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Guidelines for the analysis of free energy calculations

Pavel V. Klimovich, Michael R. Shirts, and David L. Mobley

Received: date / Accepted: date

Abstract Free energy calculations based on molecular dy-
namics (MD) simulations show considerable promise for ap-
plications ranging from drug discovery to prediction of phys-
ical properties and structure-function studies. But these cal-
culations are still difficult and tedious to analyze, and best
practices for analysis are not well defined or propagated. Es-
sentially, each group analyzing these calculations needs to
decide how to conduct the analysis and, usually, develop its
own analysis tools. Here, we review and recommend best
practices for analysis yielding reliable free energies from
molecular simulations. Additionally, we provide a Python
tool, alchemical-analysis.py, freely available on
GitHub at https://github.com/choderalab/pymbar-examples,
that implements the analysis practices reviewed here for sev-
eral reference simulation packages, which can be adapted to
handle data from other packages. Both this review and the
tool covers analysis of alchemical calculations generally, in-
cluding free energy estimates via both thermodynamic inte-
gration and free energy perturbation-based estimators. Our
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Python tool also handles output from multiple types of free
energy calculations, including expanded ensemble and Hamil-
tonian replica exchange, as well as standard fixed ensemble
calculations. We also survey a range of statistical and graph-
ical ways of assessing the quality of the data and free energy
estimates, and provide prototypes of these in our tool. We
hope these tools and discussion will serve as a foundation
for more standardization of and agreement on best practices
for analysis of free energy calculations.

Keywords hydration free energy · transfer free energy ·
free energy calculation · analysis tool · binding free energy ·
alchemical

1 Introduction

1.1 Free energy calculations assist drug discovery

Complex chemical and biological systems pose a key chal-
lenge for modern molecular and computational science. We
seek computational models which can provide quantitative
predictions, not just qualitative insight. Researchers seek to
answer questions such as “how much?”, “how big?”, “how
tight?” and so on, and increasingly apply physically-detailed
computation to help answer these questions. Models seek to
mimic or simulate the processes in question, helping reveal
and provide new understanding of mechanisms and phenom-
ena which might be challenging or impossible to probe ex-
perimentally [20, 23, 38, 43].

Free energy calculations [11, 7, 25, 9, 18] provide a good
example of a computational technique which provides a quan-
titative answer to a specific question – in this case, “what is
the free energy difference between the two thermodynamic
end states of the system?” This question arises, for exam-
ple, in drug discovery [16] where drugs need to be ranked
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Fig. 1 The thermodynamic cycle for a standard hydration free en-
ergy calculation. Here, the blue background represents water and the
clear background represents gas. The goal is to find the free energy
difference ∆Ghydration between the two states: end state 1 (upper
left) representing the solute in the gas phase, and end state 2 (upper
right) depicting the solvated molecule. The ∆Ghydration is found
as a sum of the free energy changes between the end states 1 and 2
and the intermediate alchemical states, intermediate state 3 (lower left)
and intermediate state 4 (lower right), introduced along the alternative
pathway 1 → 3 → 4 → 2, which may include additional nonphysi-
cal states interpolating between the legs 1 → 3 3 → 4, and 4 → 2.
The black-and-white appearance of the solute molecule, at bottom, in-
dicates the solute is in a state where it has no non-bonded interactions
with its environment, and possibly also no internal non-bonded interac-
tions as well. These scenarios are referred to as decoupling and annihi-
lation, respectively, as discussed in the text. In the case of decoupling,
the transformation pathway reduces to the single leg 2 → 4, and the
hydration free energy is the negative of the free energy for this leg. In
this case of annihilation, which also modifies internal solute interac-
tions, both legs are necessary.

by, among other criteria, their binding affinity [9] to a tar-
get protein. To use free energy calculations to answer this
question, one must first build a model of the system, and
then identify the end states between which the free energy
difference is to be computed.

1.2 Free energy calculations begin with a definition of the
end states

The thermodynamic end states (for example, Fig. 1 states
1 and 2) are the key starting point in free energy calcula-
tions. In principle, free energy differences between the end
states can be computed simply from simulations conducted
in one or both states [11]. But in practice, this is typically not
possible for biomolecular systems on reasonable timescales.
To compute accurate free energy differences between states,
their phase space integrals must have sufficient overlap which
in practice is attainable only when both states are extremely
similar. When this is not the case, it can be impossible to di-
rectly compute the free energy difference between end states

1 and 2. In such cases, we can instead compute free energy
differences between a series of intermediate states which
do have sufficient overlap, leading from state 1 to state 2.
These intermediate states are typically artificial, unphysical
states constructed to link the physical states of interest, and
form part of a thermodynamic cycle (see Fig. 1) linking the
two end states of interest. For most free energy calculations
relevant to binding, solvation, and solubility, this alternate,
unphysical pathway involves effectively deleting and/or in-
serting some atoms, while possibly also making parameter
changes to those and other atoms.

1.3 The thermodynamic cycle depicts alternate paths
between the end states

The thermodynamic cycle for standard hydration free en-
ergy calculations is comprised of the four legs joining the
four states of interest (Fig. 1): (2) a molecule interacting
with a box of water, (1) the same molecule present alone
in the gas phase, (4) the molecule in water but not interact-
ing with the surrounding water, and (3) the non-interacting
molecule again alone in the gas phase. We thus compute the
solvation free energy by modifying the solute molecule in
each of its environments. To do so, we compute the free
energy of turning off the solute’s non-bonded interactions
with its environment (called decoupling) or turning off both
internal non-bonded interactions and interactions with the
environment (called annihilation) (Fig. 1)1. Specifically, we
compute the free energies associated with Figure 1, 1 → 3

and 2 → 4, turning off the molecule’s interactions in gas
phase and in water, respectively. Most commonly, both of
these transformations are carried out by first scaling (usu-
ally linearly) the solute charges to zero and then turning off
the solute’s Lennard-Jones (LJ) interactions (usually via the
“soft-core” scheme [2]). These transformations are done in
a series of steps by introducing a parameter λ which mod-
ulates the potential energy of the system, so that as λ goes
from 0 to 1 the potential energy transitions between that of
the initial state and that of the target final state. Simulations
are then run at a set of different λ values connecting the two
states. In other words, each of the two transformation path-
ways is subdivided into a variety of individual steps, where

1 Annihilation and decoupling can be thought to differ primarily in
how they handle charge and Lennard-Jones parameters. Specifically,
annihilation involves actually setting solute partial charges to zero,
while decoupling involves turning off charge interactions with envi-
ronment. Likewise, annihilation involves actually setting the Lennard-
Jones parameters to zero, while decoupling involves turning off inter-
actions with environment. Our current explanation is specific to the
more general case, annihilation, but in case of decoupling no gas trans-
formation 1 → 3 is needed and the overall transformation reduces to
the single leg 2 → 4, i.e. the hydration free energy change is found as
the negative of∆Gwaterdecoupling , with the possible exception of an anayt-
ical standard state correction depending on the experimental reference
state employed.
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Fig. 2 The transformations 1 → 3 and 2 → 4 from Fig. 1 can be
thought of as a pathway from (0,0) (filled circle) to (1,1) (hollow cir-
cle) in the lambda vector space which is shown as a pale blue square
on the Cartesian plane formed by the axes λvdWaals and λCoulomb,
which control the solute van der Waals and Coulomb interactions,
respectively. For the reasons discussed in the text, we start at point
(0,0), which corresponds to the fully interacting molecule, and pro-
ceed through several alchemical intermediate states (with locations in-
dicated by arrowheads) along the λCoulomb axis (red arrows) until
we reach point (0,1) which corresponds to the electrostatically non-
interacting molecule. Then, we modify λvdWaals (green arrows) until
we reach our target state (1,1), corresponding to the non-interacting
molecule. If instead transformation progress was controlled by a single
λ value rather than a vector, the transformation path would have lain
along the square diagonal (blue arrow).

each step involves a transition between two λ values. The
number and spacing of λ values is chosen to assure ade-
quate overlap between the conformational spaces of the two
states being considered. These intermediate states, and their
corresponding λ values, are normally said to be alchemical,
since they correspond to unphysical states, often involving a
change in the chemical identity of the species considered.

