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Information and Predict Physical Gas Saturations
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and Igor Yashayaev5

1School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 2School of Oceanography,
University of Washington, Seattle, WA, USA, 3Scripps Institution of Oceanography, University of California, San Diego,
La Jolla, CA, USA, 4Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA,
5Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

Abstract Dissolved gas distributions are important because they influence oceanic habitats and Earth’s
climate, yet competing controls by biology and physics make gas distributions challenging to predict.
Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases
away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate
a technique to quantify physical processes. Our analysis shows that water-mass formation can be
represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium
balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these
physical processes from our measurements, allowing direct comparison to gas exchange parameterizations,
and predict the physically driven saturation of other gases. This technique produces predictions that
reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be
∼6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

Plain Language Summary Gases dissolved in the ocean are important because they influence
oceanic habitats and Earth’s climate. Physics and biology combine to control the amounts of gases like
carbon dioxide, oxygen, and nitrogen in the ocean. Our research seeks to disentangle and quantify the
competing effects of physics and biology on dissolved gases. We present very precise measurements of
dissolved noble gas concentrations (neon, argon, and krypton) in the Labrador Sea, one of the few places
on Earth where the surface and deep ocean communicate with each other. Because noble gases have no
biological function, responding only to physical processes in the ocean, we use these measurements to
discover the amounts of physical processes that affect gases during the winter at this site, like rapid cooling
of the water or bubbles injected by breaking waves. From these amounts of physical processes, we calculate
the concentrations of nitrogen and chlorofluorocarbons if only physical processes affected these gases. Our
work will allow oceanographers to better estimate the rate that bioavailable nutrients are being removed
from the ocean (a process that biologically creates nitrogen gas) and to better determine how the ocean
moves from observations of changing chlorofluorocarbons in the ocean.

1. Introduction

Observations of dissolved gases in the ocean can be used to quantify processes from biological production
to ventilation and mixing. Both physical and biological processes drive oxygen, nitrogen, and carbon concen-
trations. If the influences of physics and biology can be separated, net community production rates can be
derived from oxygen distributions and denitrification rates from nitrogen (e.g., Chang et al., 2012; Hamme
& Emerson, 2006). Physical processes also control the carbon solubility pump, so constraints on these pro-
cesses are needed to assess model ventilation (Nicholson et al., 2010, 2016; Toggweiler et al., 2003). Using
chlorofluorocarbons (CFCs) to quantify the ventilation age of thermocline waters requires accurate estimates
of their surface concentrations during subduction (e.g., Stöven et al., 2016), also driven by physical air-sea
exchange processes.

Physical processes at the air-sea interface can be quantified using noble gases, which are biologically inac-
tive and have constant dry atmospheric concentrations (Stanley & Jenkins, 2013). Their different solubilities,
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temperature dependencies, and diffusivities force each to respond differently to bubble dissolution, temper-
ature changes, and gas exchange. The groundwater community has long used noble gases to quantitatively
separate physical processes, especially to derive paleotemperatures (e.g., Aeschbach-Hertig et al., 2000;
Stute et al., 1992). Ocean measurements have been used to develop air-sea gas exchange parameterizations
(Stanley et al., 2009), to determine glacial meltwater fractions (Hohmann et al., 2002; Loose et al., 2016), and
to correct oxygen-based estimates of productivity rates (e.g., Spitzer & Jenkins, 1989). Here, using noble gas
measurements from the Labrador Sea, we develop a technique to quantify air-sea interactions and predict
physically driven saturations of other gases.

