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Abstract: The fate of water and water-soluble toxic wastes in the subsurface is of high importance
for many scientific and practical applications. Although solute transport is proportional to water
flow rates, theoretical and experimental studies show that heavy-tailed (power-law) solute transport
distribution can cause chemical transport retardation, prolonging clean-up time-scales greatly.
However, no consensus exists as to the physical basis of such transport laws. In percolation theory,
the scaling behavior of such transport rarely relates to specific medium characteristics, but strongly to
the dimensionality of the connectivity of the flow paths (for example, two- or three-dimensional, as
in fractured-porous media or heterogeneous sediments), as well as to the saturation characteristics
(i.e., wetting, drying, and entrapped air). In accordance with the proposed relevance of percolation
models of solute transport to environmental clean-up, these predictions also prove relevant to
transport-limited chemical weathering and soil formation, where the heavy-tailed distributions slow
chemical weathering over time. The predictions of percolation theory have been tested in laboratory
and field experiments on reactive solute transport, chemical weathering, and soil formation and
found accurate. Recently, this theoretical framework has also been applied to the water partitioning
at the Earth’s surface between evapotranspiration, ET, and run-off, Q, known as the water balance. A
well-known phenomenological model by Budyko addressed the relationship between the ratio of the
actual evapotranspiration (ET) and precipitation, ET/P, versus the aridity index, ET0/P, with P being
the precipitation and ET0 being the potential evapotranspiration. Existing work was able to predict
the global fractions of P represented by Q and ET through an optimization of plant productivity, in
which downward water fluxes affect soil depth, and upward fluxes plant growth. In the present
work, based likewise on the concepts of percolation theory, we extend Budyko’s model, and address
the partitioning of run-off Q into its surface and subsurface components, as well as the contribution
of interception to ET. Using various published data sources on the magnitudes of interception and
information regarding the partitioning of Q, we address the variability in ET resulting from these
processes. The global success of this prediction demonstrated here provides additional support
for the universal applicability of percolation theory for solute transport as well as guidance in
predicting the component of subsurface run-off, important for predicting natural flow rates through
contaminated aquifers.

Keywords: subsurface hydrology; percolation theory; solute transport; chemical weathering; water
balance
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1. Introduction and General Background

The fate of water falling on the surface of the Earth as precipitation is the central issue of hydrologic
sciences [1–6]. The partitioning of water between its various components and pathways is crucial
to processes such as soil erosion, soil production, and vegetation growth and productivity, as well
as flooding and water resources. The hydrologic cycle interference by humans is high due to the
competition of all manner of demands on water as well as the desire to utilize the Earth’s surface to its
fullest potential. In keeping with requirements of efficiency, intervention, in the sense of irrigation and
impoundment, peaks downstream, when flow is focused. The water cycle represents simultaneously a
critical input to human society as well as to the sciences of geology, ecology, and global biogeochemical
cycles [7].

Water paths at the Earth’s surface are intimately linked with evapotranspiration, infiltration, and
run-off, as well as with the subsurface–atmospheric carbon cycle. Water that flows into the subsurface
drives the weathering of topsoil, subsurface sediments, and underlying bedrock. Weathering rates
are limited chiefly by the ability of water to transport weathering products from the weathering front
through the subsurface into streams (e.g., [8–11]). There is a strong analogy between this transport
process and the ability of water to transport contaminants away from their subsurface concentrations.
Weathering of the dominant (mainly, silicate) minerals on the Earth’s surface through interaction with
dissolved CO2 and organic acids represents by far the largest sink for atmospheric carbon [12]. In
contrast, [13] hypothesized that the silicate weathering’s share to atmospheric CO2 sink has been
overestimated, indicating the presence of other sources of atmospheric CO2. Due to rapid kinetics,
carbonate weathering in the short term might be significant in controlling the climate (even though the
net drawdown by this pathway is zero). Vegetation growth and production of plant material represents
a much more rapidly varying sink for atmospheric carbon, although with far less total sequestration [12].
Weathering of rocks to their products typically enables physical erosion as well [14–18] thus placing
constraints on the rock mineralogical cycle, deep water cycle, and deep carbon cycle. Water importance
in all these processes should not be underestimated. Since the rate of each of these processes depends
on the magnitude of the associated water fluxes [19–23], understanding the partitioning of water into
these fundamental fluxes will help future modeling efforts to generate reliable predictions of both
these fluxes and their associated processes. In an operational perspective, the soil–water balance can
be represented simply in terms of a mass conservation law. However, it is desirable to determine
what fraction of the precipitation follows each specific pathway through the environment. A more
challenging problem is to predict how these precipitation fractions depend on climate along various
gradients. Such a prediction may be adaptable to employment in climate change models as well as to
understanding current results.

The basis of predictions of solute transport through the soil is the evaluation of the water balance,
both affecting abiotically the process of chemical weathering and associated soil formation [24,25], and
biotically, the process of plant growth. Incorporating the effects of these processes, which depend
on the run-off, Q, and the evapotranspirative water flux, ET, respectively, allows one to optimize
the net primary productivity (NPP) of an ecosystem with respect to ET. For example, in [26], the
globally-averaged value of ET was predicted as a fraction of P. In addition, in [27] further strong
support was provided for the use of universal principles of percolation theory for predictions of
solute transport.

2. Objectives

To understand the magnitudes of Q and ET, including both their variability at a given aridity
index and their dependence on aridity index, the goal of current publication is to address the surface
and subsurface components of Q and the relative contributions of interception and transpiration for ET.

A previous publication, [26] by one of us addressed the partitioning of ET into transpiration and
evaporation off bare ground for ET0/P� 1, while, in the current paper, we address partitioning of
ET into evaporation and transpiration for ET0/P� 1. Division into components of evaporation and
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surface run-off, which do not intersect the carbon cycle meaningfully, and transpiration and subsurface
run-off, which do, would make our treatment more compatible with research into the carbon cycle and
its interactions with the water cycle under various scenarios of climate change.

In the following, we first summarize the basic arguments that led to a solution for ET/P and
generated a result in accordance with the global mean value. Then, a brief overview of how that
solution was extended to generate ET/P for any range of ET0/P values together with a short discussion
of how the solution can be extended to give a predicted range of ET/P values for any particular value
of the ET0/P parameter. Next, we present the extension to address the partitioning of Q as well as ET.

3. Budyko Theory

Budyko [28,29] noted certain formal similarities between the water budget and the energy budget.
Based on these ideas, Budyko then proposed a potential analytical solution that should give the
fraction of water that is returned to the atmosphere as ET as a function of a ratio of incident solar
energy to precipitation. However, to establish the analogies that led to the solution, Budyko had to
simplify the problem, lumping both physical evaporation and plant transpiration into a single variable,
evapotranspiration (ET), and surface and subsurface run-off into the quantity run-off (Q).

