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Abstract

Background—The effectiveness of abating hybridity in a rhesus breeding colony was evaluated.

Methods—STR data from the 2006 to 2015 newborns were analyzed.

Results—Hybridity decreased over successive years. Birth cohorts retained high genetic 

variability without signs of inbreeding and differentiation.

Conclusions—Hybridity was minimized without compromising overall genetic variability.
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Introduction

Most domestic breeding facilities do not knowingly admix Chinese and Indian rhesus 

macaques; a notable exception is the California National Primate Research Center (CNPRC) 

[6, 9]. The CNPRC maximized genetic variation within its colony by introgressing Chinese 

alleles [6, 9, 11, 12] into its colony. However, Indian animals have remained in high demand 

from external investigators and requests for hybrids have declined. These factors and rising 

production costs compelled the CNPRC to ensure that only animals confirmed as pure 

Indian using molecular ancestry and pedigree analyses [5, 6] were used for derivation and 

colony expansion. Since 2006, Chinese and hybrid animals have been prioritized for sale or 

for terminal research in order to limit hybridity and to stabilize overall production and 

population growth. From 2010 onwards adult hybrid males were selectively vasectomized 
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and since 2016 hybrid females were treated with Depo-Provera (contraceptive injections) for 

short term/temporary pregnancy prevention.

Halting hybridity from spreading by systematically eliminating Chinese and hybrid animals 

can potentially cause a loss of genetic variation. Maintaining variability is an important goal 

in genetic management as it ensures each animal’s value in research. By increasing 

heterozygosity and minimizing homozygosity for deleterious alleles, genetic management 

ensures the entire colony’s survivability and productivity.

In this study, genotypes from 14 short tandem repeat markers (STRs) were used to estimate 

the ancestry and genetic diversity of new birth cohorts starting in 2006. The study assessed 

whether mitigating hybridity has adversely affected colony genetic structure and 

composition by analyzing the genetic data of newborns during the 2006–2015 period.

Methods

The National Research Council Guidelines for Use and Care of Laboratory Animals were 

followed. Experimental protocols were approved by the UC Davis IACUC. STR genotypes 

for 6945 animals were generated using methods described in Kanthaswamy et al. [8]. Table 

1 lists the number of newborns in each year that were analyzed. The identity of the birth 

cohort as well as the generation to which an animal belonged was used to investigate 

diachronic changes in genetic composition. Allele numbers (Na), observed heterozygosity 

(OH), expected heterozygosity (EH), inbreeding coefficient (FIS) and pairwise FST (to 

assess the degree of genetic differentiation among birth cohorts) estimates were computed 

using Arlequin v3.5.1.3 [1, 2, 19]. The significance of the pairwise FST estimates was 

determined with a probability distribution constructed from permutation tests (N = 1000) 

with Bonferroni corrections for multiple comparisons [16]. A Bayesian cluster approach to 

illustrate the genetic composition of the birth cohorts was applied using STRUCTURE v. 

2.3.4 [3, 15]. Details on the analysis have been described elsewhere, Kanthaswamy et al. [8, 

10] and Jiang et al. [4].

Results

Sample numbers, Na, OH, and EH values are presented in Table 1. It is known that increased 

inbreeding results in a deficit of heterozygotes. Although annual inbreeding (FIS, Table 1) 

measurements ranged from 0.03 in 2006 and 2007 to 0.01 in 2015, the different birth cohorts 

reflected comparable OH and EH. Na declined by two alleles on average; Na estimates show 

that 16.8 alleles were present in 2006 and then reduced to 14.3 alleles in the 2014 and 2015. 

In accordance with Wright [20], who suggested that values of FST within the range 0 to 0.05 

indicate little differentiation, Table 1 reveals that FST among birth cohorts was negligible 

(range: 0 to 0.0023).

When ancestry estimates included all newborns within a birth cohort, the degree of Chinese 

ancestry (DCA) diminished five-fold from 0.148 in 2006 to 0.027 in 2015 (Table 1). When 

only the DCA of hybrids were considered, an Analysis of Variance (ANOVA) revealed a 

significant (p < 0.05) decline in DCA from 0.419 to 0.226 between 2006 and 2015 (Table 1 

and Figure 1).
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Discussion

This study shows that that serial attrition and replacement of Chinese and hybrid rhesus have 

been successful in reducing hybridity significantly during the 2006–15 period. The 

percentage of hybrids within field cages however have been shown to not have any apparent 

influence on FIS values [9]. As such, the three-fold decline in FIS across birth cohorts from 

2006 (0.032) to 2015 (0.11) is probably caused by the removal of Chinese rhesus, many of 

whom are close relatives who descended from grandparents that were imported from China 

in the 1990s [13]. In cases where entire families of Chinese animals were housed (such as 

field cage NC17) [9], the disbanding of those animals would have had a greater impact on 

FIS values.

Intergenerational allelic and genetic diversity indices have remained largely stable with no 

genetic differentiation among birth cohorts. Pairwise FST estimates suggest that annual 

newborns have remained undifferentiated reflecting overlaps of common alleles among 

different birth cohorts. The birth cohorts retained mean Na, OH, and EH values that were 

approximately 60%, 8%, and 11%, respectively, more than the estimates generated from 

Indian origin animals at the Caribbean Primate Research Center (CPRC) [10]. These 

findings agree with colony-wide data from other breeding facilities that the CNPRC animals 

consistently displayed greater variation [14]. These observations suggest that serial attrition 

and replacement of these Chinese and hybrid rhesus have no adverse genetic impact on the 

colony.

Allele numbers have remained consistent for all but 2014 and 2015, suggesting that effects 

of genetic drift are probably taking hold by eliminating rare alleles. Closed breeding 

programs often experience drift and genetic loss [6, 7]. A solution to neutralize drift and 

replace lost alleles is to introduce animals of Indian descent from other facilities. The infant 

swap program pioneered by the CNPRC can further foster the distribution of variation 

throughout the breeding colony [17].

The genetic structure and composition of birth cohorts suggest that annual newborns have 

not genetically diverged. The genetic diversity of the birth cohorts is an important genetic 

resource for future breeding programs, which should be maintained in the CNPRC breeding 

stock. Molecular and pedigree analyses are important and useful in the genetic management 

of captive breeding colonies, and in the case of the CNPRC these approaches are critical for 

future breeding programs.
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Figure 1. 
ANOVA shows that annual DCA estimates among hybrids in 2014 and 2015 were 

significantly (p < 0.05) lower than 2006. n is hybrid sample number and CI is confidence 

interval. The graph was plotted using the gplots package in R [18].
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