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Abstract

To what extent can the similarity structure of categories be
inferred based on paradigmatic vs syntagmatic information?
We explore this question in two studies that aim to capture
paradigmatic information directly: first by having participants
generate near-neighbors to exemplars from 15 basic categories,
and second by having them partially rank the most similar ex-
emplars. After constructing neighborhood graphs of the items
in each category, we derived a local measure (based on di-
rect neighbors) and a global measure (including indirect paths
as well) of paradigmatic information. Both measures predict
independently-obtained human pairwise similarities for each
category, but incorporating indirect information substantially
improves this prediction. In a third study, we contrast these
measures with syntagmatic information obtained from a vast se-
mantic network derived from 3 million judgments. The paradig-
matic graphs are better predictors of similarity despite only
encoding a fraction of these data. Broad implications for word
learning and meaning are discussed.
Keywords: similarity; semantic networks; near neighbors;
word associations; mental lexicon

Introduction
When we encounter new words, they usually do not come
conveniently attached to definitions. Rather, we must some-
how infer the meaning based on a small collection of cues.
When the new words are learned through reading, the number
of cues drops even more. Despite the difficulty of the task,
people excel at solving this inductive problem and learning
the meaning of words through text based on only a few exam-
ples. For example, people can infer geographical locations or
social structures based on text (Louwerse & Connell, 2011),
and even congenitally blind people have representations of
concrete, visible entities that in many ways match those of
sighted people (Lenci, Baroni, Cazzolli, & Marotta, 2013).
What kind of information are they using? As a first step, what
kind of information is most useful?

In considering this question, imagine that while perusing
an interesting novel you see the new word capybara. The text
provides some cues as to its meaning. You might notice its
syntagmatic relationships – the words that co-occur together
in close temporal proximity but have a syntactically distinct
role. In this case, the sentence is “the capybara lives in the
savannah”, so lives and savannah are syntagmatic relations.
Conversely, it also has paradigmatic relationships, which are
related (e.g., in the same category as) and fulfill the same
(syntactic) role in the sentence (e.g., mouse or guinea pig). 1

1Although less typical, some paradigmatic relationships may also

From a developmental perspective, the formation of paradig-
matic associations depends on the existence of syntagmatic
associations and the former are expected to be better cues
early in word learning compared to the latter (Sloutsky, Yim,
Yao, & Dennis, 2017). Regardless of whether paradigmatic
relations are acquired through some kind of higher-order as-
sociative learning (Ervin, 1961) or are directly encoded in
language, the number of plausible paradigmatic relations is
likely to be substantially less than the number of syntagmatic
relations a word participates in at any point in the develop-
ment. A word like capybara may co-occur with thousands
of other words, whereas a much smaller number fill the same
role. This logic suggests that paradigmatic information (which
might be explicit in language) may be more informative about
the underlying meaning of capybara: if there are relatively
few paradigmatic relations for any given concept, it may im-
ply that each one carries more inferential weight. If so, this
suggests a possible resolution to the sparsity problem: people
can learn so quickly from text because they have access to
data – paradigmatic relations – that is highly informative as to
category meaning.

The idea is intriguing, but the logic is only suggestive at best.
In this study we therefore put it to the test. Our hypothesis
is that paradigmatic relationships are far more informative
about category structure than even orders of magnitude more
syntagmatic data, at least when the information inherent in the
paradigmatic data is appropriately extracted.

We evaluate this hypothesis by using a network approach to
extract the full extent of structure inherent in purely paradig-
matic relationships (measured in two different ways in Study
1 and Study 2 respectively). The network captures the notion
that the meaning of each paradigmatically-related word de-
pends on the meaning of all other paradigmatically-related
words. More importantly, it also allows us to build an inter-
connected structure based on extremely sparse data in which
each word is directly related to only a small number of other
words. Inspired by Collins and Loftus (1975), we implement
a simple mechanism of spreading activation which allows us
to overcome this sparsity problem by considering not only
paths between directly adjacent words, but also longer indirect
paths between more distant words. In this way, we can build

co-occur in language through conjunctions (“capybaras and guinea
pigs”) or similes (“capybaras, like chinchillas”): they are still paradig-
matic because of the role they play.
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up a rich representation based on sparse examples of only
paradigmatic information.