Budyko’s [28,29] formulation is the starting point for the present work. In contrast to a previous
effort [26], which addressed primarily the variation of ET as a function of climate and then the variability
of ET at a given climate index, we investigate here an expansion of the technique to allow for separate
treatments of surface and subsurface run-off as well as the partitioning of evapotranspiration into
evaporation and transpiration. Consequently, we also have to extend the fundamental equation for
the water balance that was treated by [28,29]. Many possible such extensions could be formulated,
depending on how finely the distinctions between the various water paths are examined.

In Budyko’s simple form (all quantities given as rates), the water balance is represented by,

P = Q + ET +
dS
dt

(1)

where P is the precipitation and dS/dt is the rate of change of water storage in the subsurface. Typically,
such quantities are measured or inferred over times of years or longer. It is common to consider
(i.e., average over) a period of time sufficiently long that 〈dS/dt〉 can be assumed to be zero. Here, the
brackets 〈 〉 signify temporal averaging. Setting 〈dS/dt〉 = 0 yields,

〈P〉 = 〈Q〉 + 〈ET〉 (2)

The assumption that 〈dS/dt〉 = 0 will likely be inaccurate over relatively short time periods, which
may introduce some uncertainties into predictions and a comparison of theory and observations. For
example, when significant extraction of fossil (e.g., Pleistocene) groundwater reserves is utilized for
agriculture in areas where climate in the Holocene has become significantly more arid, 〈dS/dt〉 will
be negative and non-negligible. Otherwise, it was assumed [30] that neglecting 〈dS/dt〉 requires only
considerable time to be reasonably accurate. According to those authors, although twenty years is not
sufficient to smooth out fluctuations in storage, a 50-year record is normally adequate. Climate change,
if rapid, could still complicate establishment of such a criterion.

What values of the time period(s) should one adopt for calculations of 〈ET〉 and 〈Q〉? This depends
on the physical location and climatic conditions. We are interested first in the global average.

“In the continental United States, approximately 2/3 of all rainfall delivered is lost to
evapotranspiration” [31,32]. Yin et al. [33] however, “show that North American Regional Reanalysis
data overestimate surface evaporation”. Recent results for global 〈ET〉 [34,35] give, respectively, 0.639
and 0.634. “Over 61% of rainfall is lost to evapotranspiration, so mapping its variance is an important
part of understanding the global water cycle.” [36]. Other estimates of terrestrial ET/P are about
59% [37], 61% [38–40], and 67% [41]. A simple mean of these eight global results (assuming “over
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61%” = 62%) yields ET/P = 0.623 ± 0.025. An earlier meta-study [42], which surveyed six published
results [28,43–47] generated a mean ET/P = 0.645 ± 0.044. The overall mean of all 14 studies is
ET/P = 0.632; either way, the fraction of P returned to the atmosphere by evaporation is significantly
larger than the fraction going to run-off, although the trend in the data makes it look as though the
fraction is less than 2/3 and declining. Jung and Reichstein [48] in fact, suggested that 〈ET〉 as a
function of 〈P〉 has been varying since the 1970s and has more recently been declining due to depletion
of soil moisture. Although the two quoted meta-results appear to support such a decline, in fact,
they do not differ statistically, considering that the small difference in means (0.022) lies within the
standard deviation of either. Further discussion requires introduction of the parallel concept of an
energy balance.

The radiation budget at the terrestrial Earth’s surface is written in a similar fashion to the water.
In steady-state, what incident radiation (R) cannot be accommodated through the evaporation of water
is transmitted away from the surface as heat, H.

R = ET·L + H (3)

where R is the radiant energy incident on the surface and L is the latent heat of water. We should point
out that neither long-term changes in the surface temperature nor melting of constituents (such as ice
and glaciers) are accounted for in Equation (3). Ignoring such change is equivalent to setting yearly
and multi-decadal averages of the radiative variables equal. Thus, while a distinction between yearly
values of the radiative variables and their long-term averages could be made, it is of little significance
as long as climate change is not addressed explicitly. Division by L leads to,

R
L
≡ ET0 = ET +

H
L

(4)

In Equation (4), the quantity ET0 is known as the potential evapotranspiration and corresponds to
how much water could be evaporated if all the radiant energy falling on the Earth’s surface caused
water evaporation. If ET0 = 〈P〉, it is possible for all the precipitation falling to the Earth to be
evaporated and simultaneously for all radiant energy to be consumed in the process of evaporating
water. Thus, both H in Equation (4) and 〈Q〉 in Equation (3) could be zero. Such an idealization is, of
course, never realized, as it would require ET0 = 〈P〉 in essentially every time period. With an increase
in 〈P〉 (or decrease in ET0), 〈Q〉must be non-zero. This condition is known as energy-limited. With a
decrease in 〈P〉 (or increase in ET0), H/L must be non-zero. The corresponding condition is referred to
as water-limited.

In arid climates, for which ET0/〈P〉 � 1, there may be far less water available for evaporation than
could actually be evaporated. ET0/〈P〉 is accordingly known as the aridity index. Thus, for large aridity
index, H/L in Equation (4) is likely to be large and 〈Q〉 near zero, whereas, in the limit that the aridity
index is much smaller than 1, H/L is likely to be near zero and Q large.

The similarity between Equations (4) and (2) spurred Budyko to a universal formulation for the
quantity 〈ET/P〉 as a function of ET0/〈P〉. While the functional form cannot be rigorously derived by
any procedure, many models have been constructed that lead to results similar, or equal, to the Budyko
phenomenological result. This interest owes to the relatively good job that the phenomenology does
in predicting actual values of 〈ET〉/〈P〉 as a fraction of ET0/〈P〉, meaning that the relationship that
Budyko proposed can be used as a first estimate for ecosystems and drainage basins with unmeasured
values of 〈ET〉/〈P〉. Moreover, Budyko [28] also found reasonable limits for 〈ET〉/〈P〉 in the extreme
cases of water-limited ecosystems (ET0/〈P〉 � 1) and energy-limited ecosystems (ET0/〈P〉 � 1). In the
former case, 〈ET〉/〈P〉must approach 1, whereas, in the latter, 〈ET〉/〈P〉 should not exceed ET0/〈P〉. The
dependence of 〈ET〉/〈P〉 on the aridity index, ET0/〈P〉, has elicited significant attention in the hydrologic
sciences [49,50], and a wide variety of means to address this problem have been proposed [2,3,49,51–55].
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4. Data Sources

Previously, Hunt [26] compared prediction of 〈ET〉/〈P〉with long-term (50 years or greater) records
of evapotranspiration in individual basins. These data were compiled by [30] and divided into three
categories: “out of phase”, when the maximum in precipitation does not occur at the same time as
the maximum in irradiance (temperate climate zones); “in phase”, appropriate for tropical regions;
and “non-seasonal”, for high maritime influence. Values chosen to represent the variability of plant
root fractal dimensionality were taken from [56], who measured the root fractal dimensionality of 55
species of forbs and grasses that grow on the Great Plains of the USA. The same basic data sources are
cited again here. However, we now address interception and the distinction between subsurface and
surface run-off, requiring reference to a suite of results [57–62] for the magnitude of the interception
term, as well as a comprehensive review [63] on the relative contributions of surface and sub-surface
run-off to Q.

