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Abstract

A Framework for Generating Dangerous Scenes: Towards Explaining Realistic

Driving Trajectories

by

Shengjie Xu

Deep neural networks are black box models that are hard to interpret by humans. How-

ever, organizations developing AI models must ensure transparency and accountability

by providing the public with a comprehensive understanding of model functionality.

We suggest integrating explainability information as feedback during the development,

verification, and testing of models. Our testing framework provides the following in-

sight during the neural network training: Does the model equally effective for minor

variations in the input data? In this thesis, we showed the explainability differences by

comparing original and altered autonomous driving datasets for neural network train-

ing and explainability. We propose a framework for perturbing autonomous vehicle

datasets, the DANGER framework, which generates edge-case images on top of current

autonomous driving datasets. The inputs to DANGER are photorealistic datasets from

real driving scenarios. We present the DANGER algorithm for vehicle position manip-

ulation and the interface towards the renderer module and present five scenario-level

dangerous primitives generation applied to the virtual KITTI, virtual KITTI 2, and

Waymo datasets. We contribute two innovations in our study: (a) Our experiments

prove that DANGER can be used as a framework for expanding the current datasets

viii



to cover generative while realistic and anomalous corner cases; (b) We tested the feasi-

bility of providing interpretable information feedback in a generic deep neural network

training by providing the Grad-CAM instability level.
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Chapter 1

Introduction

Machine learning models are widely accepted in academia as black boxes that

are extremely difficult to interpret [32, 80]. However, organizations and professionals

are obliged to thoroughly understand the underlying Artificial Intelligence (AI) with

model observing and accountability of AI and not trust them without being able to

recount and defend their decisions [41, 106]. According to Gunning [36], the goal of

Explainable Artificial Intelligence (XAI) is to develop a set of modified machine learning

techniques that produce explainable models that enable end-users to comprehend, trust,

and manage the generation of AI systems. With a transparent (or interpretable) model,

the industry can use continuous model evaluation to compare predictions, quantify

model risk, and optimize model performance. Moreover, XAI is valuable in improving

model performance while also assisting stakeholders in understanding the behaviors of

AI models. This allows researchers to visually study model through interactive charts.

Therefore, we suggest integrating explainability information as feedback during
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model development, verification, and testing. Our proposed testing framework provides

the following insight during the neural network training: Does the model equally effective

for minor variations in the input data? As shown in Figure 1.1, the main objective of

this research is to test the feasibility of providing interpretable information feedback

in a generic deep neural network training, which is divided into two sections: image

generation with minor modifications or errors and providing evidence of interpretable

instability under input perturbation.

Figure 1.1: XAI concept illustrated in [36] and our proposed explanation analysis ex-

ploration in this work

The first section of of this thesis discusses the generation of photo-realistic

scene-based out-of-distribution datasets. Today’s deep neural networks are highly de-

pendent on goodness-of-data and obey the “garbage in, garbage out” rule of thumb

[50, 96]. In the absence of standardized metrics to characterize “the goodness” of data,
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conventional visual perception methods are often not able to detect dangerous scenarios.

This is because corner cases have not been witnessed during training [8, 93]. Fitting

metrics do not further represent the phenomenological fidelity and validity of the data.

Their detection is based on well prepared data, lacking anomalous events: low possibility

but realistic dangerous driving scenarios.

Chapter 2 presents an in-depth exploration of 2D and 3D image synthesis.

Since the release of the KITTI [31] dataset, autonomous driving research has been data-

driven. Autonomous vehicles (AVs) promise to decrease vehicle fatalities and increase

safety in the modern automobile. However, the majority of datasets [11, 18, 31, 92, 102]

and derived algorithms [12, 20, 30, 33, 76, 78, 101, 104, 109] are used for benchmark and

standardized on perfectly curated datasets. This causes two issues: (a) these algorithms

are specially designed and hard-coded into a workable scenario (b) solutions are focused

on accuracy on a single dataset, rather than robustness. Instead, we want autonomous

driving solutions to be able to deal with different driving scenarios. A real road scene is

often dangerous and dynamic: full of unexpected events. There is an immediate need for

AI systems to consider these event, especially in the context of implementing algorithms

on actual on-road vehicles [87]. Instead, we propose the development of a framework

to mimic the kinds of “one-off” scenarios humans may encounter in driving tests. We

use this to validate that AI systems can generalize in real-world driving environments.

We describe an iterative procedure for creating out-of-domain examples for autonomous

driving, or corner cases, based on the existing AV datasets.

In Chapter 3, we build upon the theoretical review established in Chapter 2

3



and present our DANGER framework. We contribute a general framework for gener-

ating photo-level realistic driving scenes with custom trajectory inputs. We generated

synthetic datasets for Virtual KITTI (vKITTI) [29] based on driving primitives as the

input dataset. The new dataset is comprised of five categories of images, which are

derived from the vKITTI dataset and built on top of the following primitives: (a)

Exit parking, (b) Cut-in Opposite, (c) Cut-in, (d) Slalom Lane Change, and (e)

Braking. We also generated new datasets from Virtual KITTI 2 [10] and Waymo

Open Dataset (WOD) [92] to demonstrate the versatility of our framework to real-

world scenarios. Our initial perturbation on Waymo shows promise, and also room

for improvement for creating more photo realistic DANGER de-rendering. Our frame-

work, “DANGER”, supports user-defined vehicle trajectories and poses to complete a

sequence of frames of data generation. DANGER also supports the distortion and dele-

tion of vehicles in an individual frame and can simulate illogical special camera failure

modes.

In Chapter 4, we discuss the quantitative and user study of our DANGER

framework as well as the interpretability metrics of commonly used deep learning models,

specifically analyzing the stability of saliency mapping attribution under the disturbance

of our generative datasets. In this thesis, we showed the explainability differences by

comparing original and altered autonomous driving datasets for neural network training

and explainability. Given a synthesis datasets, we analyzed the Grad-CAM explanation

towards a segmentation model on the datasets pair, and we discovered that temporal

instability, heatmap amplitude instability, and instability in synthesized data.
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The findings of this study indicate the following contributions to the explain-

able AI community:

• We introduce DANGER, a framework for generating Danger-Aware datasets.

DANGER can enhance robustness. It generates new scenarios with user input: a

set of primitives. Each primitive is a vehicle driving trajectory and posture over

time: a complete sequence of frames of data generation.

• DANGER supports the shifting and deletion of cars in individual frame and can

simulate illogical special camera failure modes.

• Our DANGER implementation includes five scenario-level dangerous primitives

applied on virtual KITTI and virtual KITTI 2 to generate more robust, “DANGER-

vKITTI” datasets.

• We evaluate DANGER on a corner case score evaluation and via human study.

Our results demonstrate that DANGER and our generated scenarios are realistic,

novel, anomalous, or risky. These dataset augmentations can help increase the

robustness and range of scenarios in the original datasets.