For the purposes of this paper we restrict our investigation to
words on the basic level. Thus, our question is to what extent
word meaning can be inferred from paradigmatic relations in
categories like Birds with basic-level exemplars (like ostrich
or sparrow). We focus here because exemplars at the basic
level are special in many ways: they are concrete, acquired
early in life, and carry the most information (Rosch, Mervis,
Grey, Johnson, & Boyes-Braem, 1976). However, it is still
not entirely clear how they are learned or what data are most
informative about their meaning.

The structure of this paper is as follows. We first describe
the pairwise similarity data used for prediction in all of the
subsequent studies. Then, in Study 1 we use a near-neighbor
generation task to derive a network of paradigmatic relation-
ships for 15 basic-level categories, as described above. We
demonstrate that this information predicts the similarity data
reasonably well. In Study 2, we show that this result is not a
byproduct of the particular task; paradigmatic data obtained
from a ranking task shows the same effect. In Study 3, we
contrast these results with predictions based on a vastly larger
quantity of syntagmatic-only information derived from a large-
scale semantic network. Despite the fact that the syntagmatic
information contains orders of magnitude more data, it predicts
similarity structure worse than the (much sparser) paradig-
matic information from Study 1 and Study 2.

Pairwise similarity data
All of the studies in this paper involve predicting human-rated
pairwise similarity data. The data consists of 418 exemplars
from 15 different semantic categories, each of which was rated
for pairwise similarity by at least 15 participants in a previous
study (De Deyne et al., 2008). The categories consisted of
animals (30 Birds, 23 Fish, 26 Insects, 30 Mammals, 20 Rep-
tiles), artifacts (29 Clothing, 33 Kitchen utensils, 27 Music
instruments, 30 Tools, 30 Vehicles, 20 Weapons), and other
categories (30 Fruits, 30 Vegetables, 30 Sports, 30 Profes-
sions). All items in this and subsequent studies were in Dutch,
but for clarity are presented as their English translations.

Study 1: Near-neighbor Generation
The near neighbor generation (NNG) task is a production task
similar to both word associations and feature generation. It
differs from both because of how it is censored: in it, only
paradigmatic (i.e., coordinate) responses are valid. By contrast,
in the feature-generation task only syntagmatic responses are
permitted, and a mixture is allowed in word associations. The
NNG task thus yields a set of paradigmatic-only data.

Method
Participants. Participants were an opportunity sample of
363 first-year KU Leuven psychology students who partici-
pated voluntarily in a collective testing session exchange for
course credit. As some students were not native Dutch speak-

ers, an additional 41 volunteers were recruited resulting in a
sample of 246 females, 158 males (mean age 20.6).

Stimuli & procedure. The stimuli consisted of each of the
category exemplars for which we have similarity data from
De Deyne et al. (2008). In this study, however, instead of rating
pairwise similarities, participants were asked to generate as
many similar words as possible to the one presented (the cue).
People were shown an example using the cue word museum
and asked to give buildings that are similar to a museum, like
gallery, library, exposition space, church, venue, archive, bank,
or institute. People were asked for as many similar responses
that were also category members as possible and to avoid
restricting themselves to only visual similarities. We also
explained that some words might be harder than others, and in
those cases, the number of responses they could generate might
be smaller. Finally, the instructions highlighted that people
could press “Unknown Word” if a cue word was unknown.

People generated responses like this for 15 random cues,
each corresponding to an exemplar from a different category.2

Thus, although any single participant saw only 15 cues, be-
tween everyone each of the exemplars served as a cue multiple
times. During the experiment, the cue word was shown on top,
followed by a question about other category members. For
example, the question for tiger was "What other mammals are
similar to tiger?"