5. Concepts from Percolation Theory

The basic components of the theoretical framework underlying the current research relate to plant
growth and soil formation. First, the spatiotemporal scaling relationships for these two processes and
then the actual length and time scales are given to complete the relationships [22].

Theory, experimental results, and field observation all relate soil development and plant growth
to the fundamental water fluxes. In the last decade, for example, it has become clear that silicate
weathering processes in the field are largely subsurface flow-limited [21]. Moreover, by its compatibility
with the field data, laboratory evidence (e.g., [64]) supports this assertion. Combining results from
these two studies demonstrates a linear dependence of weathering rates on water flow rates over seven
orders of magnitude of water flow rate, from field to the laboratory (Figure 1). However, there is an at
least six orders of magnitude reduction in weathering rates over time scales from months to 5 Myr [65].
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Figure 1. Rates of weathering in the lab [65] and in the field [21] as a function of throughflow. Field
measurements were of silicates. Lab experiments were performed on magnesite, MgCO3, whose rapid
reaction kinetics allows the approximately linear dependence on flow rate to extend to higher flow
rates than in silicates, whose kinetic limitations are orders of magnitude smaller.

The correlation between transpiration and growth rates is less thoroughly exposited, but is
demonstrated in [22,66] and is also known from a compilation of the world’s tallest trees [67]. The
close correlation between mean values of NPP and ET is better documented (e.g., [19,68]).

In the case of woody plant growth, it is found that root radial extent RRE increases more slowly
than root length on account of the tortuosity of the roots [56,69]. This is expressed using the tortuosity
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of optimal paths [70] through disordered two-dimensional networks, which relates actual distance
along a tortuous path to Euclidean separation by the exponent 1.21 [71]. Thus, root length, RL, is
predicted to relate to root radial extent through the power law, i.e., RL ∝ RRE 1.21. When root tip
extension rates remain constant, the rate of lengthening of RRE diminishes in time. The preference for
the two-dimensional context for selecting the optimal paths exponent is the relative shallow depth
of tree roots in forests, often assumed and/or documented to be on the order of 1 m [72,73], or even
less [30,74], on account of the shallow depth of most nutrient sources (Lynch, 1995). For length scales
of 1–40 m, RRE and tree height are nearly identical [75–77]. Thus, slowing of tree growth in time is due
to a reduction (in time) in the rate of access of nutrients from root growth along optimal flow paths.

In the case of soil production, soil depth is limited by chemical weathering, itself controlled by
solute transport and mainly by the mechanism of advection. The solute transport, which is non-Gaussian
(or non-Fickian, e.g., [78]), is proposed to follow the spatiotemporal scaling of percolation theory,
governed by flow nominally perpendicular to the (thin, i.e., about 0.5–1.5 m thick) soil layer, thus
in three dimensions. In particular, the time, t, for solute to be transported a Euclidean distance x is
not t ∝ x (typical of advective solute transport as analyzed with the Advection–Dispersion Equation,
ADE), but rather, t ∝ x 1.87. Thus, the travel distance after a time t, x (t), is proportional to t 1/1.87. The
important consequence is that the solute velocity, vs, diminishes in time according to another power
law, i.e., vs. ∝ t −0.87/1.87. Both the soil production rate and the chemical weathering rate are then
proportional to the solute velocity [79]. The high degree of universality of percolation exponents makes
the results applicable for most systems at most length and time scales [27].

Finding the exponent of a power-law relationship is important, but it is important also to find a
rate that relates the fundamental length scale of the system, x0, to a time scale, t0. Pore structures in
soils may be represented as pore networks. For the soil formation, the network scale, x0, was proposed
in [23] to be the pore separation (taken to be the median particle diameter, d50), while the rate x0/t0

was proposed [8] to be ratio of the deep infiltration rate (or subsurface run-off), 〈Qsub〉, to the porosity.
〈Qsub〉 turns out to be the major portion of the total run-off 〈Q〉. Then, the soil production rate, Rs

(represented as a function of soil depth), which is given as the derivative of the solute transport distance,
is proportional to 〈Qsub〉. In particular, Rs ∝ 〈Qsub〉(x/x0)

−0.87. To define steady-state conditions, the
soil production rate is then set equal to the denudation rate, D. The solution is,

x = x0

[
〈Qsub〉

1.87φD

]1.15

(5)

Here, the exponent 1.15 = 1/(1.87−1), while the numerical factor 1/1.87 arises from taking the
derivative of t to the power 1/1.87, whereas division by φ, the porosity, converts the hydrologic flux
〈Qsub〉 to a pore-scale velocity. 〈Qsub〉, the subsurface run-off, is equal to 〈P – ET – Qsurf〉, where 〈Qsurf〉

is the surface run-off. Note that Equation (5), by this partitioning of run-off into surface and subsurface,
is a basin-scale equation, in accordance with Budyko theory. At the local level, the infiltration rate, or
vertical flow through the soil, which drives the chemical weathering and contributes to subsurface
flow, would include a term with the negative of the divergence of the surface water flux. Further, D
could be slope-dependent, although many studies assume that D takes on a single value throughout a
given drainage basin.

For plant growth, the instantaneous transpiration rate relates a fundamental xylem diameter
(similar to a pore separation) to a time scale. Both typical pore sizes and xylem diameters in porous
media are on the order of 10 µm. This means that the same x0 can serve, at least approximately, as a
length scale for both plant growth and soil development. Transpiration has been approximated in [22]
as well as in most data collections, as ET. However, in [80] it was shown that the length and time scales
of the mean growing season transpiration, Tg, and growing season length, tg, can be used in the scaling
relationship for RRE = Tg (t/tg)1/1.21. More importantly, since the yearly increase in RRE turns out to
equal the transpiration [80], the root volume, which increases as the RRE to the mass fractal dimension,
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df, of the root system, should thus be proportional to T
d f
g . Knowing df is, thus, a critical input towards

understanding the dependence of NPP on transpiration.
Guidance for the choice of df was taken from percolation theory and general knowledge about