• We test the feasibility of providing interpretable information feedback in a generic

deep neural network training by showing the Grad-CAM differences.
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Chapter 2

Background

This section provides an overview of deep generative models, GANs, autoen-

coders, image synthesis techniques, 3D-aware image synthesis, relevant datasets, and

explainability in AI models. We first discuss the topic of deep generative models in

computer vision and focus on the use of generative adversarial networks (GANs) and

autoencoders for image synthesis. Deep generative models are a rapidly evolving field

that aims to generate realistic examples across various domains. Next, we explore 2D

image synthesis and 3D-aware image synthesis, highlighting studies that have devel-

oped GAN-based methods for generating 3D-aware images. Thirdly, we briefly touch

on datasets used in autonomous driving research. Finally, the section briefly intro-

duces Explainable Artificial Intelligence (XAI) and discusses the promising future of

explainability in bridging the gap between complex models and human understanding

to improve AI robustness.
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2.1 Deep Generative Models

The computer vision community has been taking various approaches to gener-

ate photorealistic photos of objects, scenes that even humans cannot tell are fake. Deep

generative models are an exciting and rapidly evolving field that fulfills the promise

of generative models by generating realistic examples across a wide range of problem

domains.

2.1.1 Generative Adversarial Networks

The first work in this line is based on Generative Adversarial Networks (GANs)

[34, 45–47]. The training of GANs’ generative models frames this unsupervised learning

algorithm by using a supervised loss with two sub-models as part of the training: the

generator model and the discriminator model. In an adversarial zero-sum game, the two

models are trained together until the discriminator model is fooled about half of the

time, indicating that the generator model generates realistic examples.

2.1.2 Autoencoder and Variational Autoencoders

Autoencoder is a type of artificial neural network that learns efficient codings

of unlabeled data using unsupervised learning. The autoencoder learns a representation

for a set of data by attempting to regenerate the input from the encoding via dimension-

ality reduction [40, 54]. Autoencoder can be compared to principal component analysis

(PCA), the specific analysis referred to [66].

Variational Autoencoders (VAE) is an autoencoder whose training is regu-
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Figure 2.1: Schematic of (a) GAN and (b) cGAN models, showing Generator and

Discriminator components and associated variables

larised to avoid overfitting and ensure that the latent space has good properties that

enable a generative model: they can randomly generate new data that is similar to the

input training data [52, 53].

2.2 Image Synthesis

2.2.1 GANs for 2D Image Synthesis.

Generative Adversarial Networks (GANs) [34], have been used for a variety of

image synthesis exercises, including image generation [3, 44, 72], image-to-image trans-

lation [42, 110], text-to-image synthesis [77, 107], and inpainting [70]. StyleGAN [46]
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generates high-quality, high-resolution face images. StyleGan can also generate car-like

images; however, flaws remain in the generated dataset. Firstly, the generated images

were frequently displayed at a 45-degree exhibition angle rather than the perspective

view of a car in motion. Second, the shape of some of the cars was distorted and pro-

duced a peculiar effect of indistinguishable front and rear of the car. StyleGAN2 [47]

fixed the artifacts problem remained in StyleGAN. However, both StyleGAN nor Style-

GAN2 cannot generate images by controlling car object-dependent appearance, pose,

and size in 3D since the latent space is unclear.

Recent studies [73, 74, 81] showed the SOTA GPT-based methods of generating

photorealistic images from text. Nevertheless, the above methods generate images that

have low fidelity and cannot generate continuous frame images or videos.

Several studies [22, 75] learned transformation and color adjustment features,

such as rotate, shear, shear, contrast, or, hue. These strategies, however, are limited to

2D images or color space and are challenging to generate new viewpoint data. Contrary

to 2D, we need a disentangled 3D-aware image synthesis model that allows a user to

edit the viewpoint, object shape, or texture independently [111].

StyleGAN uses the progressive growth idea to stabilize the training for high-

resolution images, and it generates some of the most indistinguishable face images avail-

able today [46]. The Style refers to the attributes related to a face in the dataset, such as

the pose of the person, expression, orientation, hairstyle, and also includes the texture

details in terms of skin color, lighting, etc.

Although Karras et al. [46] demonstrated that StyleGAN could be used to
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generate car-like images, we discovered flaws in the generated dataset: first, the gener-

ated images were frequently displayed at a 45-degree exhibition angle rather than the

perspective view of a car in motion; second, the shape of some of the cars was distorted

and produced a peculiar effect of indistinguishable front and rear of the car.

Despite the fact that Karras et al. [47] demonstrated that StyleGAN2 fixes

the artifacts problem remained in StyleGAN and improves the quality of the gener-

ated images by proposing a new alternative to progressive growing, we discovered that

generation defects in car images still exist.

Pix2pix [42] is a conditional generative adversarial network (cGAN) frame-

work, which is first proposed in [64]. It takes pairs of images as input, where one image

belongs to the source domain and the other image belongs to the target domain. The

model learns to map images from the source domain to the target domain by training on

aligned image pairs and optimizing a combination of adversarial and pixel-wise loss func-

tions. This allows for generating realistic and high-quality images in the target domain.

pix2pixHD [99] builds upon the pix2pix framework and extends it to generate high-

resolution images. It incorporates a multi-scale generator network that progressively

refines the output image at different resolutions. By considering multiple scales and

incorporating global and local context, pix2pixHD achieves more detailed and visually

appealing results compared to its predecessor. Both pix2pix and pix2pixHD have been

widely used in various applications, including image-to-image translation, image synthe-

sis, and image editing. These models have demonstrated the ability to learn meaningful

mappings between different visual domains, enabling tasks such as converting sketches

10



to realistic images, converting day-to-night images, or generating high-resolution images

from low-resolution inputs.

2.2.2 3D-aware Image Synthesis

Several recent studies [57, 85, 105] developed multiple GAN-based 3D-aware

image synthesis methods including 3D-friendly features: interpretable, disentangled

scene representation, viewpoint manipulation, and 3D Controllable. [57, 103], and [35]

inspired by rendering a 2D image by 3D game engine, which treats images as a projec-

tion of the 3D world. The learned 3D space can be potentially useful for various tasks

such as image reasoning tasks in dangerous scene understanding.

Inspired by [63], GRAF [85] introduces GANs to implement Neural Radiance

Fields [63], and uses conditional GAN [64] to achieve controllability of the rendered

object. GIRAFFE [68] uses one Neural Radiance Field per object in order to combine

objects from different scenes. This enables the movement and rotation of objects in the

generative new image. GRAF and [57] can generate images of cars in different poses,

but the resulting backgrounds are often monochromatic or pure white. 3D-SDN [105]

and PNF [55], are the algorithm that can modify both the 3D pose and position of the

spawning vehicles while remaining realistic city and road scenes.

11



2.3 Datasets

2.3.1 Autonomous Driving Datasets

KITTI [31] is the pioneering benchmark dataset for use in autonomous driv-

ing by providing LiDAR sensors, stereo cameras, and GPS/IMU data. Compared with

KITTI, Waymo [92] provides a large-scale, high-quality dataset with high-intensity an-

notations and higher annotation frequency using five cameras and five LiDARs from dif-

ferent angles and locations. nuScenes [11] provides 360overage from the LiDAR, radar,

and camera sensors. Argoverse [18] contributes detailed geometric and semantic maps

of the environment, and its sibling Argoverse2 [102] has the most extensive self-driving

taxonomy with HD maps that include real-world changes. Cityscapes [21] provides se-

mantic, instance-wise annotations for semantic understanding of urban street scenes.