Results
Data preparation. Each of the responses was spelling cor-
rected and normalized to a canonical form. Diminutives, plu-
rals and orthographic and dialect variants (e.g. appelsien and
sinaasappel, both Dutch words for orange) were grouped and
where possible matched to the word forms of our cues. To
account for category size differences, a balanced dataset was
derived in which all cues were judged by exactly 10 partici-
pants. Unknown cues, empty responses, or responses identical
to the cue were removed (2% of the data). Next, we excluded
responses that were not paradigmatic, including individuals
(e.g., Nemo), incorrect responses (e.g. jazz as an exemplar
of Sports) and syntagmatic responses (tasty as response to a
Fruit): about 16% of the data total. The resulting exemplar
dataset reveals that participants generated only a small number
of neighbors, averaging 3.7 (SD = 2.36) responses per cue
(median = 3, min = 1, max = 21). Finally, we selected for each
category only those exemplar responses that also appeared as
cues (retaining 52% of the exemplars).

Near neighbor graph. For each category, we derived a
graph G based on the responses given in the NGG task. The
graph was reduced to the largest strongly connected com-
ponent, which means that only nodes that had both in- and
out-going edges were retained. The weights of the directed
edges were determined by the number of participants who
generated a response for a specific cue divided by the total

2For technical reasons only the first 14 cues were stored during
the collective session, which only impacted the total presentations.
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Figure 1: Example neighborhood graph for Birds. Line widths
reflect the frequency with which each cue was generated in response
to each other cue.

number of responses for that cue; that is, the weighted adja-
cency matrix corresponding to G was row-normalized to make
P. Figure 1 shows the graph for the category Birds.

This graph was used to derive two different variables, de-
scribed below, which we then use to predict pairwise similarity.

Direct neighbor (DN). We first derive a baseline measure
that captures the purely local similarity between each exem-
plar in the weighted adjacency matrix in each category. For
two exemplars i and j, the weighted vectors with their direct
neighbors Pi and P j yield a measure of cosine similarity:

cos(Pi,P j) =
Pi ·P j

‖Pi‖2‖P j‖2
(1)

Spreading activation through random walks (RW).
Meaning does not have to be determined solely by connec-
tions based on direct neighbors; indirect ones may also play a
role. We test the utility of this sort of indirect information by
deriving a measure of similarity between pairs of words based
on the direct and indirect paths they share. For each node, this
representation thus consists of a weighted sum of paths.

Grw = ∑
∞
r=0(αP)r = (I−αP)−1. (2)

In this equation, r is the length of the path, I is the identity
matrix, and α is a damping parameter that governs the extent
to which similarity scores are dominated by short paths or by
longer paths (Newman, 2010). Following previous work, we
fix α = 0.75 (De Deyne, Navarro, Perfors, & Storms, 2016;
De Deyne, Perfors, & Navarro, 2016), although all our results
are qualitatively identical if we instead use the best-fitting
value. As before, we calculate semantic relatedness based on
cosine similarity over this representation.

Results and Discussion. Table 1 shows for each category
the correlations between the pairwise similarity judgments

Table 1: Study 1: Pearson r between pairwise similarity and simi-
larity estimated based only on local paradigmatic information (direct
neighbors, DN) or derived global paradigmatic information (ran-
dom walks, RW). nex indicates the number of exemplars; nr is the
number of responses; k is the average number of direct neighbors
(i.e. the node’s out-degree), which captures the sparsity of each NN
graph. The last two columns show confidence intervals (∆ CI) for the
difference between the r’s (RW - DN).

