋

2
0

∙ 𝑑𝛼, where sin(α) represents the probability of detecting 

a spheroid at angle α. Calculations have been performed for spheroids with a variety of ar. They 

show that, in the range 1 ≤ ar ≤ 1.4, AR scales nearly linearly with ar according to 〈𝐴𝑅〉 − 1 =

0.64(𝑎𝑟 − 1). Due to the linear relationship between <AR> and ar, the same formula also applies 

when considering not just an orientation-averaged ensemble with one specific ar, but also averages 

over all orientations and all true aspect ratios ar: 〈𝐴𝑅〉 − 1 = 0.64(〈𝑎𝑟〉 − 1). From this 

relationship, the average true aspect ratios for 3He and 4He droplets are derived as ar3 = 1.077 

(0.005) and ar4 = 1.092 (0.08), respectively.  

Since the projection A always assumes the value a for an axisymmetric droplet, we can 

determine the true average major half axes a from the measurements as a3 = 160 (90) nm and 

a4 = 348 (254) nm for 3He and 4He droplets, respectively. Using the approximation 〈𝑎𝑟〉 ≈

〈𝑎〉 〈𝑐〉⁄  and the results summarized in Figure 3 with AR less than 1.4, the average minor half axis 

c for 3He and 4He is determined as c3 = 150 (80) nm and c4 = 300 (200) nm, respectively. 

 With the obtained ar, a, and c, the average number of He atoms in the droplet N3,4 

can be deduced as, 〈𝑁3,4〉 = 〈𝑉〉 × 𝑛3,4, where 〈𝑉〉 =
4∙𝜋∙<𝑎>2∙<𝑐>

3
 is the volume of an oblate 

spheroid, and 𝑛3,4 is the number density of liquid 3He and 4He at low temperature, with values of 

𝑛3 = 1.62 × 1028 m-3  [38] and 𝑛4 =2.18 × 1028 m-3 [41, 42], respectively. The average sizes for 

droplets using the above calculated a and c values with aspect ratios less than 1.4 are <N3> = 

2.6  108 and <N4> = 3.5  109. 
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4.3. Average angular momenta and angular velocities of 3He and 4He droplets  

 

 As previously described for 4He droplets [18, 21-23], we assign the shape deformation in 

3He droplets to centrifugal distortion.  It has been reported that the shapes of rotating 4He droplets 

closely follow the equilibrium shapes of classical droplets having the same values of angular 

momentum [21, 23, 26, 27]. This is also expected to be the case for 3He droplets, which at the 

temperature of these experiments (~ 0.15 K) [35, 54], should behave classically because of the 

high viscosity of about 200 µP and small mean free path (a few nm) of elementary excitations at 

this temperature [38]. In the recent density functional calculations the shapes of rotating 3He 

droplets were found to be very close to those predicted for classical droplets [39]. The blue curve 

in Figure 5 shows the stability diagram of the classical droplets in terms of the reduced angular 

momentum (Ʌ) and the reduced angular velocity (Ω), which are given by [52, 53], 

Ʌ =
𝐿

√8∙𝜎∙𝜌∙𝑅7
  (1) 

Ω = √
𝜌∙𝑅3

8∙𝜎
∙ 𝜔  (2). 

Here, L and ω are the angular momentum and angular velocity, respectively, σ is the surface 

tension of the liquid, ρ is the liquid mass density, and R is the droplet radius in a quiescent state. 

For liquid 4He and 3He at low temperature, the surface tensions are σ4 = 3.54∙10-4 N/m [42] and σ3 

= 1.55∙10-4 N/m [55], respectively, corresponding to densities of ρ4 = 145 kg/m3  [42] and ρ3 = 82 

kg/m3, [56]. With increasing Ʌ, the droplet’s equilibrium shape transitions from spherical to oblate 

axially symmetric. At Ω ≈ 0.56, Ʌ ≈ 1.2, ar ≈ 1.47, the stability curve bifurcates into two branches; 

an unstable upper branch (dashed blue curve) representing axially symmetric droplets and a stable 

lower branch (dotted blue curve) representing prolate triaxial droplets. The stable prolate branch 

represents triaxial ellipsoidal and capsule shaped droplets with 1.2 < Ʌ < 1.6, and dumb-bell 

shaped droplets at Ʌ > 1.6 [21, 23, 52, 53]. For Ʌ > 2, droplets become unstable and break up. 

