
UC Berkeley
UC Berkeley Previously Published Works

Title
Observation of a prethermal discrete time crystal

Permalink
https://escholarship.org/uc/item/9n92r4vh

Journal
Science, 372(6547)

ISSN
0036-8075

Authors
Kyprianidis, A
Machado, F
Morong, W
et al.

Publication Date
2021-06-11

DOI
10.1126/science.abg8102
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9n92r4vh
https://escholarship.org/uc/item/9n92r4vh#author
https://escholarship.org
http://www.cdlib.org/


Observation of a prethermal discrete time crystal

A. Kyprianidis*1†, F. Machado*2,3, W. Morong1, P. Becker1, K. S. Collins1, D. V. Else4,
L. Feng1, P. W. Hess5, C. Nayak6,7, G. Pagano8, N. Y. Yao2,3, and C. Monroe1

1Joint Quantum Institute, Dept. of Physics and Joint Center for Quantum Information
and Computer Science, University of Maryland, College Park, MD 20742 USA

2Dept. of Physics, University of California, Berkeley, CA 94720 USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

4Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
5Dept. of Physics, Middlebury College, Middlebury, VT 05753 USA

6Microsoft Quantum, Station Q, Santa Barbara, CA 93106 USA
7Dept. of Physics, University of California, Santa Barbara, CA 93106 USA

8Dept. of Physics and Astronomy, Rice University, Houston, TX 77005 USA

†To whom correspondence should be addressed; E-mail: akyprian@umd.edu.

Extending the framework of statistical physics to the non-equilibrium setting

has led to the discovery of novel phases of matter, often catalyzed by periodic

driving. However, preventing the runaway heating associated with driving a

strongly interacting quantum system remains a challenge in the investigation

of these new phases. In this work, we utilize a trapped-ion quantum simulator

to observe signatures of a non-equilibrium driven phase without disorder: the

prethermal discrete time crystal. Here, the heating problem is circumvented

not by disorder-induced many-body localization, but rather high-frequency

driving, leading to an expansive time window where non-equilibrium phases

*These authors contributed equally to the preparation of this manuscript.
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can emerge. Floquet prethermalization is thus presented as a general strategy

for creating, stabilizing, and studying intrinsically out-of-equilibrium phases

of matter.

The periodic modulation of a system represents a versatile technique for controlling its

behavior, enabling the emergence of phenomena ranging from parametric synchronization to

dynamic stabilization (1). Periodic driving has become a staple in fields ranging from nuclear

magnetic resonance spectroscopy to quantum information processing (2–4). On a more funda-

mental level, the periodic Floquet drive also imbues a system with a discrete time-translational

symmetry. Remarkably, this symmetry can be utilized to protect novel Floquet topological

phases, or spontaneously broken to form time-crystalline order (5–15).

The realization of many-body Floquet phases of matter requires overcoming two crucial

challenges. First, the system must not absorb energy from the driving field. In the presence

of a periodic drive, dynamics are not constrained by energy conservation, and Floquet heating

causes a generic many-body system to approach infinite temperature, precluding the existence

of any non-trivial order (16). Second, genuine late-time dynamics must be clearly differentiated

from early-time transient behavior: a phase of matter can only be characterized after dynamical

processes lead to the steady state behavior.

The conventional strategy for addressing the first (heating) challenge is to utilize strong

disorder to induce many-body localization (MBL), where the presence of an extensive set of

conserved local quantities prevents Floquet heating (17). However, requiring many-body local-

ization leads to its own set of challenges, including stringent constraints on both the dimension-

ality and the range of interactions (18, 19). Moreover, the presence of strong disorder further

slows down equilibration, making it even more difficult to overcome the second (timescale)

challenge and distinguish between early- and late-time dynamics. Interestingly, long-lived sub-

harmonic responses, characteristic of time-crystalline order, have also been observed in certain
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superfluid quantum gases without disorder (13, 20–22); the absence of Floquet heating in such

systems owes to an effective few-body description of the quantum dynamics (23).

Recently, an alternate, disorder-free framework for addressing both these challenges has

emerged: Floquet prethermalization (25–29). For sufficiently high Floquet drive frequencies,

energy absorption by the many-body system requires multiple correlated local rearrangements,

strongly suppressing the heating rate. The Floquet heating time τ ∗ scales exponentially with

the drive frequency and can thus be prolonged beyond experimentally practical timescales. For

time t < τ ∗, the system dynamics are captured by an effective prethermal Hamiltonian Heff

(25, 26). This prethermal Hamiltonian defines an effective energy for the Floquet system and

also determines the nature of the prethermal state, which is reached at the much shorter local

equilibration time τpre. Thus, by focusing on times between τpre and τ ∗, the dynamics are

guaranteed to reflect the actual thermodynamic properties of the Floquet phase.

This intermediate prethermal regime need not be trivial: new symmetries, protected by

the discrete time translation symmetry of the drive, can emerge and lead to intrinsically non-

equilibrium phases of matter (30, 31). One example of such a phase is the prethermal discrete

time crystal (PDTC), in which the many-body system spontaneously breaks the discrete time

translation symmetry of the drive and develops a robust sub-harmonic response.