the architecture of roots and the soil (see Figure 2 for details). It has often been noted that the bulk of
root mass is found in the top 2 m of soil [72], or the top 1 m [73]. or even the top 0.5–0.68 m [30,74].
The top 1 m of the Earth’s surface is typically taken up by the soil [81] and the reason for the
predominance of the roots in this layer is argued to trace to the concentration of nutrients in the top
1 m or so of the soil [73] Since the optimal paths exponent from percolation theory in two dimensions
describes the effect of root tortuosity on the slowing in time of the increase of the root radial extent
(RRE) (and thus tree height) [22,69,75–77], it was reasonably conjectured [22] that the mass fractal
dimensionality of percolation theory in two dimensions should describe their mass as a function of a
critical linear dimension (RRE). The mass fractal dimensionality of large clusters near the percolation
threshold in two dimensions is 1.9; thus, df = 1.9. It is noted that, although measured plant root fractal
dimensionalities [56] tend to converge to this number (as shown in [22]), the spread in their values
is quite wide. As has also been shown [26], while the percolation prediction generates nicely the
global average for ET/P, measured values of df generate the observed variability of ET/P for climatic
conditions equivalent to those under which the plants were grown.
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Figure 2. Illustration of the effects of the difference in root properties across a climate gradient in
response to varying ET0/P (aridity index). Under more arid conditions, water is a more common factor
limiting vegetation growth than are nutrients. Water is found more deeply in arid zones, while roots
in forests are confined more nearly at the surface, suggesting that distinct values of the mass fractal
dimensionality from percolation theory should be utilized in the two cases.

The assumption that the root mass should be proportional to the root radial extent to the 2D mass
fractal dimensionality of large clusters near the percolation threshold implies that the third dimension,
i.e., the root depth, is neglected. Since the thickness, x, of the soil layer defines rather accurately the
vertical extent of the root system, the calculated 2D mass of the roots should be multiplied by the soil
depth in order to generate the full productivity. Such a process will also better capture the contributions
to productivity of any root symbionts, such as fungi and bacteria. Thus,

〈NPP〉 = x
〈ET〉d f

A0
= x0

[
〈Qsub〉

1.87φD

]1.15
〈ET〉d f

A0
(6)

with x from Equation (5) and approximating transpiration as 〈ET〉. Here, A0 is a reference area that
does not depend on the fluxes and can thus be ignored in the subsequent optimization procedures.

Optimization of Equation (6) with respect to 〈ET〉, with Equation (5) substituted for x, and 〈Qsub〉

approximated as 〈Q〉, gives 〈ET〉 = 0.623 〈P〉 [26]. If 1.15 is approximated as 1 and 1.9 is approximated
as 2, the result is 〈ET〉 = (2/3) 〈P〉. The optimization is accomplished by setting d〈NPP〉/d〈ET〉 = 0 and
leaving the denudation rate D in the denominator as an unknown input, independent of ET. The
extension of theory presented here addresses the fact that the denudation rate is also a function of the
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hydrologic fluxes. It is important that putting together two already verified predictions (in different
contexts) in terms of universal parameters yields, without adjustable parameters, the global average
〈ET〉. One of these parameters, Db = 1.87, describes the time-length scaling of solute transported by
advection through porous media with fundamental pore-scale connectivity in 3D.

Before moving on to the extension of the theory resulting from removing the approximations that
〈Qsub〉 = 〈Q〉 and equating transpiration with 〈ET〉, two additional results already obtained should be
addressed. One relates to the variability of 〈ET〉 at a particular value of the aridity index, while the
other focuses on the variation of 〈ET〉with aridity index. Both issues are illustrated in Figure 3.
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Figure 3. Results of ET/P plotted against aridity index. “Out of phase” and “In phase” refer to the
synchronicity between maximum irradiance and precipitation. All data for ET were digitized from [30].
The theoretical bound was determined by the methods here. Predictions for forbs and grasses (the
dominant vegetation of the northern Great Plains, [82]) were made using experimental data for root
fractal dimensionality [56], rather than the percolation prediction. At large values of the aridity index,
plant separation may be quite large [74], requiring an areal estimate for plant coverage.

In [26] it was pointed out that the actual root fractal dimensionality of plants was likely in many
cases to deviate from the theoretical value of 1.9 obtained by [71]. One should therefore address the
possibility that the range of measured 〈ET〉 values might correlate with the range of predicted 〈ET〉
values, if actual root fractal dimensionality values were used. For the comparison in Figure 3, data
from [56] for root fractal dimensionalities of 55 forb and grass species common the Great Plains were
substituted for the power 1.9 in Equation (6). Since these plants were grown under conditions of
neither energy nor water limitations, the comparison is made with data for the variability of ET at
aridity index 1, i.e., ideal conditions, although, for visibility, the representation in the figure separates
the forb and grass data slightly.

At high values of the aridity index, the issue of direct evaporation cannot be neglected. Furthermore,
root masses of plants, where growth is more likely to be water-limited than nutrient-limited, are more
nearly isotropic, seeking water in the deeper subsurface [72,74]. Finally, it has been also shown that, in
arid environments, soil depths are often not in steady-state, but still deepening in accordance with the
scaling relationship for solute transport [8]. As shown in [22], all three of these inputs increase the
magnitude of 〈ET〉.

In desert environments, a significant fraction of the land surface can be bare [74], while plant
roots are much less likely [72] to be restricted to the narrow depth range characteristic of tropical and
temperate rainforests [73]. Instead of the two-dimensional percolation theoretical value of df for the
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predicted fractal dimensionality of the root system, the three-dimensional value, i.e., 2.5, should be
used (Figure 2). However, if 〈ET〉2.5 is applied, then dimensional analysis requires replacement of the
factor x by x0.5 = x3−d f . In the work by Hunt [26], these changes were made in Equation (6) to address
ecosystems in regions of arid climate. Further, the area covered by plants, which is known to be a
decreasing function of aridity index, was assumed to be proportional to 〈P〉/ET0, while 〈ET〉, attributed
to pure evaporation, was assumed equal to 〈P〉 between plants. Substitution of df = 2.5 into Equation
(6), but using the factor x0.5 yields 〈Q〉 = 0.187 〈P〉, implying 〈ET〉 = 0.813 〈P〉 in areas covered by plants.
Then, the total 〈ET〉 was written as (0.813) 〈P〉 (P/ET0) + 〈P〉 (1 − 〈P〉/ET0) = 〈P〉 − (0.183) 〈P〉 (〈P〉/ET0).
Division by 〈P〉 yields 〈ET〉/〈P〉 = 1 − 0.183 (〈P〉/ET0). Consistent with the structure of this calculation,
the fraction of 〈ET〉 represented by evaporation from the ground surface would be (1 − 〈P〉/ET0)/[1 −
〈P〉/ET0 + 0.817(〈P〉/ET0)] = (1 − 〈P〉/ET0)/(1 − 0.183〈P〉/ET0). Clearly, such a result cannot be useful
when 〈P〉/ET0 = 1, for which it delivers a fraction of 〈ET〉 due to pure evaporation identically 0. In
fact, its usefulness will be restricted more severely. Given that the global average of 〈E〉/〈T〉 has been
suggested to be 0.36–0.39 [34,83] and that a quick estimate from the interception bounds in [61] alone
generate a range of 〈E〉/〈T〉 values of between 18% and 73%, we infer that the use of this expression
is probably limited to values of ET0/〈P〉 for which it yields fractions greater than ca. 0.4. In other
words, we consider evaporation of bare ground to be the primary contribution to E under conditions
complementary to those for which evaporation off the foliage is key. For 〈E〉/〈T〉 = 0.4, ET0/〈P〉 from
the above expression is 1.575.