Also shown in Figure 5 is the aspect ratio (a/c) of droplets along the axisymmetric branch as a 

function of Ʌ, which is represented by the red curve [21]. Using an exponential distribution of the 

AR values: 𝑃(𝐴𝑅 − 1) =
1

<𝐴𝑅−1>
exp (−

𝐴𝑅−1

<𝐴𝑅−1>
) and the curves in Figure 5, the average Ʌ for 
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3He and 4He is obtained as 0.40 and 0.44, indicated as green circles and black crosses, respectively. 

From the stability diagram, we obtain Ω for 3He and 4He as Ω3 = 0.24 and Ω4 = 0.26, respectively. 

Using Equations (1, 2), the angular momentum (L) is obtained as L3 = 1.3×109 ℏ and L4 = 5.3×1010 

ℏ for the average sized 3He and 4He droplets, respectively. Similarly, L per atom of the droplet is 

obtained as 4.9 ℏ and 16.3 ℏ for 3He and 4He droplets, respectively, and ω was calculated as 1.8×107 

rad/s and 6.1×106 rad/s for 3He and 4He, respectively. Although the 4He droplets and 3He droplets 

have similar <Λ>, 4He droplets have about a factor of three larger L per atom. Mathematically, this 

effect stems from the different of the factors of √𝜎 ∙ 𝜌 ∙ 𝑅7 in Equation (1) in 3He and 4He droplets.  
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Figure 5. Red curve: Calculated aspect ratio as a function of reduced angular momentum (Ʌ) for 

axially symmetric oblate droplet shapes. Blue curve: stability diagram of rotating droplets in terms 

of reduced angular velocity (Ω) and reduced angular momentum (Ʌ). The upper branch (dashed 

blue) corresponds to unstable axially symmetric shapes. The lower branch (dotted blue) is 

associated with prolate triaxial droplet shapes resembling capsules and dumbbells. The green circle 

and black cross on the red curve represent the average ⟨ar⟩ for 3He and 4He droplets, respectively, 

obtained in this work (with AR < 1.4). Similar markers on the blue curve indicate the (Ω, Ʌ) values 

for the average droplets. 
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4.4. Formation of rotating droplets in the fluid jet expansion 

It is remarkable that in spite of their very different physical properties, 3He and 4He droplets 

have, on average, very similar values of Ω and Λ. Previous XFEL experiments with 4He droplets 

yielded average aspect ratios, <AR>, in the range of 1.06 – 1.08 at P0 = 20 bar and T0 = 4 - 7 K, 

which spans average droplet sizes from 200 nm to 1000 nm in diameter  (see Figure 4.11 in 

Reference [50]). Thus, it is noteworthy that very similar average aspect ratios, and therefore Ω and 

Λ, were obtained at different T0. Comparable <AR> were obtained in experiments involving 

different nozzle plates, including measurements with partially obstructed and intact nozzles [50]. 

Hence, it seems that the acquired <AR> is largely independent of particular nozzles used in the 

experiments. Similar results for non-superfluid 3He and superfluid 4He droplets indicate that the 

state of the droplets has a small effect on the resulting average angular momentum.  

 In previous works [21, 57], we have conjectured that during the passage of fluid helium 

through the nozzle, the fluid interacts with the nozzle channel walls and acquires vorticity, which 

is eventually transferred to the droplets. Accordingly, the droplets’ angular velocity may be 

estimated based on the nozzle diameter (d) of 5 μm and the measured 4He droplet beam velocity 

of v = 170 m/s [16]. Using Bernoulli's equation, the velocity of 3He droplets can be estimated to 

be v ≈ 225 m/s. If the fluid at the center of the nozzle moves with the beam velocity and falls 

linearly to zero at the walls, the resulting velocity gradient gives an estimate for the average 

vorticity of the fluid as 2∙v/d. The average vorticity will be up to about a factor of two larger for a 

more realistic velocity profile with a sub-linear change of velocities close to the nozzle center. One 

can also assume that, upon breakup of the fluid into droplets, vorticity is conserved and, thus, the 

angular velocity of the droplets can be obtained as half of the average vorticity: ω = v/d.  

Accordingly, the estimated average angular velocity of 4He and 3He droplets is 3.4×107 rad/s and 

4.5×107 rad/s, respectively. Such high angular velocities can only be sustained by rather small 

droplets.  