A disorder-free PDTC exhibits a number of key differences compared to the MBL discrete

time crystal, despite the similarity of their sub-harmonic response (23, 32). When stabilized

by MBL, time-crystalline order is independent of the initial state and persists to arbitrarily late

times, but is believed to only occur in low dimensions with sufficiently short-range interac-

tions (18, 19). By contrast, the PDTC lifetime is limited by τ ∗ and depends on the energy

density of the initial state; this energy density determines the prethermal state to which the

system equilibrates for times t > τpre. Crucially, if the prethermal state spontaneously breaks

the emergent symmetry of Heff , the many-body system also exhibits robust time-crystalline or-
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Figure 1: Experimental setup and protocol. A. Schematic of the 25-ion chain (24). Single-
site addressing (top), global Raman beams (middle), and state-dependent fluorescence (bottom)
enable the preparation, evolution, and detection of the quantum dynamics. B. For intermediate
times (τpre < t < τ ∗), the system approaches an equilibrium state of the prethermal Hamiltonian
Heff . In the trivial Floquet phase, the magnetization after τpre decays to zero. In the PDTC phase,
the magnetization changes sign every period leading to a robust sub-harmonic response. At
times t� τ ∗, Floquet heating brings the many-body system to a featureless infinite temperature
ensemble. C. Top: Phase diagram of Heff . Owing to the anti-ferromagnetic nature of the Ising
interactions Jij > 0, the ferromagnetic phase occurs at the top of the many-body spectrum.
Bottom: Schematic of the stroboscopic magnetization dynamics in the trivial [red] and PDTC
[blue] phase (full/dashed curves represent even/odd driving periods). When the energy density
of the initial state is above the critical value εc, the system is in the PDTC phase and its lifetime
follows the frequency-dependent heating time τ ∗.
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der, corresponding to an oscillation between the different symmetry sectors (30, 31). On the

other hand, if the prethermal state is symmetry-unbroken, the system will be in a trivial Flo-

quet phase, with any signatures of time-crystalline order decaying by τpre. The requirement of

a symmetry-broken phase further distinguishes the PDTC and its MBL counterpart, and high-

lights the PDTC’s stability in higher dimensions. Indeed, in one dimension, Landau-Peierls

arguments rule out the existence of a PDTC with short-range interactions (33), and long-range

interactions are necessary to stabilize a prethermal time crystal (31).

We exploit the controlled long-range spin-spin interactions of an ion trap quantum simulator

to observe signatures of a one-dimensional prethermal discrete time crystal. Our main results

are three-fold. First, we prepare a variety of locally inhomogeneous initial states via individual

addressing of ions within the one-dimensional chain (Fig. 1A). By characterizing the quench

dynamics starting from these states, we directly observe the approach to the prethermal state,

enabling the experimental extraction of the prethermal equilibration time, τpre. Second, we

measure the time dynamics of the energy density as a function of the driving frequency. By

preparing states near both the bottom and the top of the spectrum (Fig. 1B), we observe either

the gain or loss of energy as the system heats to infinite temperature (corresponding to zero

energy density). Importantly, we find that the heating timescale, τ ∗, increases with the driving

frequency (Fig. 2). Finally, to probe the nature of prethermal time-crystalline order, we study

the Floquet dynamics of different initial states that equilibrate to either a symmetry-broken

or a symmetry-unbroken ensemble. The former exhibits robust period-doubling behavior up

until the frequency-controlled heating timescale, τ ∗ (Fig. 3B). In comparison, for the latter, all

signatures of period doubling disappear by the frequency-independent timescale τpre (Fig. 3A).

By investigating the lifetime of the time-crystalline order as a function of the energy density of

the initial state, we identify the phase boundary for the PDTC.

Our system consists of a one-dimensional chain of 25 171Yb+ ions. Each ion encodes an
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effective spin-1/2 degree of freedom in its hyperfine levels |F = 0,mF = 0〉 and |F = 1,mF =

0〉 (Fig. 1A). Long-range Ising interactions are generated via a pair of Raman laser beams (34,

35). Arbitrary effective magnetic fields can be applied either locally or globally and single-

site readout can be performed simultaneously across the full chain (24), enabling the direct

measurement of the Floquet dynamics of both the magnetization and the energy density.

The Floquet drive alternates between two types of Hamiltonian dynamics (Fig. 1B): (i) a

global π-pulse around the ŷ axis and (ii) evolution for time T under a disorder-free, long-range,

mixed-field Ising model. This is described by the two evolution operators,

U1 = exp

[
−iπ

2

N∑
i

σyi

]

U2 = exp

[
−iT

(
N∑
i<j

Jijσ
x
i σ

x
j +By

N∑
i=1

σyi +Bz

N∑
i=1

σzi

)]
, (1)

where σvi is the v-th component of the spin-1/2 Pauli operator for the i-th ion, and we adopt

the convention ~ = 1. Here, Jij > 0 is the long-range coupling with average nearest-neighbor

interaction strength J0 = 2π · 0.33 kHz, while By = 2π · 0.5 kHz and Bz = 2π · 0.2 kHz are

global effective magnetic fields. The Floquet unitary UF = U2U1 implements the dynamics

over a period of the drive and has frequency ω = 2π/T .

Within the prethermal window in time τpre < t < τ ∗, the stroboscopic dynamics of the

system (every other period) are well-approximated by an effective prethermal Hamiltonian,

which to lowest order in 1/ω is given by (31):

Heff =
N∑
i<j

Jijσ
x
i σ

x
j +By

N∑
i=1

σyi . (2)

A crucial feature of Heff is that long-range Ising interactions stabilize a ferromagnetic phase

along the x̂ axis. However, owing to the anti-ferromangetic nature of the interactions (Jij > 0),

this phase does not occur at low energy density close to the bottom of the spectrum, but rather

at high energy density near the top of the spectrum (Fig. 1C).
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We begin by characterizing the dynamics of the system as it approaches the prethermal

state of Heff . In particular, we prepare an initial state with all spins pointing along x̂ (in an

eigenstate of σx), except for two central spins, which are prepared along ẑ (Fig. 2D). Quench

dynamics from this initial state show that the magnetization of the two central spins exhibits

two-step dynamics. The x̂-magnetization, starting at zero, first equilibrates to the value of the

neighboring spins, before decaying back to zero at late times. The convergence of the initially

inhomogeneous x̂-magnetization to a uniform finite value demonstrates that the system first

reaches an intermediate-time equilibrium (i.e. prethermal) state before ultimately heating to

infinite temperature. We find that this prethermal timescale is approximately given by J0τpre ≈

3.