2. Methods

Sampling was conducted on the AR7W hydrographic line across the Labrador Sea in May 2007, 2011, 2015, and
2016 and from an August 2015 GEOTRACES cruise. Noble gases from 2007 were analyzed at Scripps Institution
of Oceanography (SIO) following Hamme and Severinghaus (2007) with no Ne analyses, while the rest were
analyzed at University of Victoria (UVic) following a similar method. Briefly, duplicate water samples were col-
lected into preevacuated 180 mL glass flasks until half full. Starting in 2011, samples were vacuum preserved
at sea and in the lab by connecting the flask necks to a vacuum pump. Back in the lab, flasks were weighed
and the water extracted after equilibration with the headspace. Headspace gases were purified through
a trap at −85∘C, gettered to remove all gases except noble gases, mixed with 38Ar for isotope dilution and
a balance gas of either N2 (2007) or He (2011–2016), and analyzed for Ar isotopes and Ne/Ar/Kr ratios on a
dual-inlet isotope-ratio mass spectrometer. Samples from 2015 AR7W were not properly vacuum preserved,
resulting in >1.5% higher Ne than other results, so we excluded them. From comparison to previous data, Ar
and Kr do not appear affected, likely because these gases have lower diffusivities (Sturm et al., 2004). We dis-
play these 2015 Ar and Kr data but do not perform quantitative calculations with them. The pooled standard
deviations of the duplicates in this data set were 0.31% for Ne, 0.09% for Ar, and 0.12% for Kr. We excluded
samples without duplicates or for which the duplicate standard deviation exceeded 3 times the pooled
standard deviation.

We collected separate samples for N2/Ar ratio measurements on the 2007–2015 cruises in a similar manner.
Samples from 2011 to 2015 were cryogenically purified through liquid N2 and analyzed by mass spectrometry
(Emerson et al., 1999; Hamme & Emerson, 2013). Values were corrected for oxygen content differences
between sample and standard based on standards with known O2/N2/Ar ratios. Most 2011 samples were
analyzed at University of Washington, while some 2011 and all 2015 samples were analyzed at UVic, with no
detectable offsets. Samples from 2007 were purified with heated copper to remove oxygen and analyzed at
SIO (Kobashi et al., 2008). For 2011–2015 samples, the pooled standard deviation of N2/Ar duplicates was
0.078%. We excluded samples without duplicates or for which the duplicate standard deviation exceeded
3 times 0.074%. We show 2007 samples, despite not being collected in duplicate, because the excellent
reproducibility between methods points to low bias.

Because these gas concentrations are close to equilibrium and that deviation contains the key information,
we present the data as the saturation anomaly; for example,

ΔNe =
[Ne]meas

[Ne]equil
− 1, (1)

whereΔNe is graphically displayed in percent (×100), [Ne]meas is the measured Ne concentration, and [Ne]equil

is the Ne concentration at equilibrium with 1 atm pressure for the potential temperature and salinity of the
water (Bullister et al., 2002; Hamme & Emerson, 2004; Warner & Weiss, 1985; Weiss & Kyser, 1978). We present
the saturation anomaly for the gas ratio N2/Ar similarly with (N2/Ar) replacing Ne in equation (1) (Hamme &
Emerson, 2013).

We interpret our results using both a simple mixed-layer model and an Earth system model. The mixed-layer
model incorporates seasonal cooling and air-sea gas exchange in a single layer with constant depth. The
Community Earth System Model (CESM), version 1.2, simulates inert gases in a three-dimensional ocean gen-
eral circulation model based on POP2 (Long et al., 2016) (supporting information). It computes air-sea gas
exchange following Wanninkhof (1992) with an additional small bubble flux following Ito et al. (2011). Gas
tracers were initialized using a Newton-Krylov technique for accelerating spin-up (Lindsay, 2017).
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Figure 1. Depth profiles of (a) neon, (b) argon, and (c) krypton saturation anomalies (%) in the Labrador Sea. Color
indicates cruise and year, while shape indicates water mass. X axis range is 3.4% in all three panels. Measurements
shallower than 200 m excluded. (d) Symbols show potential temperature (∘C) versus salinity (PSS-78) for these samples,
while lines show full profiles from the same casts.

