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GENET ICS

Whole-body gene expression atlas of an adult
metazoan
Abbas Ghaddar1, Erick Armingol2,3†, Chau Huynh4†, Louis Gevirtzman4†, Nathan E. Lewis3,5,
Robert Waterston4, Eyleen J. O’Rourke1,6,7*

Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multi-
cellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Cae-
norhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict
7541 transcription factor expression profile associations likely responsible for defining cellular identity. We
predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that
mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expres-
sion across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we
present them as experimentally validated housekeeping genes. We developed the WormSeq application to
explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-
cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mech-
anisms, underlying the functioning of a multicellular organism and the perturbations that lead to its
malfunction.
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INTRODUCTION
A wide range of different cell types sustains growth and reproduc-
tion in multicellular organisms. Even a simple animal such as Cae-
norhabditis elegans develops according to a selected plan, discerns
food-quality, finds mates, escapes predators, learns to associate en-
vironmental cues, and survives biotic and abiotic stressors. In C.
elegans, these functions are carried out by around 20 broadly
defined cell types and more than 150 specific cell types (1–3). Un-
derlying the morphological and functional differences between
cells, are cell type–specific networks of active genes. Therefore, to
unveil the molecular mechanisms underlying the functioning of
multicellular organisms in physiological and pathological condi-
tions, we need a single-cell resolution catalog of gene expression
and the ability to discern genes that are common and essential
from genes that define and sustain cell identity and function and
genes that enable local and distal intercellular communication.
This information will enable future studies to assess how perturba-
tions (genetic, chemical, or environmental) alter gene expression at
the cellular level and how these changes in turn result in phenotypes
at higher levels of organization.

Recent advances in single-cell transcriptomics and C. elegans cell
dissociation protocols (4, 5) have led to single-cell gene expression
profiles of C. elegans embryos and larvae (1, 3, 4, 6, 7), and a recent
preprint reports the transcriptional map of sterile, mutant, adult C.
elegans (8). Here, we present the expression profiles of 180 cell types

identified in wild-type and fertile adult C. elegans. The single-cell
resolution transcriptional map presented here adds several cell
types that are absent in the reported studies of embryonic, larval,
and sterile adult worms. For instance, we present various germ
cells and cells involved in reproduction and egg laying that are spe-
cific to the adult hermaphrodite. In addition, we sequenced
>150,000 cells for a single experimental condition (in three biolog-
ical replicates), giving unique robustness to this dataset.

We use this catalog of adult gene expression to explore the con-
cepts of housekeeping gene, transcription factor (TF)–mediated cel-
lular identity, and molecular drivers of cell-cell interaction (CCI).
We identified 172 genes that meet the canonical definition of a
housekeeping gene and, hence, are responsible for basic cellular
maintenance across cell types and possibly kingdoms. On the
other hand, with 7541 predicted TF cell type associations (some
of which had been experimentally validated), we begin to elucidate,
at a systems level, the relationship between transcriptional programs
and the identity of cells. We also predict patterns of ligand-receptor
(LR) pairs that promote molecular interactions between all the cell
types identified in C. elegans. As a result, cell type–specific cell com-
munication signatures are proposed, some of which we experimen-
tally validate in vivo. Last, we present a web interface to mine our
dataset, wormseq.org, that together with the abundant literature
and the genetic tools available to manipulate C. elegans will allow
the community to experimentally test the hundreds of hypotheses
and predictions presented in this study.

RESULTS
Identification of over 180 distinct C. elegans cell types and
subtypes
Wild-type hermaphrodite C. elegans were harvested as young adults
(YAs), defined by vulva morphology and the presence of ≤5 eggs
(fig. S1A). Worms were immediately dissociated into single cells
and subjected to single-cell RNA sequencing (scRNA-seq) using
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the 10X Chromium platform (see Materials and Methods). Three
independent biological replicates were collected, and after the
removal of low-quality and damaged cells (see Materials and
Methods), the dataset contained 154,251 cells that passed the
quality filters. The cells were then processed following the
Monocle3 pipeline (9) and visualized using uniform manifold ap-
proximation and projection (UMAP). After Louvain clustering, the
cells were separated into 170 distinct clusters ranging from 21 to
5841 cells (Fig. 1). Comparing replicates did not show batch-depen-
dent differences in the average reads per cell (fig. S1B) or median

unique genes per cell (fig. S1C). Batch-dependent differences in
the proportion of cells of different types were small (fig. S1D), sug-
gesting high reproducibility between independent experiments in
the dissociation and capture of cell types. In addition, even before
batch correction, cell type–specific gene expression profiles between
biological replicates were highly correlated (fig. S1E; Pearson corre-
lation coefficient: 0.86 to 0.95), which suggests that although batch
differences exist, well-controlled replicates accurately recapitulate
average cell types and gene expression profiles and that the effect

Fig. 1. UMAP visualization of the 180 identified cell types. UMAP reduction of 154,251 cells. Each dot represents a cell. Colors indicate distinct cell types and are used
to facilitate distinguishing close clusters.
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of cell type on the measured gene expression is stronger than the
batch effect.

The clusters were annotated using a multi-pronged approach
that took advantage of previously published scRNA-seq data from
C. elegans larvae (1, 3) and the rich literature onC. elegans tissue and
cell-specific markers (10). First, we generated a list of marker genes
expressed in each cluster using Monocle3’s top_markers function
(data S1). We then searched for the broad cell types in which
these marker genes were expressed in the CeNGEN application
(3) because this dataset contains scRNA-seq data from the L4
larval stage, which is the larval stage preceding the YA. This ap-
proach yielded broadly defined tissues. However, some clusters
were still not confidently annotated using this approach alone
because they lacked sufficient detail in the CeNGEN dataset (e.g.,
pharyngeal gland cells g1A versus g1P versus g2) or because the
clusters were not expected to be present in CeNGEN because they
are exclusive to the adult (e.g., cells involved in egg laying). We
therefore used Wormbase to identify gene markers and manually
annotate each unannotated cluster; the markers and rationale
behind every annotation can be found in data S1.

We identified all expected broad cell types in the adult hermaph-
rodite C. elegans (2) including intestine, pharyngeal cell types, hy-
podermis, nonstriated and body wall muscle, neurons, glial cells,
rectum and anus, seam, somatic gonad, vulva and uterus, excretory,
coelomocytes, GLR cells, head mesodermal cells, and XXX cells.
Several major cell types could be further annotated into specific
cell types. The data were sufficiently exhaustive that we were able
to identify cell types represented by a few or even one cell in the
C. elegans adult. For example, we were able to identify specific pha-
ryngeal gland cells (g1A, g1P, and g2), individual gonadal sheath
cells (sh1, sh2, sh3_sh4, and sh5), and vulval muscle cells (vm1
and vm2). Last, we identified 112 of the 118 distinct neuronal
classes previously reported (11). This includes 9 GABAergic, 51
cholinergic, 35 glutamatergic, 3 dopaminergic, 1 octopaminergic,
and 2 serotonergic neuron types. Classifying the neurons by func-
tion, we found 32 sensory neurons, 22 motor neurons, 11 pharyn-
geal neurons, 36 interneurons, and 14 polymodal neurons. The only
neurons we were not able to identify in our dataset were the I3, I6,
MC, ADA, AVG, and ALN. Overall, we defined 180 specific cell
types (Fig. 1 and data S1).