6. Extending Budyko Theory

Considering the two pathways of water, surface and subsurface, it becomes clear that the
denudation rate, D, actually has two contributions: one from physical (subaerial) processes and one
from chemical (subsurface) processes. Since, in most rivers, dissolved loads from chemical weathering
are much smaller than suspended loads from physical erosion, the physical sources of erosion will
dominate. The chemical erosion rate is proportional to 〈P〉 − 〈ET〉 − 〈Qsurf〉, whereas the physical erosion
has been asserted to be proportional to 〈Qsurf〉 or, equivalently [84], to 〈P〉. The first proportionality is
necessary from any result that the chemical weathering rate is proportional to the flow through the soil
into the subsurface. A consequence is that the chemical erosion rate is also proportional to the solute
velocity, itself proportional to the flow. While it is possible to define these proportionalities, the term
representing physical erosion is much less certain, making it currently inefficient to address this subject
more deeply. In any case, if one makes this assumption, D = a (〈P – EP − Qsurf〉) + b 〈Qsurf〉, where a
and b are unknown constants of proportionality. The subsurface component of run-off is typically
larger than the surface component [63]. However, the fluxes in rivers from chemical weathering are
typically smaller than those from physical erosion processes. Thus, b must normally be considerably
larger than a (b� a). Exceptions are low relief carbonate substrates, such as the Canadian shield and
the St. Lawrence River that drains it.

Using the expression for D in Equation (5) and substituting the entire result into Equation (6)
leads to

〈NPP〉 = x0

(
x
x0

)
〈ET〉d f

A0
= x

ETd f

A0
=

〈ET〉d f d50

[
〈P−ET−Qsur f 〉

1.87∅(a[〈P−ET−Qsur f 〉]+b〈Qsur f 〉)

]1.15

A0
(7)

Differentiation of 〈NPP〉with respect to 〈ET〉 in Equation (7) is rather complex and was carried out
in Mathematica. Nevertheless, with some approximations, it is possible to generate relatively simple



Int. J. Environ. Res. Public Health 2020, 17, 734 10 of 19

expressions. For example, if one replaces 1.15 with 1 and 1.9 with 2, a quadratic equation for 〈ET〉 is
generated. Assuming that b� a, optimization of Equation (7) yields to second order,

〈ET〉 =
2
3

[
〈P−Qsur f 〉

]
+

2
27

[
〈P−Qsur f 〉

]2

〈Qsur f 〉

(a
b

)
(8)

If only the first term is retained (also consistent with b� a) but the exact powers (1.9 and 1.15) are
employed, the result obtained is

〈ET〉 = 0.623〈P−Qsur f 〉 (9)

Replacing the previously reported result, 〈ET〉 = 0.623 〈P〉, in which the total erosion rate in
Equation (5) was treated as an arbitrary input independent of the fluxes. This is the lowest order
approximation that we consider.

Equation (9) predicts a smaller fraction of 〈P〉 represented by 〈ET〉 than our original estimate
(i.e., 〈ET〉 = 0.623〈P〉), since the same numerical factor multiplies 〈P − Qsurf〉, rather than just
〈P〉. However, Equation (8) makes it clear that retention of the first term by itself will lead to
an underestimation of 〈ET〉. Moreover, if surface run-off is included in the analysis, then so should the
process of interception, < It >, be included, since this water never makes it to the soil to be partitioned
into transpiration and run-off.

Interception is viewed similarly to virga, rainfall that never makes it to the ground. Thus,
interception is treated by adding an additional layer of the atmosphere within the canopy, such that
only the water that penetrates the canopy is treated directly within the framework of the optimization
of Equation (7). Since the partitioning at and below the ground surface is where the optimization above
is performed, 〈lt〉 is then a separate input. Define 〈P〉 as the precipitation reaching the treetops. Then, it
is possible to use the derivations above (Equations (7)–(9)) by substituting for 〈P〉, 〈P′〉 ≡ 〈P〉 − 〈lt〉,
while also adding 〈lt〉 as a separate term to evapotranspiration. Thus, to lowest order,

〈ET〉 = 0.623(〈P− lt −Qs〉) + 〈lt〉 = 0.623(〈P−Qs〉) + 0.377〈lt〉 (10)

Note that the percentage of precipitation that evaporates directly from the vegetation surface
is expected to be greater in areas where vegetation covers the entire surface, whereas evaporation
directly from the ground surface should be reduced in that case. Therefore, the approximation in
Equation (10) is likely to be most appropriate in systems where the precipitation exceeds the potential
evapotranspiration, i.e., in energy-limited ecosystems. The opposite extreme of water-limited systems
has already been dealt with separately.

To assess how well predictions of Equation (10) match observation, it is necessary to generate
estimates of 〈Qsurf〉 and 〈lt〉. In [45] it was estimated that 65% of 〈P〉 = 834 mm is lost to 〈ET〉 with
35% left for run-off. There [45] it was also indicated that 11% of the total precipitation is lost to deep
infiltration. Accordingly, 〈Qsurf〉 = 0.24 P. In [61], [59] was cited as reporting a range of interception
from 12% to 48% of precipitation. To predict to lowest order the effect of interception on total 〈ET〉,
one could use the midpoint (30%) of the range of 〈lt〉 values cited above. However, [62] tabulated
interception ratios from 17 studies, and determined that the mean and standard deviation of 〈lt〉
were 18% and 10%, respectively. Using a midpoint of the range of 〈lt〉 values cited by [61], and using
Lvovitch’s value for surface run-off, Equation (10) yields 59–60% for 〈ET〉. However, [63] reported
a considerably higher fraction of streamflow traceable to groundwater (“most streamflow derives from
groundwater discharges, for most rivers, most of the time”), with mean values as high as 80%. Thus, we use
a range of subsurface flows that constitute between 40% and 80% of the total run-off. Fractions of 〈P〉
lost to interception range [61] from 12% to 48% (a simple mean of 30%). These numbers are generally
in accordance with the estimate from [34] that the worldwide average of evaporation is 39% of 〈ET〉 or
about 25% of 〈P〉. Using 40%, 60%, and 80% for the fraction of run-off traveling through the subsurface,
we report the corresponding variability in 〈ET〉 due to the variability in interception in Table 1. As can
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be seen, the predicted 〈ET〉/〈P〉 values have an average of 0.645. Alternatively, we can average all 41
values for the interception component taken from [57,58,60,62]. This method gives 〈lt〉 = 0.214〈P〉 and
standard deviation 0.115〈P〉. Combined with the 60% run-off midpoint estimate from [63], use of a
0.214 〈P〉 value for the interception generates a mean ET/P = 0.610 ± 0.045. In this case, the variability
from uncertainty in interception is not addressed, since it would merely duplicate the values already
tabulated. Our best estimates for evapotranspiration thus range from 0.61 to 0.645, depending on
which assessment of interception values we base the calculation on, provided we choose slightly over
half (60%) of the run-off as subsurface, compatible with [63]. These values compare with the average of
the pre-1995 〈ET〉/〈P〉 estimates of 0.645 or the average post-1995 ET/P estimates of 0.623, for example.