Category nex nr k DN RW ∆ CI

Fruit 30 821 11 .51 .68 .12 .22
Vegetables 30 557 9 .31 .61 .23 .38
Birds 30 625 9 .62 .76 .10 .18
Fish 22 366 6 .70 .77 .02 .12
Insects 26 695 10 .55 .77 .16 .28
Mammals 29 513 7 .55 .78 .18 .28
Reptiles 20 536 10 .38 .67 .19 .40
Clothing 29 470 6 .51 .75 .19 .31
Kitchen utensils 31 367 5 .47 .69 .16 .28
Music instruments 27 586 8 .61 .80 .15 .24
Tools 23 195 4 .23 .46 .13 .33
Vehicles 30 548 7 .65 .83 .14 .23
Weapons 17 203 6 .48 .80 .22 .44
Sports 30 410 5 .48 .56 .02 .13
Professions 18 129 3 .26 .66 .26 .54

All 392 7021 7.1 .50 .71 .19 .22

and the two measures (DN and RW) derived from our near-
neighbor graph built from paradigmatic relations only. The
last line shows the results for all categories after standardizing
the human similarity judgments. From here on, all correlations
are significant at p < 0.05 (two-tailed) unless noted otherwise.
Confidence intervals for the correlation difference of over-
lapping dependent variables for DN and RW were calculated
using the procedure outlined in Zou (2007).

Several things are apparent from this. First, paradigmatic
information alone is somewhat helpful in predicting similarity
within categories, even when it is derived based on a relatively
small number of exemplars: all correlations are significant, and
most are above r = .40. Second, including indirect neighbors
increases the correlations considerably, from an average of
.50 to .71, and this difference was significant with none of
the confidence intervals including zero. Although there is
some variability between categories, it is clear that across the
board, there is a great deal of latent, indirect structure between
paradigmatically-related exemplars, and this structure is useful
for predicting similarity. As a result, we find that only a very
small number of neighbors (k ranging between 3 to 11) are
sufficient to substantially determine the meaning of words
within these categories.

Study 2: Near-neighbor Ranking
One problem with the generation task in Study 1 is that atyp-
ical exemplars tend not to be produced as responses. Since
the exemplars in De Deyne et al. (2008) were chosen to cover
both typical and atypical items, this meant that some items for
which we have similarity data were not in the NNG dataset. As
a consequence, the correlations in Table 1 may underestimate
how much can be inferred from the paradigmatic network. To
address this, Study 2 relied on a near-neighbor ranking task
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Table 2: Study 2: Pearson r between pairwise similarity and similar-
ity estimated based only on local paradigmatic information (DN) or
derived global paradigmatic information (RW). nex equals the number
of exemplars; nr is the number of rankings; k is the average number of
direct neighbors. The last two columns show the confidence interval
(∆ CI) for the difference between the r’s of RW minus DN..

Category nex nr k DN RW ∆ CI

Fruit 30 900 15 .63 .80 .14 .21
Birds 30 900 15 .56 .78 .18 .27
Mammals 30 900 13 .67 .82 .11 .18
Vehicles 30 900 12 .69 .82 .10 .16
Professions 30 900 14 .49 .77 .23 .34

All 180 5400 13.8 .61 .80 .17 .21

(NNR) that asks participants to rank a set of items presented to
them. It thereby avoids any limitations imposed by exemplar
retrieval issues.

Participants. 81 native Dutch 1st-year economics students
took part in exchange for credit (mean age 18.7 yr, 28 female).

Stimuli & procedure. Participants were given a cue word
and asked to pick m = 6 most similar exemplars from a list of
30 exemplars of a category. As fewer subjects were available
for this study, only five categories (Birds, Fruit, Mammals,
Vehicles and Professions) were included, and each person
judged four cue words from each category.

Data preparation and similarity evaluation. We excluded
cues marked as “unknown”, and obtained a final dataset where
each exemplar was judged by exactly five participants. These
data were used to construct near-neighbor graphs in exactly
the same way as in the NNG task. For each cue, edge weights
were calculated by counting the responses and normalized to
sum to one. For each of the cues the similarity was calculated
based on only direct neighbors (DN) or by including indirect
paths using a random walk (RW).