In addition to τpre, the prethermal regime is also characterized by the timescale associated

with the frequency-dependent Floquet heating, τ ∗. To experimentally investigate τ ∗, we mea-

sure the dynamics of the prethermal energy density, 〈Heff〉/(NJ0), for two different initial states

on opposite ends of the many-body spectrum of Heff : a low-energy Néel state (Fig. 2A) and a

high-energy polarized state (Fig. 2B). In both cases, we observe the expected trend: increasing

the driving frequency suppresses the heating rate (Fig. 2C). However, the finite decoherence

time of the system (induced by external noise sources) sets an upper bound on the maximum

heating time scale; as a result, at large drive frequency, τ ∗ cannot grow exponentially with

increasing drive frequency, but rather approaches a plateau value (35). Crucially, even in the

presence of this decoherence dynamics, the separation between τ ∗ and τpre enables experimental

access to the prethermal regime.

The demonstration of the frequency dependence of τ ∗ (Fig. 2) directly translates into our

ability to control the lifetime of the prethermal time crystal. As aforementioned, the key in-

gredient underlying time-crystalline order is the presence of an emergent symmetry, G, in Heff ,

which is not a microscopic symmetry present in the Hamiltonian (Eq. 1), but rather, a direct
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Figure 2: Characterizing the prethermal regime. A, B. The dynamics of the energy den-
sity for a low-energy Néel state (left) and a high-energy polarized state (right) highlights the
frequency dependence of the heating rate. Statistical error bars are of similar size as the point
markers. C. Heating time τ ∗ for the Néel (red) and polarized (blue) states, extracted via an
exponential fit (∼ e−t/τ

∗) to the energy density dynamics (solid curves in A and B). The pres-
ence of external noise leads to a saturation of τ ∗ at high frequencies. Error bars for the heating
time correspond to fit errors. D. Characterization of the prethermal equilibration time, τpre,
via the local x̂-magnetization dynamics for even Floquet periods. Top: The middle two spins
(purple), initially prepared along the ẑ axis, rapidly align with their neighbors (orange) at time
τpreJ0 ≈ 3, signaling local equilibration to the prethermal state. The shaded bands represent the
standard error of the mean. Bottom: x̂-magnetization dynamics across the entire ion chain.
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consequence of the periodic driving protocol (30, 31). In our experiment, this symmetry corre-

sponds to a global spin flip, G ≈ U1 ∝
∏N

i=1 σ
y
i ; indeed G is not a symmetry of the original

evolution (Eq. 1) but it is present in Heff (Eq. 2). When such emergent symmetry is present,

the exact Floquet dynamics are approximately generated by evolving under Heff for time T ,

followed by the action of G. This latter part suggests that the time-crystalline order is naturally

captured by the system’s magnetization dynamics; the action of G changes the sign of the order

parameter 〈σxi 〉 every period. As a result, there are two possibilities for the prethermal dynamics,

depending on the system’s energy density (Fig. 1B). If the prethermal state corresponds to the

symmetry-respecting paramagnet, the magnetization is zero and remains unchanged across a pe-

riod. Conversely, if the prethermal state corresponds to the symmetry-breaking ferromagnet, the

magnetization is nonzero and alternates every period. The resulting 2T -periodic, sub-harmonic

dynamics is the hallmark of a time crystal.

We investigate these two regimes by measuring the auto-correlation of the magnetization:

M(t) =
1

N

N∑
i=1

〈σxi (t)〉〈σxi (0)〉. (3)

Starting with a low-energy-density Néel state (Fig. 3A), we observe that M(t) quickly decays

to zero at τpre, in agreement with the expectation that the system equilibrates to the symmetry-

unbroken, paramagnetic phase. This behavior is frequency-independent, in direct contrast to the

Floquet dynamics of the energy density (Fig. 2A). This contrast highlights an essential point:

although τ ∗ can be extended by increasing the driving frequency, no order survives beyond τpre

when the system is in the trivial Floquet phase.

The Floquet dynamics starting from the polarized state are markedly distinct (Fig. 3B).

First, M(t) exhibits period doubling, with M > 0 for even periods and M < 0 for odd periods.

Second, the decay of this period-doubling behavior is directly controlled by the frequency of

the drive. Third, the lifetime of the time-crystalline order mirrors the dynamics of the energy
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Figure 3: Characterizing the PDTC phase. A, B. Upper plots: Magnetization dynamics,
M(t), for the Néel state (left) and the polarized state (right). For the Néel state,M(t) quickly de-
cays to zero at time τpre (dashed vertical line), independent of the drive frequency. For the polar-
ized state, the sub-harmonic response (2T -periodicity) persists well-beyond τpre and its lifetime
is extended upon increasing the drive frequency. The lifetime of the prethermal time-crystalline
order τPDTC is obtained by fitting the magnetization dynamics to an exponential decay (35).
Statistical error bars are of similar size as the point markers. Lower plots: x̂-magnetization
dynamics across the entire ion chain at ω/J0 = 38. C. Heating (τ ∗) and magnetization decay
(τPDTC) times for four different initial states at varying energy densities (35). At low energy den-
sities, τPDTC (orange) are significantly shorter than τ ∗ (magenta) and independent of frequency,
highlighting the trivial Floquet phase. At high energies, τPDTC is similar to τ ∗, highlighting the
long-lived, frequency-controlled nature of the PDTC behavior. The location of the observed
crossover in energy density is in agreement with an independent quantum Monte Carlo calcu-
lation (red and blue shaded regions) (35). Error bars for the decay time correspond to fit errors,
while error bars for the energy density correspond to statistical errors.

10



density shown in Fig. 2B, demonstrating that Floquet heating ultimately melts the PDTC at late

times.