Table 1. Predicted 〈ET〉/〈P〉 values and their variabilities due to uncertainty in interception.

Subsurface Fraction of Run-Off Predicted 〈ET〉/〈P〉 Variability from Interception

0.4 0.59 0.068
0.6 0.642 0.068
0.8 0.691 0.068
0.6 0.610 0.045

Table 1 gives an estimated range of predicted fractions of 〈ET〉/〈P〉 based on qualitative variability
in Qsurf as generated from the discussion in [63], as well as from cited interception uncertainty. The
first three entries are generated from the general bounds on interception cited by [61]. The last entry
is generated from the mean and standard deviation of the data summarized in [57,58,60,62]. Note,
however, that one should probably expect a correlation between surface fluxes and interception, which
means that uncorrelated Gaussian statistical analyses should not be relied on for quantitative predictions.

The first three entries use values for interception from [61] and a variability in subsurface run-off

fraction compatible with [63]; the last entry uses the mean and standard deviation of the experimental
values compiled from [57,58,60,62], and the middle value for subsurface run-off fraction compatible
with [63]. Application of estimates for the partitioning of surface and subsurface run-off from [45]
would reduce the predicted 〈ET〉/〈P〉 ratio further; in the first case to about 0.58, and in the second to
about 0.55.

The tendency of 〈ET〉/〈P〉 to approach 1 in the limit of large aridity index is seen clearly in Figure 3.
At a very large aridity index, our prediction of 〈ET〉/〈P〉 derived from the steady-state soil depth
expression (Equation (6)) underestimates 〈ET〉. However, it has been shown [9] that, in this limit,
steady-state is seldomly achieved and soils are still deepening. Use of the time-dependent scaling
function for soil depth generates a different dependence on 〈Q〉 (more nearly the square root of 〈Q〉),
and shifts the balance even further toward 〈ET〉. This predicted change to non-steady state behavior
in the soil depth produces the sudden jump of predicted 〈ET〉 values around the aridity index of 1.8.
However, it is likely that a more gradual increase should be expected; thus, the choice of aridity index
1.8 for the cross-over amounts to use of an adjustable parameter.

7. Discussion: Variability and Discrepancies

Since it has been possible to generate an expected global average of 〈ET〉 in accordance with
observations, the question arises as to what causes the variability in 〈ET〉 at a given aridity index. It
was already shown in [26] that the actual fractal dimensionality of root systems of characteristic species
of the Great Plains could be used to predict the variability in 〈ET〉, at least at aridity index 1. Now, it
appears that such factors as the partitioning of 〈ET〉 into 〈E〉 and 〈T〉, as well as the partitioning of run-off

into subsurface and surface run-off can also introduce significant variability into the predictions. These
various sources of variability can be incorporated into the model, but in different ways. Nevertheless, a
quantitative estimate based on the magnitudes of predicted spread in their values of 〈ET〉/〈P〉 (0.06, 0.07,
and 0.16) for the variability due to uncertainty in run-off, interception, and root fractal dimensionality,
can be made. The R2 values that result are: 0.062/(0.062 + 0.082 + 0.162) = 0.08, 0.082/(0.062 + 0.082
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+ 0.162) = 0.15, and 0.162/(0.62 + 0.082 + 0.162) = 0.76 for their contributions to the variability in
〈ET〉. Such an analytical estimation is possible only if other potential inputs are neglected and the
statistics are Gaussian. The run-off characteristics will relate most strongly to variability in soil type and
depth, as well as climatic variables that affect precipitation intensity and regularity, while interception
characteristics appear to relate most strongly to seasonality of precipitation and tree canopy physical
structure. Root architecture appears to be the most important single variable, when plant species
are considered individually. Presumably, when entire ecosystem response is addressed, however,
variability in root structure from assemblages of plants would be reduced relative to individual plant
species, at least when those ecosystems are not disturbed.

In Figure 3, we also note that, for large aridity index, all the observed values of 〈ET〉/〈P〉, which
are higher than our predicted curve, have maximum precipitation in-phase with maximum radiation,
while the opposite is true in the energy-limited regime, where precipitation and radiation, which are in
phase, are most likely to be well below the limiting value. In the energy-limited case, then, all of the
values of 〈ET〉/〈P〉 above the predicted limit are for systems where 〈P〉 and R maxima are out of phase,
or where precipitation is non-seasonal. This result is in close correspondence to the statement of [85]
“when water and energy supplies are out of phase, observed mean annual evapotranspiration is lower
than the amount predicted in the absence of seasonality, while it is higher when water and energy
supplies are in phase”. Although the interpretation of in-phase systems is likely quite complicated, a
relatively simple explanation may be available for the out-of-phase systems. In particular, consider a
system with aridity index 1, but for which energy and water supplies are out of phase. Optimization
of water for soil formation and vegetation growth simultaneously is not possible, since energy is not
available when the water is. Thus, some additional water runs off. Consequently, the relevant energy
supply is smaller, and an effective aridity index would be smaller than the actual aridity index.

We should also discuss the unique role of 〈Qsurf〉 in the optimization of 〈NPP〉. 〈Qsurf〉 is one of the
smaller fluxes in magnitude, but its effect on the landscape is one of the most intense. Furthermore, in
contrast to the other hydrologic fluxes, its effect is highly variable, in both space and time. Knowledge
of this variability is important for a wide range of scientific and practical applications: evaluation
of the surface characteristics, such as local slope, infiltration, groundwater recharge, soil hydraulic
conductivity, antecedent moisture contents, and vegetation health, as well as because a very large
fraction of the denudation of the landscape takes place during intense weather events. Thus, 〈Qsurf〉

has a disproportionately large role in landscape evolution, while its input is also highly variable as
well as quantitatively unpredictable. This combination of factors should lead to the treatment of 〈Qsurf〉

as a stochastic input process, with potentially important non-linear contribution. In the present context,
these complex attributes of surface water fluxes make it difficult to characterize their effects on the role
of vegetation in the landscape, particularly as concerns an optimization of productivity.