The current state-of-the-art (SOTA) datasets are inherently designed for independent

model training based on various sensors rather than handling real-world challenges. As

[88] estimated that AVs need to drive 30 billion miles to get enough statistical evidence

to prove that AVs are three times safer than human drivers, yet leading Waymo claims

their test fleet has run 20+ million miles on public roads [84]. Therefore, corner case or

out-of-distribution data in existing autonomous driving datasets are insufficient. These

defects in the previous works inspired us to fill the gap.
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2.3.2 Synthetic Datasets

Advances in computer graphics have made it possible to easily annotate and

generate virtual datasets, such as SYNTHIA, Virtual KITTI (vKITTI), and Virtual

KITTI 2 (vKITTI2), include various scene types under different weather, environment,

and lighting conditions [10, 29, 79]. [43] demonstrate that SOTA neural networks trained

using only synthetic data perform better than the same architectures trained on real-

world dataset. CARLA [24] supports custom waypoints input for vehicle trajectory

generation, but it is projected in a virtual city built in a game engine without any

modification compatibility to an existing real-world dataset.

2.4 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) are techniques that produce inter-

pretable and transparent models, enabling end-users to comprehend and trust the

decision-making process of AI systems. XAI aims to bridge the gap between complex

black-box models and human understanding, providing insights into model behaviors,

reasoning, and decision factors. The goal is to enhance transparency, accountability,

and trustworthiness in AI systems, enabling users to assess model performance, de-

tect biases, ensure fairness, and facilitate decision-making. XAI techniques encompass

various approaches, including rule-based systems, feature importance analysis, visual

explanations, and interactive interfaces.

Various metrics to evaluate explainability can be found in the field of Explain-
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able AI (XAI). Gilpin [32] developed a classification for XAI techniques and concluded

that there are three categories of explanations: Explanations of Deep Network Pro-

cessing, Explanations of Deep Network Representations, and Explanation-Producing

Systems. In general terms of processing, Linear Proxy Models, Automatic-Rule Ex-

traction, Decision Trees, and Saliency Mapping [90] are four kinds of tools widely ac-

cepted by researchers. A discussion of Grad-CAM [86], a subbranch of Saliency Map-

ping, is investigated in this paper. In the context of representations, there are three

kinds of techniques: SHAP [60], Network Dissection [4], TCAV [49]. The discussion of

explanation-producing is outside the scope of this paper.

2.4.1 Saliency Mapping

The Saliency Maps, or Vanilla Gradient, was first introduced by Simonyan et

al. with a simple idea by calculating the derivatives of score Sc given by a convolutional

neural network to the input image I [65, 90].

w =
δSC

δI
|I0

Saliency maps use the same backpropagation formula as the training stage

so that we can evaluate the saliency maps of all commonly used AI frameworks with

minimal effort. Nevertheless, saliency maps has a saturation problem according to

Shrikumar et al. [89]. When using a ReLU in activation layers, such derivatives in

saliency maps can miss important information that flows through a network.
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2.4.2 Grad-CAM

Grad-CAM stands for Gradient-weighted Class Activation Map. As the name

suggests, it’s based on the gradient of neural networks. Grad-CAM was introduced

in 2017 by Selvaraju et al. [86] for weakly-supervised localization, weakly-supervised

segmentation, and providing insight into model failure modes. The goal of Grad-CAM

is to visualize where of an image a convolutional layer is “looking” for a particular clas-

sification. Grad-CAM is a Class Activation Mapping (CAM) [108] style technique for

creating a class-specific heatmap based on a particular input image, a trained Convolu-

tional Neural Network (CNN) [56], and a chosen class of interest. As long as the layers

of the CNN are differentiable, Grad-CAM can be calculated on any CNN architecture.

Lc
Grad−CAM ∈ Ru×v = ReLU

(∑
k

αc
kA

k

)

αc
k =

1

Z

∑
i

∑
j

δyc

δAk
ij

Grad-CAM and gradient base saliency maps have long been considered the

most reliable techniques. However, recent research identifies a critical problem with

Grad-CAM: Grad-CAM sometimes highlights regions that the model did not actually

use, indicating that it is an untrustworthy model explanation method. As a result,

HiResCAM is recommended instead of Grad-CAM for a model explanation [25].

Another concern about Grad-CAM is its sensitivity to the model or data.

Insensitivity to model or data is highly unwanted because it implies that the “interpre-

tation” has not interacted with the model or the data. Adebayo et al. [1] proved that
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(a) Original Image (b) Grad-CAM ’Dog’ (c) Grad-CAM ’Cat’

Figure 2.2: Explanations with Grad-CAM for ResNet presented in [39]

partial gradient-based saliency methods are sensitive to model and data. The insensi-

tivity test described in this paper was passed by Vanilla Gradient and Grad-CAM, but

Guided Backpropagation and Guided Grad-CAM failed. Regardless, this article was

also criticized by Tomsett et al. [94] for lack of consistency in test metrics.

2.5 Robustness

Our framework is a layer that improves robustness by introducing out-of-

domain semantically-significant samples. Our work is similar to a knowledge-driven cog-

nitive model approach to improve AI system robustness [61], with a focus on enhancing

autonomous vehicle data sets with predefined primitives. We argue that using a primi-

tive representation, similar to the abstract script-like representation in language [7, 83],

can make the underlying opaque system more understandable. [2] demonstrates that the

VISTA simulator can generate novel camera images to improve out-of-domain datasets.
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However, the generated photo-realistic pictures can only be obtained via changing the

driving angle of the ego vehicle but not the pose of other cars on the road.

Our work is inspired by prior work on a stress testing framework for au-

tonomous system verification and validation [26]. The key idea for DANGER is that the

robustness should be tested dyanmically with a series of automatically generated stress

tests. Our goal is to use these generative examples to generate counterfactuals. This is

similar to previous work using adversarial examples for explaining counterfactuals [71].

Our contribution is a set of semantic primitives, similar to the semantic layer in DNNs

discussed in [9].

According to the systematization of corner case detection complexity proposed

by [8], our framework is designed to obtain the most dangerous anomalous scenario for

a detector, and we also answer the research question, ‘How to generate or record corner

case from descriptions? ’, proposed by [5]. [8] defined a corner case as a non-predictable

relevant object/class in a relevant location, [8] extended the definition of corner case

level by giving three most dangerous scenes: the anomalous scenario is a potentially

dangerous unknown object, the novel scenario is a harmless unknown object, the risky

scenario is a potentially dangerous but known object. In the result section, we present

the design our primitives to address these problems.
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Chapter 3

Methodology

The primary research methods employed in this study involve dataset gener-

ation and the evaluation of a specific neural network model using XAI metrics. To

address this, we present a novel approach for generating a photo-realistic dataset of the

autonomous vehicle scenario. In the initial step, we utilize a 3D-aware image synthesis

algorithm to generate the dataset. Subsequently, we analyze and compare the expla-

nations provided by interpretable models for both the original and generated datasets.

In this chapter, we introduce the DANGER Framework along with three datasets used

in our study: the vKITTI dataset, vKITTI 2 dataset, and the Waymo Open Datasets

[10, 29, 92].
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Figure 3.1: DANGER framework, primitives, and visualization of scene editing, in which

we modify the original datasets as input and we build dangerous driving datasets on

top of it

3.1 Framework and Datasets

3.1.1 DANGER Framework

The DANGER Framework, illustrated in Figure 3.1, encompasses a renderer/de-

renderer module, a primitive function module, and a generated descriptive file. This

framework empowers users to tackle a wide range of corner cases efficiently. The scene’s

fundamental editing is facilitated by pre-refined primitives, exemplified by the lane

change, cut-in, and braking functions depicted in Figure 3.1(a)(b)(c). As demonstrated

in the slalom-lane-change scene editing of scene 0006 in world coordinate, the orange-

red curve represents the original trajectory of car object tid 4, while the light blue

curve denotes the corresponding edited trajectory in world coordinate.
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(a) Instrumentation (b) Sensor location

Figure 3.2: Setup of the KITTI datasets

3.1.2 Virtual KITTI Dataset

Virtual KITTI is a computer-generated simulation of The KITTI Dataset, a

benchmark for autonomous driving research that was initially introduced in 2013. As

shown in Figure 3.2, the original dataset consists of data captured by two grayscale

cameras, two color cameras, a Velodyne LiDAR scanner, and a GPS/IMU unit. To

obtain explicit annotations, we use the raw data of KITTI, and the corresponding

association of KITTI, vKITTI/vKITTI2, and Waymo are shown in Table 3.1.