By considering two additional initial states, we explore the stability of the PDTC phase as

a function of energy density. Fig. 3C depicts both the heating time as well as the lifetime of the

time-crystalline order. Near the bottom of the spectrum, where no symmetry-breaking phase

exists, the decay of the magnetization is frequency-independent and significantly faster than

the heating timescale. By contrast, near the top of the spectrum, where a symmetry-breaking

ferromagnetic phase exists, the two timescales are consistent with one another and thus Floquet

heating limits the PDTC lifetime. Our results are consistent with a phase boundary occurring

at energy density 〈Heff〉/(NJ0) ≈ 2, in agreement with independent numerical calculations via

quantum Monte Carlo (35).

In this work, we report the experimental observation of robust prethermal time-crystalline

behavior that persists beyond any early-time transient dynamics. Our results highlight the po-

tential of periodic driving, in general, and prethermalization, in particular, as a framework for re-

alizing and studying out-of-equilibrium phenomena. Even in the presence of noise, we find that

the prethermal dynamics remain stable, suggesting that an external bath at sufficiently low tem-

perature can stabilize the prethermal dynamics for infinitely long times (30). This stands in con-

trast to localization-based approaches for stabilizing Floquet phases, in which the presence of

an external bath tends to destabilize the dynamics. Our work points to a number of future direc-

tions: (i) exploring generalizations of Floquet prethermalization to a quasi-periodic drive (36),

(ii) stabilizing Floquet topological phases (37, 38), and (iii) leveraging non-equilibrium many-

body dynamics for enhanced metrology (39).

11



References

1. L. D. Landau, E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of Theoretical

Physics) (Butterworth-Heinemann, 1976), third edn.

2. P. Mansfield, Journal of Physics C: Solid State Physics 4, 1444–1452 (1971).

3. L. M. K. Vandersypen, I. L. Chuang, Reviews of Modern Physics 76, 1037–1069 (2005).

4. H. Zhou, et al., Physical Review X 10, 031003 (2020).

5. T. Oka, S. Kitamura, Annual Review of Condensed Matter Physics 10, 387–408 (2019).

6. A. C. Potter, T. Morimoto, A. Vishwanath, Physical Review X 6, 041001 (2016).

7. F. Nathan, D. Abanin, E. Berg, N. H. Lindner, M. S. Rudner, Physical Review B 99, 195133

(2019).

8. D. V. Else, B. Bauer, C. Nayak, Physical Review Letters 117, 090402 (2016).

9. N. Yao, A. Potter, I.-D. Potirniche, A. Vishwanath, Physical Review Letters 118, 030401

(2017).

10. S. Choi, et al., Nature 543, 221–225 (2017).

11. J. Zhang, et al., Nature 543, 217–220 (2017).

12. J. Rovny, R. L. Blum, S. E. Barrett, Physical Review Letters 120, 180603 (2018).

13. J. Smits, L. Liao, H. T. C. Stoof, P. van der Straten, Physical Review Letters 121, 185301

(2018).

14. Z. Gong, R. Hamazaki, M. Ueda, Physical Review Letters 120, 040404 (2018).

12



15. N. Y. Yao, C. Nayak, L. Balents, M. P. Zaletel, Nature Physics 16, 438 (2020).

16. L. D’Alessio, M. Rigol, Physical Review X 4, 041048 (2014).

17. D. A. Abanin, E. Altman, I. Bloch, M. Serbyn, Reviews of Modern Physics 91, 021001

(2019).

18. N. Yao, et al., Physical Review Letters 113, 243002 (2014).

19. W. De Roeck, F. Huveneers, Physical Review B 95, 155129 (2017).

20. S. Autti, V. Eltsov, G. Volovik, Physical review letters 120, 215301 (2018).

21. K. Giergiel, et al., New Journal of Physics 22, 085004 (2020).

22. S. Autti, et al., Nature Materials 20, 171 (2021).

23. D. V. Else, C. Monroe, C. Nayak, N. Y. Yao, Annual Review of Condensed Matter Physics

11 (2020).

24. C. Monroe, et al., arXiv:1912.07845 (2019).

25. T. Kuwahara, T. Mori, K. Saito, Annals of Physics 367, 96–124 (2016).

26. D. A. Abanin, W. De Roeck, W. W. Ho, F. Huveneers, Physical Review B 95, 014112

(2017).

27. F. Machado, G. D. Kahanamoku-Meyer, D. V. Else, C. Nayak, N. Y. Yao, Physical Review

Research 1, 033202 (2019).

28. A. Rubio-Abadal, et al., Physical Review X 10, 021044 (2020).

29. P. Peng, C. Yin, X. Huang, C. Ramanathan, P. Cappellaro, Nature Physics p. 1–4 (2021).

13



30. D. V. Else, B. Bauer, C. Nayak, Physical Review X 7, 011026 (2017).

31. F. Machado, D. V. Else, G. D. Kahanamoku-Meyer, C. Nayak, N. Y. Yao, Physical Review

X 10, 011043 (2020).

32. V. Khemani, R. Moessner, S. L. Sondhi, arXiv:1910.10745 (2019).

33. L. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937).

34. K. Mølmer, A. Sørensen, Physical Review Letters 82 (1999).

35. See Supplementary material.

36. D. V. Else, W. W. Ho, P. T. Dumitrescu, Physical Review X 10, 021032 (2020).

37. I.-D. Potirniche, A. C. Potter, M. Schleier-Smith, A. Vishwanath, N. Y. Yao, Physical Re-

view Letters 119, 123601 (2017).