It is challenging to explain the similarities in reduced angular velocity and angular 

momentum in 3He and 4He droplets based on the stability diagram in Figure 5 and the estimated 

vorticities. Moreover, the size and shape distributions in Figure 3 as observed at high vacuum far 

downstream (~1 m) from the nozzle originate from processes in the high-density region inside or 
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close to the nozzle, where collisions between droplets with the dense He gas must play an 

important role. For example, for a droplet 300 nm in radius, rotating at 107 rad/s, the peripheral 

velocity will be ~3 m/s. In the regime of extensive jet atomization as in this work, a large spread 

of droplet velocities up to Δv/v ~5% has previously been observed [58]. Thus, with a characteristic 

droplet velocity on the order of 200 m/s, the droplets may have significant relative collision 

velocities of ~10 m/s, which are sufficient to produce rapidly spinning products. Further 

downstream, presumably a few mm away from the nozzle, the number density of the gas and 

droplets decrease, the collision rates decrease, and the angular momenta of individual droplets 

remain constant further downstream. 

 Although we are currently unable to provide a quantitative model of the processes close to 

the nozzle, it is instructive to consider the evolution of a droplet driven at some angular velocity 

as opposed to free droplets with a constant angular momentum. The corresponding driving force 

may originate from the aforementioned collisions. The prolate branch on the stability curve of 

driven droplets is unstable at constant ω [53]. Driven droplets will climb along the axially 

symmetric branch until they reach the bifurcation point at Ω = 0.56 (Figure 5) at which point they 

will enter the unstable prolate branch. Here, further elongation of the droplets occurs, culminating 

in the fission and formation of two nearly spherical droplets, each having one half the volume of 

the parent droplet [53]. The entire angular momentum at the fission point is due to the relative 

motion of the daughter droplets, as there is no rotation within either of them. Similar to the parent 

droplets, the daughter droplets will acquire angular momentum via collisions. The fission cycle 

continues until sufficiently small, stable droplets are formed or the droplets are far away from the 

nozzle, where the driving force diminishes. Because the occurrence of such a cycle is largely 

independent of the choice of He isotope, the process should yield very similar values of <AR>, 

<Λ> and <Ω>, independent of the droplet size and composition. This model could explain why 

similar Ω and Λ were obtained at different T0. 

 From the average nozzle vorticity and using Ω = 0.56 from the bifurcation point (from 

Equation (2)), the radius of the largest stable droplets can be estimated to R3 = 130 nm and R4 = 

170 nm for 3He and 4He droplets, respectively. The obtained critical radii are larger than the 

smallest observed droplets of about 50 nm in radius. This may indicate that the fission process 

yields smaller droplets than our idealized estimate. For the above estimates, we have applied low-
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temperature surface tension values, which are lower at higher temperatures inside the nozzle, 

leading to smaller radii. At the nozzle, in addition to rotation, the droplets will likely experience 

shape oscillations that may decrease the threshold Ω for turning into prolate shapes, eventually 

leading to fission. In addition, droplet sizes also decrease due to evaporation in vacuum.   

 

5. Conclusions 

In this work, bosonic 4He and, for the first time, fermionic 3He droplets are studied by 

single-pulse X-ray coherent diffractive imaging. Statistics of the droplets’ sizes, aspect ratios, 

reduced angular momenta and reduced angular velocities are compared for superfluid 4He droplets 

and normal fluid 3He droplets. Since the experiments only give access to projections of droplets 

onto the detector plane, estimates are made to determine the true average axes and aspect ratios. It 

is found that, although the superfluid droplets have a much higher average angular momentum, the 

two kinds of droplets have very similar average aspect ratios and, thus, similar average reduced 

angular momenta and reduced angular velocities. This surprising result may result from the 

formation of the droplets through turbulent nozzle flow and the atomization regime in immediate 

vicinity of the nozzle. We conjecture that the droplets’ rotation is driven by a combination of the 

liquid flow velocity gradient inside the nozzle and collisions close to it, leading to elongation and, 

ultimately, fragmentation into daughter droplets, which may undergo repeated collision-

elongation-fragmentation cycles.  

Future studies will shed more light on the origin of angular momentum in droplets 

produced via fragmentation of a fluid. A large number of studies discusses the fragmentation of 

classical liquids upon jet expansion [59, 60]. However, to the best of our knowledge, the amount 

of angular momentum contained in the resulting droplets remained unknown. It is therefore 

interesting that the jet atomization of classical liquids produces highly rotating droplets similar to 

quantum He droplets.    