3. Observations

The noble gases show consistent patterns in Labrador Sea deep waters. Neon is supersaturated, while argon
and krypton are undersaturated (Figure 1). Several deep water masses exist here: Labrador Sea Water formed
by local deep convection, as well as Icelandic Slope Water and NE Atlantic Deep Water characterized by deep
salinity maxima and Denmark Strait Overflow Water at the bottom with a temperature minimum, all three of
which form by convection and mixing outside the Labrador basin (Yashayaev, 2007). There are small differ-
ences in noble gases between these waters, with argon and krypton tending to be lowest in Denmark Strait
Overflow Water and highest in Icelandic Slope Water and NE Atlantic Deep Water. Neon does not show this
pattern, perhaps because of lower analytical precision. We also sampled Irminger Current water in the bound-
ary current around SW Greenland. This shallower water mass (∼400 m) convectively formed in the Irminger
Sea (Yashayaev, 2007) has lower saturation anomalies for all three gases. Although we collected samples in
spring and summer, measured saturation anomalies should represent the end of winter convection when the
water is isolated from atmospheric interaction. Yashayaev and Loder (2016) show that salinity and temper-
ature evolve only slightly in Labrador Sea Water from the end of convection to summer, and we detect no
changes between our spring and summer 2015 cruises.

4. Impact of Physical Processes on Noble Gases

Physical processes push noble gas saturation anomalies away from equilibrium by different amounts depend-
ing on gas properties. This allows noble gases to serve as quantitative tracers of atmospheric pressure
variation, temperature change, and bubble-mediated gas exchange (Figure 2).
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Figure 2. Vectors showing the expected impact of different
processes on (a) neon versus argon saturation anomaly and
(b) krypton versus argon saturation anomaly. Lines show the
direction a given process would force gas saturation anomalies away
from equilibrium (the origin). Symbols show same data as Figure 1.

First, gas saturation anomalies are calculated with respect to equilibrium with
an atmospheric pressure of 1 atm. In regions like the Labrador Sea, mean winter
atmospheric pressures are lower. When gases equilibrate with lower atmospheric
pressures, their calculated saturation anomalies appear lower but all by the same
amount, so atmospheric pressure variation affects gases in a 1:1 ratio (Figure 2,
gray lines).

Second, temperature change affects saturation anomalies through changing the
expected equilibrium concentration, not the actual concentration. Gases are
more soluble in cold water, with Ne having the least temperature sensitivity
and Kr the most. Therefore, cooling draws down Kr saturation anomalies more
strongly than Ar and Ar more strongly than Ne. Cooling alone moves gas satura-
tion anomalies along the thin green lines in Figure 2. However, as cooling occurs,
diffusive gas exchange at the air-sea interface brings gas saturation anomalies
back toward equilibrium. When these processes balance, a quasi steady state
occurs as cooling draws down saturation anomalies at the same rate that diffusive
gas exchange increases them. Neon with the highest diffusivity is driven toward
equilibrium more rapidly, while Kr with the lowest diffusivity is affected less; this
effect changes the cooling line slope for a quasi steady state to the thick green
lines in Figure 2.

Third, breaking waves push air bubbles beneath the surface, where higher pres-
sure encourages dissolution. Small dissolving bubbles strongly increase the sat-
uration anomaly of low-solubility gases, because there is relatively little of these
gases already present in the water (Craig & Weiss, 1971; Hamme & Severinghaus,
2007). Neon is least soluble and Kr most soluble, so small bubbles increase Ne sat-
uration anomalies relative to Ar and Ar relative to Kr (Figure 2, thin orange lines).
Again, diffusive gas exchange acts to return gases toward equilibrium. A steady
state is reached when small bubble dissolution increases gas concentrations at
the same rate that diffusive gas exchange decreases them, changing the small
bubble slope for a steady state to the thick orange lines in Figure 2. Fluxes of gases
from large bubbles that exchange only a portion of their gases with the water
before returning to the surface are less affected by gas solubility and more by dif-
fusivity. In Figure 2, we demonstrate their effect in the black lines based on the
Liang et al. (2013) parameterization. At steady state, the effect of large bubbles
(thick black lines) is nearly indistinguishable from higher atmospheric pressure.

Finally, several processes that affect noble gas saturation anomalies in other loca-
tions are likely not significant in the central Labrador Sea. Glacial ice melt is
important to explaining noble gas signatures in the Southern Ocean (Hohmann

et al., 2002; Loose et al., 2016) and in glacial fjords (Beaird et al., 2015). Sea ice formation affects gases by
partitioning gases among bubbles, ice, and brine (Postlethwaite et al., 2005). However, waters in the cen-
tral Labrador Sea form by open ocean convection, with glacial and sea ice melt largely confined to the
boundary currents (Myers, 2005). Meltwater that makes its way to the center does so at the surface, where
gas exchange erases its signature. Because equilibrium concentrations of noble gases are curved functions
of temperature, mixing between waters of very different temperature increases gas saturation anomalies
(Emerson et al., 2012; Ito & Deutsch, 2006). During deep convection, the water brought into the mixed layer
has a similar temperature, so that vertical mixing should not significantly increase gas saturation anomalies
by this mechanism.