In our discussion thus far, we tacitly assume that the variability in measured values of interception
as well as in the relative fractions of surface and subsurface run-off is reliably due to distinct conditions
in different experiments in distinct ecosystems with different climatic variables. It is also possible that
some of the variability is measurement error or lack of closure of water budgets. While we cannot
evaluate the magnitude of this uncertainty, the possibility that newer measurements may force revision
of existing estimates cannot be simply put aside.

8. Time Scales for Ecosystem Adjustment to Changes in External Parameters, Such as in Climate
or Land-Use

At the outset, it should be stated that the current theoretical framework cannot predict such
important time scales as plant dispersal into newly suitable habitats. Perhaps it will be possible in
the future to incorporate known plant dispersal rates into our existing model. Nevertheless, it is
possible to combine use of our theory and collected data to predict time scales for the development
and maturation of soil.
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Soil development to a particular depth appears in many cases to be defined purely by the physical
process of solute transport in its limitation of chemical weathering. Nevertheless, there are some cases
where solute transport does not appear to be the limiting factor in soil development, as shown in
Figure 4. Such cases appear to combine slow reaction kinetics with high flow rates and coarse particles.
A unitless ratio of the advection time to the reaction time, the Damköhler number, DaI = τA/τR [10,64],
is useful for assessing the relative importance of solute transport and reaction kinetics to reaction rates
in porous media. As long as DaI � 1, solute transport is limiting; the other limit, when DaI � 1, is
kinetics limited. When a reaction is limited by the kinetics, to lowest order (neglecting changes in the
nature of mineral surfaces), the reaction rate is constant. When soil formation is limited by a reaction
rate that is constant, the soil formation rate should be constant and the soil depth increase linearly
in time. The details in the calculation of DaI make this subject beyond the present scope (for further
details, see [10,23]). However, the consequences of a soil formation rate that is constant can be seen in
Figure 4, where, at short time scales, some alpine soil depths increase linearly in time and more slowly
than predicted purely on the basis of transport limitations. Note that estimations of DaI for these
cases [23] suggested that its value increased from less than 1 to greater than 1 at length scales of about
10 cm, roughly in accordance with the data, which exhibit a cross-over to transport limitations at a
compatible length scale. In the following, since transport limitations appear dominant in the formation
of most soils, we discuss biological and denudation time scales in comparison with time scales derived
from transport limitations.Int. J. Environ. Res. Public Health 2020, 17, 734 13 of 18 

 
Figure 4. After [23]. A demonstration of the ability of percolation concepts to predict actual soil 
depths. Note, however, the distinction between alpine (a) and Mediterranean (b) sites. In the former 
case, soil depths at time scales up to about 200 years may be overpredicted. The interpretation is that 
in some cases reaction kinetics provided a stronger limitation on the weathering process than 
transport. note that the upper limit of these soil depths has slope approximately one, rather than one-
half, consistent with a time-independent weathering rate. Figure 4a thus illustrates a time scale that 
defines equal influences on chemical weathering from reaction kinetics and solute transport (just over 
100 years). 

We can define a time scale for erosion, tD, from the ratio of the soil depth to the denudation rate, 
x/D. The time scale for soil formation to a depth x is  =   ( / ) . Equating tx with t0 = d50 Φ/Qsub, 
leads almost to Equation (5), but without the factor 1.87 in the denominator. This small discrepancy 
arises from the fact that Equation (5) is derived by setting the denudation and soil formation rates 
equal, which involves the derivative of the soil depth as a function of time. Use of such time scales as 
defined in this section, however, allows determination of the time required to achieve steady state 
depth, although not necessarily steady-state soil characteristics. Consider that the thicknesses of 
natural soils are virtually always within an order of magnitude of 1 m. tD ranges can be easily 
calculated from the ratio of 1 m to the denudation rate, D, a quantity which ranges from a minimum 
of about 1 m/Myr in arid continental interiors, such as in Australia, or deserts such as the Atacama, 
to about 1000 m/Myr in tectonically active regions with high precipitation, such as the New Zealand 
Alps or the Himalayan mountain range. Thus, tD ranges from about 1 Myr to 1 kyr. For soils of a few 
decimeter thickness, this time scale can be as small as about 200 years. Attainment of steady-state soil 
depths at compatible time scales can be seen in a range of environments from the California Central 
Valley to Gongga Mountain in China in the work of [8], marked by cessation of deepening of soils. In 
the work of [23], denudation rates between 50 m/Myr and 20 m/Myr correspond to calculated time 
scales for attainment of steady-state from about 20 kyr to about 50 kyr, respectively. In [23], alpine 
soils require about 20 kyr, but Mediterranean soils closer to 100 kyr than 50 kyr to reach steady state 
depth. 

Soil health or productivity is related to its concentration of carbon and of nutrients. At very short 
times and small soil depths, the slowing of solute transport from particle sources is still relatively 
ineffective in limiting soil deepening. Thus, on time scales of up to a few decades, rather remarkably 
large soil depths can be attained, up to decimeters. The rate of accumulation of carbon can be roughly 
constant, in accordance with perennial vegetation growth rates of decimeters to about a meter per 
year. However, as fractional carbon content in the soil approaches a steady-state value and as the rate 
of soil deepening slows, the possibility that soil production could limit the rate of increase of stored 
carbon emerges (cf. Figure 5 (after [11])). Note that the soil formation (or production) rate follows our 
prediction very closely over the entire range of observed time scales. However, the soil carbon and 
nitrogen sequestration rates remain relatively constant for periods up to nearly a century, before they 
start to decay in accordance with prediction. This may be interpreted as a sign that the nutrient 
accumulation rate at any particular site is roughly constant until the soil reaches a kind of nutrient 

Figure 4. After [23]. A demonstration of the ability of percolation concepts to predict actual soil depths.
Note, however, the distinction between alpine (a) and Mediterranean (b) sites. In the former case, soil
depths at time scales up to about 200 years may be overpredicted. The interpretation is that in some
cases reaction kinetics provided a stronger limitation on the weathering process than transport. note
that the upper limit of these soil depths has slope approximately one, rather than one-half, consistent
with a time-independent weathering rate. Figure 4a thus illustrates a time scale that defines equal
influences on chemical weathering from reaction kinetics and solute transport (just over 100 years).