The availability of the large 3He droplets suitable for single-pulse diffraction experiments 

also opens additional research directions. Vortex-induced cluster aggregation has so far been 

unique to superfluid 4He. It is of high interest to expand experiments to non-superfluid 3He and 

study the aggregation patterns in rotating fermionic droplets. Dopant aggregation mechanisms and 
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the morphology of the phase separation in rotating mixed 3He/4He droplets presents another 

frontier. [61] 
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S1. Detection probability of He droplets vs droplet size  

Fig. 3(a) of the main text shows that the observed droplet size distributions peak at some 

small values of A. The measured distribution reflects the actual distribution in the beam multiplied 

by the probability, DP(R) that a droplet with a major half axis A will be detected in the diffraction 

experiment. To estimate the actual size distribution, we deduce a simple, idealized detection 

probability function for spherical droplets of radius R. As most of the detected droplets have aspect 

ratios close to 1, the formula for a sphere provides a good first-order estimate for the detection 

probability distribution.  According to the Rayleigh - Gans approximation, [1, 2] the total scattering 

intensity from a spherical droplet of radius R is given by:      

𝐼(𝑅) = 8𝜋 ∙ 𝑅4 |
𝑛2−1

𝜆
|

2

∙ 𝛷 = 𝐶 ∙ 𝑅4 ∙ 𝛷.                                            (1) 

Here, n is the complex refractive index of liquid 3He or 4He, λ is the wavelength of the scattered 

light, and Φ is the photon flux of the incoming X-ray beam. The total measured scattering intensity 

needs to be higher than a certain threshold value, Ith, for the droplet to be detected. We disregard 

any intensity loss due to the central cut in the detector panels and the gap between them and assume 

that the X-ray beam has a Gaussian intensity profile: 

𝛷(𝑟) = 𝛷0exp (−
2𝑟2

𝑤0
2 )                                                                    (2) 

 Here, r is the distance from the beam axis perpendicular to the direction of the X-ray beam and w0 

is the beam waist. Here we assumed that R<<w0. The value of Ith determines the smallest droplet 

size, R0, that may be detected for a droplet residing on the beam axis (r = 0): 

𝐼𝑡ℎ = 𝐶 ∙ 𝑅0
4 ∙ 𝛷0                                                                   (3) 

Larger droplets with radius R > R0 may also be detected if they reside off axis at radii smaller than 

rmax with  

𝑟𝑚𝑎𝑥 = (
𝑤0

2

2
𝑙𝑛

𝐶∙𝑅4∙𝛷0

𝐼𝑡ℎ
)1/2 = (

𝑤0
2

2
𝑙𝑛

𝑅4

𝑅0
4)1/2                                          (4) 

Accordingly, the detection probability DP(R) is proportional to the area within rmax, which grows 

∝ 𝑙𝑛
𝑅4

𝑅0
4 . In this work R0 ≈ 50 nm. For R >> R0 the detection probability is a slowly changing 

logarithmic function of R and can often be ignored. However, as R approaches R0, DP(R) goes to 

zero, which explains the decrease of the counts at small A in Fig. 3(a) of the main text.  
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S2.    3He Recycling System 

Due to the considerable cost of 3He, a recycling system is employed during the experiments. 

The design of the gas recycling system was inspired by a similar system used for experiments with 

3He droplets [3-5] and for 3He gas circulation systems in dilution refrigerators [6]. The 3He 

recycling system fulfills the following functions: 1) collection of recycled gas, 2) cleaning of 

recycled gas, 3) pressurization of clean gas, and 4) storage of clean gas. 

Figure S1 shows a schematic of the recycling system. Two, inward-facing triangles denote 

valves. Blue arrows in Fig. S1 indicate the direction of the helium flow during operation. The gas 

exits the cryogenic nozzle, is pumped by turbo pumps that are backed by scroll pumps (Leybold 

SC 30D and Anest Iawata ISP 250C). An Adixen DFT-25 microfiber-based dust filter is installed 

at the exit of the scroll pump to stop debris from entering the system. Gas is collected from the 

output of the scroll pump and impurity gases are frozen out on LN2-cooled zeolite traps. The 

purified helium gas is compressed by a Fluitron S1-20/150 compressor and resupplied to the 

cryogenic nozzle. When not in operation, gas can be stored in the cylinders shown in the upper 

right portion of Figure S1. 
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Fig. S1. A schematic of the 3He recycling system. The black lines indicate tubing connections 

between valves and other parts of the system. Blue arrows indicate the direction of helium flow 

during operation. The system can be evacuated before operation to preserve the purity of the gas. 

Connections to external vacuum pumps are indicated by labels “To Vacuum Pump.”  
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