5. Quantifying Physical Processes

We next calculate the amount of each process necessary to explain the observations. No one process explains
our data, because no single process causes both Ne supersaturation and Ar undersaturation (Figure 2). Instead,
we consider a combination of processes in a mixed-layer model, with two cases excluding or including diffu-
sive gas exchange. Hamme and Emerson (2002) showed that diffusive gas exchange acting to return gases
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toward equilibrium is needed to explain oceanic inert gas saturation anomalies. However, recent papers have
interpreted noble gas data without this effect (Loose et al., 2016), so we evaluate both approaches.

Our mixed-layer model interacts with the atmosphere but does not entrain or mix with other waters. This
framework avoids assumptions for subsurface gas concentrations but oversimplifies a deeply convecting site.
The drawbacks of this practical approach are reduced in the Labrador Sea, where the previous winter’s con-
vection produces a relatively homogeneous water mass, reducing the impact of vertical exchange. In fact, our
observations of Labrador Sea Water represent the integrated effect of multiple winters’ convection, such that
the time scale for surface fluxes to act on the water mass is longer than a single winter.

In the first case, we exclude diffusive gas exchange, following Loose et al. (2016) but with the addition of
large bubbles. The saturation anomaly of a generic gas, C, that begins at equilibrium with a specific atmo-
spheric pressure and large bubble overpressure and then is pushed away from equilibrium by constant rates
of cooling and small bubble dissolution is as follows:

ΔC =
{

PSLP

PATM
− 1 + ΔP

}
+
{
−dT

dt
𝛿t
}(d[C]equil

dT
1

[C]equil

)
+
{

kc𝛿t

h

}(
𝜒C

[C]equil

)
, (2)

where ΔC is the saturation anomaly (equation (1)), PSLP∕PATM is the ratio of sea level pressure to standard
atmospheric pressure (unitless), dT∕dt is the rate of temperature change (∘C s−1), 𝛿t is the change in time (s),
kC is the rate of small bubble air dissolution (mol m−2 s−1) and should depend heavily on wind speed, h is
the surface layer depth (m), and 𝜒C is the atmospheric mole fraction (see the supporting information for a
derivation). We represent large bubbles as an average fractional overpressure in the bubbles, ΔP (unitless).
This implies that large bubbles affect each gas identically, which is not strictly true. However, large bubbles
and atmospheric pressure are similar in their effects (Figure 2), so we combine them. The terms in curly braces
are gas independent, whereas the terms in rounded parentheses combine all gas-dependent terms such as
solubility and atmospheric mole fraction. The ratio of the terms in parentheses define the slopes of the thin
lines in Figure 2. Writing equation (2) for each of our three gases, we solve for the three gas-independent terms
in curly braces.

In the second case, we include diffusive gas exchange in our mixed-layer model as a flux parameterized by
ks([C]equil

PSLP

PATM
−C). We follow Emerson and Bushinsky (2016) to solve for a quasi steady state where cooling and

bubble fluxes pushing gases away from equilibrium are balanced by diffusive gas exchange pushing gases
back toward equilibrium, such that surface gas saturation anomalies are relatively constant. Following Liang
et al. (2013), we parameterize large bubble fluxes as kp((1 + ΔP)[C]equil − [C]), except we assume kp has a 0.5
dependence on the Schmidt number rather than 0.67, which simplifies the final equation.