A limitation of current scRNA-seq technologies is that they only
sequence a sample of the transcriptome of each cell. Therefore, to
build more accurate transcriptional profiles for each cell type, we
sought to distinguish between actual gene expression and noise.
We used bootstrap resampling to estimate the average and confi-
dence interval for the expression level of each gene per cell type
(available through wormseq.org). If the lower bound of the 95%
bootstrap confidence interval of the calculated scaled transcript
per million (scaled TPM) was greater than 0, then we considered
that gene to be robustly expressed in the analyzed cell type. Using
this thresholding criterion, we estimated a median of 5871 genes ro-
bustly expressed per cell type. However, a strong positive correlation
between the number of genes and number of cells per cell type in-
dicates that the number of genes detected per cell type depends on
the number of cells sequenced in each cluster (fig. S2B; Pearson cor-
relation coefficient of 0.64). We therefore used a different metric to
estimate the percentage of the transcriptome covered for each cell
type given the number of cells in the cluster. The modeling (see Ma-
terials and Methods) suggests that for 177 of 180 cell types, we

identified at least half of the genes expressed in that cell type. More-
over, for the majority of these cell types (135 of 180), we identified at
least 75% of the transcriptome (data S2).

An unexpected consequence of our classification is the identifi-
cation of transcriptionally distinct spermatheca subpopulations that
had not been reported before. (Note that the rationale of all anno-
tations can be found in data S1.) Traditionally, the spermatheca is
divided into three compartments: the spermatheca neck, the sper-
matheca bag, and the spermatheca-uterine junction. However, our
spermatheca cells clustered into five distinct clusters. Our results
suggest that the spermatheca neck can be further subdivided into
at least two populations of cells that relative to the uterus we
name: (i) spermatheca neck distal—this cluster expresses apx-1
and let-502 highly (12, 13) and (ii) spermatheca neck proximal—
this cluster does not express apx-1 and let-502 as prominently. Sim-
ilarly, the spermatheca bag can be subdivided into: (i) spermatheca
bag distal, this cluster prominently expresses ajm-1 and par-3(14)
and (ii) spermatheca bag proximal, which does not express these
markers as prominently. On the other hand, a single cluster corre-
sponds to the spermatheca-uterine junction. Therefore, even in an
organism with every cell anatomically mapped, previously uniden-
tified divisions of labor between cells can be uncovered using whole-
body scRNA-seq.

Another unexpected observation is the presence of cell types that
are not typically found in adult hermaphrodite C. elegans. One of
these clusters expressed seminal vesicle gene markers, which are ex-
clusively found in males. We suspect these reflect the presence of
rare males (≤0.01%) in our cultures (15, 16). There were also cell
clusters characteristic of the L4 stage (e.g., spermatocytes and sper-
matids) and of early embryos. We postulate that these anachronic
clusters came from younger (L4) and older adults, which are expect-
ed to rarely occur in the three independent populations of 100,000
animals that we used to isolate the cells. Once we remove the cell
types corresponding to L4s, males, and embryos, we end up with
175 adult hermaphrodite cell types. It is worth noting that the
fact that the dataset included the transcriptome of scarce cell
types emphasizes the power of droplet-based scRNA-seq in captur-
ing underrepresented cell populations or subtle perturbations.

Identification of housekeeping genes
Housekeeping genes can provide insight into intriguing biological
questions such as which genes are under the strongest selective pres-
sure or from a reductionist perspective, which genes are essential to
cellular function in eukaryotes. Housekeeping genes also serve as
references in various molecular and biochemical assays. However,
it remains unclear whether commonly used housekeeping genes,
or any gene, meet the commonly used criteria to define housekeep-
ingness, namely, consistent expression across cell types and condi-
tions, essentiality, and conservation. To assess consistent
expression, we used two different criteria. We first applied a strin-
gent criterion: abundant expression within each cell type and ex-
pression across cells. For this, we created a gene–by–cell-type
matrix to define for each cell type how many cells expressed a
given gene. We then used density plots to visualize the prevalence
of every gene across cells within each cell type. A gene with a density
plot skewed to the right (negative skewness score) is expressed in
most cell types and in the majority of cells in each cell type (e.g.,
ctc-3 in Fig. 2A). By contrast, a gene with a density plot skewed to
the left (positive skewness score) is expressed in a few cell types, and,
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when expressed in a cell type, it is expressed in the minority of the
cells (e.g., sax-7 in Fig. 2A). Of the 19,657 genes we detected, only 50
genes had negative skewness scores (data S3A), indicating that, in
our dataset, very few genes meet the criteria of being ubiquitously
and abundantly expressed across cell types. Nevertheless, the 50
genes with negative skewness scores were enriched in “basal cellu-
lar” functions including protein translation and mitochondrial

respiration (Fig. 2B), and in essential genes [identified as lethal in
sub-genome (17) and full-genome RNA interference (RNAi)
screens (18, 19)] (Fig. 2C), two features in line with these genes
being bona fide housekeeping genes.

It is important to acknowledge here that inherent limitations of
current scRNA-seq technology could have explained, at least in part,
the small number of genes robustly expressed across all cell types;

Fig. 2. Identification of 172 ex-
perimentally validated C. elegans
housekeeping genes. (A) Skewness
score (in parenthesis) represents the
relative abundance of mRNAs within
and across cell types for a given
gene. The depicted density plots il-
lustrate two genes at the ends of the
spectrum of skewness scores. (B)
Gene Ontology (GO) enrichment
analysis for genes with negative
skewness scores (−log[10]q = −log
[10] of q value). NADH, nicotinamide
adenine dinucleotide; ATP, adeno-
sine 5′-triphosphate; TP, triphos-
phate. (C) Proportion of essential
genes (defined as lethal when
knocked down by RNAi) among the
50 genes with negative and positive
skewness scores. Fisher’s exact test
for enrichment P value; ****P < 2.2 ×
10−16, which is the smallest P value
possible for this test. (D) Number of
genes within each Gc bracket: ≤0.2
perfect, >0.2 to ≤0.3 good, and >0.3
to ≤0.4 adequate expression equali-
ty. Gc > 0.4 to ≤ 0.5 big and >0.5
severe expression gap. (E) GO en-
richment analysis for genes with low
Gc (<0.3) (−log[10]q = −log [10] of q
value). NADH, nicotinamide adenine
dinucleotide; ATP, adenosine 5′-tri-
phosphate; TP, triphosphate. (F)
Proportion of essential genes among
genes with low (≤0.3) and high
(>0.3) Gcs. Fisher’s exact test for en-
richment P value; ****P < 2.2 × 10−16,
which is the smallest P value possible
for this test. (G) Concentric diagram
to represent: Number of genes with
low Gc (<0.3) in our scRNA-seq
dataset, number of genes previously
classified as housekeeping genes in
the L2 worm (17), number of genes
experimentally shown to be essen-
tial, and number of genes conserved
across species (see also table S3). (H)
Distribution of a set of commonly
used housekeeping genes across Gcs
and skewness scores. Red font indi-
cates genes with perfect or good
expression equality (Gc ≤ 0.3), and
blue indicates genes with a severe
expression gap (Gc > 0.5). HK,
housekeeping.
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however, this is unlikely to be the sole or even the main explanation
(see Discussion). A more likely explanation is that we are missing
housekeeping genes when using the skewness score because house-
keeping genes are not necessarily abundantly expressed. Instead,
housekeeping genes are expected to be consistently expressed. To
identify genes consistently but not necessarily abundantly ex-
pressed, we applied a metric of inequality called the Gini coefficient
(Gc) (17). Genes with lower Gc’s are expressed more equally across
cell types, and genes with higher Gc’s are expressed in a more cell
type–specific manner. In our scRNA-seq dataset, more than 90% of
genes had Gc’s indicative of inconsistent expression across cell types
(Gc ≥ 0.4). By contrast, 367 genes had Gc’s considered to represent
good to perfect equality (<0.3) (Fig. 2D and data S3B), which sug-
gests that they might play a role in common or core cellular func-
tions. Gene Ontology term analysis showed that the genes with low
Gc (<0.3) were enriched in basal cellular functions, including ribo-
somal activity and mitochondrial respiration (Fig. 2E).

