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THE METHOD OF MOMENTS IN QUANTUM MECHANICS

. Francis R. Halpérn
Radiation Laboratory
University of California
Berkeley, California

April 10, 1957
 ABSTRACT

An apprdximatidﬁ pechnique for quantum mechanical problems Sased
on the expectation valuéa of the powers of the Hamiltonian is deveioped.
The matheﬁatical,fouhdations on.which tﬁis approaéh is based ére the
methpd of moments employed in probability theory, and the fheory of
orthogénal polynomials. In ﬁractice this mgthod constitutes an aitension
of the Rayleigh-Ritz principle and gives a systematic method"of 1m§roving ‘

the trial function.
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Francis R. Halpern**
Radiation Laborétony

University of California
Berkeley, California

April 10, 1957

I. INTRODUCTION

The genéral problem in quéntum meéhanics is the diagonalization
of ﬁhé Hémiltonian operator. In the method of moments the procedure is to
- assume that an arbitrarily chosen state vector is expanded in the complete
set, the members §f which are the eigenfﬁnctioné of the Hamiltonian. The
problem is then to determine theAunknown eigenfunctions ocourring in this
expans;on, their‘eigenvalues, and the associated expansion coefficients.
.To achieve this end‘a aﬁep—by—step method is prescribed that will remove
all but one term in the expﬁnsion. | -

It is not necessary in the course of thiavcaléulation to assume
‘ahy separation of thé‘Hamiltonian into verturbed and unperturbed portions.
It will frequently be convenient, howevef,-from thevcomputational point.
of view, to take the initial.veétor to be an eigenfunction of a portion of
ihe Hamiltonian; The basic numerical éuantities that enter into a
caloulation are the.matrix elements of the powers of the Hamiltonian in
the chosen initial étate, Because tﬁese quantities are simple to calculate

it is feasible to carry the calculations to quita higﬁ orderé.

#* _ ' e
Based on a dissertation submitted in partial fulfillment of the

requirements for the Ph.D. degrse at the University of California.
- - . | o
This work was performed under the auspices of the U.S. &tomic Energy

Commission. - B
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II. DESCRIPTION OF THE METHOD
The system to be treated is described by a Hamiltonian H. The
system is assumed to be enélosed in a box in order to assure that the
state vectors occurring are normalizable to unity. The nﬁrmalized
eigenfunctions of the Hamiltonian are _Vf(Ei,‘aj); The a's are the
éigenvalues of additional operators A that 6ommute with the Hamiltonian
and that are necessary to completely‘describe the states.. Thg vV‘a

satisfy the equations

H\{r_(Ei, aJ) E, Y(Ei,'aj) >
A.'\ff(Ei: 33) 433 V(Ei’ 33) .

The 's and the E;'s are of course unknown, although £hé a,'s
i 3

will in general be known. To prbceed it is necessary to choose a trial

function @. It is most convenient if @ is an eigenfunction of the

auxiliary variables A. In this event the expansion of # in the set of

y%'é is

g = Zo, Ve . | )

‘The dependence of the 'Yf's on the a's has been dropped, as ¢ 1is an

eigenfunction of the A's and only one set of a's can appear for each E.

It is convenient to introduce the function

| L
EYORE %.J%! (2)

-

associated with this expansion. .:F¢(E) is a nondecreasing function of
1

bounded variation that vanishes for sufficiently small E. The first property
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holds because F¢(E) changes only by amounts ‘\criﬁ at the points E;.
The second property is a result of taking @ to be normalizable. The

eigenvalues E, of H describe the allowable energy levels of a physieal

i
' system, therefore there must be a emallest one and hence a smallest pbint
of increase for F¢(E). | |

The function F¢(E) contains essentially all the info:mation about
the physical system. The eigenvalues are immediately evident as boints of
discontinuity of P and the eigenfunction ﬁhat belongs to Ek' is given

by the fofmula

Yim) = LT; (H - E)F .