We can define a time scale for erosion, tD, from the ratio of the soil depth to the denudation rate,
x/D. The time scale for soil formation to a depth x is tx = t0(x/d50)

Db . Equating tx with t0 = d50 Φ/Qsub,
leads almost to Equation (5), but without the factor 1.87 in the denominator. This small discrepancy
arises from the fact that Equation (5) is derived by setting the denudation and soil formation rates equal,
which involves the derivative of the soil depth as a function of time. Use of such time scales as defined
in this section, however, allows determination of the time required to achieve steady state depth,
although not necessarily steady-state soil characteristics. Consider that the thicknesses of natural
soils are virtually always within an order of magnitude of 1 m. tD ranges can be easily calculated
from the ratio of 1 m to the denudation rate, D, a quantity which ranges from a minimum of about
1 m/Myr in arid continental interiors, such as in Australia, or deserts such as the Atacama, to about
1000 m/Myr in tectonically active regions with high precipitation, such as the New Zealand Alps or the
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Himalayan mountain range. Thus, tD ranges from about 1 Myr to 1 kyr. For soils of a few decimeter
thickness, this time scale can be as small as about 200 years. Attainment of steady-state soil depths at
compatible time scales can be seen in a range of environments from the California Central Valley to
Gongga Mountain in China in the work of [8], marked by cessation of deepening of soils. In the work
of [23], denudation rates between 50 m/Myr and 20 m/Myr correspond to calculated time scales for
attainment of steady-state from about 20 kyr to about 50 kyr, respectively. In [23], alpine soils require
about 20 kyr, but Mediterranean soils closer to 100 kyr than 50 kyr to reach steady state depth.

Soil health or productivity is related to its concentration of carbon and of nutrients. At very short
times and small soil depths, the slowing of solute transport from particle sources is still relatively
ineffective in limiting soil deepening. Thus, on time scales of up to a few decades, rather remarkably
large soil depths can be attained, up to decimeters. The rate of accumulation of carbon can be roughly
constant, in accordance with perennial vegetation growth rates of decimeters to about a meter per
year. However, as fractional carbon content in the soil approaches a steady-state value and as the rate
of soil deepening slows, the possibility that soil production could limit the rate of increase of stored
carbon emerges (cf. Figure 5 (after [11])). Note that the soil formation (or production) rate follows
our prediction very closely over the entire range of observed time scales. However, the soil carbon
and nitrogen sequestration rates remain relatively constant for periods up to nearly a century, before
they start to decay in accordance with prediction. This may be interpreted as a sign that the nutrient
accumulation rate at any particular site is roughly constant until the soil reaches a kind of nutrient
carrying capacity. After this point, it is possible to increase total nutrients in the soil only if the soil
depth increases. This time period for adjustment appears, according to Figure 5, to be on the order of
100 years, at least for the suite of soils studied.
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Because the time to reach a steady-state soil depth is, ordinarily, much longer than the time for
ecosystems to reach an approximate steady-state, it is possible to evaluate the soil depth dependence
in the soil nutrient content over very long-time scales. For soils with extremely long time-scales for
reaching steady-state (in the case of deep tropical weathering), the limitation of nutrient access may be
critical. There, weathering depths may be so great that fresh mineral nutrients are supplied at rates
so low that a completely different nutrient limitation is important. When times of erosion for 1 m
of soil approach 1 Myr, soil production rates slow accordingly, setting free mineral nutrients at rates
that hinder biological productivity. In such cases, it does not really matter what factors reduce soil
production rates correspondingly; if it is the great depth to the weathering front, nutrient limitations
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will hinder plant productivity, but, if it is the slow rate of water flow into the ground (in extremely arid
regions), the lack of water will hinder productivity even more fundamentally. Since soil formation rates
are approximately inversely proportional to soil depth but approximately proportional to subsurface
run-off, a three orders of magnitude reduction in precipitation rates (e.g., from the New Zealand Alps
to interior Australia) will produce a three orders of magnitude reduction in soil formation just as will a
three order of magnitude increase in weathering depth (from, e.g., coastal California to the Amazon
rainforest).

9. Conclusions and Recommendations

Within the framework of percolation theory, we investigate effects of incorporating separately
surface and subsurface run-off into Budyko formalism for the water balance. Since we are unable to
predict these finer distinctions, what is proposed is merely the development of an equation that can
account for additional information. In the original calculation of 〈ET〉/〈P〉, it was found that run-off

constituted a little over 1/3 of P and evapotranspiration a little less than 2/3 of 〈P〉. Our new findings
are that: (1) accounting for the distinction between transpiration and interception tends to increase the
fraction of 〈P〉 going to 〈ET〉; (2) accounting for the distinction between surface and subsurface run-off

tends to reduce the fraction of 〈P〉 going to 〈ET〉; and (3) the net effect of accounting for both tends to
leave the fraction going to 〈ET〉 nearly unchanged, although possibly slightly reduced, depending on
which information regarding approximate values of infiltration and subsurface flows was accessed.
This result appears to make our framework more adaptable to interfacing with numerical models
and observations, which can better deliver such quantities as interception, since this value is not
predictable within our theoretical framework. In principle, the separation of effects of interception and
evaporation off bare ground from the transpiration component allow a prediction of the variability of
CO2 drawdown from the atmosphere along climate gradients, which would not have been possible
when these results were lumped together into evapotranspiration.

Further, we cannot show it likely that the impact of root architecture on the fundamental
partitioning is a more important source of variability in the evapotranspiration data than either the
variable partitioning of interception vs. transpiration or surface vs. subsurface flow. If this result can
be extended across climate zones, then it should be possible to generate analytical predictions of the
changes in the interactions between the carbon and water cycles with climate change using chiefly the
variability in root fractal dimensionality to generate the variability in <ET>.

Our results are based on the relevance of chemical weathering to soil formation and the tendency
for chemical weathering to be limited by advective solute transport. Thus, it is the weathering that is
slowed by the transport, not the transport that is slowed by the weathering! The exponent dictating this
slowing is the universal scaling of solute transport times versus system length as given in percolation
theory. Past work has shown that the percolation exponent (backbone mass fractal dimensionality in 3D,
under saturated conditions) generates the observed temporal dependence of weathering rates as well
as the global average of the overall partitioning of precipitation into run-off and evapotranspiration.
Currently, we also show that these fractions are mostly maintained when distinctions between surface
and subsurface run-off as well as between interception and transpiration are accounted for.

Our results imply the desirability of addressing several factors in greater detail: (1) determine
the values of the constants a and b relating denudation rates to the subsurface and surface run-off

fluxes, respectively; (2) consider the implications of phase differences in the seasonality of precipitation
and energy fluxes; (3) incorporate, as a function of aridity index, the role of the variability of actual
root fractal dimensionality on the water balance through its effects on productivity; and (4) apply
the framework to individual basins, for which all the input parameters are known, aridity index,
interception, and the constants that describe the relationships of chemical and physical erosion to
the fluxes.
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