In 2015, Virtual KITTI was released with 50 photo-realistic monocular videos

(21,260 frames) synthesized from virtual worlds under various lighting and weather con-

ditions, respectively. A real-to-virtual cloning method was used to convert five driving

video sequences from the original KITTI dataset [31] into the Virtual KITTI, built

automatically using the Unity game engine. As shown in Figure 3.3, vKITTI are photo-
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realistic rendered images with fully annotated information: bounding box, optical flow,

depth labels, category, and instance-level segmentation.

Figure 3.3: Example images from the original KITTI (top), Virtual KITTI (middle), and

Virtual KITTI 2 (bottom) datasets, where we can notice the photorealistic rendering

and the rendering style difference.

vKITTI 2 is a recently released augmented version of the original Virtual

KITTI dataset. It was made available in 2020 and features various enhancements com-

pared to its predecessor, vKITTI, including more photo-realistic images. It utilizes the

updated Unity game engine enhancements and offers new data such as stereo pictures

and scene flow. vKITTI 2 consists of the same five sequence clones as Virtual KITTI,

but has the following new features.

• Increased photorealism: The advances in the Unity game engine 2018.4 mean

that the basic Virtual KITTI image sequences are closer to the image sequences

of the original real KITTI dataset. Moreover, vKITTI 2 exploits recent improve-

ments in lighting and post-processing of the game engine such that the changes in
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the virtual sequences are even closer to real changes in conditions.

• Stereo cameras: A new camera has been added to vKITTI 2 to offer stereo

pictures for compensating the Virtual KITTI’s short-come of lacking one camera

position compared to the original KITTI dataset.

• Additional ground truth: Each Virtual KITTI camera renders an RGB image.

It also renders several types of ground-truth: class segmentation, instance segmen-

tation, depth, and forward optical flow. For each sequence, camera parameters

as well as vehicle colour, pose, and bounding boxes are provided. In addition, in

vKITTI 2, backward optical flow and forward and backward scene flow images are

newly provided.

We used the 3D-SDNmodel of vKITTI 1, as provided by [105]. We then trained

our own specific semantic, geometric, and texture models for 3D-SDN on vKITTI 2. The

details of model training are discussed in Section 3.2.5.

3.1.3 Waymo Open Dataset

The Perception Dataset of Waymo Open Dataset [92] contains 1,150 scenes,

each with 20 seconds of data captured at 10Hz (200 frames per scene). The overall

dataset was split into three categories: training, testing, and validation, with corre-

sponding counts of 798, 150, and 202 segments, respectively. Each data frame in the

dataset includes 3D point clouds and images collected from five LiDAR and five cameras

(position shown in Figure 3.4 ), and ground truth 3D and 2D bounding boxes annotated
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by humans in the LiDAR point clouds and camera images, respectively. Each bounding

box contains an ID that is unique to that object across the entirety of each scene. For

the LiDAR data, this allows for tracking in the whole scene. For the camera data, these

IDs are consistent within each camera’s images only.

Figure 3.4: Sensor layout and coordinate systems for Waymo data collection.

The Waymo Open Dataset (WOD) Panoptic Viewpoint Synthesis (PVPS)

dataset v1.4.2 was released on January 2023, consists of 100,000 images with panoptic

segmentation labels. The images are split into a training set, validation set, and test

set, using a prescribed split. The dataset is subsampled from the existing 1.15 million

images. The availability of panoptic segmentation labels makes it possible to realize

3D-SDN.

The WOD PVPS provides panoptic labels for each frame, which are composed
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of two sub-labels: semantic label and instance label. The semantic label is the class

number for each pixel, and the instance label is the object ID assigned to each pixel

for the current frame. However, we developed a unique ID over consecutive frames

to localize our editing target. Therefore, we need to convert the instance label into a

unique global ID using a conversion dictionary {instance id:global id} provided by the

WOD PVPS. The details of data conversion are described in Section 3.2.1.

KITTI vKITTI/vKITTI2 Waymo Training Sets

city/2011 09 26 drive 0009 0001 17437352085580560526

city/2011 09 26 drive 0011 0002 10072231702153043603

city/2011 09 26 drive 0018 0006 4468278022208380281

road/2011 09 29 drive 0004 0018 17874036087982478403

road/2011 10 03 drive 0047 0020 16191439239940794174

Table 3.1: The association of KITTI, vKITTI/vKITTI2, and Waymo

3.2 Dataset Generation

In this section, we discuss the input dataset of our framework and how to

formally normalize WOD and vKITTI. Then we show the principles of the renderer/de-

renderer module and primitive, and discuss how to design new driving trajectory in

the global world coordinate system. Finally, we show the training process of the 3D-

SDN model by taking WOD as an example, and show the training and 3D-aware image
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editing results.

3.2.1 Dataset Preparation

Our overall strategy for preparing the datasets for training 3D-SDN is to follow

the vKITTI annotation definition. Therefore, we choose the front camera subset of

WOD as the peusdo vKITTI for training. The challenge that remains for us is to build

a Waymo to vKITTI converter to meet the correct annotation format. In our Waymo

to vKITTI converter1, we solved n problems that not being considered in the original

Waymo to KITTI converter:

• Associating instance IDs across cameras and frames [62].

• Append the unique ID for each car object to the label descriptor.

• Save the front camera’s instance-level segmentation images in png format.

3.2.2 Renderer/de-renderer module

The 3D scene de-rendering networks (3D-SDN) [105] is an optimal algorithm

that generates photo-level realistic synthetic images. It employs an encoder-decoder ar-

chitecture with three branches: scene semantics, object geometry, 3D pose, and textual

appearance of objects and the background. As shown in Figure 3.1 (d), three branches

intend to learn a scene’s semantic segmentation, infer the object shape and 3D pose,

and encode the appearance of each object and background segment. Disentangling 3D

1https://github.com/jayhsu0627/DANGER/tree/main/waymo kitti converter
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geometry and pose from the given scene enables 3D-aware scene manipulation in im-

age coordinate with a target object location (u, v), orientation pose ry, and (delete,

modify) operations described in a JSON file.

The geometric and textural renderer were used to recover the input scene

using the generated semantic, geometric, and textural information. Disentangling 3D

geometry and pose from texture enables 3D-aware scene manipulation. The geometric

branch consists of two components: Mask-RCNN and Derender3D [38]. The textural

renderer, or the scene manipulation, is done by pix2pix [42]. To move a car closer, we

can edit its position and 3D pose, but leave its texture representation untouched.

In the result section, we use 3D-SDN as the renderer/de-renderer module to

demonstrate the feasibility of our framework. In practice, modules such as PNF can

also be selected [55].

Figure 3.5: 3D Scene De-rendering Networks presented in [105]
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3.2.3 Primitives

To augment the input dataset, we define five danger-aware primitives: Exit

parking, Cut-in Opposite, Cut-in, Slalom Lane Change, and Braking. Detail of

these primitives will be introduced in Section 4.