38. D. V. Else, P. Fendley, J. Kemp, C. Nayak, Physical Review X 7, 041062 (2017).

39. S. Choi, N. Y. Yao, M. D. Lukin, arXiv:1801.00042 (2017).

40. K. Kim, et al., Physical Review Letters 103 (2009).

41. D. James, Applied Physics B: Lasers and Optics 66 (1998).

42. S. Olmschenk, et al., Physical Review A 76 (2007).

43. K. R. Brown, A. W. Harrow, I. L. Chuang, Physical Review A 70 (2004).

44. A. C. Lee, et al., Physical Review A 94 (2016).

45. D. Wineland, et al., Journal of Research of the National Institute of Standards and Tech-

nology 103 (1998).

14



46. C.-C. J. Wang, J. K. Freericks, Physical Review A 86 (2012).

47. L. Egan, et al. (2020).

Acknowledgments

We acknowledge fruitful discussions with C. Laumann, W. L. Tan, A. Vishwanath, D. Weld,

and J. Zhang. Funding: This work is supported by the DARPA Driven and Non-equilibrium

Quantum Systems (DRINQS) Program D18AC00033, NSF Practical Fully-Connected Quan-

tum Computer Program PHY-1818914, the DOE Basic Energy Sciences: Materials and Chem-

ical Sciences for Quantum Information Science program DE-SC0019449, the DOE High En-

ergy Physics: Quantum Information Science Enabled Discovery Programs DE-0001893, the

AFOSR MURI on Dissipation Engineering in Open Quantum Systems FA9550-19-1-0399, the

David and Lucile Packard foundation, the W. M. Keck foundation, and the EPiQS Initiative of

the Gordon and Betty Moore Foundation GBMF4303. Author contributions: A.K., W.M.,

P.B., K.S.C., L.F., P.W.H., G.P., and C.M. designed and performed experimental research, F.M.,

D.V.E., C.N., and N.Y.Y. analyzed the data theoretically, and all authors wrote the paper. Com-

peting interests: C.M. is the co-founder and Chief Scientist at IonQ, Inc. Data availability:

All data needed to evaluate the conclusions in the paper are present in the paper or the Supple-

mentary Materials.

Supplementary materials

Supplementary text

Supporting numerical evidence

Figs. S1 to S6

References (40–47)

15



Supplementary materials

The trapped-ion quantum simulator

The quantum simulator used in this work is based on a chain of 171Yb+ ions trapped in a 3-

layer Paul trap at room temperature (40). The ions are confined in all three directions by a

combination of static and oscillating electric fields. The interplay of the repulsive Coulomb

force and the trapping potential arrange the ions in a linear configuration. The transverse center-

of-mass (COM) motional mode frequency along the x̂ axis is fCOM = 4.67 MHz and the axial

COM frequency is fz = 0.34 MHz. The axial trapping strength is set such that 25 ions settle in

a linear configuration with inter-ion spacings varying from ∼ 2 µm (chain center) to ∼ 3.5 µm

(chain edges) (41).

Spin and motional state preparation

Between experiments, the ions are Doppler cooled by a 369.5 nm laser red-detuned from the

2S1/2 to 2P1/2 transition by 10 MHz, one-half of the transition linewidth. This laser projects

onto all three principle axes of the trap, ensuring that the ions are cooled along all direc-

tions. To begin an experiment, the ions are initialized in the low-energy hyperfine qubit state

|↓〉 ≡ 2S1/2|F = 0,mF = 0〉 by an incoherent optical pumping process (42). Optical pumping

requires approximately 20 µs and initializes all ions to |↓〉 with at least 99 % fidelity. At this

point the individual spin states of the ions are well-known, while the shared motional state is a

thermal distribution with n̄ ≤ 3 average motional quanta in the transverse x̂ axis modes. Re-

solved sideband cooling on multiple motional modes brings the ions near their motional ground

state (n̄ ≤ 0.1 average motional quanta).

With the ions cooled and their spin states initialized, we prepare the spins in product states

along the x̂ axis of the Bloch sphere with a combination of global rotations and individual σz

rotations. Global rotations are driven with a pair of Raman laser beams, intersecting at a 90◦
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angle. These lasers produce a beatnote that drives oscillations between the qubit states with

Rabi frequency Ω when tuned on resonance with the ions’ S-manifold hyperfine splitting. The

phase of this beatnote determines the Bloch sphere axis about which the spins are rotated.

The BB1 pulse sequence

Each Raman beam has a Gaussian intensity profile with waists of 10 µm by 130 µm at the

ion plane. A 25-ion chain has a length of about 60 µm. Each ion samples a slightly different

intensity from the Raman lasers, resulting in different rates of rotation across the chain. To

minimize rotation errors caused by this inhomogeneity during the U1 unitary, we employ BB1

dynamical decoupling sequences (43) to ensure that all spins along the chain are rotated by the

same amount.

A traditional ŷ rotation unitary has the form Ûy
θ = e−iθσ

y
i /2, where θ is the desired angle of

rotation about the ŷ axis. The angle θ ≡ Ωit, where Ωi is the Rabi frequency experienced by

spin i, is sensitive to the spacially-inhomogeneous intensity profiles of the Raman lasers. We

instead apply the following BB1 unitary, consisting of 4 sub-rotations:

Ûy
θ,BB1 = e−i

π
2
σφi e−iπσ

3φ
i e−i

π
2
σφi e−i

θ
2
σyi . (4)

The phase φ depends on the desired rotation angle θ:

φ = arccos

(
θ

4π

)
. (5)

While a π-rotation using this sequence takes five times longer than a traditional rotation pulse, it

reduces rotation errors significantly and prevents dephasing across the chain. This allows us to

apply hundreds of π-pulses with negligible loss of contrast—a requirement for the time-crystal

experimental sequences presented in this manuscript.
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Arbitrary product state preparation

An individual addressing beam focused to a waist of 500 nm generates rotations on each spin

with relatively low crosstalk. A high-bandwidth acousto-optical deflector (AOD) steers the

beam, and the AOD’s rf drive frequency maps the beam to a location along the ion chain. This

beam applies a fourth-order AC Stark shift to the hyperfine qubit splitting (44), creating an

effective σzi rotation on a single spin i. This rotation is mapped to a rotation about any axis

using the appropriate global analysis π/2 rotations, allowing for preparation of product states

with arbitrary spin flips such as the antiferromagnetic Néel state.