ΔC =
{

PSLP

PATM
− 1 +

ΔPkp,660

ks,660 + kp,660

PSLP

PATM

}

+

{
h

PSLP

PATM

dT
dt

(
1

ks,660 + kp,660
+

ΔPkp,660(
ks,660 + kp,660

)2

)}(
−
( Sc

660

)0.5 d[C]equil

dT
1

[C]equil

)

+
{

kc

ks,660 + kp,660

}(( Sc
660

)0.5 𝜒C

[C]equil

)
,

(3)

where ks,660 is the diffusive gas transfer velocity for a gas with Schmidt number 660 (m s−1), kp,660 is the large
bubble gas transfer velocity for Schmidt number 660 (m s−1), and Sc is the gas’s Schmidt number (see the
supporting information). The ratio of the terms in parentheses defines the slope of the thick lines in Figure 2.
Again, writing equation (3) for each of our three gases, we solve for the terms in curly braces.

The first case with equation (2), which excludes diffusive gas exchange, yields atmospheric pressure plus large
bubble overpressures of 2.1% above one atmosphere (+2.1 ± 0.7 %), wintertime cooling of −1.4 ± 0.2∘C,
and essentially no small bubble-induced flux (0.002 ± 0.003 mol m−3) (Figure 3). Conversely, the second case,
including the effects of diffusive gas exchange in a quasi steady state, yields atmospheric pressures plus large
bubble overpressures of 1.0% below 1 atm (−1.0±0.3%), cooling of−0.35±0.06 ∘C, and a small bubble contri-
bution of 0.010± 0.002 mol m−3. Observed wintertime atmospheric pressures in the Labrador Sea convection
region are below 1 atm: −1.3% in January to −0.5% in March (1981–2010 National Centers for Environmental
Prediction (NCEP) reanalysis (Kalnay et al., 1996)), which is clearly closer to the model that includes diffu-
sive gas exchange. Measured wintertime temperature changes are about −4∘C, which is a larger decrease
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Figure 3. Solutions for gas-independent terms causing saturation anomalies from 2011 and 2016 AR7W and 2015
GEOTRACES noble gas data. Symbols indicate cruise and water mass. Lighter colors indicate the first case excluding
diffusive gas exchange (equation (2)), while darker colors indicate the second case including diffusive gas exchange
(equation (3)). Each panel plots the terms in curly braces in these equations, so the two solutions are not directly
comparable. (a) Contribution of atmospheric pressure and large bubble overpressure (unitless), (b) contribution of
temperature change (∘C), and (c) contribution of small bubbles (mol m−3).

than either model estimate, but the temperature terms enclosed in the curly braces of equation (3) include
more than just temperature change, so it is not appropriate to compare this result with that of equation (2) or
with the observations.

We judge how realistic the noble gas derived small bubble fluxes are by comparing Figure 3c with the
wind speed-dependent parameterization of Liang et al. (2013). Using 2006–2015 6 h Cross-Calibrated
Multi-Platform v2 10 m wind speeds (CCMPv2) (Atlas et al., 2011), we calculated the wind speed frequency dis-
tribution for each winter month in the Labrador Sea convective region. We then calculated the small bubble
term, kc∕(ks,660 + kp,660), using the Liang et al. (2013) parameterization at each wind speed and summed the
contributions over the frequency distributions to arrive at an average value. This calculation based on wind
speed frequencies accounts for the nonlinear dependence of gas flux terms on wind speed, which a monthly
averaged wind speed would not. The wind speed and Liang et al. (2013)-derived value for kc∕(ks,660 + kp,660)
is 0.005–0.006 mol m−3, which indicates that a measurable small bubble flux is necessary to account for the
noble gas measurements and thus agrees more closely with the results that include diffusive gas exchange
using a quasi steady state (equation (3)). The wind speed-determined small bubble term is lower than that
determined from the noble gas data and equation (3) (0.010 ± 0.002 mol m−3), likely indicating that the quasi
steady state model overestimates the importance of small bubble fluxes. While the exposure of deep waters
to the surface over several winters in a site like the Labrador Sea allows gases to approach a quasi steady state,
it is reasonable to expect that a true steady state is not achieved before the deep mixed layer is isolated from
the atmosphere. In regions with shallower winter mixed layers, a quasi steady state may be achieved allowing
noble gases to act as an effective test of competing gas exchange parameterizations.