3.2.4 Scene Editing Computation

Our approach is adaptive. The object’s position can be edited in the real-world

2D plane according to any arbitrary function. At the same time, the implementation of

editing in the world coordinate system requires reading the position information of the

object and transforming it into the world coordinate system. The vKITTI dataset was

designed to match the multi-object tracking (MOT) evaluation benchmark of KITTI.

Therefore, the MOT ground truth and exact position of each car object are provided in

the folder motgt. The following object annotation and terminology we inherited from

vKITTI is detailed in [28, 29] and appendix.

We assume that the original driving trajectory of the target vehicle object is

a straight line. Given a image I ∈ RW×H×3 defined by scene, topic, tid2, and frame

with known camera intrinsic matrix K ∈ R3×4 and camera extrinsic matrix [R|t], we

can convert the position of an object in world coordinate, camera coordinate, or pixel

coordinate by Equation (3.1) and Equation (3.3), whereR ∈ R3×3 and t ∈ R3×1 indicate

the rotation and translation matrices [37]. Pc ∈ R4×1 is the 3D point position in camera

coordinates and Pw ∈ R4×1 is the 3D point position in world coordinates. In both cases,

2A unique track identification number for each object instance in the scene.
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they are represented in homogeneous coordinates. A camera extrinsic matrix M ∈ R4×4

is used to denote a projective mapping from world coordinates to pixel coordinates.
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(3.1)

P = KM (3.2)

Pc = MPw (3.3)

The elements of object’s center position vector Pc can be acquired from the

MOT ground truth data x3d, y3d, z3d, and h3d, and the corresponding Pw will be

easily obtained by apply the inverse of frame-dependent matrix M. In the x-z plane,

arbitrary vehicle poses can be generated according to the primitive function, where r ′
y is

a unit tangent vector to the curve at (x′w, z
′
w) representing the target orientation of the

car object. The trajectory curve and heading vectors are generated at the origin and

then translated to the desired starting point. The curve was further rotated by θ using

the rotation matrix Rθ to align with the original trajectory’s slope a, where a, θ are the

slope and angle of original path, R is a corresponding rotation matrix [100]. A detailed

algorithm of the implementation of the primitive operation in 3D world coordinate is

shown in the appendix.
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3.2.5 Training

In our experiments, we downscale vKITTI images to 624× 192 and WOD im-

ages to 624 × 416. Our inference model of vKITTI was inherited from [105], and we

also trained models followed the setup of [105] for vKITTI2 and WOD on four NVIDIA

GeForce 1080 Ti (11G) GPU. The intermediate results for the 3D-SDN, semantic, geom-

etry, and textural models, when applied to frame 24 of the WOD segment 3 in Table 3.1,

are depicted in the Figure 3.6-3.8.

(a) Semantic result in dark mask (b) Mask-RCNN model result

Figure 3.6: Semantic and geometry branch

(a) Normal map result (b) Geometry branch result

Figure 3.7: Geometry branch
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(a) Original image (b) Synthesis image

Figure 3.8: Textural branch apply a rotation editing on original WOD image

In our experiments on the WOD dataset, we follow a training setup where

14 out of the 20 images in each segment are assigned to the training group, while

the remaining 6 images form the test group. For the semantic model, we conduct

training with 200 iterations per epoch, totaling 20 epochs. In the MaskRCNN model,

we complete 220 epochs, and in the Derender3D model, we train for 256 epochs. Lastly,

the textural branch undergoes training for a total of 1058 epochs, which took about 20

hours.

As illustrated in Figure 3.9, by epoch 1050, the textural model trained on

the training group demonstrates a high level of fidelity. However, when presented with

images from the unseen test group, we observe that the kernel pix2pixHD model of

textural branch still exhibits limited drawing capability.
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(a) Original (b) Training (c) Testing

Figure 3.9: Textural training result on epoch 1050
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Chapter 4

Results

In this section, we present the DANGER dataset and primitives we used in

our generation framework. We evaluate our results in two aspects that focus on the

corner cases generation capability and the realistic level of our dangerous maneuver via

a human study.

We hypothesize that adding risky maneuvers to the dataset will result in a

higher corner case score for the ego vehicle. We performed a numerical analysis of our

generated data frames by applying a corner case detector that considers object-level and

predictability and we also validated our results with a user study. Given such a synthesis

dataset, we analyzed the Grad-CAM explanation towards a segmentation model on the

dataset pair.
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4.1 Dangerous Corner Case Generation

4.1.1 Primitives

We designed five scenario-level dangerous corner cases in the world space based

on the vKITTI dataset. These primitives are deliberately selected for each scene pre-

sented in the vKITTI according to the vehicle object’s position and motion. Though

these are hand-curated, each primitive follows the definition of a scenario-level corner

case that is an anomalous or risky scenario derived from the real-world. We also refer

to the safety assist test procedure and autonomous vehicle collision report as templates

for our dangerous corner cases [13, 95].

Cut-in Many accidents are caused by neighboring vehicles suddenly driving

in front of a moving car dangerously, either due to the driver impatiently overtaking

or an unintentional aggressively traverse due to forgetting the highway exits [27, 67].

To achieve a realistic cut-in lane change, we define the single-lane change curvature

according to the sinusoidal ramp function [91] as following:

y = ye(
x

xe
− 1

2π sin(2π x
xe
)
), (4.1)

where xe is the longitudinal offset of the target position, ye is the lateral lane-change

offset of the target position as shown in Figure 3.1 (b). The forwarding trajectory will

be rotated and aligned with the camera space’s longitudinal axis zc. We chose two

vehicles with tid 1 and 2 in scene 0018 to simulate two scenarios of cut-in ego vehicle

and overtaking with nine sets of scene editing parameters, respectively.
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Exit Parking A careless driver may suddenly place its front end out of a line

of parked cars on either side of a narrow street. We assign a trajectory generated by

the cut-in function presented above to two distinguished car objects with tid 63 and

70 in scene 0001. Among the nine sets of parameters for each vehicle, xe was chosen as

a distance of 4 m for one and a half vehicle lengths.

Cut-in on Opposite We incorporated the rotated cut-in function to a car

(tid 0) driving in the opposite direction. The rampage driver’s driving leads to an

upcoming accident that potentially causes severe injury in scene 0002. By combining

six xe and three ye parameters, we obtained eighteen sets of different driving conditions

distributed in a two-dimensional space of ninety square meters.

Slalom Lane Change According to [98]’s study, lane change crashes caused

over 244,000 accidents in 1991, accounting for 4.0% of all accidents in the US. Therefore,

we aim to design a novel scenario that a driver can barely decide whether other car

objects choose to make a lane change or not. As illustrated in Figure 3.1 (a), we

borrow the idea from the slalom test in automotive engineering and assign a parameter-

dependent sine-wave to the tid 2 and 7 in scene 0006 as follows:

y = Asin(2πfx) (4.2)

where A is the lateral offset amplitude in meters, and f is the steering input frequency

in Hz.

Braking We simulate a constant deceleration maneuver in scene 0020 when
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tid 16 applies a braking pedal by exploiting the inverted trapezoid piecewise function:

at =



0, t < t1

− (t−t1)µg
t2−t1

, t1 ≤ t < t2

−µg, t2 ≤ t < t3

− (t4−t)µg
t4−t3

, t3 ≤ t < t4

0, t4 ≤ t

(4.3)

where at is the time dependent acceleration of the editing vehicle, µ and g constitute a

uniform deceleration value, ti is the timestamp when the braking caliper initiated and

stopped. As illustrated in Figure 3.1 (c), we replace the object speed in the original

video frame with the target braking speed curve obtained by filtering and integrating

the generated acceleration curve. Then a new waypoint can be generated in world

coordinates to replace the original.