Qubit readout

At the end of an evolution, we measure the magnetization of each spin using state-dependent

fluorescence. A 369.5 nm laser resonant with the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition

(linewidth γ/2π ≈ 19.6 MHz) causes each ion to scatter photons if the qubit is projected to the

|↑〉 state. Ions projected to the |↓〉 qubit state scatter a negligible number of photons because

the laser is detuned from resonance by the 2S1/2 hyperfine splitting. By applying global π/2-

rotations, we rotate the x and y bases into the z basis. This allows us to measure all individual

magnetizations and many-body correlators along any single axis. In the experiments reported

in this work, we repeat the experimental sequence and the measurement for 50-600 times to

reduce quantum projection noise.

For each measurement, a finite-conjugate NA = 0.4 objective lens system (total magnifica-

tion of 70×) collects scattered 369.5 nm photons and images them onto an Andor iXon Ultra

897 EMCCD camera. Before taking data, high-contrast calibration images of the ion chain,

illuminated by Doppler cooling light, are used to identify a region of interest (ROI) on the

camera sensor for each ion. During data collection, fluorescence is integrated for 400 µs, after

which a pre-calibrated binary threshold is applied to discriminate the qubit state of each ion
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with approximately 98 % accuracy per ion.

The dominant error sources for the qubit readout, ordered by decreasing significance, are:

mixing of qubit states caused by off-resonant coupling during the 400 µs camera exposure

window, crosstalk between ion ROIs due to small inter-ion spacings near the center of the chain,

electronic camera noise, and laser power fluctuations. No state preparation and measurement

(SPAM) correction has been applied to data presented in this work.

Simulating the transverse field Ising Hamiltonian

We generate the effective spin-spin interaction Hamiltonian by applying spin-dependent dipole

forces with the pair of 355 nm Raman beams mentioned earlier. These beams produce a beat-

note with wavevector ∆~k aligned along a principle axis of the trap. The frequencies of these

beams are controlled with acousto-optical modulators (AOMs) to generate a pair of beatnote

frequencies detuned by −µ (red beatnote) and +µ (blue beatnote) from the resonant qubit tran-

sition frequency. For µ − fCOM � ηΩ (η is the Lamb-Dicke parameter (45)) and η � 1, the

experiment operates in the far-detuned Mølmer-Sørensen (MS) regime (34, 40). Here, excited

motional states are adiabatically eliminated and the laser-ion interaction takes the form of a

spin-spin, effective long-range interacting Ising Hamiltonian

H =
N∑
i<j

Jijσ
x
i σ

x
j . (6)

The N ×N matrix Jij describes couplings between spins i and j (Fig. S1):

Jij = Ω2fR

N∑
m=1

bimbjm
µ2 − f 2

m

(7)

where fR = ∆k2/(2M) is the recoil frequency, fm is the frequency of the m-th motional mode,

bim is the eigenvector matrix element of the i-th ion’s participation in the m-th motional mode
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Figure S1: The interaction matrix Jij . A. The position of each column represents a pair of
spins {i, j}, while its color-coded height the strength of their coupling. B. To illustrate how
the interaction strength scales with distance between i and j, we average the elements of the
diagonals of J (circular markers), e.g. the |i− j| = 2 corresponds to 〈{J13, J24, J35, J46, . . .}〉.
The line markers illustrate all the individual couplings for that value of |i− j|.

(
∑

i |bim|2 =
∑

m |bim|2 = 1), and M is the mass of a single ion. Using ηm =
√
fR/fm, we get

Jij ≈
Ω2

2

N∑
m=1

bimbjmη
2
m

δ
(8)

In the reported experiments, the average nearest-neighbor interaction J0/(2π) = 0.33 ± 0.02

kHz.

We add transverse fields to Eq. 6 in two ways. To create an effective transverse field Bz

along the ẑ direction, we apply a global offset of 2Bz to the two Raman beatnote frequencies,

imposing a rotating frame shift between the qubit and the beatnotes to generate an effective

field with strength Bz. A third Raman beatnote, resonant with the qubit transition and applied

simultaneously with the Mølmer-Sørensen red and blue beatnotes, creates additional transverse

fields along the x̂ or ŷ directions depending on the beatnote phase. Altogether, the long-range,

transverse-field Ising Hamiltonian takes the form

H =
N∑
i<j

Jijσ
x
i σ

x
j +By

N∑
i

σyi +Bz

N∑
i

σzi . (9)
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Tukey window pulse shaping

All Raman laser operations and individual-addressing operations are implemented via ampli-

tude modulation of the rf that drives various AOMs and AODs. An arbitrary-wavefrom genera-

tor (AWG) outputs this amplitude-modulated rf signal to switch lasers and beatnotes on and off

according to the experimental sequence. If the control rf is modulated with square pulses, the

sharp edges (limited by the rise/fall time of the AOM/D) cause significant spectral broadening

of the signal in the Fourier domain. This effect is more pronounced for shorter pulses, such as

the Raman pulses used to generate the unitary U2. This spectral broadening can be on the order

of MHz, and causes undesirable driving of qubit motional and spin transitions.

We suppress spectral broadening by applying Tukey window pulse shaping, where the first

and last 10 µs of the pulse are multiplied respectively by a rising and falling sinusoidal envelope.

We account for the resulting reduction in the magnitude of each term of the Hamiltonian by

scaling it down by an appropriate factor, which varies with the total duration of that pulse.

Longer pulses need to be scaled down less, since the ramp time is fixed.