Housekeeping genes are also expected to be similarly expressed
across conditions. scRNA-seq is not yet available for C. elegans
subject to perturbations (genetic, chemical, or other); therefore,
we used time, in the form of a different life stage, as an alternative
condition. Specifically, we looked at the overlap between genes con-
sistently expressed (Gc < 0.3) in YAs and a list of putative house-
keeping genes reported for the C. elegans L2 larvae (17). We
found that all genes with high expression equality (Gc ≤ 0.2) and
most genes (306 of 367) with good expression equality (Gc < 0.3)
in the YAs were also consistently expressed across cell types in the
L2 larvae (data S3C). Furthermore, 248 of the 306 genes were exper-
imentally shown to be essential (lethal) in partial (17) and full-
genome RNAi screens (18, 19) (Fig. 2, F and G, and data S3D).
Last, based on the conservation criteria defined by Tabach et al.
(20) and as expected for essential genes, we found that most of
them (172 of 248) are conserved across animals, plants, and fungi
(Fig. 2G and data S3E). Therefore, the 172 gene list meets several of
the ascribed but rarely tested criteria that define housekeeping
genes: (i) expressed consistently across cell types, (ii) expressed con-
sistently across conditions (e.g., developmental stages), (iii) in-
volved in basic cellular functions, (iv) essential for life, and (v)
conserved across species.

Next, we applied the Gc estimate to assess the “housekeeping-
ness” of 26 genes broadly used as “housekeeping” genes for normal-
ization of gene expression in C. elegans (21, 22). The majority of
these genes (16 of 26) had Gc ≤ 0.3, indicating that these may be
appropriate reference genes (Fig. 2H). Four of the 16 genes had a
negative skewness score in our dataset (rpl-24.1, rpl-35, rps-26,
and rps-23), indicating that these four genes are not only consistent-
ly but also abundantly expressed across cell types (Fig. 2H). On the
other hand, six commonly used “housekeeping genes”—rbd-1, tba-
1, pmp-3, act-1, arp-6, and csq-1—had a Gc of more than 0.5. This
severe expression gap indicates that these six genes are inadequate
normalization factors (Fig. 2H); all six genes are expressed in a
tissue-specific manner (fig. S3, A to F). We therefore recommend
avoiding the use of rbd-1, tba-1, pmp-3, act-1, arp-6, and csq-1, es-
pecially in studies involving adult C. elegans. On the other hand, we
here identify 172 housekeeping genes that are experimentally tested
for the four criteria that have so far been axiomatically ascribed to
housekeeping genes. The consistent expression of these 172 genes
across cell types, conditions, and species suggest that, in line with
essential functions, they are under strong selective pressure.

Inferring transcriptional regulators underlying cell identity
We then used an analysis successfully applied to the scRNA-seq data
of the C. elegans L2 stage to gain insights into the regulatory pro-
grams that drive cell-specific gene expression (6). Briefly, the known
binding patterns of TFs, as defined through chromatin immunopre-
cipitation sequencing (ChIP-Seq) (23–25), are correlated with the
cell-specific gene expression profiles defined through scRNA-seq.
To this end, we constructed regression models to predict the expres-
sion level of each gene in each of the 180 different cell types based on
the strength of the ChIP-Seq peak(s) proximal to its promoter
region. We then restricted correlations to TFs that were detectably
expressed in our scRNA-seq dataset. This analysis yielded 7541 dis-
tinct TF cell type associations that showed correlation coefficients
larger than zero (data S4 and wormseq.org). To assess the validity
of these associations, which we refer to as “TF activity” associations,
we tested whether the TF cell type association scores inferred from
the ChIP-Seq–scRNA-seq analysis were able to predict cellular
identity as defined by the expression of all 19,657 genes in our
dataset. We clustered cell types using all-gene expression
(Fig. 3A) and separately using TF activity scores alone (Fig. 3B).
We then assessed the extent to which the “TF activity dendrogram”
correlated with the “all expressed genes dendrogram.” We found
that the two dendrograms were highly correlated (Baker’s gamma
correlation coefficient: 0.70), demonstrating that the TF activity as
defined by our model largely drives cellular identity, and, hence, it
can predict cell ontological relationships between cell populations.
Using only TF expression (Fig. 3C), rather than TF activity, yielded
a much weaker correlation (Baker’s gamma correlation coefficient:
0.21), suggesting that using TF activity is better at inferring the TF
cell type associations that drive cellular identity.

The regression analysis was able to recapitulate known TF cell
type associations including hlh-1 and unc-120 with body wall
muscle (26), nhr-25 and elt-3 with hypodermis (27, 28), elt-1 with
seam cells (29), elt-2 and pqm-1 with intestine (30, 31), and pha-4
with pharynx (32) (Fig. 3D). We also found that some TF cell type
associations were congruent with TFs reported to act as terminal
regulators of neuronal identity (33) (summarized in fig. S4). For in-
stance, we found ceh-14, a terminal regulator of PVN identity, asso-
ciated with PVN neurons. Similarly, egl-13 was associated with
BAG, URX, AQR, and PQR expression profiles. The regression
analysis also suggested several previously unreported regulatory re-
lationships (Fig. 3, D to F). For instance, nhr-25 appears to be spe-
cifically active in the hyp7 hypodermal cells, while elt-3 is predicted
to be active in hyp4_hyp6, head, and tail hypodermal cells but not in
hyp7. We also found that unc-120 shows a high regression coeffi-
cient in several muscle cells including all sex-specific muscle cells
and body wall muscle, while hlh-1 had a high regression coefficient
in anal and uterine muscle cells in addition to body wall muscles.
We were also able to identify common and distinctive TFs between
closely related cell types. For example, our analysis predicts that the
TFs hinf-1 and pat-9 are common to all gonadal sheath cells (sh1,
sh2, sh3_sh4, and sh5). By contrast, lag-1 and ZK546.5 are specific
to sh1 and sh2; ztf-1 is specific to sh3_sh4; and daf-12 and sup-37 are
specific to sh5 cells (Fig. 3E). Similarly, the TFs madf-5, ekl-4, and
egl-18 are common to all three pharyngeal gland subtypes, while ztf-
1 is specific to g1A, daf-19 is specific to g2, and ztf-26 is specific to
g1P cells (Fig. 3F). While additional experiments will be needed to
validate these inferred relationships, the results highlight the poten-
tial of combining the expression data with TF binding data to
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Fig. 3. TF activity defines cell-type identity. (A to C) Circularized dendrograms depicting the relationship between cell types constructed using (A) all 19,657 genes
expressed in our scRNA-seq dataset (B) predicted TF activity and (C) TF expression. Hierarchical clusteringwas performed using theWard.D2method (74). Subtypes of cells
are colored by broadly defined cell types as depicted in the inset. (D) Sub-heatmap showing that the TF activity analysis recapitulates previously known TF cell type
associations. (E) Sub-heatmap showing predicted TF activity for all gonadal sheath subtypes. Only TFs that positively correlatewith at least one of the cell types are shown
here. (F) Sub-heatmap showing predicted TF activity for all three pharyngeal gland subtypes. Only TFs that positively correlate with at least one of the cell types are
shown here.
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advance our understanding of the transcriptional programs respon-
sible for driving the identity of even closely related cells.