For each primitive, we also calculate the rotation ∆ry, zoomed-in factor ρ, and

the transformed (u, v) pixels in camera space. All operation parameters are packaged

into a JSON file for 3D-SDN processing. For the detailed JSON and parameter settings,

see appendix.

4.1.2 Datasets Generation on vKITTI and vKITTI2

Our DANGER-vKITTI dataset contains 4527 pictures with consecutive frames

for each of the five scenes with 18 different sets of parameters. Compared to the original

five scenes from vKITTI, DANGER has expanded the original dataset into 90 additional
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Figure 4.1: Primitive dangerous scenarios and evaluation results

scenes using the experimental parameters.

Generation results for each primitive in our study are shown in Figure 4.1

from left to right: Exit parking (frame301), Cut-in Opposite (frame67), Cut-in

(frame144), Lane Change (frame52), and Braking (frame129). The (a) vKITTI, (b)

DANGER-vKITTI, (c) DANGER-vKITTI2, (d) normal map, and (e) a normalized

dangerous corner scores evaluation of the generated DANGER datasets (two tids in

red and blue color cluster, baseline vKITTI in green) are shown from top to bottom.

4.2 Evaluation

4.2.1 Quantitative

We use the conceptual definition of the corner case [6] proposed that a non-

predictable relevant object/class in relevant location, and we hypothesize a dangerous

movement is a subset of corner cases. Our corner case detector considers semantic
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No. Metrics Datasets
Exit Park-
ing

Cut-in
Opposite

Cut-in
Slalom
Lane
Change

Braking

(1) ϵ vKITTI 0.48 0.04 0.19 0.41 0.13
(2) ϵ∗ vKITTI 0.84 0.23 0.31 0.86 0.44
(3) avg. of ϵµ∈D ours 0.46 0.07 0.44 0.45 0.26
(3)/(1) Ratio 0.97 1.97 2.27 1.09 1.99
(4) avg. of ϵ∗µ∈D ours 0.95 0.29 0.96 0.89 0.98

(4)/(2) Ratio 1.13 1.26 3.15 1.03 2.23
(5) ϵ∗µ∈D ours 1.00 1.00 1.00 1.00 1.00

(5)/(2) Ratio 1.19 4.33 3.27 1.16 1.21

Table 4.1: Quantitative evaluation of DANGER-vKITTI with the baseline dataset

vKITTI

segmentation and image non-predictability.

First, we adopt a segmentation network based on the MobileNet-V2 [82] that

allows us to classify and localize the objects in the scene for which moving objects are

considered as relevant. Specifically, we use the model pretrained on ImageNet, MS-

COCO, and Cityscapes train fine set provided in DeepLabv3 [19, 21, 23, 58]. Second,

we used the advantage of PredNet [59] that can sensing the moving objects to compare

the deviation between predicted frame x̂t and the real next frame xt for time t. As

a metric for the corner case, we calculate an error et to represent the non-predictable

component of the detection system.

et = x̂t − xt, (4.4)

where elements et(i), i ∈ I. Here, each pixel i ∈ I, where I denotes the set of pixel

indices in the given image, and ∥I∥ = H ·W represents the number of pixels. The input

image xt ∈ GH×W×C with image pixel xt(i) ∈ G, where G = {0, 1, . . . , 255} is the set
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of gray values, H and W are the image height and width in pixels and C = {1, 2, 3}

is the number of color channels. The segmentation network maps the input to output

scores Pt ∈ IH×W×∥S∥, where S denotes the set of classes with cardinality ∥S∥ = 19 and

I = [0, 1]. Taking the argmax over the output scores we obtain the (H×W )-dimensional

mask mt = argmaxs∈S Pt, which gives us a pixel-wise classification mt(i) ∈ S. Within

this work, we limit the target objects s ∈ Srel = {12, 13, . . . , 19}, which represents the

relevant classes such as Person, Car, Truck, etc [21].

The information from the two preceding processing steps is combined as a

detection system as metric ϵ to evaluate our DANGER datasets. Since we only interested

in the target classes defined in Srel, we filter the error map Equation (4.4) with the

following formula:

et,rel(i) =


et(i), mt(i) ∈ Srel

0, mt(i) /∈ Srel

(4.5)

To assign higher dangerous weights for the objects near the ego vehicle, we use the

weighted squared errors of the relevant classes introduced by [6] as follows:

ϵ′ =
∑
i∈I

e2t,rel(i) · (1−
hi

H − 1
), (4.6)

with hi ∈ {0, 1, . . . ,H − 1} being the row index from bottom-up. In contrast to [6], we

normalize the error scores ϵ′t of m
th dangerous parameter in set D = {1, 2, . . . , 18} for

the same scene to ensure the peak dangerous frame xt of the system generates a corner

case score ϵt = 1. The corner case score is obtained by normalizing the error score ϵ′t to
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a value range from 0 to 1 using:

ϵt =
ϵ′t −minτ∈T ,µ∈D ϵ′τ,µ

maxτ∈T ,µ∈D ϵ′τ,µ −minτ∈T ,µ∈D ϵ′τ,µ
(4.7)

where T denotes a set of timestamps, and µ denotes the parameter set in D.

Compared to the green curves for the original vKITTI datasets, Figure 4.1

(e) shows that the corner score increases regardless of which tid object is modified.

The highest score for Exit parking is in the last frame (296 and 312) when the car is

completely exiting the side parking; the highest score for Cut-in Opposite is in frame

67 when the vehicle is about to crash into the ego; the dangerous score of the Cut-in

is highest in frame 143 when the black car starts to leave the lane and in frame 152

when the gray car is heading to the opposite lane; the dangerous score is higher in the

Slalom Lane Change between frames 43 and 52 when the twisting vehicle is relatively

close; in the Braking, the dangerous score is relatively high in the last frame, 158,

and the peak in the middle may be caused by the sudden disappearance of the vehicle

object in the frame due to the instability of the 3D-SDN model. Table A.1 shows that

DANGER’s corner case level is between 1 and 3.15 times that of the original datasets

considering the average performance across parameters. Considering only the individual

parameters, DANGER’s hazard factor can be up to 4.33 times the original data.

4.2.2 User Study

We designed a user study to validate our synthetically generated data samples,

i.e., scenarios. Our hypothesis was that users would find the scenarios realistic and
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the level of “dangerousness” would correlate with Table 4.2 and Figure 4.1 (e). We

recruited 100 subjects, who were described the domain and problem setup: that we have

augmented a data set to create new scenarios that they are to rank. Users were also

presented with the definitions of novel, anomalous, risky and unknown/known events,

which are consistent with [8]. Subjects were recruited via Amazon Mechanical Turk and

compensated for completing the survey.

Users were presented with a driving scenario and answered four questions for

each scenario: to rank whether the scenario was realistic, novel, anomalous, and risky.

Users were presented with a Likert scale from 1-10, with 10 indicating very realistic/nov-

el/anomalous/risk, and 1 being not realistic/novel/anomalous/risk at all. We presented

a random sample of scenarios, one per primitive. The questions were presented in a

random order. The results are in Figure 4.2.