Error sources

The dynamics observed in this work are the combination of ideal Hamiltonian evolution as in

Eq. 1 and other terms of smaller magnitude that we refer to as “error sources”. The combined

effect of the latter, when measuring the chain magnetization, manifests as decoherence.

The most significant error source is fluctuating AC Stark shifts of the hyperfine qubit fre-

quency. This fluctuation is mostly caused by power instability of the 355 nm laser light at the

ions’ location. Even though there is a power PI locking scheme in effect for the 355 nm light,

the sampling point for the lock is at a more upstream location that the ions. As the beams prop-

agate downstream from that point, active elements, acoustic noise, and air turbulence introduce

extra power noise. At the ions location, the light’s red and blue beatnotes ideally produce ex-
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actly opposite AC Stark shifts of the qubit levels and cancel each other, in practice they are not

always perfectly balanced. In this case, power fluctuations will make the sum of their Stark

shifts fluctuate. This manifests as an effective fluctuating magnetic field term B(AC)(t)
∑

i σ
z
i ,

common for all spins i and present in every stage of the experimental sequence. A fortunate

side effect of the π-rotations of the drive is that they echo out part of this noise. However,

the spectral portion of B(AC)(t) that is faster than ω/2 is not echoed out and differs between

different repetitions, manifesting as decoherence in the final averaged signal. In numerics pre-

sented in the next section, we model this noise based on experimental evidence and reasonable

simplifications, and present numerical simulations that include it.

Imperfect qubit state readout also impacts the final fidelity of the simulation. During the

finite readout window of 400µs, there is a small probability that a |↓〉 state will be off-resonantly

pumped, and read out as a |↑〉 state, and vice versa. For the experiments presented in this work,

the average readout error was 2.3% for each ion.

Another error source comes from a term combining the spin and the motional part of the

qubit wavefunction that acts in parallel with the effective Ising interaction in Eq. (6). This

term represents entanglement between these two parts; when we measure the qubit spin, we

effectively trace out the entangled motional state, resulting in a probabilistic mixed state. The

probability for such an erroneous spin flip to occur is proportional to

N∑
m=1

(
ηmbimΩ

δm

)2

(10)

Therefore, by increasing this detuning, we minimize the undesired spin-motion entanglement,

but we are also decreasing the strength of our spin-spin interaction term (see Supplement, Sim-

ulating the transverse field Ising Hamiltonian). We set the balance between these effects by

keeping the sum in Eq. (10) less than 0.1 for two spins, which for the 25 spins results in approx-

imately 0.7% flip probability per spin. This effect is somewhat amplified by the finite duration
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of the Hamiltonian quenches in the second term of the Floquet drive, whose spectral decom-

position has nonzero components in the motional frequencies. We considerably mitigate this

effect by applying the Tukey window shaping to the relevant pulses (see Supplement, Tukey

window pulse shaping), which reduces these undesired spectral terms.

Other error sources provide smaller contributions to the observed decoherence. For exam-

ple, with a small probability, an ion can be off-resonantly excited during the Ising evolution to

a P -manifold state, scatter a photon, and decay to a state outside the qubit computational mani-

fold. The probability of a single such event happening in the total chain is zero at the beginning

of the Ising evolution and monotonically increases to approximately 10% at the end. A different

source of error comes from the combination of the MS scheme generating the σxi σ
x
j interactions

and the transverse field By (24). Terms involving σxi , acting on the spins, and the ladder op-

erators a and a†, acting on the motional wavefunction, arise in this case. In the far-detuned

MS regime, these terms are perturbatively small compared to the transverse field term (46).

Moreover, the frequencies of the ion chain normal modes show small drifts tracing tempera-

ture fluctuations in apparatus pieces. This leads to correspondingly small fluctuations of the

interaction matrix profile Jij . Because of the small magnitude of these effects and the difficulty

in characterizing them, we do not explicitly account for them in the numerical simulations of

noise in the next section. However, their effect is compounded with the dominant noise sources

explicitly accounted for.

Extraction of τPDTC

Owing to the time translation symmetry breaking associated with the PDTC, the correct order

parameter is one that is sensitive to the difference of the system during even and odd periods of

the evolution. To this end, we define the magnetization difference ∆M as the order parameter
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Figure S2: PDTC dynamics in the absence of noise A-D. Dynamics of the energy density
〈Heff〉/NJ0 for different initial states with increasing energy density. The decay of the energy
density to the late time infinite temperature value is exponentially sensitive to the frequency of
the drive. E-H. Dynamics of the magnetization M(t), for different initial states. Full[dashed]
line corresponds to even[odd] periods. For low energy density, the magnetization is approxi-
mately frequency-independent, highlighting the trivial nature of the dynamics. For high energy
density, the magnetization decay follows the decay of the energy density and exhibits a robust
period doubling behavior—the two hallmarks of the PDTC.

we investigate:

∆M(t) = |M(t+ T )−M(t)|. (11)

τPDTC is then extracted by fitting the dynamics of ∆M(t) to a simple exponential decay

∝ e−t/τPDTC .

Supporting numerical evidence

Dynamics in the absence and presence of noise

In this section, we present a numerical investigation of the dynamics simulated by the experi-

mental platform, highlighting the physics of prethermalization and the PDTC. We first focus on

the noiseless case, where we observe the expected exponential frequency dependence of τ ∗ on

the drive frequency ω, and then turn to studying the effect of noise on the observed dynamics.
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We consider anN = 19 spin chain with interactions given by the experimentally determined

interaction matrix for 25 spins, truncated to the middle 19 spins. We perform the exact time

evolution of the full quantum system using Krylov subspace methods, simulating the entire

experimental protocol (which includes the Tukey window pulse shaping).