Following alchemical transformation of the molecule in
gas and solution, it remains to connect the two end states
((3) and (4) in Fig. 1). However, the free energy of the non-
interacting molecule does not depend on the nature of its
environment, and so the transfer free energy of the non-
interacting molecule between environments is 0. Thus, there
is no associated free energy change going from states (3) to
(4) in Fig. 1.

1.4 The interactions can be decoupled

Changes in electrostatic interactions are often separated from
changes in LJ interactions to avoid inaccuracy in the free en-
ergy estimate and sampling challenges. Specifically, if elec-
trostatic interactions are retained while an atom’s LJ inter-
actions are being removed, the associated charge becomes
more and more exposed, and can create huge electrostatic
forces leading to large and expensive-to-converge free en-
ergy differences. In extreme cases this can result in the lack
of separation between positive and negative charges, which
is especially problematic, potentially leading to numerical
instabilities and simulation crashes [3, 31]. An additional
benefit of separating these transformations is it provides a
mechanism to maintain optimally efficient linear scaling of
the charge interactions [27] with λ while using alternative
scaling schemes for LJ interactions. Specifically, to avoid
situations when the derivative ∂U/∂λ (needed for the TI
analysis) would have been discontinuous, the potential for
LJ transformations is typically treated via the soft-core po-
tential [2, 42, 36, 39]. Although we focus here on the de-
coupled scheme, our general analysis would apply to the
combined case (the one that would require no electrostatic
decoupling [5, 12]) as well.

1.5 The intermediate lambda states can be controlled by
lambda vectors

The MD packages like GROMACS [33] and DESMOND
[37] can handle free energy calculations via multiple λ val-
ues controlling progress of different interaction types so that,
for example, Coulomb, LJ, and restraining transformations
can be controlled separately. Each step along the transfor-
mation path is associated with a unique set of λ values that
is often referred to as the λ vector. For the thermodynamic
cycle in Fig. 1 the λ vector has two components that control
the Coulomb and LJ interactions. Each of the transformation
paths 1 → 3 and 2 → 4 can then be presented as a train of
intermediate coupled states (λcoul, λLJ ), the initial and final
states being (0, 0) and (1,1) as depicted in Fig 2. If λ con-
trols the strength of Coulomb and LJ interactions with the
solute’s environment, then as λ progresses, solute-solvent
interactions gradually decrease until, at the end state, the
system consists of pure solvent, overlaid by a parallel sys-
tem consisting of the non-interacting, isolated solute with
full internal interactions. In calculations where internal so-
lute non-bonded interactions are removed as well, the solute
end state is slightly different, consisting of an assembly of
atoms which interact only via their bonded interactions.

Once λ states are selected, equilibrium simulations are
carried out, storing the necessary information for analysis
(typically ∂U/∂λ, the derivative of the potential with respect
to λ, and ∆Ui,j , the potential energy differences between
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states at the different λ values evaluated from individual tra-
jectories).

1.6 The automated analysis should be an essential part of
the free energy calculations

Free energy calculations have typically been an experts-only
endeavor, and one reason for this is that both their setup
and analysis require, as a rule, substantial manual interven-
tion. Analysis often involves in-house scripts and as more
researchers get involved with the free energy calculations,
standard analysis tools become increasingly important both
to help ensure best practices are followed, and to avoid du-
plication of effort.

Our focus here is on the analysis of free energy calcu-
lations, which typically consists of a series of sequential
steps. These free energy calculations themselves can be con-
ducted with a variety of different sampling techniques, and
our focus here is primarily on the analysis stage, regardless
of sampling technique.

Here we present what we believe are current best prac-
tices for analysis of alchemical free energy calculations. Con-
ceptually, we break analysis into four main stages:

1. subsampling the data to retain uncorrelated samples
2. calculating free energy differences along with the corre-

sponding statistical errors via a variety of TI- and FEP-
based methods

3. producing textual and graphical outputs of the computed
data

4. inspecting for
– for convergence and identifying the equilibrated por-

tion of the simulation
– good phase space overlap for all pairs of adjacent

lambda states

2 Analysis concepts, theory, and free energy estimation

We focus our attention on the analysis of a model free en-
ergy calculation—in this case, we choose a hydration free
energy calculation of 3-methylindole as an illustrative exam-
ple. Subsequent discussion will assume the reader already
has run a free energy calculation and wishes to analyze the
resulting data. In our case, we have run this free energy cal-
culation in GROMACS, and we provide a Python tool which
implements the procedures described here for GROMACS,
SIRE (http://siremol.org/Sire/Authors.html),
and AMBER [6] data files, with examples. However, except
for reading the input data, our code is independent of the
specific simulation package, and can easily be adapted to
work with any data format containing the quantities needed
by the free energy estimators used here (∂U/∂λ for TI- and

∆Ui,j for FEP-based estimators). Thus, while our example
here uses the case of the GROMACS simulation package,
our prototype tool, freely available on GitHub https://
github.com/choderalab/pymbar-examples, can
easily be modified to work with other simulation packages.

2.1 Obtaining input data

As noted, the key input information needed for full, gen-
eral analysis of free energy calculations includes potential
energy differences between (at least) adjacent lambda val-
ues, as well as ∂U/∂λ values at all lambda values. To be
specific, we will give an example of the calculation with
GROMACS-formatted input files. In particular, GROMACS
currently (v3.3 through v5.0) store all energies to binary en-
ergy files, but also write out all the potential energies and
differences thereof needed for analysis to human-readable
text files with the .xvg file format. In GROMACS, these
are formatted as shown in Fig. 3. For standard simulations
(in contrast to expanded ensemble simulations discussed be-
low), there are several such files - one for each λ value. In
GROMACS, the precise number of ∂U/∂λ fields varies with
the number of different types of λ value which are utilized,
which corresponds to the number of dimensions in the λ
vector. 2

Expanded ensemble simulations [22, 21, 24, 29, 26] are
an approach which allows for simultaneous exploration of
both λ and coordinate space in a single simulation, poten-
tially allowing for faster sampling across alchemical states
provided that the kinetic barriers that divide conformations
important are lower at other λ states. In expanded ensemble
simulations, a single simulation samples all states, and thus
produces a single energy file. At each time step, the simula-
tion is in one specific λ state, which is stored in the second
field of the output energy file only in the expanded ensem-
ble case. This allows determination of which λ state stored
∂U/∂λ and ∆Ui,j values belong to.

2.2 Alchemical analysis techniques can be divided into
families

As noted, a variety of methods can take output from alchem-
ical free energy calculations and yield free energy differ-
ences. Conceptually, these methods can be divided into two
categories based on the quantity used to compute ∆G: ther-
modynamic integration [17] (TI) methods and free energy
perturbation [44] (FEP) methods.