We found that users generally agreed with our hypothesis. Users found our

scenarios to be realistic, rating them with average scores in the 7-8 range. Users found

the cut-in opposite and lane change scenarios to be the most anomalous. Users found

the lane change and braking scenarios to be the most novel. Users found most of the

scenarios to be risky. Notably, they did not find the braking maneuvers to be very risky.

This might be because the braking scenarios are long: almost 1 minute in length. We

hypothesize that users did not watch the full scenario.
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(a) Realistic rating (b) Anomaly rating (c) Novelty rating (d) Risky rating

Figure 4.2: Aggregated user study results for rating our scenarios as realistic, anomalous,

novel and risky. Averages are plotted as the bars, and error bars show the standard

deviation

Primitive Level Testimony

Exit Parking Novel
‘. . . a parked pickup . . . pulled out . . . and made contact with
. . . the Waymo AV. . . ’ [15]

Cut-in Opposite Anomalous
‘. . . a sedan was traveling the wrong way on a one-way section
. . .made contact with the Cruise AV. . . ’ [14]

Lane Change Novel N/A

Cut-in Risky
‘. . . a passenger vehicle in the right adjacent lane abruptly cut
in front of the Zoox vehicle. . . ’ [17]

Braking Risky
‘. . . The passenger vehicle ahead . . . transitioned into reverse
and began to accelerate, making contact with the front sensor
of the Waymo AV. . . ’ [16]

Table 4.2: We classify our primitives under the taxonomy of corner cases defined by

[8]. We also provide descriptive prompts derived from Autonomous Vehicle Collision

Reports in 2022 for each primitive [13].
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4.2.3 Grad-CAM Explainablility

This experiment applies Grad-CAM to a semantic segmentation model using

the deeplabv3 resnet50 [19] model from torchvision [69]. While primarily designed

for classification tasks, the deeplabv3 resnet50 model can also predict scores for in-

dividual pixels in the context of semantic segmentation. In this case, the objective is

to compute Grad-CAM with respect to a specific target class, specifically the “car”

category, with the goal of maximizing the score associated with that category.

Semantic segmentation offers more possibilities for target selection due to a

spatial dimension in the model’s output. Based on a study proposed by [97], two alter-

natives are considered: (a) examining the activation of a single pixel and (b) assessing

the collective activation of all pixels associated with the target category. For this tuto-

rial, the second option is chosen as an illustrative example.

We accomplish the desired outcome with the following steps. First, a model

wrapper is created to obtain the output tensor, as the deeplabv3 resnet50 model

produces a custom dictionary. Then, a target class is defined and tailored explicitly

for semantic segmentation. Implementing the class activation method requires certain

decisions, including selecting the layer to be used and the target to be maximized. In this

tutorial, the backbone.layer4 is chosen as the layer, but it can be adjusted according

to specific requirements.

All pixels assigned to the “car” category are considered for the target, and

their predictions are summed. Following these steps, the Grad-CAM technique is ap-
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plied to perform semantic segmentation using the deeplabv3 resnet50 model. This

enables identifying and highlighting relevant regions within images belonging to the

“car” category, providing valuable insights, such as layer or neuron attribution, for

model understanding.

Figure 4.3: Grad-CAM results on vKITTI and Danger vKITTI set

From the explanations of deeplabv3 resnet50 using Grad-CAM shown in

Figure 4.3, for example 0018 clone tid1 ci xe6 ye5, we observe the following: (a)
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Temporal instability (orange): The heatmaps of the first two frames of the original data

do not completely encompass the vehicle shape, and the shape of these pixel attribution

algorithms is changing. (b) Heatmap amplitude instability (sky blue): Although the

heatmap indicates the presence of vehicles in the first two frames, it fails to form a

stable red-highlighted heatmap. (c) Instability in synthesized data (red): When the

vehicle showed its side door in the photo, the explanation becomes fragmented.

Unfortunately, since Grad-CAM is an intuitively interpretable method, we

cannot temporarily quantify this failures. In Section 6, we will discuss the feasibility of

quantifying this difference by comparing Grad-CAM with ground truth segmentation

overlap ratios. As indicated by [1, 51], these pixel attribution methods may be highly

unreliable, and even saliency methods may be insensitive to models and data. Therefore,

the interpretation of visual models still yields unsatisfactory results, and further research

is needed for evaluation.
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Chapter 5

Conclusion

In this thesis, we present DANGER: a framework for generating anomalous

driving scenarios from existing self-driving vehicle datasets. We defined a set of primi-

tives which align with corner cases and user feedback. We promoted the use of DANGER

to robustify existing autonomous vehicle datasets that may not contain error cases. In

fact, it might be implausible to collect such corner cases, either because of the in-

tractability of the scenario, or because of the ethical consequences. We presented a

framework and technique to define, extract, and classify these scenarios from existing

data.

Our work has limitations. The 3D-SDN model may generate a jitter frame due

to the geometry estimation failure, this might be improved by choosing a more robust

renderer/de-renderer module. Similarly, we sometimes get a missing car in a single

frame, which may lead to errors in the calculation of the dangerous score. Currently, we

can only complete modifications with 3 degrees of freedom. These limitations highlight
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the challenges of generating corner cases by data perturbation.

We define “dangerousness” as a superclass consisting of novel, anomalous and

risky behaviors and actions. Our initial set of primitives are intentionally distributed

over anomalous, novel, and risky scenarios. Users generally agree with labels and cat-

egorizations. While we demonstrated DANGER on vKITTI, it can be used with any

autonomous vehicle dataset that supports semantic and 3D annotations with a given

renderer.

We explored the explanations of deeplabv3 resnet50 using Grad-CAM on

our DANGER-vKITTI, and we observed the temporal instability, heatmap amplitude

instability, and instability in synthesized data. We show the vulnerability of models

deeplabv3 resnet50 and XAI metric Grad-CAM. A quantitative study of this error

and instability may be useful for further root cause studies.

In summary, the DANGER framework is a robustness generator for self-driving

car datasets. It is adaptable to multiple types of primitives, and it can cover a wide

range of dangerous levels: novel, risky, and anomalous. Our work has opened a new

area of robustness data generation, where users, stakeholders, and system designers can

identify and easily generate corner cases to augment datasets in order to make them

more robust.
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Chapter 6

Future Work

Future research can be explored in three primary areas. Firstly, visualization

of the 3D model can be achieved using Grad-CAM, facilitating the differentiation be-

tween safe and reckless drivers through the generation of 3D Grad-CAM heat maps in

conjunction with a language model. By obtaining a 3D model for each frame of the

scene using NeRF, it becomes possible to inject more detailed numerical labels into the

data, enabling the generation of finer linguistic descriptions that offer enhanced inter-

pretability in combination with Grad-CAM. Inspired by [48], we can combine the large

language model to localize the dangerous driver or event in the 3D content.

Secondly, improving the accuracy of picture descriptions can be accomplished

by providing more precise labeling information such as car speed, location, color, model,

and other relevant attributes. Current state-of-the-art caption labels only provide ap-

proximate textual descriptions of the scene, e.g., ‘The car pulls over to the right side

of the road.’ Augmenting Grad-CAM’s heat map with more accurate labeling infor-

47



mation, such as ‘This red Toyota Corolla is slowly pulling over to the right side of the

road at 40mph, indicating the driver’s safe behavior,‘ can lead to a more causality-based

artificial intelligence approach.