6. Predicting Other Gases

We can predict the impact of physical processes on other gases by writing equation (2) or (3) for another gas
and solving for its saturation anomaly. One goal of our noble gas work is to predict physical background levels
of the N2/Ar ratio from which biological N2 from denitrification can be distinguished. In the central Labrador
Sea, oxygen levels are too high for water column denitrification, and benthic denitrification is largely confined
to the shelves and boundary currents (Bianchi et al., 2012), so here we can use N2/Ar measurements to test
our prediction technique.

Including diffusive gas exchange strongly affects predictions of physical ΔN2/Ar (Figure 4a). The mean of
ΔN2/Ar predictions for deep waters was 0.36 ± 0.22% for the first case excluding diffusive gas exchange and
1.18 ± 0.36% for the second case at quasi steady state. Observations average at 0.83 ± 0.11%, between the
two cases but closer to the quasi steady state, illustrating the impact of diffusive gas exchange in driving
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ocean gas saturation anomalies. N2 is half as soluble as Ar, so small bubble dissolution strongly supersaturates
ΔN2/Ar (Hamme & Emerson, 2013). This tracer highlights the difference in the importance of small bubbles
between the two cases (Figure 3) and is consistent with the suggestion that the quasi steady state model
overemphasizes the importance of small bubble processes.

We test our technique using inert gas distributions simulated in CESM. We solved equations (2) and (3) for
the gas-independent terms using simulated Ne, Ar, and Kr and then predicted ΔN2/Ar. In Labrador Sea Water,
predictedΔN2/Ar values were very similar to those predicted from our noble gas observations, 0.28% without
diffusive gas exchange, and 1.10% for the quasi steady state (Figure 4b). Directly simulated ΔN2/Ar values of
1.02% fall close to the quasi steady state prediction.

We can also predict the physically driven saturation anomalies of CFCs and SF6. Recently, Stöven et al. (2016)
suggested that bubble dissolution might explain elevated SF6 measurements. Our predictions do not cap-
ture the time-dependent evolution of these transient tracers but do provide insight into time-independent
physical processes. We predicted CFC-11, CFC-12, and SF6 saturation anomalies as if these gases had constant
atmospheric concentrations. All three gases have very temperature-dependent solubilities, more than twice
Kr’s. CFC-11 and CFC-12 are both quite soluble, so less affected by small bubble dissolution, whereas SF6 is
even less soluble than Ne, so strongly affected by small bubbles. Our calculations based on a quasi steady
state show that SF6 in Labrador Sea Water would be 6.2 and 6.8 % more supersaturated than CFC-12 and
CFC-11, respectively, if these gases had constant atmospheric levels. While likely not a big enough difference
to explain the large discrepancies in Stöven et al. (2016), such differences should be considered in transient
tracer calculations.

7. Conclusions

Noble gas observations provide a powerful means to quantify the effect of physical processes on dissolved
gases and to separate biological from physical impacts on gases like oxygen, nitrogen, and carbon. A quasi
steady state that balances bubble fluxes, temperature change, atmospheric pressure change, and diffusive
gas exchange better describes noble gas observations in the Labrador Sea than a model excluding diffusive
gas exchange. This conclusion is supported by both the comparison between observed N2/Ar and that pre-
dicted by the noble gas observations in a quasi steady state and by the correspondence between small bubble
fluxes evaluated from the noble gas observations and those calculated from the wind speed parameteriza-
tion of Liang et al. (2013). The technique of Loose et al. (2016), neglecting diffusive gas exchange, does not
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yield realistic solutions with our data set. In the Labrador Sea, winter atmospheric pressures vary widely, so
we must solve for this term in combination with large bubble fluxes, rather than a priori correcting gas sat-
uration anomalies for atmospheric pressure. Alternatively, the temperature and bubble terms can be solved
for using gas ratios, which are not affected by atmospheric pressure, and this approach yields the same result
as our technique. The model that best fits the noble gas distributions suggests that the preformed satura-
tion anomaly expected for SF6 is ∼6% higher than that of CFC-11 or CFC-12 in the Labrador Sea. The largest
uncertainty in our work is the extent to which deeply convecting water exposed to the atmosphere over mul-
tiple winters reaches quasi steady state before winter’s end. Applying our techniques to measurements from
water mass formation regions with shallower winter mixed layers should be even more effective and may
allow evaluation of competing gas exchange parameterizations.
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