In TI, the free energy change along the path composed
of K states is computed as a weighted sum of the ensemble

2 Whenever there is an additional field corresponding to the pV en-
ergy term it will be added to the potential energy of corresponding
state.
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Time Energy ∂U/∂λCoul ∂U/∂λvdW ∆U1,0 ∆U1,1 ∆U1,2 . . . ∆U1,10

0.0000 -28935.719788 79.8439 -169.8430 -15.9688 0.0000 23.9532 . . . 95.7991
1.0000 -28999.753933 64.3186 -73.0815 -12.8637 0.0000 19.2956 . . . 104.3823
2.0000 -29076.020596 38.3567 -83.7201 -7.6713 0.0000 11.5070 . . . 80.3175
3.0000 -29122.694521 73.6638 -213.0380 -14.7328 0.0000 22.0991 . . . 79.2340
4.0000 -29133.722682 38.2535 -70.6495 -7.6507 0.0000 11.4761 . . . 80.3560
5.0000 -29147.649111 43.7478 -109.7610 -8.7496 0.0000 13.1244 . . . 78.1552
6.0000 -29161.004598 79.9055 -82.7909 -15.9811 0.0000 23.9717 . . . 110.6894
7.0000 -29144.287730 59.0886 -97.2498 -11.8177 0.0000 17.7266 . . . 95.7572
8.0000 -29109.173478 27.1675 -62.3135 -5.4335 0.0000 8.1502 . . . 76.0401
9.0000 -29064.050011 57.4257 -91.3534 -11.4851 0.0000 17.2277 . . . 84.2167

Fig. 3 Sample GROMACS free energy calculation data for the first ten snapshots of 3-methylindole in water, as the data appears in the
dhdl.1.xvg file, with the names for each field of a row given in the header. These are: time in picoseconds, the energy of the system (ei-
ther potential or total, depending on the option used), the total energy derivative with respect to all the lambda types employed in the perturbation
(∂U/∂λCoul and ∂U/∂λvdW ), the total energy differences evaluated between the current lambda state of index 1 and the other states (∆Ui=1,j ,
j=0, 1, . . ., 10 in this case), which reduces to the difference in potential energy when there is no mass perturbation. Effective in GROMACS version
4.0, the default setting is to evaluate the∆Ui,j between the adjacent states only (for our example here –∆U1,0,∆U1,1, and∆U1,2), and whenever
all the differences are needed (which is essential for MBAR) the .mdp option calc-lambda-neighbors should be set to −1.
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Fig. 4 The hydration free energy calculation for 3-methylindole, analyzed by various methods. (a) A bar plot of the free energy differences
evaluated between pairs of adjacent states via several methods, with corresponding error estimates for each method. (b) A plot of 〈 ∂U

∂λ
〉 vs λ for

thermodynamic integration, with filled areas indicating free energy estimates from the trapezoid rule, and silver curve indicating interpolation via
cubic spline. Different ∆G components are shown in distinct colors: in red is the electrostatic ∆G component (λ indices 0 to 3), while in green is
the van der Waals ∆G component (λ indices 3 to 10). Color intensity alternates with increasing λ index. Alternate interpolation schemes disagree
most around λ points where the slope of 〈 ∂U

∂λ
〉 changes suddenly, so these are regions where a more dense lambda spacing is desirable.

averages of the derivative of potential energy function with
respect to the coupling parameter λ:

∆G =

K∑
i=1

Wi

〈
∂U

∂λ

〉
λi

(1)

where Wi are the weighting factors that depend on the nu-
merical integration scheme used [28].

Several different schemes are available for numerical in-
tegration in TI. In our provided tool, alchemical-analysis.py,
we implement TI-1 and TI-3 [28] which differ in how they
interpolate between data points for integration. TI-1 uses the
trapezoidal rule (a first-order polynomial), while TI-3 uses

a (natural) cubic spline. The relative performance of these
different TI methods will depend on the nature of the under-
lying data and the shape of the ∂U

∂λ curve being integrated –
and thus, it depends on the alchemical path chosen.

Perturbation-based methods include a broad range of tech-
niques loosely related to FEP. In our prototype tool, these
include Deletion Exponential Averaging (DEXP), Insertion
Exponential Averaging (IEXP), Gaussian Deletion (GDEL),
Gaussian Insertion (GINS), Bennett Acceptance Ratio (BAR),
Unoptimized Bennett Acceptance Ratio (UBAR), Range-
based Bennett Acceptance Ratio (RBAR), and Multistate
Bennett Acceptance Ratio (MBAR). Some of them, like BAR
[1] and MBAR [35], are in common use and are deeply
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entrenched in the parlance of the field, while others either
do not have customary, generally accepted names, or re-
main little-known. For these methods we will use naming
conventions suggested by Paliwal and Shirts [28]. The first
two, DEXP and IEXP, are based on the exponential averag-
ing scheme of the potential energies between two adjacent
states—the so-called Zwanzig relationship [44]:

∆Gij = −
1

β
ln〈exp(−β∆Uij)〉i (2)

Depending on the direction of the transformation the
process can be interpreted as either “deletion” or “insertion”,
hence the first letters in the acronyms. Typically, one of these
processes, DEXP, proceeds in the direction of increasing en-
tropy, while the other, IEXP, proceeds in the direction of de-
creasing entropy.

If potential energy differences are distributed in a Gaus-
sian manner (GINS and GDEL [28]), then the Zwanzig re-
lationship reduces to [14, 13]:

∆Gij = 〈∆Uij〉 −
β

2
σ2
∆Uij

(3)

where σ2
∆Uij

= 〈∆U2
ij〉−〈∆Uij〉2. Again, here, the estima-

tor is referred to as either GDEL when ∆Uij is used in the
direction of increasing entropy, or GINS when ∆Uij is used
in the direction of decreasing entropy.

Methods based directly on the Zwanzig relationship, such
as those just discussed, yield alternate estimations for the
free energy difference depending on the direction of the trans-
formation. These discrepancies originate from undersampling
in the tail regions of the∆Uij distributions [32], which yields
biased free energy estimates. BAR [1] eliminates the bias in
∆G estimation by including both forward, ∆Uij , and re-
verse, ∆Uji, potential energy differences in the analysis. In
BAR, the free energy change between intermediate states i
and j (comprised of Ni and Nj microstates, respectively) is
found by solving numerically the implicit function of ∆Uij :

1

〈1 + exp[+β(∆Uij − C)]〉 i
=

1

〈1 + exp[−β(∆Uji − C)]〉 j
(4)

where C = ∆Gij +
1
β ln

(
Nj

Ni

)
.

In addition to this full version of BAR, there are two
BAR-related methods that are advantageous in that there is
no need to retain all potential energy differences for post-
processing. These methods focus on accumulating the aver-
ages in eq 4 as the simulation progresses. This is achieved
by either setting the constant C = β−1 ln(Nj/Ni) and thus
avoiding the self-consistency procedure entirely (UBAR [28]),
or picking a range of starting values of C and obtaining a

range of ∆Gij estimates from which the one having mini-
mum variance is chosen as an input value for the constant C
thus making the self-consistent solution essentially precal-
culated (RBAR [28]). UBAR can have issues when the free
energy is significantly different from zero, while RBAR is
essentially as accurate as BAR as long as the true value of
C is within ≈ 1 − 2kBT of the one of the range of trial C
values.

MBAR [35] constitutes a further development of the BAR
method. In BAR, the free energy change between the two
adjacent states is computed to yield the minimum variance
given data collected at that single pair of states alone, while
MBAR finds the best estimate of free energy changes be-
tween all states simultaneously by optimizing the matrix of
the ∆G variances, thus making use of all available data.
MBAR can also be considered [35] as a limiting case of the
WHAM [19] method in which the histogram width is set to
zero.

2.3 Cross-comparison of different analysis techniques can
highlight problems

TI and perturbation-based analysis techniques have differ-
ent limitations. Specifically, the accuracy of TI is not a di-
rect function of overlap in energy distributions but instead
is a function of the average curvature 〈∂

2U
∂λ2 〉 [30]. On the

other hand, perturbation-based techniques do not depend on
smoothness of the integrand, but rather on overlap in the
sampled energy distributions. Given these differences in in-
put information and limitations, consistency checks across
these method families can be a valuable tool for identifying
analysis or sampling problems.