For all states considered (Fig. S2), we observe the same effect of the frequency on the

heating timescale τ ∗—the larger the frequency, the slower the energy approach to its infinite

temperature value. By contrast, the dynamics of the magnetization can be starkly different. For

the states at low enough energy density, where Heff does not exhibit a spontaneous symmetry-

breaking phase, the dynamics of M(t) are mostly frequency-independent, and much faster than

the heating. For states near the top of the spectrum, where a spontaneous symmetry-breaking

phase exists, the dynamics of the magnetization exhibit robust period doubling whose decay

matches that of the energy density—this is PDTC behavior. We summarize the timescales

observed in Fig. S3, where the frequency dependence of τ ∗ occurs across all initial states, while

the frequency dependence of τTC only occurs at the top of the spectrum.

We now turn to simulating the effect of noise in the observed dynamics. As mentioned in

Error sources, the most significant noise arises from laser power fluctuations. We parameterize

these fluctuations at the ions’ location with the random variable ε(t), characterized by a flat

spectrum and standard deviation σ over a given duration (we have found that results are inde-

pendent of the upper frequency cutoff as long as it is much larger than the drive frequency) .

We model this effect in the dynamics by adding a time dependence on the different parameters,

By, Bz and Jij:

By(t) = Bstatic
y × [1 + ε(t)] (12)

Bz(t) = Bstatic
z + ε(t)× 2π × 8kHz (13)

Jij(t) = J static
ij × [1 + 2ε(t)] (14)
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Figure S3: PDTC timescales in absence of noise. Summary of the decay time scales of energy
density (τ ∗) and magnetization (τPDTC). In the region where Heff exhibits a spontaneous sym-
metry broken phase (blue shading), τPDTC follows the frequency dependence of τ ∗. By contrast,
outside this region, the τPDTC is much smaller than τ ∗ and is mostly frequency-independent.

The dependence of each term on ε(t) is determined by the way that the laser power relates

to that term, eg. the By(t) field depends linearly on the 2-photon Rabi frequency Ω, which is

proportional to laser power. In Fig. S4, we highlight the effect of noise in two states at opposite

sides of the spectrum and also considered in the main text: the polarized state and the Néel

state. The effect on either is qualitatively similar: noise reduces the frequency control of the

Floquet heating leading to a plateau in the achievable τ ∗, in agreement with the experimental

observation (we highlight this feature in Fig. S5). It is important to emphasize two points. First,

while for large frequency the noise dominates the heating towards the infinite temperature state,

the frequency still provides a control of the Floquet heating highlighting the importance of of

the drive. Second, the dynamics of the magnetization is distinct in the trivial and the PDTC

regimes. In the former, the magnetization quickly decays before the heating time scale while in

the latter, the magnetization decay follows the energy density decay.
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We note that the approximate character of the noise model leads to fitted noise values σ

higher than typically quoted single- or two-qubit gate errors in quantum computing devices

with trapped ions (47). This difference is related to the gate-based nature of the evolution

which leads to a more efficient mitigation of noise using stronger interaction strengths (than our

nearest neighbor coupling J0) and with the aid of schemes (such as SK1 composite pulses (47))

to mitigate the effect of noise. The continuous evolution under the Ising Hamiltonian cannot

benefit from such schemes.

Computing the crossover between trivial and PDTC behavior

Since the PDTC behavior is dependent on a spontaneous symmetry-broken phase in Heff , we

can calculate the boundary between trivial and PDTC behavior by mapping the location of the

transition (which for finite system size will emerge as a crossover). In particular, owing to

the antiferromagnetic interactions Jij > 0, we are interested in the properties of the top of

the spectrum, where the system orders ferromagnetically. To this end, we perform a quantum

Monte Carlo simulation of the Hamiltonian−Heff in an N = 25 spin chain (Eq. 2), which maps

the calculation to the more common problem of finding the low-temperature phase boundary

of the para-to-ferromagnetic phase. In Fig. S6 we present the results in terms of the original

energy density. By the system extending into the imaginary time dimension, we can perform

the calculation at finite temperature 1/β and extract the crossover temperature and then map it

to the relevant crossover energy density. In particular, we identify the location of the crossover

by the location of the peak in the heat capacity of the system which we fit to a Lorentzian peak,

while the width is taken to be the quarter-width half-max of the peak. The crossover location is

then given by: ε/J0 = 2.18± 0.60.
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Figure S4: Impact of noise on the PDTC and trivial Floquet dynamics Heating dynamics
of the polarized state (A-B) and the Néel state (C-D) for different strength of the noise σ. The
presence of noise hastens heating to the infinite temperature state, setting an upper bound on the
time scales. Nevertheless, the trivial dynamics can be distinguished from the PDTC behavior.
In the former, the magnetization decay remains frequency independent and much faster than the
energy decay. In the latter, the magnetization decay has a similar frequency dependence to the
energy density decay.
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Figure S5: Frequency dependence of the heating τ ∗ and time-crystalline τPDTC timescales
for fixed strength of the noise. A-B. Energy (top) and magnetization (bottom) dynamics for
the Néel and the polarized initial state, in the presence of noise with moderate strengths σ = 0.1.
C-D. Upon increasing the frequency of the drive, we observe an increase in the heating time
scale τ ∗ for both initial states, up until very high-frequencies where heating becomes dominated
by the fluctuating noise. Crucially, the dynamics of the time-crystalline order is very differ-
ent. For the Néel state, the time-crystalline order parameter decays quickly and is frequency
independent—the system is in a trivial Floquet phase. For the polarized state, the increased
heating time is mirrored by a increase of lifetime of the time-crystalline order parameter—the
system is in the PDTC Floquet phase.
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Figure S6: Calculation of the para-to-ferromagnetic crossover region in Heff . Quantum
Monte Carlo calculation for the N = 25 spin chain considered in the experiment. A. We can
locate the location and width of the crossover by characterizing the peak in the heat capacity
CV . B. Armed with the crossover temperature, we can directly map it into the crossover energy
density which yields: Heff/(NJ0) = 2.18± 0.60.
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