Lastly, the feasibility of quantifying the difference can be discussed by compar-

ing Grad-CAM with ground truth segmentation overlap ratios. By localizing neurons

corresponding to different driving objects on the road, it is possible to dissect the deep

learning model at a more detailed level, thereby enabling a finer-grained analysis.
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Appendix A

Details of Experiments

A.1 Primitive Generation

In this section, we provide more detailed pictures of primitive generation,

mainly focusing on the visualization of trajectories in the world coordinate system and

the camera coordinate system.

A.1.1 Exit Parallel Parking

In the world coordinate system, we generate the primitive function (blue curve)

at the origin, push it to the target point, and convert to the camera coordinate system.

The pink color in the figure is the original position of the vehicle parked on the side of

the road in the camera coordinate system, while the dark blue point and the light blue

arrow are the converted coordinate points and the vehicle head direction converted to

the camera coordinate system according to the primitives, respectively.
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Figure A.1: Visualization of primitive operation in camera space.

A.1.2 Cut-in Opposite

In the world coordinate system, we generate the primitive function (blue curve)

at the origin and push it to the target starting point shown as the green curve. The

pink color in the figure is the original path curve, while the dark blue point and light

blue arrow are the rotated coordinate point and the direction of the converted car head,

respectively. The following sections color markings are the same.

50



Figure A.2: Visualization of primitive operation in world space.

Figure A.3: Visualization of slalom lane change operation in world space.
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Figure A.4: Visualization of cut-in operation in world space.

A.1.3 Slalom

A.1.4 Cut-in

A.1.5 Brake

Unlike the above method, we simulate the real braking deceleration in the brake

primitive and transform it into the velocity and displacement profile of the vehicle object

by integration. By re-projecting them onto the original driving trajectory in the world

coordinate system, they are then transformed into relative position points in the camera

coordinate system. Our approach is not just to bring the vehicle closer by a distance,

but to pull the original vehicle to the real trajectory points based on the real physical

travel.
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Figure A.5: Braking acceleration based on the parameters input.

Figure A.6: Original and modified speed profile.

Figure A.7: Original and modified travel distance profile
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A.2 JSON file naming

We saved the generated JSON file by the following rule,

<world> <topic> <tid> <prim> variable1#1 variable2#2.json

where

• <world> is the name of a virtual world, which is the sequence number of the

corresponding original “seed” real-world KITTI sequence (0001, 0002, 0006, 0018,

0020) in the 3D Object Detection Evaluation challenge.

• <topic> denotes one of the 10 different rendering variations in terms of imaging

or weather conditions. clone: rendering as close as possible to original real-world

KITTI conditions; morning: typical lighting conditions after dawn on a sunny

day; sunset: lighting typical of slightly before sunset; overcast: typical overcast

weather (diffuse shadows, strong ambient lighting).

• tid The operation will apply to which car object with number ’<tid>’. Please

look up the number under column tid in Table A.1.

• prim Primitive parameters defined in Table A.1, and corresponding value variable#.
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"0001" "0002" "0006" "0018" "0020"

Exit Parking

(tid, xe, ye)

Cut-in Opposite

(tid, f , A)

Slalom

(tid, f , A)

Cut-in

(tid, xe, ye)

Braking

(tid, t1, dt, µ)

Case 1 (63, 4, 1.8) (0, 20, 9) (7, 0.1, 0.5) (1, 6, 4) (6, 5, 2.5, 0.35)

Case 2 (63, 4, 2) (0, 23, 9) (7, 0.1, 1.0) (1, 8, 4) (6, 5, 2.5, 0.2)

Case 3 (63, 4, 2.2) (0, 26, 9) (7, 0.1, 1.5) (1, 10, 4) (6, 5, 2.5, 0.5)

Case 4 (63, 4.5, 1.8) (0, 29, 9) (7, 0.08, 0.5) (1, 6, 3) (6, 5, 4, 0.35)

Case 5 (63, 4.5, 2) (0, 32, 9) (7, 0.08, 1.0) (1, 8, 3) (6, 5, 4, 0.5)

Case 6 (63, 4.5, 2.2) (0, 35, 9) (7, 0.08, 1.5) (1, 10, 3) (6, 5, 4, 0.2)

Case 7 (63, 5, 1.8) (0, 20, 12) (7, 0.12, 0.5) (1, 6, 5) (6, 10, 2.5, 0.35)

Case 8 (63, 5, 2) (0, 23, 12) (7, 0.12, 1.0) (1, 8, 5) (6, 10, 2.5, 0.2)

Case 9 (63, 5, 2.2) (0, 26, 12) (7, 0.12, 1.5) (1, 10, 5) (6, 10, 2.5, 0.5)

Case 10 (70, 4, 1.8) (0, 29, 12) (2, 0.1, 0.5) (2, 6, -4) (6, 10, 4, 0.35)

Case 11 (70, 4, 2) (0, 32, 12) (2, 0.1, 1.0) (2, 8, -4) (6, 10, 4, 0.5)

Case 12 (70, 4, 2.2) (0, 35, 12) (2, 0.1, 1.5) (2, 10, -4) (6, 10, 4, 0.2)

Case 13 (70, 4.5, 1.8) (0, 20, 15) (2, 0.08, 0.5) (2, 6, -3) (6, 2, 2.5, 0.35)

Case 14 (70, 4.5, 2) (0, 23, 15) (2, 0.08, 1.0) (2, 8, -3) (6, 2, 2.5, 0.2)

Case 15 (70, 4.5, 2.2) (0, 26, 15) (2, 0.08, 1.5) (2, 10, -3) (6, 2, 2.5, 0.5)

Case 16 (70, 5, 1.8) (0, 29, 15) (2, 0.12, 0.5) (2, 6, -5) (6, 2, 4, 0.35)

Case 17 (70, 5, 2) (0, 32, 15) (2, 0.12, 1.0) (2, 8, -5) (6, 2, 4, 0.5)

Case 18 (70, 5, 2.2) (0, 35, 15) (2, 0.12, 1.5) (2, 10, -5) (6, 2, 4, 0.2)

Table A.1: Parameters in primitives.
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A sample JSON file that contains the (u, v), zoom, and ry information is listed

as follows:

1 [

2 {

3 "world ": "0018" ,

4 "topic ": "clone",

5 "source ": "00140" ,

6 "target ": "00140" ,

7 "operations ": [

8 {

9 "type": "modify",

10 "from": {

11 "u": "350.3" ,

12 "v": "287.0"

13 },

14 "to": {

15 "u": "247.9" ,

16 "v": "319.6" ,

17 "roi": [ 0, 0, 0, 0]

18 },

19 "zoom": "1.3252036238820235" ,

20 "ry": "0.056247797876731065"

21 }

22 ]

23 },

24 ]
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A.3 Class used in MobileNet-V2

No. Class No. Class No. Class No. Class

1 Road 6 Pole 11 Sky 16 Bus

2 Sidewalk 7 Traffic ligh 12 Person 17 Train

3 Building 8 Traffic sign 13 Rider 18 Motorcycle

4 Wall 9 Vegetation 14 Car 19 Bicycle

5 Fence 10 Terrain 15 Truck

Table A.2: Segmentation classes
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Figure A.8: 0001 clone tid70 epp xe5 ye2.2
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Figure A.9: 0002 clone tid0 cio xe40 ye15
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Figure A.10: 0006 clone tid7 lc f0pt12 A1pt5
60



Figure A.11: 0018 clone tid2 ci xe10 ye5

61



Figure A.12: 0020 clone tid16 br t010 dt4 g0pt35
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