In our experience, comparing results from different meth-
ods can serve as a warning sign of either insufficient sam-
pling or a λ spacing which is too wide, so it is useful to
have a family of analysis methods. Fig. 4 shows hydration
free energies for 3-methylindole computed via a variety of
methods. As seen from Fig 4(b), the discrepancies between
results from the alternate interpolation schemes are most
prominent in the vicinities of the rapid change in the 〈∂U∂λ 〉
derivative (the van der Waals lambda states 3-4, 4-5, 5-6,
and 7-8). A good practice, thus, is to ensure dense lambda
spacing for these regions.

In general, approaches based on Zwanzig’s relation are
expected to break down earlier (in terms of phase space
overlap) than other approaches, so IEXP and DEXP will
tend to become inconsistent even when data may still be suf-
ficient to obtain accurate free energy estimates from many
of the other methods (see Fig. 3). In our work, we primarily
look for disagreement between TI-based methods and BAR-
based methods.
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2.4 The free energy change is often broken down into
components

Alchemical transformations are usually comprised of sev-
eral conceptual steps which modify different terms in the
potential. For example, solvation or binding free energy cal-
culations are often separated at least into electrostatic and
Lennard-Jones components. Thus, the free energy associ-
ated with modifying each of these terms in the potential can
be computed separately, which can provide some qualitative
insight. However, it is important to note that the free en-
ergies of each component are path-dependent observables.
∆GCoul will change in value depending on in what order
the electrostatic transformation is carried out, so it cannot
be directly considered the electrostatic component of the
free energy. In GROMACS, since λ is a vector, multiple
steps can be handled within a single set of simulations, and
our alchemical-analysis.py tool automatically handles sepa-
ration of different free energy components. It automatically
identifies the number of charging states and prints out along
with the total free energy change its breakdown into free en-
ergy components, ∆GCoul and ∆GvdW . The van der Waals
contribution is computed as∆GTotal−∆GCoul, where∆GCoul
is the free energy change between states differing only in
their charge state (in GROMACS, controlled by coul-lambda
or fep-lambda). Whenever there are other types of trans-
formations involved (for example, λ controlling restraints
holding a ligand in a binding site in a binding free energy
calculation [4]) the difference ∆GTotal −∆GCoul will not
equal ∆GvdW .3

2.5 Analysis should be carried out on uncorrelated samples

In general, the free energy expressions above are intended
to be applied to a set of uncorrelated samples of the rele-
vant observables, but simulation data will be stored more
frequently. Thus, we typically need to re-sample the relevant
energy derivatives ∂U/∂λ and/or energy differences ∆Ui,j
to obtain uncorrelated samples. Particularly, samples used
for computing the averages in eqs (1)–(4) are statistically
independent samples. There are several techniques to iden-
tify and retain independent samples [11, 40, 10] and we find
analysis of autocorrelation times to be particularly useful in
this regard.

Autocorrelation analysis begins with calculation of the
autocorrelation function, which is fairly standard procedure

3 Our Python tool does not currently separate out a restraining com-
ponent of the free energy, because restraining transformations are not
always separable from other transformations. Unlike Coulombic trans-
formations, most of the other transformation types can be (and are
[25, 34]) performed simultaneously (to decrease the number of the sim-
ulation runs), i.e. they are coupled, which makes component separation
impossible.

in time series analysis. For a discrete set of N samples oc-
curring time δt apart, the autocorrelation function of the ob-
servable A at a given point i is found as

CA(i) =

∑N
j=0 δA(j)δA(j + i)∑N

j=0 δA
2(j)

(5)

where δA(i) defines the deviation of the current observable
from its mean

δA(i) = A(i)− 1

N

N∑
i=0

A(i) (6)

In our script we use ∂U/∂λ as the observable A, al-
though any of the potential energy differences ∆Ui,j can be
used as well.

The autocorrelation time τ is defined as the integral of
CA(i), and becomes noisy at long times, especially at more
than half of the simulation time. To obtain reliable estimate
of τ , the simulation time should, as a general rule of thumb,
exceed 50τ . Once the correlation time is found, a set of in-
dependent samples is built up by picking every gth (where
g = 1+2τ ) sample out of the original set. A detailed deriva-
tion can be found elsewhere [8].

3 Analysis outputs and visualization

3.1 Time-reversed convergence plots reveal
non-equilibrated regions

The trajectory snapshots to be analyzed must be sampled at
equilibrium. To get rid of any non-equilibrated region of the
trajectory its location should first be identified. Automatic
identification of non-equilibrated regions remains a major
research challenge, and in fact equilibration may have oc-
curred prior to start of data collection depending on the equi-
libration protocol. So assessment of equilibration remains a
major task for the researcher conducting free energy simula-
tions, but automated tools can provide at least some help. A
standard approach is to look at convergence of the free en-
ergy estimate as a function of simulation time, as in Fig. 5.

While convergence analysis is normally applied on data
in the order in which it was collected, the same analysis can
also be applied to time-reversed data, as in the work of Yang
et al. [41]. Yang et al. focused on automatic detection of
equilibration based on reverse cumulative averaging start-
ing with the end point of the simulation. Our approach is
slightly different, and we simply compare forward and re-
verse free energy estimates. That is, we might compare an
estimate of the free energy change based on the first 10%
of the data with an estimate based on the last 10% of the
data. This results in two ∆G estimates for each observation
time, one using data collected starting from the beginning
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Fig. 5 Free energy convergence with time. (a) Computed free energy differences (with error bars) are shown as a function of time to help assess
equilibration and convergence. Here, we show free energy estimates resulting both from the normal (“forward”) time series, and what we would
obtain if the data were analyzed in a time-reversed manner (“reverse”) using the same amount of data, as discussed in the text. If all of the data is
collected at equilibrium from the same distribution, the reverse free energy estimates ought to agree within error (at least after they are converged)
which is the case for the figure depicted on the left panel after time = 0.3. (b) Here, Gaussian noise is added to the first 40% of the data to mimic
including non-equilibrated samples. Now, the reverse set of the free energy estimates shows an initial steady plateau (indicating data which is
consistent with time) but then at later times, the estimate begins to differ from this initial estimate and converges to the wrong ∆G value. The
vertical purple line indicates the boundary between the equilibrated and non-equilibrated regions.

of the trajectory and moving forwards, and the other using
data collected starting from the end and moving backwards
(Fig. 5).

Fig. 5 and 6 show convergence of free energy estimates
obtained both from normal and time-reversed data. We in-
clude the forward estimate as this is the conventional way
to examine the data and assess convergence, but we actually
find the estimate with time-reversed data more helpful. In
a favorable case, both sets of data should converge rapidly
to within uncertainty of the final value (Fig. 5(a)). However,
consider a hypothetical case where the free energy calcula-
tions were begun before the system is at equilibrium, and the
first 40% of the data is in fact non-equilibrium. What would
we expect in this case?

In the case where a substantial amount of data at the be-
ginning of a set of simulations is not equilibrated, it is rea-
sonable to assume that any free energy estimate based on
this data would differ substantially from an estimate based
on data from the equilibrated region. Thus as we examine
free energy estimates from both normal and time-reversed
data, both will reach the same final value but from opposite
directions. We would expect that the time-reversed estimate
will be steady (within uncertainty) around some value and
then leave this value to reach a different final ∆G value as
un-equilibrated data begins being included in the free energy
estimate, while the forward estimate will exhibit some over-
all trend as the un-equilibrated data from the beginning of
the simulation starts to carry less and less weight. This also
means that forward and reverse ∆G estimates will tend to

approach the final value from opposite directions - i.e. if the
forward estimate ascends to the final value, the reverse esti-
mate will descend to it. Thus the two free energy estimates
have at least partial reflection symmetry around the line ∆G
= ∆Gfinal.