The matrix element of any function of H 4in the state § 4is given by the

expression

@ o] B =

. '~

(_o(m) dF¢(E) . ‘_ (3)

Thus the quantum mechanical problem is equivalent to determining the
function P.

The function F is a probéﬁility distribufion function,Aand there’ are
procédures for the détermihation of such a function. The method to be
‘employed is called the method of moments, and consists in developiné aﬁ
appfoximating sequence of functions F(n)¢(E) that iﬁ is hoped will
cohverge to F¢(E).. The éuantities employed to comnute ﬁn;(E) are the

moments _Hn of the distribution F¢(E). These are defined by

Hp, :' (¢ } Hifj g) = QS B dF¢(E) . (&)
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‘There is a difficulty in principle that should ﬁe noted at this point.
The moments may not 'Qniquely determine the distribution. A very simple
way in which this may occur is if some of them are infinite. |

The requirement on the appéoximating function F(n) (E) is that
it be a step function with n points of increase such that its firét 2n".
moments agree with those of ¢(E) The nth appro?i?ating fu?c;ion}depe?ds
n n n

on 2n numbers; the n values of the argument l . E}z R
n
at which F(n)¢(E) is discontinuous and the n real positive numbera
(n) (n)
b, bz(-n y e bn , which are the magnitudes of the discontimities.

These numbers must satisfy the 2n relations
. (o Uk é(n)k'n)
L F SE ary(E) - SE dF¢ (E) =D )

(k =0, 1, 2, ....2n-1)

It has been shown that the following prescription gives the unique function

satisfying these requirementa.l The polynomial Pn(E) defined by

1, B, B, ... E
Hoo  Hy, Hp H,
B Hp My H
LR I o
. . . . i
Hn—l . . e HZn—l '

is constructed. The polynomial Pn(E) has n real distinct roots.

These are the correct values for thelzié(r”'s. It is now possible to
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solve the n linear equations
n_ (k  (n)
H = 22 61 b, - (k= 0,1, 2, ..., n-1)

i=1

for the b(n)'s.

D : (n)
The anproximating function F¢ (E) 4is now completely determined,

' n
It has the following useful properties. All the éi( ) lie between the

(n)

greatest and least points of increase of F¢(E), or the smallest é%_
' (n)

is an upper bound for the lowest eigenvalue of H and the largest éﬁ
is a lower bound for the largest eigenvalue. Between any two points of
increase of F¢ (E) there is atleast one point of increase of F¢(E), and

at each point of increase € " the inequality

i

(n) _ (n) (n)

R (€gn) = BLe ) € E V(e )

_holds. Thus there is an eigenvalue of H between any successive & 's.
These remarks also apply if F¢(E) is replaced by F¢( (E) for n &« N,

)
The lowest-order approximation is given by F¢(1 (E). This function

-

ﬁas a single point of increase given by the root of the equation

Pl(E) = = 0 .

This solution is



UCRL-3721 Rev,

and b(l)

vis Just Ho.
The inequality stated above is to this order the Rayleigh-Ritz
principle. That is, the smallest eigenvalue of H, Emin satisfies the

inequality

[}

A slightly different approach is also possible. From the set of

~functions 1, E, E, ..., it is possible by the usual Schmidt

orthogonalization procedure to construct a set of polynoﬁials pn(E) with
. o \

" the properties

nn'

.j’pn(E) P (B)dF(E) = §

Except for a normalization constant we have P,z P and the determinental

n
form isnjust a convenient method of writing the Schmidt proéess. :M§st of
the reqults quoted above then follow from the properties of fhe roots of
sets of orthogonal polynomials and their associated distribution.2 ,

. If all that is desired is an estimaﬁe of the eigenvaluqs.aﬁd their
-spacing, it is sufficient t§ calculate the roots of the deﬁerminants..'lf
wave-functiona are desired, then appropriate polynomiais in the Hamiltonian
of the form gﬂr(ﬂ - éi(n)) are used to operate on the initial»vectbr.