Last, we investigated the relationship between the predicted TF
activity–cell identity associations and cellular function. Specifically,
we checked whether combining our scRNA-seq data with published
ChIP-Seq and in vivo experimental data accurately predicted the
molecular targets through which a TF of interest maintains the
functional identity of a cell. For instance, the TF activity analysis
predicts that the TF dsc-1 is active in the anal muscle. In agreement
with this association, RNAi against dsc-1 causes constipation and
shorter defecation cycles (34). Correspondingly, our scRNA-seq
dataset shows 1089 DSC-1 target genes expressed in the anal
muscle. Among the 1089 genes, 29 are known to contribute to
normal defecation in C. elegans, a significant enrichment as mea-
sured by a Fisher’s exact test (P value = 3.183 × 10−09; data S5A).
From the remaining DSC-1 targets, at least 70 genes are known to
be required for muscle activity (10) and, hence, may similarly con-
tribute to defecation (data S5B). Together, our scRNA-seq dataset,
published ChIP-Seq, and published genome-wide RNAi screens
allow us to postulate that DSC-1 acts cell autonomously in the
anal muscle, where it controls the expression of at least 99 genes im-
portant for normal defecation (data S5, A and B). Similar to this
example, our dataset enables the generation of hundreds of previ-
ously unexplored testable hypotheses across fields of study.

Whole-body reconstruction of cell-to-cell interactions
CCIs are critical to themaintenance of the tissues and organ systems
that sustainmetazoan life.We previously developed the tool cell2cell
to infer CCIs from the expression of ligand- and receptor-encoding
genes across cells in single-cell transcriptomics datasets. In the orig-
inal cell2cell study, we published a curated database of LR pairs to
study CCIs in the C. elegans L2 larvae (35). Here, we use this list
together with cell2cell’s permutation analysis (36, 37) to identify
CCIs between all 180 cell types and subtypes across the whole
body of an adult C. elegans and to predict the likely molecular
drivers of those interactions. A large matrix of putative interactions
was obtained (see wormseq.org to browse these interactions), and
below we discuss a few illustrative examples.

Without any information on CCIs and using only LR pairs and
cell-specific gene expression data, cell2cell was able to predict
known CCIs. For example, cell2cell predicted that the distal tip
cells interact with germ cells (38) and that a major driver of this
CCI is the molecular interaction between the ligand lag-2 and the
receptor glp-1; a CCI dissected through several decades of experi-
mental studies. In addition, cell2cell predicted several unreported
molecular interactions between cell types. For example, the LR
pair nlg-1/nrx-1 is the highest-scored driver of the interaction
between AVA and various motor neurons. Although AVA
neurons are involved in touch-induced locomotion (39) and nlg-1
RNAi treated worms are resistant to touch-induced locomotion
(40), it was not known which signaling molecules produced by
AVA contributed to the touch response. However, the combination
of the published data with the cell2cell results enables us to hypoth-
esize that the interaction between the AVA-generated NLG-1 ligand
and the NRX-1 receptor in motor neurons contributes to the touch
response. Similarly, cell2cell predicts that sax-7/pat-2 and sax-7/pat-
3 contribute to the interaction between DVB neurons and anal
muscle cells. In support of these molecular interactions, DVB
neurons innervate the anal muscle to regulate defecation, and sax-

7mutant worms have reduced defecation rates relative to wild-type
worms (41). However, it was not known the site of action of sax-7 as
it relates to the control of defecation or which receptor would
receive its signal in the anal muscle. Together, the cell2cell analysis
and the published work enable us to hypothesize that the molecular
interaction between DVB-generated SAX-7 and the PAT-2/3 recep-
tor in the anal muscle contributes to normal defecation in C.
elegans. In addition, cell2cell predicts that the pairs sax-7/pat-2
and sax-7/pat-3 mediate a functional interaction between VC4
and VC5 neurons and the sex-specific muscles. This prediction is
supported by the fact that sax-7 mutants are also egg-laying defec-
tive (41). Therefore, the results suggest that the expression of the
sax-7 ligand in VC4 and VC5 is necessary for normal egg laying.
Together, these examples illustrate the power of the cell2cell analysis
in combination with in vivo genetic analysis to predict the molecu-
lar drivers of biologically relevant CCIs.

From the thousands of predictions made by cell2cell, we next
sought to group LR pairs based on the CCIs they mediate with
the goal of identifying molecular signatures that mediate the inter-
action between groups of cells. To do so, we used Tensor-cell2cell, an
unsupervised machine-learning method that identifies patterns of
cell-cell communication and reports them as signatures that sum-
marize the cell types and the operative LR pairs driving their inter-
action (42). Using only our whole-body scRNA-seq data and our
previously published LR pair list, Tensor-cell2cell identified seven
unique signatures, each capturing a combination of LR pairs and
groups of cell types carrying out a biological function (Fig. 4, A
to C, and data S6).

Validating the Tensor-cell2cell approach, some of the identified
signatures were well supported by previously published data. For in-
stance, Signature 7 (Fig. 4, A to C) predicts a functional interaction
between several neurons and germ and intestinal cells mediated by
the insulin-signaling pathway. On the ligand side, the analysis pre-
dicts that insulin-like peptides (ILPs) are mainly produced by
neurons (Fig. 4A). In support of this Tensor-cell2cell prediction,
multiple laboratories have shown that, with a few exceptions, ILPs
are generated by neurons (42–46). However, our analysis goes
beyond these data because it predicts the specific neuronal subtypes
that produce the ILPs in the fed adult C. elegans, which include
ADF, AFD, AIA, AIN, ASE, ASI, ASJ, ASK, AWA, AWB, AWC,
RIR, URB, and URX_AQR_PQR (Fig. 4A and fig. S5D). In addi-
tion, weaker ILP production is predicted to occur in ADL, ASG,
ASH, BAG, M1, and RMH neurons. Furthermore, we can assign
specific ILPs to specific neurons. For example, ins-28 is prominently
expressed in AIA, AIN, AWA, and M1 neurons, while ins-6 is more
prominently expressed in ASI and ASJ neurons (fig. S5D). On the
receptor side, the most prominent receiver (receptor-producing)
cells enriched in this interaction are intestinal and various germ
cells (Fig. 4B). Correspondingly, several groups demonstrated the
presence and functional relevance of the sole C. elegans insulin re-
ceptor, daf-2, in the germline (47) and intestinal cells (48). In addi-
tion, we find several neurons enriched as insulin-signaling receiver
cells (Fig. 4B), which is supported by published work showing that
insulin signaling also mediates interneuronal communication (42).
For example, we recapitulated the insulin-signaling mediated inter-
action between AIA neurons and ASE neurons, which is required
for salt chemotaxis learning (49). Specifically, in our dataset, AIA
neurons prominently express ins-1 and ASE neurons express daf-
2 (fig. S4, E and F), which are both required for salt chemotaxis