To illustrate this, we created a hypothetical case of un-
equilibrated data by taking our well-converged simulations
of 3-methylindole and adding Gaussian noise to the first
40% of the time series at all lambda values. Fig. 5(b) shows
this case where the ∆Ui,j distributions of the first 40% of
the time series have been contaminated with the Gaussian
noise centered at the original mean of each distribution but
with a standard deviation of 5 kBT units. This is a deliber-
ately artificial example, but it provides a clear demonstration
of how this analysis can be useful. This “un-equilibrated”
data at the beginning of of the timeseries changes the be-
havior of the ∆Greverse(t) function in the expected way
– it remains stable essentially within uncertainty of a con-
stant value (20 kcal/mol) over a plateau region extending to
around t = 0.6ttotal (i.e., until the reverse estimate begins to
include the first 40% of the data). After this point, the non-
equilibrated data adversely affects the reverse ∆G estimates
and both the normal and time-reversed free energy estimates
converge to the wrong ∆G value (the correct value is seen
in Fig. 5(a)). This graph then suggests a simple solution:
We can recover the correct free energy estimate if we sim-
ply recognize the region of non-equilibrated data and dis-
card it. Fig. 6 shows the convergence plot obtained via this
procedure, with the first 40% of the data removed from the
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analysis. As expected, the elimination of the non-equlibrium
region from the analysis restores the well-behaved character
of the ∆Greverse(t) function, with all data points in both
directions essentially lying within uncertainty of the final
value.

Our discussion here has assumed that all of the data, af-
ter equilibration, is collected at equilibrium from the same
distribution so that the forward and reverse free energy es-
timates agree within error after convergence. But what if
there samples are instead collected from multiple metastable
states, such as if the system undergoes a conformational
transition? One can imagine a situation where the first and
last halves of the data were sampled in two different metastable
states. This could result in a convergence plot which dis-
plays the same behaviors as in the case of unequilibrated
data. Thus, our analysis in this subsection refers to the case
of adequate sampling, where all relevant metastable states
are covered and there is sufficient number of transitions be-
tween them within each time block considered in the con-
vergence plot. When this is the case, the deviation of the
free energy estimates is entirely due to the presence of un-
equilibrated data. However, if the populations of different
states differ drastically from block to block (i.e. if the transi-
tion time between metastable states is a reasonable fraction
of the total simulation time) the technique described here
will not discriminate between discrepancies caused by un-
equilibrated data and those caused by an unconverged free
energy estimate. In other words, in the limit of adequate
sampling, this technique can help to identify unequilibrated
data. However, when sampling is not adequate, it will sim-
ply indicate a problem which can be due to slow conver-
gence/inadequate sampling of metastable states (slow tran-
sitions between states), or to unequilibrated data.

3.2 Practical recommendations for using the convergence
plot

In our view, then, the convergence plot is of great value for
detecting potentially un-equilibrated data, provided the data
to be analyzed was adequately sampled, i.e. with an ade-
quate number of transitions between metastable states and
reasonably correct populations in all time blocks. When-
ever the time-reversed free energy estimate shows an ex-
tended plateau, then after some time begins to exhibit an
overall trend in time (as in Fig. 5(b)), it suggests that the new
data being included which leads to that trend may be non-
equilibrated. Thus this should be considered a substantial
warning sign, and data collected prior this point should per-
haps be discarded. 4 In contrast, if both forward and reverse

4 Remember, the time-reversed ∆G estimates are plotted in a back-
ward manner, so that if the point in question is encountered at the
time t′ = 0.6ttotal, the portion of the data to be discarded as non-
equilibrated is from t = 0 up to t = ttotal − t′ = 0.4ttotal.
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Fig. 6 Free energy convergence with time with the first 0.4 of the time
series data skipped as non-equilibrated. Discarding the corrupted data
restores the agreement between the free energy estimates within the
reverse data set.

estimates quickly approach the same value as in Fig. 5(a),
and there is no plateau in the time-reversed data from which
the free energy estimate departs as more data is included,
then this measure suggests no concern.

3.3 The overlapping distribution method identifies regions
with poor phase-space overlap

In addition to looking for consistency between free energy
estimates from several methods discussed in Section 2.3, the
Overlapping Distribution Method (ODM) [11, 32]—introduced
by Bennett [1] under the name of the Curve-Fitting Method—
provides another useful technique for spotting trouble. It is a
helpful tool for assessing consistency, when combined with
another free energy estimator.

We start with the equation 19 from the Bennett paper [1]:

Pi+1(∆U)

Pi(∆U)
= exp(∆Gi,i+1 −∆U) (7)

where Pi+1(∆U) and Pi(∆U) are the distributions of the
potential energy differences between adjacent states obtained
when sampling at state λ = i + 1 and λ = i, respectively.
The free energy change between the states, ∆Gi,i+1, and
corresponding potential energy difference, ∆U , are written
in reduced units.

This equation can be rewritten as

gi+1(∆U)− gi(∆U) = ∆Gi,i+1 (8)

where the new distribution functions gi+1 and gi were ob-
tained by taking natural logarithm of both sides of Eq. 8 and
splitting the ∆U term

gi+1(∆U) = lnPi+1(∆U) + C∆U (9)
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Fig. 7 The overlapping distribution method and the overlap matrix. (a) When the difference∆gi,i+1 = gi+1−gi of Eq. 8 is plotted as a function
of ∆Ui,i+1, the resulting graph can be used as a consistency inspector. Here, the function should oscillate about the horizontal purple strip
(represents the BAR free energy change estimate; the width is dictated by the estimate error) over substantial range of abscissa values proving a
good overlap between the∆U distributions of two adjacent states. The overlap may not be continuous due to the discontinuity of either probability
distribution function resulting in the lack of connection between the ∆gi,i+1 points. (b) Overlap between the distributions of potential energy
differences is essential for accurate free energy calculations and can be quantified by computing the overlap matrix O discussed in the text and
visualized here. Its elements Oij are the probabilities of observing a sample from state i (ith row) in state j (jth column). According to the figure,
the probability of observing, for example, a sample collected from state 2 having come from a simulation state 3 is 0.14. As discussed in the text,
for the terminal states (here states 0 and 10) to be interconnected, the overlap matrix should be at least tridiagonal.

7 6 5 4
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0−1

8 7 6 5 4
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

1−2

8 7 6 5 4 3
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

2−3

0 2 4 6
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

3−4

8 6 4 2
1.5

2.0

2.5

3.0

3.5

4−6

0 2 4 6
6
5
4
3
2
1
0

6−7

0 2 4 6
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5

7−8

0.5 1.0 1.5
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5

8−9

0.0 0.5 1.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

9−10

∆Ui,i +1 (reduced units)

∆
g i

+
1
,i

(r
ed

u
ce

d
u
n
it
s)

(a)

.59

.28

.05

.36

.47

.27

.03

.01

.05

.22

.49

.23

.05

.01

.14

.56

.09

.01

.06

.19

.82

.03

.03

.77

.20

.19

.55

.15

.08

.03

.16

.33

.30

.24

.07

.27

.29

.29

.03

.24

.33

.43

0

0

1

1

2

2

3

3

4

4

6

6

7

7

8

8

9

9

10

10

λ

(b)

Fig. 8 The overlapping distribution method and the overlap matrix for the case when the lambda state 5 is left out from the analysis. (a) Excluding
lambda state 5 from the analysis results in the deterioration of the phase space overlap between states 4 and 6 which are now neighboring states.
The ∆gi,i+1 function is only partially continuous and does not exhibit oscillations or saw-like behavior over a substantial interval of the ∆Ui,i+1

values as it does in Fig. 7(a). (b) Overlap matrix elements associated with the lambda states in question are significantly smaller than any other
elements. The probability of finding a microstate sampled from state 4 in state 6 is 0.03; so is the probability of finding a microstate sampled from
state 6 in state 4. This magnitude for the phase space overlap seems to be still tolerable in this particular case, as it does not affect the free energy
estimate other than by increasing the estimated uncertainty.
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gi(∆U) = lnPi(∆U)− (1− C)∆U (10)

where C is an arbitrary constant.
If the difference ∆gi,i+1 = gi+1 − gi is plotted versus

∆U , there should be a range of the ∆U values over which
∆gi,i+1 oscillates about the free energy estimate obtained
by a standard technique such as BAR, provided there is an
overlap between the two distributions and the sampling was
sufficient.