‘ | Iinis possible to construct. n vactoré )V(n)
The ”})(9) are given by
yzk(“) Gl w- ™

7k

5
[

" 4n this form. .
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The vectors ,\}[/-(n) are oi'thogona.l,

@ () () _ (n)
(llfk H ’\//k' ) - Skk'(»vk ) y/k )

This result may be proved by expressing the matrix element iri'terms of the

~ original vector @:

@ e -x(n>(" |
- . ~ - R H - - - .
(% N %ﬂ" ) = (¢‘177Z,k "o & f‘) Ek!H .61 | 9
.' The m'operties of the. energy-—distribution function F¢(E) are employed
‘ 't.o write this expression as an integral, ‘ '
{(*771@ . Ei(n))

(n)

(Yk 5 | .)z/k' ._

()
(E - € )4F _(E) = 0
1;5.1(,};' R i ¢( '

) ;g'ﬁ ®- & _as’,,,(ﬁ)f}‘o_ |

itk

KE K
k=k'

where the usual pi-operties of orthogonal functions' héve' been uéed A

A similar argument is used to compute the expectation value of

H 4in the state }é/k(n)

(¢ j i}&k

T G - ef%z(u - € €y arE)

7 - €S 7'7”'(n - 4™ / ¢)

H

("%. H y/k)

i#£K

® (o ¢ (M2
€, \§,Z/(H —f € ") dry(€)

(. Vi ')Uk
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(n)

To test the adequacy of the state }p& as approximations to the

eigenfunctions of H, the quantity <™ defined by
2 ]
ek 3
(\f/k’ Vk)

n t .
.is introduced. Here. »G‘L is always nonnegative and vanishes only for

(n)

S, = .((iyk, Y -

. an eigenfunction.
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III. AN EXAMPLE AND CONCLUSIONS
A simple example of this technique is the following application
té the problem of neutral scalar mesons interactiﬁg_with static nucleons.
The notation is. the same as tﬁat by Wentzel.3 A cutoff K 1s employed,
since the moments are divergent. The first four momenﬁs‘of H 4in the

state ¢°(ak ¢° - 0) are

Hy = 1,
Hy -0 , |
W, = [e/m?] [‘.‘;"E - /‘_; 105(“;:"’9 }
Hy = "ﬁ‘é £ .
(277)° 3

In thé linear Rayléigh-Ritz approximation there is no change from
the noninteracting system. The qﬁadratic approximation is determined By

solving the equation

1 , E g2
. K.+ 1
1 0 __5.2.:.2. éxu}K - log : Kj.
(2m e
2 . 2. [Ktey ' 23
0 £ [% Ko —//*'],og(\~ A‘é):] , : ._1175‘ E
(2m)° / C@ent 3
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. For large K, where the logarithmic terms and the difference between K and

-11-

The eolution of this equation is

(21,

E=- (2m) 3"_ He 3 (()[ /

K+ w
2 __g___ ﬁxw -/u log K

(2r)? /-

), can be neglected, this becomes

K
K [1i(1 +%

3

(27f) ) ' .

The negative root diVerges linearly to -<0 Jjust as the correct value of

the self-energy does, The constant 1- <1+ 3 & is smaller than

the corrsct value,

The advantages of thisrmethod are that it is independent of the
magnitude of the interactions, and the basic duantities are’relatively‘
,jeimple to comﬁute. The chief shortcoming is the require@ent that a’
sufficiently good initial state @  be chosen so that all the moments are
finite. A detailed calculation of the phonon-nolaron problem is being

. carried out and will be published shortly.

s e i Ced
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J. V. Uspensky, An Introduction to Mathematical Probability (McGraw-Hill,
New York, 1937). The theorem stated above is a trivial generalization of
those proved in this book, References are given to the original work

here and in Reference 2.

G. Szego, Orthogonal Polynomials, American Math. Soc. Colloquium

Publications, Vol. 23.

G. Wentzel, Quantum Theory of Fields (Interscience, New York, 1949).