The results are shown in Table 2. As can be seen from the
average out-degree k, most exemplars were connected to at
most half of the other exemplars in the category. As before,
global similarity (RW) leads to a considerable improvement
over the baseline based only on direct neighbors (DN). For
each category, the correlation differences between DN and
RW had confidence intervals excluding zero. The achieved
RW correlations over all categories of around .80 are fairly
impressive considering that they are only slightly smaller than
the Spearman split-half reliability of the pairwise similarity
ratings themselves (.87 Fruit ; .90 Birds; .92 Mammals; .96
Vehicles; .91 Professions).

The role of data quantity One way to estimate the informa-
tiveness of this kind of paradigmatic information is to evaluate
how the correlations to pairwise similarity judgment change
when fewer neighbors are used. As Table 2 makes clear, using
m = 6 ranked associates for each cue leads to a graph with 12
to 15 direct neighbors k of each node. What happens if people
ranked different numbers of m exemplars?

The answer to this question, shown in Figure 2, reveals that

Figure 2: The effect of number of ranked responses m on correla-
tions to pairwise similarity judgments. Both direct (DN) and indirect
neighbor measures (RW) based on paradigmatic information predict
reasonably well even with high data sparsity (low m). This is particu-
larly apparent when the graph incorporates indirect links (RW).

correlations to pairwise similarity are reasonably strong even
when they are based on relatively few ranked responses m. The
effect is especially striking for the information based on global
category structure: RW with only the first-ranked response
outperforms DN with all six (Zou’s test for correlation differ-
ences using all six categories: ∆r(2175) = .05,CI = [.03, .08]).
Given that the RW graph derived from m = 1 was based on
only 17% of the data as the DN graph derived from m = 6 (i.e.,
150 vs 900 total judgments), the fact that RW outperformed
DN is an impressive testament to the power of inferred indirect
associational information.

Study 3: Syntagmatic information
In Studies 1 and 2, we used the near neighbor task to con-
struct semantic networks comprised solely of paradigmatic
relations. Despite the extreme sparsity of these networks, we
find that paradigmatic information is strongly correlated with
similarity judgments. In Study 3 we take a complementary per-
spective, constructing networks based solely on syntagmatic
relations. To do so, we rely on a large-scale semantic network
constructed from Dutch word association data (see De Deyne,
Navarro, & Storms, 2013). The complete data set includes
12,000 cue words and over 3 million responses in total. Using
these data, we construct a semantic network that links words
based on their associations, using a positive point-wise mutual
information (PPMI) method to account for frequency biases
in the word association task (see De Deyne et al., 2016). As
with Studies 1 and 2, we consider two network measures of
similarity, a direct-neighbor (DN) measure and random-walk
(RW) measure. The included exemplars were matched closely
to those included in Study 1 (see column 2, Table 1).

As typically constructed, semantic networks based on word
association data incorporate both the syntagmatic and paradig-
matic relations that underpin semantic representation. The
approach we take here, however, uses the data from Study 1
supplemented with common variants (plurals, diminutives, al-
ternate spellings, etc.) to remove as much of the paradigmatic
information as possible. To that end, any edge that appeared
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Table 3: Study 3: Pearson r between judged similarity and similarity
estimates from a large-scale syntagmatic network. As before, we
compare local information (DN) with indirect edges (RW). nex is the
number of category exemplars and k is the number of direct neighbors.
The last two columns show the confidence interval (∆ CI) for the
difference (RW - DN).