This analysis, shown in Fig. 7(a), means that we can
graphically inspect the difference ∆gi,i+1 over a range of
the ∆U values and it should appear relatively constant. If
not, it is a substantial warning sign. All the subplots of Fig. 7(a)
exhibit good behavior: the ∆gi,i+1 function oscillates about
the ∆GBAR estimate (shown in purple, with a width cor-
responding to the uncertainty in ∆GBAR). In contrast, the
∆gi,i+1 function depicted on the subplot 4-6 of Fig. 8(a)
behaves abnormally. Figure 8 was obtained by processing
exactly the same data but with the lambda state 5 left out
from the analysis. This resulted in the deterioration of the
distribution overlap between states 4 and 6, which the ODM
helps highlight: the ∆gi,i+1 function is not continuous and
does not exhibit saw-like behavior over a substantial inter-
val of the ∆Ui,i−1 values as it does in Fig. 7(a). This tells
us that the estimated free energy change for the 4-6 pair of
states is getting less reliable, which is a problem.

To further highlight the problem, we exacerbate the over-
lap by throwing away yet another intermediate state, lambda
state 6, from the analysis and re-examine the ∆gi,i+1 func-
tion (Fig. 10). This time, there is only one point on the graph
for subplot 4-6, and the point is far from the unusually wide
(because of the greater uncertainty) ∆GBAR estimate, indi-
cating clear and severe problems with overlap in this case.

In general, low overlap does not necessarily make the
∆G estimate completely wrong or substantially untrustwor-
thy. However, it does substantially increase the correspond-
ing variance, as only few samples contribute to the free en-
ergy estimate. Users themselves must decide what level of
uncertainty in the free energy estimate can be tolerated, and
whether the poor efficiency identified by this method might
suggest restructuring the spacing or number of intermediate
states before collecting additional data.

Figure 9 shows the free energies obtained from the anal-
ysis with different states omitted. The free energy change
estimated between states 4 and 7 through the intermediate
states 5 and 6 (-0.028 ± 0.332 kJ/mol) and 6 only (0.601 ±
0.651 kJ/mol) are within statistical noise. However, the 4-7
∆G estimate without any intermediate states yields 3.986
± 2.512 kJ/mol which is almost two standard deviations
away from the original value of -0.028 ± 0.332 kJ/mol.On
the case of extremely poor overlap (as in Fig. 10), the FEP-
based methods tend to underestimate the variance, making
free energy estimates untrustworthy.

Despite its ability to identify lambda regions with poor
and good overlap, the overlapping distribution remains a
qualitative method. If one needs to translate “poor overlap”
and “good overlap” into concrete numbers, the overlap ma-
trix, discussed in the next subsection, should be employed.

3.4 The overlap matrix is a quantitative estimator of the
phase-space overlap

The overlap matrix is a helpful tool in finding the magnitude
of the phase space overlap and we recommend using it as a
consistency check whenever the free energy estimate relies
on the overlap, as in the case of the FEP-based methods.

If we define the weight of each of the N samples xn
(collected from all K states) in the ith lambda state as:

Wn,i(xn) =
eβGi−βUi(xn)∑K

k=1Nke
βGk−βUk(xn)

(11)

then the covariance matrix Θ of the vector of reduced free
energies βG can be written (From Eq. D6 of Ref. [35]) as

Θ =
(
O−1 − I

)+
N−1 (12)

where + is the Moore-Penrose pseudoinverse, N is a diag-
onal matrix with its elements Nii the number of samples
collected in state i, and O is the overlap matrix, defined as:

O = WTWN (13)

We note that eβGi−βUi(xn) in eq (11) is the probability pi(xn)
of sample xn occuring when simulating state i. The unnor-
malized probability of sample xn is the Boltzmann weight
e−βUi(xn), and since e−βGi =

∫
e−βUi(x)dx, e−βGi is the

normalizing constant.
The overlap matrix is a K ×K matrix with entries:

Oij =

N∑
n=1

Nie
βGi−βUi(xn)∑K

k=1Nke
βGk−βUk(xn)

eβGj−βUj(xn)∑L
l=1Nle

βGl−βUl(xn)

=

N∑
n=1

Nipi(xn)∑K
k=1Nkpk(xn)

pj(xn)∑L
l=1Nlpl(xn)

(14)

The N samples were collected with N1 samples from the
p1(x) distribution, N2 samples from the p2(x) distribution,
and so forth. This combination of theK distributions is known
as a mixture distribution, and can be written mathematically
as:

pmix(x) =

K∑
k=1

Nk
Ntot

pk(x) =
1

Ntot

K∑
l=1

Nkpk(xn)

where Ntot =
∑K
k=1Nk.

We next note that the Monte Carlo estimate of the in-
tegral

∫
A(x)p(x)dx, where A is some function of x, is

1
N

∑N
n=1A(xn), where the samples xn are drawn from the
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No state skipped Skipping state 5 Skipping states 5 and 6

∆G4−5 = 3.439 ± 0.187
∆G5−6 = 0.504 ± 0.193 ∆G4−6 = 4.572 ± 0.621
∆G6−7 = -3.971 ± 0.196 ∆G6−7 = -3.971 ± 0.196 ∆G4−7 = 3.986 ± 2.512

∆G4−7 = -0.028 ± 0.332 ∆G4−7 = 0.601 ± 0.651 ∆G4−7 = 3.986 ± 2.512

Fig. 9 The free energy estimates (in kJ/mol) obtained from the analysis of all lambda states (left), with the lambda state 5 left out from the
analysis (center), and with the lambda states 5 and 6 left out from the analysis (right). While the excluding of state 5 results in the increasing of
the uncertainty for the ∆G4−7 estimate, the excluding of states 5 and 6 makes the ∆G4−7 estimate untrustworthy.
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Fig. 10 The overlapping distribution method and the overlap matrix for the case when two lambda states in a row (5 and 6) are left out from the
analysis. (a) Excluding lambda states 5 and 6 from the analysis results in the significant deterioration of the phase space overlap between states
4 and 7 which are now neighboring states. There is not even a hint of oscillation or saw-like behavior of the ∆gi,i+1 function. (b) The matrix
elements associated with the lambda states in question are almost negligible. The probability of finding a microstate sampled from state 4 in state 7
is 0.01; so is the probability of finding a microstate sampled from state 7 in state 4. Such a low phase space overlap makes the free energy estimate
∆G4−7 untrustworthy

probability distribution p(x). This means that each element
of the overlap matrix can be seen as a Monte Carlo estimate
of the integral:

Oij =

∫
Nipi(x)∑K
k=1Nkpk(x)

(
pj(x)∑L

l=1Nlpl(x)

)
L∑
l=1

Nlpl(x)dx

=

∫
Nipi(x)∑K
k=1Nkpk(x)

pj(x)dx

=

〈
Nipi(x)∑K
k=1Nkpk(x)

〉
j

where the averages are over the probability distribution of
samples in state j. Oij can therefore be interpreted as the
average probability of a sample generated in state j being
observed in the ith state. This average is computed over sam-
ples collected from all of the states, not just the samples from
state j. We can easily see that we must have

∑
iOij = 1.

Because Oij is a stochastic (or Markov) matrix, its eigen-
values are all real and positive, and the largest is 1. In fact,
since it is a diagonal matrix (N ) times a symmetric matrix
(W TW ), then all the eigenvalues are real and positive.