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Ghaddar et al., Sci. Adv. 9, eadg0506 (2023) 23 June 2023 7 of 15

http://wormseq.org


Fig. 4. Identification of cell type–specific CCIs. (A) Heatmap depicts the cell types identified as the main senders across the seven communication signatures predicted
by cell2cell in the adult C. elegans. Inset shows which cell types are driving the sender function in signatures 3 and 7. (B) Heatmap depicts cell types identified as the main
receivers across the seven communication signatures predicted by cell2cell in the adult C. elegans. Inset shows which cell types are driving the receiver function in
signatures 3 and 7. BWM, Body Wall Muscle. (C) Heatmap showing the LR pairs mediating each signature. Highlighted are the LR pairs important for signatures 3 and
7. (A) to (C) Loadings represent the importance that Tensor-cell2cell assigned to each element (sender or receiver cell or ligand/receptor pair) within their respective
signature. (C) Only shows LR pairs that are important (loading value of >0.1) in at least one signature. (D) Curves depict the time it takes for RNAi-treated or control-
treated (empty vector) worms to become paralyzed upon levamisole treatment (number of worms = 19 to 40; representative of two biological replicates for intestine- and
hypodermis-specific RNAi and three biological replicates for WT and neuron-specific RNAi; data S7, A and B). ****P < 0.001 determined by log-rank test.
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learning as previously reported (49). The results also predict previ-
ously unexplored insulin signaling-mediated communication
between other ILP-producing and receptor-producing neuronal
subtypes including the daf-2/daf-4–expressing neurons (data S6).

Tensor-cell2cell was also able to predict previously unidentified
cell communication signatures. For example, Signature 3 predicts
that the ligands adm-2, cle-1, emb-9, let-2, sax-7, sup-17, and unc-
52 and their corresponding receptors pat-2 and pat-3 mediate the
interaction between motor neurons (senders) and muscle cells (re-
ceivers). Signature 3 specifically predicts that these LR pairs mediate
the interaction between the AS, DA, DB, DD, PDA, SIA, SIB, VC,
and VD neurons and muscle cells from the body wall, anus, vulva,
and uterus. Reassuringly, some of these predictions appear to be
supported by published results. For example, CLE-1 is enriched
in neuromuscular junctions (50), and pat-2, pat-3, emb-9, let-2,
and unc-52 contribute to muscle function (51, 52). However, the
site of expression and neuromuscular function of the adm-2, cle-
1, and sup-17 ligands has not been reported. We, therefore, used a
levamisole-sensitivity assay to test the Tensor-cell2cell prediction
that inactivation of these three ligands may affect neuromuscular
junction function. Levamisole is an acetylcholine receptor agonist
that causes continued neuronal stimulation of the muscles,
leading to paralysis (53, 54). Resistance or hypersensitivity to levam-
isole is indicative of a neuromuscular junction dysfunction (55). We
performed whole-body and tissue-specific RNAi knockdown of the
ligand genes of interest starting at the young L4 stage. When the
animals reached the young adult stage, we treated them with levam-
isole. As predicted by Signature 3, intestine- and hypodermis-spe-
cific ligand knockdown of adm-2, cle-1, or sup-17 did not alter
sensitivity to levamisole. By contrast, whole-body and neuron-spe-
cific knockdown of all three ligands resulted in levamisole hyper-
sensitivity (Fig. 4D and data S7, A and B). The paralysis
phenotype was more pronounced in the worm strain TU3401
(Fig. 4D and data S7, A and B), which is engineered to promote
RNAi knockdown specifically in the neurons of C. elegans (56).
Animals treated with RNAi against the ligands showed normal che-
motaxis to sodium salts, which is another reported function of the
neurons expressing these ligands (PDA,VC, VD DD, and SIB) (data
S7C), implying that knocking down the tested ligands does not
cause pleiotropic dysfunction of the relevant neurons. Together,
the match between the Tensor-cell2cell results and functional anal-
yses suggests that this analysis can generate meaningful hypotheses
about the molecules driving cell-to-cell communication and cell-to-
cell-to-functional interactions in C. elegans.

WormSeq application: Explore the whole-body
transcriptional landscape of the adult C. elegans
To make the scRNA-seq data accessible to noncoding users, we
created an RShiny application we called WormSeq. This resource
is available as a web application and can be accessed using the fol-
lowing link: wormseq.org. WormSeq has several features, including
heatmap visualization of gene expression by count and by percent-
age of cells expressing a gene. Users can identify cell type–specific
gene markers by browsing gene marker tables or by using percent-
age gene expression per cell type. The interface also enables the
identification of genes expressed in one cell type but not another
one. Users interested in the abundance or consistency of gene ex-
pression can also browse genes by skewness score or Gc. The appli-
cation also allows users to browse the regulatory program analysis

data and identify TFs enriched in cell types of interest. Lastly, users
can also browse the cell2cell analysis and identify the list of interac-
tors driving communication between two cell types of interest.

DISCUSSION
We present here a comprehensive single-cell atlas of a wild-type
adult C. elegans. Although single-cell transcriptional atlases have
been generated for other metazoans, including mice and humans
(57, 58), this scRNA-seq dataset is unique due to the following:
(i) It derives from three independent populations each composed
of ~100,000 animals; (ii) it was obtained from hermaphroditic, ge-
netically homogeneous animals, which entails lower expression
noise than what can be achieved in gonochoric species; and (iii)
the soma, tissues, and organs of each and all adult C. elegans have
the same cell types and number of cells (e.g., 95 body muscle cells in
total). This redundancy yielded a high-resolution scRNA-seq
dataset that captures all cell transcriptomes including those under-
represented in the starting worm populations (e.g., male cell types).
In addition, although current scRNA-seq protocols capture only a
small fraction of the total RNAmolecules per cell, our oversampling
of C. elegans cells (total of 154,251 cells) and the aggregation of cells
from the same cell type enabled the reconstruction of a representa-
tive transcriptional profile for each cell type composed of a median
number of 5871 genes per cell type. This level of gene activity per
cell type poses interesting questions for future investigation. Which
of these genes are required to maintain cell identity and function?
Which ones are part of transcript reservoirs ready to act upon stress
or other contexts? Which ones reflect biological or experimental
noise? A more general limitation of any RNA analysis is that
mRNA expression may or may not reflect protein abundance. Pre-
vious studies have shown that the correlation between mRNA levels
and protein levels can be poor (59–61). Therefore, incorporating
proteomic data, and in the future single-cell proteomic data, is an-
ticipated to increase the accuracy of functional predictions.

Despite the technical limitations, the C. elegans transcriptional
atlas reported here is composed of the gene expression profiles of
180 distinct cell types. In addition to identifying most known C.
elegans cell types, our annotation revealed differences in expression
profiles between cell types previously assumed to be the same due to
morphological similarity. For example, apx-1 and let-502 being
highly expressed in the distal but not in the proximal spermatheca
neck together with the reports showing that whole-body RNAi
against apx-1 (62) and let-502 (63) lead to dysregulated expansion
of the germ line, suggest that the distal spermatheca neck cells may
contribute to tumorous processes in the germ line. Therefore, the
transcriptome-based annotation of C. elegans cells presented here
opens doors to learn previously unexplored cell-specific biology.