Category nex k DN RW ∆ CI

Fruit 30 62 .65 .58 -.11 -.05
Vegetables 30 65 .42 .31 -.16 -.06
Birds 30 67 .59 .59 -.03 .02
Fish 22 62 .65 .59 -.10 -.02
Insects 26 75 .78 .72 -.10 -.04
Mammals 30 69 .51 .52 -.02 .04
Reptiles 20 71 .75 .70 -.08 -.02
Clothing 29 78 .56 .53 -.06 .00
Kitchen utensils 31 72 .58 .52 -.11 -.02
Music instruments 27 70 .53 .35 -.22 -.14
Tools 24 82 .44 .43 -.04 .02
Vehicles 30 81 .74 .73 -.03 .01
Weapons 17 74 .77 .71 -.10 -.02
Sports 30 72 .73 .72 -.03 .01
Professions 18 80 .74 .79 .01 .09

All 394 72.0 .61 .57 -.06 -.04

in the paradigmatic networks from Study 1 was removed from
the networks in Study 3, and the resulting networks can be as-
sumed to be largely syntagmatic in nature. Doing so removed
only a small amount of information: averaged over categories,
on average 9 out of 72 edges were paradigmatic coordinates,
which corresponds to 12% of all responses.

Results and Discussion
As shown in Table 3, networks based solely on syntagmatic
information do provide a reasonable account of similarity judg-
ments. However, despite the fact that these networks are based
on a vastly larger data set, the correlations are weaker than
those found in Studies 1 and 2 once indirect paths are consid-
ered. This suggests that even a small amount of paradigmatic
information may provide as much semantic knowledge as a
much larger quantity of syntagmatic information.

One interesting aspect of these results is that, in marked
contrast to Study 1 and Study 2, the results for the DN baseline
were somewhat better or at least similar to those from the RW
measure that incorporated indirect paths. The only case in
which the correlations were statistically higher was profes-
sions where the correlation difference confidence interval was
positive (see column 6 and 7 in Table 3). This replicates previ-
ous findings that show a limit to the contribution of indirect
paths within basic-level categories (De Deyne et al., 2016).
In combination with the results from the previous two stud-
ies here, our findings suggest that there is a lot of indirect
paradigmatic information within categories, but – at least with
respect to encoding semantic knowledge – not a lot of indirect
syntagmatic information within categories.

General Discussion
Understanding how the mind rapidly acquires and efficiently
represents a massive amount of semantic knowledge is a fun-
damental question in cognitive science. Even in a small set of
only 30 concepts there are 870 pairwise similarity relations

that need to be encoded, a quantity that scales quadratically
with the number of lexical entries. In this paper we find that
most of this information can be encoded very efficiently using
only a small number of links (about 2–3) per node in a se-
mantic network of paradigmatic relations. The results extend
previous work looking at how people represent the similari-
ties between very dissimilar concepts (De Deyne et al., 2016).
It demonstrated that spreading activation mechanisms over
very sparse networks can capture a remarkable amount of the
shared meaning between words that are not directly linked.
Interestingly, however, a much larger network of syntagmatic
relations does a much poorer job of encoding these similarity
relations, suggesting that a relatively small part of the semantic
network does most of the work in encoding this knowledge.

The results open up a number of questions about how seman-
tic knowledge is encoded. First, in our studies the superior
performance of paradigmatic relations only holds when in-
direct paths (i.e., RW) between words are included. When
looking only at direct relationships (i.e., DN) the syntagmatic
network performs comparably or even better than the paradig-
matic network, albeit on the basis of a much larger training
data set. A little bit of paradigmatic knowledge goes a long
way, but only so long as it is combined with mechanisms that
can exploit the structure of this knowledge.

Second, the poor performance of the random walk model
over the syntagmatic network does not imply that indirect
syntagmatic paths play no role: a ceiling level may potentially
already be hit when a word has about 72 outgoing syntagmatic
edges (see Table 3). However, this possibility seems unlikely:
even when we re-ran the analyses from Study 3 using a much
sparser version of the syntagmatic network (one that included
only one third of the responses from the original data set),
we still found that the random walk model did not improve
the performance of the syntagmatic associations (r = .53 for
DN, r = .52 for RW). More generally, in no version of our
simulations did we find syntagmatic networks performing at
the same level as the random walk model defined over the
much sparser paradigmatic networks.