We can then write (using the standard notation for the
eigenvalue decomposition):

Θ =
(
O−1 − I

)+
N−1

=
(
(QΛQ−1)−1 − I

)+
N−1

= (QΛ−1Q−1 −QQ−1)+N−1

=
(
Q(Λ−1 − I)Q−1

)+
N−1

= Q(Λ−1 − I)+Q−1N−1

In this case, because it is a diagonal matrix, we can give
a simple formula for the pseudoinverse; (Λ−1− I)+ is a di-
agonal matrix with one zero diagonal entry (corresponding
to the largest eigenvalue, which is 1), and the other entries
corresponding to the ith eigenvalue λi being λi/(1 − λi).
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The uncertainty in any free energy difference between states
i and j is Θij = Θii + Θjj − 2Θij which makes it dif-
ficult to write explicit formulas of the variance in terms of
the overlap matrix. In general, uncertainties in free energy
differences will be larger when the eigenvalues λi/(1− λi)
are large, which will occur when the eigenvalues are close to
1. Because of the factor of N−1, any variance can be made
arbitrarily low with enough samples. Clearly, the most effi-
cient choices of λ points to simulate will be ones leading to
smaller eigenvalues in the overlap matrix.

When will these eigenvalues be close to one? Again, it
is difficult to completely generalize, but for stochastic ma-
trices, i.e. matrices with the form of O with rows summing
to 1, the smallest K − 1 eigenvalues approach one when the
matrices can be nearly decomposed into independent block
matrices. The absence of eigenvalues close to one indicates
that the matrix is more connected.

3.5 Practical recommendations for using the overlap matrix

We cross-checked the overlap matrix with the overlapping
distribution method (Fig. 7, 8, and 10) and arrived at sev-
eral recommendations for trustworthy free energy calcula-
tions. First, trustworthy results should in general have at
least a tridiagonal overlap matrix - that is, all pairs of ad-
jacent states should have substantial overlap, and no ele-
ment should be zero in the main diagonal and the first di-
agonals above and below the main one. Second, these non-
zero elements should be appreciably different from zero. In
our experience, with enough samples, values as low as 0.03
(Fig. 8) seems to be tolerable to yield a reliable free energy
estimate (as long as the resulting error is sufficiently low),
though obviously the number of samples required for an ac-
curate estimate increases with decreasing overlap. Anything
below that number should serve as a caution sign as the FEP-
based methods tend to underestimate the variance when the
phase space overlap is that low; in this case, not only will
the estimated variance increase but the free energy estimate
itself will likely be substantially incorrect, perhaps by far
more than the estimated variance.

4 Alchemical-analysis.py: A sample analysis tool
implementing these protocols

We provide a Python tool, alchemical-analysis.py, which im-
plements our recommendations and generates all the plots
described above. This tool is versatile in handling several
energy file formats from different versions of GROMACS
varying in the number of the potential energy differences
between the states∆Uk,j , as well as SIRE and AMBER out-
put files. It handles cases when all the potential energy dif-
ferences are present as well as those with only differences

between the adjacent states ∆Uk,k±1, though in the latter
scenario MBAR free energy estimates cannot be computed.

The data file parser is separated from the analysis proper
into a subroutine which makes the tool indifferent to the ori-
gin of the data, as long as it contains the quantities the free
energy estimators rely on, i.e. ∂U/∂λ and/or ∆Ui,j . Thus,
our tool can easily be adapted to handle data from other sim-
ulation packages. As of now, the tool has file parser subrou-
tines for and can analyze, apart from GROMACS dhdl.xvg
files, the ∂U/∂λ data files generated by SIRE and AMBER.

At minimum, alchemical-analysis.py plots and outputs
the free energy differences evaluated for each pair of ad-
jacent states for all methods. The plot (Fig. 4) provides a
way of visualizing the results and assisting in locating any
λ regions where the free energy changes rapidly. At mini-
mum, two figures are produced, one depicting the bar plot
showing the ∆G estimates (differentiated in colors) for all
methods (Figure 4(a)), and the other showing free energy
differences estimated with the TI methods depicted as an
area under the interpolating curve joining the 〈∂U∂λ 〉λ points
(Figure 4(b)). All the plots are created by the matplotlib soft-
ware [15], which is a standard plotting package delivered
alongside Python proper in scientific Python distributions
like, for example, Enthought Canopy (http://enthought.com)
and Anaconda (https://store.continuum.io/cshop/anaconda).

4.1 Tool execution and usage

Our tool is executed by the command
python alchemical-analysis.py [options]

with the list of options provided below. In general, plots and
options are as described above, except when they relate to
GROMACS in particular, in which case additional informa-
tion is provided below.

Options include:

– Simulation temperature
– Directory with the input data
– Datafile prefix and suffix
– Time prior to which the data is to be discarded
– Names of the free energy estimators to be used
– The units the free energies are to be reported in
– Number of decimal places the free energies are to be

reported with
– Graphical functionality (discussed above):

– The ∆Gi,i+1 vs. λi,i+1 bar plot as in Fig. 4(a)
– The 〈∂U∂λ 〉 vs. λ plot as in Fig. 4(b)
– The ∆G vs. time plot, as in Fig. 5
– The overlap matrix calculation, as in Fig. 7
– The consistency check based on the overlap distribu-

tion method, as in Fig. 10

The script outputs a text file, results.txt, with a ta-
ble of free energy differences computed by means of various
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methods for each pair of adjacent states, as well as over-
all totals. This file also shows the ∆G breakdown into its
components discussed in Section 2.4. Full precision data is
dumped to a Python pickle file, results.pickle, where
it is stored in a form a class with multiple instances whose
names are self-explanatory.

5 Conclusion

Free energy calculations are still complicated and largely
conducted only by experts, in part because even their analy-
sis typically requires substantial expertise. Here we have re-
viewed a variety of best practices for analysis, and provide
a prototype Python tool implementing these best practices.

Here, we highlight ten free energy analysis methods (two
based on TI and eight more based on FEP, including MBAR).
Running the full suite of analysis techniques provides a valu-
able consistency check and can help highlight convergence
errors, sampling problems, and other issues. We also pre-
sented a number of useful ways to graphically evaluate free
energy data (and provided examples generated by alchemical-
analysis.py), including:

1. a bar plot of the free energy differences evaluated for
each pair of adjacent λ states

2. thermodynamic integration as a plot of 〈∂U∂λ 〉 vs. λ
3. free energy estimates as a function of the simulation time

in both the forward and reverse directions
4. the overlapping distribution method and the phase space

overlap matrix

We believe analysis of calculations in the way highlighted
here will provide researchers with a better assessment of the
precision and convergence of their calculations, and aid non-
experts in getting a better handle on how to successfully un-
derstand their results and troubleshoot problems.
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valenko, A., Lee, T.S., LeGrand, S., Luchko, T., Luo,
R., Madej, B., Merz, K.M., Paesani, F., Roe, D.R., Roit-
berg, A., Sagui, C., Salomon-Ferrer, R., Seabra, G.,
Simmerling, C.L., Smith, W., Swails, J., Walker, R.C.,
Wang, J., Wolf, R.M., Wu, X., Kollman, P.A.: Amber 14
(2014)

7. Chipot, C.: Frontiers in free-energy calculations of bi-
ological systems. Wiley Interdisciplinary Reviews-
Computational Molecular Science 4(1), 71–89 (2014)

8. Chodera, J.D., Swope, W.C., Pitera, J.W., Seok, C., Dill,
K.A.: Use of the Weighted Histogram Analysis Method
for the Analysis of Simulated and Parallel Tempering
Simulations. J. Chem. Theory Comput. 3(1), 26–41
(2007)

9. Deng, Y., Roux, B.: Computations of Standard Binding
Free Energies with Molecular Dynamics Simulations. J.
Phys. Chem. B 113(8), 2234–2246 (2009)