In this study, we also use the single-cell data to begin to address
three fundamental questions about the relationship between gene
expression and cellular function: Which, if any, genes meet the def-
inition of housekeeping gene? What transcriptional programs gen-
erate and maintain cellular identity in C. elegans? Which genes
mediate the interactions between cells in this metazoan?

What genes are housekeeping?
Using scRNA-seq we were able to directly test for a feature com-
monly attributed to housekeeping genes: consistent expression
across cell types. We scored all genes in our dataset based on the
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abundance and consistency of expression across cell types using a
skewness score or only for consistency of expression using a Gc. Al-
though skewness score and Gc positively correlate with each other
(Pearson correlation coefficient = 0.66), the Gc is more likely to have
fewer false negatives because housekeeping genes are not necessarily
abundantly expressed. Supporting the use of the more permissive
Gc to identify housekeeping genes, the resulting list of consistently
expressed genes (Gc ≤ 0.3) is enriched in genes essential to C.
elegans survival (276 of 367) to an extent similar to the most restric-
tive skewness set (34 of 50). Furthermore, 248 of the 276 genes are
consistently expressed in two very distinct ontogenetic stages, the L2
larvae and the adult C. elegans, showing that the Gc analysis applied
to one condition can capture genes consistently expressed across
conditions.

Because our housekeeping genes analysis is limited to the N2
wild-type C. elegans strain, and it compares only two developmental
stages (L2 larvae and young adult), it may be too inclusive. Addi-
tional scRNA-seq experiments in other genetic backgrounds, devel-
opmental stages, or in the presence of abiotic or biotic stressors may
further narrow the number of housekeeping genes or even challenge
the concept of housekeeping gene altogether. On the other hand,
scRNA-seq limitations such as low depth of sequencing and the in-
complete sampling of each cell could account for false negatives.
Nonetheless, the 248 genes found in the Gini analysis represent a
solid beginning. As expected, these 248 genes are enriched in
basic cellular functions including mitochondrial function, protein
synthesis (e.g., ribosome and protein translation), and protein
stability (e.g., chaperones). Intriguingly, we did not find DNA syn-
thesis/replication genes in this set, likely a reflection of the fact that
apart from the germ line, cells in the adult C. elegans are post-
mitotic. We also did not find enrichment for RNA synthesis
genes, although at least some of these genes are well represented
across cell types (e.g., the RNApol encoding gene ama-1). Neverthe-
less, of the 248 genes consistently expressed in C. elegans, we found
that 172 are conserved (20) in organisms ranging from yeast to rice
and humans (data S3E), and hence, they could be part of the core of
genes indispensable to build and maintain a eukaryotic cell.

What transcriptional programs generate and maintain
cellular identity in C. elegans?
Our regression analysis of ChIP-Seq data with the cell type–specific
gene expression profiles revealed 7541 TF-cell type expression
profile associations. Some of the TF-cell type associations were
known, and, consequently, they validate the approach. However,
we also generated predictions that, in line with the high resolution
of our dataset, reveal TF-cell type associations that are distinct even
between closely related cell subtypes such as pharyngeal gland g1A
and g1P. In WormSeq, the web interface accompanying this study,
users can search for all the TFs predicted to be active in each cell
type and all the cell types in which a given TF is predicted to be
active. As the number of TFs with ChIP-Seq data increases from
the 362 TFs used here to encompass the 900 or so TFs predicted
to exist in C. elegans (64), the association between TF binding pat-
terns and cell-specific transcriptional profiles should become even
more powerful in revealing regulatory relationships. Also, while we
only evaluated the activating role of TFs, other advances may permit
the investigation of negative regulators. Last, unlike our transcrip-
tomic data, the ChIP-Seq data we relied on were generated in bulk
samples; this may lead to inaccurate results for TFs that are only

active in a small set of cells. Therefore, as single-cell ChIP-Seq
becomes more popular, we expect this kind of analysis to become
more accurate for more sparsely expressed TFs.

By combining our scRNA-seq with published ChIP-Seq and
functional data, we proposed cell-type TF targets triads that may
mediate cellular function and morphology. For example, knock-
down of the gene encoding the TF dsc-1 and of several of its
ChIP-Seq targets can alter defecation cycles in the worm (34).
Our analysis predicts that dsc-1 is active in anal muscle and that
29 of its downstream targets involved in defecation are expressed
in the anal muscle. Therefore, we hypothesize that DSC-1, its 29
downstream effectors, and likely another set of 70 target genes
that yield more general muscle phenotypes but are expressed in
the anal muscle orchestrate a cell-autonomous transcriptional
program critical for normal defecation inC. elegans. The results pre-
sented in this study promise to accelerate advances by reducing the
number of candidate genes for functional studies and by placing
molecular players in their anatomical sites of action.

Which genes mediate the interactions between cells in
C. elegans?
Weused the algorithm cell2cell and a curated list of LR pairs to make
thousands of predictions about the gene pairs mediating the inter-
actions between the cells of the adult C. elegans. We also used a per-
mutation analysis and Tensor-cell2cell (65) to identify cell type–
specific communication signatures. Validating our approach, we de-
tected known CCI-LR associations including insulin signaling-me-
diated neurons–germ line and neurons–intestine communication.
In addition, even for this well-characterized communication
pathway, our analyses provided previously unexplored testable hy-
potheses including the specific neurons that produce the insulin-
like ligands in the adult worm.

Our predictions, however, are only based on the expression of LR
pairs without accounting for spatial constraints. This omission may
lead to predictions that do not match the biology, most notably
membrane-bound LR pairs predicted to mediate the interaction
between physically distant cells. For this reason, in our web interface
WormSeq, we included a feature that allows users to browse our
CCI-LR predictions by LR class: (i) membrane-bound, (ii) ECM
component, and/or (iii) secreted. We recommend potential users
to use our CCI analysis in combination with C. elegans anatomy da-
tabases (e.g., wormatlas) to determine the relevance of the predic-
tions. In addition, wewere unable to explore the spatial properties of
CCIs as we had previously done (35) due to the absence of an adult-
specific three-dimensional (3D) digital atlas similar to the one avail-
able for L1 worms (66). Last, the analysis is limited to present LR
interaction data. As more accurate and extensive LR interaction
data become available, we expect this analysis to lead to amore com-
prehensive map of the molecules mediating the interactions
between cells.

Overall, this study is a major step forward toward identifying the
key molecular players, whose function or dysfunction defines the
functional status of the intracellular and intercellular gene networks
that constitute an animal. Putting together, (i) genetic tractability,
(ii) stereotypical number and physical interactions between cells
dissected to the level of synapses, (iii) known lineage for every cell
in the body, and (iv) existing scRNA-seq datasets of the wild-type
embryo, two larval stages, and now the adult will enable the devel-
opment of tools that track gene expression across space and time for
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a whole living animal, as well as predictive models of cellular, tissue,
organ, and ultimately whole-animal function. These tools can help
many fields in at least two ways: (i) They may tell us how much in-
formation and of which kind is necessary to develop in silicomodels
that can accurately predict the effect of perturbations (biological,
chemical, physical, or others), and (ii) the tools themselves may
serve as the basis or guide the development of predictive tools for
more complex organisms.