A third issue pertains to the trade-off between computa-
tion and storage. One way of contrasting spreading activation
models with memory storage models comes from work on
mediated priming with items like lion – (tiger) – stripes where
storage accounts like the compound-cue theory have argued
for a direct route between cue and target (McKoon & Rat-
cliff, 1992). A similar case could be made here: perhaps the
mind actually stores a large number of direct paradigmatic
relationships in long term memory, and the evidence for in-
direct (RW) effects is simply an artifact of methodological
limitations. This explanation might be plausible with respect
to Study 1 (where participants might have been limited in the
number of responses they could retrieve). However, in Study
2 many of these limitations were relaxed, and it was still the
case that the paradigmatic network was very sparse relative
to the syntagmatic network. Indeed, in order to “censor” the
word association network in Study 3, only a very small num-
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ber of paradigmatic relations needed to be removed. Taken
together, these considerations suggest that the paradigmatic
links genuinely do much of the work in representing meaning.

Finally, there are also theoretical reasons why words can
only be similar to a small number of other words. For exam-
ple, similarity is often assumed to be exponentially decaying
and only a small number of words can be near each other in
high dimensional spaces (Tversky & Hutchinson, 1986). It is
therefore perhaps to be expected that a paradigmatic network
should be extremely sparse, with similarity relations encoded
via an inferential process (like spreading activation) defined
over that representation.

Future work
This paper only evaluated paradigmatic and syntagmatic in-
ference using pairwise judged similarity. Mapping and infer-
ring paradigmatic relations using NNG and NNR tasks might
also provide a better account of other semantic tasks such
as priming, or category induction. It might also account for
both facilitatory and inhibitory effects in word processing de-
pending on the density of semantic neighborhoods (Pexman,
Hargreaves, Siakaluk, Bodner, & Pope, 2008). Our findings
do suggest that generating near neighbors might be a very
efficient context-independent way to assess semantic knowl-
edge for large domains – more efficient than the data-intensive
process of measuring pairwise similarity. As a result, the NNG
and NNR tasks may be practical and tractable enough to ac-
quire sufficient data to investigate individual differences in the
mental lexicon.

That said, the current work still represents a first step and
therefore has several limitations. First, because participants in
Study 1 and Study 2 were opportunity samples, it is possible
that any differences between them exist because of henceforth
unnoticed differences between psychology and economics
students. That said, these differences are likely to be mi-
nor considering the validity of the best-performing measures
across both studies in predicting similarity ratings collected 10
years ago (De Deyne et al., 2008). Second, although the near
neighbor generation task is highly efficient and complements
other procedures like word association or semantic feature
generation, it still has potential to be refined further. For exam-
ple, in Study 1, despite explicit instructions to only produce
category members, some participants provided other kinds
of associations. Perhaps improved instructions or additional
practice would improve the efficiency and accuracy of the data
generated in these tasks. Finally, the current studies have only
analyzed similarity to the category exemplars in De Deyne
et al. (2008), which of course represents only a subset of
potential category members. We expect that adding more com-
monly known exemplars could further improve estimates of
similarity.

Conclusions
Altogether, this work makes two important contributions. First,
it shows how word meaning in semantic categories can effi-
ciently be approximated based on paradigmatic information

acquired from a near-neighbor task. The efficiency is derived
from the fact that a great deal of structure can be extracted
from indirect neighbors as we did when we modeled global
graph similarity. This might potentially lead to more effi-
cient procedures to approximate the mental lexicon based on
a single or small number of individuals.

Second, we show that it is theoretically possible to infer a
substantial portion of the meaning of a word based on only a
small amount of data encoded in language. To do so, learn-
ers must be attuned to paradigmatic relations and capable
of finding the indirect structure between them. This finding
has implications for how lexico-semantic models might solve
Plato’s problem: perhaps the heavy lifting is accomplished
with a relatively very small portion of the data and specific
kinds of relations.
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