10. Flyvbjerg, H., Petersen, H.G.: Error estimates on aver-
ages of correlated data. J Chem Phys 91(1), 461 (1989)

11. Frenkel, D., Smit, B.: Understanding Molecular Sim-
ulation. From Algorithms to Applications. Academic
Press (2001)

12. Gapsys, V., Seeliger, D., de Groot, B.L.: New Soft-Core
Potential Function for Molecular Dynamics Based Al-
chemical Free Energy Calculations. J. Chem. Theory
Comput. 8(7), 2373–2382 (2012)



Free energy analysis 15

13. Hummer, G., Pratt, L.R., Garcı́a, A.E.: Multistate Gaus-
sian Model for Electrostatic Solvation Free Energies. J.
Am. Chem. Soc. 119(36), 8523–8527 (1997)

14. Hummer, G., Pratt, L.R., Garcı́a, A.E., Berne, B.J.,
Rick, S.W.: Electrostatic Potentials and Free Energies
of Solvation of Polar and Charged Molecules. J. Phys.
Chem. B 101(16), 3017–3020 (1997)

15. Hunter, J.D.: Matplotlib: A 2D graphics environment.
Computing in Science & Engineering 9(3), 90–95
(2007)

16. Kenneth M Merz, J., Ringe, D., Reynolds, C.H.: Drug
Design. Structure- and Ligand-Based Approaches.
Cambridge University Press (2010)

17. Kirkwood, J.G.: Statistical mechanics of fluid mixtures.
J Chem Phys 3(5), 300–313 (1935)

18. Klimovich, P.V., Mobley, D.L.: Predicting hydration
free energies using all-atom molecular dynamics simu-
lations and multiple starting conformations. J. Comput.
Aided Mol. Des. 24(4), 307–316 (2010)

19. Kumar, S., Bouzida, D., Swendsen, R.H., Koll-
man, P.A., Rosenberg, J.M.: The Weighted Histogram
Analysis Method for Free-Energy Calculations on
Biomolecules .1. the Method. J Comput Chem 13(8),
1011–1021 (1992)

20. Lu, H., Schulten, K.: Steered molecular dynamics simu-
lations of force-induced protein domain unfolding. Pro-
teins 35(4), 453–463 (1999)

21. Lyubartsev, A.P., Laaksonen, A., Vorontsov-
Velyaminov, P.N.: Free energy calculations for
Lennard-Jones systems and water using the expanded
ensemble method A Monte Carlo and molecular
dynamics simulation study. Mol Phys 82(3), 455–471
(1994)

22. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V.,
Vorontsov-Velyaminov, P.N.: New approach to Monte
Carlo calculation of the free energy: Method of ex-
panded ensembles. J Chem Phys 96(3), 1776–1783
(1992)

23. Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M.,
Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Me-
chanical unfolding intermediates in titin modules. Na-
ture 402(6757), 100–103 (1999)

24. Martı́nez-Veracoechea, F.J., Escobedo, F.A.: Variance
minimization of free energy estimates from optimized
expanded ensembles. J. Phys. Chem. B 112(27), 8120–
8128 (2008)

25. Mobley, D.L., Bayly, C.I., Cooper, M.D., Shirts, M.R.,
Dill, K.A.: Small Molecule Hydration Free Energies in
Explicit Solvent: An Extensive Test of Fixed-Charge
Atomistic Simulations. J. Chem. Theory Comput. 5(2),
350–358 (2009)

26. Monroe, J.I., Shirts, M.R.: Converging free energies of
binding in cucurbit[7]uril and octa-acid host–guest sys-

tems from SAMPL4 using expanded ensemble simula-
tions. J. Comput. Aided Mol. Des. pp. 1–15 (2014)

27. Naden, L.N., Shirts, M.R.: A Linear Basis Function
Approach to Efficient Alchemical Free Energy Calcu-
lations. 2. Inserting and Deleting Charged Molecules.
Submitted

28. Paliwal, H., Shirts, M.R.: A Benchmark Test Set for Al-
chemical Free Energy Transformations and Its Use to
Quantify Error in Common Free Energy Methods. J.
Chem. Theory Comput. 7(12), 4115–4134 (2011)

29. Paluch, A.S., Mobley, D.L., Maginn, E.J.: Small
Molecule Solvation Free Energy: Enhanced Conforma-
tional Sampling Using Expanded Ensemble Molecular
Dynamics Simulation. J. Chem. Theory Comput. 7(9),
2910–2918 (2011)

30. Pham, T.T., Shirts, M.R.: Identifying low variance path-
ways for free energy calculations of molecular transfor-
mations in solution phase. J Chem Phys 135(3), 034,114
(2011)

31. Pitera, J.W., van Gunsteren, W.F.: A Comparison of
Non-Bonded Scaling Approaches for Free Energy Cal-
culations. Molecular Simulation 28(1-2), 45–65 (2002)

32. Pohorille, A., Jarzynski, C., Chipot, C.: Good Practices
in Free-Energy Calculations. J. Phys. Chem. B 114(32),
10,235–10,253 (2010)

33. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar,
P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson,
P.M., van der Spoel, D., Hess, B., Lindahl, E.: GRO-
MACS 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics
29(7), 845–854 (2013)

34. de Ruiter, A., Boresch, S., Oostenbrink, C.: Comparison
of thermodynamic integration and Bennett acceptance
ratio for calculating relative protein-ligand binding free
energies. J Comput Chem 34(12), 1024–1034 (2013)

35. Shirts, M.R., Chodera, J.D.: Statistically optimal analy-
sis of samples from multiple equilibrium states. J Chem
Phys 129(12), 124,105 (2008)

36. Shirts, M.R., Pitera, J.W., Swope, W.C., Pande, V.S.:
Extremely precise free energy calculations of amino
acid side chain analogs: Comparison of common molec-
ular mechanics force fields for proteins. J Chem Phys
119(11), 5740–5761 (2003)

37. Shivakumar, D., Williams, J., Wu, Y., Damm, W.: Pre-
diction of absolute solvation free energies using molec-
ular dynamics free energy perturbation and the OPLS
force field. J. Chem. Theory Comput. 6(5), 1509–1519
(2010)

38. Sotomayor, M., Corey, D.P., Schulten, K.: In search of
the hair-cell gating spring elastic properties of ankyrin
and cadherin repeats. Structure 13(4), 669–682 (2005)

39. Steinbrecher, T., Mobley, D.L., Case, D.A.: Nonlinear
scaling schemes for Lennard-Jones interactions in free



16 Klimovich et al.

energy calculations. J Chem Phys 127(21), 214,108
(2007)

40. Straatsma, T.P., Berendsen, H.J.C., Postma, J.P.M.: Free
energy of hydrophobic hydration: A molecular dynam-
ics study of noble gases in water. J Chem Phys 85(11),
6720–6727 (1986)

41. Yang, W., Bitetti-Putzer, R., Karplus, M.: Free energy
simulations: use of reverse cumulative averaging to de-
termine the equilibrated region and the time required for
convergence. J Chem Phys 120(6), 2618–2628 (2004)

42. Zacharias, M., Straatsma, T.P., McCammon, J.A.:
Separation-shifted scaling, a new scaling method for
Lennard-Jones interactions in thermodynamic integra-
tion. J Chem Phys 100(12), 9025 (1994)

43. Zhao, G., Perilla, J.R., Yufenyuy, E.L., Meng, X., Chen,
B., Ning, J., Ahn, J., Gronenborn, A.M., Schulten, K.,
Aiken, C., Zhang, P.: Mature HIV-1 capsid structure by
cryo-electron microscopy and all-atom molecular dy-
namics. Nature 497(7451), 643–646 (2013)

44. Zwanzig, R.W.: High-Temperature Equation of State by
a Perturbation Method. I. Nonpolar Gases. J Chem Phys
22(8), 1420–1426 (1954)