MATERIALS AND METHODS
C. elegans strains and husbandry
C. elegans N2 (Bristol, UK), MGH171 (sid-1(qt9);alxIs9[vha-6p::
sid-1::SL2::GFP]), JM43 (rde-1(ne219);xkIs99[wrt-2p::rde-1::unc-
54 3’UTR]), and TU3401 (sid-1(pk3321);uIs69 [pCFJ90 (myo-2p::
mCherry) + unc-119p::sid-1] were obtained from the Caenorhabdi-
tis Genetics Center (CGC). All strains were typically grown at 20°C
on Nematode Growth Media (NGM) plates seeded with Escherichia
coli strain OP50. Bacterial strains used for RNAi were obtained from
the Ahringer library (67).

Sample preparation and scRNA-seq
A synchronous population of L1 worms was obtained by double
bleaching gravid N2 C. elegans with hypochlorite followed by four
washes in S-buffer. The released eggs were then allowed to hatch in
the absence of food in S-buffer over a period of 18 hours. Approx-
imately 100,000 synchronized L1 worms were then grown in NGM
plates seeded with HT115 bacteria at 20°C for approximately 55
hours. At 55 hours after seeding, worms were staged under a micro-
scope to ensure that the bulk of the population had reached the
young adult stage. Young adult worms were then harvested in S-
buffer and centrifuged at 1300g for 1 min. The worm pellet was
washed until the suspension was no longer turbid (two to three
times) and then transferred to a 1.5-ml Eppendorf tube. The
cuticle was then disrupted by incubating the worms in 200 μl of
SDS–dithiothreitol (DTT) [20 mM Hepes (pH 8.0), 0.25% SDS,
200 mM DTT, and 3% sucrose] (68) for 4 min. Immediately after
SDS-DTT treatment, 800 ml of egg buffer was added to the
treated worms, the worms were centrifuged, the supernatant was as-
pirated, and the worm pellet was washed five times in egg buffer
(118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM MgCl2, and 25
mM Hepes at osmolarity of 340 Osm). After the final wash, egg
buffer was added to a final volume of 1 ml and the worm solution
was then transferred to a 15-ml conical tube. A total of 500 μl of
Pronase (350 U/ml; EMD Millipore Corp.) was added, and the
worms were then dissociated into single cells by passing them
through a 21-gauge needle about 20 times. The worm/cell lysate
was centrifuged at 4°C for 1 min at 200g, and then most of the su-
pernatant, containing dissociated cells, was transferred to a new 15-
ml conical tube, leaving behind enough liquid for a second round of
dissociation. After passing the worm lysate through the needle for a
second time, the samples were centrifuged (4°C for 1 min at 200g),
and then the supernatant was transferred to the same tube contain-
ing the cells from the first transfer. The cells were then centrifuged
at 4°C for 5min at 500g, and the cell pellet was washed three times in
egg buffer containing 1% bovine serum albumin gently pipetting
the cells with wide-end tips. Last, to separate single cells from
bigger chunks of tissue, the cell suspension was gently passed
through a 10-μm filter.

For single-cell capture, approximately 15,000 C. elegans cells
were mixed with the reverse transcriptase solution and then
loaded onto each channel of the 10X Chromium Controller (we
used a total of 10 channels for three biological replicates). The li-
braries were then built following the Chromium Next GEM
Single Cell Kits v3.1 published protocols and then sequenced on
an Illumina NextSeq 500 platform. Note that, with this methodol-
ogy, we are only capturing polyadenylated transcripts, therefore ex-
cluding most noncoding RNA. In addition, this method does not
allow for capturing alternative splicing variants.

scRNA-seq data processing
The scRNA-seq data was first processed following the CellRanger
pipeline. Reads were mapped to a modified version of the Worm-
Base WS260 reference transcriptome that had transcript 3′ untrans-
lated regions extended by 0 to 500 base pairs (1). To distinguish cells
from empty droplets, we used the knee plots reported by CellRanger
to set a unique molecular identifier (UMI) threshold below which
droplets were considered empty. The expression matrix generated
by CellRanger was then decontaminated for ambient RNA using
DecontX (69). We then followed the Monocle3 pipeline to
perform dimensionality reduction and clustering (9). First, we com-
bined all three biological replicates into a single cds object. We then
used Monocle3’s preprocess_cds function (method = “PCA,”
num_dim = 200), which normalizes the data by log factor and gen-
erates a lower dimensional space for downstream dimensionality re-
duction. Next, we used Monocle3’s align_cds function to perform
further background correction and remove unwanted batch effects,
which we noticed came mostly from the different samples. We then
performed UMAP dimensionality reduction on the matrix using
Monocle3’s reduce_dimension function run with default parame-
ters. Last, we used Monocle3’s cluster_cells function to define indi-
vidual clusters of cells using the Louvain algorithm (k = 50).

After clustering, we noticed that there were clusters containing
mostly cells with a high mitochondrial fraction (mitochondrial-
only UMI/total UMI > 0.2). These clusters were removed because
high mitochondrial fraction is an indication of damaged cells
(70). We then reperformed dimensionality reduction and clustering
on the remaining cells as described above. We also noted that some
cells labeled “intestine middle” prominently expressed hypodermal
gene markers and were therefore removed from the data because
they were likely intestine-hypodermis doublets.

Cell type annotation
To annotate the different clusters of cells with their corresponding
cell types, we used Monocle3’s top_markers function to identify for
every cluster a list of 10 gene markers. We then used the CeNGEN
application (3) to broadly define where these genes are typically ex-
pressed in the L4 worm. In addition to the L4 data, we used gene
markers identified through scRNA-seq of L2 worms (1). The anno-
tation of the L2 worms was more detailed than the CeNGEN data
and allowed us to annotate several clusters more carefully. We also
used Wormbase to identify gene markers for cell types that were
absent from the L2 and L4 data and those that could not be confi-
dently annotated using the L2 and L4 data alone. Last, we found that
certain clusters contained several distinct cell types. We created
subsets of these clusters on which we performed dimensionality re-
duction and clustering to differentiate these cell types. This allowed
us to improve our annotation and distinguish between cell types,
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which were previously bundled together. We must note however
that even after subclustering, certain cell types could still not be dis-
tinguished (e.g., URX_AQR_PQR). A detailed rationale for the an-
notation can be found in table S1.

Computing gene expression by cell type
The aggregate gene expression profile for a cell type was computed
following the method described by Packer et al. (1). We first used
Monocle3’s normalized_counts function to normalize the gene by
cell expression matrix by size factor alone. For every cell type, we
then (i) subsetted the gene by cell matrix to include only those
cells belonging to that cell type, (ii) took the mean of each row
(gene), (iii) calculated the sum of the values obtained in (ii), (iv)
divided each value in (ii) by the sum calculated in (iii), and last
(v) multiplied all values by a million to obtain a scaled TPM.

We also performed the same calculations using bootstrap resam-
pling to estimate a confidence interval for the expression of each
gene by cell type (1). For every cell type with N number of cells,
we randomly sampled with replacement N cells from that cell
type and calculated gene expression as described above. This was
performed 1000 times for each cell type, and we then used the re-
sulting distribution of scaled TPMs to compute confidence intervals
(95 and 80%).

Estimating transcriptome coverage of every cell type
To estimate the fraction of the transcriptome covered for every cell
type in our dataset, we used the method described by Taylor et al.
(3). We performed 100 iterations of down-sampling for each cell
type calculating scaled TPM as described above with each iteration.
We then plotted the number of genes by the number of cells for
every cell type (fig. S2C). On the basis of the shape of the curves
(fig. S2C), we modeled the relationship between gene number and
cell number using a three-parameter log-logistic function (71).
Using that model, we calculated a predicted maximum number of
genes per cell type (GMAX) and a predicted number of cells that
would allow us to identify half of GMAX for every cell type (data
S2). This allowed us to generate an estimate of the fraction of the
transcriptome covered by the number of cells we have in our
scRNA-seq dataset.

Identification and evaluation of housekeeping genes
To calculate the skewness score, we computed the percentage of
cells within every cell type expressing each gene present in our
scRNA-seq data. We then used baseR’s skewness function to
score the skewness of every gene with respect to their percent of
cells expressed within each cell type: a negative value (left skew) in-
dicating expression in the majority of cells and cell types and a pos-
itive value (right skew) indicating expression in the minority of cells
and cell types. To compute the Gc for every gene across cell types,
we used the ineq function from the ineq package on the scaled TPM
gene by cell type matrix. To perform Gene Ontology enrichment
analysis, we used Wormbase’s gene set enrichment analysis tool
with the default q value threshold of 0.1. Tomeasure the enrichment
of essential genes in our various housekeeping genes list, we first
downloaded the list of genes annotated as “embryonic lethal,”
“larval lethal,” and “adult lethal” from Wormbase. We combined
these lists into a final list of essential genes made up of 3275
genes. We then used Fisher’s exact test to determine the extent of
enrichment of essential genes in our housekeeping genes lists.

Inferring transcriptional regulators underlying cellular
identity
To infer the potential role of TFs in mediating cell type–specific
gene expression, we correlated TF binding patterns obtained from
ChIP-Seq analysis with the gene expression profile of each cell type.
We first collected all the available ChIP-Seq data from the modEN-
CODE/modERN projects (23–25). All ChIP-Seq data are currently
available from the ENCODEData Coordination Center. We includ-
ed in the analysis ChIP-Seq data performed in any post-embryonic
stage (276 TFs) and ChIP-Seq data at embryonic stages (87 TFs) if
the TF had not been tested post-embryonically. The ChIP-Seq peaks
were then clustered along the genome by sorting the peaks by the
apex base position of the peak. The peaks were accumulated into
clusters moving along the genome until a gap of 200 bases
between peaks was encountered, at which point a new cluster was
begun. This resulted in 56,729 clusters, varying in size between 1 TF
and hundreds of TFs. Clusters that contained more than 70 TFs
were excluded from the analysis because these are considered
HOT (high occupancy target) sites and are not likely to represent
tissue-specific binding events. Similarly, clusters containing a
single TF were also excluded because they are likely enriched in spu-
rious binding. The target genes of the peak clusters were assigned by
proximity of the cluster to the transcription start site (TSS) of the
nearby genes. If the average of the apex of the peaks in the cluster
met two criteria, then the cluster was assigned to the gene with the
closest TSS. The first criterion was that the peak cluster must be
within 2000 bases of the nearest gene TSS. The second criterion
was that the distance to the next closest gene TSS must be at least
1.5 times the distance to the nearest gene TSS. The peaks in each
experiment (TF/stage) were ranked by signal strength and normal-
ized to a cumulative probability. We then used a matrix containing
the normalized signal strength as values, the TF as columns, and the
target genes as rows as the predictor variable matrix input for a gen-
eralized linear model (glmnet in R). If the cluster hadmultiple peaks
of a given TF or there were multiple clusters assigned to the same
target with the same TF, then the maximum signal strength for the
TF was used in the predictor variable matrix. The response vector
for the model was the aggregated gene by cell type matrix we gen-
erated from our scRNA-seq data. We then ran a separate model for
each cell type, generating a determined coefficient for each TF cell
type association. These coefficients were used to generate the heat-
maps found in Fig. 3 (D to F) (data S4). Any negative coefficients
were set to 0 in the heatmap. Last, we performed a 20-fold cross-
validation to determine the mean square error for the cell type
model. That number was appended to each cell type (data S4)
with a lower number indicating a higher confidence in the predic-
tions of the model.

Inferring cell-cell communication from the gene expression
of ligands and receptors in cells
To study CCIs, we used a list of 245 LR interactions of C. elegans
(35). We used cell2cell by using the pipeline cell2cell.analysis.Single-
CellExperiment found in the cell2cell python package, which allows
running a permutation analysis for computing the significance of
the inferred communication scores for each combination of LR in-
teraction and sender-receiver cell pairs, as previously introduced
(36). To run this analysis, the expression level of each gene was ag-
gregated at the cell type level by computing the log1p(counts per
million or CPM) average expression within each cluster. Then,

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Ghaddar et al., Sci. Adv. 9, eadg0506 (2023) 23 June 2023 12 of 15



the communication score was computed as the geometric mean of
the expression of the ligand in a sender cell type and the receptor in
a receiver cell type.

To run Tensor-cell2cell to identify latent patterns of communica-
tion, only the communication scores with a P value < 0.05 (indicat-
ing cell-type specific CCI) were used to build a 3D communication
tensor (fig. S5A). This 3D tensor was decomposed by using Tensor-
cell2cell into seven factors, each factor representing a signature or
module of CCI that summarizes a biological process involving spe-
cific cell types and LR pairs.

Levamisole treatment
The levamisole assays were performed as previously described (72)
with some modifications. N2 and tissue-specific RNAi C. elegans
strains were bleached, and the embryos were rocked at 20°C for
18 hours to synchronize the hatchlings. We then seeded around
200 hatchlings on NGM + 1 mM isopropyl-β-D-thiogalactopyrano-
side + carbenicillin plates (25 μg/ml; RNAi plates) seeded with E.
coli strain HT115 carrying an empty L4440 plasmid (control). A
day before the worms became L4s, HT115 carrying either an
empty plasmid or an L4440 plasmid carrying the gene of interest
was seeded on 24-well RNAi plates. Once the worms reached the
L4 stage, we moved ~20 to 40 worms to each bacteria-seeded well.
After 24 hours, the wells were flushed in a sequential manner with 1
ml of 0.4 mM levamisole. Every 10 min, we counted the number of
moving worms until all worms were paralyzed. Results were ana-
lyzed on SPSS using the Kaplan-Meier estimate with log rank test
comparison across different strata. Figures were made using Graph-
Pad Prism.

Statistical analysis
All statistical analyses were performed in R except for the levamisole
analysis which was analyzed in SPSS. All statistical analyses are de-
scribed in their appropriate section in the main text, figure legend
and methods. We used Fisher’s exact test to perform enrichment
analyses (the lower limit of the P value in R is 2.2 × 10−16). Corre-
lation analysis between different datasets was performed using
Pearson correlation coefficient, and correlation analysis between
different dendrograms was performed using Baker’s gamma corre-
lation coefficient available through the dendextend R package (73).
The levamisole data was analyzed using the Kaplan-Meier estimator
with log-rank test comparison across different strata.We considered
P values < 0.05 as statistically significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
Legends for data S1 to S7

Other Supplementary Material for this
manuscript includes the following:
Data S1 to S7
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paper and/or the Supplementary Materials.
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